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Abstract 

A numerically stable, accurate, and robust form of the exponential 

characteristic (EC) method, used to solve the time-independent linearized 

Boltzmann Transport Equation, is derived using direct affine coordinate 

transformations on unstructured meshes of tetrahedra. This quadrature, as 

well as the linear characteristic (LC) spatial quadrature, is implemented in 

our transport code, called TETRAN. This code solves multi-group neutral 

particle transport problems with anisotropic scattering and was parallelized 

using High Performance Fortran and angular domain decomposition. A new, 

parallel algorithm for updating the scattering source is introduced. The EC 

source and inflow flux coefficients are efficiently evaluated using Broyden's 

rootsolver, started with special approximations developed here. TETRAN 

showed robustness, stability and accuracy on a variety of challenging test 

problems. Parallel speed-up was observed as the number of processors was 

increased using an IBM SP computer system. 

x 



DEVELOPMENT OF A DISCRETE ORDINATES 
CODE SYSTEM FOR UNSTRUCTURED MESHES 

OF TETRAHEDRAL CELLS, WITH SERIAL 
AND PARALLEL IMPLEMENTATIONS 

Chapter I: Introduction 

We present the development of a parallel unstructured tetrahedra 

mesh discrete ordinates radiation transport code. This code, TETRAN, solves 

the linear time-independent Boltzmann transport equation for the angular 

flux density using the linear and exponential characteristic spatial 

quadratures. It also uses the standard source iteration algorithm with multi- 

group cross sections and general anisotropic scattering. The code was made 

parallel using High Performance Fortran directives. We examine the 

performance of the code using several benchmark problems and present the 

results. The exponential characteristic method was found to be a stable, 

robust coarse mesh method when provided with positive source moments. 

Several challenging test problems demonstrate EC's performance. 

Performance of the parallel code is briefly presented. 

Background 

The fundamental equation describing neutral particle transport 

processes is the linear Boltzmann transport equation (BTE) (Lewis and 

Miller, 1993:1). The time-independent BTE describes the balance of neutral 

particles in a six-dimensional phase space: three spatial dimensions (f), two 



angular dimensions (Q), and energy (E). The BTE relates the rate of change 

of neutral particle density at a point f, moving with energy E, in direction Q, 

to the differences between sources and losses: 

[Q • V + a(r,E)]i|/(r A E) = S(r,Q,E). (1) 

where the angular flux density, y , is the flux of particles at point f, moving 

with energy E, in direction Q. The bracketed term accounts for particle 

losses due to streaming and collisions. S(r,Q,E) represents the source of all 

particles in the (r,Q,E) phase space cell. The characteristic solution to the 

BTE is presented in Chapter 2. In Chapter 3, we discuss the multi-group 

energy discretization of the BTE and the impact of the traditional anisotropic 

scatter treatment on the parallelization of the source iteration algorithm. 

Analytical solutions for the BTE exist for idealized problems (one 

energy group with isotropic scatter and symmetry boundaries). Recently, 

researchers at Los Alamos developed several semi-analytic benchmarks that 

solve multi-dimensional transport problems (Kornreich, 1997). Point kernel 

techniques are used in some radiation shielding calculations where speed, 

rather than accuracy, is required to determine dose rates from simple source 

configurations (Glasstone, 1981). Build-up factors, calculated via the 

numerical techniques discussed below, often augment point kernel 

calculations. 



Numerical methods are generally used to solve the BTE. The two most 

popular classes of methods are Monte Carlo and deterministic. Where 

diffusion processes dominate the transport of particles, simplifying 

assumptions can be made to the BTE, transforming it into the diffusion 

equation which is solved by well established algorithms (such as finite 

difference or conjugate gradient) (Ott, 1983). 

Monte Carlo Techniques 

The Monte Carlo technique simulates individual particle path histories 

and accumulates the results. As these histories are accumulated, statistics 

are formed that estimate the uncertainties in the results. The method is 

generally suitable to complex three-dimensional geometries. Computational 

grids are not explicitly needed. Besides its general geometry capability, the 

Monte Carlo technique can also take advantage of continuous energy nuclear 

data which is the natural form of cross section data found in the Evaluated 

Nuclear Data Files (ENDF) (Rose, 1990). It can also use multigroup cross 

section data that are typically used for deterministic transport algorithms 

(Briesmeister, 1991). The primary disadvantage of the technique is its need 

for variance reduction techniques for complicated, deep-penetration 

problems. Another disadvantage is that the method can not represent the 

flux in an entire system except at great expense since numerous flux 

estimators are required. Deterministic methods directly create a flux map. 

An excellent discussion of the Monte Carlo method is found in Lewis and 
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Miller, Chapter 7 (Lewis and Miller, 1993), or the MCNP™ 4B (Monte Carlo 

N-Particle Transport Code System) manual, Chapter 1 (Briesmeister, 1991). 

MCNP™ is widely used due to its general three-dimensional geometry 

ability, accuracy, and ease of use; we use it here to generate benchmarks for 

comparison with TETRAN results. 

Deterministic Methods 

Deterministic methods solve the BTE using simplifying assumptions 

and techniques to perform the angular and spatial integrations. The most 

widely used method to solve the BTE is discrete ordinates (Lewis and 

Miller, 1993: 116). First utilized for transport calculations in stellar 

atmospheres (Chandrasekhar, 1960), researchers at Los Alamos National 

Laboratory adapted this method for neutron transport work in the late 1950's 

(Carlson: 1958). 

In the discrete ordinates method, the BTE is solved for a finite number 

of angular directions, Qn, to get the angular flux, v|/n , for each cell in a 

computational mesh. After all of the \|/n have been computed for a given 

mesh, numerical quadrature is used to calculate the meaningful integral 

quantity: the scalar flux, <j>, in each cell i, 

N 

*i = ZWnVi(n- (2) 
n=l 



Usually, the angles, Qn , and weights, wn, are chosen to accurately integrate 

spherical harmonics functions, as is described in detail in Lewis and Miller, 

Chapters 3 and 4 (Lewis and Miller, 1993). 

Many algorithms exist within the discrete ordinates family of methods. 

One of the oldest, yet still used, is the diamond difference method (Lewis and 

Miller, 128-131). The diamond difference method makes a finite difference 

approximation to the differential operator in the BTE and assumes several 

auxiliary equations. The method is easy to implement and is computationally 

inexpensive. However, diamond difference suffers from numerical 

instabilities that produce oscillations in the angular flux (Petrovic, 1996) and 

generally does not propagate flux in the correct direction (Mathews, 1998). In 

slab geometry, diamond difference can also produce negative angular fluxes 

unless the computational cell optical thickness, e, is small (< 0.1). In two- 

and three-dimensions, diamond difference is not even conditionally positive 

unless fix-ups are used. This behavior limits the application of diamond 

difference to deep-penetration shielding problems since exceedingly fine 

meshes are required to maintain the positivity and accuracy of the method. 

Indeed, the diamond difference method or one of its cousins [adaptive 

weighted diamond difference (AWDD) (Alcouffe, 1993) and theta-weighted 

diamond difference (Rhoades and Azmy, 1996)] has been the backbone of 

every major discrete ordinates neutral particle transport code developed in 

the United States since the inception of the method around 1960. 

5 



Figure 1 shows the progression of production codes, the methods they 

employ, and a backdrop of computational hardware generally available at the 

time of the method [(Intel Corp., 1998) (Foster, 1995), (Dongarra, 1998), 

(USDOE ASCI, 1998), (Wareing, 1997), (Lewis and Miller, 1993), (Rhoades, 

1995), (Alcouffe, 1995), (Briesmeister, 1991)]. The figure shows that few new 

(higher order) spatial quadratures have been incorporated into the 

production codes in the last 30 years. The reason for this is that higher order 

methods are generally more computationally intensive per spatial cell than 

the traditional or weighted difference approaches. This is particularly true of 

the characteristic methods presented in this dissertation. Much of the 

apprehension in embracing higher order methods stems from Lathrop's 

seminal paper, "Spatial Differencing of the Transport Equation: Positivity vs. 

Accuracy" (Lathrop, 1969). In this paper, Lathrop presents what have become 

the de facto criteria for a "desirable" spatial quadrature: 

1. "it should be accurate in the sense that it has small truncation error, 

2. it should be simple, which means that it should involve a small number of 
numerical operations and should involve unknowns within a single mesh 
cell, 

3. it should produce positive fluxes if the source and boundary fluxes are 
positive, 

4. the scheme should be conservative in the sense that a well defined 
relation exists among flows into and out of the cell and sources and 
absorptions in the cell, and, 

5. the scheme is easily generalized to all (curvilinear) geometries." 

6 



Obviously, the above criteria are reasonable, particularly from the 

vantage point of 1969 when computational hardware constraints were severe. 

However, the 2nd and 5th criteria have prevented the acceptance of many 

higher order methods because they tend to be computationally expensive per 

cell, not very simple, and are not generalizable to curvilinear geometries. 

Criterion 5 proves to be a particular problem for characteristic methods since 

such methods assume particle flow along straight lines in Cartesian space. 

However, we argue that criteria 2 and 5 are unreasonable given the 

computational and mesh generating capabilities that exist today. Indeed, for 

true three-dimensional problems not involving the types of symmetries 

needed to exploit curvilinear coordinates, an unstructured Cartesian mesh is 

probably a better choice for performing transport analysis. 



Correlation of Production Code Transport Algorithms 
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Figure 1. Correlation of Production Code Transport Algorithms to Hardware 
Floating-Point Performance. 

Figure 1 shows the fantastic growth in floating-point performance from the 

days of the first computer to near term plans for the next generation of 

supercomputers envisaged by the Department of Energy's Advanced 

Strategic Computing Initiative (ASCI). Clearly, system performance has 

grown tremendously since the birth of computational radiation transport 

circa 1960 (both in processor performance and memory). Meanwhile, 

transport researchers have derived more accurate transport methods than 

the traditional or weighted diamond difference approaches which are still the 
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primary methods of choice for the large discrete ordinates production codes: 

DANTSYS (Alcouffe, 1995) and DOORS (RSICC, 1998). Additionally, most of 

the modern discrete ordinates transport codes use Cartesian computational 

meshes with boxoid (in the case of three-dimensional transport) or 

rectangular (in the case of two-dimensional transport) computational cells. 

This approach simplifies meshing a problem where curved surfaces are not 

involved or one does not want to resolve fine details of the problem. However, 

the number of cells needed to mesh a problem accurately grows quickly with 

the detail desired to be refined. It is for this reason that researchers continue 

to pursue the development of higher order, linear and non-linear discrete 

ordinates methods for use on unstructured grids. 

Non-linear Discrete Ordinates Methods 

Over the past ten years, researchers at the Air Force Institute of 

Technology (AFIT), Texas A&M University, and Los Alamos National 

Laboratory (LANL) have developed several non-linear characteristic methods 

to solve the BTE. In these non-linear methods, the needed source or flux 

coefficients are obtained by root-solving a non-linear system of equations. 

These methods were pursued due to their inherent positivity given positive 

source and boundary data and their potential for robust coarse mesh 

performance. The timeline showing the development of non-linear methods 

research is shown in Figure 2. 

9 



LC: Linear Characteristic 
EC: Exponential Characteristic 
NLC: Non-Linear Characteristic 
NLCB: Non-Linear Corner Balance 
ED: Exponential Discontinuous 
TAMU: Texas A&M University 
LANL: Los Alamos National Laboratory 

1991: 
Step Adaptive (X-Y) 
AFIT 

1995: 
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AFIT 

NLCB (X-Y) 
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ED (X-Y) 
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EC (X-Y) LANL 
AFIT Major Presentation of AFIT EC 
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AFIT Conf. 

1997: 
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ANS Math&Comp: 
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1994: 
NLC (Slab) 
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1996: 
EC/LC (Tetrahedra) 
AFIT 

NLCB Acceleration (X-Y) 
TAMU 

1998: 
EC 
(Tetrahedra) 
AFIT 

Figure 2. Development timeline of non-linear methods research. 

First among this family of methods were the step adaptive (Mathews, 

1990) and linear adaptive (Mathews, 1993) methods. Following the 

development of the adaptive methods was the exponential characteristic 

(EC) method for slab geometry, developed at both AFIT (termed exponential 

characteristic or EC)(Mathews, 1994) and LANL (termed non-linear 

characteristic or NLC)(Walters, 1996). This method takes the average and 

first spatial moments of the characteristic solution to the BTE and an 

assumed exponential distribution of the scattering source in a cell to 

calculate average and first moments of the angular flux. Both 

implementations exhibited fourth order convergence and excellent deep 

penetration performance warranting further investigation of the method in 

higher dimensions. The AFIT implementation differed substantially from 

10 



LANL/s approach in that the focus of the development was on producing a 

numerically robust method. The LANL approach had obvious numerical 

conditioning problems. Both groups continued the development of EC/NLC by 

implementing the method in two-dimensions. AFIT developed both Cartesian 

rectangular cell (Minor, 1995) and unstructured triangular mesh (Mathews, 

1997) EC algorithms. LANL researchers produced a Cartesian rectangular 

cell algorithm (Walters, 1995) and convergence acceleration techniques for 

their methods in slab and XY geometry (Wareing, 1994) (Wareing, 1995). 

AFIT continued our development by extending the method to three- 

dimensions, implementing EC on grids of unstructured tetrahedra (Brennan, 

1996). The LANL researchers chose to pursue different methods (due to the 

high computational cost per phase space cell of the NLC method), beginning 

the development of the exponential discontinuous (ED) method which they 

have implemented in slab, two- (Wareing, 1995) and three-dimensional 

Cartesian cells (Wareing, 1996). At Texas A&M, researchers developed the 

non-linear corner balance (NLCB) method which they have derived for slab 

and two-dimensional arbitrary grids (Castrianni, 1998). Additionally, this 

group also developed convergence acceleration techniques (transport 

synthetic acceleration) for use with their method (Ramone, 1997) (Anistratov, 

1996). 

11 



Other Unstructured Grid Transport Methods 

Besides the above non-linear methods for two- and three-dimensional 

transport on unstructured grids, researchers developed several linear 

methods. LANL pioneered the development of the linear characteristic 

method for unstructured triangles by developing a linear characteristic-nodal 

method for such grids (Paternoster, 1984). A version of the step characteristic 

method was extended to two-dimensional arbitrary grids by researchers at 

Oak Ridge National Laboratory and the Westinghouse Savannah River 

Laboratory (DeHart, 1994). LANL developed — in concert with several oil 

and natural gas companies — a three-dimensional unstructured tetrahedral 

mesh discrete ordinates transport code. This code, ATTILA, performs particle 

transport using the linear discontinuous method with diffusion synthetic 

acceleration of the source iteration (Wareing, 1996) and is third order 

convergent (Wareing, 1998).). At AFIT, the step and linear characteristic 

methods were developed for unstructured triangular (Miller, 1993) and 

Cartesian rectangular (Minor, 1993) cell meshes. Brennan included a 

development of both the step characteristic and linear characteristic methods 

for tetrahedral cells (Brennan, 1996). 

Purpose 

The purpose of this research is to contribute to the development of a 

high order, high fidelity (with respect to geometry), three-dimensional 

discrete ordinates transport code system. Currently, only one such code exists 
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— LANL's ATTILA (although it is not a general distribution code). ORNL's 

TORT code uses the linear characteristic spatial quadrature (Rhoades, 1995) 

for deep penetration problems. However, it performs transport on Cartesian 

grids and is thus poor at modeling geometry in detail. MCNP™, a Monte 

Carlo code, is widely used for high fidelity, three-dimensional transport 

calculations. We seek to develop a discrete ordinates code system that 

performs neutral particle transport on arbitrarily complex three-dimensional 

geometries with accuracy approaching or exceeding that of MCNP™ or other 

Monte Carlo methods. We envision that such a code system will fill the gap 

between Monte Carlo and discrete ordinates transport codes, producing 

accurate high fidelity global flux distributions for coarse meshes and deep 

penetration problems. 

Goals 

The goal of this research is to implement the linear and exponential 

characteristic methods in a parallel radiation transport code. Specifically, the 

exponential characteristic method (tetrahedron computational cell) will be 

derived using the direct affine transformation approach (Mathews, 1998) for 

tetrahedral cell splitting and moment passing. This development improves on 

that of prior work (Brennan, 1996). Additionally, we will implement the EC 

spatial quadrature within a code that is parallel capable with the 

introduction of High Performance Fortran (HPF) directives. 
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We begin this development with the long-term vision of fielding a 

production code system. With that end in mind, TETRAN will be able to 

perform multi-group, anisotropic scattering problems in a high-performance 

parallel-computing environment. TETRAN will operate on arbitrarily 

complicated meshes (limited by the mesh generator and available hardware) 

and read standard cross section libraries. Additionally, it will produce data in 

a format that is easily read by state of the art scientific visualization software 

such as AVS/Express. 

Scope 

TETRAN was created to be the kernel of a general three-dimensional 

neutral particle transport code. It solves the time-independent multi-group 

BTE using the EC and LC spatial quadratures on meshes of tetrahedra. 

Anisotropic scattering is treated using the traditional spherical harmonics 

approach. The code operates in parallel on an IBM SP when compiled with 

the PGHPF 2.4 development compiler. 

Limitations 

As a first generation code, TETRAN has several limitations due its 

maturity level. These limitations are: 

1) No Convergence Acceleration. Adapting or developing convergence 
acceleration may prove to be straightforward, but issues of efficiency, 
effectiveness, robustness, and implementation make this suitable as the 
focus of a follow-on effort. 

2) No fission source. 
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3) Downscatter only. To be useful, both 2) and 3) would need convergence 
acceleration. Except for a few unusual applications, adding these features 
will be straightforward. 

4) High Performance Fortran (HPF). TETRAN has HPF directives and has 
been minimally tested using them but current compilers are still under 
development. 

5) Only vacuum boundaries and no re-entrant geometries. Other boundaries 
would unduly complicate parallelism for a first code. 

6) No external incident beams or fluxes. Same as 5). 

Several problems were devised to test the operation of the code and it's 

underlying algorithms. Each problem uses an isotropic emitter uniformly 

distributed through the volume of one region as the only source of particles in 

the problem. No incident current problems were tested since the author did 

not know how to use MCNP™ for this type of problem. Additionally, no 

investigation of TETRAN performance on thick, diffusive problems was 

performed, because such problems require convergence acceleration, which is 

a feature we have yet to develop or adapt to these meshes. 

Organization 

The remainder of this document is composed of five chapters. Chapter 

2 presents the derivation of the exponential characteristic spatial quadrature 

using direct affine.transformations. Chapter 3 outlines the needed multi- 

group and anisotropic scattering theory and presents the pseudo-code for 

TETRAN as well as the parallelization strategy using HPF. We present the 

results of our testing in Chapter 4. Finally, Chapter 5 presents our 
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conclusions and recommendations for future work. Four appendices are 

included. In Appendix A, we present several exponential moment function 

identities used in this work. Appendix B contains the algorithms used to find 

the source and inflow face flux coefficients needed for the EC method. 

Appendix C summarizes the robust algorithms used to calculate the EC 

spatial quadrature. Finally, Appendix D presents the derivation of a new 

spatial quadrature, the surface cell algorithm, that was derived but not 

implemented in this effort because no mesh generators currently support its 

inclusion in finite element unstructured meshes. 
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Chapter II: Derivation of Exponential Characteristic Spatial 
Quadrature 

In this chapter, we derive the exponential characteristic (EC) solution 

to the Boltzmann Transport Equation (BTE) for a tetrahedron spatial cell. 

Specifically, the equations for the average and first spatial moments of the 

angular flux in a tetrahedron cell are derived as well as the needed source 

and inflow flux systems of equations. The chapter ends with a brief summary 

of the linear characteristic method, which was implemented prior to the EC 

quadrature in TETRAN. 

The Unit Tetrahedron 

The derivation of the exponential characteristic method begins with a 

discussion of the unit tetrahedron coordinate system. This discussion will be 

brief since the face and tetrahedra cell coordinate systems, affine 

transformations, and cell splitting are presented in detail in a previously 

submitted paper (Mathews, 1998). Consider the tetrahedron in Figure 3. 

Figure 3. Tetrahedron Arbitrarily Oriented in XYZ Space. 

As was pointed out by Brennan (Brennan, 1996), it would be an intractable 

problem to develop a characteristic method using this global cell coordinate 
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system because such a method would need to account for any arbitrary 

streaming direction and cell orientation. With reference to Figure 3, we 

define an oblique Cartesian (affine) coordinate system with origin at R0 and 

basis vectors Et, E2, and E3 for coordinates U, V, and W, respectively. In that 

coordinate system, the tetrahedral cell is (by construction of the coordinate 

system) always the unit tetrahedron shown in Figure 4. 

(U,i) 

(1,0,0) "(1,1,0) 

Figure 4. The Unit Tetrahedron in the UVW Coordinate System. 

Each cell in the global mesh is mapped to its own unit tetrahedron system. 

All cell flux moments, source coefficients, and sub-cells are defined based on 

this coordinate system. After the cell has been split (along the streaming 

direction Q), the inflow flux is passed from the upstream cell to the 

downstream cell and is properly transformed into the sub-cell face systems. 

This involves some moderate complexity and is fully discussed in the 

referenced paper. In addition to the cell coordinate system, each cell has four 

faces. Each face has its own coordinate system defined by two edge vectors 
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whose cross product produces an outward normal vector. This face system is 

shown in Figure 5. 

n = E xEi 

Figure 5. The Face Coordinate System. 

With reference to Figure 5, we define an oblique Cartesian (affine) coordinate 

system with origin at R£ and basis vectors E[and E^ for coordinates Ufand 

Vf, respectively. In this coordinate system, the tetrahedron face is always 

the unit tetrahedron face shown Figure 6. 

at) 

(0,0) (1,0) 

Figure 6. The Face Local UV Coordinate System. 

Having presented the needed coordinate systems to pass cell and face 

flux moments within the transport calculation, we will briefly overview the 

concept of cases for cell splitting. 
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Tetrahedron Splitting 

The spatial quadratures derived in this work require that each 

tetrahedron cell be split along the streaming direction into a number of sub- 

tetrahedra. It is for these sub-tetrahedra that the quadratures are derived. 

An example cell split is shown in Figure 7. 

Figure 7. Example of a Tetrahedron Cell Split. 

Referring to Figure 7, the splitting line, parallel to Q, enters the cell at 

iüin = Rj and is propagated across the cell to Rout, where Rout is the point in 

the cell that will produce a number of sub-tetrahedra that have exactly one 

input and one output face. We term these case 1 tetrahedra. In the case 

above, the cell is split into three sub-tetrahedra with corner nodes 

(Ro>R3>Ri>R0ut)> (R3>R2>Ri>R0ut)> and (R2,Ro,Ri,Rout) inXYZ space and 

zl zl z:l zl\   (^2 -2 -2 -2 z;3 -3 -3 -3\ • (fo A ,r2 ,r3 ), (r0 .rf,^,^), and (r0
rf,r2

rf,r/,r/) in each sub-cell where the 

lowercase refers to the sub-cell coordinates. The node ordering is chosen to 

define the sub-cell edge vectors e1=r1-r0, e2 = r2 - f1, and e3 =r3-r2, 
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which obey the relation (e2 x e2) ■ e3 > 0. In this case, the parent cell is a case 

-3 tetrahedron (3 inflow faces and 1 outflow face) thus producing 3 sub- 

tetrahedra. Note also that the optical thickness of each sub-cell is the same, 

s = a I, where a is the total cross section for the cell material and 

1 = -"-out     *4n is the length of the splitting line (e3 in each subcell) depicted 

in Figure 7. Only six parent cell configurations for splitting an arbirarily 

oriented tetrahedron cell and streaming direction are possible. These cases 

are outlined in Table 1. 

Table 1. Possible Parent Tetrahedron Cell Cases. 

Case Sub-cells # of inflow faces 
(i) 

# of outflow faces 
(/) 

1 1 1 1 
2 2 1 2 
3 3 1 3 
4 4 2 2 
-2 2 2 1 
-3 3 3 1 

Referring to Table 1, the parent cell case is determined by the taking the dot 

product of the streaming direction and each outward face normal, h • Q. An 

outflow occurs for n • Q > 0 and an inflow occurs for  h • Q < 0. For h • Q close 

to zero (< 1012), no contribution is made to the case (a no-flow face). Letting i 

be the total number of inflow faces and j the total of outflow faces, the case of 

a tetrahedron with respect to Q is given as 

Case(i,j) = 10-lli + i2-4j + 5i;- 
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The algorithm used to properly split a tetrahedron into the appropriate 

number of sub-tetrahedra is presented in the aforementioned paper 

(Mathews, 1998). 

Characteristic Solution in the Sub-cell Unit Tetrahedron 

The characteristic solution of the BTE along the streaming path Q 

(which is parallel to the w axis— e3— of the sub-cell) is particularly elegant 

when we operate on the unit tetrahedron. Integrating the BTE along the 

streaming line, from the point of entry into the sub-cell, at (u, v, 0) (where 

lower case u and v are used to indicate sub-cell coordinates), to the point of 

interest, at (u, v, w), the angular flux is 

w 

y(u,v,w) = \l/
in(w,i;)e-E"' + ljS(u,v,w')e-e(w-w')dw', (4) 

o 

where S(u,v,w) is the source, ym(u,v) is the inflow flux, and \y{u,v,w) is the 

sub-cell flux. Before proceeding with the derivation of the exponential 

characteristic method, we will now briefly discuss the integral functions 

which are central to the EC method: the exponential moments functions. 

Moments Functions 

The exponential moment functions (Mathews, 1994) occur in deriving 

the EC method. They are defined as 
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\ i lm-l 
Ain(x1,x2>...,xm) = jdt1(l-t1)

ne-x^jdt2e
(x^x^... Jd^e^-i"*^.   (5) 

0 0 0 

They are used to package the numerical difficulty of the EC method and help 

provide an elegant derivation. Had their pattern not been discerned, this 

research would have little hope of success. They are related via a multitude of 

recurrence relations and are always positive (Minor, 1993; Mathews, 1994; 

Minor, 1995; Mathews, 1997). Appendix A summarizes the exponential 

moment function identities used in this work. 

In addition to the moment functions, various ratios of moment 

functions are useful. One common moment function ratio is the p function, 

defined as: 

nfx   x   ...x   \- M(xi,x2,-,xm) 
AA0(x1,x2,---,xm) 

Note that 0<p(x1,X2,---,xm) <1. 

Lastly, we introduce a new moment function ratio, R^, which is defined 

as 

«w x    Mo(xi,x2,...,xm,Xj) 
Kj(x1>x2,...,xm) = —— -i-, (7) 

M0(x1,x2,...,xm) 

where the j subscript indicates that the jth argument is repeated in the 

numerator AIQ function argument list (but not in the denominator A1Q). Note 
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also that 0 < ft,- < 1. The ftj function along with Identity 6 (Appendix A) allow 

for particularly elegant and robust formulations of the EC spatial 

quadrature. 

Key to this research was the development of stable and accurate 

numerical routines for evaluating one through four argument moment ( AIQ) 

and p functions. The one-, two-, and three-argument function algorithms 

were presented previously (Mathews, 1997). The four-argument algorithm is 

presented in Appendix A. 

Derivation of the Exponential Characteristic Method 

EC Source Distribution 

We begin the derivation of the exponential characteristic method by 

defining a volume moment operator for the unit tetrahedron exactly as done 

in the linear characteristic derivation (Mathews, 1998): 

l     u    v 
MM s ^JJJg(R)d3R = 6jdU JdV JdW g(U, V,W). (8) 

cell 0        0       0 

The EC method uses an exponential source distribution, 

S(X,Y,Z) = exp(a + ßxX + ßYY + ßzZ), that has the known central moments 

(initialized or known from a previous iteration), SA = M[S(X,Y,Z)], 

Sx = M[(X-X)S(X,Y,Z)], SY = M[(Y-Y)S(X,Y,Z)], and 

Sz = M[(Z- Z)S(X.Y,Z)]. However, neither the moments nor their coefficients 

are of any particular interest by themselves. Analogous to the LC derivation, 
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the moments produced by the angular quadrature can be with respect to any 

three linearly independent basis vectors; we choose the unit tetrahedron edge 

vectors. Thus, we seek a function in U, V, and W, that matches the moments 

of the source in the oblique (unit tetrahedron) coordinate system. The source 

distribution then becomes: 

S(U, V, W) = exp[As + BUU + BVV + BWW]. (9) 

Operating on S(U,V,W) with the volume moment operator, we find the 

following system for the source moments: 

SA =M[S(U,V,W)] = 6exp[As]Mo(Xs,Ys,Zs) (10) 

Su=M[US(U,V,W)] = SA(l-p(Xs,Ys,Zs)) (11) 

and, 

Sv = M[VS(U,V,W)] = Su -SA ^X^Xs'Ys'Z,s) (12) 

Sw =M[WS(U,V,W)1 = SV-SA M)(XS,YS,YS,ZS) 
L J      V      A   Mo(Xs,Ys,Zs) ^   ; 

where 

Xs =-Bu, 

YS=-(BU+BV), (14) 

Zs =-(Bu +BV +BW). 
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Using Identity 6 (Appendix A), equations (10) through (13) can be written in 

an algebraically efficient form as 

SA=6exp[As]Mo(Xs,Ys,Zs), (15) 

Sw =SA ^3(XS>YS,ZS), (16) 

SV=SW+SA7?2(XS,YS,ZS), (17) 

and 

SU=SV+SAK1(XB,Y.,Z8). (18) 

Unlike the LC spatial quadrature, the above system is not directly 

invertible to find the source coefficients. In order to obtain 

As, Bu, Bv, and, Bw, use of a non-linear root-solver is necessary; we use 

Broyden's method (Burden, 1993). Although the development of an accurate 

first guess algorithm and efficient root-solving were key contributions of this 

research, the details of these algorithms have been relegated to Appendix B 

in order to preserve the flow of the following derivations. 

Once the coefficients are found, direct affine transformations are used 

to transform the coefficients from the unit tetrahedron cell to the various unit 

tetrahedron sub-cells for use in the spatial quadrature. The reason for this is 

as follows. Consider two linear functions, l(ü(x)) and l'(x), where 

l(ü(x)) = l'(x) and x is a coordinate vector. Now, suppose that l(ü) = a + b-ü 
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and u(x) = ü0+J -(x-x0) where u0 is some initial value, J is the Jacobian 

of the transformation, and x0 is a translated origin for the subcell coordinate 

system. Then we have that l(ü(x)) = a + b-ü0 +b-J-x-b-J-x0=a' + b'-x 

where a' = a + b-u0-b-J -x0 and b' = b- J. In the case of the EC method, 

because the source coefficients are related linearly in the spatial coordinate 

as discussed above, exponentiating l(U(x)) and l'(x) has no effect on the 

transformation of the coefficients. Indeed, as long as the coefficients are 

maintained in a linear form, one can perform any arbitrary operation, /, on 

both l(ü(x)) and l'(x) and still perform a linear transformation of the 

coefficients as presented above. 

EC Inflow Face Flux Distribution 

Analogous to the source equation development, we must define an 

operator to take moments over an inflow face. In the case of the unit face, this 

operator is 

1 1 Uf 

Mf[g] = J7j|g(R)d2R = 2jdUf JdVfg(Uf,Vf). (19) 
""■    face 0 0 

As with the source distribution, we assume an exponential distribution 

of the inflow flux on the face, 

Ti
f

n(Uf,Vf) = exp(Af
+Bf

uU
f+BfVf), (20) 

such that the moments over the face are 
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YI = Mf vJ/in(Uf,Vf)| = 2exp(Af)M0(Xf!Yf), (21) 

Y£=Mf[uf^(Uf,Vf)] = «pi[l-p(Xf>Yf)], (22) 

and vFv=Mf 
v vf^4(uf,vf) yf      yf  M)(Xf,Xf,Yf) 

U      A    Mo(Xf,Yf) 
(23) 

where the coefficients are 

Xf =-B 

Yf=-(BS+Bj). 
(24) 

Using Identity 6 (Appendix A), equations (21) through (23) can be expressed 

compactly as 

n=2exp(Af)AK)(Xf,Yf), 

V$=vlK2(X{,Y{), 

(25) 

(26) 

and 

Yu=^v+*A^i(Xf,Yf). (27) 

As with the source system, the system of equations for the inflow flux 

moments is non-linear and requires a root-solver (Broyden's method) to 

obtain the needed coefficients. 
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Derivation of Sub-Cell EC Spatial Quadrature 

The above source and inflow flux coefficients are rotated/translated 

into the sub-cell coordinate system using direct affine transformations 

(Mathews, 1998). This is possible since the coefficients are linear and are only 

operated on by the exponential. Having obtained the coefficients for the sub- 

cell, we now define sub-cell volume and outflow face area moment operators 

and the sub-cell characteristic equation for the flux, \\i. 

Analogous to the cell volume operator, the sub-cell volume moment 

operator is defined as 

luv 

>jdujdvj 
0       0      0 

A U- V 

m[g(r)] = 6Jdujdvjdwg(u,v,w). (28) 

We use lower case for sub-cell variables and upper case for cell variables. The 

sub-cell characteristic equation for the sub-cell, obtained by integrating the 

BTE along the streaming direction from (u, v, 0) to the point (u, v, w), is 

w 

y(u,v,w) = yin(u,v)e-zw+llS(u,v,w')e-E{w-w')dw', (29) 
o 

where the /, the path length across the sub-cell, accounts for treating the 

source distribution as a point function. This is done to keep the units of the 

source (particles/cm3/s) and flux (particle-cm/ cm3/s) consistent regardless of 

the coordinate system of the independent variable for position (R, R,or r) 

(Mathews, 1998). The source distribution is assumed to be an exponential, 
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S(u,v,w) = exp(as + hs
uu + bs

vv + bs
ww). Similarly, the inflow flux is also 

assumed to have an exponential distribution on the sub-cell face, 

\\im(u,v)=exTp(af + b(lu + b()v). 

The derivation of the sub-cell flux moments for EC starts by 

calculating the average cell flux, 

Vfhcen = m[V(u, v, w)] = VKS*
11
 + v gcell f 

M/SeU = 6 exp(af )Mo(Xl
f ,Yl

f )Zl
f), (30) 

M/grf = 6 I exp(as) A4o(xf ,yf ,zf ,wf), 

where the coefficients for the sub-cell inflow face (obtained via affine 

transformation from the global face) are 

xf--hf x
l ~     Du> 

yi=-(b£+bj), (31) 

zl=-(h{+bi) + e, 

and the source coefficients are 

xf=-bs
u, 

zf=-(bs
u+b

s
v) + s, 

wf=-(bs
u+bs

v + b^), 

where the source and inflow flux coefficients are denoted by either an s or f 

superscript, respectively, and s is the cell optical thickness. 
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(33) 

Each coefficient above is subscripted with 1 to differentiate it from the 

coefficients for the outflow flux. This notation promotes compactness. Note 

that each sub-cell will have its own different set of coefficients. 

As with the average flux, the u-moment of the flux is defined as 

vCbceU = m[uy(u,v,w)] = V^ + ^vf\ 

vSSen=vSSdl[l-p(x1
f,y1

f,z1
f)] 

= M/ÖrU[^i(x1
f
)y1

f,z1
f) + ^2(x1

f,y1
f
)z1

f) + ^3(Xl
f
)y1

f,z1
f)]) 

Af = ÄU[l-p(x? ,jl ,z\ ,wf)] 

= Äc
c

eU[^1(xf)y?)zf,wf) + ^2(xf,yf,zf!wf) + 

^(x!,y!,z;,w;)+^(xf,y;,z;,wj)], 

where Identity 6 (for three- and four-arguments) in Appendix A is used to 

obtain the second relationship for vi/jjj*11 and v|/^Jr
c
c
eU, respectively. Using 

the formulation produced by this identity allows us to see that 

subcell subcell     ,,, subcell .   .subcell 
WA >X

\>U >VV >X
¥W 

The derivation of the u-moment of the flux is a little more complex 

than the average and u-moment derivations. In the previous cases, the 

integral definition for the moment functions follows directly from the 

application of the moment operators. In the case of the u-moment, integration 

by parts is used to evaluate the integrals. Applying the moment operators, 
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(34) 

M/rbceU = m[vy(u,v,w)] = vif* + <£f \ 
f    f    f   f 

.,.subceU _ ,,,subceU     ,,,subcell ^H)(xl >xl >Yl >zl ) 
Yi;,in       -Vu.in      ~ VA.in      ~ —f f—f  

M0(x1,yl,z\) 

= vS;iS8,1[^2(xif,yif,z1
f) + ^(x1

f,y{,21
f)]> 

subceU subceU _     subceU M)(xLxl>yf>zl »wl) 
Yi>,src Yu,src YA,src , „   .   „     „    „      „K 

Mo(x?,yJ,z?,w;) 

= VAusrceU^2(xLyi,zi)wD+^(xi.yi>zi>wf)+ 

7?4(x?,y?,zf,w!)], 

where we see that the second equations for v|/^ceUand v|/®u
s
b

r£
ellare obtained 

by applying the previous definitions of y^T11 and vj/^u
s

b
r
c
c
eU and Identity 6. 

Finally, the if-moment of the cell flux is derived by applying the 

moment operator and integration by parts, 

MCbceU = Mw y(u,v,w)] = <b
n

ceU + v^r
cf, 

C        £        r       r 

...subceU _ „subceU     llf subceU M)(xl >Yl »vl »zl) 
MVin      -Vu.in       -VA.in      .,   ,   f f—f~ 

Mo(xl,y\,z\) 

= M/ÄeU«3(xi,yif>ziX (35) 

subceU subceU _    subceU M)(xLyLyi»zl»wl) 
Y«;,src Ti;,src YA.src , ,   ,   „     „     _      „v 

Mo(x!,y?,zf,wf) 

= yAusrceU[^3(xi1yi.zi>ws
1)+^4(

xi.yi>zi,w!)], 

where again the previous moments and the moment function identities are 

used to arrive at the second form of the equations. 
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Re-arranging terms in order to minimize the amount of arithmetic 

associated with the contributions to the cell flux moments due to the source, 

one obtains the following equations: 

M4UsrcU = 6/ exp(a8)A^(x;,y;,z;,w;), 

v™S?1 = vSS?1(^(x!,y;,z;>w!)+^(x;,y!>zf,w;)), 

MCbrceU = <Lc
c

eU+vKÄ(x!,y;,z;,w;), 

vsicceU = vsvtceU+vSSnKi(x!,yi,z! ,w5). 

(36) 

Similarly, the following equations are found for the inflow flux contribution to 

the sub-cell flux moments, 

M/SeU = 6 exp(af )Mo(Xl
f ,Yl

f ,Zl
f), 

vSSdl = vS&dl^(xf,yif,z1
f), 

..subcell subcell ,     subcell,« ,   f     f    fs 
Yv.in       - Yw.in      ^A,^    K2 \xl >vl >zl A 

,,,subcell _ ll(subcell  .,,, subcell,» /   f     f     {K 
Vu,in      = M>v,in      + M>A,in    ^l(xl »Yl >zl)- 

The outflow face flux moments will now be derived. The characteristic 

equation for the flux on the outflow face is 

V 

yont(u,v) = \y(u,v,v) = \Yin(u,v)e-tv+llS(u,v,w') e-^-^\ (38) 
o 

Note that the outflow face equation is v'ace =v = w (refer to Figure 4). The 

outflow face area moment operator is 
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1       u 

ifduf 
0       0 

mout [g(u, v, v)] = 2J du J dvg(u, v, v). (39) 

The inflow face area moment operator is not explicitly defined because the 

basis vectors corresponding to the inflow face flux are passed to it from the 

upstream neighbor faces (outflow faces). 

Starting with the average flux on the outflow face, 

outface _ „,outr.,,/,,.,, vi _ ,,,outface  , ,,, outface 
src   > 

^outface = moU*[l|/(M^jü)] = ^outface + ^ou 

V°AMCe = 2 exp(af)At,(x!,y|), (40) 

yT£?e = 2/ exp(as)A1o(xs
2ly

s
2,z

s
2)I 

where the face coefficients are 

-f--b' x2 

y|=-(b{+bj) + s 

and the source coefficients are 

*2 = -K 
s /us 

Applying the moment operator with respect to u, 
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yi=-(b^+b^) + s (42) 



^outface = mout[u^{U)V;V)] = ^outface + ^auA» 

= VAUinaCe[^i(xLyI) + ^2(x|,y|)]; (43) 

<srr = M/rsrcCe[l-p(xLyI,zl)] 

= ¥AUsrcCe[^i(xLyS2,zs
2) + ^2(xs

2)y
s

2,z
s

2) + ^3(xs
2,y

s
2)z

s
2)], 

where again Identity 6 (Appendix A) is used to arrive at the second equation 

for the u-moment of the outflow flux. 

Finally, applying the outflow face moment operator and integrating by 

parts, the following equations for the u-moment of the outflow flux are 

obtained: 

^outface = mout[vy(u>V}V)] = ^outface + ^outfa^ 

-p -f -f 
...outface _ ,,,outface     ,,,outface -'•'K)(x2>X2>y2) 
Vu.in       -Vw.in      _VA,in      77 F— 

Mo(x2.y2> 

= vS;g,ce^(xS,yS), (44) 
outface _     outface _     outface MQ(

X
2,X2 ,y2,Z2) 

ru,src ru,src rA,src . ,   ,   a      a     „, 
Mo(xl,yl,zi) 

= M/AUsracCe[^2(xS
2)yLzS

2) + ^3(xI>yi,Z
S

2)]. 

Re-arranging terms in order to minimize the algebraic operations, the 

the outflow face flux moments due to the source are 

vfAUsrcCe = 2/ exp(as)Mo(xs
2,y

s
2lz

s
2), 

V^T = VAUs?cCe^2(xS
2)y

S
2,Z

S
2) + ^3(xS

2,y
S

2,zi)), (45) 

vssr=<^ce+M/rsracce^(xLys2,zi). 
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Similarly, the outflow face flux moments due to the inflow flux are 

vffSuse=2exp(af)Mb(x|>yJ)> 

<£ace = vF$ceK2(xiyh (46) 
<£ace = <%face + vT^ixlA)- 

Sub-Cell Conservation Equations 

The sub-cell conservation equations are derived by applying the 

volume moment operator to the BTE for each moment, yielding: 

Average: 3(wf
tface -yf) + eyf*™11 = /SA, (47) 

u-moment: 3(i|/°utface -0 + ei|/?bcdl =/SB, (48) 

^-moment: 3(i|/°utface - v*) + ey™bceU =ISV, (49) 

^-moment: 3 v|/°utface - y%bce11 + ev|/^ubcen = ISW. (50) 

Note in (50) that y°Jtiace = v»
tfi«» while vjface = 0 thus leading to the 

correct conservation relation (the v|/^bceUterm is obtained as a result of the 

integration of the BTE). The conservation equations are used in the spatial 

quadrature to check that the quadrature is numerically accurate. In the 

event that the sub-cells are not too optically thin, these equations could be 

used to replace some of the more expensive spatial quadrature formulas 
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(Brennan, 1996). However, this was not done in TETRAN because it can be 

numerically ill conditioned. 

Linear Characteristic Spatial Quadrature 

Before discussing the implementation of the EC method in our code 

system, we briefly summarize the linear characteristic (LC) spatial 

quadrature as developed in (Mathews, 1998). Its performance is compared to 

that of EC in Chapter 4. The LC method has been implemented in some other 

codes systems because it is much less expensive computationally than the EC 

method, so it provides TETRAN with a more mainstream transport 

capability. Adding LC requires modest extra effort, because all of the cell 

splitting and transformation algorithms are the same regardless of which 

characteristic spatial quadrature is used. 

LC was the first quadrature implemented into the TETRAN code 

system. It assumes a linear source and inflow flux distribution as opposed to 

the exponential assumptions for EC: 

S(U, V, W) = As + BUU + BVV + BWW (51) 

and 

^ifn(Uf ,Vf) = Af +B{ Uf + Bjvf. (52) 
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Exactly as was done with the EC source function, spatial moments are 

taken of the LC source distribution (equation (51)). The resulting 

relationships for the LC source moments are: 

SA=M[S(U,V)W)] = As+|Bu+iBv+lBW! (53) 

Su=M[US(U>V,W)] = iAg+|Bu+|Bv+iBw, (54) 
4 5 5 5 

Sv=M[VS(U,V>W)] = iA8+|Bu+^Bv+ABw, (55) 

and Sw =M[WS(U,V,W)] = iAs+|Bu+Agv+^Bw. (56) 

Unlike the EC method where the source coefficients (As, Bu, Bv, Bw) must 

be obtained by root-solving, the system of equations above can be directly 

inverted to give the source coefficients: 

As=16SA-20Su, (57) 

Bu=-20SA+40Su-20Sv, (58) 

Bv=-20Su+40Sv-20Sw, (59) 

and BW=-20SV+40SW. (60) 
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Similarly, the inflow face flux coefficients are obtained by taking the 

appropriate moments over the tetrahedron cell's face using (52): 

yI=MfKf
n(Uf,Vf) A*+-B* +-B v> (61) 

¥&=Mf[uf¥i(Uf,Vf) = 2Af+IBf    lBf 
3 2   u    4   v (62) 

and ¥£=Mf[vf4£(Uf,Vf) -A^-B^-B 
3 4   u    6   ' 

(63) 

As was done for the source moment equations, the inflow flux moment 

equations can be directly inverted to solve for the inflow flux coefficients: 

Af = 9^1-12^, (64) 

B* = -12^1 +24^-12Tv, (65) 

and BJ=-12T£ + 24^. (66) 

Clearly, obtaining the required coefficents to solve the source and inflow flux 

systems is much less numerically intensive than that for EC. Thus, it should 

be expected that the LC method would be computationally cheaper than EC. 

Linear Characteristic Sub-Cell Spatial Quadrature 

Proceeding with the LC development, the spatial quadrature is found 

analogously to EC by taking spatial moments of (29) (using the operator 

defined in (28)) with the appropriate source and inflow flux functional forms. 
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(67) 

In the case of LC, the source is assumed to be linearly distributed, 

S(u,v,w) = as+ bs
uu + bs

vv + bs
ww. The inflow flux function is assumed to be 

linearly distributed, ym(u,v)= af + bfuu + bfvv. 

The cell average flux moment is: 

M/IubceU = r^{u,v,w)] = VA611 + VSS?, 

M/A,ineU = 6(a/ K0t0fi(e) + bfu Kh0>0(e) + bfv KQX0(s)), 

¥AUsrcU = 6^(as #0,0,0,000 +b* K1000(e) +bs
v K0100(e) + 

b|L[#o,o,i,o(e)- #0,0,0,1 (e)]), 

where the special function, K, is defined as 

1        '; *m-l 

#i1,i2,...,im(s) = jdf1Jdf2... J d*mtfi*?...tj«e-et-. (68) 
0        0 0 

if is only a function only of the cell optical thickness, s. Because s is the 

same for each subcell, the necessary K function values need only be 

calculated once, enhancing efficiency. With the introduction of the K- 

functions, the LC spatial quadrature is expressed in an elegant form. 

Algorithms that accurately and efficiently calculate the needed if-functions 

for the LC quadrature are discussed in the previously mentioned paper 

(Mathews, 1998). 

The u-, v-, and lu-moment of the sub-cell flux are given as 
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MCbce11 = m[« W(u,v,w)] = M/S611 + A". 

vSe11 = 6(a, ^i,o,o(E) + bi #2,o,o(s) + k£ #u,o(e)). 

vÄceU = 6Z(a. ^1,0,0,0(8) + ^ ^2,o,o.o(e) + *>* #i,i,o,o(e) + 

bL[^i,o,i,o(e)- #1,0,0,1 (e)]), 

M/s,ubceU = mH(u,v,w)] = <MeU + VSS?U> 

M/SeU = 6(a/ Koxo(z) + bfu K1X0(e) + bfv ffOAo(e)), 

M/S,usrce11 = 6/(as #0,i,o,o(e) + bs
u #i,i,o,o(e) +K #o,2,o,o(e) + 

K[Ko,ixo(z)-KOXo,i(£)]), 

(69) 

(70) 

and 

<ubceU = W[WV(U,V,W)] = WS£fl + V^ceU, 

M/ÄceU = 6(a/ ^0,1^) + ^ Kw(*) + H Koxl(e)), 

M/Srf = 6Z(a. Kojou>(*) + K K1M,0(s) +K #o,u,o(e) + 

K[K0,o>2,o(z) -#o,o,U (# 

(71) 

Operating on (38) with the outflow face area operator (39) using the 

linear functions presented at this beginning of this section, the LC outflow 

face flux moments are 

^outface = mout^v>v)] = ^utface + ^outface^ 

Vi
u£ace = 2(a/ K0>0(e) + bi Klt0(z) + hfv K0A(*)), (72) 

V°A%T = 2/ (a. ^o,o,o(s) + b^ KlA0(e) +[bs
v + bs

w]K0X0(s)-bs
w KQM(s)); 
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^outface = mout[uxv(w)] = ^outface + ^j outface   , ,,,outface 
src     > 

M/°u£ace = 2(a/ ürli0<e) + b£ i^2,o(s) + b{ Xu(6)), (73) 

v^6 = 2/ (as ^0,0(6) + ^ #2,o,o(£) +\K + bs
w}K1X0(e)-bs

w K1M(e)), 

and 

^outface = mo»«[i; V(UJÜJü)] = ^outface + ^cÄ 

M/^f- = 2(a, K0>1(z) + bfu /ru(s) + bj ff0>2(e)), (74) 

M/^/r = 2/ (as Ä0ilio(e) + bj; Ku,0(s) +[b* + bs
w]K0t2>Q(e)-bs

w K0X1(s)). 

Although the source and inflow flux moment coefficients are easily 

obtained for LC as opposed to EC, it is not obvious from the above moments 

that the method is numerically cheaper than EC. However, what is not 

shown above is that the various needed K-functions are related by 

recurrences such that only a handful of functions need be calculated. The 

needed functions are obtained from stable recurrences. See (Mathews, 1998) 

for details. Additionally, the if-functions are functions of one variable 

whereas the moments functions needed for EC have two, three, or four 

arguments. 

This chapter began by introducing the notion of characteristic 

methods. Specifically, the exponential characteristic method was derived 

assuming an exponential distribution of the source and inflow flux. In order 

to solve the EC quadrature for a spatial cell, non-linear root-solving must be 

done to obtain the unknown source and flux parameters. Following the 
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discussion of the source and inflow flux, we derived the EC spatial 

quadrature formulas to calculate the average and first spatial moments of the 

angular flux for a sub-cell which are obtained by splitting the parent cell. The 

linear characteristic method was also briefly presented along with its spatial 

quadrature formulas. Several special functions were defined which package 

the numerical difficulties of both methods and allow for elegant derivations. 

With this mathematical foundation, the stage is set to discuss the 

implementation of the EC and LC quadratures in a radiation transport code 

system. 
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Chapter III: TETRAN Implementation 

TETRAN was designed to be the kernel of a parallel, general radiation 

transport code for shielding applications. In this chapter, we first present the 

programming model used to achieve parallel operation. The algorithm used 

by TETRAN to solve multigroup, anisotropic scattering problems is then 

discussed. Finally, the pseudo-code for TETRAN is presented to familiarize 

the reader with the code implementation. 

Parallel Programming Model 

The primary objective of performing radiation transport using multiple 

processors is to analyze large problems in a reasonable period of time. By 

partitioning the problem space among many processors operating on their 

own local data and reporting their results as needed to the other processors, 

we hope to reduce the wall clock time for getting accurate results for the 

problem. We believe that this is the true measure of quadrature performance. 

Currently, researchers compare method performance by citing the time to 

calculate the angular flux values for a phase space cell (results for one spatial 

cell in one streaming direction for one energy group and iteration). Although 

computational efficiency is an important attribute of a spatial quadrature, it 

is not the only criteria by which to judge a method. Using phase space cell 

performance criteria focuses on the computational efficiency of a quadrature 

without regard to the methods accuracy. By implementing parallel 

algorithms, we can ultimately shift the focus of quadrature performance to a 
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more balanced view of efficiency and accuracy. Thus, the issues of 

computational cost of relatively expensive spatial quadratures, like EC and 

LC, will become moot as they are incorporated into parallel algorithms. 

The standard von Neumann iteration on the scattering source (Lewis 

and Miller, 1993) can be thought of as an embarrassingly parallel algorithm. 

In this algorithm, we sweep through the mesh for each streaming direction, 

Qn, calculating the needed flux moments (\|/A ,\|/u,\|/v,and\|/win the case of 

EC and LC) for each cell in the mesh. After all of the streaming directions 

have been computed, numerical quadrature is used to calculate the scalar 

flux, <(>, for each cell and check for convergence of this value as compared to 

the last iteration. If the flux is not converged, the scattering source is 

updated using the matrix multiplication, SA'U'V,W = Y wAV>v-WJT ,   .   where 
n' 

the subscripts i and n refer to the cell and streaming direction, respectively, 

and T is a material (i.e. cell) dependent matrix. T maps all of the group to 

group and angle to angle particle transfers that can occur and is discussed in 

more detail below. Thus, the algorithm only requires communication between 

processors to calculate the flux and update the source after an iteration. 

These reduction operations (dot products for the numerical quadrature and 

matrix multiplication for the source) require expensive global 

communications so that all of the processors can report their data to each 

other. Unfortunately, inter-processor communication affects the parallel 
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performance of an algorithm because the communication time is generally 

orders of magnitude slower (Koelbel, 1994) than the compute speed of a 

processor. Fortunately, by pursuing this strategy, we make parallel the 

expensive computations required to get the angular flux moments during the 

mesh sweep. If the scalar flux and source reductions are done efficiently, the 

algorithm should scale with the number of processors attacking the problem 

up to the point where inter-processor communications dominates the cost of 

the problem. 

In order to implement the above algorithm, we chose to use High 

Performance Fortran (HPF). In HPF, data distribution directives (!HPF$ 

ALIGN and !HPF$ DISTRIBUTE) are used at a high level of abstraction to 

partition data among processors. Additional directives are used to assert the 

independence of loop iterations (!HPF$ INDEPENDENT), thus partitioning 

computation among processors as well. This coarse grain approach to 

parallelism shifts the work in producing parallelcode from the programmer 

to the compiler and allows for highly portable code. In contrast to the HPF 

approach to parallelism, a fine grain approach requires the programmer to 

code all of the communication and data distribution requirements using 

either the message passing interface (MPI) (Snir, 1996) or parallel virtual 

machine (PVM) (Geist, 1994) library calls. The fine grain approach typically 

produces machine code that is faster than its HPF equivalent given the 

maturity level of current HPF compilers. However, fine grain codes also take 
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much longer to write than equivalent HPF code and are generally tuned to 

specific hardware architectures. For example, using HPF to parallelize 

TETRAN took only 23 total HPF directives. This was possible because 

TETRAN was written with strict adherence to the Fortran 90/95 standard. 

HPF can be considered a parallel version of Fortran 90. Thus, by using 

Fortran 90 we were quickly able to write a parallel radiation transport code. 

Additional discussion of the HPF language can be found in The High 

Performance Fortran Handbook (Koelbel, 1994). 

Multigroup Implementation 

The multigroup implementation of TETRAN is a variation of the 

standard approach that is readily parallelized. The BTE is discretized in 

energy, denoted by the g subscript: 

where i is the cell index, n is the streaming direction index, g is the energy 

group index, and a is the total cross section. The energy groups are arranged 

in order of decreasing energy such that the highest energy group is 1. The 

solution strategy is as follows. First, group 1 is converged by using the 

standard von Neumann iteration on the scattering source (Lewis, 1993). This 

is the within-group problem and the iterations are termed inner iterations. 

Having obtained the scalar flux for this group and converged angular fluxes, 

the down scatter contribution of group 1 to the lower energy groups (2 
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through G) is calculated using the scattering tensor T (to be discussed 

below). The algorithm then proceeds to group 2 and repeats the process, 

where group 2 now has a group 1 contribution to its source particles. This 

process is repeated until all of the groups have been converged. In the case 

where fission is present, there is a possibility that lower energy groups will 

be a source of upscatter particles. This is repeated until the group fluxes 

converge and is known as the outer iteration. However, fission sources and 

upscatter are not supported in TETRAN making the outer iteration 

unnecessary. A block diagram describing this process is shown in Figure 8 

and more detail regarding the implementation of this algorithm is presented 

later in this chapter. 

Initialize arrays and 
read input data 

For Each Energy Group, g: 

Determine spatial walk 
access order and cell 

case for each streami ng 
direction 

Read current group soirees 
and cross sections; calculate T 

for each material 

NextGrotp 

Perform root-solving 
and spatial quadratures 

Update sources to all groups 
using Tand store for use in 
lever energy calculations 

Figure 8. Block diagram for iteration on the scattering source algorithm. 

Anisotropie Scattering 

The traditional approach for modeling particle scatter is the spherical 

harmonics approach, which uses Legendre moments of the scattering cross 
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sections to model the angular dependence of particle scatter. The accurate 

treatment of scattering is very important to discrete ordinate calculations 

because the BTE is solved by decomposing the computational domain in Q 

(equation (2)) and the scalar fluxes are calculated using numerical 

quadrature. If we use a poor model or bad data, the angularly dependent 

scattering sources will be wrong and the calculation will converge to the 

wrong solution. The spherical harmonic expansion of the scattering source is 

Sg(?A)=T I Y^(Qj£ate,(r)<^(r), (76) 
l=0,n=-l g'=i 

where S is the scattering source, Yz*n is the conjugate spherical harmonic, 

<3lgg, are the Legendre moments of the scattering cross section from group g' 

to group g, and <|>^, are the coefficients of a spherical harmonic expansion of 

the group flux, 

N 

tig>(r)= £w(QnOY/m(fin,)i|/*(r,nn,), (77) 
71'= 1 

where the quadrature approximation in (2) is used to calculate the moments. 

Substituting (77) into (76) and rearrange the summations, one arrives at the 

following expression, 

S|(^J = II^(^,)T^(ä^On,r), (78) 
71'    g 
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where the elements of the matrix T       are 
e'-*g 

T,-,(«n' "> Ö».?)=w(fln0la,^(F) lYlCQJY^CQ,,). (79) 
Z=0 m=-l 

Although T is conceptually a tensor that maps all particle energy and 

direction tranfers in the momentum space, it is used as a matrix in the 

following manner. Each material in the problem has a unique Tn,^nig>-+g>mat, 

where the mat subscript indicates the material index where the total number 

of materials is nmat. During the source update for the within-group problem, 

Tn'^>n,g'->g,mat *s accessed based on the material number of the ith cell for the 

current group, T7l,_>n g,_^g>mat(i). This representation is efficient because it 

requires that only nmat different T matrices be stored in memory during the 

calculation. Thus, it is economical to replicate T across processors for a 

parallel problem, further enhancing data locality. Additionally, because 

material regions tend to be represented contiguously in the mesh, 

%i'^>n,g'->g,mat(i)is used for several cells before a new matrix is needed 

because of a change in material. This reduces cache misses (non-contiguous 

memory access) associated with reading in a new ^n'-^n.g'^gmatß)- 

After the within-group problem has converged, the resulting converged 

flux moments (\j/A, i|/u, vj/v, and v|/w) are used to update the downscatter 

source for the lower groups. This is accomplished as follows. The 
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Tn>-+n,g'^>g+i,mat(i)are calculated using (79). The source is calculated via (78) 

and added to contributions from other groups (accounting for the summation 

in (76)). Note also that the source terms are calculated and stored on the 

processors which access them thereby partitioning the problem in memory 

among several processors. Thus, we are trading interprocessor 

communications for storage of large problems. The above process is done for 

g = g + 1 to g•= G. Then the within-group problem is solved for the next 

group, and so on. 

The above approach is not normally used since it entails storing the 

angular flux moments for every cell, which is expensive. For example, an S8 

level-symmetric quadrature contains 80 quadrature directions which requires 

(for LC and EC) storing 80 \|/A, yUt \\iv, and \\iw moments (320 total) for 

each cell to calculate the scattering source moments. However, this algorithm 

is obviously parallel when the problem is decomposed along quadrature 

directions (Q). This methodology trades the benefit of decomposing the 

problem into several sub-problems running independently, each on its own 

processor (in its own memory space) against the inter-processor 

communication required to update the source via the global matrix 

multiplication in (78). For computationally intensive spatial quadratures 

(such as LC and EC), we anticipate that this trade off should result in a 

scalable algorithm if the communications required for the matrix 

multiplications are handled efficiently. 
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TETRAN Data Flow 

TETRAN requires geometric, nuclear, and boundary condition data in 

order to perform transport. This section describes where the data comes from 

and how it is assembled for TETRAN. Figure 9 below shows the general flow 

of data for a TETRAN run. 

Define geometry 
in Pro/Engineer 

FEM Neutral File 

Use TRANSX to 
obtain needed 
material cross sections 

Process data in Input 
Module and write binary 
output files for TETRAN 

Run TETRAN 

a. 

Problem specific 
library 

header file 
geomdata 
xsdata 
bcdata 
srcdata 

Summary file 
AVS/Express format 
current and scalar 
flux data 

Figure 9. Data flow for TETRAN. 

Pro/Engineer 

Parametric Technology Corporation's Pro/Engineer ® 18.0 (Pro/E) was 

used to define the various geometries used in this research. Pro/E is a 

general, high-end computer aided design and manufacturing (CAD/CAM) 

system, which holds a large fraction of the CAD/CAM market in the United 

States. Many national and military laboratories as well as defense and 
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energy contractors use it. Pro/E excels in modeling large, complex assemblies 

quickly and has an integrated unstructured tetrahedron cell mesh generator 

for use in structural and thermal finite element analysis. 

Pro/E was used to perform several tasks. First, it was used to develop 

the individual parts that are placed in a larger assembly. At the assembly 

level, the Pro/Mesh® package was used to add boundary conditions to each 

assembly surface. Additional, Pro/Mesh® was used to add mesh control to the 

assembly so that we could perform mesh refinement and control how 

individual parts were meshed. After meshing, we analyzed statistics 

regarding cell aspect ratios and attempt to improve the mesh. Pro/Mesh® 

allows for mesh file output to many finite element packages, such as 

NASTRAN (Brennan, 1996). It also has a generic format, the FEM Neutral 

format (PTC, 1997), which is a generic finite element mesh file giving all of 

the data needed by any finite element code. We generated version 1 FEM 

Neutral files to be read by the TETRAN input module. 

Cross Section Data Format 

The TETRAN input module uses TRANSX 2.15, a Los Alamos National 

Laboratory cross section processing code, to generate the problem specific 

data libraries for TETRAN (MacFarlane, 1992). TRANSX is a very powerful 

cross section processing code that can extract group-weighted, self-shielded 

cross sections (total and Legendre scattering moments) from a number of 

different libraries. We used it for TETRAN to mix cross sections, collapse 
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energy groups, and generate transport corrected scattering moments in a 

standard way. The output file is in the standard 6E12.5 format, i.e., six 

columns of data per row, each with a format of E12.5. Using TRANSX allows 

us to access and process a large number of standard cross section libraries in 

a well documented, straightforward manner. 

Input Module 

The data for TETRAN come from a variety of sources. In order to 

reduce the complexity of TETRAN and remove input data processing from the 

transport code, we developed an input module to read the needed data and 

put it in a consistent format for TETRAN. Thus, support for additional data 

file formats can be added by revising or replacing the input module. Briefly, it 

performs the following functions. For the geometry data, it reads the FEM 

Neutral format file and determines the number of materials and boundary 

conditions. It then determines the cell connection topology, which is an 

important (but slow) step whereby the neighbor cells and faces for each cell in 

the mesh is determined. The connection topology is independent of the 

angular or spatial quadrature chosen for the transport calculation. It is 

needed in the transport code to determine the cell access order for each 

spatial walk, which is dependent on the angular quadrature. Following the 

generation of the connection topology, the geometry data is written to a 

binary file to be read by TETRAN. Following the geometry data, the module 

reads the problem dependent cross section library created by TRANSX and 
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writes a binary file for input to TETRAN. The input module then reads any 

user specified multi-group isotropic source files and writes this data to a 

binary file. Lastly, for each boundary condition specified in the mesh file, the 

analyst inputs the type of boundary condition (vacuum or incident current) 

and the file containing multigroup incident current data. This data is written 

to a binary file as well. In addition to the binary problem data, a header file is 

written which is a text file that tells TETRAN several key parameters for the 

run such as the desired spatial and angular quadratures. These parameters 

are changeable by the user to allow for transport with different angular and 

spatial quadratures for the same mesh (including the connection topology), 

boundary conditions, and nuclear data. 

TETRAN reads the above data and performs the transport. Following a 

successful run, the code produces three output text files. The first file is a run 

summary that contains (among other things) the region average scalar fluxes 

and boundary currents for the problem. The others contain multigroup scalar 

flux and vector current data for each cell in the mesh. This data, which is in 

AVS/Express UCD (Unstructured Cell Data) format (AVS, 1996), is suitable 

for visualization with AVS/Express (a scientific visualization system). 

Overview of TETRAN 

TETRAN was written in ANSI standard Fortran 90, which has been 

the standard for the Fortran language since 1991. Additionally, in some areas 

of the code, we have used Fortran 95 syntax (such as the Pure keyword) to aid 
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in the parallelization of TETRAN. We chose to adhere to the Fortran90/95 

standard for at least three reasons. First, Fortran 90/95 contains many 

intrinsic functions such as DOT_PRODUCT and MATMUL (general matrix 

multiplication) that allowed very readable and compact code to be written, 

aiding in the long-term maintenance of TETRAN. Second, Fortran 90/95 has 

adopted a superior model for global data storage based upon modules, 

allowing global data to be passed throughout the code without using the 

traditional Fortran 77 COMMON block (which was prone to problems). 

Thirdly, using Fortran 90/95 allowed the quick addition of High Performance 

Fortran (HPF) directives in order to parallelize the code (Koelbel, 1994). 

Other reasons include Fortran 90/95's treatment of whole and masked array 

operations and use of explicit interfaces for error checking. We found the 

book, FORTRAN 90/95 Explained (Metcalf, 1996) and Digital Electronic 

Corporation's (DEC) Visual Fortran 5.0 invaluable in implementing TETRAN 

to the Fortran 90 /95 standard. 

TETRAN contains approximately 9400 lines of code in 87 subroutines. 

The code is intended to be the kernel for a much more capable transport code 

system based on the linear and exponential characteristic methods for 

unstructured tetrahedron cell meshes. This version is capable of solving the 

time-independent BTE using the standard source iteration technique. It is 

capable of solving multigroup (energy) problems assuming downscatter only 

(no fission) with general anisotropic scattering based on the spherical 
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harmonics approach (discussed earlier). Convergence acceleration, a 

technique that enables the source iteration algorithm to converge more 

rapidly, is not included in this version. Additionally, High Performance 

Fortran (HPF) directives are included for a parallel version of the code. The 

parallelization strategy uses domain decomposition in the angular (Q) 

dimension. Limited testing was performed on the parallel version of the code 

due to compiler limitations. The code was developed on a Hewlett Packard 

Vectra XU 2/200 Dual Pentium Pro 200 MHz workstation using Digital 

Visual Fortran, Version 5.0C. The code was then ported to the Aeronautical 

System Center (ASC) Major Shared Resource Center (MSRC) IBM SP (ASC, 

1998). We chose to target the IBM SP because of its large per node memory (1 

GB), fast inter-processor connection switch, and large amount of per node 

scratch disk (2 GB). It compiled and ran serially under AIX 4.2 and the xlf90 

compiler, version 5, with minor modifications. The HPF version of the code 

was compiled using The Portland Groups' PGHPF 2.4 development compiler. 

All of the data presented in this report was produced on one or more nodes of 

the ASC IBM SP. 

TETRAN Pseudo-Code 

As a concise and precise exposition of the structure of the TETRAN 

program, we present the following pseudo-code outline. Note that HPF 

directives/constructs are denoted by !HPF$. 
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Begin 

Read runtime data in problem data file: names of binary input files, 
spatial quadrature, angular quadrature, etc. 

Read binary data files. 

Distribute quadrature directions on to processor grid 

!HPF$ distribute (*,block) :: streaming directions Qn 
(note: all mesh and nuclear data (cross sections) are 
replicated across processors) 

Align transport arrays (fluxes and sources) to  Qn (ensures other 
computational arrays are on the same processor to avoid unnecessary 
communication) 

!HPF$ align (*,:) with Qn  (*,:) :: 

¥A - Vu ' ¥v - Vw SA ' Su ' Sv, Sw 
(each variable partitioned among processors along columns 
of the array.) 

!HPF$ Independent: For each quadrature direction, Qn , determine the 
cell access order and case for the spatial walk. 

For each of the G groups in the problem (g= 1, 2,.., G; downscatter 
only): 

Read current group cross sections and generate within group T- 
matrix for each material. 

!HPF$ Extrinsic (HPF_LOCAL): Read group source for each cell and 
direction, (an extrinsic subroutine is required to keep the 
source data i/o local to the processor) 

Read current group boundary data for each boundary cell and 
direction. 

Do until converged (Inner Iteration): 

Set all cell angular flux moments to zero. 

!HPF$ Independent: *Meshsweep: For each direction, Qn , 
perform spatial walk. (*presented below) (the fluxes for 
each quadrature direction are calculated local to their own 
processor) 

Test Convergence: Calculate scalar fluxes and check 
relative change from last inner iteration. If not 
converged, update within group source for each cell and 
direction using T-matrix for the cell's material. (!HPF$: 
this is where the global communications occur using dot 
products and matrix multiplications. Note that we let the 
compiler determine the communication patterns for the 
global communications.) 
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(|>(l:ncells) = Matmul[ij/(l:ncells, lmang) ,weight (lmang)] 

For i=l to ncells 

SA/U,v,w(i'1:nang) = Matmul[v)/A(U/V/W(i,l:nang),T(l:nang,l:nang,matid(i))] + 

Ext 
SA.u.v.wti/^nang) 

Next cell 

End do 

Down Scatter Source: Loop over current group downscatter cross 
sections, calculating T-matrices and then the current group 
contribution to lower groups. !HPF$ Extrinsic (HPF_LOCAL): Update 
the source for each lower group and store until needed, (again, 
local routine is used to keep sources local to the processor they 
are used on) 

For groups g'=g+l to G 

Calculate T-matrices for group g' and materials 

For each cell i 

SAAI.V.WW :nang) = Matmul[\|/AfUfVfW(i, 1 :nang),T(l :nang, 1 :nang,matid (i))] + 

Next  i 

!HPF$ Extrinsic(HPF_Local) Write to local scratch 
disk for later use. 

Next g1 

Write Group Output: Write current group scalar fluxes and 
currents to file for later processing. 

Next Group 

Write Flux, Current, and Summary Data 

End 

Of course, the above is a top-level view of the overall operation of TETRAN. 

The real transport work is done in the Meshsweep loop, shown below. Note 

that all of the routines within Meshsweep are Pure routines, i.e. they produce 

no side-effects as is required of !HPF$ Independent loops. 
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Meshsweep: !HPF$ Independent: Do sequentially or in parallel for each 

quadrature direction, Qn . 

Set face flux moments to zero and initialize boundary flux 
values. 

For each cell (in the walk sequence for this direction): 

Get cell index and determine cell parameters (case, source, 
etc.) 

Determine cell split parameters. 

Get source parameters for cell: 

LC, direct calculation; EC, generate initial 
estimates then root solve 

Determine cell upstream neighbor faces and calculate 
transformation matrix to get inflow flux moments. 

For each sub-cell: 

Get inflow flux coefficients either directly for LC 
or by root solve for EC. Use direct affine 
transformation to get coefficients into correct sub- 
cell coordinate system. 

Get source coefficients by direct affine 
transformation from parent coordinate system. 

Perform spatial quadrature using correct sub-cell 

flux and source coefficients to get \j/^ , V|/u , \\fv , 

Vw   VA   >   Vu    '   and ¥u  • 
Check sub-cell conservation. 

Next sub-cell 

Transform/combine sub-cell flux moments back to parent cell 
UVW coordinate system. 

For each output face, transform/combine outflow flux 
moments to parent global UV face system. 

Next cell in walk 

End do 

More detail regarding the stable evaluations in Meshsweep are shown in 

Appendix C. 

In this chapter, we discussed our strategy for the implementation of a 

parallel radiation transport code. Using the spherical harmonics source 
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equations and the discrete ordinates equation, we developed a new approach 

to calculate source updates that involves the T-matrix. With this approach to 

the scattering source updates, the iteration on the scattering source 

algorithm was implemented using Fortran 90/95 in a parallel-ready way 

allowing the solution of multigroup, anisotropic scattering problems. High 

Performance Fortran (HPF) directives were used to decompose the needed 

transport arrays along their angular dimension, allowing the spatial walks in 

all streaming directions to be done in parallel. An overview of these 

algorithms and the role of the spatial quadrature were presented along with 

the sources of needed input data. With the needed spatial quadratures and 

algorithms developed, we now move on to Chapter 4 where we test TETRAN's 

performance on a variety of problems. 
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Chapter IV: Testing 

In this section, we present the results of our testing of TETRAN and 

the exponential characteristic method. Each test was selected to demonstrate 

important features of TETRAN's performance. The problems presented here 

(except the demonstration of parallel code scaling, which was run with 2 to 32 

processors) were run on a single node of the ASC IBM SP (known as hpc02) 

(ASC, 1998). Additionally, the S8 level-symmetric angular quadrature was 

used for all problems. The code was compiled using optimizations (-02; an 

IBM specific compiler flag) and tuning specific to the processor architecture 

under the XLF90 version 5 compiler. We compare the scalar flux and exiting 

current results of each problem with MCNP results using the same input 

data and geometry except for the coarse mesh, deep penetration problem. 

Note that the current is presented in units of particles/s through a surface. 

We do this because MCNP current data is presented in these units. The HPF 

version of the code was compiled on the ASC IBM SP using The Portland 

Groups' PGHPF 2.4 development compiler (an alpha version compiler) 

(Portland Group, 1996). The convergence tolerance was 106 maximum 

relative difference between the final and next to last iteration cell scalar 

fluxes. 

Seven problems were chosen to test specific aspects of TETRAN's 

performance. Our first problem is used for convergence testing: a uniform 

cube with a uniformly-embedded isotropic source. Our second problem is 
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based on problem 1 and is used as the basis for gathering of run-time 

statistics for TETRAN's operation on the IBM SP. Problems 3, 4, and 5 

demonstrate three different aspects of robustness of TETRAN. Problem 3 is a 

uniform cube of material with a uniformly-embedded isotropic source 

surrounded by a very thin wall of shield material. This problem demonstrates 

TETRAN's robust handling of very poorly shaped cells. Problem 4, a spherical 

source within a tetrahedron, demonstrates TETRAN's ability to perform 

transport on meshes with curvilinear and inclined plane surfaces and 

demonstrates a limitation of current mesh generators. Problem 5 

demonstrates the thick cell performance of EC as compared to LC. This 

problem is composed of a uniform cube with a uniformly embedded isotropic 

source surrounded on three sides by an optically thick shield. Our sixth 

problem is similar to one found in the literature (Castrianni, 1998), nested 

cubes of water, iron, and water with a source dissolved in the innermost cube. 

This problem is used to demonstrate TETRAN's ability to perform 

multigroup, anisotropic scattering problems. Finally, problem 7 demonstrates 

scaling of our HPF parallel implementation of TETRAN for the simple cube 

problem used to gather runtime statistics. Table x summarizes the test 

problems discussed in this chapter and the code feature stressed by the 

problem. 
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Table 2. Summary of Test Problems 

Test Problem Feature Tested 
1 Convergence and convergence rate 
2 Run-time performance 
3 Poorly shaped cell robustness 
4 Poorly shaped cell robustness and mesh volume 

conservation 
5 Robustness with optically thick cells 
6 Multigroup, anisotropic scattering perfromance 
7 Parallel performance 

Convergence and Convergence Rate 

Our first test problem demonstrates the convergence and estimates the 

convergence rate of the EC and LC methods on simple meshes. The problem 

is a 1000-cm3 cube with a volume-distributed isotropically-emitting source of 

1.0 particle/(cm3 - s) and vacuum boundaries. All of the particles are mono- 

energetic. The total cross section of the cube material is a =1.0 cm-1 with an 

isotropic scattering cross section, as =0.5 cm- . TETRAN was run on seven 

increasingly finer meshes with nearly uniformly shaped tetrahedra. The 

characteristics of these meshes (number of cells and optical thickness 

statistics) are shown in Table 3. 

The results produced by TETRAN for each mesh are listed in Table 4 

below with the corresponding MCNP and MCSN results. The MCNP results 

are presented to show that the method is converging toward the expected 

physical solution but are not used to estimate convergence rates because they 

contain no discretization errors. 
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Table 3. Mesh Parameters for Convergence Rate Problem. 

Mesh Cells °min s °max £max/ 

1 6 4.2209 8.67230 17.321 4.1036 
2 161 1.2371 2.89800 5.7875 4.6783 
3 1292 0.56301 1.44680 3.0510 5.4191 
4 4352 0.37680 0.96461 2.0336 5.397 
5 10330 0.26177 0.72388 1.5889 6.0698 
6 20157 0.20323 0.57922 1.2189 5.9976 
7 47794 0.10087 0.43431 1.0050 9.9633 

In order to determine the rate of convergence of the methods, Dr. Kirk 

Mathews developed a Monte Carlo transport code, MCSN, which transports 

particles along the directions used in discrete ordinates angular quadrature 

sets. Thus, the angular discretization error of the discrete ordinates angular 

quadratures is accounted for in MCSN allowing us to perform mesh 

refinement comparisons with the MCSN benchmark. Because the MCSN 

benchmark does not contain spatial truncation error (it is continuous in R3), 

but does contain the angular quadrature error, the relative error between the 

benchmark and the discrete ordinates solutions for several meshes provides 

us with our convergence rate graph. Contrast this result with the MCNP 

result, which does not contain either spatial or angular discretization error 

because particles are sampled uniformly in both R3 and Q. 
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Table 4. Results for Problem 1. 

Mesh Scalar Flux 
[particles/cm2 - s] 

J (x=5.0 cm) 
[particles/ s] 

1 1.511537 40.92211 
2 1.540445 38.31644 
3 1.547338 37.73447 
4 1.549319 37.54896 
5 1.549909 37.51102 
6 1.550281 37.47919 
7 1.550566 37.45456 

MCSN 1.55091 
(±0.00001) 

37.42417 
(by conservation) 

MCNP 1.554800 
(±0.000311) 

36.99300 
(±0.05179) 

Table 4 shows the scalar flux in cube and the current out of the +x face at 

x = 5.0 cm. Clearly, both the flux and current are converging toward a 

solution that is close to the MCSN solution. 

To estimate the order of convergence for the EC method, we use the 

analog to the rectangular cell case, assuming that average linear cell 

dimension, Ax, is approximated by s . As the mesh is refined, e decreases by 

a factor n = zy-  , where ~zx > s2. In the thin cell limit, the mesh refinement 

should result in a reduction in the solution error by 

n^ =—— 
er2 

(80) 
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where er>1 and er2 are the solution errors relative to a benchmark result for 

the two meshes and p is the order of convergence. The absolute relative error 

for the scalar flux, (j), is defined as 

p ■ = 
l^bench-^i 

♦ i ♦ bench 
(81) 

where <t>bench is the scalar flux predicted by MCSN and ^ is the average 

scalar flux in the cube predicted by TETRAN for the ith mesh. The relative 

errors for both the EC and LC quadratures are plotted in Figure 10 and 

Figure 11 below versus the average cell optical thickness, s . 

0.0001 

Figure 10. Convergence Graph for Exponential Characteristic Method. 
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Figure 10 shows that the EC method is a stable coarse mesh performer and 

that it appears to be at least quadratically convergent as compared to the fan 

of lines that represent ideal linear, quadratic, and cubic convergence with 

respect to the benchmark and the finest mesh solution. However, the true 

covergence rate is obscured because Pro/Mesh® cannot produce self-similar 

meshes with increasing refinement. The EC and LC methods have been 

shown to be cubically convergent on such meshes for an optically thin 

problem (Brennan, 1996). Thus, we conclude that the EC method as 

implemented in TETRAN is also cubically convergent and the non-unform 

discretization is obscuring this behavior. 

m 
0.01 

0.001 

0.0001 

Figure 11. Convergence Graph for the Linear Characteristic Method. 
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As with EC, the convergence rate for LC is being obscured by the lack of self- 

similarity in the mesh refinement. Thus, it is clear that future research needs 

a high quality mesh generator with the ability to refine an unstructured 

mesh in a self-similar way. The LC results are slightly more accurate than 

the EC results compared to the benchmark (an effect seen in Brennan's tests 

as well). This is because this problem has a scattering source and flux that is 

concave down throughout the cube. The EC method is attempting to model 

this behavior with an exponential that is concave up, which introduces more 

approximation error than the LC method, which uses a linear function. Thus, 

it should be expected that EC will perform less accurately than LC for this 

problem. EC's coarse mesh capability is demonstrated in a later test problem. 

Run-time Profiling 

We performed two levels of timing for TETRAN. At the top level of the 

code, we timed the length of time spent performing input and output^ the 

spatial walk, calculating the scalar flux, testing convergence, and updating 

the scattering source. The performance figures are for a 162-cell mesh with 

an S8 angular quadrature (80 directions) which took 19 iterations to 

converge. The problem was run on one node of the ASC IBM SP. The results 

for EC are listed in Table 5. There is no substantial difference between the 

EC and LC run-time results at this level of profile. 
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Table 5. TETRAN Run-Time Characteristics. 

Action 

Read Input Data 
Generate Walks Lists 
Spatial Walks 
Calculate Scalar Flux, Test 
Convergence, and Update 
Source 
Calculate Currents and 
Output Data  
Miscellaneous: initialize 
arrays, allocation, de- 
allocation, other i/o 

% of Time Spent During Execution of TETRAN 
using EC Spatial Quadrature  

0.72% 
0.29% 

96.51% 
0.65% 

1.39% 

0.45% 

In addition to the above, we compiled quadrature specific data on the cost to 

perform transport using EC and LC within TETRAN. This data is presented 

in Table 6. 

The IBM prof profiler (IBM, 1993) was used to determine that 

TETRAN spends about 45% of its execution time evaluating exponentials and 

moment functions using EC; whereas, the LC method spends a negligible 

fraction of its execution time evaluating K functions. The above performance 

values (Table 5) are for a completely unoptimized code. This is because the 

design philosophy behind TETRAN's development precluded the use of 

numerical approximations. Thus, TETRAN serves as a clean baseline for 

performance enhancements such as using the conservation equations in the 

spatial quadrature. Currently, the conservation equations are evaluated to 

check the accuracy of the spatial quadrature and are not used in the 

transport calculation (we considered confidence in the results more important 
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at this stage than optimization). Additionally, Fortran 90 compilers are not 

yet as effective at optimization as Fortran 77 compilers. 

Table 6. TETRAN Spatial Quadrature Performance. 

Average Time/Phase Space Cell 
(ns/cell-angle-group-iteration) 

(% of total) 
Action EC LC 
Split cell 95 

(3%) 
95 

(10%) 
Obtain source 

coefficients 
537 

(18%) 
34 

(4%) 
Obtain face coefficients 

and translate/rotate into 
sub-cell 

822 
(27%) 

302 
(32%) 

Spatial quadrature 1099 
(36%) 

43 
(5%) 

Re-combine sub-cell 
moments into parent 

cell 

200 
(7%) 

200 
(21%) 

Overhead: cache misses, 
page faults, resetting 

face arrays, timing, etc. 

260 
(9%) 

260 
(28%) 

Total 3005 934 

The performance data in Table 6 indicate that EC and LC are 

moderately expensive spatial quadratures. However, note that in the 

previous effort (Brennan, 1996), the LC method was approximately 10 times 

faster than EC for the same mesh. We have reduced this by a factor of three 

with anisotropic scattering included. Comparing the performance of TETRAN 

with other codes at this time is not appropriate. TETRAN is not optimized at 

all. The goal of this research was to develop EC and LC to be robust and 
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accurate for coarse mesh problems. Brennan pointed out (Brennan, 1996) 

that the EC method pays for itself when accurate solutions are required on 

coarse mesh, deep penetration problems. Additionally, our philosophy has 

always been to prize accuracy, consistency, and robustness over 

computational speed since today's high performance computing hardware is 

tomorrow's antique. 

TETRAN, like all unstructured mesh transport codes, suffers from 

poor cache performance with regard to current high-performance computer 

(HPC) architectures. Currently, most HPC architectures employ a hierarchy 

of memory access based on caches. For example, one node of an IBM SP 

operates with a 135 MHz Power2 Super Chip which has a 128 Kbyte data 

cache, 500 256-byte cache lines, and 256 translation look-aside buffers (TLB). 

The TLB is used to translate between the virtual storage address of a page of 

memory (4096 bytes) and it's current real storage address. Data is accessed 

through the cache lines. There is also an instruction cache, which is 32 

Kbytes in size. If the needed data is not located in one of the current cache 

lines, the data from the oldest cache line is flushed, a cache miss (the data 

was not in cache) occurs and a new cache line containing the needed data is 

read in, taking 8 to 12 clock cycles. If the current data is not in the current 

TLB, then the processor checks through all of it's TLB to see if it is there 

(1Mbyte of data). If it is not, a page fault occurs and the processor must use 

the operating system to go to real memory and access the data, costing 36 to 
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56 clock cycles. If the data is stored in arrays of unit stride and accessed in 

this fashion, then cache misses will occur when the data for a cache line is 

exhausted and another is needed. This is the typical access pattern for a 

structured Cartesian-mesh transport code. For an unstructured code, such as 

TETRAN, this is a performance nightmare. Data is accessed indirectly for 

each cell and face. Thus, there is little hope that even a small to moderate 

size problem will use more than one value from a cache line or possibly a 

page. Thus, the code expends a significant amount of cycle time looking 

through memory versus performing calculations. We found both the "P2SC 

Overview" (Chin, 1996) and High Performance Computing (Dowd, 1998) very 

helpful in aiding our understanding of modern computer architectures and 

the IBM Power2 implementation. Regardless, this issue will be significant for 

unstructured mesh transport for many years to come. 

Cell Aspect Ratio Robustness 

We now examine TETRAN's robustness when presented with a poorly 

conditioned mesh with many large aspect ratio cells, where the aspect ratio is 

defined as the ratio of the longest cell edge to the shortest distance of a cell 

vertex to it's opposite face. These parameters are depicted in Figure 12. 
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Figure 12. Cell aspect ratio parameters. 

To produce a mesh with poor aspect ratios, we used a solid cube of 

material (1 cm3) surrounded on all sides by a thin layer of 0.01 cm thickness. 

Two examples of the resultant meshes are shown in Figure 13. 

Figure 13. Meshes for Robustness Test. 

This problem is chosen since it serves as the basis of a more complex 

assembly of such thin walled objects. It is also easy to model in MCNP so that 

we can use the Monte Carlo solution as a reference value. Lastly, the model is 

representative in proportion to the thin walls that typically surround a 
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satellite (100 mils about a 1 ft3 box -> 0.01 cm shield about 1 cm3 box) 

(Hilland, 1998), thus implying military as well as civilian applicability. 

The test problem for this demonstration is a 1 cm x 1 cm x 1 cm cube 

with a constant isotropic source (monoenergetic) of 1.0 particle/s. It has a 

total cross section of a=1.0 cm-1 and a scattering cross section of 

as =0.5 cm-1. The shield region is 0.01 cm thick and surrounds the cube. The 

shield has a total cross section of a = 2.0 cm-1 and a scattering cross section of 

as =1.0 cm-1. 

This test case was designed to demonstrate the robustness of both the 

EC and LC methods. The maximum cell aspect ratio for the coarse mesh 

problem is 144: the aspect ratio for 80% of the cells in this mesh. The fine 

mesh has cell aspect ratios distributed as shown in Figure 14. Clearly, 

refining the mesh reduces the occurrence of large aspect ratio cells. Note that 

the aspect ratio for an equilateral tetrahedron is 1.2247 indicating that none 

of the meshes for this problem contained ideally shaped cells. The meshes for 

this problem (Figure 13) also exhibit a problem with current mesh 

generators. Notice in the fine mesh on the right that the corners are meshed 

preferentially versus the interior of the faces. This is presumably because the 

finite element mesh generator is attempting to produce a good mesh for a 

thermal or structural response code. We do not need this type of mesh for 

particle transport. Instead, we need a uniform mesh of well-shaped 

75 



tetrahedra. This is an instance where a mesh generator optimized for 

radiation transport would be useful. 
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Cell Aspect Ratio 

Figure 14. Distribution of Cell Aspect Ratios for Fine Mesh. 

The coarse mesh has the minimum number of cells that Pro/Mesh 

would use for this problem. A finer mesh than the 4902-cell mesh presented 

could not be generated, because the number of cells required grows 

enormously with increasing mesh refinement. The cell optical thicknesses for 

the two meshes analyzed are presented in Table 7. Additionally, Emax/       js 
/ smin 

shown because it reflects the capability of the mesh generator to produce 

uniform meshes. 
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Table 7. Cell Optical Thicknesses for Cell Aspect Ratio Problem. 

Region 

Source 

Shield 

Ncells 

6 
1671 

36 
3231 

^min s 

0.86392 
0.07965 
0.02651 
0.03736 

^max 

1.7321 
0.51769 
0.17321 
0.09165 

^max/ 
/smin 

0.42209 
0.00108 
0.01026 
0.00264 

4.10 
479 
16.9 
34.7 

Cells with large aspect ratios present difficult problems numerically 

for EC because the source and inflow flux coefficients for these cells are 

generally large, negative, and close together. This behavior can cause 

overflows if not handled properly (see Appendix C). Badly shaped cells also 

cause problems with the cell Jacobian evaluation and rotation matrices. 

Thus, this test case to a lesser extent shows the robustness of the LC method 

as well. The successful evaluation of this problem verifies that we have 

achieved a level of robustness that was not available in the earlier work 

(Brennan, 1996). Note that this problem does not test the coarse mesh ability 

of either EC or LC as evidenced by the relatively small optical thicknesses in 

Table 7. 

We demonstrate the performance of the method by comparing the LC 

and EC results with those obtained from MCNP. This data is shown in Table 

8. This data shows that the LC and EC methods are converging toward a 

discrete ordinates solution that is generally in agreement with the MCNP 

prediction. Thus, TETRAN provides accurate results even for poor meshes. 
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Table 8. Results for Large Cell Aspect Ratio Problem. 

Method Ncells Ncells ^Shield ^Cube J+ 

(Shield) (Cube) U/(cm2 -s)l n/(cm2 -s)l (#/s) 
MCNP 0.231440 0.403520 0.130500 

(±0.000069) (±0.000081) (±0.000104) 
42 Cells 36 6 

LC 0.239455 0.385757 0.131714 
EC 0.240027 0.384161 0.131925 

192 Cells 144 48 
LC 0.234940 0.398565 0.131053 
EC 0.235534 0.397051 0.131294 

4902 Cells 3231 1671 
LC 0.234192 0.400116 0.130974 
EC 0.234290 0.399896 0.130997 

This problem demonstrated the difficulty that unstructured 

tetrahedral mesh generators can have with thin regions in a mesh. Clearly, 

building robust algorithms to handle poor meshes is a way to overcome this 

problem. Another approach, which was initially pursued in this research, is 

to develop a spatial quadrature that treats thin regions in a problem with a 

new spatial quadrature. This approach is discussed in Appendix D and is 

called the surface cell algorithm. In this algorithm, the thin regions are 

collapsed to a surface that are treated as computational cells with their own 

spatial quadrature. Thus, a mesh would have both surface cells and 

tetrahedra cells: a mixed mesh. This research was abandoned because there 

were no mesh generators available that produced the needed mesh. Should 

such a mesh generator become available it would enable the implementation 

of this approach. 
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Curvilinear and Inclined-Plane Surfaces 

The problem presented in this section demonstrates TETRAN's ability 

to perform transport on complex, multi-region geometries with curvilinear 

and inclined-plane surfaces. This problem demonstrates the robustness of the 

algorithms and an issue regarding mesh generation of sources in a complex 

configuration. We initially believed Brennan's development able to handle 

such problems. However, it was found that the code was generally not robust 

enough to handle the few poorly shaped tetrahedra that are produced in such 

a configuration. Consequently, Brennan's code typically failed with overflow 

errors (see Appendix C) during execution for simple multi-region problems. 

EC was made robust by using the implementation presented in Chapter 2. 

This problem, a spherical source within a tetrahedron, was chosen to 

demonstrate the three-dimensional capability of TETRAN. Indeed, only one 

other discrete ordinates code, ATILLA, is even capable of performing 

transport on this configuration with such a high degree of fidelity. MCNP is 

also capable of performing transport on the configuration and was used as 

the benchmark for this problem. The geometric configuration is as follows. 

For the tetrahedron, the corners are located in (X,Y,Z) space at the following 

nodes: node 0 (5.0, 3.0, -3.0), node 1 (0.0, 0.0, 5.15), node 2 (-5.0, 3.0, -3.0), and 

node 3 (0.0, -5.66025, -3.0). The sphere is centered at the origin and has a 

radius of 1.336505 cm (a volume of 10.0 cm3). The total cross section for both 

regions is 0.75 cm-1 and the scattering cross section is 0.5 cm-1. These cross 
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sections were chosen because they were used by Lathrop (Lathrop, 1971) in 

his square-in-square problem. We envision this problem as a three- 

dimensional version of the square-in-square problem (actually, a cube-in-cube 

is the three-dimensional variant but we wanted a more challenging 

geometry). A monoenergetic, isotropic source of strength 1.0 particles/(cm3-s) 

is located within the sphere. 

We examined this transport problem using three meshes: a coarse 

mesh with 138 cells, a finer mesh with 1209 cells, and the finest mesh with 

10075 cells. Table 9 lists the region volumes and optical thicknesses for each 

region and mesh. 

It can be seen from the below data that the source volume for each 

mesh is not being conserved nor is that of the tet. The actual source volume is 

10.0 cm3. Although the overall volume of the problem is conserved, if the 

source volume is incorrect, the discrete ordinates solution will be incorrect 

because the source will be in error. In addition to not having the correct 

volume, none of the meshes have the correct source shape (a sphere) although 

they are approaching it with each mesh refinement. This is shown in the 

figures below, where we present the coarse and finest meshes. 
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Table 9. Mesh Optical Thicknesses for Curvilinear and Inclined-Planes 
Problem. 

Region Volume 
(cm3) 

Ncells ^min s ^max ^max/ 

Source 2.4028 8 0.44200 0.76068 1.5635 3.54 
8.4789 186 0.09247 0.41175 0.87301 9.44 
9.4916 938 0.062168 0.24471 0.60285 9.70 

10.0 Actual N/A N/A N/A N/A 
Tet 115.23 130 0.17931 1.0240 2.7929 15.58 

109.15 1023 0.08732 0.50121 2.0958 24.00 
108.14 9137 0.05553 0.26430 0.62608 11.27 

107.6351    Actual N/A N/A N/A N/A 

Figure 15. Coarsest Mesh of Sphere in Tetrahedron (138 cells). 

Clearly, the mesh in Figure 15 is completely unrealistic for the embedded 

spherical source. Contrast this with the finest mesh, which is significantly 

different than the sphere it is modelling with regard to the volumes 

(9.4916 cm3 vs. 10.0 cm3) (Figure 16). 
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Figure 16. Finest Mesh Sphere in Tetrahedron Mesh (10075 cells). 

We cannot rely on the mesh generator to conserve volumes automatically. 

This feature is critical to nuclear applications because one often deals with 

volumetric sources. In the case of this problem, even finer meshes are 

required to get the source right, although we could multiply the region fluxes 

by a correction factor to account for the error in the source volume in the 

mesh. Such an approach is plausible for a simple problem but nearly 

impossible for a complicated source configuration. A volume-conserving mesh 

generator is needed. The results of the transport calculation (using EC) for 

each mesh are presented below. Note that each face is numbered according to 

the node that does not lie on it, e.g. face 0 is comprised of nodes 1, 2, and 3, 

and so on. 
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Table 10. Results of Transport Calculation Using EC for Test Problem 2. 

particles. 
'          2          ' cm   -s 

Current Out of Face : (particles/s) 

Ncells ^Source #Tet 0 1 2 3 
138 0.625647 

(2.60382) 
0.033598 

(0.139830) 
0.364600 

(1.517396) 
0.100795 

(0.419490) 
0.363604 

(1.513250) 
0.230081 

(0.957552) 
1209 0.979378 

(1.155076) 
0.096365 

(0.113653) 
1.168384 

(1.377990) 
0.377978 

(0.445786) 
1.152992 

(1.359837) 
1.073805 

(1.266444) 
10075 1.017173 

(1.071656) 
0.104814 

(0.110429) 
1.308251 

(1.378325) 
0.424641 

(0.447386) 
1.306480 

(1.376459) 
1.204846 

(1.269381) 
MCNP 1.034600 

(±0.000207) 
0.108750 
(±0.000022) 

1.382700 
(±0.000968) 

0.446760 
(±0.000536) 

1.383300 
(±0.000968) 

1.274700 
(±0.000892) 

Notice that if we multiply the scalar fluxes and currents by the source volume 

ratio (10.0/source volume), the transport solutions become remarkably more 

accurate with respect to the Monte Carlo solution. The corrected values, 

shown in parenthesis, are tabulated in Table 10. Note that correcting the 

source flux produces a worse estimate of the scalar flux for the coarse mesh 

than for the other meshes. This is because the source region in the coarse 

mesh doesn't have the shape of a sphere. Thus, it should be expected that the 

volume correction will not improve the flux prediction in this case. 

Clearly, correcting for the missing source due to the mesh improves the 

accuracy of the discrete ordinates solution with respect to the MCNP 

solution. Note, however, that in most complex source configurations it will 

not be easy to perform such a correction. The better approach for this type of 

problem is to mesh the problem correctly such that volumes are conserved. 

This eliminates any need for such corrections and frees us from worrying 

about such problems. 
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The above table shows that the source correction works remarkably 

well for some aspects of the problem. Rather than under-predicting the flux 

and currents, we over-predict and converge toward the MCNP solution. This 

behavior is far more appealing for shielding calculations than the under- 

predicting behavior that occurs when the wrong source is used. This problem 

shows that work needs to be done in improving mesh generation for 

applications that need good control over the mesh volumes. Without such an 

ability, future use of unstructured mesh codes will be limited since the 

primary benefit of such methods is to model curved geometries. The issue of 

volume conservation, coupled with the finite element artifacts discussed with 

respect to the last test, more than drive home the need for a transport specific 

mesh generator. 

With evidence that TETRAN is robust and accurate (given the 

characteristics of the meshes used) for complicated multi-region problems, we 

proceed to our next test, a problem that demonstrates TETRAN ability to 

solve coarse mesh, deep penetration problems. 

Coarse Mesh with Optically Thick Cells 

Our last test of TETRAN's robustness centers on its ability to solve 

problems with cells that are optically thick. EC has been shown superior to 

LC for these types of problems. The LC method, a coarse mesh linear method, 

is reliably accurate for cell optical thicknesses on the order of 2.0 or less. The 

difference methods (diamond difference et al.) require much finer meshes. We 
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demonstrate here EC's performance for cells with optical thicknesses up to 

34. Because this problem is a stressing deep penetration problem, we are 

unable to use MCNP to obtain a bench mark solution to the problem. The 

thickness of the shield is on the order of 20 mean free paths. Rather than 

experiment with variance reduction techniques, we use the most converged 

EC solution as our benchmark for this problem. 

This problem is composed of two regions. The inner region is a 

homogeneous cube (dimensions 10 cm x 10 cm x 10 cm) which contains a 

homogeneously distributed source of monoenergetic particles emitted 

isotropically with a strength of 1000 particles/cm3. The total and scattering 

cross sections of the source cube material are a = 0.25 cm-1 and 

as = 0.0833 cm"1, respectively. The outer region is a 20 cm x 20 cm x 20 cm 

cube with a =2.0 cm-1 and a =0.5 cm"1. The source material is located in one 

corner of the larger cube, as is shown in Figure 17. We chose cubes to ensure 

that the volume of the source region was represented exactly. 

85 



▲   z 

Shield / / 
Source 

(0,0,0) y 

/ / 
/         w 

/ / 

Figure 17. Geometry for Coarse Mesh Problem. 

The region scalar fluxes and exiting face currents were calculated for 

four meshes using EC and LC. The coarsest mesh had 48 cells while the finer 

meshes had 348, 3063, and 20165 cells, respectively. The mesh optical 

characteristics are presented in Table 11. 

Table 11. Mesh Optical Thicknesses for Coarse Mesh Problem 

Region •N cells in region ^min s emax 
/ £min 

Source: 6 1.0552 2.1763 4.3301 4.10 
48 0.48656 1.0825 2.1663 4.45 

381 0.22113 0.54329 1.0836 4.90 
2047 0.11241 0.30941 0.69405 6.17 

Shield: 42 8.0038 17.376 34.641 4.33 
336 3.5912 8.6710 17.321 4.82 

2682 1.7139 4.3362 9.0774 5.30 
18118 0.56092 2.2600 5.1109 9.11 

Table 11 shows that the meshes examined contain extremely thick cells in 

the case of the coarse mesh (up to e~34) to only moderately thick cells in the 

case of the fine mesh (but still thick enough to reduce LC's accuracy). The 
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source region is much less optically thick than the shield region. The results 

for the region average scalar fluxes are listed in Table 12. 

Table 12. Region Scalar Fluxes for Coarse Mesh, Deep Penetration Problem 

T source <t> shield 

(particles N 
^          2           > 

/ particles N 
V         9         ) 

cm -s cm -s 
Mesh: EC LC EC LC 
coarse 2.8239E+03 2.8000E+03 2.3757E+01 2.4895E+01 

(48 cells) 
less coarse 2.8993E+03 2.8816E+03 2.3167E+01 2.3709E+01 
(384 cells) 

finer 2.9185E+03 2.9101E+03 2.3041E+01 2.3322E+01 
(3063 cells) 

finest 2.9229E+03 2.9199E+03 2.3005E+01 2.3102E+01 
(20165 cells) 

From the above table, it can be seen that both EC and LC are converging to 

the same result for the finest mesh. The EC method is more accurate than LC 

for all of the meshes. The relative errors with respect to the finest mesh EC 

scalar flux for both regions are plotted in Figure 18 and Figure 19. 

Figure 18 shows that the EC method is more accurate than the LC 

method even in the optically thin source region. However, LC is still doing a 

very good job of getting the scalar flux in this region because the cells are not 

optically thick. 
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Figure 18. Relative Errors in Source Region Scalar Flux with Respect to EC 
Fine Mesh Benchmark for Deep Penetration Problem. 
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Figure 19. Relative Errors in Shield Region Scalar Flux with Respect to EC 
Fine Mesh Benchmark for Deep Penetration Problem. 
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In the case of the shield region (Figure 19), the LC method is significantly in 

error with respect to EC. This should be expected, however, because the 

region is optically very thick. LC has little hope of matching the highly 

exponential behavior of the flux in outer reaches of the shield whereas EC is 

doing an excellent job in this regard as evidenced by the scalar flux and 

currents. 

Lastly, the exiting face currents for this problem are listed in Table 13. 

Table 13. Exiting Face Currents for Deep Penetration Problem. 

Mesh 
48 

J+x 
(particles/s) 

EC             LC 
1.1105E-04        -1.8645E+02 

J+y 

(particles/s) 
EC             LC 

9.1345E-05        -1.8316E+02 

J+z 
(particles/s) 

EC             LC 
9.1895E-05         -1.8531E+02 

384 4.1948E-05 7.2448E+00 4.2087E-05 3.9853E+00 4.0641E-05 4.8G50E+00 

3063 3.5524E-05 -6.6754E-04 3.5078E-05 1.2391E-03 3.5282E-05 4.0023E-04 

20165 3.3825E-05 1.3047E-05 3.3890E-05 1.2830E-05 3.3825E-05 1.3599E-05 

Mesh 
48 

J-x 
(particles/s) 

EC              LC 
9.3634E+04        9.1195E+04 

J.y 

(particles/s) 
EC              LC 

9.3127E+04        9.0643E+04 

J-z 
(particles/s) 

EC              LC 
9.3127E+04        9.0644E+04 

384 9.1186E+04 9.0434E+04 9.1248E+04 9.0092E+04 9.1091E+04 9.0242E+04 

3063 9.0545E+04 8.9966E+04 9.0554E+04 9.0071E+04 9.0542E+04 9.0057E+04 

20165 9.0434E+04 9.0280E+04 9.0429E+04 9.0242E+04 9.0427E+04 9.0256E+04 

From Table 13, we see that the exiting face current prediction for the far 

faces of the shield (+x, +y, and +z) show the deep penetration performance of 

EC versus LC. For the coarsest mesh, LC produces returns negative currents 

through all of the shield faces. This is nonsense and we expect it because of 

the coarseness of the mesh. The EC calculation predicts currents that are 

only a factor of three higher than the most converged solution. Note that the 
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symmetry of the problem implies that J+x = J+y = J+z (and J_x = J_y = J_z). 

This behavior is clearly occuring as the mesh is refined. The LC current 

prediction is obviously completely in error until the finest mesh and then it is 

still considerably off because the mesh in the shield is still optically thick 

(s = 2.26) for LC. Further mesh refinement should bring the LC result in line 

with EC's. The relative errors (with respect to the most converged EC 

solution) in J+x are plotted in Figure 20 versus e for the shield as it is the 

shield's optical characteristics that are effecting the computation of J +x 
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Figure 20. Relative Error with Respect to Fine Mesh EC Benchmark for J+x 

using EC and LC. 

Notice in Figure 20 that the current predicted by the 384 cell mesh using EC 

is more accurate than the LC results on the finest mesh (20165), a factor of 
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roughly 52. This coarse mesh accuracy more than makes up for the factor of 3 

difference in computational cost between the EC and LC quadratures. 

Lastly, we remark on some issues encountered in producing our coarse 

mesh results. In initial attempts to solve this problem, the EC method failed 

to converge. This type of error had been encountered before in exploring set- 

to-zero fix-ups for the source moments. However, there are no set-to-zero fix- 

ups in TETRAN. We examined the root-solver and found that the error was 

occurring because of an inconsistent implementation of the transition from 

the asymptotic solution to the source system (requiring no root-solves) to the 

first guess algorithm and the root-solver (discussed in Appendix B). This 

caused the source to be calculated inconsistently between iterations and 

prevented convergence. The problem was fixed by changing the break points 

to be moderately more conservative regarding the use of the asymptotic 

formulas. Thus, the root-solver is invoked more often in these extreme cases, 

producing consistently accurate source moments. At some point in the future, 

we will have to return to this issue and re-evaluate the region of applicability 

of the asymptotic solutions. However, the performance penalty for the more 

conservative approach is minimal and thus does not warrant a high priority 

for future work. 

Multi-group, Anisotropie Scattering Performance 

Raising the level of complexity of our test problems higher, we examine 

TETRAN's ability to solve multi-group problems with and without anisotropic 

91 



scattering. The problem examined is similar to one found in the literature 

(Castrianni, 1997). We call it the water-iron-water problem. 

The water-iron-water problem is comprised of three regions. Region 1 

is a 20 centimeter cube of water centered at the origin with a uniformly 

distributed source of particles emitted isotropically. Region 2 is a hollow iron 

cube that surrounds the source and has a thickness of 10 centimeters. 

Finally, region 3 is a hollow cube filled with water that surrounds the iron 

region and has a thickness of 30 centimeters. This geometry is depicted in 

Figure 21. 

Figure 21. Geometry for the Water-Iron-Water Problem. 

This problem is driven by a mono-energetic source of strength 1.0 

particles/sec emitted in group one. Vacuum boundary conditions are assumed. 

Two anisotropic scattering approximations were used. For the EC method, we 

used Pi scattering cross sections that were corrected using the diagonal 

transport approximation (MacFarlane, 1992). Thus, we get Pi accuracy from 

an isotropic cross section calculation. These cross sections were also used for 
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an LC calculation. Additionally, we solved the problem using LC and P3 

scattering moments that were corrected using the diagonal transport 

approximation to investigate the effect and performance of our anisotropic 

scattering treatment. We attempted to solve the P3 problem using EC but 

were unable to do so because using Legendre moments and spherical 

harmonics to update the scattering source produces negative sources. EC 

requires positive source data in order that we may calculate the source 

coefficients. This is especially true of water where the scattering off the 

hydrogen atom is particularly forward peaked because neutrons are only 

forward scatter in the laboratory frame of reference. Attempting to use 

Legendre polynomials to fit such a function invariably produces negative 

values. Additionally, narrow energy groups can cause negative cross sections 

to be produced for certain materials. Alternative cross section representations 

will be needed in order to eliminate negative cross sections. This is a subject 

for further research (DelGrande, 1998). The first three neutron energy groups 

(12.0 MeV to 17.0 MeV) in the MATXS10 cross section library (MacFarlane, 

1992) were used for this problem. They are presented in Table 14, Table 15, 

and Table 16. 

The MATXS10 cross sections were selected for this research for two 

reasons. They are readily available in the TRANSX package and contain 

many common engineering materials; they include up though P4 scattering 

moments; and they are based on the ENDF/B-VI evaluations (the most 
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current nuclear data files). Also, MATXSlO's energy structure is identical to 

that of the MCNP multi-group cross section library, which is based upon the 

MENDF5 library used at Los Alamos for high energy transport calculations. 

However, there are substantial differences between the MATXS10 cross 

sections and their MCNP equivalent. First, the MATXS10 library is based on 

ENDF/B-VI while the MCNP version is derived from ENDF/B-V data. More 

importantly, in order to be incorporated into MCNP, the multi-group P0 

through P4 data were processed into equally-probable cosine bins to treat the 

scattering using the MCNP data structure (MCNPXS, 1997). The data must 

also have been processed to eliminate the possibility of negative cross 

sections, which is as intolerable for the Monte Carlo method as it is to EC. 

Thus, although the cross sections appear to be derived from a common 

parent, they are at least partly different because of the data requirements of 

the codes for which they are intended. Because of the substantial differences 

between multi-group and continuous energy cross sections, we compare 

TETRAN's results with MCNP's multi-group results. This at least minimizes 

the differences due to the cross section representations. Of course, the MCNP 

results do not have the angular and spatial discretization errors that are 

inherent in the TETRAN results. 
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Table 14. Pi Transport Corrected Cross Sections for Water. 

Water 
o8lg'-»g(cm *) 

g ag(cm 1) g' = l g' = 2 g' = 3 

1 
2 
3 

0.074512 
0.079409 
0.081262 

2.07399E-03 
1.31405E-02 
5.74009E-03 

1.75144E-03 
1.42416E-02 2.85886E-03 

Natural 
Iron 

g cyg(cm_1) g' = l 

a^^gCcm"1) 

g' = 2 g' = 3 

1 
2 
3 

0.132931 
0.137572 
0.138529 

1.08255E-02 
1.38718E-02 
1.41291E-03 

1.26268E-02 
1.34612E-02 1.74764E-02 

Table 15. P3 Transport Corrected Cross Sections for Water. 

1=0 
o8z,g'->g(cm X) 

g og(cm *) g' = l g' = 2 g' = 3 

1 0.084473 1.20352E-02 
2 0.089661 1.31405E-02 1.20036E-02 
3 0.092259 5.74009E-03 1.42416E-02 1.38556E-02 

1=1 CTsZ,g'->g(cm-1) 

g g' = l g' = 2 g' = 3 
1 9.96124E-03 
2 8.13291E-03 1.02522E-02 
3 2.69041E-03 7.40822E-03 1.09968E-02 

1=2 asZ)g-^g(cm_1) 

g g' = l g' = 2 g' = 3 
1 6.67593E-03 
2 3.61894E-03 7.21434E-03 
3 2.54424E-03 2.18526E-03 6.84057E-03 

1=3 asZ;g-^g(cm_1) 

g g'=l g' = 2 g' = 3 
1 3.18798E-03 
2 2.60006E-03 3.58607E-03 
3 2.01574E-03 2.35980E-03 3.02045E-03 
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Table 16. P3 Transport Corrected Cross Sections for Natural Iron. 

1=0 asZjg'_>g(cm    ) 

g og(cm 1) g' = l g' = 2 g' = 3 

1 0.162578 4.04721E-02 
2 0.173704 1.38718E-02 4.87585E-02 
3 0.180036 1.41291E-03 1.34612E-02 5.89831E-02 

1=1 a^g-^gCcm"1) 

g g'=l g' = 2 g' = 3 
1 2.96467E-02 
2 3.08452E-03 3.61317E-02 
3 1.58912E-04 9.05030E-04 4.15068E-02 

1=2 
as/)g-_>g(cm-1) 

g g' = l g' = 2 g' = 3 
1 1.81862E-02 
2 1.00274E-03 2.24502E-02 
3 1.79372E-04 1.03198E-03 2.75191E-02 

1=3 CTs/)g'^g(cm_1) 

g g' = l g' = 2 g' = 3 
1 8.75387E-03 
2 7.57219E-04 1.12032E-02 
3 9.07334E-07 4.47590E-04 1.39011E-02 

The results of TETRAN's multi-group transport calculations are 

presented below. The data presented are for three different tetrahedral 

meshes: 528, 8849, and 17369 cells. Table 17 presents the group dependent 

average cell optical thickness by region. This is followed by the results 

presented by region. 
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Table 17. Group and Mesh Dependent Cell Optical Properties for Problem 6. 

sg 
Region Cells SEI g=2 S53 
Source: 

48 0.64718 0.68971 0.70581 
162 0.41489 0.44216 0.45248 
161 0.42145 0.44915 0.45963 

Iron: 
144 1.4830 1.5348 1.5454 
931 0.78105 0.80832 0.81394 
1350 0.68926 0.71332 0.71828 

Water: 
336 1.6522 1.7608 1.8019 

7756 0.57544 0.61326 0.62757 
15858 0.44951 0.47906 0.49023 
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Figure 22. Group 1 Scalar Flux in Source Region. 
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Figure 23. Group 2 Scalar Flux in Source Region. 
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Figure 24. Group 3 Scalar Flux in Source Region. 
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The above figures show that there is a substantial difference in results 

between using the Pi and P3 scattering approximations. They also show good 

agreement between the LC P3 and the MCNP P4 calculation (indeed, the LC 

P3 cross sections are modified P4 cross sections). The group 1 flux shows 

excellent agreement with MCNP. However, we should expect this because 

group 1 is the highest group for this problem. It is in the downscatter groups 

that we expect to see the effect of the different treatments of anisotropic 

scattering. Indeed, we see that both group 2 and group 3 scalar fluxes are 

substantially different from MCNP for the Pi scattering cross sections 

whereas the LC P3 calculation is close to the MCNP results for all three 

groups. We now present the iron region results. 
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Figure 25. Group 1 Scalar Flux in Iron Region. 
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Figure 26. Group 2 Scalar Flux in Iron Region. 
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Figure 27. Group 3 Scalar Flux in Iron Region. 
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The discrete ordinates results for the scalar flux in the iron region 

show excellent agreement with the MCNP results for both the Pi and P3 

calculations. This is because neutron scattering in iron is more isotropic than 

in water due to its greater nuclear mass. Another interesting aspect of the 

iron region is that the EC calculation is more accurate than the LC solution 

as compared to MCNP for all three energy groups. The coarse mesh LC 

calculation is measurably off for the fluxes but converges for the finer 

meshes. This is because the average optical thickness of a cell in the iron 

region is 1.52 (over all groups) for the coarse mesh and only 0.80 and 0.71 for 

the two finer meshes, respectively. Additionally, the maximum cell optical 

thicknesses range from 2.7 for the coarse mesh to 1.7 for the fine mesh (for all 

energy groups). Thus, we see again the thick cell performance of EC as 

compared to LC. We now will examine the scalar flux results in the outer 

water region. 
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Figure 28. Group 1 Scalar Flux in Outer Water Region. 
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Figure 29. Group 2 Scalar Flux in Outer Water Region. 
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Figure 30. Group 3 Scalar Flux in Outer Water Region. 

We see the same type of behavior for the water region that was seen 

for the source region. Both Pi calculations are substantially different from the 

LC P3 calculation. However, the LC P3 calculation compares very well to the 

MCNP calculation. However, this should be expected because water is a 

pronouncedly anisotropic scatterer of neutrons. Notice also the coarse mesh 

performance of EC compared to LC. In this instance, the average cell optical 

thickness (over all groups) is 1.74 for the coarse mesh and only 0.61 and 0.47 

for the finer meshes. The maximum optical thicknesses range from 3.5 for the 

coarse mesh to 1.0 for the fine mesh (nearly constant over all groups). Notice 

also that the group 1 fluxes compare favorably with the MCNP results and 

the variations occur in the lower groups as expected. 
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Finally, we examine the group currents emerging from the +X face at 

X=50.0 cm. The behavior of the current at the boundary for this problem 

gives a measure of the impact of the various methods and Legendre 

scattering order (Pi or P3) on the particle leakage. 

O     4 

IMI 528 cells 
r~1 8849 cells 
^m 17369 cells 
• • . MCNPHigh 
  MCNP Mean 
• • • MCNP Low 

Figure 31. Group 1 Current Out of+X Face (X=50.0 cm). 

104 



■ 528 cells 
ZI 8849 colls 
■ 17369 cells 

• MCNPHigh 
- MCNP Mean 

. MCNP Low 

Figure 32. Group 2 Current Out of+X Face (X=50.0 cm). 
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Figure 33. Group 3 Current Out of +X Face (X=50.0 cm). 
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From the above figures, it is obvious that the current is particularly 

sensitive to the scattering approximation. The Pi calculations are not very 

good for any group in this case. The P3 calculation is much better. In order to 

make sure that the algorithm was working correctly, particle balance 

calculations were done, which showed that particles are being conserved. 

This forces us to conclude that the differences between the current 

calculation are due to the nuclear data and the methods (Monte Carlo vs. 

discrete ordinates vs. EC/LC approximation) used. This conclusion could be 

further validated if a Monte Carlo code existed which forced particles to 

travel along discrete ordinates angular quadrature directions and was 

multigroup capable. Such a code would produce results which contained 

angular and energy discretization errors but would not have spatial 

dicretization error, making it a superior benchmarking code for discrete 

ordinates results. The initial results of such a code, MCSN, were presented 

during testing of the convergence of EC and LC in problem one. Currently, no 

such capability exists for multigroup, anisotropic scattering problems. Dr. 

Kirk Mathews (AFIT) is developing an upgrade to MCSN to make it 

multigroup capable and able to use the T-matrix data structure (Mathews, 

1998). It will be interesting to see how EC performs once positive T-matrix 

data becomes available for this problem (DelGrande, 1998). 

The above figures show TETRAN is performing multi-group, 

anisotropic scattering calculations accurately (given the correct data). The 
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optical thickness of the regions between the 8849 cell mesh and the 17369 cell 

meshes are not very different. This is true of the source region as well. These 

trends are indicative of other problems that current mesh generators have 

with regard to mesh refinement. The mesh generator used in this work 

produced meshes that were inconsistent with increasing refinement, i.e. finer 

meshes were produced, but not all of the regions in the problem were refined 

consistently. This behavior along with the lack of volume conservation raises 

concerns regarding the use of common CAD/CAM codes for transport 

calculations. The T-matrix implementation for the group to group scattering 

source appears to function well, as does the iteration approach for each 

energy group. LC is theoretically capable of handling any order of anisotropic 

scattering while EC will need positive cross sections before it will be usable 

for problems requiring anisotropic scattering. 

HPF Parallel Demonstration 

In this last test, we demonstrate the parallel scaling performance and 

accuracy of our HPF parallel implementation of TETRAN. For this problem, 

we use the 162 cell mesh used in the convergence rate problem presented 

earlier. The results are for both EC and LC. We chose to use this simple 

problem because the HPF compiler, PGHPF 2.4 (development compiler), 

produced code that runs between 6 (EC) and 8 (LC) times slower than the 

IBM xlf90 serial code used in the tests presented earlier. We chose a 

relatively small mesh because ASC's IBM SP proved to have problems with 
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its message passing library that prevented us from using more than two 

processors for any larger problem. 

For our initial evaluation of TETRAN's parallel performance, we look 

at the consistency of the answers and the scaling of the code with increasing 

processors. We look at consistency to ensure that the HPF code produces the 

same results regardless of the number of processors used (deterministic). The 

speed up, S, is used to determine the parallel scaling of the code. Speed up is 

the ratio of the time to run the problem on one processor to that for multiple 

processors. No further investigation was done because the compiler has too 

many performance issues to make any further discussions useful. Future 

investigations should look at compiling with more than one HPF compiler if 

available. 

The HPF code was found to provide the same results regardless of the 

number of processors used as required by the HPF standard (Koelbel, 1994). 

For LC, the scalar flux was 1.541295 particles/(cm3-s). The EC calculation for 

the scalar flux was 1.540445 particles/(cm3-s). The parallel speed-up (S) and 

efficiency (E) are presented in Table 18. 
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Table 18. HPF Parallel TETRAN Results. 

Run Time 
(s) 

Speed-up, S Efficiency, E 
(S/N) 

JNproc LC EC LC EC LC EC 
1 882.93 2833.8 1 1 1.000 1.000 
2 451.35 1435.6 1.9562 1.974 0.978 0.987 
4 256.43 752.87 3.4431 3.764 0.861 0.941 
8 154.73 424.31 5.7063 6.6786 .    0.713 0.835 
10 114.92 321.99 7.6831 8.8009 0.768 0.880 
16 110.96 327.43 7.9571 8.6547 0.497 0.541 
32 170.32 248.33 5.1838 11.412 0.162 0.357 

1 (xlföO) 107.74 489.31 N/A N/A N/A N/A 

We see in Table 18 that the HPF code is scaling to about 8 processors for LC 

and about 10 processors for EC before saturating. Beyond 16 processors, both 

methods appear to saturate as evidenced by the drop in the parallel efficiency 

shown in Table 18. Using 32 processors is markedly worse for LC than using 

8 processors. The EC method performs better than the LC method, 

presumably because the processors are kept busy performing the expensive 

quadrature as was hoped. The saturation is probably due to the 

interprocessor communications required in the source and scalar flux updates 

or a demonstration of Amdahl's Law which basically says that the part of a 

program that can't be optimized (in our case, the source updates) will 

eventually dominate the runtime for a code (Dowd, 1998). Because the 

compiler has performance issues, we can't be sure. Clearly, much further 

investigation is required. A plot of the speed up versus the number of 

processors is shown in Figure 34. 
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Figure 34. Demonstration of Speed Up for HPF Parallel TETRAN. 

Regardless of the above issues, it is encouraging that the code compiles 

and runs and that the EC method appears to scale better than LC. This 

validates our design methodology of developing TETRAN using standard 

Fortran 90 and then inserting HPF directives as needed. We worked very 

closely with The Portland Group (Larry Meadows) to work out the bugs that 

prevented the compilation of TETRAN. Portland Group is now working on 

further enhancing their compiler to get the performance that is readily 

available with the serial Fortran 90 compiler available on the IBM SP. They 

believe that the problems with the compiler are in their implementation of 

the Fortran 90 intrinsic, MATMUL. If this is the case, then the performance 

results we report are preliminary because we use the MATMUL intrinsic in 
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every computational subroutine in TETRAN. It is also at the core of the 

source update routines. We expected that the maturity of HPF compilers 

would be better than was found (PGHPF was supposed to be mature). 

However, since HPF is still a developing compiler area, providing transport- 

related challenges to the compiler developers will hopefully results in better 

HPF compilers for the future. Lastly, in addition to the compiler issues, we 

found that the IBM SP has problems running the HPF version of TETRAN 

for large problems. This problem manifests itself as message-passing errors. 

The staff at the ASC MSRC is working on this issue as other users have 

complained of it as well. Although future efforts should consider using the 

IBM SP because of its capability to handle large amounts of data, other 

capable machines are available at the MSRC. Most noteworthy is the SGI 

ORIGIN 2000. This machine is ASC's largest shared memory machine (ASC, 

1998). It is possible that the HPF version of TETRAN will perform better on 

such a machine versus the IBM SP. This performance difference has been 

observed by other researchers using different codes (Little, 1998). 

This chapter presented TETRAN test results. Each problem tested 

critical features of the spatial quadratures and the overall implementation of 

the code. The results show that TETRAN is performing as expected. Both 

spatial quadratures converge to the same solution for the same problem and 

appear to be accurate compared to MCNP calculations. The EC quadrature 

proved to be extremely robust as evidenced by the problems it solved. The T- 

111 



matrix approach accurately solved the multigroup, anisotropic scatter 

problem and aided in the parallelization of TETRAN. Three major issues 

(beyond the scope of this research) were uncovered during this testing 

regarding mesh generation, positive nuclear data, and HPF compilers. 

However, TETRAN proved to be a strong performer on a variety of difficult 

problems. 
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Chapter V: Conclusions and Recommendations 

Conclusions 

We derived a new form of the EC spatial quadrature that is both 

elegant and illuminating with regard to its numerical implementation. This 

new form of the EC quadrature relies on the use of direct affine 

transformations to pass cell and flux moments within a mesh. EC and LC 

were implemented into a transport code, TETRAN. Both methods are 

numerically robust, convergent, and accurate. Several numerically accurate 

and robust algorithms (for M^{x,y,z,w) and the if-functions) were developed, 

enabling accurate computation of the EC (Appendix A) and LC quadratures. 

We tested the method's performance on a variety of problems, demonstrating 

convergence and robustness for poorly shaped and optically thick 

computational cells. The EC spatial quadrature is computationally expensive, 

costing approximately 3 ms/phase space cell while LC costs about a third of 

'that at 1 ms/phase space cell. 

A new root-solver was developed that uses a very accurate first guess 

algorithm based upon the characteristics of the solution space (Appendix B). 

The capability to perform standard multi-group calculations with anisotropic 

scattering was demonstrated for a difficult problem with great success. Our 

multi-group implementation uses the T-matrix approach over the traditional 

angular flux moments (fam) approach for updating the scattering source. 

However, use of EC on greater than first order anisotropic scattering 
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problems will have to wait until research is complete on a positive cross 

section generator. Standard cross sections, using spherical harmonics with 

Legendre moments of the scattering cross section, produce negative sources 

which are intolerable (and physically wrong) for EC. The LC method did not 

have any problems using the standard data since the LC source assumptions 

do not require positivity of the source moments. Finally, we demonstrated the 

parallel operation of an HPF version of TETRAN on a simple problem. Both 

EC and LC scale with increasing processors, the EC method scaling better 

than LC. Future work in this area will have to wait for a more mature 

compiler. 

In summary, this effort developed a parallel, unstructured tetrahedral 

mesh radiation transport code, TETRAN. This code solves the BTE using 

either the LC or the EC method using direct affine transformations to 

calculate the needed source coefficients. It can solve multigroup, anistropic 

scattering problems using a new approach to calculating the scattering source 

— the T-matrix algorithm. New findings regarding the nature of the source 

and inflow flux equations allowed the implementation a new non-linear root- 

solving strategy. HPF directives made the code parallel on the IBM SP. 

Substantial effort was made to implement the EC method such that it was 

robust and accurate. Seven test problems demonstrate this robustness and 

accuracy as discussed earlier. 
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Recommendations for Future Work 

Several potential areas of future research were uncovered during this 

research: mesh generation, parallel algorithms, and benchmarking. 

If unstructured tetrahedral mesh transport codes are to succeed, they 

must have good meshes on which to operate. We recommend that a new mesh 

generator, optimized for radiation transport, be developed. It should 

- conserve volumes, 

- minimize aspect ratios of cells, 

- provide users control of optical thicknesses, 

- combine triangular cells on selected surfaces with tetrahedral cells that 
align with them, and 

- provide optional self-similar mesh refinement where feasible. 

We recommend that MCSN be extended to multigroup, anisotropic 

scatter using T-matrices, in order to provide more useful benchmark results. 

Current computer architectures re dependent upon locality of reference 

for effective use of caches. We recommend development of a regular- 

hexahedral-mesh code analogous to TETRAN. 

Various enhancements are needed to make TETRAN more useful, 

including: 

- generating positive T-matrices, and 

- adding convergence acceleration. 

Other enhancements might improve the speed of the code, such as: 
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- using balance equations to eliminate expensive moment functions where 
well-conditioned, and 

- exploring alternatives for indirect addressing of fluxes. 

HPF and Fortran 90/95 compilers are not yet mature. Many are still in 

early stages of development. We recommend testing different hardware 

platforms and compilers. Ultimately, it may be necessary to recode using MPI 

and/or using various coding tricks to squeeze performance from a specific 

platform and compiler. We recommend that this be postponed until 

everything else is done, both to avoid wasted effort and because it may prove 

to be unnecessary. 
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Appendix A: Exponential Moment Functions — Evaluation and 
Identities 

The EC method requires the evaluation of a number of exponential 

moment functions. This appendix presents several moment function 

identities used in the derivation of EC. The algorithm for numerically 

evaluating four argument exponential moment functions is outlined. 

Definitions 

As previously presented, the exponential moment functions are defined 

as 

1 h hn-i 

Mn(x1,x2,...,xm) = )dt1(l-t1)
ne-Xltl\dt2e

(xl-X2)t2... Jd^A'-'-^V (82) 
ooo 

Note that Ma(x1,x2,...xm) > 0. Additionally, the moments functions are 

orderless with respect to their arguments, e.g. 

A1n(x1,x2,...xm) = A1n(x2,x1,...xm) and so on. The multi-argument MQ 

function is most often used in the EC method. The ratio 

-Mi(xi,x2,...,xm) I MQ(XI ,x2,... ,xm) also appears frequently with respect to 

EC. Thus, we define 

n(x   x       x   x_M(xi,x2,...xm) p(x1,x2,...xm)-—— -. (83) 
M0(x1,x2,...xm) 

In this case, 0<p(x1,x2,...xm)<l, which follows from the definition of 

Aljand A\Q. 
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Lastly, we define a new exponential moment function ratio, ^, given 

as 

<R(x   x        xV^oM^^ Kj{x1,x2,...,xm)-  — (84) 
M0(x1,x2,...,xm) 

where the j subscript indicates that the jth argument (pi, 2, ....or m) is 

repeated in the numerator. Note that the numerator of ftj is a function of 

m+1 coefficients whereas the denominator is a function of m terms and that 

0<<Rj(x1x2,...,xm)<l. 

Exponential Moment Function Identities 

Many exponential moment function identities are used in the EC 

spatial quadrature derivation. These identities are used to derive the 

quadrature and cast it in a stable form. Most were presented in (Mathews, 

1997). All of the presented identities were verified symbolically using 

Mathematica® 3.0. Additional detail regarding exponential moment 

functions can be found in (Minor, 1993). 

Identity 1 

Mn(x1,...,xj_1,xj+1,...,xm)-Mn(x2,...,xk_1,xk+1,...,xm) 
JYhiKX1,X2,...,Xm) =  

xj-xk (85) 
Xj * xk 
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The divided difference identity is perhaps the oldest of our identities. It was 

initially proven in Minor's dissertation (Minor, 1993). The above identity is 

used to stably evaluate *Rj(x1,x2,...,xm) and p(x1,x2,...,xm). 

Identity 2 

Mo(x1,x2,...,xm) = exp(-x1)M0(-x1,x2-x1,...,xm-x1) (86) 

Identity 2 is used to cast <Rj(x1,x2,...,xm) in a numerically stable form. It is 

valid for all values of m. 

Identity 3 

d 
dx\ 

Ain(x1,...,xk,...,xm) = -Mn(x1,...,xk,xk,...,xm) (87) 

Identity 3 is used in the evaluation of the source system and inflow face flux 

system Jacobians as well as in the derivation of the EC spatial quadrature. It 

was verified for all n and m. 

Identity 4 

M0(0,x1,x2,...,xm) = M1(x1,x2,...,xm) (88) 

Identity 4 is used with Identity 2 to recast <Rj(x1,x2,...xm) into a numerically 

stable form involving p(x1 ,x2,... ,xm). The identity was verified for all values 

of m. 
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Identity 5 

KA /v   Y        Y   N _ M)(xi,x2,...,xm_1)-exp(-x1)M0(x2 -Xl,...,xm -Xl) 
A10(lX1,X2,...,Xm/)-—   

xm (89) 

xm*0 

Identity 5 is used in the numerical evaluation of the moment functions. It 

was confirmed by direct symbolic evaluation of the integral functions using 

Mathematica® for m=2 to 5. This identity was first introduced in (Mathews, 

1996). 

Identity 6 

m 

p(x1,x2,...,xm) + J]^j(xi,X2,...,xm) = l /     (90) 
j=l 

Identity 6 is new to this research. It is used to recast the EC spatial 

quadrature into a numerically stable form without subtractions. It was 

confirmed by direct symbolic evaluation of the integral functions using 

Mathematica® for m=2 to 4. 

A1o(x,y,z,w)and p(x,y,z,w) Numerical Evaluation 

The development of stable and accurate routines to evaluate the 

exponential moment functions and their ratios was an important contribution 

of this research. Previously, Mathews developed streamlined routines to 

evaluate A<o(x) and p(x), A1o(x,y) and p(x,y), and A1o(x,y,z)and p(x,y,z). 

The algorithms are presented in (Mathews, 1997). For this effort, we 
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extended the algorithm used for three-argument case to the four-argument 

case. Although the four-argument algorithm is not as elegant as the three- 

argument one, it is stable and accurate to at least 10 digits. The pseudo-code 

for the four-argument function algorithm is presented below. 

Sort x, y, z, and w into ascending order -  w>z>y>x. We can do this 
because the exponential moment functions are orderless with respect to 
their arguments. 

If x>38.0 then all arguments are large enough that 

KA    I \ 1 / N 1111 A1o(x,y,z,w) = and  p(x,y,z,w) = l .  This 
xyzw x y z w 

approximation is accurate to at least 12 digits. 

If abs(x) and abs(w) < 0.025, (all arguments small) then we use a 

Homer nested MacLaurin series where we expand both A1o(x,y,z,w)and 

P(x,y,z,w)to 5ch order terms in x, y, z, and w and retain all terms up 
to 5th order. 

y-x       z-x 
Let 1 =  and CO = . 

w-x       w-x 

If % < 0.1 or X > 0-9 or 60 < 0.1 or CO > 0.9 or (GO - x) < 0.1 or (co - x) > 0.9 
or abs(w-x)< 0.1 Max{abs(x),abs(w)} then one or more arguments are 
close together but not near zero. In this case, we use identity 5 
(above) to get : 

AUx 
, Aio(x,y,z) -expi-xjMofy-x^-x.w-x) 

iY,z,vrJ =  
w 

„, N _ M0(x,y,z)p(x,y,z)-M0(x,y,z,w) P\x>y>z,wj — 
w A\Q{x,y,z,w) 

(Note that if abs(x) > abs(w), we switch x and w for better 
conditioning.) 

Else, we use the general divided difference formulation given as: 

Mo(x,y,z,w) = [(1-x)(© -x)(l-co)M)(x)-(l-co)roMo(y) + 

l0--X)M0(z)-x(ä((o-x)M0(w)]/ 

[(u; - xj3 (1 - x) X (a> ~ X) (1" a) »I 
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p(x,y,z,w)=[(l-x)((ö-x)(l-(ö)p(x)M0(x)-(l-cö)(üp(y)M0(y) + 

(l-X)XP(z)Mo(z)-Xö>(ö)-x)p(w)Ato(w)]/ 
[(l-X)(©-x)(l-co)M0(x)-(l-(ö)(öM0(y) + 

(l-X)xM)(z)-X©(ro-X) A^o(w)] 

The last equations are obtained by applying Identity 1 to A\Q and Mx, 

rearranging terms, and applying the definitions for x and co. 
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Appendix B: Evaluation of Source and Inflow Flux Coefficients 

The exponential characteristic method requires that source and inflow 

flux coefficients be computed and used in the sub-cell spatial quadrature. In 

this appendix, we present the algorithm used to calculate these coefficients. 

Source Coefficients 

We first discuss the equations and algorithms needed to get the unit 

tetrahedron source coefficients. Recalling the source system equations, 

SA =6exp(As)Afo(Xs,Ys,Zs), (91) 

Su=SA[l-p(Xs,Ys,Zs)], (92) 

Sv =SU-SA^?1(XS,YS,ZS), (93) 

and 

SW=Sv-SAft2(Xs,Ys,Zs), (94) 

where SA , Sv, Sv, and Sw are the cell source average and first moments 

(known from the previous iteration), the 7^ functions were previously defined 

in Appendix A, and the coefficients are, 

Xs =-Bu> 
YS=-(BU+BV), (95) 

Zs =-(Bu +BV +BW). 
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This system of equations is easily converted to a non-linear system of 

three equations and three unknowns by dividing equations (92) through (94) 

by SA and letting Puv = %^L, Pvw =^VL, and Pw = |sL This 
»A ^A ^A 

substitution and the application of Identity 6 (Appendix A), results in the 

following system of equations: 

Puv = Pu -Pv = Ki(X8,Y8,Z8), (96) 

Pvw=Pv-Pw=^2(Xs,Ys,Zs), (97) 

and 

pw=ft3(Xs,Ys,Zs), (98) 

where 0 <psum = puv + Pvw + Pw < 1 • 

The solution to the above source equations is contained within a phase 

space bounded by the tetrahedron depicted below. 

124 



(0,0,1) 

(0,1,0) 

(1,0,0) 

Figure 35. The (PUV>PVW>PW) Solution Space. 

The above phase space maps (PUV.PVW.PW) 
to the (XS,YS,ZS)coefficient 

space according to the mapping below. 

Pvw ->1 
Yc -»-oo 

Puv->° 
Xg —» +00 

Pw^O 
Zg —» +00 

Puv-»1 

Xg —» —oo 

Pvw -»0 
YQ -»+00 

pw->l 

Zg —> —oo 

Figure 36. Mapping of (puv,Pvw>Pw) Phase Space to (XS,YS,ZS) Coefficient 
Space. 
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From Figure 36, we see that the solution space maps the input data in a 

tetrahedron within a volume bound between 0 and 1 to all of (XS,YS,ZS) 

space. Additionally, the solutions X^pu^py^pw), Ys(Puv,Pvw,pw), and 

Zs(Puv >Pvw >Pw) > are expected to vary rapidly with the input data but there 

should be no discontinuities that would cause bad behavior with the 

evaluation of the Jacobian that will be necessary for the root solver. 

After obtaining Xs, Ys, and Zs, the source coefficients are found to be: 

BU=~XS> 

BV=XS-YS, (99) 

■"w = *s - Zs, 

( 
and As=log, 

6Mo(Xs,Ys,Zs) 
(100) 

The root solve strategy used in TETRAN to obtain the source 

coefficients is presented in the next section. 

Source System Root Solver 

The source coefficients presented above are obtained by root-solving 

the system of equations embodied in (96), (97), and (98). Broyden's method 

(Burden, 1993), which requires the evaluation of the Jacobian of the system of 

equations, is used. We chose to use Broyden's method because it requires only 

one evaluation of the system's Jacobian matrix (which is computationally 

expensive) followed by iterative updates that are computationally 
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inexpensive. This approach is taken with penalties of only superlinear 

convergence (versus quadratic for Newton's method) and the need for an 

accurate first guess generator (like Newton's method) to start the solver. A 

first guess is necessary. Naively using (0,0,0) as the first guess, Broyden's 

method failed to solve the source system after 20+ iterations. Thus, a good 

first guess for the method is necessary. However, it is shown below that the 

cost to evaluate the Jacobian dominates the cost of the root-solving algorithm 

including the first guess algorithm. 

The source system of equations, recast in the normal form for root- 

solving, is 

f1(Xs,Ys,Zs) = «1(XS)Ys,Zs)-puv=0, (101) 

and 

f2(Xs,Ys,Zs) = ft2(Xs,Ys,Zs)-Pvw=0, 

f3(Xs,Ys,Zs) = ft3(Xs,Ys,Zs)-pw =0. 

(102) 

(103) 

The Jacobian for the above system is 

r Source 
Jn     J12     J13^ 

^21     ^22     ^23 

^31     J32     J33J 

(104) 

where the elements are 
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Jii=^L = ^i(Xs,Ys,Zs)^1(XS)Ys,Zs)-2^1(Xs,Xs,Ys,Zs)]) axs 

Ji2=^-=^2(X8,Y8,Z8)[^1(X8>Y8,Z8)-^1(X8,Y8,Y8>Z8)], 
5YS 

of 
Ji3=T^ = ^(X8,Y8,Z8)[^1(X8,Y8,Z8)-^1(X8>Y8,Z8>Z8)], 5ZS 

J    -5f2 -J j21_sxrJl2' 
J22=-^- = ^2(X8,Y8,Z8)[^5(X8,Y8,Z8)-2^5(X8,Y8,Y8,ZB)], 

5Y8 

f2 J23=^-=^3(XS,Y8,Z8)[^2(XS,Y81Z8)-^2(X8)Y8,Z8,Z8)], 

d31 -"^—-J13> ax s 

J32-^--J23, 

5f (105) 
J33=^- = ^3(XS,YS,Z8)[^3(X8,YS,ZS)-2^3(XS)Y8,ZS)Z8)]. 

In evaluating the elements of the Jacobian, we used Identity 3 (Appendix A) 

as well as the quotient rule for differentiation. 

Clearly, the computation of the source system's Jacobian is expensive. 

It is efficient to re-use the double repeated argument functions which are 

calculated in the evaluation of the system (f1; f2, and f3) before the 

evaluation of J. However, this still leaves 6 five-argument/three-argument 

ratios (ftjwith repeated arguments) to compute accurately and robustly. If we 

use the standard Newton's method to invert this system, J would have to be 

evaluated for each iteration of the root solver. Broyden's method (Burden, 

1993) avoids this requirement by requiring only one evaluation of J followed 
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by comparatively cheap iterative updates. Broyden requires 1 vector addition, 

3 matrix multiplies, 1 transposition, 1 dot product, and the evaluation of i\, 

f2, and f3. This approach provides coefficients that are accurate to 9 digits 

with no more than 5 iterations and generally 2 or 3. Key to using Broyden's 

method was the development of a first guess algorithm, presented next. The 

algorithm used to numerically evaluate the source system and its Jacobian is 

presented in Appendix C. 

Source First Guess Algorithm 

Broyden's Method may converge slowly or not at all if it is started too 

far from the true root of the system it is solving. To ensure that this not 

happen in TETRAN, we developed a fairly accurate first guess algorithm 

based upon the behavior of the solution space. Indeed, Brennan developed a 

similar algorithm based upon the asymptotic behaviors of Xs(puv ,pvw ,pw), 

Ys(puv>Pvw>Pw)> and Zs(puv,pvw,pw) for the solution in the corners of the 

(PuV'PvW'Pw) phase space (Brennan, 1996). A simple interpolation spliced 

these solutions together, providing a guess to the solution in the interior of 

the space. This approach worked well but did not take advantage of the 

nature of the solution space. Our approach, although perhaps not optimal, is 

based upon the behavior of Xs(puv,pvw,pw), Y8(puv,pvw,pw), and 

Zs(Puv >Pvw >Pw) in tne interior of the solution space. 
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Our first guess strategy is built around the asymptotic behavior of the 

solution to the system. These solutions are presented in Table 19. 

Table 19. Asymptotic Solutions to the Source System. 

Puv ->1 

Pvw ->0 

PW ->0 

PSum ->1 

Puv ->0 

Pvw -*1 

Pw->° 
PSum ->1 

Puv ^0 

Pvw ->0 

Pw ->1 

PSum ->1 

Puv->0 

Pvw ->0 

Pw ->0 

PSum ->0 
Xs 1 1                1 1                1 1 

Puv i-PSum PUV      1 - PSum PUV      1 - PSun 

Ys 1                  1 1 1                 1 1 

Pvw PVW      1 - PSum 1 ~ PSum PVW      1 - PSun 

Zs 1               1 1               1 1 1 

Pw PW      1-PSum PW     1-PSum 1_PSum 

In the case where any of puy, pw, or pw are greater than or equal to 0.95 

and PSum ^ °-99 or PSum ^ °-01. the solutions in Table 19 are accurate to at 

least 9 digits requiring no root solving. 

The more interesting case occurs when (puv ,Pvw .Pw) is not located in 

one of the corners of the phase space tetrahedron. In this case, we developed 

an algorithm based upon the geometric form of the solutions in the space. 

Using AVS/Express, the solution to the system for many random values of 

(PuV'PvW'Pw) was visualized. Looking at the form of the Xs(puv,pvw,pw) 

solution, for example, an interesting result emerged. It is plotted in Figure 37 

below. 
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0 Puv 

Figure 37. Plot of X^puy.pvw.Pw) for X8=-100, -10, 0, 10, 100 (right to 
left). 

Figure 37 shows that Xs(puy ,pvw ,pw) lies on constant surfaces that sweep 

the puv axis- These surfaces are fairly planar for negative Xs and tend to 

bend (like the pages of a book) for positive Xs. What is important to see is 

that Xs(puv ,pvw >Pw) appears to vary in a one-dimensional fashion 
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as- Xs(puv). Due to the symmetry of the system of equations, 

Ys(puv»PvW'Pw) and ZgCpuv.pvw.pYy) behave in a similar manner. 

The algorithm used to generate our first guess is based upon the 

behavior in Figure 37. Treating the problem as quasi-one-dimensional, we 

treat each input coordinate (pyy, pw, pw) separately. The algorithm is 

developed for the pyv case because there is exchange symmetry among pyy, 

Pvw : and Pw • The algorithm is as follows. 

First, point data was generated for three constant Xs surfaces: 

Xs = -5, Xs = 0, and Xs = 5. These surfaces are chosen since it is over this 

range that the asymptotic behavior breaks down. Each set of points was fit 

using TableCurve® 3D to generate an estimate of the surface equations for 

the three cases. This was done once and put into a Fortran module. These 

equations and their statistics are presented below: 

PIN (Pvw>Pw) = 0.191232898 + Pvw*(-0.00879861 + -0.17756583*Pvw) + 

Pw *(-0.00919211 +  -0.1772146*pw) + -0.31946783*Pvw *pw   / 
9 (106) 

R2= 0.9986184864, 
Standard Error = 0.0021141815, 
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Puv°(Pvw>Pw) = 0.5-0.5*pvw -0.5*pw, 

R2=1.0, (107) 

Standard Error =1.16187e-10 

and 

Puv'5(Pvw>Pw) = 0.808632414 + Pvw* (-0.98752806 + 0.17397106* Pvw) + 

pw*(-0.98678519 + 0.173236422*Pw) + 0.309475303*Pvw*Pw   ,___,, 
„■> (108) 
R2 =0.9999311819, 

Standard Error = 0.0020301284. 

The above equations are used to locate the input pyy coordinate with respect 

to each surface. The exchange symmetry is such that pyw -> pw and 

Pw -> Puv for Ys» and Pvw -> Puv and Pw -> Pvw for zs where PxN, Pvw , 

and pw are the variables in equations (106) through (108). 

Locating pyy with respect to the above surfaces, the value of Xsis 

approximated in one of four ways. For Puv to the left of the pyy5 surface 

x=5                               1            1 
(Puv ~ Puv > 0), Xs = . Note that this is the same form as the 

PUV      1 - PSum 

asymptotic form in Table 19. The reason for this is that the asymptotic 

solution is a very good approximation in this range (accurate to three or more 

digits). When Puyis between the Xs = 5.0 and Xs = 0.0 surfaces, the 

following fit is used to obtain Xs: 
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xfit(P\w) = -loge(pvw) 

yfit (PSum ) = ~l°Se {1 ~ ?Sum ) 

Xs(Pvw>PSu,n) =1.305400076 + xfit* (-4.39382576 + xfit* (7.230625174 + 

xfit* (-2.82155197 + 0.532512991* xfit))) + 

yfit * (1.123135173 + yfit *(-4.28162193 + (109) 

yfit * (1.623314683 + yfit *(-0.31139215 + 

-0.01494551* yfit)))), 

R2 = 0.9994254009, 

Standard Error = 0.0363020055. 

In the case where pyy is between the Xs = 0.0 and Xs = -5.0 surfaces, the fit 

below is used to calculate Xs: 

xfit(Pvw) = -l°ge{Pvw) 

yfit (PSum ) = ~l°Se (1 ~ PSum ) 

Xs(Pvw>Psum) =-1-10819185 + xfit* (-1.18202335 + 

Xfit *(4.431595918 + xfit *(-1.74308591 + 

xfit*(0.341900634 + 0.012610457* xfit)))) + (110) 

yfit *(3.989171814 + yfit *(-6.98404183 + 

yfit * (2.779136284 + -0.53138969 * yfit))) , 

R2=0.9994254009, 

Standard Error = 0.0363020055. 

Finally, if the value of pyy is to the right of the Xs = -5.0 surface 

(pu^    - puv < 0) the appropriate asymptotic solution (Table 19) is used 

because these solutions are generally good to many digits in this range. 

The source system root-solving algorithm is summarized as follows. 

First, we evaluate the source ratios pyy, pyw > and pw using source data 
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from the previous iteration. If this data falls in the range of accuracy of the 

asymptotic limit for the solution to the system, we use the asymptotic 

solution and exit the algorithm. Otherwise, we use the input data to generate 

a first guess for Xs, Ys , and Zs using the first guess algorithm which uses 

either the asymptotic solutions or a fit to the data within several regions in 

the solution space. Since the system is symmetric, we use the same fit 

equations for each coefficient and exchange variables in a consistent way. 

After obtaining the guess for the coefficients, Broyden's method is used to 

invert the system. With the coefficients in hand, we back out the needed 

coefficients (Band As) and proceed with the transport algorithm for the cell. 

As discussed in the Chapter 4, a problem was found with the break point 

between the asymptotic solution and the root-solver. The solution was to 

change the break point to force root-solving to occur more often. The previous 

algorithms embody this strategy. 

It is probably possible do a lot better than the above algorithm. The fit 

equations, although picked from the best available, could be better. The 

logarithmic versions were used since they seem to better replicate the 

behavior of the solution of this exponential system. Additionally, we could 

have broken the space up into more regions and fitted these with better 

functions. Finally, with more time, a family of parametric curves might have 

been found that governs the solution space behavior, perhaps yielding good 

enough solutions to eliminate root-solving entirely. Regardless, the above 
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guess generator is good enough to allow Broyden's method to converge on the 

average of 2 or 3 iterations and no more than 5, satisfying our need for a good 

guess generator. 

Inflow Flux Coefficients 

The coefficients for the inflow flux moments are obtained in a manner 

similar to the source coefficients. The equations for the inflow flux moments 

are 

yA=2exp(Af)A4o(Xf,Yf), (111) 

T£=yA[l-p(Xf,Yf)], (112) 

and yv^u-^AKitXf.Yf). (113) 

As before with the source moments, equations (112) and (113) are divided by 

(111) and define pfjy =    u       v   and py = —?-. Then, using Identity 6 
TA ^A

n 

(Appendix A) the face system becomes 

pfjv=«i(Xf,Yf) (114) 

and p^=7?2(Xf,Yf). (115) 

The above system is the two-dimensional analog of the three- 

dimensional system for the source. It is non-linear and requires root solving. 

The solution approach for the coefficients is the same as the source system, 
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i.e. use the asymptotic behavior of Xf (pfjv,Pv) and Yf (puy,p^) as the basis 

for a first guess algorithm and employ Broyden's method as the root-solver. 

After obtaining Xf and Yf, the needed coefficients are calculated just 

as was done for the source coefficients (except there may be up to 3 inflow 

faces). The coefficients are 

B -xf, 
Bj;=Xf-Yf, 

(116) 

and A^log, 
V* 

2Mo(Xf,Yf) 
(117) 

The following sections present the inflow flux root-solver equations and 

the first guess algorithm. 

Inflow Flux System Root Solver 

As with the source, we chose to use Broyden's method to invert the 

inflow flux system of equations. Thus, these equations must be cast into the 

appropriate format along with the system's Jacobian. 

The appropriately cast system for the above strategy is given as 

f1(Xf,Yf) = ^1(Xf,Yf)-Puv=0, 

f2(Xf,Yf) = K2(Xf,Yf)-Pv=0. 
(118) 

The Jacobian for the above system, Jf, is 
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Jf = 
fit jt \ dll d12 

Tf Tf 

Vd21 d22j 
(119) 

where 

Jii=^ = ^i(Xf)Yf)[^(Xf)Yf)-2^(Xf,XflYf)], 

Ji2=^- = ^2(Xf,Yf)[^i(Xf)Yf)-^1(XflYf,Yf)]) 

f   _ df2        f d21 -"^T" -o12, 

(120) 

2 

5Yf 
J22=H- = ^2(Xf,Yf)[^2(Xf,Yf)-2^2(Xf,Yf,Yf)]. 

As with the source system, the evaluation of Jf is computationally expensive. 

In this case, it is efficient to re-use the three-argument to two-argument 

moment function ratios since they are needed as part of the evaluation of fx 

and f2. The evaluation of the repeated argument *Rj functions is 

unavoidable. Thus, Broyden's method was chosen to avoid multiple 

evaluations of Jf. The first guess algorithm for this system is presented below. 

The algorithm used to numerically evaluate the inflow face flux system and 

its Jacobian is presented in Appendix C. 

Inflow Flux First Guess Algorithm 

The first guess algorithm for the inflow face flux system of equations is 

the two-dimensional analog of the three-dimensional version used for the 

source system. Indeed, the inflow face flux exhibits the same type of solution 
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layering shown for the three-dimensional version. In the case of the face flux, 

the phase space is a unit triangle instead of a tetrahedron (Figure 38). 

(0,1) 

Pt 

(1,0) 

Figure 38. The (pfjv.Pv) Phase Space. 

As before with the source system, the solutions to the face system lie 

on well-defined curves of constant Xf(p{jv,p^) (and Yf(pfjv,pv) by 

symmetry). This behavior is depicted in Figure 39. 
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J    _f Figure 39. Plot of Xf(puy-Pv) for Xf =-100, -10, 0, 10, 100 (right to left). 

Just as was observed for the source, the above solution space maps the 

p coordinates, each of which is constrained to lie between 0 and 1, to the 

entire set of real numbers for Xf and Yf. 

The first guess strategy is essentially the same as for the source 

system. The inflow flux parameters pyv and py are treated in a quasi-one- 

dimensional way by treating each coordinate independently. This can be done 

because the solutions, Xf(pfjv.Pv) and Yf(puy.Pv) > seem to varY more 
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strongly with one coordinate than the other. The algorithm for obtaining 

Xf (Puv >Pv) is presented because the same formulas apply for Yf (pfjy ,pv) 

by letting pyy = pv in the equations below. 

The algorithm begins with the asymptotic solutions to the face system 

in the cases where both pyy and pfv are approaching 0 or one or the other is 

approaching 1. As before, 0 < p|um = pfjy + py < 1 • 

Table 20. Asymptotic Solutions for Inflow Face System. 

Puv ->1 

pv->0 

PSum ->1 

Puv^O 

Pv-»1 

PSum ->1 

Puv-»0 

Pv->0 

PSum ~> 0 
xf 1 1                1 1 

„f 
Puv 1-PSum 

f                   f 
PUV      1 - PSum 

Yf 1               1 1 1 

PV      i-PSum 1 - PSum 

The aymptotic relations in the first two columns of Table 20 are accurate to 

* f 
at least 109 when pSum > 0.99. Column three is at least this accurate when 

PSum ^ 0.01. Thus, the relations in Table 20 are used as the solutions to the 

face sytem when they are applicable. Otherwise, the first guess algorithm is 

used. 

The first guess algorithm uses fits to a family of constant Xf curves to 

determine the location of the pyy input coordinate (exchange symmetry is 

used to get pv using the same fits). In the case of the face system, we fit the 
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Xf = 10, 1, -1, and -5 curves using TableCurve® 2D. This was done once and 

the results placed in a Fortran module in TETRAN. These curves are used to 

bracket puy in the solution space. The equations of the fit curves are shown 

below: 

Pw 10(Pv) = 0.100241456 + pfv *( -0.01458791 + 

pfv *(0.139338267 + pfv *( -0.74015265 + 

pf
v*( 1.114373468 + -0.59888171*pf

v)))), (121) 

R2 =0.9999588005, 

Standard Error = 0.0001883807, 

Pw=1 (Pv) = 0.4185662 + pf
v *( -0.35932296 + -0.05794379*pf

v), 

R2 =0.9999873181, (122) 

Standard Error = 0.0004786178, 

Pw=~1(pfv) = 0.581439345 + pfv*( -0.64121428 + 0.058551053*pf
v), 

R2 =0.9999943081, (123) 

Standard Error = 0.0004508165, 

and 

Pw=~5(Pv) = 0.807850555 + pfv* (-0.98086771 + 0.165769953* pfv), 

R2 =0.9999370731, (124) 

Standard Error = 0.002139227. 

After using the above to determine where pyy lies in the solution 

space, we use a fit equation appropriate to the region pfjyis in. For pyyto 

the left of Püv~    , Püv~    ~ Puv - 0, we use the asymptotic solution 
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Xf = — 1—, which is accurate to several digits in this range. If pfjv 
PUV      1 _ PSum 

lies between pjj|=10and p($=1, the following fit function is used: 

1 
x = 

J 1 rS 
?UV      L ~ PSum 

y = f f 
Py      ! - PSum 

zl = x *(1.208399138 - 0.01536180 *x), 

z2 = 0.5*(1.0 + erf(fy +1.31619805) /(^2* 2.080453277))), (125) 

Xf =-0.56584199 + zl + 1.024171722* z2, 

R2 = 0.9986085942, 

Standard Error = 0.0995880886, 

where erf(x) is the error function, which is evaluated efficiently using a 

standard algorithm or a built-in function. The above function closely 

resembles a CDF (cumulative distribution function) to which Xf (puv,Pv) is 

similar as evidenced by Figure 39. If pfjvlies between Pu^=1 and Pu^=~\ the 

fit function below is used to estimate Xf: 
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1 
X = 

J      1   „f 
PUV      X _ PSum 

1 
y = 

(126) 

PfV      1_PSum 

zl = 0.5 * (1.0 + 

e rf ((x + 0.5219783834650574) /(42*5.368613963271195))), 

z2 = 0.5 * (1.0 + 

erf(fy +1.341292214090703) /(^2* 2.93611702967799))), 

Xf =-7.313430618887315 + 13.57575241380947*zl - 

3.4969015342974* z2 + 6.489645999251979* zl* z2, 

R2 = 0.999932859649556, 

Standard Error = 0.004964030286314623, 

where we have again employed the error function, erf(x). In the case where 

Puv lies between Püv~    an^ Puv"    > *ke last fit function is used, which is 

given as : 

1 1 
X 

Puv i-PSum 
1 1 

y J  ' 1_„f        ' 

zl = x* (1.528744066931101 + 0.06995285682140669* x), 

z2 = 0.5*(1.0+ (127) 

erf(-(;y + 4.09440766373177) /(J2* 2.970727912877624))), 

Xf =-0.02622091422930943 + zl + 0.8776311335141779* z2, 

R2 =0.99422295436887, 

Standard Error = 0.09313013094057546. 
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Lastly, when pyy lies to the right of p{$   5, the asymptotic behavior is used 

as a guess to the solution of the system: Xf = — -—. 
PUV      1-PSum 

The inflow face root-solving algorithm is summarized as follows. First, 

the inflow face flux moment ratios are computed for the current face: pfjy 

and p v. If this data falls within the region of applicability of the asymptotic 

solutions to the system, Xf and Yf are calculated directly and the next input 

face is evaluated. Otherwise, this data is passed to a first guess algorithm to 

estimate the needed Xf and Yf using either the fits or the asymptotic values. 

These coefficients are used to start a Broyden's method root-solver. After 

successfully obtaining accurate Xf and Yf, the needed coefficients are 

calculated and the next inflow face is evaluated. 

The above approach is perhaps non-optimal. It requires the evaluation 

of erf(x), which is efficiently evaluated using standard algorithms. Using 

erf(x) probably requires fewer floating-point operations than the evaluation of 

Jf for each face and solver iteration. However, this algorithm is efficient and 

ensures the convergence of the Broyden method in less than 5 iterations and 

generally between 2 and 3 for a solution accurate to at least 9 digits. Further 

work could be done in this area to better take advantage of the nature of the 

solution space as time warrants. 

145 



Appendix C: Stable EC Quadrature Formulations 

The development of stable algorithms to evaluate the flux moments in 

Chapter 2 was essential to the implementation of the EC method. This 

appendix outlines the algorithms used to calculate yÖrf* VA.hf11. ^Sf- 

..subcell        subcell        subcell        subcell        subcell    „outface     „outface    „outface 
Yu,in     >  NVsrc    '  V v,m      >   Y w,src    > V w,in     >  VA.src    >   VA.in     > MVsrc    > 

V^W"*' ^""rc306» and ^°Uinace- Similar techniques are used to evaluate the 

source root solve system and its Jacobian elements and the inflow face flux 

system and its Jacobian elements found in Appendix B. Note that throughout 

the discussion below we refer to the exponential moment function identities 

found in Appendix A. 

IEEE® 754 Overflow and Underflow Errors 

Overflow and underflow errors are produced because computers use 

finite precision arithmetic. An IEEE overflow is one where the resultant 

number is greater than 1.7976931348623158 x 10308 (normalized) for 64-bit 

(double precision) arithmetic. This corresponds approximately to exp(709.78). 

An underflow occurs if the resultant number is less than 

2.2250738585072013 x 10~308 (normalized) which corresponds to 

approximately exp(-708.4). Either case is intolerable to TETRAN. In the 

overflow case, an error is produced and the code terminates. More insidious, 

the underflow case will gracefully truncate the value to 0.0 (or some other 
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small number) without user intervention. The EC quadratures require that 

,,, subcell .   ,,,subcell .   , .subcell .      subcell        J.I_   j. -r j     n ■ c 
H'A        >WU        >VV        

>X
\>W        SO that if an underflow occurs in one of 

the moment evaluations, care must be taken to ensure that the other 

moments correspondingly underflow to 0.0 as well. In some cases, a number 

may underflow to the un-normalized value of 

4.94065645841246544 x 10"524and not to 0.0. This must be prevented from 

occurring during the transport calculations. 

Source Contribution to Cell Flux Moments 

The source contribution to the cell flux moments are the most 

complicated formulae; their treatment will be discussed first. In this case, 

M>uUsbrceU> M^src611. and V™^ are functions of flj(x,y,z,w), requiring the 

evaluation of multiple five-argument exponential moment functions. 

Additionally, care must be taken to prevent potential overflow errors because 

in some cases (particularly for poorly shaped tetrahedra) the coefficients will 

produce exponents much greater than 709 in the moment function routines. 

However, it is known from empirical evidence that 0 < !Rj(x,y,z,w) < 1. 

Indeed, it is the ratio function 7?j(x,y,z ,w) which enables the stable and 

robust evaluation of the EC quadrature. The pseudo-code algorithm for the 

evaluation of the source contribution to the flux moments is presented below. 

Sort arguments x, y, z, and w into ascending order: the new list is xl, 

x2, x3, and x4, where xl< x2 < x3 < x4. Note that the original argument 
list is retained. 
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If xl>700 and as < -700 then exp(as)is very small as are 

^1(x,y,z,w),^2(x,y,z/w),7?3(x,y,z,w),and^4(x/y,z,w) . 

subcell subcell subcell subcell 
rA,src    '    Yu,src     '    Y v,src     '    Yw,src    are   ° 

Else,   if xl>  38.0  and   |as|< 700then use  the  asymptotic value  of 

7?j(x,y,z,w)   and the   exp(as)will not  overflow or underflow. 

!R1(x,y,z,w) = -/   ft2(x,y,z,w) = -,   ^(x^^.w) = - , 
x y z 

^4(x,y;z;w) = — 
w 

1 
Ato(x,y,z,w) = 

xyzw 

n=i„,,i,4-Ä   „.subcell subcell subcell      ,„subcell Calculate   V|/Asrc   ,    Vj/usrc    ,    Vj/vsrc    ,    \j/wsrc 

Else,   if xl>  38.0 and   as>700then an overflow can occur in evaluating 

subcsU /      \ 
VA.src   as   exP(as)   will overflow.   In this case: 

^1(x,y,z,w) = —,   <
R2{-X.,YIZ.,W) = — ,   ft3(x,y,z,w) = -, 

x y z 

7?4(x,y,z, w) = 
1 

# 
w 

A1o(x,y,z ,W): 
1 

xyzw 

,,, subcell Arc   =exp(as +loge(6/Mo(x,y,z,w))) 

,-.,-. „„-.-,«.,, ... subcell  ,,,subcell  ,,,subcell  .      ,  .    _    n Calculate vUjSrc , M^vsrc ' H'wsrc using quadrature formulas. 

Else, if xl > -700 and x4 < 700 and xl-x4 > -700 and as > -700 then use 

Identities 2 and 4 (Appendix A) to evaluate the ^functions using 

pfunctions that are calculated using our four-argument moment function 
routines. 

^1(x,y,z,w) = p(-x,y-x,z-x,w-x) 

ft2(x,y,z,w) = p(x-y,-y,z-y,w-y) 

^3(x,y,z,w) = p(x-z,y-z ,-z,w-z) 

ft4(x,y,z,w) = p(x-w,y-w,z-w,-w) 
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-,  ,      ,   .       %,,subcell      ,,,subcell      ,,,subcell      ,,,subcell Calculate   Vf/Asrc   ,    V|/U>src    ,    \|/v>src    ,    V|/wsrc 

Else, if xl > -700 and x4 < 700 and xl-x4 > -700 and as < -700 then use 

Identities 2 and 4 (Appendix A) to evaluate the 7?j functions using 

pfunctions that are calculated using our four-argument moment function 

routines. The exponential, exp(as) , will underflow so use the 

logarithmic formulation presented previously for \|/A src . 

^1(x,y,z,w) = p(-x,y-x,z-x,w-x) 

ft2(x,y,z,w) = p(x-y,-y,z-y,w-y) 

ft3(x,y,z,w) = p(x-z,y-z,-z,w-z) 

7?4(x,y,z,w) = p(x-w,y-w,z-w,-w) 

M/AUsrcU = exp(as +loge(6ZMo(x,y,z,w))) 

_ ,  . ,_  ,,,subcell  ,,,subcell  ,,,subcell  .      ,  .     _    , Calculate V|/usrc , Vj/vsrc , V|/wsrc using quadrature formulas. 

Else, use a stable IEEE 754 compliant routine to evaluate 

^1(x,y,z,w),
<^2(x,y,z;w),,^3(x,y,z,w),and^4(x,y,z,w) . in this 

algorithm, we apply the appropriate set of identities for the input 
argument order of which there are 24 different cases. This is because 
the argument order is sorted in ascending order but the original 
arguments must be known in order to use the correct algorithm. Thus, 
the sorted argument lists could be one of the following: xyzw, xywz, 
xzyw, xzwy, xwyz, xwzy, yxzw, yxwz, yzxw, yzwx, ywxz, ywzx, zxyw, zxwy, 
zyxw, zywx, zwxy, zwyx, wxyz, wxzy, wyxz, wyzx, wzxy, and wzyx. It is 

from one of the above argument lists that the needed *Rj functions are 
calculated. The example algorithm for the xyzw case is presented below. 
This algorithm can be permuted for any of the above given cases. 

Using Identities 2 and 4 (Appendix A): 

^?1(x,y,z,w) = p(-x,y-x,z-x,w-x) 

Using Identities 1 and 2 (Appendix A): 

M0(-x,y-x,y-x,z-x)-A10(y-x,y-x,z-x,w-x) 
ft2(x,y,z,w)=   

<R3(x,y,z,w) = 

7?4(x,y,z,w) = 
A1o(-x,y - x,z - x) - Ato(y - x,z - x,w - x) 

Using Identity 2 (Appendix A): 
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Mo(- -x,y - x,z -x)- -M)(y- - x,z - x,w -x) 

M)(- -x,y- x,z - • x,z - x)- -Mo(y- x,z - x,z - x,w - x) 

M)(- x,y- x,z - x)- -Mo(y- x,z - • x,w - ■x) 

Mo(- -x,y- x,z - - x,w -x)- -Mo(y- - x,z - x,w - x,w -x) 



M'A,src   =6/exp(as-x)M0(-x,y-x,z-x,w-x) 

,—,-1 „„-i-,<-„   ...subcell      .subcell      ,,,subcell      , , ,. calculate   V|/UiSrc    ,    V|/V>src    ,    Vw^rc   using quadrature  formulas. 

The above IEEE 754 compliant algorithm uses Identity 1 to avoid the need 

for a general five-argument exponential moment function routine ( AIQ and 

p). If such a routine were available, the above algorithm would be much less 

complicated because one would only worry about which coeffiecient was xl. 

Inflow Flux Contribution to Cell Flux Moments 

The algorithm for calculating yf^e]1, v)/^n
ceU, ys^en, and ^^ is 

analogous to the algorithm above except that 7?j(x,y,z) is the needed 

function. 

Sort arguments x, y,and z into ascending order: the new list is xl, x2, 
and x3, where xl< x2 < x3 . Note that the original argument list is 
retained. 

If xl>700 and a£ < -700 then exp(af)is very small as are 

^1(x,y,z),7?2(x,y,z),and!R3(x,y,z) . 

... subcell subcell      ,,, subcell      .subcell 
VA.in     .    M>u,in      -    Vv,m      -    Vw.in     are   ° 

Else,   if xl>  38.0  and   |af|<700then use the asymptotic value of 

7?j(x,y,z)   and the   exp(af)will not overflow or underflow. 

Ill 

x y z 

Mo(x,y,z) = 
xyz 

n=i^,,n=4--=   ...subcell subcell      11(subcell      ,,,subcell Calculate   V|/Ain     ,    \|/u in     ,    \|/v>in     ,    \|/win 
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Else, if xl> 38.0 and af > 700 then care must be taken in evaluating 

SUDCGII       /  \ 
^A.in as exP(afj will overflow. In this case, use an alternate but 
equivalent form. 

«1(x,y,z) = -f   K2(x,y,z) = -,   ft3(x,y,z) = - 
x y z 

Ato(x,y,z) = 
xyz 

. subcell 
VAS    =exp(af +loge(67Vto(x,y,z))) 

<-=.-i™,i=4-«   ,„subcell      .„subcell      .„subcell        . ,     ,_ Calculate X|/Uin  , ^v.in •    Vw.in  using quadrature formulas. 

Else, if xl > -700 and x3 < 700 and xl-x3 > -700 and af > -700 then use 

Identities 2 and 4 (Appendix A) to evaluate the ^functions using 

pfunctions that are calculated using the three-argument moment function 
routines. 

^1(x,y,z) = p(-x,y-x,z-x) 

ft2(x,y,z) = p(x-y,-y,z-y) 

7?3(x,y,z) = p(x-z,y-z,-z) 

n^Tmi^t-^   .„subcell      „subcell      .„subcell      .„subcell Calculate   \\fAin     ,    l|/uin     ,    \|/vin     ,    i|/win 

Else, if xl > -700 and x3 < 700 and xl-x3 > -700 and af < -700 then use 

Identities 2 and 4 (Appendix A) to evaluate the ^functions using 

pfunctions that are calculated using three-argument moment function 

routines. The exponential, exp(af), will underflow so use the 

oil [)/"* P11 
logarithmic formulation presented previously for V|/^ in 

7?1(x,y,z) = p(-x,y-x,z-x) 

7?2(x,y,z) = p(x-y,-y,z-y) 

ft3 (x,y ,z) = p(x - z ,y - z ,-z) 

VAUineU =exp(af +loge(6Mo(x,y,z))) 

„ ,  , .       ...subcell  .„subcell  .„subcell   .      , 
Calculate V|/uin  , \|/V)jn  , V^w.in  using quadrature formulas. 

Else, use a stable IEEE 754 compliant routine to evaluate 

!R1(x,y,z),'/?2(x,y,z),and'/?3(x,y,z) . In this algorithm, use the 
appropriate set of identities for the input argument order of which we 
are only interested in three cases: xl = x, xl = y, or xl = z. This is 
different from above because one had to know the argument order to use 
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Identity 1 effectively. Here, because we have a general four-argument 
moment function routine, no concerned is required about the order 
following xl. The example algorithm for xl = x is present below. This 
algorithm can be permuted for the other two cases. 

Using Identities 2 and 4 (Appendix A) .- 

Riix.y.z) = p(-x,y-x,z-x) 

Using Identities 1 and 2 (Appendix A): 

MQ(-X,Y - x,y - x,z - x) 
7?2(x,y,z) 

«3(xfyfz) = 

A1o(-x,y-x,z-x) 

A4o(-x,y-x,z-x,z-x) 
A1o(-x,y-x,z-x) 

Using Identity 2   (Appendix A): 

ysubcell = 6exp(af _x) A^,(-x,y - X,Z - x) 

n=i^,,i=<-^   ...subcell      ,,,subcell      ,,,subcell , , 
Calculate   \|/U)jn     ,    H'v.in     •   Vw.in       using quadrature  formulas. 

Source Contribution to Outflow Face Flux Moments 

The algorithm used to determine yA
u£a

c
ce, ^Jf6- and i^J/fe is 

identical to that for the inflow flux contribution to the cell flux moments. The 

only difference is the requirement for three flux moments and the equation 

for M/A
Uts?cCe- 

Sort arguments x, y,and z into ascending order: the new list is xl, x2, 
and x3, where xl< x2 < x3 . Note that the original argument list is 
retained. 

If xl>700 and as < -700 then exp(as)is very small as are 

ftl(x,y,z),7?2(x,y,z),andft3(x,yfz) . 

„, outface      ,„ outface ,   ,,, outface 
H>A,src    /    M^u.src     ■   and   Vv.src      are   ° 

Else,   if xl>  38.0  and  |as|< 700then use the asymptotic value of 

!fcj(x,y,z)   and the   exp(as)will not overflow or underflow. 

Ill 
Kl(x,y,z) = —,   <

R2(XIY,Z) = -,   7?3(x,y,z) = - 
x y z 
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Mo(x,y,z) =  
xyz 

r,= -i„,,i =4_ö   ...outface outface outface 
Calculate   \|/A,Brc    »    Vu.src     '   and   Vv.src 

Else,   if xl>  38.0  and  as >700then care must be  taken in evaluating 
OUtfelCG /       \ 

^A.src   as   exP(.asj   will  overflow.   In this  case,   use  an alternate but 
equivalent  form. 

Ill 
fti(x,yfz) = —,   7?2(

x,y,z) = —.   7?3(x,y,z) = - 
x y z 

Mo(x,y,z) =  
xyz 

. outface M/AUsrcCe = exp(as +loge(2/Mo(x,y,z))) 

„  -,      -, ,_  llroutface    , ,,,outface  ,      ,  ^    - 
Calculate yU(Src  , and V|/vsrc using quadrature formulas. 

Else, if xl > -700 and x3 < 700 and xl-x3 > -700 and as > -700 then use 

Identities 2 and 4 (Appendix A) to evaluate the 7?j functions using 

pfunctions that are calculated using the three-argument moment function 
routines. 

7?1(x,y,z) = p(-x,y-x,z-x) 

ft2(x,y,z) = p(x-y -y,z-y) 

7?3(x,y,z) = p(x-z,y-z,-z) 

/-.„-i „,,-1 „4-,, ...outface  ,,,outface    , „outface 
Calculate \j/A>Src - M>u,src  - and M>v,src 

Else, if xl > -700 and x3 < 700 and xl-x3 > -700 and as < -700 then use 

Identities 2 and 4 (Appendix A) to evaluate the 'Rj functions using 

pfunctions that are calculated using the three-argument moment function 

routines. The exponential, exp(as), will underflow so use the 

OUtl3.CG logarithmic  formulation presented previously for   l|/A src    . 

^!(x#y,z) = p(-x,y-x,z-x) 

7?2(x,y,z) = p(x-y,-y,z-y) 

ft3(x,y,z) = p(x-z,y-z,-z) 

VAUtsrcCe = exp(as +loge(2Z Mo(x,y,z))) 

OUtl3.C6 Out" Ifl OP 
Calculate   V|/usrc    ,   and   M'vsrc    using quadrature  formulas. 
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Else, use a stable IEEE 754 compliant routine to evaluate 

^1(x,y;z),^2(x,y,z))and^3(x,y,z) . In this algorithm, apply the 
appropriate set of identities for the input argument order of which we 
are interested in only three cases: xl = x, xl = y, or xl = z. This is 
different from above because one had to know the argument order to use 
Identity 1 effectively. Here, because there is a general four-argument 
moment function routine, there is no concern about the order following 
xl. The example algorithm for xl = x is present below. This algorithm 
can be permuted for the other two cases. 

Using Identities 2 and 4 (Appendix A): 

^1(x,y,z) = p(-x,y-x,z-x) 

Using Identities 1 and 2 (Appendix A): 

Mo(-x,y-x,y-x,z-x) <R2(x,y,z) = 

7?3(x,y,z) = 

yVto(-x,y-x,z-x) 

A\Q(-X,Y - x,z -x,z-x) 

Wlo(-x,y-x,z-x) 

Using Identity 2 (Appendix A): 

M>AUsrcCe = 2/ exp(as -x)Mo(-x,y - x,z - x) 

_  i      -,   .       ,,,outface ,   ,,,outface      , , 
Calculate   l|/usrc    ,   and  V|/vsrc   using quadrature  formulas. 

Inflow Flux Contribution to the Outflow Face Flux Moments 

As before, this case is just a lower dimensional version of the preceding 

cases. This time, the quadrature formulas depend on <Rj(x,y). The flux 

moments calculated are VA"-?
06

 , vS?"*, and vS?"*- 

Sort arguments x, and y into ascending order: the new list is xl and 
x2, where xl< x2 . Note that the original argument list is retained. 

If xl>700 and af < -700 then exp(af)is very small as are 

^1(x,y)and^2(x,y) . 

...outface       ,,, outface ,   ,,, outface 
VA,in      '    Vu,in      -   and   Vv.in      are   ° 

Else, if xl> 38.0 and af <700then we can use the asymptotic value of 

7?j(x,y) and the exp(af)will not overflow or underflow. 
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^(x,y) = i,   K2(x,y) = i 
x y 

Mo(x,y) = — 
xy 

r.= i„,,i^i-„    ...outface outface ,   „, outface Calculate    Vj/Ain     ,    i|/uin      ,   and   l|/vin      . 

Else,   if xl>  38.0  and  af> 700then care must be  taken in evaluating 
Olltf3 Of1 / \ 

VA.in  as exP(af) will overflow. In this case, use an alternate but 
equivalent form. 

^(x,y) = -, ft2(x,y) = - 
x y 

Mo(x,y) =  
xy 

VAUinace = exp(af +loge(2M0(x/y))) 

Calculate VJ/uin  , and V|/vin 
eusing quadrature formulas. 

Else, if xl > -700 and x2 < 700 and xl-x2 > -700 and af > -700 then use 

Identities 2 and 4 (Appendix A) to evaluate the ^functions using 

p functions that are calculated using our two-argument moment function 
routines. 

^l(x,y) = p(-x,y-x) 

^2(x»y) = p(x-y ,-y) 

,-I=-I™,-I-4-„ ...outface    outface    , ,„outface Calculate V[/Ain  , yuin  , and l|/vin  . 

Else, if xl > -700 and x2 < 700 and xl-x2 > -700 and af< -700 then use 

Identities 2 and 4 (Appendix A) to evaluate the ^functions using 

pfunctions, which are calculated using the two-argument moment function 

routines. The exponential, exp(af) , will underflow so use the 

logarithmic formulation presented previously for M^in6 • 

^l(x,y) = p(-x,y-x) 

^2(x'y) = p(x-y -y) 

H>AUinaCe =exp(af + loge(2M0(x,y))) 

Calculate   l|/Ujjn      ,   and   V/v.in     using quadrature  formulas. 
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Else, use a stable IEEE 754 compliant routine to evaluate 
</?1(x,y)and^2(

x/Y) • In this algorithm, apply the appropriate set of 
identities for the input argument order of which we are only interested 
in two cases: xl = x or xl = y. The example algorithm for xl = x is 
presented below. This algorithm can be permuted for the other case. 

Using Identities 2 and 4 (Appendix A): 

fti(x,y) = p(-x,y-x) 

Using Identities 1 and 2 (Appendix A): 

co (       s    M)(-x,y-x,y-x) 

Mo(-x,y-x) 

Using Identity 2   (Appendix A): 

^outface = 2   exp(af _x)A1()(_X/y . x) 

Calculate y™itce, and \)/v
u^ace using quadrature formulas. 

Source System and Jacobian Elements 

For the sake of brevity, we will not present the algorithm for 

evaluating source system functions. The source system is comprised of 

Hdx,y,z) functions whose evaluation was previously discussed in the section, 

Source Contribution to Outflow Face Flux Moments. 

As for the Jacobian elements, an approach similar to that discussed in 

Source Contribution to Cell Flux Moments was used. In this case, we have 

five-argument moment functions over three-argument function ratios that 

are functions of only three distinct arguments with more than one repeat 

coefficient. These functions are products of <R^ functions. Briefly, the needed 

Jacobian elements are: 
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Jn = K1(x,y,z)[K1(x,y,z)-2K1(x,x,y,z)], 

Ji2=R2(x,y,z)[Ki(x,y,z)-Ki(x,y,y,zj\, 

Ji3=K3(x,y,z)[K1(x,y,z)-K1(x,y,z,z)], 

J22=^2(x,y,z)['R2(x,y,z)-2'R2(x,y,y,z)], 

J2Z=Kz(x,y,z)[n2(x,y)z)-<R2{x,y>z,z)\ 

^31 = Jl3> 

^32 =^23' 

J33=ft3(x,y,z)[R3(x>y,z)-2<R3(x>y)z,z)]. 

To evaluate the Jacobian elements that are products of ft- functions, we use 

an algorithm similar to that used in the section, Source Contribution to Cell 

Flux Moments. The pseudo-code for this algorithm is shown below. 

Sort arguments x, y,and z into ascending order: the new list is xl, x2, 
and x3, where xl< x2 < x3 . Note that the original argument list is 
retained. 

If xl > 38.0 then we use the asymptotic solutions for the needed ratios 
presented below. 

Mo(x,y,z)   x2 

^2(x,y,z)^1(x,y>y,z)= \     — \      =  
Aio(xfyfz)   xy 

<D i \(o t \     Ato(x,x,y,z,z)  1 
^3(X'Y/Z)^l(x,y,z ,z) = —^T— — = — 

Mo(x,y,z)   xz 

«,(x.y ,,)*(x.y ,y.,) - ^f"^ = ± 
Mo(x,y,z)   y2 

(Rz{x,ylz)(R2(x,y,z ,z) = —^—- — = — 
Alo(x'y'z)   yz 

A1o(x,y,z,z,z)  1 
^3(x,y,z)^3(x,y,z,z) = 

Mo(x,y,z)   z
2 
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Else, if max[abs(xl), abs(x3)] < 1.0 then apply Identities 2 and 4 
(Appendix A) to the numerator to find the Jacobian elements. 

^1(x/y,z)^1(x,x<y>z)=
A1"(x;X'X'y'2) = exp(-x)

Atl(-X'0'y-X'Z-x) 

Mo(x,y,z) Mo(x,y,z) 

K2(xyy yz)Kl(x,yyyyz) = M)(x;x,y,y,z) = eM-x)Mli~X'y-X'y-X'Z-X) 

Ato(x,y,z) Mo(x,y,z) 

^3(x,y,2)^1(x>y,z,2)=
A\(x;X'y'Z;z) = exp(-x)

A1l(-X'y-X'Z-X'2-x) 

Mo(x,y,z) Mo(x,y7z) 

K2(x,y ,z)K2(x,y ,y,z) . ^'J'Y'Y'Z) = exp(-y)^(x'y'^ "'^^ 
Mo(x,y,z) Mo(x,y,z) 

^3(x,y>z)^2(xty,z,z)=^
X;y'y'Z;z)

=exp(-y)
A1l(x-y'-y'Z-y-Z-y) 

Mo(x,y/Z) Ato(x,y,z) 

^3(x>y>z)^(x>y/z,z) = ^A
(x;y'Z'Z'z) = exp(-z)

A1l(x-2'y-Z'-Z'0) 

M)(x,y,z) Ato(x/y,z) 

Else, xl< 38.0 but the arguments are not small. In this case, use an 
algorithm similar to the source contribution algorithm in which the 
sort list is important. Fortunately, there are only six cases: xyz, 
xzy, yxz, yzx, zxy, and zyx. We present the case where the sort list is 
xyz. The other cases are permutations on this case. Note that 

•A%=A1op. The previous case was needed because the following 
algorithm is unstable for all coefficients small and close together 
(Identity 1). 

Applying Identities 2 and 4 (Appendix A): 

^(x^, z)^(xfxfy ,z) = M)(x,xyxyy,z) =M(-x,0,y-x,z-x) 
Mo(x,y,z)    Mo(-x,y-x,z-x) 

^2(xyyyZ)^1(xyyyyyz) = A<o(x-X'y'y'z)=>^("X'y-X'y-x-z-x) 

Mo(x,y,z)     Mo(-xyy-x,z-x) 

^3(xyyyz)^1(xyyyZyz)=
A1o(x>X'y'Z'z)

=
A1i(-x'y-x'z-x'z-x) 

M)(xyyyz)     Mo(-xyy-x,z-x) 

Applying Identities 1 and 2 (Appendix A): 
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«2(x,y,2)«2(x,y,y,2) = ^»^y^ 
Mo(x,y,z) 

M0(-x,y-x,y-x>y-x)-A1o(y-x,y-x>y-x,z-x) 
At0(-x,y-x)-M0(y-x,z-x) 

Mx.y.zmx.y,*,*)'^*™'*^ 
A4Q(X,Y,Z) 

_ A/to(-x,y-xfy-x,z-x)-At0(y-x,y-x,z-x,z-x) 
M0(-x,y-x)-At0(y-x,z-x) 

<R <V v »W <v ,, „ *\ - M)(x>y>z,z,z) K3(,x,y,z;/<3(x,y,z,z) = —— — 
Moix.y.z) 

_ A10(-x,y-x,z-x,z-x)-Al0(y-x,z-x,z-x,z-x) 
At0(-x,y-x)-M0(y-x,z-x) 

The above algorithm would be more efficient if a general five-argument 

moment function routine existed. However, the algorithm is stable, robust 

and accurate without such a routine. 

Inflow Face Flux System and Jacobian Elements 

Similar to the source system, the inflow flux system is composed of 

Kj(x,y) functions, which are evaluated using the same approach used in 

Inflow Flux Contribution to the Outflow Face Flux Moments. Thus, we will 

not discuss this algorithm further. 

As with the source system Jacobian, the inflow face flux Jacobian 

elements are comprised of products Rfay) and products of 7?j functions. 

Briefly, these Jacobian elements are: 
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4i = Mx.y)[Ki{x>y)-2Ri(x,x,y)], 

Ji2=Mx>y)[Ki(x'y)-Ki(x.y>y)]> 
Tf   - Tf d21 - d12> 

42 =Mx>yp2(x>y)-2^2(x,y,y)\ 

The algorithm for evaluating Rfa^has been presented. The algorithm used 

to evaluate the other ftj products is analagous to that used for the source 

Jacobian and is shown below. 

Sort arguments x and y into ascending order: the new list is xl and x2 
where xl< x2. Note that the original argument list is retained. 

If xl > 38.0 then use the asymptotic solutions for the needed ratios 
presented below. 

^1(x,y)*1(x,x,y) = ^te^y)=4 
M)(

X
'Y)   X

2 

^(».y^C.Y.Y)-^;''^-- Mo(x,y)   xy 

M)(x,y)    y2 

Else, if xl< 38.0 use Identities 2 and 4 along with stable routines to 
calculate two-, three-, and four-argument moment functions. We present 
the case of xl = x. The other case mirrors this case. Note that 

M1=M0p. 
Applying Identities 2 and 4 (Appendix A): 

*(*,y)*(x,x,y)=^<x;x'x-y)
=M(-*.°.y-x) 

Ato(x,y)    Mo(-x,y-x) 

^(x,y)^(x,y,y)=A1°a
(;;x'y'y)=A1l("x;y'x-y"x) 

M)(x,y)     Mo(-x,y-x) 

«2(x,y)«2(x,y,y) = *><**•**> =M)(-x.y-x,y-x,y-x) 
M)(x,y)       Mo(-x,y-x) 
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Appendix D: Derivation of the Surface Cell Algorithm 

Motivation 

We began the development the surface cell spatial quadrature to 

address a mesh problem that is quite difficult for all current unstructured 

mesh generators. Imagine a simple cube surrounded by a thin wall l/100th 

the thickness of the cube (or the thin skin of an aircraft or satellite or 55 

gallon drum of biological or chemical agent). When we mesh this problem 

using tetrahedra, the mesh generator will do one of three things. It might 

produce a coarse mesh with several poor aspect ratio tetrahedra in the thin 

region. Or, it might attempt to fill the thin region with many (thousands) of 

small, well-shaped tetrahedra. Or, finally, it might crash because of the 

memory requirements for making a proper mesh for this type of problem. The 

impact of the first case is that the poorly shaped tetrahedra are not 

numerically well conditioned and will introduce spatial and numerical errors 

into the transport problem. The second case is difficult in that the small mesh 

dimension will propagate to areas of the mesh where we can tolerate a coarse 

mesh, significantly driving up the computational cost of the problem. The 

final case prevents the solution of the problem. 

These mesh problems stem from the requirement (for transport) that 

each tetrahedron in a mesh share the faces of its neighbors. We require that 

the faces be shared because the flux moments from an upstream cell are 

passed to downstream cells via affine transformations of the moments on the 
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shared faces. Presumably, finite element algorithms for stress and thermal 

require connected meshes for similar reasons. The requirement for connected 

cells is a difficult constraint to satisfy with a minimal number of well shaped 

cells when the interfacing regions of a mesh differ substantially in geometric 

extent, i.e. thin regions next to thick regions. 

Tetrahedron Aspect Ratio 

E 
The aspect ratio for a tetrahedron cell is defined as y = —, where E is 

h 

the length of the longest edge and h is the shortest height (distance from a 

node to opposite face). This ratio is shown in Figure 40. 

,est distance to a face 

■£*\otv€' 
este^e 

Figure 40. Definition of Tetrahedron Cell Aspect Ratio. 

We can see from Figure 40 that if the cell is smashed flat or stretched long, 

the aspect ratio will be large. We seek to eliminate these types of cells by 
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using surface cells. The minimum possible aspect ratio, 1.2247, is achieved by 

using an equilateral (regular) tetrahedron. 

Returning to our cube example, Figure 41 shows the first case (poor 

aspect ratio tetrahedra) for the simple cube surrounded by a thin layer of 

material. The mesh on the left contains 42 tetrahedra and the mesh on the 

right contains 4902 tetrahedra. 

Figure 41. Examples of Unstructured Tetrahedra Meshes with Thin Regions. 

In the coarse mesh case (the left cube), 36 out of the 42 tetrahedra (all in the 

shield) have aspect ratios of 144! Figure 42 shows a histogram of the 

distribution of aspect ratios for the finer mesh on the right. Note also that the 

right mesh is quite irregular around the corners of the cube, presumably 

attempting to detail possible stress risers for a structural finite element 

model. 
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0.0      5.4      10.8    16.2    21.6    27.0    32.4    37.8    43.2    48.6    54.0    59.4 

Cell Aspect Ratio 

Figure 42. Distribution of Cell Aspect Ratios for Fine Meshed Example 
Problem. 

Obviously, the distribution of aspect ratios is better than in the coarse mesh 

case for Figure 42. However, there are still an overwhelming fraction of cells 

with large aspect ratios in this mesh. Indeed, the only way to dramatically 

reduce the average aspect ratio, other than using surface cells, is to mesh the 

problem with cells whose maximum dimension is on the order of the shield 

thickness. This mesh is not shown because in every attempt to produce such 

a mesh I locked up the mesh generator, Parametric Technology Corporation's 

Pro/Mesh™, Release 18.0 (Parametric Technology Corporation, 97). The 
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hardware used in these attempts was the ASC MSRC's SGI Power Onyx, 

which has 1 Gigabyte of memory (ASC, 1998)! 

The Surface Cell Algorithm 

Clearly, there is need for better ways to approach thin volume regions 

in an unstructured mesh. Our approach is the surface cell algorithm. 

Consider Figure 43 below. 

View Along Particle Flow Side View 

Au 

Aw 

Au,Av> Aw 
w=0 w= Aw 

l = n-a 

Figure 43. Cell and Side View of a Surface Cell. 

Figure 43 shows an extruded triangular prism along the local eT axis of the 

(e„ ,e\,,eu;) coordinate system. This cell has an intrinsic thickness, Aw, and 

an optical path length of — with respect to the streaming direction, Q. 

Particles enter the front face at w = 0 and exit the back face at w = Aw. 

Actually, a few particles enter or exit through the sides but we will ignore 

these since we assume that Aw is small compared to the lateral extents of 
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the cell. We erect the (e„ ,e(.,eUI) coordinate system to span the surface cell as 

though it were a triagular prism. Indeed, the surface cell is reprented as 

having no thickness in thhe mesh (one would have to take measures to 

preserve the surface cells material in implementing the quadrature). 

The key approximation for the surface cell algorithm is that we can 

neglect the lateral displacement of the flux exiting the cell and treat the 

transport in the cell in a slab-like manner (Figure 44). Clearly, as Ait» -> 0, 

this approximation becomes increasingly accurate. 

Q 

Aiü 

Figure 44. Surface Cell Approximation. 

Note that in Figure 44 we have increased the path length across the cell to 

match the path le'ngth of the correctly propagated ray (dashed arrow). 

With the geometric foundation set and approximations presented, we 

are now ready to derive the surface cell spatial quadrature for the linear and 

exponential characteristic methods. 
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Derivation of Surface Cell Spatial Quadratures 

As with characteristic methods based on a tetrahedron cell, the surface 

cell method is also based on the characteristic equation for the cell flux, 

y{u,v,w) = f(u,u)exp(-—) + -— S(u,v,w')exv(—i L) (12g) 
Aw      J0   £, Aw 

where £(u,v) is a distribution for the inflow face flux and £ is the extended 

path length across the surface cell. As will be shown, f(u,v) need not actually 

be specified , nor any form assumed. Only its moments will be needed. The 

outflow flux is the flux at w = Aw, 

Aw j      , , 

v|/out(u,i;) = y(u,v,Aw) =f(w,u)exp(-e) + exp(-e) f^- S(u,v,w') exp(—). (129) 
0   % Aw 

Lastly, we define a cell volume moment operator for the surface cell, 

1 u        Aw dw 
M[g] = 2jdujdvj^(u,v>w), (130) 

0      0      oAw 

where this is the volume operator for a regular triangular prism. If we 

separate the lateral and axial integration operators, we can define M as 

M[g(u,v,w)] = h[g(u,v)]A[g(w)l 
A«' j 

A[g(w)]= \-^g(w), (131) 
«   nil) QAw 

1 u 

l[g(u,v) ] = 2Jdujdvg(u,v). 
0     0 
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Indeed, the key approximation for the surface cell algorithm is the separation 

of variables as implied by the operators in (131). 

We now derive the linear and exponential characteristic versions of the 

surface cell algorithm. 

Linear Characteristic Surface Cell Approximation 

We begin the linear characteristic surface cell derivation by assuming 

that the normalized source is distributed linearly in the iu-dimension across 

the cell, 

S(u,i;,u;)=[P0(u;) + eP1(u;)]g(u,u), (132) 

where P0(w) = l, P1(w) = 2 1, 0 = -^, and g(u,v) is a source distribution 
Aw SA 

whose average is 

1 u Aw A 
M[S(u,v,w)]=2 JduJdug(u,v) J^[P0(W) + 9Px(w') ] 

0 0 0   ^"' 

1 11 

= 2Jdujdvg(u,v) = S 

0        0 o Aw 

1   „ (133> 

0 0 

Thus, the functional form of the cell flux is 

y(u,v,w) = f(u,v)exv(-e—)+^^- fdu/[l+eP(u/) ] exp[   &(w   W>)].    (134) 
Aw t,     J0 Aw 
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For the outflow flux, we start with (129) and substitute the source 

IV' 11)' 
distribution, noting that 2 1=1-2(1 ). Changing variables such that 

Aw Aw 

w' 
t , the outflow flux becomes 

Aw 

\\f0M(u,v) =i(u,v)exp(-s) + g(u,v)exp(-e)~KQ(-e) + 

(135) 
eg(u,u)exp(-s)^[2ü:i(-s)-^0(-s)], 

where the K -functions are functions originally presented in the linear 

characteristic paper (Mathews, 1998) and are defined as 

^i„i2 im(e) = Jd*Jd*2... jdtmt\> 42...^e-Et". (136) 
0 0 0 

Operating on (134) with A, we calculate the zeroth moment of the flux 

with respect to w, 

y 0(u,v)=A[\y(u,v,w')] 
Aw j •du; 

Au; Au; 
Aw i      , w' 

= J-—f(M,u)exp(——)+ (137) 
•>    Am AJ/I 

—— I -—I dw"[\+QVl(w") ]exp(—*- '-). 
I      o Awo Aw 

IV LU 
Changing variables such that V = and t" = , we transform (137) into 

Au; Au; 
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\\r0(u,v) = jdt' i(u,v)exTp(-&t') + 
o 

g^U'V'>Awjdt'fdt"[l+Q(2t"-l)]exv(-s(t'-t")) 
x      r (138) aw 

^ 0 0 

Changing variables again such that t = V -1" and performing the 

integrations, we find that 

v|/ 0 (u, v) = f (u, v)K0(e) + g(u, v) -p K00 (e) + 

A (139) 
0 g(u,i;) — [2ffw(8)-2Jrw(e)-ir0i0(6)]. 

Withv)/0(u,u) in hand, we now derive the first moment of the flux with 

respect to w, ^(u.v). As before, we are only evaluating the inner integral of 

M using A. In the first moment case, 

\V1(u,v)=A[3P1(w')y(u,v,w')]. (140) 

Using the same changes of variables as for \]f0(u,v), we find that 

xVl(u,v)=3i(uM2K1(E)-K0(e)] + 3g(u>v)^[2K10(e)-KQS)(s)]+ 

A (141) 

3 9 g(u,v)^[4K20(e)- 4Ku{z)-4Klfi(z) + 2ff04(e)+ Koja(e)]. 

With the above moments, we are ready to define the surface cell 

approximation. We define the results of the following moment operator 

operations: 
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L[f(u,u)]=V
in 
A ' 

in L[uf(u,u)]=MC, 

H>f(u,u)]=\|C (142) 
I{g(«,u)] = Si4, 

L[ug(u,u)] = S„, 

L[ug(u,u)]=SL,, 

recalling that we defined the source normalization to ensure that 

l[g(u,v)]=SA. The cell flux moments based on the source normalization are: 

xi,f =L[X¥O(U,V)]=WA K0(e) + SA^Kofi(e) + 

QSA^[2Kw(s)-2K0,(s)-K0S)(s)l 

yf =UuxyM>v)]=< Ko(z)+Su^Ko,o(s) + 

(143) 

9SU ^-[2Kl0(e)-2K0,(s)-K0S)(e)l 

0 St— [2K10(s)-2K01(e) -KQfi(e)], 

(144) 

(145) 

and 

y"* =L[ M/1(U,U)]=3VI;^[2^1(S)-K0(S)] + 3SA^[2K1,O(S)-E:0,0(S)]+ 

^ (146) 

3 0SA—[4K2,0(s)-4Ku(8)-4^1>0(s) + 2^01(e)+K0,0(s)]. 
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Operating on \yont(u,v) with L gives us the outflow flux moments: 

V7 =Lm>oat(u,v)]=yV
i2exp(-s)+SA^K0(s) + 

QSA^(K0(z)-2K1(s)), 

V? =L[uv)/
out(uJi;)]=M/;>xp(-s)-fSu ^K0(e) + 

OS. ^-(KeM-BKjB)), 

(147) 

(148) 

M/r=L[^out(^^)]=M/>xp(-s) + S^if0(s) + 

9S„ ^(KM-BKJz)). 
(149) 

Finally, we derive the conservation relationships by applying M to the 

BTE, just as we did in the tetrahedron cell case. The conservation equations 

are: 

Average: vf ~VA+6^=0^, (150) 

u-moment: i|/°ut - v* +syf =S„ ^, (151) 

u-moment: \|/^ut-\|/™+e\|/^n=S0 —, (152) 

and ^-moment:    3v|/°ut + 3y£-6yf + z\yf=Sw—. (153) 
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The step characteristic quadrature is obtained by using equations 

(143), (147), and (150) for the average flux in the cell. With the linear 

characteristic surface cell equations developed, we now extend the algorithm 

to the exponential characteristic method. 

Exponential Characteristic Surface Cell Approximation 

The exponential characteristic surface cell assumes an exponentially 

distributed source in the w direction, 

exp(-ß-^) 
S(u,v,w) =       y g(u,v), (154) 

M»(P) 

where again we have introduced a normalization ( ) such that 
M,(ß) 

A[S(it>)] = 1 and l[g(u,v)] =SA. However, in this case we must determine the 

value of the source parameter, ß, via root solving as is done in the exponential 

characteristic method for slab geometry (Mathews, 1993). Indeed, the source 

parameter, ß, is determined by the root-solving algorithm used for the EC 

method on unstructured grids of triangles (Mathews, 1997). In this instance, 

g 
we take the ratio of 0 = —— and solve for p(ß), giving us 

p(ß)=^A (155) 
b 
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which is solved for ß using the method referenced above. Note that -3 < 0 < 3 

so that 0<p(ß)<l. 

We begin the derivation of the cell flux with (128) and substitute for 

S(u,v,w), 

W(u,v,w) = f(u,u)exp(-^) +^^Jdu/exp(-ß—)exp(  *(w~w\    (156) 
Aw      £>H(ß)o Aw Aw 

For the outflow flux, we substitute (154) into (129): 

\\iout(u,v) = \\i(u,v,Aw) = f(u,i>)exp(-e) + 

g(u,v) Ar     , w\       Mw-w').        (157) 
——— I dw' exp(-ß—) exp(^- '-). 
qA^(ß) J

0 Aw Aw 

w As in the LC case, if we change variables such that t= and use the 
Aw 

definition of the moment functions, we find that the outflow flux is 

x[;
out(^^) = f(u,i;)exp(-s)+-f^^exp(-s)M0(ß-s). (158) 

M>(ß) % 

As before, we will first apply the A operator on equations (156) and 

(158) to obtain the w contribution to the flux moment. For the sake of brevity 

and since the operations and changes of variables are identical to the LC case 

(we just have moment functions instead of K functions), I will just present the 

results of the operations: 
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Wo(u,v) = Mvf(u,v,w')] = t(u,v)M0(e) + ^^-^-M0(s,fi), (159) 
M)(ß) S 

\\i1(u,v)=A[3~P1(w')\\i(u,v,w')] 

= 3f(u,u) A^(s)[l-2p(8)] +3-^^^A^(e,ß)[l-2p(6,ß)].        (160) 

M)(P) § 

With \J/0(M,I;),V(/1(M,I;) , and \|/out(u,u)defined, we now operate on them 

with L and use the moment definitions in (142), producing the flux moments 

for the cell: 

yf =Uv0(u,v)] 

= ^M(s) + S^^^, (161) 
A  %    Mo(ß) 

M/f1 =l[u^0(u,v)] 

=VCAW+S„f^>, (162) 

%   M>(ß) 

v|/f =L[u\\i0(u,v)] 

-*-*w+s-f^- <163) 
4   M)(ß) 

and 

v|C"=L[Vl(u,U)] 

=3VjAt(S)[l-2p(s)]+3S^Ä>[l-2p(s,ß)]. (164> 

5   MXß) 

Similarly, the outflow face flux moments are: 
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^vT =UwaM(u,v)] 
in       /    \    o /    N Ait» Al(ß-s) (165) 

%    M)(ß) 

V? =Uuy"*(u,v)] 
m       /    \    o        /    ^AiüAl(ß-s) (166) = \|/u exp(-s)+SU exp(-s)- J77—A 

4     M)(ß) 

and 

M/r=L[^out^^)] 
Au;Ayß-s) (167) 

= vj;"nexp(-s)+Suexp(-s)- 
§     H(ß) 

The conservation equations for the average-, u-, and u-moments are 

exactly the same as those for the LC case; equations (150), (151), and (152). 

The equation for iü-moment conservation is 

3i|/r+3v);^-6H/r+SM/f =3S^[l-2p(ß)]. (168) 

Clearly, we can see that if we can trade a surface cell calculation for a 

tetrahedron calculation, we gain great efficiencies. The surface cell algorithm 

requires no cell splitting and in the case of EC, only a single one-dimensional 

root solve [which was optimized by Mathews (Mathews, 1997)]. Both EC and 

LC require rotation of yjf and v|/|ninto the surface cell coordinate system, 

and determination of the orientation of the streaming direction with respect 

to the cell zero coordinate to correctly account for the w moments as is 
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normally done for slab codes (by sign reversal). Contrast this with a 

tetrahedron cell, which requires: 

- cell splitting, 

- translation/rotation of inflow and source moments, 

- multi-dimensional non-linear root solves for the source and inflow flux, 

- many calls to exponential functions for the spatial quadrature, 

- and, re-assembling of the sub-cell moments. 

Further, we avoid poorly shaped cells, which propagate throughout the mesh. 

Implementation of the Surface Cell Quadrature 

Unfortunately, the above spatial quadrature was not implemented in 

this research. Before implementing the surface cell algorithm, we need a 

mesh generator that adequately addresses the special needs of a mixed mesh 

transport code: connected meshes that conserve volumes and materials. 

Pro/Mesh was inadequate to this task. Thus, we derived the quadrature for 

future use and proceeded to develop the parallel version of TETRAN. 
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