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Abstract 

Multiple Model Adaptive Estimation with Filter Spawning is used to detect and estimate par- 

tial actuator failures on the VISTA F-16. The truth model is a full six-degree-of-freedom simulation 

provided by Calspan and General Dynamics, including the aircraft's nonlinear equations of motion, 

fourth order actuator models, the complete Block 40 flight control system, and the aileron-to-rudder 

interconnect. The design models are chosen as 13-state linearized models, including first order ac- 

tuator models. Actuator failures are incorporated into the truth model and design model assuming 

a "failure to free stream". Filter Spawning is used to include additional filters with partial actua- 

tor failure hypotheses into the Multiple Model Adaptive Estimation (MMAE) bank. The spawned 

filters are based on varying degrees of partial failures (in terms of effectiveness) associated with the 

complete-actuator-failure hypothesis with the highest conditional probability of correctness at the 

current time. Thus, a blended estimate of the failure effectiveness is found using the filters' esti- 

mates based upon a no-failure hypothesis (or, an effectiveness of 100%), a complete actuator failure 

hypothesis (or, an effectiveness of 0%), and the spawned filters' partial-failure hypotheses. This 

yields substantial precision in effectiveness estimation, compared to what is possible without spawn- 

ing additional filters, making partial failure adaptation a viable methodology in a manner heretofore 

unachieved. The failure effectiveness estimate is refined based on the empirical relationship between 

the effectiveness estimate and the true effectiveness. The refined estimate is found to yield accu- 

rate results two seconds after failure detection in most effectiveness regions. The refined estimate 

is suitable for use in applying control via modified Control Redistribution to handle complete and 

partial actuator failures, and in considering dual failures. 



Multiple Model Adaptive Estimation Using Filter Spawning 

Chapter 1  - Introduction 

1.1 Chapter Overview 

This thesis presents Multiple Model Adaptive Estimation with Control Redistribution and Fil- 

ter Spawning applied to the detection and estimation of partial actuator failures on the Variable- 

Stability In-flight Simulator Test Aircraft (VISTA) F-16. Section 1.2 motivates the work of this 

thesis. Then Section 1.3 describes the problem definition, and Section 1.4 summarizes the assump- 

tions made.   Finally, Section 1.5 outlines the thesis format. 

1.2 Motivation 

The United States Air Force recognizes the need for fault-tolerant and survivable flight control 

systems in its aircraft. In particular, flight control systems should be able to detect and estimate 

actuator and sensor failures, and reconfigure the control law of the aircraft to obtain the least 

degradation in performance as possible. The success of an algorithm that can detect and estimate 

failures may eliminate the need for layers of redundant sensors and actuators, reducing aircraft 

weight and cost. The success of an algorithm that can control an aircraft in the face of failures may 

improve performance during sensor failures (by using a "better" reconstructed measurement vector 

estimate, rather than using the raw measurements themselves, in forming the control) and reduce 

the hazard associated with actuator failures (either the loss of the aircraft or the loss of mission- 

essential aircraft performance). 

Multiple Model Adaptive Estimation with Control Redistribution (MMAE/CR) has been cho- 

sen based on its detection, estimation, and control performance for complete actuator and sensor 

failures [18,41,42]. In considering partial actuator failures, filter spawning has been chosen to 

include additional filters in the MMAE bank based on partial actuator failure hypotheses at the rec- 



ommendation of Clark [8], based on the inadequate performance found using an MMAE bank based 

only on complete-failure and no-failure hypotheses (i.e., without spawning). 

1.3 Problem Statement 

A long line of research [8,10,11,18,31,32,41,42] has explored the detection and estimation 

of actuator and sensor failures on the VISTA F-16. Adequate performance has been achieved for 

complete sensor failures, complete actuator failures, and any dual combination thereof [18,41,42]. 

Dual failures have been considered for the case in which one of the failures is a partial actuator 

failure; however, the performance demonstrated did not warrant its implementation. This research 

seeks to detect and estimate partial actuator failures through an alternate conceptualization, called 

Filter Spawning. Dual failures and control aspects will not be explored explicitly in this research; 

rather, these aspects are left for future consideration. In summary, the detection and estimation of 

partial actuator failures will be considered using MMAE with Filter Spawning. 

1.4 Assumptions 

The "real world" is the VISTA F-16. The "truth model" is a full six-degree-of-freedom simu- 

lation provided by Calspan and General Dynamics. It is assumed that the "truth model" is a very 

accurate representation of the "real world". 

Actuator failures are modelled as a "failure to free stream" in the "truth model" as well as in 

the "design model" used for the basis of the filter algorithm. It is assumed that "failure to free 

stream" actuator failures occur in the real world, and that actuator failures that change the plant 

matrix (such as battle damage) or other actuator failures can be approximated with such a model. 

1.5 Thesis Format 

This thesis has a six-chapter format. Chapter 1, this chapter, provides an introduction to 

the thesis topic and format. Chapter 2 presents the history of MMAE, the theory of MMAE, and 

modifications to MMAE that enhance performance and on-line implementation. Chapter 2 presents 

these topics in a general environment; that is, most of the history, theory, and modifications for 



implementation are not dependant on this specific application. Chapter 3 first presents the "real 

world", the "truth model", the "design model", and the "failure models" incorporated into this 

research. With the models at hand, Control Redistribution is explained as it is applied to this 

research at the end of Chapter 3. Chapter 4 presents MMAE with Filter Spawning in general and 

as it is applied to this research. Chapter 5 presents the performance results of MMAE with Filter 

Spawning applied to the detection and estimation of partial actuator failures. Chapter 6 reviews 

the problem, the methodology, and the results. Appendix A is a supplement to the description 

of the design model discussed in Chapter 3. Appendices B and C are supplements to the results 

presented in Chapter 5. 

1.6   Chapter Summary 

This chapter has provided an introduction to the detection and estimation of partial actuator 

failures using MMAE with Filter Spawning. The motivation, problem definition, assumptions, and 

thesis format have been discussed to establish the context of the research that has been conducted. 



Chapter 2 -  Concept and Algorithm, Development 

2.1 Chapter Overview 

This chapter provides a basic overview of Multiple Model Adaptive Estimation (MMAE). It 

starts with the historical background of MMAE, including early concept development and contribu- 

tions from the Air Force Institute of Technology. The remaining two sections present the theory of 

MMAE and modifications to MMAE for practical implementation. Presented this way, it should be 

clear what ideas have theoretical merit and what ideas have been found through research to enhance 

implementation. 

2.2 Multiple Model Adaptive Estimation History 

2.2.1   Early Contributions 

2.2.1.1 Theory. In 1965, Magill [21] first presented the idea now known as Multiple Model 

Adaptive Estimation (MMAE). To form the basis of MMAE, Magill proposed to construct elemental 

filters, each based on a different hypothesis about the real world system's parameter values or other 

attributes. Then, using the conditional probability of each hypothesis being correct (conditioned 

on the measurements actually observed) as a weighting, the algorithm forms a blended estimate. In 

1976, Lainiotis [17] first presented the idea now known as Multiple Model Adaptive Control (MMAC). 

Lainiotis cascaded elemental controllers with the elemental filters to produce analogously an "optimal 

adaptive controller". At the time, MMAE and MMAC algorithms were mostly theoretical exercises 

for two reasons. First, implementation was computationally infeasible without parallel processors. 

Second, the recursive nature of the probability calculations would eventually cause some of the 

computed probabilities to go to zero; thus, the system would become insensitive to change. 

Chang and Athans [7] contributed optimality conditions for MMAE. They proved that the 

Bayesian (blended) method was only optimal provided the true parameter value exactly matched one 

of the hypothesized parameter values. Further, it was shown that if the true parameter value did 

not match the modelled parameter value, the MMAE was suboptimal.    Tugnait [46] showed that, 



for Markov-1 parameter processes1, the algorithm is again suboptimal. Although the necessary 

conditions for optimality are not met in most cases, including this research effort, this is not overly 

restrictive. Every designer must admit that a finite system model fails to represent the real world 

fully. Thus, whether an algorithm can claim optimality or not with respect to a (perhaps very 

artificial) set of mathematical modeling assumptions, it must be tested against a real world truth 

model to determine true performance. 

2.2.1.2 Implementation. In 1977, Athans et al [1] developed a practical implementation 

for the MMAE algorithm. This application presented a flight control problem in which the flight 

condition was estimated. Athans et al introduced methods to enhance implementation and also 

encountered problems with MMAE. 

Two methods were used to enhance implementation of MMAE. First, a lower bound on the 

probability calculations was introduced, discussed in Section 2.4.1. This decreased response times 

(i.e., the estimation algorithm was more agile) and avoided the problem of probabilities going to 

zero. This was a very useful alternative to a full-scale Markov model for parameter dynamics, which 

could accomplish the same benefits, but with significantly greater on-line computational expense 

and considerably more complicated effort required of the designer. Second, a weighted average (or 

Bayesian method) was used to calculate the control signal for the MMAC rather than using the 

one control signal corresponding to the filter with the highest probability (using the Maximum A 

Posteriori, or MAP, method).   These two approaches will be discussed in Section 2.3.2.3. 

Two problems were found with MMAE. First, "beta dominance" impaired flight condition 

estimation, as discussed in Section 2.4.2. Second, a dither signal, or test input, was needed to excite 

the system and thereby improve system identification, as discussed in Section 2.4.4. 

Although this application formed the basis for implementing MMAE and MMAC, it suffered 

two limitations. First, the aircraft chosen2 was inherently stable; therefore, the success of adaptive 

1Markov-l processes are time-varying processes for which knowledge of the system states at the current time 
step is sufficient to completely characterize the system states at the next time step. 

2The aircraft was an F-8 "Crusader" fighter jet. 



control was not particularly noteworthy3. Second, available digital flight computer limitations could 

not allow a full implementation. The algorithm only used four of the 16 designed filters at a 

relatively slow 8 Hz sample rate (as compared to the 64 Hz sample rate of current research). 

2.2.2   Contributions at the Air Force Institute of Technology 

The Air Force Institute of Technology (AFIT) is a major contributor in the MMAE field. 

AFIT has applied MMAE algorithms to various problems, including detection of failed sensors 

and/or actuators [8,10,11,18,31,32,41,42], adaptive target tracking [30], adaptive control of flexible 

space vehicles [14,26], detection and compensation of interference/jamming and spoofing of GPS- 

aided inertial navigation systems [48], adaptive head motion predictors in virtual environment flight 

simulators [29], and adaptive control of robot arms [45]. 

AFIT has also researched areas in beta dominance, moving-bank filters, and discretization 

methods. Recall that Athans et al encountered beta dominance problems in their flight control 

algorithm implementation (See Section 2.2.1.2). In 1985, Maybeck and Suizu [29] addressed the 

adverse effect of the beta term (See Equations (2.21) and (2.22) for a full discussion of the "beta" 

term). For their application, removing the ß term, i.e., equating it to unity, remarkably improved 

results. This was also shown to be particularly beneficial in the application of MMAE and MMAC 

to the detection of sensor and actuator failures in flight control systems by Stevens [28,43]. Stevens 

in 1989 and Menke [31,32] in 1993 investigated "scalar residual monitoring" as an alternate solution 

to the beta dominance problem as well. Beta dominance will be discussed in full as it applies to this 

research in Section 2.4.2. In 1987, Maybeck and Hentz [25] considered reducing the total number 

of on-line filters in a multiple model algorithm by means of a moving bank of filters. The moving- 

bank algorithm logic is written in such a way that the parameter values of the filters' hypotheses 

seem to move throughout the parameter space. AFIT has furthered moving-bank application 

and theory [47]. A particular form of moving-bank algorithm, known as the hierarchical structure 

algorithm [8,10,11,18,28,31,32,43] is especially pertinent to failure detection in flight control systems; 

3To be fair, that was not the fault of the authors - their research was applied to an IEEE-declared benchmark 
problem to which design teams were requested to apply adaptive controllers. 



it will be described more fully in Section 2.3.4.   AFIT has also investigated proper discretization of 

parameter spaces [25,39,40] as well as the proper discretization of moving-bank algorithms [47]. 

2.2.3   AFIT's History in Applying MMAE to Flight Control 

The U.S. Air Force has always recognized the need for fault detection and estimation in its flight 

control systems. Thus, AFIT has pursued an MMAE application to failure detection and estimation 

of sensors and actuators on current fighter aircraft. Through the years, the implementation has 

been applied to the STOL F-15, unmanned aerospace vehicles, and the VISTA F-16. Research has 

developed from initial modelling to single full failures to dual full failures, to single and dual partial 

failures. Presented here are the most recent contributors, namely Menke, Eide, Stepaniak, Lewis, 

and Clark. 

In 1992, Menke [31,32] performed analysis of the Variable Stability, In-flight Simulator Test 

Aircraft (VISTA) F-16 in a low dynamic pressure flight condition (0.4 Mach, 20,000 feet) using 

a Dryden wind model developed by Pogoda [24,37]. The low dynamic pressure condition was 

chosen because it is the most challenging for failure detection. Menke considered various types of 

sensor failures, including loss of signal, increased noise levels, and biases. He established the need 

for a sinusoidal dither signal in the absence of pilot command, used the hierarchical structure for 

dual failure detection, and used scalar residual monitoring to reduce beta dominance effects and to 

enhance performance above that with MMAE alone by detecting dither sinusoids in the residuals of 

elemental filters based on incorrect failure hypotheses. 

In 1994, Eide [10,11] implemented the six degree-of-freedom Simulation Rapid-prototyping 

Facility (SRF) simulation for the VISTA F-16. The SRF VISTA simulation includes complete 

nonlinear lateral/directional and longitudinal dynamics, rather than the linearized models of earlier 

efforts. The F-16's entire Block 40 flight control system, including the aileron-rudder interconnect, 

is encoded as the controller, in order to provide a very realistic simulation. All actuator saturations 

and rate limits are also included in the simulation. This SRF implementation became the standard 

truth model throughout the ensuing research. 
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