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Abstract 

 The Air Force has executed millions of contracts over the years.  These contracts have a 

plethora of information in them, but that information needs to be extracted from each contract 

into a useable form to perform further analysis.  This thesis focuses on being able to extract 

information from those contracts in a quick and repeatable way through the use of regular 

expression, commonly known as Regex, or standard named entity recognition (NER) models for 

the baseline analysis.  For the exploratory analysis, custom NER models are used and then the 

results are compared to the output from the baseline analysis.  This paper focuses on four 

specific entities to be extracted including National Stock Number (NSN), Part Number, 

Commercial and Government Entity (CAGE) Code, and Supplier Name but the methods in this 

paper can be extended for other entities in these contracts.  

 Results show that NSNs are extracted similarly by both the Regex and custom NER 

models.  The consistent pattern of NSNs is what Regex thrives on so the uses of custom NERs 

does not improve the ability to extract correct NSNs from the contracts.  NER did improve the 

model’s ability to pick up NSNs that were inputted slightly wrong, thus adding to the model’s 

extraction power.  The F1 score of the part number entity improved from 3.2% with the Regex 

model to 95% with the use of custom NER while the supplier name entity F1 score improved 

from 5.9% using the Regex approach to 63.6% with the used of custom NER over the standard 

SpaCy NER “org” entity.  An additional set of suppliers was collected through the use of the 

CAGE Code.  There is no standard NER model to capture these as it is specific to the DoD and 

simply being 5 alpha-numeric characters Regex cannot distinguish CAGE Codes in free form 
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text.  When combining the CAGE Codes and supplier names extracted using custom NER 

models, the F1 score increases to 86.6%.  The accuracy of the models should continue to 

increase as annotations are added. 

 This newly extracted information will allow the Air Force to identify what parts are 

supplied by which vendors.  This information along with historical pricing for the vendor 

specific part number can give decision makers the ability to negotiate pricing based on historical 

data and competitor pricing.  In addition to just pricing, part numbers can be aligned with 

maintenance data to make informed decisions on which vendor to go with by analyzing life cycle 

costs of a part.   
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USING CUSTOM NER MODELS TO EXTRACT DOD SPECIFIC 

ENTITIES FROM CONTRACTS 

I.  Introduction 

Background 

 The amount of data available is ever increasing and most of it is captured in an 

unstructured textual format.  To glean the most information out of this data that is available 

analysts must structure the data into a format that is more easily useable.  This is where text 

mining comes into place.  Text mining deals with unstructured data found in documents, emails, 

social media, and the web. Thus, the difference between regular data mining and text mining is 

that in text mining the patterns are extracted from natural language text rather than from 

structured databases of facts (Hassani, Beneki, Unger, Mazinani, & Yeganegi, 2020).  To extract 

these patterns from natural language, a process called natural language processing (NLP) is used.   

 Natural language processing is a subset of text mining that is a set of methods for making 

human language accessible to computers.  These methods help people every day with things such 

as automatic machine translation, classifying text in emails that flags it as spam or lets it through 

to our inbox, a higher sophisticated capability of search engines, and many more.  These diverse 

NLP applications all have a common set of ideas, drawing on algorithms, linguistics, logic, 

statistics and more (Eisenstein, 2019).  Searching for a specific entity within a natural language 

landscape gets into a subset of NLP called named entity recognition (NER).   

 NER is a fundamental task in natural language processing due to the fact that the named 

entities often convey the key information of the text.  Entities are the subject of interest in a NER 

model that are targeted to be extracted (Lample, Ballesteros, Subramanian, Kawakami, & Dyer, 
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2016).  This can be done by either a standard NER model or a custom NER model.  See Chapter 

II: Literature Review for a more in depth explanation of standard vs. custom NER models and 

how these techniques can be leveraged in the Department of Defense (DoD) as well as all of the 

other methods described above. 

Problem Statement 

 There are hundreds of thousands of contracts executed each year by the Air Force.  There 

is no standardized format for these contracts; there are six different front form formats that are 

consistently used throughout the contracts in the data set but the rest of the contract has no 

standard form.  Thus, the extraction of useful information from this unstructured data can be a 

difficult and time-consuming process.    

 Contract front forms contain a designated location for the supplier name and associated 

CAGE (Commercial and Government Entity) code where national stock number (NSN) and part 

number usually resides in the contract line item number (CLIN) text or in other areas throughout 

the contract such as rights assertion (RAT) tables and government furnished property (GFP) 

tables.  These two types of tables are outside the scope of this analysis but are crucial in 

understanding the full picture of the parts data.  They will be discussed more in Chapter V with 

how parts can be extracted from these tables in future efforts.    

 The supplier name and CAGE code can also reside in the CLIN text.  The CLIN text 

contains a free text field where the user can write in additional comments about the specific line 

item.  When the desired information resides in this field, additional extraction techniques are 

needed to pull it out of the form and make sure the information is still captured accurately.   
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 A lot of the data in these contracts is specific to the DoD, thus making standard models a 

less reliable approach.  Information such as the supplying organization can be very specific.  A 

commercial supplying organization, such as Boeing, would be captured in the standard NER 

model while a DoD specific supplying organization, such as 88th Air Base Wing, would not get 

recognized by the Wikipedia trained model.  Thus, a custom NER model is needed to accurately 

capture the entities of interest.  In addition to supplying organization, part numbers, CAGE 

codes, and national stock numbers (NSNs) are specific to the DoD as well. 

 The national stock number is the official label applied to an item of supply that is 

repeatedly procured, stocked, stored, issued, and used throughout the federal supply system. It is 

a unique, item-identifying series of numbers separated by dashes.  NSNs are an essential part of 

the military's logistics supply chain used in managing, moving, storing, and disposing of material 

(Defense Logistics Agency, 2019).  The NSNs are the same regardless of the supplier.  Each 

supplier that makes a specific part will have different part numbers that correspond to the same 

NSN.  Thus, there can be an NSN with multiple part numbers associated with it, but not a part 

number that corresponds to multiple NSNs.  Once these three entities are extracted from the 

contracts, there is potential for further analysis that will be described in the Recommendations 

section of Chapter V.   

 In this paper a custom knowledge base for the supplying organization is created using a 

custom NER model and improvement is quantified as compared to the standard supplier list.  In 

addition, custom NER models are implemented to be able to extract the Cage Code, NSN and 

part number from these contracts and see how much better it performs at capturing these entities 

than when using the Regex approach.   
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Research Questions 

1. Can more Suppliers successfully be extracted using a custom NER model as opposed to 

the standard SpaCy “org” entity model? 

2. Can more NSNs successfully be extracted using a custom NER model as opposed to a 

regex model? 

3. Can more Part Numbers successfully be extracted using a custom NER model as opposed 

to a regex model? 

Scope and Limitations 

 This research seeks to extract information such as the supplying organization, CAGE 

Code, national stock number (NSN), and part number out of parts contracts.  As such, the format 

and information available in these contracts could be significantly different from other types of 

contracts in the corporate world as well as other areas of the DoD.  This could make the 

reliability of methods discussed in this paper non-applicable to other types of contracts 

depending on the format and what is to be extracted.  That being said, the methods of this paper 

may still be leveraged for different entities on different types of contracts, but the success of the 

information extraction may vary by contract type and entity being extracted.      

Thesis Overview 

In the next section, Chapter 2,  relevant methods of data extraction are reviewed as well 

as previous work that has been done in the world of contracts data extraction and relevant 

machine learning algorithms.  Chapter 3 outlines the data and methodology of the research while 

chapter 4 contains results of the analysis as well as significant findings. The last chapter, Chapter 
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5, summarizes the preceding chapters, states the relevance of the findings, and presents potential 

ideas for future research in this area. 
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II.  Literature Review 

Chapter Overview 

 This section explores the overarching field of text mining and its components, different 

machine learning algorithms used in natural language processing, and how this can be beneficial 

when applied to contracts data.  First, text mining and its components are explored that will be of 

interest later in this paper such as natural language processing (NLP) and named entity 

recognition (NER).  Both standard NER and custom NER will be discussed.  Next, some Python 

libraries are reviewed, such as SpaCy, Carrot2, NLPKT, Prodigy, and PyLighter, that can assist 

in building a NER model.  Then, an overview of machine learning and some specific ML 

algorithms that will be of interest later in this paper such as transformers, convolutional neural 

networks (CNN), and bloom embeddings will be discussed.  This section finishes off with 

popular evaluation metrics for the NER model such as accuracy, precision, recall, and F1 score.  

Text Mining 

 According to Statista, the amount of data created, captured, copied, and consumed 

globally reached an all-time high of  64.2 zettabytes in 2020.  This is up from 2 zettabytes just 10 

years prior in 2010.  It is expected that over the next five years, the amount of data consumed in 

the world will grow to over 180 zettabytes yearly by the year 2025 (Statista, 2021).  As the 

amount of data collected is ever increasing, analysts need a way to turn these numbers and text 

into something meaningful, and text mining is the way to do that.  Text mining is the process of 

transforming unstructured and semi-structured text into a structured format to identify 

meaningful patterns and new insights. It is typically used in instances where there is a need to 
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process large volumes of text-based data for insights but would otherwise be too resource and 

time-intensive to be analyzed manually by humans (Chen, 2020). 

 Text mining is a broad, overarching technique that encompasses many different areas of 

analytics such as document classification, document clustering, information extraction, natural 

language processing (NLP) concept extraction, web mining, information retrieval, and others.  

Figure 1 shows the relationship between text mining and other related fields.   

 

Figure 1: Text Mining Venn Diagram (Chen, 2020) 

Natural Language Processing 

 Within text mining, there is a component called Natural Language Processing (NLP).  

NLP is a field of computer science and engineering that has developed from the study of 

language and computational linguistics within the field of Artificial Intelligence (AI). The goals 

of NLP are to design and build applications that facilitate human interaction with machines and 

other devices through the use of natural language. Some of the major areas of NLP include 
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question answering systems, summarization, machine translation, speech recognition, and 

document classification (Stubbs & Pustejovsky, 2013).  The NLP algorithms need a consistent 

knowledge base to be able to execute the classification of words and phrases in the text.  There 

are predefined knowledge bases out there for use in a standard NER model, or a knowledge base 

can be built for a more specific purpose for use in a custom NER model.   

Named Entity Recognition (NER) 

 Named entity recognition (NER) ‒ also called entity identification or entity extraction ‒ 

is a NLP technique that automatically identifies named entities in a text and classifies them into 

predefined categories. Entities can be names of people, organizations, locations, times, 

quantities, monetary values, percentages, and more (Roldos, 2020).  Depending on the data at 

hand a standard knowledge base may be appropriate to capture the entities you are looking for in 

the text.  See Figure 2 below for an example of standard NER entities.   

 

Figure 2: Standard Entities for NER (Roldos, 2020) 

 

 If there are special cases of the entities of interest, a custom knowledge base could be 

more successful at correctly extracting the information needed.  The next two sections explore 

the differences between standard and custom NER models and gives examples of when each 

would be most relevant to use.  

https://monkeylearn.com/blog/entity-extraction/
https://monkeylearn.com/natural-language-processing/
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 Standard Named Entity Recognition Model 

 Standard NER models seek to capture information that already has a known Wikipedia 

trained knowledge base.  It is the problem of finding the members of various predetermined 

classes, such as person, organization, location, date/time, quantities, numbers, etc. (Goyal, 

Gupta, & Kumar, 2018).  From the example in Figure 2 above, it is seen that the standard NER 

model can pick up that “WeWork” is an organization, “Adam Neumann” is a person, 

“Manhattan” is a location, and “$37.5 million” is a monetary value.   

 For many purposes, a standard model can accurately capture the entities as they are 

intended.  It is still important to note that unique variations on these entities might not be picked 

up by a standard NER model.  The unique supplier names in DoD are a prime example of when a 

standard model is not sufficient in picking up the intended entity with sufficient accuracy.  When 

the standard model does not accurately pick up the entities of interest well, a custom NER model 

should be explored. 

 Custom Named Entity Recognition Model 

 One of the most limiting factors of NER is a fixed number of classes of entities that are 

currently available (Stepanyan, 2020).  Custom NER models are used mainly when a standard 

NER model is not available or not sufficient at extracting the entities of interest accurately 

enough.  This can be due to special cases of common entities or needing to extract entities that 

are not present in a standard model.  However, developing a corpus of custom named entities 

(CNE) is a cumbersome task requiring an annotated dataset (Stepanyan, 2020).  In the sections 

below, NER packages that can help with speeding up the annotation process will be explored.  
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Once the annotations are complete, the NER model then gets trained on the annotated corpus of 

data.   

 For example, dates used in the DoD vary from how the rest of the world formats dates.  

This special case of a common entity can make it hard for the NER model to pick up that 

information.  As well as dates, organizations are not standard in the DoD either.  Some supplying 

organizations, such as Boeing, a standard NER model would be able to recognize but the unique 

suppliers to the DoD, such as 88th Air Base Wing, would not be recognizable as an organization 

to the model.  In addition to special cases of common entities, there are some entities that 

standard models just do not have.  Information such as NSN and Part Number, which are entities 

of interest in this analysis, do not exist in standard models as they are specific to the DoD.  Cases 

such as these are where it is most beneficial to have a custom NER model help more accurately 

capture some entities that are not as mainstream as the ones included in a standard NER model.   

NER Tools 

 There are many tools available to help analysts build named entity recognition models.  

Some of the more popular open source, code-based packages to perform NER are StanfordNER, 

OpenNLP, GATE, Spacy, and NLTK.  StanfordNER, OpenNLP, and GATE are available for use 

in Java while Spacy and NLTK are available in Python.  For this analysis, packages available in 

Python are the focus because the contracts data needs to be kept on the HPC system for privacy 

reasons and Python is readily available for use on the HPC system.  For more information on the 

Java packages see (Vychegzhanin & Kotelnikov, 2019) and (Schmitt, Kubler, Robert, Papadakis, 

& LeTraon, 2019).  
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 In addition to these code-based approaches, there are some newer tools available to allow 

analysts to annotate data in a graphical user interface (GUI) format.  A lot of these tools require 

you to download the software to your computer, thus giving up the privacy of your data.  Two 

packages that were found that allow the analyst to use the GUI format of annotating data as well 

as keep the data secure are Prodigy (a subset of Spacy) and PyLighter.  These tools will be 

discussed in more detail below.   

 SpaCy 

 SpaCy is an Explosion AI product that is an open-source library for NLP in Python.  It 

comprehends and delineates the text (either small or large) by processing the same.  Moreover, 

SpaCy provides a wide range of in-built features which makes it an efficient tool for text 

processing and language modeling.  SpaCy selects the best algorithm on its own, using an object-

oriented approach, saving the analyst time in not having to assess each algorithm by hand.  This 

is a main benefit over the competing NLTK where you have to manually select the best 

algorithm (Jugran, Kumar, Tyagi, & Anand, 2021).     

 SpaCy has been used in recent DoD contract extraction efforts.  Butcher 2021 uses 

SpaCy to extract the organization fulfilling the contract, the effective date of the contract, and the 

expiration date of the contract.  These were found by using the “organization” and “date” tags 

that come standard in the SpaCy package.  40.5% of the supplying organizations were 

successfully extracted while 60.1% of the start date and 31.9% of the end dates were extracted 

successfully from the contracts (Butcher, 2021).  He suggests that building a custom NER model 

and combining it with classification models to produce more accurate results in less time.  

Butcher points out that this labeling of thousands of contracts is very time consuming, thus two 
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libraries are explored below (Prodigy and PyLighter) that are in a GUI format that can help 

decrease the time needed to label a corpus.   

 NLKT 

 Natural Language Toolkit (NLTK) is a Python library that is used for processing text 

string by string.  The input and output using NLTK is the sequence of characters i.e, string.  

Providing several options for various algorithms for a particular problem is one of the specialties 

of this tool, but it sometimes tends to be tedious and time consuming to select and work 

accordingly (Jugran, Kumar, Tyagi, & Anand, 2021).  Below in Table 1, a comparison between 

the features that are available in NLTK and SpaCy are shown.  From the features that Jugran et. 

al. explored; it is shown that SpaCy has double the capabilities than NLTK.   

Table 1: Comparison of SpaCy and NLTK (Jugran, Kumar, Tyagi, & Anand, 2021) 

Features/Packages NLTK SpaCy 

Classifier Yes Yes 

Topic Modeling No Yes 

Vectorization No Yes 

Tokenization Yes Yes 

Parsing Yes Yes 

TF-IDF No Yes 

 

 Prodigy 

 Prodigy is under the same parent company as SpaCy, Explosion AI.  Although Prodigy is 

not free, it is an annotation tool so efficient that data scientists can do the annotation themselves, 

enabling a new level of rapid iteration (ExplosionAI, 2020).  The software automatically labels 



13 

 

entities based on input you give it from the model initially.  It only asks the analyst to annotate 

examples that the model is uncertain about, saving you time not having to label entities the 

software is confident about having labeled correctly (ExplosionAI, 2020).  When a new task 

pops up, the user simply hits the accept, reject, or ignore buttons seen below in Figure 3.  This 

tells the model the annotation it gave was correct, wrong, or skipped.  The model then learns 

from the input it receives to classify the entities more accurately in the future.   

 In addition to named entity recognition, prodigy can be used for text classification, image 

classification, and free form text analysis like translations from one language to another.  These 

use cases for Prodigy also come in a nice GUI format that is easy to use and allows the analyst to 

quickly accept, reject, or adjust the text or image classification that Prodigy initially gives to the 

data.   

 Prodigy was initially the option that was chosen to go ahead with for building a custom 

NER model of NSN, Part Number, and Supplier.  However, the software was unable to be 

purchased so other options needed to be explored.  This led to some additional research to other 

alternatives for Prodigy that could be used on the HPC.  In the next section PyLighter is 

discussed as a further option.  PyLighter is another GUI based annotation tool that can be used 

on the HPC and was the alternative that was chosen for this analysis.   
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Figure 3: Prodigy GUI (Explosion AI, 2020) 

 PyLighter 

 PyLighter is an open-source annotation tool that can be installed and ran right from 

Python on the HPC system.  It brings an annotation tool for NER tasks to the most used platform 

in data science: Jupyter (PayLead, 2020).  It allows data scientists to annotate any corpus of 

documents with ease in a customizable fashion.  PyLighter does not require any setup or 

installation of any kind other than just installing the package into the designated user space. 

Moreover, data scientists don't need to set up a pipeline.  PyLighter is built for use in Jupyter, 

giving data scientists the ability to freely manage their data and quickly use their freshly 

annotated data to train their machine learning models (PayLead, 2020).  This is ideal for the data 

that is being worked with in this analysis because it must be secured on the HPC and not 

launched from an outside program.  

 PyLighter is slightly different from Prodigy in that the entities are not initially 

highlighted.  The entities of interest are shown at the top of the text in question in their respective 
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colors.  This can be seen by looking at the Verb, Person, Org, and Loc buttons below in Figure 4.  

You can highlight an entity in the text by clicking at the start of the entity and clicking again at 

the end of the entity you wish to highlight.  This brings the highlighted word or phrase over to 

the box on the right that stores the entities you confirm for the given text.  Once you are ready to 

move on to the next set of text, click the next button in the upper right corner.  After all the 

documents are annotated, you save the model by clicking the save button in the lower right-hand 

corner.    

 

Figure 4: PyLighter GUI (PayLead, 2020) 

 

 Once the annotations are complete, PyLighter saves them to a .csv file in your user space.  

The annotations are in the format of the CLIN text in the first column and the labels in the 

second column.  Labels are done by character with an “O” indicating the character is not part of 

an entity, a “B-Entity” for the beginning of the entity, and “I-Entity” for a character that is 

associated with the entity but not first character of the entity.  SpaCy does not accept the 
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annotations in this format, so some post processing must be done to turn the annotations into 

something SpaCy can ingest.  The end result is a .json file that includes the CLIN text along with 

the starting position and ending position of the entity along with the entity name.  This file is 

used to train the custom NER model using machine learning techniques that will be discussed 

below.    

Machine Learning Algorithms 

 Machine learning is a branch of artificial intelligence (AI) and computer science which 

focuses on the use of data and algorithms to imitate the way that humans learn, gradually 

improving its accuracy (IBM Cloud Education, IBM Cloud Learn Hub, 2020).  In machine 

learning, the aim is to construct a program that fits the given data. A learning program is 

different from an ordinary computer program in that it is a general template with modifiable 

parameters, and by assigning different values to these parameters the program can do different 

things. The learning algorithm adjusts the parameters of the template—which we call a model—

by optimizing a performance criterion defined on the data (Alpaydin, 2016).   

 There are many of different types of machine learning out there, but largely there are 

three major recognized categories: supervised learning, unsupervised learning, and reinforcement 

learning (Heidenreich, 2018).  Supervised machine learning is defined by its use of labeled 

datasets to train algorithms that classify data or predict outcomes accurately. As input data is fed 

into the model, it adjusts its weights until the model has been fitted appropriately, which occurs 

as part of the cross-validation process (IBM Cloud Education, Supervised Learning, 2020).  This 

varies from unsupervised machine learning as unsupervised learning does not require a known 

response variable.  Unsupervised learning instead uses machine learning algorithms to analyze 

and cluster unlabeled datasets. These algorithms discover hidden patterns or data groupings 
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without the need for human intervention (IBM Cloud Education, Unsupervised Learning, 2020).  

The last major type of machine learning is reinforcement learning.  Reinforcement learning is 

the training of machine learning models to make a sequence of decisions. The agent learns 

to achieve a goal in an uncertain, potentially complex environment. In reinforcement learning, an 

artificial intelligence faces a game-like situation. The computer employs trial and error to come 

up with a solution to the problem. To get the machine to do what the programmer wants, 

the artificial intelligence gets either rewards or penalties for the actions it performs. Its goal is 

to maximize the total reward (Osinski & Budek, 2018).  See Figure 5 below for a graphical 

representation and quick synopsis of what each ML technique is.   

 

Figure 5: Machine Learning Types (Heidenreich, 2018) 
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 SpaCy uses various different ML algorithms, all unsupervised and semi-unsupervised in 

nature, depending on the version of SpaCy that is being used.  SpaCy 2.0 uses incremental 

parsing with Bloom embeddings and residual Convolutional Neural Networks (CNNs) 

(Honnibal, SpaCy, 2017) while SpaCy 3.0 uses transformer-based pipelines (Honnibal, Montani, 

Van Landeghem, & Boyd, 2021).  These ML techniques will be discussed in further detail in the 

sections below in regard to what they bring to SpaCy as well as a general overview of the 

technique themselves.    

Bloom Embeddings 

  SpaCy v2.0's Named Entity Recognition system features a sophisticated word 

embedding strategy using subword features and "Bloom" embeddings, a deep convolutional 

neural network with residual connections, and a novel transition-based approach to named entity 

parsing. The system is designed to give a good balance of efficiency, accuracy and adaptability 

(Honnibal, SpaCy, 2017).   

 At a high level, bloom embeddings are a compression technique that can be applied to the 

input and output of neural network models.  They are computationally efficient, reducing 

training and prediction times as well as help save space (Serra & Karatzoglou, 2017).  This is 

done by reducing the number of vectors necessary to store the vocabulary that the model needs.  

The normal table gets hashed down to a smaller number of rows and the words get mapped into 

an arbitrary integer – called a “hash value” (Honnibal, Chapter 4: Compact word vectors with 

Bloom Embeddings, 2018).  In addition to Bloom Embeddings, SpaCy 2.0 incorporates CNNs 

into the models as well.  This ML technique will be discussed below as well as how SpaCy 

combines them for use in NER models.   
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Convolutional Neural Networks 

 SpaCy v2.0 features new neural models for tagging, parsing and entity recognition. The 

models have been designed and implemented from scratch specifically for spaCy, to provide an 

unmatched balance of speed, size, and accuracy. The new models are 10× smaller, 20% more 

accurate, and even cheaper to run than the previous generation (Explosion AI, 2017). 

 At a high level, CNNs are neural networks that make the explicit assumption that the 

inputs are images, which allows us to encode certain properties into the architecture.  These then 

make the forward function more efficient to implement and vastly reduce the amount of 

parameters in the network (Li, Krishna, & Xu, 2021).  The difference between a regular neural 

network (left) and a convolutional neural network (right) can be seen below in Figure 6.  

 

Figure 6: Regular vs. Convolutional Neural Networks (Li, Krishna, & Xu, 2021) 

 

 CNNs are combined with recurrent neural networks (RNNs), two of the most common 

neural network architectures used in deep learning, to create transformers (Lawton, 2021).  

Transformers are what SpaCy 3.0 uses (the version used for this analysis) and will be discussed 

in greater detail in the next section.   
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Transformers 

 SpaCy v3.0 features all new transformer-based pipelines that bring spaCy’s accuracy 

right up to the current state-of-the-art, and a new workflow system to help you take projects from 

prototype to production.  It’s much easier to configure and train a pipeline, and there are lots of 

new and improved integrations with the rest of the NLP ecosystem (Honnibal, Montani, Van 

Landeghem, & Boyd, 2021).   Two reasons why transformers perform significantly better are 

looked at below: combining CNN and RNN, as well as using attention.   

 As stated above, transformers combine the two most prominent neural nets used by 

researchers.  Transformers look at all the elements (such as all the words in a sequence) at one 

time, while also paying closer attention to the most important elements in the sequence.  

Previous approaches could do one or the other, but not both.  This gives transformers two key 

advantage over other models.  First, they can be more accurate because they can understand the 

relationship between sequential elements that are far from each other. Second, they are fast at 

processing a sequence since they pay more attention to its most important parts (Lawton, 2021).   

 In addition to combining two of the most used models, the key to the transformer’s 

ground-breaking performance is its use of attention.  While processing a word, attention enables 

the model to focus on other words in the input that are closely related to that word.  The 

Transformer architecture uses self-attention by relating every word in the input sequence to 

every other word (Doshi, 2020).  In Figure 7 below it is seen that with the use of attention, the 

meaning of “it” can be differentiated in this sentence.  

 This addition is important in allowing the model to associate words/entities that are far 

apart from each other.  There are multiple cases where the part numbers do not come directly 
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after the phrase “Part number”, “P/N”, etc. and instead they come further along in the sentence.  

The use of transformers should help the model in associating the entities that are further apart 

from the key word.  For example, some common CLIN text is “part numbers and quantities… 

(Part QTY) (Part QTY) (Part QTY).”  The Regex based approach was not able to understand the 

part numbers came further after the phrase “part numbers.”  The results of the NER model using 

transformers (SpaCy 3.0) significantly increases the performance of the model.   

 

Figure 7:Attention Example (Doshi, 2020) 

 

 Once SpaCy trains the model with these ML algorithms that were discussed above, the 

performance of the output is evaluated.  The evaluation metrics that will be used to assess the 

performance of the NER models will be discussed below.   
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NER Evaluation Metrics 

 Once the NER model is trained, it needs to be evaluated for performance.  To evaluate 

the performance of the models, accuracy, precision, recall, and F1 metrics are looked at.  These 

metrics are the most commonly used in the NLP community (Riggio, 2019).  To understand the 

calculations behind precision and recall, it is important to first look at the metrics that are used to 

calculate them.  These include true positives, true negatives, false positives, and false negatives.  

 True positives (TP) occur when the predicted and actual results are both positives, while 

true negatives (TN) occur when the predicted and actual results are both negatives.  These are 

both the ideal situation: the model correctly predicts the classification.  False Negatives (FN) 

occur when the model predicts the results as negatives, when they should have been positive.  

False Positives (FP) occur when the model predicts the results as positive, when they should 

have been negative (Riggio, 2019).  This can be shown in tabular form below with the row 

representing an instance in the predicted class while the column represents the instance of the 

actual class.  

Table 2: Classification Confusion Matrix 

 

 

Actual 

Positive Negative 

Predicted 

Positive True Positive False Positive 

Negative False Negative True Negative 
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Accuracy 

 Accuracy is the most widely know of the metrics, and in terms of machine learning 

models we usually talk about classification accuracy (Mishra, 2018).  Classification accuracy 

simply captures the ratio of correct predictions to the total number of predictions.  It works best 

when there is a similar number of samples belonging to each class.   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑀𝑎𝑑𝑒
=  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 

 Precision is a measure of how much information returned by the system is actually 

correct (Aryoyudanta, Adji, & Hidayah, 2016).  This metric is most useful by itself when the 

costs of false positives are high.  An example of this for our contract entity extraction would be 

the number of correct Suppliers the model picks up compared to the total Suppliers that are 

found.   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall 

 Recall is a measure of how much relevant information has been extracted from the text 

(Aryoyudanta, Adji, & Hidayah, 2016).  This metric is most useful by itself when the cost of 

false negatives is high.  An example of this for our contract entity extraction would be the 

number of correct Suppliers the model picks up compared to the amount of contracts that 

contained Suppliers.   

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
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F1 Score 

 The F1 score takes both precision and recall into account to ultimately measure the 

accuracy of the model.  It tries to consider the fact that false positives and false negatives can be 

absolutely crucial to the study while true negatives are often less important.  Thus, the F1 score 

gives more weight to false negatives and false positives while not letting large numbers of true 

negatives influence the score (Riggio, 2019).  It takes both a high precision and high recall to 

receive a high F1 score, making the F1 score the most valuable metric.   

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Chapter Summary 

 Named entity recognition is a powerful tool for data extraction and there are multiple 

different packages available to help analysts build NER models.  This section looked at previous 

work that has been done in the NER realm and what tools they have used.  A very similar 

contract text extraction effort and some of the recommended ways forward gleaned from that 

paper were also explored.  The goal is to improve upon previous studies and successfully extract 

more information accurately with a custom NER model as opposed to using the Regex approach 

or standard NER models.  The next chapter will discuss in greater detail the data that is being 

used for this research as well as the methodological approach to this analysis.   
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III.  Methodology 

Chapter Overview 

 This chapter goes into detailed information about the data and methodologies used to 

analyze the data.  First, the source of the data, its characteristics, and the subset used for this 

analysis are looked at.  Next, the Regex and NER methods are explained in greater detail with 

how they are applied to the contracts data for use in extracting NSN, Part Number, CAGE Code, 

and Supplying Organization.  This section finishes off with the statistical methods that will be 

used to compare the Regex model to the NER model to see if better results are achieved with 

NER than with Regex, where applicable.   

Data 

 The Data Analytics Resource Team (DART) has access to approximately 3.7 million 

contracts with starting dates from the beginning of FY 04 to January of 2020.  These contracts 

initially come in the form of pdf files, but the team has extracted the info from the files and 

converted them to text documents using optimal character recognition (OCR).  There are more 

contracts available that are currently going through the process to be converted to text files that 

have starting dates in FY 21.  The methods in this paper can be leveraged and rerun on the new 

contracts once they become available, and for future contracts that the team gains access to.  The 

text version of the contracts is the format that is used for this analysis.   

 It is important to note that the NER model can only perform as accurately as the 

information that is extracted from the text.  There are cases where the number 0 gets recorded as 

the letter O and some other instances where characters get misread by OCR.  The NER model 
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will still return the phrase as the intended entity, but this can cause issues later on when the entity 

is extracted and there are no matches for the given entity.   

 Within each contract there are contract line item numbers (CLINs).  The purpose of 

CLINs within the contracts is to break the contract down by the commodities being procured and 

provide for traceable accounting classification citations (AcqNotes, 2021).  An example of a 

CLIN can be seen below in Figure 8 and characteristics of a CLIN include:  

• Single unit price/extended amount 

o Separately identifiable 

o Hardware: no more than one NSN, item description, mfg part # 

• Services: no more than one scope or work/description of services 

• Separate delivery schedule, a period of performance, or completion date 

• Single accounting classification citation 

Each CLIN within a contract has different information in it that makes up the entire contract, 

thus this analysis seeks to extract the information for this analysis on the CLIN level.   

 

Figure 8: CLIN Example (AcqNotes, 2021) 

 With there being 3.7 million contracts and 7.4 million CLINs available, the data must be 

scaled down to a useable subset.  The subset of data that is used for this analysis is CLINs that 
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that are associated with Air Force Life Cycle Management Center (AFLCMC) work.  This was 

accomplished by obtaining a list of Department of Defense Activity Address Codes (DoDAACs) 

that are connected to AFLCMC and taking a subset of the complete dataset that had one of the 

DoDAACs on the list.  After breaking down the entire data set to the AFLCMC contracts, there 

are 44,450 contracts and 1,622,840 CLINs in the data.  This set was then further subsetted into 

smaller parts for training and testing purposes.   

 Within the AFLCMC contract set, the training/testing set was narrowed down even 

further.  CLINs were selected to try and get a good overall representation of the contracts in both 

the training and testing sets.  The testing set was comprised of 117 CLINs while the training set 

included 518 CLINs over 3 iterations.  The breakdown of number of entities in the testing set 

along with the entities in each iteration can be seen in Table 3: Training/Test Set 

BreakdownTable 3.  

Regular Expression (Regex) 

 Regular expression (regex) is a sequence of characters that are used to find patterns in 

text. Each of the parameters has its own regex.  Each regex is created by referring to the public 

forum and can be customized to suit the system and programming language used.  Regex is used 

to detect any text data that matches any of the parameter. If the regex found any, the matched 

data will be fetched and inserted to the output (Pakhari, Jamil, Rusli, & Rahim, 2020).   

 The regex approach has the highest success rate when there are consistent patterns in the 

data.  This works well for the NSN which follows a consistent pattern with an optional two 

characters tacked on to the end.  Part numbers, on the other hand, are very inconsistent and can 

take on many different patterns.  Multiple regex patterns must be put into place and look for 
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groups of numbers/characters that come after certain phrases that would indicate the part number 

is to follow.  With CAGE Codes being 5 alpha-numeric characters, the regex set had an 

extremely large amount of false positives to the point where it was not feasible to go through 

them by hand.  Thus, trying to quantify how many CAGE Codes Regex actually picked up 

because of its lack of accuracy is useless.  Below the approaches used for NSNs and Part 

Numbers are looked at in greater detail.   

Regex Approach for NSN 

 National stock numbers follow a pattern of 4-2-3-4 numeric characters (0000-00-000-

0000).  Sometimes they have two upper-cased characters after the last digit and these were kept 

in case they are needed for further analysis, but can also be removed easily if just the base NSN 

is needed.  This consistent pattern works very well for regex.  For the regex method of extracting 

NSNs from contracts, there were three patterns used to identify them.  The patterns are shown 

below in Figure 9.  The first pattern looks for an NSN with 2 characters on the end, the second 

representing a NSN followed by a space and two upper-case characters, and the last being the 

standard NSN format.   

 

Figure 9: Regex Patterns for NSN 

Regex Approach for Part Number 

 Part numbers come in many different lengths, patterns, formats, etc.  This makes it much 

tougher for the regex approach to pick up part numbers in the contracts.  Instead of trying to 

generate a list of all the possible patterns, the regex patterns used look for phrases that would 

indicate a part number is to follow.  Phrases such as “Part Number”, ”Part #”,  “PN”, etc. are 
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used to try and identify where the part number is in the contract, and then take the characters 

after it and give that the entity of part number.  A lot more Regex patterns were used for the 

search of part number given the non-standardized format, and these patterns are shown below in 

Figure 10.   

 

Figure 10: Regex Patterns for Part Number 

 

Named Entity Recognition 

 Named entity recognition is the process of extracting information by locating and 

classifying named entities.  These entities are then grouped into pre-defined categories such as 

the names of persons, organizations, locations, dates, monetary values, percentages, etc. (Li S. , 

2018).  The named entity recognition approach uses a corpus of data to try and identify the 

entities in the text as opposed to regex where patterns are the most important.  With the four 

entities of interest in this analysis not being standard entities, a custom knowledge base for the 

NER model will be needed in identifying NSNs, Part Numbers, CAGE Codes, and Suppliers in 
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the text.  Once the annotations are complete, they are fed to the NER model to be used as the 

corpus for the model to be trained on.   

Annotating the Knowledge Base 

 Data annotation plays a crucial role in building a representative set and ensuring NER 

models are trained with the right information.  Producing the necessary annotation from any 

asset at scale can be a challenge due to the complexity and time involved with annotation (Zeng, 

et al., 2021).  In addition to being complex, the process can be lengthy especially when the text 

originated from a .pdf file where text from different boxes gets out of order and care must be 

taken to make sure the right entity is captured.   

 The annotations were initially done on 117 CLINs for the test set and 500 CLINs for the 

first iteration of the training set.  The test set was chosen from CLINs in the AFLCMC subset 

that were suspected to have a part number by the regex output.  It is important to make sure there 

was a good representation of all the entities that are being explored in the test set.  In addition, a 

manual process of looking for CLINs that had Suppliers/CAGE codes in them was used to make 

sure there were a sufficient amount in the testing set.  There were several CLINs with very 

similar information, so it was important to pick CLINs with the most variation in information as 

well as format to be able to scope the model to various CLIN text formats.   

 The initial training set methods were very similar.  Again, CLINs were annotated that 

were suspected to have part numbers from the regex results as well as CLINs that had a good 

representation of CAGE codes and supplier names from the manual examination of the CLINs.  

This set was much larger than the testing set so the strong representation of formats of the data 

occurred more naturally when annotating a larger set.   
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 Additional iterations of the training set annotations were added until the performance of 

the model was sufficient.  The breakdown of entities in the training (by iteration) and testing set 

can be seen below in Table 1 

 

Table 3. 

 

Table 3: Training/Test Set Breakdown 

 Test Set Iteration 1 Iteration 2 Iteration 3 

Number of CLINs 

Annotated 

117 500 114 104 

Suppliers 43 56 25 88 

CAGE Codes 61 265 32 39 

Part Numbers 126 514 233 149 

NSNs 61 338 32 35 

 

 Once the corpus was annotated, the PyLighter output needed to be adjusted into a format 

SpaCy can recognize.  The output that is exported from PyLighter is a row for each CLIN that 

was annotated.  This can be seen below in Figure 11 where the first column is the CLIN text, and 

if its over a certain number of characters the text goes into the next column(s) as well.  The 

columns following the CLIN text contain the classification of the text.  The text labels were done 

by character and the output is an ‘O’ if the character was not a part of an entity, a ‘B-Entity’ with 

the entity name filled in respectively if that character represented the beginning of an entity, and 

‘I-Entity’ with the entity name filled in respectively if that character was part of the entity but not 
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the first character in the entity.  We can see at the beginning of row 4 “Raytheon” is the Supplier, 

starting at the 6th character in the CLIN text. 

 

Figure 11: PyLighter Output 

 

 SpaCy does not accept the annotations in this format, so some post processing was done 

to turn the annotations into something SpaCy can ingest and use for the custom NER model.  The 

PyLighter .csv file was turned into a .json file that includes the CLIN text along with the starting 

position and ending position of the entity along with the entity name.   

Training the Model 

 The annotations that were explained in the previous section are the inputs used for 

training the model.  The annotations in .json format are read in by SpaCy and iterated over a 

specified number of times until the model is sufficiently trained.  The train_spacy function was 

used from the SpaCy documentation.  The number of iterations can be varied to produce 

different results of the model.  Each entity is trained separately with its own model, this way if 

there is lack of an entity in a CLIN the model has an easier time picking up each entity 

individually.   

 Within the normal train_spacy function, there are different customizations options that 

can be used for tuning the model to better suit the data at hand.  Tokenization allows for 

changing where the tokens are split.  The infix, prefix, and suffix settings within tokenization 
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allows for specification on where to add splits in the text.  This parameter is important in 

splitting tokens where there might not normally be splits in the English language.   

 For example, some of the CLIN text had part numbers that did not have a space between 

the word and the part number itself (part#394-4859-21).  This whole character string was being 

returned as one token instead of multiple.  By adding “#” as an infix, this allows the token to be 

split up into three separate tokens: “part”, “#”, and “394-4859-21.”   

 There was also a common occurrence of the last word of the description being followed 

with a “(“ and then the supplier name (e.g. “cord(Lcom Part #” ).  Since there was no space in 

between the word and the “(“ it was picking up “cord(Lcom” as a single token.  To fix this 

problem, “(“ was added as an infix to the NLP function.  By adding “(“ as an infix, this allows 

the token to be split up into three separate tokens: “cord”, “(“, and “Lcom.” 

Comparing Results 

 In answering the research questions of how much better does the custom NER model 

perform than the Regex approach or standard NER approach at extracting the entities of interest,  

the baseline results of the test set are compared to the test set performance of the custom NER 

model.  Baseline results for NSN and Part Number using regex as well as baseline results for 

supplying organization using the standard SpaCy “org” entity can be found in Table 4.   

 To compare the results, the improvement of four evaluation metrics are used: accuracy, 

precision, recall, and F1 score.  The fact that the standard SpaCy model does not pick up any of 

the CAGE codes as suppliers as those are specific to the DoD must also be accounted for.  This 

additional information gleaned in the custom NER model will be discussed more in the results 

section of this paper.   
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Chapter Summary 

 In this chapter the contracts data that is available was looked at as well as the subset of 

the overall data that will be used in this analysis.  Next, the methodological approach to applying 

regex and a custom NER model to the contracts data was explained.  Last, the performance 

measures were set on how to evaluate the custom NER model in comparison to the previous 

methods used.  The following chapter will provide a detailed look at the results of both the regex 

and NER methods as well as a comparison of the results.     
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IV. Results and Analysis 

Chapter Overview 

 This chapter presents the results from applying the methodology laid out in the 

Methodology section above.  The results are shown from applying Regex and standard SpaCy 

“org” entity to the data set.  It is shown how many Part Numbers, NSNs, and suppliers are 

extracted from the both the test set of contracts and the AFLCMC contracts.  Next the results are 

shown from applying the custom NER model that was trained to the data set to see how many 

Part Numbers, NSNs, Suppliers, and Cage Codes are extracted from the same sets of contracts.  

Finally, the results from the two models are compared to see if there is any improvement from 

building a custom NER model as opposed to using the Regex approach to extract the entities of 

interest from contracts.   

Baseline Results 

 This section explores at the results of applying the Regex approach to the CLIN text.  It is 

first seen how this technique performs in extracting Part Numbers and NSNs on the entire 

AFLCMC subset and then scope it down to see how it performs on the testing set.  In addition, 

the SpaCy “org” entity is used on the testing subset to get baseline results on how the standard 

NER model performs on the data.   

 AFLCMC Subset 

 Applying the Regex patterns to the full set of AFLCMC contracts produced the results 

shown below in Table 4.  The NSNs that were outputted from the model looked very good from 

the perspective of there being no false negatives that showed up in the results.  However, there 

was some clean up involved in getting rid of false positive Part Numbers in the output.  These 



36 

 

were manually removed from the data and not included in the found Part Numbers results in 

Table 4.  The list of false positive Part Numbers (sorted by highest number of occurrences) that 

were removed from the data can be seen below in  

 

 

Table 5.  It is important to note that this is not an all-inclusive list of false positives in the data.  

These are just the ones that were caught by eye when looking through the Part Numbers that 

Regex returned.   

 It is also important to note that Regex picked up a ton of CAGE codes as part numbers.  

One common theme of the CLINs was the phrase “Manufacturer Part Number” followed by the 

CAGE code, then the part number.  Regex is picking up what comes directly after part number, 

which in a lot of cases is the CAGE code.  This affects the validity of these Regex Part numbers 

even if by eye it can’t be determined it is not a part number.  The next section shows how a 

custom NER model helps with distinguishing between Part Number and CAGE code.   

 There were also some special characters that are not part of the part number that the 

Regex model returned that needed to be cleaned up as well.  Characters such as colons, periods, 

pound sign, quotation marks, and spaces showed up at the beginning or end of some of the part 

numbers.  These leading or trailing characters were removed by using the gsub function to 

replace the character with nothing.  This list of leading characters is all inclusive for the 

AFLCMC contracts, but might need to be expanded when applied to other sets of contracts.  This 

did not affect the count of Part Numbers that Regex captured but is still an important step in the 

process of making sure the parts are extracted accurately.   
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Table 4: Regex Results on full AFLCMC Subset 

 Contracts 

Searched 

CLINs 

Searched 

CLINs 

with Found 

Entities 

Percentage 

of CLINs 

with entity 

Max. 

entities 

found in 

one CLIN 

Avg. 

entities 

found in 

one CLIN* 

NSN 44,450 1,622,840 92,497 5.70% 20 1.07 

Part 

Number 

44,450 1,622,840 129,924 8.01% 63 1.17 

*average value is calculated based off of the CLINs with found entities, not the entire set of 

CLINs that were searched 

 

 

Table 5: False Positive Part Numbers - Regex 

False Positive Part 

Number 

Number of Occurrences 

Removed 

s and 457 

s for 226 

s, quantities 47 

Part 41 

Quantity 36 

Off Contract 17 

Or NSN 12 

QTY Handling 8 

QTY Drying 6 

NOUNQUANTITY 5 

QTY Bomb 5 



38 

 

, Quantity 4 

FOB: 4 

QUANTITY 3 

NOUNQty 3 

QTY 3 

From: 3 

Includes 2 

Changes as 2 

OF GFE TO BE 1 

s that 1 

Qty.Total w/o 1 

  

 

 Testing Set 

 The regex and SpaCy “org” entity results on the testing set are shown below.  False 

positives here include entities that were extracted but include additional information along with 

the correct entity.  For example, some of the CLINs have part numbers and CAGE codes next to 

them and the Regex code picks up the entire sequence as the part number.  Even though the 

correct part number is in there, the entity as a whole is incorrect as it includes the CAGE code (or 

other unnecessary information) as well.   

 The results are color coded based on their score percentage where green indicates a score 

of 95% or better, light green represents 90% to 94.9%, yellow represents scores in the 80s, 

orange represents scores in the 70s, red represents scores in the 60s, and dark red represents 

scores less than 60%.   
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Table 6: Baseline Results on Test Set 

 Part 

Number 

(Regex) 

NSN 

(Regex) 

Supplier 

(SpaCy 

Standard NER) 

True Positives 4 60 10 

True Negatives 0 56 7 

False Positives 118 0 281 

False Negatives 122 1 33 

Total Entities in text 126 61 43 

Total CLINs Searched 117 117 117 

Accuracy 1.6% 99.1% 5.1% 

Precision 3.3% 100% 3.4% 

Recall 3.2% 98.4% 23.3% 

F1 3.2% 99.2% 5.9% 

  

 Just like anticipated, the regex method performed extremely well for identifying NSNs in 

the CLIN text.  The consistent pattern of an NSN is what regex thrives on so it is not surprising 

that the model has an accuracy of 99.1% as well as an F1 score of 99.2%.  Part Numbers, on the 

other hand, performed horribly with regex.  The accuracy of 1.6% is not even close to sufficient 

along with the 3.2% F1 score.  A lot of the poor performance of the model has to do with the 

regex model picking up additional information around the part number itself that should not be in 

the entity.  This causes a false positive and false negative in the same entity which is why the 

model performs very poorly.  This is due to the fact that there is no uniform pattern to part 

numbers, so regex is just picking up whatever text comes after the word part number.  In a lot of 
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cases, the manufacturer (CAGE Code) and part number are in the format MFG Part Number 

12345 123-1234-12345 where what comes directly after the phrase “Part Number” is actually the 

CAGE code.  There is no way for regex to know this as it is not a machine learning technique.   

 Extracting suppliers with the SpaCy “org” entity did not go well either.  There were tons 

of false positives in the data, which would be easy to weed out but the model still only extracted 

10 of 43 (23%) of the suppliers in the testing set data.  In the next section it will be seen how 

applying a custom NER model significantly improves the performance of extracting Part 

Numbers and Suppliers from the CLIN text.  

NER Results 

 This section looks at the results of applying a custom NER model to the CLIN text of the 

contracts.  It is first shown how this technique performs in extracting Suppliers, CAGE Codes, 

Part Numbers, and NSNs on the entire AFLCMC subset and then scoped down to see how it 

performs on the testing set.   

 AFLCMC Subset 

 Applying the custom NER models to the full set of AFLCMC contracts produced the 

results shown below in Table 8.  The NSNs that were outputted from the model looked very 

good from the perspective of there being no false negatives that showed up in the results.  There 

were some false positives where “Not Applicable” got picked up by the model, but these can 

easily removed.  Another case of false positives happens when in the CLIN text, they have NSN: 

XXXX.  Where the spot the NSN usually is, the Federal Supply Class (FSC) is shown without 

the National Item Identification Number (NIIN) tacked on to the end.  The model still picks this 

up as the NSN but again these can easily be removed.   



41 

 

 The need for part number clean up decreased significantly although there were some 

cases of false positives that needed to be taken care of.  These were manually removed from the 

data and not included in the found Part Numbers results in  

 

 

 

 

 

 

 

Table 7.  The list of false positive Part Numbers (sorted by highest number of occurrences) that 

were removed from the data can be seen below in Table 8.  It is important to note that this is not 

an all-inclusive list of false positives.  There are some that include the part number with 

additional information after it that are one-offs.  The one offs are not captured in the table, its 

meant to be what the model is consistently getting wrong.  The ones shown in the table are just 

the ones that were caught by eye when looking through the Part Numbers that the NER model 

returned.   

 There were also some special characters that are not part of the part number that the NER 

model returned that needed to be cleaned up as well.  Again, these were decreased significantly 

from the amount that needed to be cleansed in the Regex results, but still a necessary step.  

Characters such as colons, and dashes showed up at the beginning or end of some of the part 

numbers.  These leading or trailing characters were removed and replaced with nothing.  This list 

of leading characters is all inclusive for the AFLCMC contracts, but might need to be expanded 

when applied to other sets of contracts.   
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Table 7: NER Results on Full AFLCMC Subset 

 Contracts 

Searched 

CLINs 

Searched 

CLINs 

with Found 

Entities 

Percentage 

of CLINs 

with entity 

Max # 

entities 

found in one 

CLIN 

Avg. # 

entities found 

in one CLIN* 

NSN 44,450 1,622,840 124,013 7.64% 17 1.05 

Part 44,450 1,622,840 97,461 6.01% 39 1.08 

Supplier 44,450 1,622,840 48,264 2.97% 101 1.30 

CAGE 

Code 

44,450 1,622,840 57,929 3.57% 4 1.00 

*average value is calculated based off of the CLINs with found entities, not the entire set of 

CLINs that were searched 

 

Table 8: False Positive Part Numbers - NER 

False Positive Part 

Number 

Number of Occurrences 

Removed 

: 192 

- 12 

NameQuantitUnit 4 

ITEM NAMEQUANTITY 2 

0 - -  2 
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 Testing Set 

 The NER results on the testing set are shown below by iteration.  There were 3 iterations 

in the process to come to the final model that was proven the best (or equal) to the previous two 

iterations.  False positives here include entities that were extracted incorrectly.  For example, 

some of the part numbers have spaces between dashes.  In some cases, the model picks up part of 

the part number.  Even though the model correctly picked out the location of the entity, the entity 

as a whole is incorrect as it does not give the full part number, thus there is a false negative that 

goes along with it as well.  The same thing was present in the Supplier entity as well.  Some of 

the Supplier names were not picked up in full, just part of the name was extracted and these were 

labeled as a false positives along with a false negative.   

 In the first iteration of the model, 500 CLINs were annotated.  This set was comprised  of 

56 Suppliers, 265 CAGE Codes, 514 Part Numbers, and 338 NSNs.  The results that this model 

produced on the testing set can be seen below in Table 9.  Since the CAGE Code and Supplier 

Name are giving us the same information (Supplier) these entities are combined into a single 

column, Supplier Overall, to see how the model does in picking up the Supplier entity as a 

whole.  The results are color coded based on their score percentage where green indicates a score 

of 95% or better, light green represents 90% to 94.9%, yellow represents scores in the 80s, 

orange represents scores in the 70s, red represents scores in the 60s, and dark red represents 

scores less than 60%.   
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Table 9: NER Results on Testing Set (Iteration 1) 

 CAGE 

Code 

Supplier 

Name 

Supplier 

(Overall) 

Part 

Number 

NSN 

True Positives 54 14 68 103 61 

True Negatives 56 65 121 0 53 

False Positives 0 13 13 4 6 

False Negatives 7 29 36 23 0 

Total Entities in text 61 43 104 126 61 

Total CLINs Searched 117 117 117 117 117 

Accuracy 94% 65.3% 79.4% 79.2% 95% 

Precision 100% 51.9% 84% 96.3% 91% 

Recall 88.5% 32.6% 65.4% 81.7% 100% 

F1 93.9% 40% 73.5% 88.4% 95.3% 

 

 The second iteration of the NER model had an additional 114 CLIN annotations added to 

the model.  This set was comprised of 25 Suppliers, 32 CAGE Codes, 233 Part Numbers, and 32 

NSNs.  F1 scores for three of the entities increased (CAGE Code, Part Number, and NSN) while 

the fourth (Supplier) decreased.  Although the number of false positives decreased, so did the 

number of true positives in the data which caused the lower score.  Full results for the second 

iteration of the model produced on the testing set can be seen below in Table 10. 
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Table 10: NER Results on Testing Set (Iteration 2) 

 CAGE 

Code 

Supplier 

Name 

Supplier 

(Overall) 

Part 

Number 

NSN 

True Positives 59 7 66 106 61 

True Negatives 56 70 126 0 54 

False Positives 0 6 6 5 2 

False Negatives 2 36 38 20 0 

Total Entities in text 61 43 104 126 61 

Total CLINs Searched 117 117 117 117 117 

Accuracy 98.3% 64.7% 81.4% 80.9% 98.3% 

Precision 100% 53.8% 91.7% 95.5% 96.8% 

Recall 96.7% 16.3% 63.5% 84.1% 100% 

F1 98.3% 25% 75% 89.4% 98.4% 

 

 The third iteration of the NER model uses an additional 104 CLIN annotations to be 

added to the new model.  This set was comprised of 88 Suppliers, 39 CAGE Codes, 149 Part 

Numbers, and 35 NSNs.  

 CLINs were targeted that had a good representation of Suppliers as this was the entity 

lacking success.  When training the model, there were multiple warnings of Supplier annotations 

not being used.  After some exploration, it was found that spacing was not well preserved around 

some of the Supplier names.  The last word of the description was followed with a “(“ and then 

the supplier name (E.X. “cord(Lcom Part #” ).  Since there was no space in between the word 

and the “(“ it was picking up “cord(Lcom” as a single token.  To fix this problem, “(“ was added 
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as an infix to the NLP function.  All warnings went away after this was added.  CLINs with 

multiple part numbers were also targeted as this is the main case of false negative results.   

 The targeted annotations worked as the Supplier and Part Number results both improved.  

The CAGE code results improved slightly as well while the NSN results were exactly the same 

as the previous iteration.  Full results for the third iteration of the model produced on the testing 

set can be seen below in Table 11.   

Table 11: NER Results on Testing Set (Iteration 3) 

 CAGE 

Code 

Supplier 

Name 

Supplier 

(Overall) 

Part 

Number 

NSN 

True Positives 60 21 81 115 61 

True Negatives 56 72 128 0 54 

False Positives 0 2 2 1 2 

False Negatives 1 22 23 11 0 

Total Entities in text 61 43 104 126 61 

Total CLINs Searched 117 117 117 117 117 

Accuracy 99.1% 79.5% 89.3% 90.6% 98.3% 

Precision 100% 91.3% 97.6% 99.1% 96.8% 

Recall 98.4% 48.8% 77.9% 91.3% 100% 

F1 99.2% 63.6% 86.6% 95% 98.4% 

 

 The entities extracted are all important, thus it is imperative to understand how many of 

the CLINs have all the entities extracted correctly for use in further analysis.  The CAGE Code 

and Supplier Name are grouped together as a single entity (shown as Supplier in Table 12) since 

they are both looking to extract the same piece of information.  The Supplier Name is looked up 



47 

 

in the CAGE Code database, and if there is a single match it is considered as a found entity.  In 

cases where there are multiple CAGE Codes for the given Supplier Name, it is not considered a 

found entity.  59 of the 117 CLINs in the test set had all 3 entities available to extract.  Table 12 

below shows a breakdown of the CLINs that had the potential for all three to be extracted and the 

success rate by entities.   

Table 12: Fully Correct CLINs 

Entities Correct Number of CLINs Percentage of CLINs 

Part 0 0% 

NSN 0 0% 

Supplier 0 0% 

Part & NSN 0 0% 

Part & Supplier 0 0% 

NSN & Supplier 4 6.8% 

Part, NSN & Supplier 55 93.2% 

 

Comparison Results 

 Of the three entities of interest that have baseline results, two performed significantly 

better with a custom NER model (Part Number, Supplier) while the third entity (NSN) showed 

similar results between the Regex model and the NER model.  Figure 12 below shows the 

number of each entity successfully extracted from the baseline model (blue) and NER (orange) 

with the grey representing the total number of entities in the test set.  The next sections will dive 

deeper into the results of each of the entities.   
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Figure 12: Comparison Results for Test Set 

 

 Looking at the baseline results, it was found that NSN performed very well with Regex.  

The accuracy of the model was 99.1% while the F1 score was 99.2%.  When compared to the 

NER results, Regex performed slightly better.  The accuracy of the NER model was 98.3% 

(down 0.8%) with an F1 score of 98.4% down (0.8%).  This is due to an additional false negative 

result in the NER model.  Overall, both models are sufficient in capturing the NSN.  The NER 

model will give some more false positives but also pick up NSNs that do not include the dashes 

or are in other odd formats.   

 Part numbers were extracted with much greater success in the custom NER model.  115 

of the 126 part numbers were extracted correctly with the custom NER model as opposed to the 

4 of 126 that were extracted correctly with the Regex approach.  The regex approach was close 

in a lot of the part numbers, but added additional information or cut off part of the whole part 
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number.  Accuracy increased from 1.6% to 90.6% when comparing the regex results to the NER 

results while the F1 score increased from 3.2% to 95%.   

 The last entity, Supplier, also saw a huge improvement when switching to a custom NER 

model as opposed to the standard SpaCy “org” entity.  When comparing the SpaCy “org” entity 

to the Supplier Name custom NER model, the accuracy improves from 5.1% to 79.5% while the 

F1 score improves from 5.9% to 63.6%.  A big advantage of the custom NER model as opposed 

to just the standard SpaCy “org” entity is the ability for the model to catch CAGE Codes as well.  

The custom model performed extremely well on CAGE Codes, picking up 60 of the 61 that were 

in the testing set.  The accuracy of the CAGE Codes was 99.1% while the F1 score was 99.2% 

with the custom NER model.  The Supplier Name along with location can be found from this 

CAGE code, giving us more information for further analysis than just having the Supplier Name 

itself.  Combining the custom NER for Supplier Name and CAGE Code proves to see even 

greater improvements as compared to just using the standard SpaCy “org” entity.    

Chapter Summary 

 In this chapter the results that the baseline model produced using regex (Part Number and 

NSN) and standard SpaCy entities (Supplier Name) were presented along with the results from 

the custom NER models that were built for Part Number, NSN, Supplier Name, and CAGE 

Code.  It was shown how the models performed on a testing set of 117 CLINs as well as 

performance when the model was scaled up to the entire AFLCMC subset.  Lastly, the results 

were compared between the baseline analysis results and the custom NER model.  In the next 

section  the results will be further discussed and conclusions drawn from this research will be 

provided. 
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V. Conclusions 

Chapter Overview 

 This chapter utilizes the results from the previous chapter to answer the initial research 

questions proposed in Chapter I.  The relevance of those findings is then discussed to see how 

they will benefit the DoD in future analyses.  Limitations of the analysis follow, along with 

recommendations for future work in the contracts analysis space.  The paper wraps up with a 

summary of the final thoughts.   

Findings 

 In looking at the results from the previous section, the research questions that were posed 

in the introduction are evaluated.  The three questions that were posed along with their results 

will be discussed below.   

 The first question that was posed was can more Suppliers successfully be extracted by 

using a custom NER model as opposed to a standard SpaCy “org” entity model?  The supplier 

entity saw an improvement in true positives of over 100% when comparing the SpaCy “org” 

entity model results to the custom NER model results.  21 supplier names were successfully 

extracted with the custom NER as compared to the 10 with standard NER model.  The F1 score 

also had a significant improvement from 5.9% with the standard SpaCy “org” entity to 63.6% 

with the custom NER model.  The big enhancement in extracting the supplier from the contract 

comes in being able to extract the CAGE code as well.  If CLINs do not contain the Supplier 

name, sometimes they instead contain the CAGE Code.  This 5-digit code has great extraction 

performance with a custom NER model.  60 of 61 CAGE Codes were successfully extracted 

from the testing set.  Combining these two models in extracting the supplier from the CLINs, 
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there is an overall true positive rate of 81/104 with an F1 score of 86.6%.  There were an 

additional 13 CLINs that did not have a Supplier name or CAGE Code in it.  There will be some 

methods proposed in the Recommendations section below to associate a supplier name with the 

CLINs that are missing the information.  

 The second question that was posed was can more NSNs be successfully extracted using 

a custom NER model as opposed to a regex model?  The improvement that was seen in NSN 

performance was negligible.  The custom NER model was able to pick up one additional NSN as 

compared to the Regex model.  This specific NSN was chosen intentionally because it was 

missing the third “-“ in the sequence, and the NER model was able to still pick it up as an NSN.  

There were a couple false positives in the NER model where Regex did not have any false 

positives.  These are easy to pick out as NSNs are very standardized, and can be post-processed 

to take out the false positives in the results fairly easily.  Even though the custom NER model did 

not perform significantly better than Regex, it is still recommended so that the one-off cases (like 

missing a dash) can be picked up.   

 Finally, it was questioned if more Part Numbers can successfully be extracted using a 

custom NER model as opposed to a regex model.  The part numbers saw the largest 

improvement of the three entities.  Using Regex, the model was only able to successfully extract 

4 of 126 part numbers correctly.  By iteration 3 of the custom NER model, 115 of 126 part 

numbers were extracted correctly.  The F1 score of the Regex approach was 3.2% while it 

increased to 95% with the custom NER model.  The use of a custom NER model resulted in huge 

improvements on the extraction of this entity without any standard patterns, thus it is 

recommended to use a custom NER model for extracting part numbers and any other entity that 

might come up that does not have a standard format that Regex can pick up well. 
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Relevance  

 The information gleaned from extracting the entities from the contracts is just the first 

step in providing useful analysis.  Having the Part Numbers, Suppliers (from the Supplier Name 

and CAGE Code entities combined) and NSNs will allow for further analysis to be done on the 

contracts.  Specifically, this will allow for the part/vendor relationships to be analyzed along with 

adding in pricing data that is available.   

 Figure 13 below shows one example NSN with its associated Part Numbers, CAGE 

Codes, and CLIN unit prices (where applicable).  The prices are sensitive information so for this 

example the dollar amounts are scaled into three categories with “$” being the least expensive 

unit price, followed by “$$” being a medium unit price, and “$$$” being the most expensive unit 

price.  The vendor supplying part number 167C2209 has three different CAGE Codes depending 

on what location the part is purchased from.  We can see that vendor 64609 supplies four 

different part numbers (R0980861578009, R0980861578005, R0980861578018, 

R0980861578019) for NSN 4933-01-068-8007.  For each of their four parts, the CLIN unit price 

is in the lowest category ($).  The vendor that supplies part number 167C2209 at three different 

locations has varying unit prices based on the vendor location.  The CLIN that had CAGE Code 

52477 did not have data on average unit price, thus it was left as a “?”.  The other two locations 

supplying part umber 167C2209 had multiple CLINs each with unit pricing information.  CAGE 

Code 1BAM3 had CLIN unit prices in the middle category ($$) while CAGE Code 94117 had 

the most amount of CLINs with this CAGE Code/Part Number pairing.  All of their CLIN unit 

prices fell into the highest category ($$$).  Thus, it would be recommended to purchase this NSN 

from the vendor with CAGE Code 64609 since all four of the parts they offer are significantly 

cheaper than the vendor offering part number 167C2209.   
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Figure 13: Part to Vendor Relationship 

 

 Joining this data with pricing data from the contracts, it can be determined if there is a 

price difference between buying a part from one vendor over another.  It can also be noted if 

there are multiple contracts within an organization that are buying the same part from the same 

vendor, there is the potential to buy in bulk and take advantage of economies of scale to get 

better pricing.  This can also be done across different organizations to see if there can be any 

collaborating in buying parts.    

 In addition to pricing data, maintenance data can be brought in to see how the depot 

records are for a certain part.  This would allow us to see if a certain vendor has more reliable 

parts than a competing vendor and if so, what is the cost benefit analysis on price to longevity of 

the part.   

 The process of making these graphs is currently manual and can be done for any NSN 

that is in the data.  This is a time-consuming process and would take a significant amount of 

man-hours to complete for each NSN that is cataloged.  Thus, with the help of a graph database 

software, graphs like these could be automated saving the analyst a significant amount of time. 
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Limitations 

 The results of this analysis are done on a subset of the overall contracts.  Even though the 

test set was selected to be representative of all the contracts, there might be some formats that 

were missed when selecting the set.  That being said, the scalability from a test set of 117 CLINs 

to over 7 million might not see the same results as there can be varying formats that were not 

seen in the test set or the annotation set.  Another limitation is there are other areas of the 

contracts where information lies.  Parts can come in government furnished property (GFP) tables 

along with rights assertion (RAT) tables while the Supplier Name and CAGE Code can also 

reside in the front forms.  Recommendations will be given in the next section that could help 

with the limitations of the current analysis.   

Recommendations 

 To help improve the first limitation mentioned above, the first recommendation is to keep 

increasing the annotation set and tuning parameters to get a model that can be more generalized 

to the entire 3.7 million contracts that are currently available and future contracts that become 

available.  Time is a big limiter here and annotating large sets is time consuming although it is 

very important to improving model performance.  The more annotations that are added to the 

model, the more the model can learn and generalize to better predict the entities.  In addition to 

annotations, parameter tuning will need to continue to be done as more annotations are added.  

These parameters will need to be tuned as the model changes to best suit the new model output 

and data.  This will give the model the best chance to be able to scale to the overall contracts set 

of data.   
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 The second recommendation is to use front form cage codes as a secondary source for 

where the CLIN does not have a CAGE Code or Supplier Name associated with it.  An 

assumption will have to be made that if there is no supplier in the CLIN, the supplier is the same 

as it is on the front of the contract.  This will allow for a more comprehensive extraction of the 

Supplier Name and make doing further analysis more complete.   

 In addition to a more comprehensive extraction of suppliers, more information can also 

be gleaned on part numbers and NSNs by extracting from different locations.  There are part 

numbers along with NSNs that can reside in the GFP tables and RAT tables in the contracts.  

Building additional NER models that look at the pages of contracts that contain a GFP or RAT 

table, respectively, will allow for more of these entities to be extracted from the contracts.  

Annotations will have to be done separately for these tables as they are in different formats to 

allow the models to be specific to each table format.   

 Finally, as discussed in the relevance section, analysis can start to be done with the 

information that was extracted from the contracts.  Pairing this newly extracted information with 

pricing data and maintenance data can allow us to explore the relationships between part and 

vendor.  Adding additional information like pricing data and maintenance data can be important 

in understanding which vendors will provide the best overall value for a certain part.  This 

information can be used by program offices when deciding which vendor to go with for future 

buying opportunities to save the Air Force money, whether it be on the initial price of the part or 

in the long run of buying a more reliable part that will not need to be repaired as frequently.   
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Summary 

A custom NER model can increase the extraction power of DoD specific entities 

significantly.  As with any NER model, the annotation set is time consuming but vital to being 

able to scale the results to a larger set of data.  Once these entities are extracted, the analysis that 

can be performed by merging these results with pricing and maintenance data can help the Air 

Force make more educated decisions on which vendor to use for certain parts as well as help 

negotiate better prices for said parts.   
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Glossary 

AFLCMC – Air Force Life Cycle Management Center 

AFSC – Air Force Sustainment Center 

AI – Artificial Intelligence 

CAGE Code – Commercial and Government Entity Code 

CLIN – Contract Line Item Number 

CNE – Custom Named Entity 

CNN – Convolutional Neural Network 

DART – Data Analytics Resource Team 

DLA – Defense Logistics Agency 

DoDAAC – Department of Defense Activity Address Code 

FN – False Negative 

FP – False Positive 

FSC – Federal Supply Class 

GUI – Graphical User Interface 

ML – Machine Learning 

OCR – Optimal Character Recognition 

NER – Named Entity Recognition 

NIIN – National Item Identification Number 

NLP – Natural Language Processing 

NSN – National Stock Number 

RNN – Recurrent Neural Network 

TN – True Negative 

TP – True Positive 

Regex – Regular Expression 

SVM – Support Vector Machine 
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