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ABSTRACT 

In solving the Boltzmann transport equation, most discrete ordinates codes 

calculate the source term by first approximating the scattering cross section 

using a Legendre polynomial expansion. Such expansions are insufficient when 

scattering is anisotropic and the Legendre expansion is truncated prematurely. 

This can lead to nonphysical negative cross sections, negative source terms and 

negative angular fluxes. While negative sources are problematic for standard 

discrete ordinates methods leading to poor convergence or convergence to 

incorrect results, they are of particular concern to exponential methods, causing 

such calculations to fail. 

We've developed and tested a new technique to solve this problem called the 

Monte Carlo Facet Method. This method is an extension of standard Monte 

Carlo techniques. It guarantees non-negative cross sections at all directional 

ordinates. It also ensures within group and next group scatter. 

This dissertation outlines previous attempts to handle anisotropic scattering 

to achieve non-negative sources. It develops the theory of the Monte Carlo facet 

method and its first angular moment conservation. Results are presented 

examining the scattering matrices for various materials, and finally 

demonstrating that these scattering matrices perform exceptionally well in a 

multi-group, anisotropic, unstructured mesh discrete ordinates transport code. 

IX 



NEUTRON TRANSPORT 

WITH HIGHLY ANISOTROPIC SCATTERING 

1. Introduction 

Open any standard transport textbook from the 50's or 60's, and in the 

chapter on discrete ordinates, one of the first things you'll need to do is 

approximate the scattering source with a Legendre polynomial. These codes 

were run on machines where memory was at a premium. The problem, 

however, is that such expansions, among other things, lead directly to the 

calculation of negative scattering sources and, in turn, negative fluxes. This 

happens when the group-to-group scattering cross section is anisotropic. 

Polynomials can't easily approximate such behavior (Figure 1). 
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Figure 1. Within group (13.5-14.9 MeV) elastic scattering cross section of 
238U (ref. 5). 



Today, we have desktop machines with 10 gigabyte hard drives, 100's of 

megabytes of RAM and processors that outperform the mainframes of 

yesteryear. Yet, as it was 40 years ago, open up a new transport textbook, 

and in the chapter on discrete ordinates, you'll still need to approximate the 

scattering source with a Legendre polynomial. 

The point is that even with the advent of new technology, the 

computational paradigms of the past remain. This research breaks those 

paradigms and develops a wholly new approach to create scattering cross 

sections for discrete ordinates codes. In so doing, we demonstrate the ability 

to perform accurate deep penetration, multi-group, anisotropic scattering 

transport problems without unphysical artifacts. The solution of such 

problems is essential to understand and model the penetration of radiation 

through shields on everything from nuclear reactors to bomb shelters to 

waste transportation containers. 

The dissertation is divided into a number of chapters. The first few look 

at the discrete ordinates method and solutions to the scattering source. The 

discrete ordinates method is introduced and the scattering source is defined. 

Various approaches used in calculating this source for discrete ordinates 

transport calculations are then compared. In so doing, we show how 

spherical harmonic (SH) methods using Legendre polynomials lead to 

negative sources, and how current attempts to solve such negativity are 

inadequate. 



The next few chapters develop the theory of our proposed solution, the 

Monte Carlo (MC) facet method. This method takes advantage of today's 

computing power, offers a direct link to the physics of the scattering, and 

guarantees a non-negative scattering source. The theoretical development of 

the method is presented as well as the general algorithm the code follows to 

create the non-negative scattering matrices. Also presented is a method to 

conserve the first angular moment of the scatter (important in diffusion like 

problems) for these new scattering matrices. 

The next chapter discusses the codes and cross section libraries used for 

this research. This chapter outlines the benchmarking used and explains the 

basic operation of the code. It also discusses the capabilities and limitations 

of the codes developed as part of this research. 

The final two chapters present the results. These are broken into two 

main categories: 

1. Results examining the new scattering matrices. 

2. Results using those matrices in a transport code. 

The first of these chapters demonstrates the non-negativity of the new 

approach and compares and contrasts this method with other attempts to 

solve the same problem. The second chapter demonstrates that we're able to 

perform real transport problems with real materials. It also compares 

transport results using the facet method to those using the standard 

spherical harmonic method. What is found is that the MC facet method 



provides superior performance while guaranteeing non-negative cross-section 

data. 



(1) 

2. The Discrete Ordinates Method 

This chapter outlines the discretization of the transport equation in 

energy, angle and space. It begins with the time independent, non- 

multiplying, transport equation1, 

[Q-V + o(r,£)] y/(r,ä,E) 

= qin(r,Q,E) + jdE'jdQ'(Ts(r,E' -> E,Q'-£l)iy(r£',E'), 

where y/ is the angular flux, cris the total macroscopic neutron scattering 

cross section, and qin is the time independent intrinsic source. The source, 

qin(r ,Q,E)dV dQdE, is the rate of source particles emitted in dVabout r , 

traveling in a cone of directions dQ about Q with energies between E and 

E + dE, and as is the differential scattering cross section. In general, 

as(r,E' -> £,Q' -Q) = as(r,E')fs(r,E' -> E,fr -> Q) (2) 

where as(r,E') is the total macroscopic scattering cross section (m1) and 

fs(r,E' -> E,Q' ^> Q)dQdE is the conditional probability that, given that an 

incident neutron of direction Q' and energy E is involved in a scattering 

collision, a scattered neutron will emerge from the collision in the direction 

interval dQ about Q with energy between E and E+dE.2 The probability 

density function is normalized so that jldQdE fs(r,E' -> E,Q' -> Q) equals 

the expectation value of the number of neutrons that emerge from such a 

scattering collision. 



At this point, the scattering source is defined as 

qs(r,Q,E) = jdE'jdQ'as(r,E' -> E,Q' • Ö)y(r,Q',£'), (3) 

where the integration over Q on the unit sphere, 11, is normalized so that 

«        -i z   o z;r 

and may be approximated by 

Jdfi/(Q)*2>„/(nn), (5) 

for some quadrature set, |fiüra,Qn)| ?i = l,..,iV"J, where the quadrature weights 

are normalized such that 

2>„=1. (6) 

Energy Discretization 

The BTE, equation (1), is integrated over energy where the energy 

integral is partitioned into groups. Namely, 

G  Eg-i        G 

\dE=YJ   \dE=Yj\dE, (7) 
g=l   Eg g=l 



where G is the number of energy groups and g is the group number. In 

general, EO>EI>E2...>EG=0. The first assumption in discrete ordinates is 

energy separability of the angular flux, so that 

y/(r,E£)«Wg(E)yg(rA), (8) 

where 

jdEWg(E) = l, (9) 

and Wg is constructed from an assumed energy distribution, W(E) as 

^(E) = _5W_. (io) 
g \dEW(E) 

A typical choice is W(E) = E"1 often called the slowing down spectrum. 

Here, the angular flux y/g(r,Q.) is a group, angular flux, integrated over the 

given group, and remaining a distribution in Q. 

With this assumption, the group form of equation (1) is1 

[Q-V + ^(r)] V,g(r,n) = qi
g
n(r,n) + qs

g(r,h), (11) 

where the group variables are defined as 

G 
qs

g(r,Q)= £ jdCl'(Tg,g(r,n'-ä)y,g,(r,n'), (12) 

<rg(r) = J dE cj(r,E)Wg(E), (13) 

qi
g
n(r,Q) = jgdEqin(rAE), (14) 



and     ag,g(r,Q'-Q) = fdEJdE'<js(r,E'-+E,Q'-Q)Wg,(E'). (15) 

This research seeks an effective approximation of the group scattering 

source term in equation (11), or using equations (12) through (15), 

qs
g(r£)= 2] ldQ'jdEJdE'as(r,E'->E,n'-Cl)Wgl(E') y/gl(r,Q.'). (16) 

Angular Discretization 

Standard discrete ordinates theory assumes that equation (11) holds for N 

distinct angles (n,=l,2,..N) where an appropriate angular quadrature is 

applied giving 

[hn -V + crg(rj\ yfg^f) * q^(f) + q8g^(jr) , (17) 

where 

QgA(r) = q8g(f,Qn) 

G 
= E jdQ'jdE$dE'(Ts(r,E' -> E,Q.'-Cl^Wg^E'ty g,{r,£l'). 

(18) 

•'=i 

Applying the angular quadrature, equation (5), 

G   N 

<4*(r) =EZ wn.cr8
g.g(f,&n. -än)¥g^,(r) , (19) 

g'=ln'=l 

so that, using the definition of crg,g, 

8 



G    N 

9l*(F> = Z J!twn.jdEJdE'o*(r,E' -> JE,ÖB. -Q JW^E'V^r) .        (20) 
g'=ln'=l        g       g 

With this notation, y/gtTl{r), is the angular flux integrated over group g, 

evaluated at the directional ordinateQn. Similarly, qSg!n(r) is the scattered 

group source evaluated at the directional ordinateQ^. 

Material Dependence 

While the source and angular flux may vary through a single material as 

r changes, it is assumed here that the total and scattering cross sections do 

not. While the cross sections differ among materials, there is no variation 

within any single material. Hence, as(r,E' -> E,Q.n, -Qn) can really be 

thought of as crsmaterial(f)(E' -> E,Qn. -Q;i)or as
m{?)(E' -> Efrn. -Qn). Unless 

specifically required, the material dependence can be assumed for all cross 

sections, and the r or material designation will be left out of further 

derivations. The scattering source is then written as 

G   N 

Jg    Jg' 
<4>(0 = X ^wjdEJdE'as(E' -> E,Qn, -an)Wg{E')¥gfl,{r) (21) 

g'=ln'=l 

Most modern transport codes approximate this scattering source with a 

truncated spherical harmonics expansion. This leads to the calculation of 

negative sources when the scattering is anisotropic. Such an expansion, and 

9 



attempts to eliminate negative cross sections and hence, negative sources are 

discussed in the following chapter. 

10 



3.  Calculating the Mulit-Group Scattering Cross Section 

The previous chapter developed the standard discrete ordinates theory 

leading to the definition of the scattering source term. This chapter examines 

the standard method used to calculate the scattering source, namely the use 

of Legendre polynomials to approximate <jg,g(Qn> -Q.n). 

In the past, direct calculation of the scattering source in equation (19) was 

impossible because of the memory requirement to store the scattering matrix. 

A typically used, Ss, quadrature in three dimensions consists of 80 angular 

directions. If equation (19) is used directly for each ordinate, then 

crg,g(Qn, -Qn) is an 80x80 matrix for each group-to-group transfer for each 

material used in the problem. For a group structure consisting of 30 groups 

the cross-section matrix, <?sg,g(Q.n, -Qn) consists of N2G2 = 5,760,000 

elements. Stored as four-byte floating-point numbers, the file containing the 

matrix would be large, about 20 Mbytes. A further memory penalty is that 

the angular flux values for each group and angle, y/g<n., must be stored for 

the source calculations of all lower groups ig>g'), assuming down scatter 

only. Historically, authors of production codes have considered this too heavy 

a computational cost. With the increased memory and storage capabilities of 

modern machines, the storage difficulties become less and less an issue. In 

fact, we will demonstrate later that such codes can be run on even a desktop 

machine. Still, problems requiring a large number of materials and fine 

11 



discretizations in space, angle and energy may not be able to accept the 

storage and memory burden of direct calculation.   They require that the 

source be approximated with spherical harmonics. 

Using Spherical Harmonics 

This method is the dominant method among production codes and 

transport texts. The group-to-group scattering cross section is approximated 

byi 

L 
cTs

g.g(Qn, 4)« X (2Z + l)<rVs Pl&n- A), (22) 
1=0 

where P; are the Legendre polynomials and <Jsigg are the Legendre 

coefficients of the group-to-group scattering cross section found from 

as
lglg = jdE'jdE af(E' -> E)W(E'). (23) 

g'      g 

The addition theorem for Legendre polynomials is 

Pl(£ln,-Qn) = -^ £ YU^n')Ylm(Qn), (24) 

where the Yjm are the normalized spherical harmonics1 Using this 

substitution, the scattering cross section is 

<T^(Q71, -nj * I £ *• Yz; (dn.)Ylm(an). (25) 
1=0 m=-l     8g 

12 



Finally the scatter source is found by substituting equation (25) into the 

source of equation (19) resulting in 

<4»(0 * X  Z"VZ lYl>n(änWl,n(&n')Vlgg' Wg'A^ • (26) 
g'=ln'=l      l=0m=-l 

One crucial aspect in solving these equations is that the scattering 

coefficients crig'g are known calculated a priori using codes such as AMPX3 or 

NJOY4. Still, once they are known, for the small cost of calculating the 

spherical harmonics, the memory requirement is significantly reduced. 

In a standard transport code, the source is typically found by first 

calculating the moments of the total group flux 

4>?g (r) - I wn,Ylm<QB.) WgfC (r). (27) 
n'=l 

Once moments of the group flux are found, there is no longer a need for the 

y/g< nf reducing memory requirements further. The source is found from 

9j*<?> ffiZI  Yl,n(&n) I   °lgg' &,<?) ■ (28) 
l=0m=-l g'=l 

Of course, the spherical harmonic approximation is just that, an 

approximation. It is an attempt to model the physics with a polynomial. In 

many cases such an approximation may be sufficient. Unfortunately, the 

method becomes woefully inadequate in a number of ways particularly for 

anisotropic scattering. 

13 



Anisotropie scattering becomes significant when considering 

a. scattering of high energy particles from nuclei of all mass numbers, 

b. scattering of any energy particle from light nuclei, and 

c. when the group structure is so fine that the allowed angular region of 

scatter is also small5. 

Such scattering can be highly peaked and, because of the group structure 

used, be positive for only a small portion of the scattering range and zero over 

the rest of the angular domain. 

Because crsg,g(Q.n, -+ Qn) = as
g,g(Qn, -Qn), we define nL = Q.n, -Qn , the 

cosine of the scattering angle in the laboratory frame. It is often convenient 

to examine the behavior of the cross-section in terms of crsg,g(juL). We use 

this form of the scattering cross section to demonstrate the problems 

Legendre polynomials have approximating the type of anisotropic behavior 

described above. Figure 2 shows an exact group-to-group scatter, as
g>g(juL), 

for hydrogen. Also shown in the figure are three Legendre approximations of 

the cross section using the Legendre expansion of equation (22) for L = 1, 3, 

and 7. 
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Figure 2. Group l-»5 scatter for hydrogen, 1H, in the lab frame. 

The Legendre expansion of such a scatter fails in two ways. First, because 

the polynomial is unable to model such a step function, it spreads the 

distribution of scatters to other angles, causing an angular diffusion of the 

scatters that is a computational artifact. Second, the expansion may become 

negative in some angular regions. This may lead to the calculation of 

negative sources, which are non-physical. Worse, the calculation of such 

sources can cause certain spatial quadrature techniques used in transport 

codes to fail6'7. Particularly vulnerable are exponential methods that 

guarantee non-negative flux solutions, but require non-negative sources8. In 

the case when negative sources appear in codes that don't care or when such 

sources are fixed by setting them to zero significant convergence problems 
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may arise9. Such difficulties have led researchers to attempt alternative 

approaches that would eliminate negative cross-section values. 
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4. Attempts to Fix Negativity 

A number of attempts have been made to eliminate negative sources. 

Each of the techniques described here use the full scattering matrices to 

calculate the scattering source term (possible now with today's computational 

capabilities). This chapter outlines three techniques, each with its 

shortcomings, and introduces the method we propose. 

Exact Ordinate-to-Ordinate Scatter 

Odom was one of the first to try to eliminate the problem of negative 

sources in anisotropic scattering10. To calculate the source from equation (20) 

directly, he calculated the ordinate-to-ordinate (Q7l- -> Qn) scattering cross 

section from the physics, but only for elastic and level inelastic scattering. 

With this approach, he was able to devise a number of different cases to 

calculate the scattering cross section dependent on the angle and energies 

involved. In particular, the group-to-group scattering cross section 

\dE\dE' crs(r,E' -> E,£ln. -nn)W(E') 
<jsg,Jnn; -QJ = ¥—£ =  (29) 

88 {dE'W(E') 
Jg' 

was reduced to the calculation of a 1-D integral5. 

The integration must be performed for each ordinate-to-ordinate 

combination (dependent on the quadrature used), and for each group-to-group 

combination (dependent on the group structure used). For some scattering 
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combinations, dependent on the energy-angle combination, the integration 

must be performed more than once. If level inelastic scattering is to be 

calculated, the integration must be performed again for each elastic and level 

inelastic transfer. In oxygen, for example there are 38 inelastic levels from 

the evaluated nuclear data files, ENDF/B-VI. The results are then summed 

to provide the total transfer cross-section. Fortunately the integration is only 

one dimensional, but the number of cases that must be considered make the 

method computationally burdensome, although no mention is made of the 

time required to compute the integration even from more recent authors5. 

While elastic and level-inelastic scatter can be treated with a complicated 

case structure, other types of scatter (e.g., (n, 2n)) become too difficult to put 

the 1-D integral equation of Odom in a readily integrable form and are 

instead treated as isotropic even when they are not. 

While the technique requires a complicated number of integration cases to 

account for variations in group structure, the process guarantees a non- 

negative scattering cross-section. In addition to the complexity of the 

integration, the method suffers from one major drawback. As Brockman5 

notes, for elements with a highly anisotropic angular distribution or for light 

elements along with a fine energy group structure, the group-to-group 

transfer cross section is confined to a small angular range (Figure 3). If the 

angular quadrature used is too sparse (lack of angular support), particles 

traveling in one direction may never scatter into another. 
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Group-to-Group 
Scatter Range 

Figure 3. Group-to-group Scattering Geometry5. 

Angular Support 

Lack of angular support is shown by examining the lab frame scattering 

cosine 

fiL = S(£,E') 
\E' V E     JEE' 

(30) 

For elastic scattering, Q = 0, and equation (30) can be re-written as 

ML M + W^-M-D, E' 
E'-AE (31) 

where AE is the, energy lost by the neutron in the collision. Expanding 

equation (31) in a power series about AE = 0, the scattering angle for small 

energy loss is 

-    A AE    ~(kr,2\ 
^=1-J-ET+0(AE)- (32) 
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01 Because, fiL = cos(0jr,)«1—— + O\0L ) for small 0L, equation (32) can be 

written in terms of the scattering angle 

0L*^AE. (33) 

Using fine energy group structures the within group and next group 

scattering angles will be small. For within group scatter, the greatest 

scattering angle (smallest jui) occurs when a neutron scatters from the top of 

the group to the bottom of the group or AE = AEg + a^ where a1 is an 

arbitrarily small number greater than zero. 

For ordinate-to-ordinate methods, the 9^ 's corresponding to the various 

combinations of n and n' are fixed based on the selected angular quadrature. 

To guarantee within group scatter, two directional ordinates must be close 

enough so that 

oL(an. ^nn)<^~-(AEg + ai). (34) 

If 0m[n is the smallest angle of all the possible ordinate-to-ordinate 

scatters, then as the group structure becomes fine enough, AEg -» a2 (where 

again a2 is an arbitrarily small number greater than zero), we can find an 

a 2 such that 

12 A 
^min>^(«l+«2)> (35) 
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and within group scatter is not possible for any of the ordinate-to-ordinate 

scatter combinations. 

The same analysis holds for downscattering to the next lowest group. 

Here, the greatest scattering angle (smallest fiL) occurs when a neutron 

scatters from the top of the incident group to the bottom of the scattered 

group or AE = AEg + AEg+1 + ax. This scattering is not as restrictive on the 

angular quadrature as within group scattering Because AEg -> cc2 and 

AEg+1 -> a3 results in 

^min>^-|7(«l+«2+«3)- (36) 

Still, it will always be possible to find a fine enough group structure such 

that downscatter to the next lower group is not supported by the angular 

quadrature. 

Does such a failure in angular support occur with typical angular 

quadratures and standard group structures? The answer is yes. As is shown 

in detail in chapter 9, for example, the nearest scattering cosine in an Ss level 

symmetric angular quadrature is [iL = 0.922 (0L » 23°). If Oak Ridge 

National Laboratory's 175 group VITAMIN-J group structure is used (see 

appendix E), 109 of the 175 groups are unable to downscatter to the next 

lower group using an ordinate-to-ordinate approach. Lack of such angular 

support is particularly troublesome for within group and next group scatter. 
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