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Abstract

Simulated combat requires knowledge of how both friendly and enemy forces are

progressing relative to the stated friendly objectives and the believed enemy objec-

tives. In the Department of Defense (DoD), the structure of these objectives is hierar-

chical, from the national strategic level down to the tactical level. Military assessment

seeks to answer two primary questions: 1) are we creating the effects that we desire?

and 2) are we accomplishing tasks to standard? Little research has been conducted in

assessment methodologies for simulated combat. Some predominant assessment ap-

plication arenas are education and gaming, which provide useful lessons for military

combat assessment within a simulation. This work steps through several desirable

characteristics for a simulated combat assessment methodology gleaned from DoD

policy and these areas of research. After developing a value hierarchy from these

characteristics, this thesis provides and evaluates several candidate methodologies

for use within a combat simulation – the existing Combat Effectiveness & Combat

Vulnerability methodology within the Bayesian Enterprise Analysis Model (BEAM),

Bayesian Networks, Value-Focused Thinking, and Linear Programming. Each alter-

native’s evaluation is informed by its application to a small combat simulation. We

then create an alternative from the Value-Focused Thinking and Linear Programming

alternatives with a better evaluation that the other four. The thesis terminates with

some conclusory thoughts on the Linear Programming and ideas for future research.
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COMBAT ASSESSMENT FOR THE SIMULATION OF WARFARE

I. Introduction

Similar to real war, combat simulations require knowledge of how friendly and

enemy forces are progressing. This knowledge extends potential simulation stopping

conditions beyond the temporal and allows for the analysis of progress in relation

to time, money, and asset posture. While recording the destruction of assets and

utilization of consumables may provide worthy analytical results, commanders are

often interested in the broader question, did this scenario result in a win or a loss?

To answer this question, a simulation must contain some definition of winning or

losing. This is most simply attained via stated objectives to complete. Combat

simulation must be able to assess the operational environment and report progress

toward or from these objectives. From the concrete (e.g., destroy all enemy ports)

to the more abstract (e.g., achieve naval superiority) objectives, a singular combat

assessment methodology inside of a simulation should be versatile enough to provide

an answer to the win-loss question in the face of many different definitions of winning.

This thesis provides an answer to such a methodology to be used in campaign-level

combat assessment for simulated war.

A straightforward definition of assessment is “the process of using data to demon-

strate that stated goals and objectives are actually being met” (1, p. 554). In the

defense realm, the United States Joint Chiefs of Staff (JCS) define assessment as “a

continuous process that measures the overall effectiveness of employing joint force ca-

pabilities during military operations” (2). In general, assessment is a word used for

continual or ongoing feedback intended to improve a process. In more formal settings,
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assessment is divided into two categories: summative and formative. Summative as-

sessment, or what some may term as evaluation, performs post-hoc reviews of perfor-

mance. Examples of summative assessment include simple grading and comparisons

to a benchmark and statistical or other analytical methods for obtaining comparative

results from process outputs. The “external” (3, p. 19) characteristic of summative

assessment naturally leads to its presentation of results as distant and/or static. Some

examples of summative assessment include yearly personnel reviews and appraisals,

student exams, and business metrics reporting. Alternatively, formative assessment

focuses on continuous learning processes, intended to provide feedback during a given

process (4). In education, formative assessment includes a collaboration of the student

and the assessor to “actively produce [the student’s] best performance” (5, p. 242).

Interactive in nature, formative assessment intends to enhance performance before a

process is ended, leveraging data (or experience) to customize the aid given to the

assessed party. In this way, formative assessment may also include progress tracking

or reporting. This thesis focuses on formative assessment methodologies within the

context of campaign-level simulated war. We provide a suggestion to the question,

“how should one approach campaign-level combat assessment within a computational

simulation?”

The approach to assessment within a simulation of war, particularly if used for

military training or analysis, should be to mimic actual decision-makers’ assessment of

the war effort. In actual combat contexts, military subordinates and analysts prepare

an assessment for their commanders’ situational awareness. The commanders use the

assessment to provide further direction to manipulate the operational environment.

As we model a war effort within a simulation of combat, the assessment portion

should effectually be a model of the combined subordinate/analyst assessment and

commander feedback. We include this concept in our value hierarchy for combat

2



simulation assessment approaches in Section 3.1. Adjacently, we include the necessary

characteristic that the methodology should be simple in its communication, allowing

for streamlined presentation to commanders and other decision-makers. Useful to

simple communication is the distilling of assessment outcomes into categories (e.g.,

win or loss), which is discussed in more detail in Section 3.1.

As the authoritative source on joint force operations, the United States JCS’s

“Joint Publication 3-0” (2) provides insight into the type of decision-making to be

mimicked. The JCS concern themselves most with “operation assessment,” which is

the process used to “measure progress toward accomplishing tasks, creating conditions

or effects, and achieving objectives” (2, p. II-9). The JCS assert that operation

assessment should “begin during mission analysis when the commander and staff

consider what to measure and how to measure it” (2, p. II-9). For a computational

model employed in the field, this step would occur before the model is run, in which

analysts set the preliminary objectives and any initial parameters. Furthermore, an

“objective” in this definition is a goal that directs a course of action. An objective

may be a phrase, as given in the National Strategic Objective for the DoD, or it

may be the goal of an individual military task. In any case, the objectives within an

assessment methodology for a simulation of war dictate where the proxy commanders’

attention lie and in which direction they suggest movement.

Figure 1 provides the nested relationship between different levels of warfare with

corresponding objectives. Within military applications, the assessment framework

given in the purple arrow of Figure 1 is often called a “strategy-to-task” framework

(6; 7; 8). Beneath objectives in the framework are effects that may be assessed. An

“effect” is “the result, outcome or consequence of an action” (2, p. GL-9). A “task” is

considered to be the smallest unit of military operation, ranging from destruction of

an enemy asset to shipment of materiel. Some tasks are the objectives themselves, and

3



some tasks support corresponding objectives with no intermediary effects. However,

as Figure 1 illustrates, higher-level objectives inform lower-level objectives, which in

turn direct military operations at all levels. Meanwhile, assessment is the mechanism

used to provide bottom-up feedback. In the provision of feedback, assessment should

answer two key questions: 1) “are we creating the effect(s) or condition(s) in the

[operational environment] that we desire?” and 2) “are we accomplishing tasks to

standard?” (2, p. II-11).

Figure 1: Interaction of Assessment as Defined by the JCS (2)

The focus of these two central assessment questions naturally leads combat assess-

ment of simulated war to the formative realm. Although analysts have traditionally

answered these questions retroactively using summative assessment methods, forma-

tive assessment allows for a reactive simulated combat environment when paired with

the intent of answering the two key questions. With formative assessment methods,

4



the simulation (or commanders) may receive real-time updates of the operational en-

vironment status in relation to specific objectives. Rather than performing post-hoc

analyses, formative assessment more closely mimics the real-time war effort of assess-

ing battle damage against friendly forces along with mission debriefs and intelligence

reporting on adversary units. As such, this thesis focuses on formative assessment

methodologies.

The remainder of this thesis is devoted to synthesizing JCS operational assess-

ment requirements into a coherent structure for effective deployment of an assessment

methodology within a combat modeling simulation environment. Gallagher et al (9)

use resolution to define different levels of combat: system/engineering, engagement,

mission, campaign, defense enterprise, and whole government. JCS doctrine estab-

lishes that each level of combat resolution be hierarchical in its assessment. This

thesis does not attempt to narrow the scope of assessment to any particular engage-

ment resolution; rather, we present general results in the attempt to apply to the

broadest set of DoD applications possible. This research is focused on answering two

research questions:

Research Questions

1) What are the desired characteristics of a combat assessment methodology

for a programmatic/computerized simulation?

2) How should one conduct combat assessment within a programmatic simu-

lation of warfare?

The next chapter provides an introduction to assessment through other predom-

inant application areas. Taking the lessons learned from Chapter II and JCS as-

sessment guidance, we construct a value hierarchy in Chapter III. Presenting several

5



alternative methodologies for evaluation, we investigate their mechanics in a small

combat simulation in Chapter IV. We then evaluate these alternative assessment

methodologies in Chapter V for use in simulated warfare. Chapter V ends with a

recommendation for a methodology for simulated combat assessment. We provide

some concluding remarks and suggestions for further research in chapter VI.

6



II. Predominant Contributions to Assessment

In this section, we summarize and comment on the efficacy of several assessment

applications. We utilize the various assessment approaches presented to develop a

hierarchy of values in Section 3.1 that may be used to determine the worthiness of as-

sessment approaches for combat simulations. Commencing with the readily recalled

application area of education, we demonstrate how, historically, these assessment

frameworks lack applicability in the combat assessment realm. Continuing with an

example of assessment in games, we comment on the automation of assessment in

chess. In this case, although formative assessment is tackled marvelously, the imple-

mentation of artificial intelligence (AI) is not reasonable for a combat simulation due

to technological constraints. A combination of education and gaming is subsequently

presented as a modern and promising area of research that may contribute to combat

assessment within simulated warfare.

The National Center for Biotechnology Information (NCBI) defines an assessment

framework as a “structured conceptual map of the learning outcomes of a programme

of study along with details of how achievement of the outcomes can be measured”

(10). Education is severely lacking in assessment frameworks as the NCBI defines.

Many education assessment methodologies that provide conceptual maps or learning

objectives do not explicitly link student progress to these objectives. Others provide

links between student learning and achievement of objectives via a Likert scale, but

then do not connect these scores to a larger framework. The International Associa-

tion for the Evaluation of Educational Achievement (IAEEA) provides an archetypal

educational assessment framework (11). Since the IAEEA reaches schools across 55

countries and in every continent (p. 78 – 81), the assessment framework is also

widely accepted. However, the framework is mostly qualitative in nature. As such, it

does not provide a structured conceptual map. While the authors graphically display

7



learning outcomes (p. 61), they do not clearly state the mechanisms through which

learning outcome achievement should be measured.

Some in the educational realm have developed assessment frameworks that have

both the requisite conceptual map and details connecting student learning to achieve-

ment of objectives (12; 13; 14). Even so, such frameworks are largely untranslatable

into the context of simulated combat, as educational assessment is historically summa-

tive. Standardized testing is a frequently recalled example of the summative nature

of most educational assessment (15). The assessment framework in the context of

these tests includes a calculation of an overall grade-point average (GPA) from indi-

vidual course grades, which themselves are the composition of individual assignment

and exam grades. Whether the GPA framework is a summative or formative type of

assessment depends on the time context one considers. Over an assignment-level or

lesson-level time frame, the assessment seems more summative. In contrast, a longer

time frame, say a semester or year (or longer), provides ample opportunity for sub-

stantial formative assessment. On an assignment level, the minimum requirement for

completion of the assessment of the assignment is typically the assignation of either

a letter (e.g. A, B, C, etc.) or a percentage (0% – 100%). This minimum effort is

clearly summative assessment. A more involved summative feedback could also look

like correction of punctuation or addressing a calculation error. These examples pro-

vide the student with knowledge of the error, but do not address the learning deficits

that caused the error. Individualized feedback addressing learning gaps or tips for

how to progress toward a better assessment introduces formative assessment into this

time context. However, with a longer time frame, the assessment takes on a more

complex structure, as individual assignments may be graded dependently, referencing

prior feedback or student errors. In this case, the student learns, perhaps with ex-

ternal encouragement over time, why they are making the mistakes they are making.

8



The time-dependent nature of assessment within education may naturally produce

formative assessment.

The GPA framework is, in part, an analogue of some simulated combat method-

ologies. Most distinct from the GPA framework applied to education is that simulated

combat lacks the student. The presence of the student obscures the influence of the

GPA framework’s formative assessment, as human psychology intervenes. Computer-

ized simulations do not have this benefit of organic processing and learning. However,

assessment methodologies may be able to address performance gaps within the op-

erational environment. Current methodologies could, for example, explicitly search

and reference past behavior in their feedback mechanisms. While some methodolo-

gies grade or otherwise utilize minute combat interactions, others only assess the

aggregate effect of combat maneuvers. A singular value for progress towards scenario

objectives, which is analogous to the overall GPA, is useful in many cases. The GPA

framework does not perfectly translate its formative assessment characteristics into

the assessment of simulated combat. While formative assessment is not explicitly part

of the GPA framework, we recommended that the assessment of simulated combat

incorporates formative assessment explicitly. One way an assessment framework may

instantiate formative assessment is by addressing resource gaps with the achievement

of combat objectives. This concept is related to instructors providing their student(s)

individualized feedback of their learning deficits in order to progress toward classroom

objectives.

The GPA framework also contains another measure of influence for combat as-

sessment. The GPA framework inadvertently implies that its metric, given on a scale

of 0.0 - 4.0, accurately and succinctly summarizes student achievement. As a instan-
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tiation of the Law of Large Numbers,1 a student’s GPA approximates their actual

(theoretical) average achievement. Translating this into the assessment within simu-

lated combat, we should consider multiple possible next time-steps within a scenario,

rather than a single possible next time-step. We may do this by considering cases

where friendly or enemy assets, or both, are strong, weak, or of medium strength in

the next time-step. By sampling in this fashion, we can form a distribution of perfor-

mance across the next time step. In this way, we have a two-dimensional application

of the Law of Large Numbers, where having more possible futures sampled gives us a

clearer picture of the theoretical future distribution. It may be of interest to instead

obtain sample means of these levels of performance. In this case, the Law of Large

Numbers becomes two-dimensional, otherwise known as the Central Limit Theorem.

In either case, modeling variability within a simulation – a highly volatile context – is

advantageous. Therefore, distributional results would enhance an assessment frame-

work for simulated combat. In building the value hierarchy in Section 3.1, we consider

that the distributional output of an assessment framework for simulated combat is

one approach to recording the partial completion of objectives and categorization into

win, loss, or unresolved.

Simulated war also requires a well-defined assessment framework capable of quan-

titative integration with a feedback loop within a scenario. Research into games such

as chess has more recently involved applying search algorithms via AI to master the

game. A prominent example and breakthrough in AI technology is IBM’s AlphaZero,

which uses Monte Carlo Decision Trees as a basis for its in-game play (17). Rather

than an explicit assessment framework, however, machine learning applications create

models by training them on data. The model attempts to select the best move pro-

1First proved by Jakob Bernoulli in 1713, the Law of Large Numbers states that a large collection
of independent and identically distributed random variables has a sample mean approximately that
of their theoretical mean (16).
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vided any board configuration. Such a method for assessing the quality of any given

move is rather straightforward in that the desired end-state of the game is known:

end on a move in whose reply the opponent’s king is in direct attack and cannot

escape. Capturing this algorithmically is non-trivial, but at least the end-state is

known. Combat simulation is not as well-defined, as each combat scenario may have

different objectives. An additional complication of mirroring AI training techniques

in the simulated combat sphere is the sheer size of the decision space. In chess, the

decision space is moderate, as the number of legal moves is limited within each turn.

However, Shannon demonstrated that at there are roughly 7 × 1014 possible games

within just the first 5 turns (18). The difficulty with simulating chess lies in deciding

which of these games to play to maximize the probability of a win.

In simulated combat, the difficulty lies also in such a decision, although the deci-

sion space is much larger. Unhindered by the constraint of an 8× 8 board, simulated

combat has a decision space at least as large as the number of assets-to-locations

assignments. In modeling a country’s military assets, this lower bound becomes as-

tronomical. Therefore, training algorithms located in AI research and practice are

impractical with current technological constraints. Still, this area of research has

captured a way to assess progress toward a stated goal formatively, which is desired

in combat simulation assessment. In Section 3.1, we incorporate the need for com-

putational efficiency into the decision for an assessment methodology for simulated

warfare. The driving factor in this decision is the decision space’s size.

In the forefront of modern assessment research is serious games – a combination of

education and games as a way to measure student characteristics, rather than solely

their knowledge. Serious games are broadly defined as “digital games created not

with the primary purpose of pure entertainment, but [rather] with the intention of

serious use as in training, education, and health care” (19). Concerning the char-
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acteristics, the multiple-choice-question-type of student assessment fails miserably,

specifically when dealing with assessments of processes, such as in mathematics (20),

“complex problem solving, communication, and reasoning skills” (21). Serious games

have been used to assess levels of systematic thinking, inductive reasoning, creative

design skills, self-esteem, collaboration, interpersonal skills, and aggressiveness (22).

Assessment frameworks for the measurement of a user’s abstract characteristics can

be quite extensive. One such example is in the assessment framework of the game

Elder Scrolls IV: Oblivion (23). In addition to addressing the issue of statistical de-

pendence within a sequence of actions (23, p. 300), the evidence-centered Bayesian

model for assessing a player’s actions is capable of assessing both direct and abstract

goals. Section 3.2 explores this approach for combat simulation. However, combat

assessment could benefit from being able to distill abstract concepts into quantifiable

connections with individual operating environment actions. We consider these ideas

in our value hierarchy in Section 3.1.

A key component of assessment executed within serious games is assessment with-

out the user’s knowledge of being assessed. Stealth assessment – assessments that are

“embedded deeply within games to unobtrusively, accurately, and dynamically mea-

sure how players are progressing relative to targeted competencies” (24) – is the focus

of recent research tasked with this exact problem: observation of a process disturbs

the process itself.2 Fortunately, a computational simulation does not encounter the

same difficulty as observation of other processes, since the process being observed is

a programmatic model. A separate module may handle observations to gather the

information, and the simulation may resume afterwards, undisturbed. Nevertheless,

stealth assessment research may be tweaked to apply to combat modeling. First and

2The central problem with observational studies, sometimes referenced via the Heisenberg Un-
certainty Principle, is the inability to precisely measure quantum particles’ momentum and position
simultaneously. For more information, see (25).
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foremost, this research has tackled the issue of statistical dependence between actions

within a serious game and its consequence on assessment (24). That is, the actions

early on in a game (or in a series of combat actions) impacts the potential actions

later on in the game (or combat sequence). Second, stealth assessment has been

implemented in multiple scenarios to measure different types of learning and learner

attributes within serious games (26). Combat assessment can learn from this research

by utilizing the robust and flexible capabilities of stealth assessment in serious games.

We consider the statistical dependence of actions within the operational environment

as we incorporate multiple combat domains.

In this chapter, we reviewed and commented on assessment contributions outside

of simulated warfare applications. Education assessment delineates between sum-

mative and formative assessment, reflecting upon how providing resource gaps as

feedback can be instrumental to success. The GPA framework also naturally points

to the need for a distributional characterization of the operational environment. We

can categorize this distribution in terms of win, loss, and unresolved. Assessment

within chess demonstrated that even an enclosed-space game with scarce components

requires an efficient assessment methodology. Within serious games, we see the ben-

efit of incorporating abstract goals into an assessment methodology, as the simulated

combat application may utilize more ethereal objectives. Lastly, stealth assessment

delved deeper into serious games, revealing the significance of dependent actions as

relates to assessment within a multi-domain combat context. The next chapter syn-

thesizes these lessons learned with the JCS requirements from Chapter I to construct

a value hierarchy capable of evaluating potential methodologies for combat assessment

within simulated war.
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III. Value Hierarchy for Selecting an Assessment
Methodology

In this chapter, we develop a value hierarchy for the evaluation of assessment

methodologies within the simulated combat model context. We develop a set of mea-

surable and specific values for the hierarchy from the characteristics gleaned from

Chapters I and II. We end by providing several candidate assessment methodologies.

In the subsequent chapter, we demonstrate on a small application how these method-

ologies would function in a simulation of combat. We then utilize the information from

this chapter and Chapter IV to provide a detailed evaluation of the methodologies in

Chapter V and to evaluate our created alternative.

3.1 The Value Hierarchy

In this section, and throughout the rest of this chapter, we utilize the value hi-

erarchy concepts as prescribed by Ralph L. Keeney (27). We start this section by

providing and describing the devised value hierarchy for evaluating simulated combat

assessment methodologies. We then briefly discuss four methodologies to be consid-

ered as alternatives for evaluation by our hierarchy. The subsequent chapter presents

the mechanics of each methodology in a small combat simulation before evaluating

the methodologies in Chapter V, which ends by providing a suggested methodology

for use within a campaign-level simulation of combat.

A value hierarchy is an effective tool for quantitatively evaluating partial achieve-

ment of criteria. The value hierarchy proposed to evaluate the candidate assessment

frameworks is shown in Figure 2. The strategic objective of the framework is “Max-

imize the Suitability of the Assessment Framework for a Campaign-Level Combat

Modeling.” The fundamental objectives are to maximize realism, maximize efficiency,

and maximize robusticity. The fundamental objectives are colored green in Figure 2
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and are the first tier under the strategic objective.

Figure 2: Value Hierarchy for Selecting an Assessment Methodology

Several subsequent objectives are important to this hierarchy for connecting the

measurable objectives of the hierarchy to the desired aspects of an assessment method-

ology within a simulation of warfare.

The Realism portion of the value hierarchy addresses several key components of

a desired methodology: realistically mimic commander and staff decisions, simplify

communication, and completely and accurately assess the operational environment.

An assessment methodology can become more realistic by simplifying communica-

tion, maximizing the completeness and accuracy of the assessment methodology, and

by ensuring that the methodology includes all possible operational domains. By sim-

plifying communication, we mean that the structure of the methodology should be

reasonably similar to that of the strategy-to-task framework of Figure 1. An assess-

ment methodology can create this effect by having an integrated alignment of goals
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within the framework, connecting the lowest-level objectives with the highest-level

ones in a similar fashion to the strategy-to-task framework. However, to get to mea-

surable objectives, we break the alignment of goals concept down into the modeling of

relationships and the incorporation of different goal types. Within the relationship-

between-objectives concept, the assessment framework should model the interdepen-

dencies between objectives and imitate the strategy-to-task structure. Within the

JCS framework, objectives will not necessarily be independent. The framework should

therefore capture this aspect of the JCS hierarchy to maximize the accuracy of the

approximation to commander and staff decision processes. Under “Address Differ-

ent Goal Types,” a combat assessment methodology should also be able to include

both abstract and concrete, or direct, goals. Within the JCS strategy-to-task struc-

ture, both types of objectives will be utilized in real decision-making. An assessment

methodology for simulated combat should also be flexible enough to handle multiple

types of objectives to better mimic this decision process.

The second aspect of mimicking commander and staff decision-making is the com-

pleteness and accuracy of the assessment provided by a methodology. This objective

can be more technically phrased as the rationality of assessment. Two key aspects

of an assessment methodology’s rationality are whether or not, and to what degree,

it can appropriately assess the operational environment’s contribution to objectives

and whether or not its methodology provides a logistically feasible conceptualization

of the operational environment. The former aspect ensures both completeness and

accuracy by targeting the connection between the operational environment and the

assessment. The latter aspect contributes to the accuracy of the methodology. If the

methodology evaluates based on worst-case or best-case scenarios, then it may over-

allocate assets to the possible set of combat actions, and therefore assess a combat

posture that is logistically infeasible for that moment in the simulated war.
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The last aspect of realism addresses whether or not the methodology can incorpo-

rate multiple combat domains. In order to fully mimic commander and staff decision

processes, the assessment methodology cannot be blind to any part of the operational

environment.

The second fundamental objective in the value hierarchy given in Figure 2 is to

maximize efficiency. Here, we target the desired efficiency of an assessment method-

ology. The methodology must work efficiently within a modular programmatic en-

vironment, as well as be internally efficient. We can increase the efficiency of an

assessment framework via three lines of effort. First of all, limiting assumptions on

the adversary’s allocation limits the amount of data or computation necessary. If only

friendly asset information is required for the assessment, the speed of computation

will increase. Moreover, we can also limit the computational overhead to increase the

assessment methodology implementation’s efficiency. This includes larges quantities

of data as well as long algorithmic processes. These two objectives contribute directly

to technological efficiency. By being more efficient internally as a methodology, its

implementation should mirror this quality.

A combat assessment methodology should also fit well in a modular computational

environment, streamlining the coding structure. The key way for an assessment mod-

ule to communicate with other modules is by providing feedback to other modules.

This is the cornerstone characteristic of formative assessment. The major role that

combat assessment can play in providing a formative assessment for the simulation

is to analyze and report resource gaps. Here, the framework yields a personalized,

continual report of the potential improvements that the friendly side can make to ob-

tain a more positive assessment result. While addressing these gaps may result in a

heavier computational load, an assessment module improves its efficiency in commu-

nicating with other modules by minimizing its output data size. However, providing
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feedback increases the efficacy of assessment and improves the quality of either side’s

allocation.

The last fundamental objective is to maximize robusticity. Robusticity here is a

catch-all for the inclusion technical characteristics. Specifically, we break robustic-

ity into three components: allow for the partial completion of objectives, be capable

of including multiple combat domains, and address objective interactions. A robust

assessment methodology is able to account for and include several niche aspects of

simulated combat. For example, every assessment methodology should correspond

to at least one output – the overall rating. However, when subjected to quantitative

assessment, as we are in this case, we may want to distill the numerical rating into cat-

egories. A simple ternary option is win/loss/unresolved. Assessing a certain portion

of the simulation as one of these three labels can ease communication, simplify stop-

ping conditions, and lays the foundation for one way to improve simulation accuracy.

In the education portion of Chapter II, we saw the need to compile multiple outcomes

in an assessment. In combat assessment, this may look like splitting a scenario into

potential futures utilizing slightly different enemy/friendly allocations. Evaluating all

of these potential futures creates a probability distribution of assessment outcomes,

say on a domain of [0,1]. An assessment methodology capable of categorically sepa-

rating this distribution into the aforementioned ternary can then output a percentage

of the scenario won, lost, and unresolved. By dwindling the unresolved portion, we

can become increasingly accurate in our assessment.

Another facet of robusticity is the equitable application of the assessment method-

ology to all operational environment domains. While being able to include all domains

is an aspect of realism, an equitable methodology attributes proportional (or other-

wise weighted) significance to the domains. For example, it may not be reasonable to

assess the space domain as equal to the ground domain if the size of the space opera-
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tional environment is significantly smaller than that of the ground domain. However,

the quantity of assets may not be the sole indicator of import. No matter the mo-

tivating factor, attribution of weights to different objectives allows for an equitable

policy according to stakeholder or analyst input.

The third component of increased robusticity is to account for correlations between

objective achievement. One example of the statistical dependence of achievement to

objectives is a situation where we have the following two objectives: 1) achieve air

superiority, and 2) destroy enemy Integrated Air Defense Systems (IADS). Clearly,

destroying enemy IADS is one way that we can achieve air superiority. Achievement

of these two objectives is therefore coupled. An assessment methodology that can

account for these dependencies will improve fidelity.

3.2 Potential Simulated Combat Assessment Methodologies

This section introduces the list of four alternatives to be evaluated through value

hierarchy described above. All assessment methodologies have only two potential

data inputs to consider: the perceived resulting assets from the previous time step’s

combat resolution and the current perceived forces.

3.2.1 Combat Effectiveness and Combat Vulnerability

The following explanation of the Bayesian Enterprise Analysis Model’s (BEAM’s)

current methodology is summarized from the BEAM overview article, Bayesian Anal-

ysis of Complex Combat Scenarios (28).

To understand the assessment methodology Combat Effectiveness and Combat

Vulnerability (CE/CV), we first explain some of the mechanics of the simulation and

of the adjudication algorithm. A scenario within BEAM is broken into phases, which

progress linearly in time. Each phase has a set of user-defined goals, which are either
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abstract (e.g. air superiority) or concrete. The simulation progresses discretely, by

a user-defined interval, called a time-step. Each time-step has 16 sets of combat,

called threads. These threads have associated weights summing to unity, as each is

relatively more or less likely to occur than others. This construction adds variability

to the probabilistic outcomes from the adjudication algorithm.

The adjudication algorithm is centered on data, fed from the Joint Wargaming

Analysis Model (JWAM) (28, p. 15). These data help to construct an “extensive

set of Conditional Probability Tables (CPTs)” (28, p. 15), tailored to specific mis-

sions and asset types – targeted, defending, and attacking assets. CPTs represent the

stochasticity of adjudication, and function to incorporate multiple concurrent runs

(28, p. 14). An example of a CPT is taken from (28) in Table 1. The outcomes are

the proportion of the targeted asset that remains functional, represented in probabil-

ity of occurrence. Note that each row of Table 1 sums to 1, since one of the outcomes

must occur. In addition, all columns, save the first and last, sum to an equal probabil-

ity – 0.6. This is because, “within BEAM, all of the CPT outcomes are represented

as discrete-uniform distributions of specified assets” (28, p. 16), denoted by U(a).

These distributions are not homogeneous, as the width of each bin differs with the

asset and the time-step. For example, one asset may have a discrete-uniform distri-

bution of U(α) = [0.25, 0.25, 0.25, 0.25] with bin boundaries bα = [0, 0.2, 0.5, 0.7, 1],

while another asset has a discrete-uniform distribution of U(β) = U(α) but with bin

boundaries bβ = [0, 0.5, 0.6, 0.8, 1].

To integrate asset entities with probabilistic outcomes of the CPTs, BEAM rep-

resents assets with their probability distribution in state vectors (28, p. 8). The

interpretation is the remaining capability or resource of the asset from the original

value, given within the continuous interval [0,1]. For example, if a scenario starts off

with 10 F-16s, but this time-step sees only three remaining, then the F-16’s remaining
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Table 1: A Notional Conditional Probability Table (CPT) of targeted enemy assets
distribution based on the ratio of defensive to offensive missions (28, p. 16).

Def:Off Targeted Asset Quantity Bins
Ratio [0.0] (0,0.2] (0.2,0.5] (0.5,0.6] (0.6,0.9] (0.9,1.0] [1.0]

0:1 1 0 0 0 0 0 0
1:2 0 0.40 0.28 0.17 0.10 0.05 0
1:1 0 0.16 0.26 0.30 0.19 0.09 0
2:1 0 0.04 0.06 0.13 0.31 0.46 0
1:0 0 0 0 0 0 0 1

capability is 0.3. The probability distributions on this interval are discrete-uniform,

with four equal-probability bins. The quartiles are referred to as low, fair, moderate,

and high. Combining friendly and enemy assets in the 16 total combinations of these

quartiles results in the 16 threads per time-step (28, p. 8–9).

BEAM’s adjudication algorithm evaluates each of the 16 threads and “catego-

rizes its outcome into three possible states: (1) one side [has] achieved all of their

phase goals, (2) one side loses the war, or (3) the [combat] is not yet resolved” (28,

p. 22). Threads falling into the first category are stored until the proceeding phase.

Those in the second category are stored until the end of the scenario, as they have

terminated. Threads in the third category proceed into subsequent time steps until

one side’s phase goals have been achieved, or until the proportion of category three

threads is insignificant in comparison to its complement. (Thread proportions are cal-

culated via the product of their respective thread weights). Phase goals are “stated

in terms of achieving one of five states of effectiveness relative to the enemy” (28,

p. 23): Enemy Supremacy, Enemy Superiority, Contested, Friendly Superiority, and

Friendly Supremacy. These regions can be visually demonstrated by two-dimensional

cross sections between intervals in the axes Combat Vulnerability (CV) and Combat

Effectiveness (CE), as shown in Figure 3. Additionally, the user inputs a positive

probability, say ρ, as well as a parameter defining the size of the regions, ∆. Once the

thread achieves the defined probability ρ of being in one of the regions, the thread
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has achieved the phase goal sufficiently. This approach therefore assumes monotonic

movement toward either Friendly Supremacy or Enemy Supremacy after the proba-

bility ρ has been surpassed.

Figure 3: Current Assessment Approach within BEAM

Mathematically, CV is the “probability distribution of average losses of friendly

action assets for [a] mission group G” (28, p. 24). Let aA denote an action asset, so

that the CPTs provide the discrete-uniform distribution of these assets after combat,

U(aA). Then let δaA be the “ratio of the resulting number of assets to the allocated

number of assets” (28, p. 24), which are found in the ranges in the column headers of

each CPT. The body of each CPT contains the probability Pr{δaA} of being assigned

to the ratio δaA . To obtain the distribution of CV, we average the asset distributions

across all missions in the mission group G

U(CVG) =
1

|G|
∑
aA∈G

U(δaA∈G) (1)

as on page 25 of (28).
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CE is calculated similarly. We now consider attacking enemy assets, aE ∈ E,

which may be destroyed, and defending friendly assets, aD ∈ F . Now, δaE represents

the ratio of enemy assets destroyed and δaD is the ratio of surviving friendly defensive

assets. Letting G = E ∩ F , we have the distribution of CE as

U(CEG) =
1

|G|

(∑
aE∈E

U(δaE∈E) +
∑
aD∈F

U(δaD∈F )

)
(2)

as on page 25 of (28).

The distributions U(CVG) and U(CEG) are given by the probability of being in

each of the following intervals: [0,∆], (∆, 1−∆), and [1−∆, 1]. The joint probability

distribution of CE and CV yields probability of being in each region of Figure 3.

Lastly, consider the states Si, i = 1, 2, 3, 4, 5, associated with the regions in Figure

3. Achieving a particular phase goal is defined by meeting or exceeding the threshold

ρ of being in a state Sj, j = 1, 2, 3, 4, 5, such that j ≥ i and Si is the goal state of

the phase goal. A loss of a phase goal occurs when the probability of being worse

than that phase goal Sj, j < i, meets or exceeds ρ. If any single phase goal is lost,

the thread is considered lost. However, all phase goals must be won in a thread for

the thread to be considered won. Any thread not meeting one of these two criteria is

unresolved (28, p. 26).

3.2.2 Bayesian Networks

A Bayesian Network is a graphical model used “for representing multivariate prob-

ability distributions” in a directed acyclic graph, oft exploited for its ability to con-

vey and calculate conditional probabilities. Having unidirectional arcs, a Bayesian

network explicitly defines dependencies; nodes (variables) at the tail of the arc are

dependent upon those at the head of the arc.

To build a Bayesian network by hand, there are a few basic rules. Consider

23



random variables A,B, and C. We can position these variables in a directed graph

using various combinations of arcs. Figure 4 shows four foundational examples. In

network 1 of the figure, we have placed no arcs. In this case, all three random variables

are marginally independent of each other. Therefore, the joint distribution is simply

the cross product of the three univariate distributions.

Figure 4: Basic Bayesian Networks and their Associated Joint Distributions

Network 2, however, introduces dependence. In this case, variable A as an influ-

ence on variables B and C. B and C are considered the effects of the cause, A. We

consider that B and C are conditionally independent of each other, in the presence

of A; that is, they are dependent only through their conditional dependence upon A.

We can find the joint distribution representing this Bayesian network by crossing the

two conditional distributions with each other and with the distribution of A.

Flipping Network 2 on its head yields Network 3 from Figure 4. In this case, we

have independent causes influencing a single effect. Since C is dependent upon both
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A and B, we cross the conditional distribution f(C|A,B) with the two univariate

distributions of A and B.

The last foundational example is Network 4. Here, the network is based on Marko-

vian principles. The Bayesian network here is similar to considering an entry a1,1’s

distribution in a transition matrix after two iterations. With this linear dependence

network, we can find the joint probability distribution defining this Bayesian network

by crossing the conditional distributions of the variables from the right side of the

network to the left.

Shute et. al. (23) explicate the usage of a Bayesian network within an assessment

context. The authors provide a tangible example of dynamic stealth assessment in

immersive games, which they wish to expand to serious games for educational pur-

poses in the future. In their article, the authors focus on the game Elder Scrolls IV:

Oblivion as an adaptive immersive game that could allow for a Bayesian network inte-

grated with individual player data. Specifically, Shute et. al. break down the concept

of “Creative Problem Solving” into a Bayesian network and some notional player data

to instantiate an example of dynamic stealth assessment of abstract attributes. Their

main result is shown in Figure 5.

The joint probability distribution defining the Bayesian network in Figure 5 is

easily deduced from the basic conditional probability rules established above. Let

CPS, PS,C,E,N,OE, and ON stand for CreativeProblemSolving, ProblemSolving,

Creativity, Efficiency, Novelty, ObservedEfficiency, and ObservedNovelty, respectively.

Then the joint distribution defining this Bayesian network is

f(CPS, PS,C,E,N,OE,ON) =

g(OE|N) · h(OE|E) · i(N |C) · j(E|PS,C) · k(C|CPS) · l(PS|CPS) ·m(CPS)

where each of g, h, i, j, k, l,m are functions defining the corresponding distribution.
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Figure 5: Example Bayesian Network for Assessing a Player’s Creative Problem Solv-
ing, from (23, p. 21)

While Figure 5 exemplifies the modeling aspect of a Bayesian network, the condi-

tional probabilities are driven by constructed tables relating data to the model. For

example, if a combat objective to be scored were efficiency, with the end goal as

destroying a navy fleet, then deploying M-1 Abrams tank platoons would likely have

a much lower probability, say 0.05, than would deploying a squadron of F-16 fighter

planes, which may result in a probability upwards of 0.90. Note that these tables

of data are constructed from practical application and/or expert opinion. Although

perhaps initially an arbitrary choice, these task-score assignments may be dynamic

and data-driven within a simulation of combat. Schute et. al. (23) suggest novelty

be quantified via the proportion of other players that have performed the same task,

while quantifying efficiency based on the time elapsed in completing a certain task.

The player’s observed values from 0 to 1 for each of these attributes are provided in

the form of a distribution in the lowest two nodes of Figure 5. In the combat example
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above, if M-1 Abrams tanks historically always fail to defeat a navy fleet, then they

may have an efficiency of 0 for that task.

To apply a Bayesian network to a more concrete top-level node being assessed,

one might imagine certain tasks that could be performed within the combat context

that may contribute, in varying degrees, to the accomplishment of the network’s top-

level objective. For example, if a friendly goal is to destroy an enemy base, then

sending in various types of friendly offensive assets to attack the base may link to

equally-as-various levels of destruction. In addition, sending in defensive assets, or

combinations of offensive assets, may bolster the effectiveness of a single asset type

in accomplishing the task. In this way, conditional relationships based on asset types

could represent the nodes in a Bayesian network for a more concrete objective.

For a more in-depth theoretical understanding of Bayesian networks, the interested

reader is directed to (29).

3.2.3 Value-Focused Thinking: Objectives Hierarchy

All citations in this subsection reference Ralph L. Keeney’s book, Value-Focused

Thinking (27), unless otherwise stated.

An objectives hierarchy (OH) is the main assessment structure from value-focused

thinking (VFT), a subset of decision analysis. However, it typically takes multiple

steps to produce a fully-functional OH. VFT commences with thinking about what is

important within a specific decision context, or problem context (p. 29 – 33). Within

the decision context, one may prefer to see specific outcomes, such as ”maximize

profit.” This is an example of an objective. There are two types of objectives within

an OH: fundamental and means (p. 34). While a “fundamental objective character-

izes an essential reason for interest in the decision situation, [...] a means objective is

of interest in the decision context because of its implications for the degree to which
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another (more fundamental) objective can be achieved” (p. 34). We can link these

fundamental and means objectives together in a “means-ends objectives network” (p.

69-70). Objectives reasoned out to be “ends objectives” (p. 66–68) are candidates for

the fundamental objectives. For each fundamental objective, we then build a funda-

mental objectives hierarchy, which specifies the important aspects of each fundamental

objective (p. 71). From these fundamental objectives, it is often helpful to identify

an overall fundamental objective (p. 77–78). The overall fundamental objective is

the root motivation for the decision context. However, more broadly, an organization

may have general driving objectives, called strategic objectives, which “provide the

foundation for creating alternatives or identifying any decision opportunities based

on values” (p. 207).

In the DoD realm, VFT could be applied at each level of warfare (see Figure

1). However, within each level, a VFT objective could be either a DoD objective or

an effect. For better specificity, a VFT fundamental objective closely corresponds

to a DoD objective, and a VFT means objective closely corresponds to an effect or

task. The overall fundamental objective does not have an explicit DoD counterpart,

although the strategic objective for a decision context mirrors any DoD strategic

objectives applicable to a decision context.

To evaluate alternatives, one must create quantitative attributes. These come

in one of three categories: natural, constructed, and proxy (p. 101–103). Natural

objectives are “those in general use that have a common interpretation to everyone”

(p. 101). Constructed attributes are typically reserved for more abstract objectives,

and may involve subjective – though rigorously defined – numerical indicators for

each level of the attribute (p. 101–102). Lastly, a proxy attribute is used whenever

it is “very difficult to identify either [a natural or constructed] attribute for a given

objective” (p. 103). Therefore, one creates an attribute that indirectly measures the
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Figure 6: From (30), Figure 2, a means-ends objectives network. An arrow indicates
that achieving the former objective influences achieving the latter objective.

objective in question, such as a “natural (direct) measure for a means objective,” so

that the “levels of that attribute are valued only for their perceived relationship to

the achievement of that fundamental objective” (p. 103).

Measurement and weighting of the objectives can be done in many fashions. For

information regarding measurement of the objectives see Keeney (32, p. 27-42), and

for weighting see Keeney (33). The end result of these actions is a (linear) value

function of the form

u(x1, . . . , xN) =
N∑
i=1

kiui(xi) (3)

where ui, i = 1, . . . , N, is the utility function provided by the measurements of the

individual objectives, ki, i = 1, . . . , N, is the weight on the ith utility function (with∑N
i=1 ki = 1, and xi, i = 1, . . . , N, is alternative X’s impact level for attribute i.
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Figure 7: From (31, p. 9), Figure 4.1, an objectives hierarchy for the Caltrans Project.
The left-hand side provides the strategic objective, which has 3 fundamental objec-
tives in orange. The lowest-level objectives have attributes (in purple), though not
all are pictured.

Equation (3) can be utilized to score a single combat outcome by registering

different characteristics of the simulation in terms of the attributes’ utility functions.

An overall utility value of 0 ≤ u(x1, . . . , xN) ≤ 1 is the result, which could be utilized

to determine a distance away from completing all combat objectives.

3.2.4 Linear Program

In this subsection, we describe how a linear program (LP) can be utilized for

the assessment of simulated combat.1 In the previous alternatives, the methodolo-

gies provided assessments for the current time-step retroactively; that is, both sides

commit assets (allocation) and then combat is resolved (adjudication) before the sim-

ulation conducts assessment of the resolved combat. Optimization requires a different

1For an introduction to Linear Programming, see (34) or (35)
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perspective, since one cannot optimize the past.

Here, we apply linear programming to evaluate the potential progress of friendly

forces toward combat objectives, in search of an optimal allocation for the next time-

step. We demonstrate an array of archetypal objectives and constraints which may

be used in an applied LP to simulated combat. Consider the following sample formu-

lation:

Objective

The following linear program optimizes the combat assessment of a particular

time step in a simulation of war. The decision space is the allocation of assets

to particular missions. The decision variables reflect this. The objective func-

tion includes the objectives with relative priorities given by the corresponding

coefficients. Each of the objectives is linearly scaled to be between 0 and 1.

Therefore, the achievement of a specific allocation in terms of an individual ob-

jective is provided as a proportion by the value of that decision variable in the

objective function.

Assumptions

We assume that there are finitely many assets and missions, so that the set

of assets-to-missions combinations is also finite, although it may be large. We

assume also that we can approximate fairly well how the enemy will allocate their

assets and to which missions they will allocate these assets, given a particular

friendly allocation. Lastly, we assume that all friendly assets available for the

next time step can be used in any of the possible missions for the next time

step.

Sets

• M - the set of sets of friendly missions available for the next time step

• A - the set of sets of potential friendly assets allocations for the next time
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step

Parameters

The following linear program utilizes the parameters

• a1mj - The number of enemy aircraft flown per enemy sortie given friendly

mission set m ∈M and asset set j ∈ J

• c1 - The total number of enemy aircraft available for the next time step,

regardless of friendly allocation

• a2mj - The average number of enemy aircraft that can take flight and land

at the runways included in the enemy mission set, given friendly mission

set m ∈M and asset set j ∈ J , for the next time step

• c2 - The total number of enemy runways available and included in the

enemy’s mission set for the next time step, regardless of friendly allocation

• a3mj - The average amount of fuel required for the enemy’s sorties to be

flown in the next time step, given friendly mission set m ∈ M and asset

set j ∈ J

• a4mj - The total number of enemy sorties to be flown in the next time step,

given friendly mission set m ∈M and asset set j ∈ J

• c5 - The goal number of enemy sorties which will denote achievement of

total air superiority

• c6 - The maximum possible number of enemy sorties for the next time step.

This is equivalent to max{c1/a1mj : m ∈M, j ∈ J}

• a5 - The total number of enemy F-35’s destroyed from the beginning of the

scenario to the end of the most current time step

• a6 - The total amount of enemy fuel in their storage and supply chain at

the beginning of the scenario
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Decision Variables

The following linear program utilizes the decision variables

• x1 - The level of air superiority achieved

• x2 - The level of the objective destroy 100 F-35s achieved

• x3 - The level of the objective cripple enemy fuel supply achieved

• x4mj - The number of enemy sorties associated with the selection of their

next time step’s mission set

• x5mj - The approximate number of enemy F-35’s to be destroyed in the

next time step, given both friendly and enemy allocations.

• x6mj - The remaining enemy fuel supply (storage plus delivery) available

after applying both friendly and enemy allocations in the next time step

Formulation

Below is the combined formulation for a sample objective function and objec-

tives. The constraints relay how each objective is defined.

max w1x1 + w2x2 + w3x3 (4)

s.t x4 ≤
c1mj
a1mj

∀m ∈M, j ∈ J (5)

x4 ≤ a2mjc2mj ∀m ∈M, j ∈ J (6)

x4 ≤ a3mja4mj ∀m ∈M, j ∈ J (7)

x1 ≤ 1− x4mj − c5
c6 − c5

∀m ∈M, j ∈ J (8)

x1 ≤ 1 (9)

x2 ≤
a5 + x5mj

100
∀m ∈M, j ∈ J (10)

x2 ≤ 1 (11)

x3 = 1− x6mj
a6

∀m ∈M, j ∈ J (12)
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x1, x2, x3, x4mj, x5mj, x6mj ≥ 0 ∀m ∈M, j ∈ J (13)

Objective function (4) contains sample weights on the three combat objec-

tives. It is not necessary that these weights be between 0 and 1, nor that they

sum to 1. However, doing so means that the interpretation of the objective func-

tion’s value for any allocation is roughly an overall assessment between 0 and 1.

Constraints 5 – 9 represent the first objective, achieve air superiority. We cannot

become logistically infeasible by flying more aircraft than we have (Constraint

(5)), by flying and landing more aircraft than the enemy runways can handle

(Constraint (6)), or by using more fuel than the enemy has available (Constraint

(7)). With the goal of getting enemy sorties below a4, Constraint (8) yields in-

creasing value for lower quantities of enemy sorties. Pairing this constraint with

Constraint (9), the maximization objective sets x1 = min{1, 1− x4−a4
c4−a4 }.

Constraints (10) and (11) reference the second objective, destroy 100 F-35’s.

Equivalent to objective 1, these constraints set x2 = min{1, a5+x5
100
}.

Lastly, Constraint (12) records the achievement of depleting enemy fuel. We

subtract from unity since decreasing quantities yield a more desirable result.

This objective does not need a secondary constraint to cap x3 at 1 because x6

is naturally bounded above by a6 and is constrained below in Constraint (13)

by 0.

The above linear program demonstrates a few basic components of applying linear

programming to simulated combat assessment. First of all, in defining the objectives

to be between 0 and 1, and subsequently weighting these objectives in equation 4 such

that the weights sum to unity, we have an objective value that is be easily intelligible

– the objective value for any mission set is the projected scenario-level assessment
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for the next time step. Second, this linear program contains one abstract objective

and two direct, or concrete, objectives. The abstract objective obtain air superiority

is systematically broken down into observable components. These components are by

no means wholly representative or optimal, but rather comprise a unique manner by

which to represent this abstract objective.

The first objective also handles increasing levels of achievement with decreasing

values. Note that a maximum value for the domain of the decision variable is required

(i.e. c4). Here, and with the second objective, we demonstrate how to effectually use

multiple constraints to set a decision variable equal to a minimum so that achievement

of an objective is capped when a decision variable reaches a certain value. Lastly, the

third objective is straightforward in its constraints. Here, we demonstrate the simple

application of an objective with decreasing preference.

We end this subsection by noting that the linear programming presented here

is the most basic form of mathematical programming. Dynamic programming, non-

linear programming, and mixed-integer (or integer) programming are variants of linear

programming which may be useful for simulated combat assessment. However, we

present a basic linear programming example and concept to demonstrate the pros

and cons of mathematical programming.

The next chapter introduces a small application problem and individually utilizes

each of the four methodologies presented here to demonstrate their construction in

action. The subsequent chapter amalgamates the information from this chapter and

the next to provide an evaluation of the alternatives in reference to the value hierarchy

in Figure 2.
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IV. Test Application

In this chapter, we demonstrate how the four assessment alternatives could operate

in a simple simulation of combat via a variation of Dresher’s Tactical Air War game

from Berkovitz and Dresher (36). The Combat Effectiveness & Combat Vulnerabil-

ity method evaluates individual mission areas to determine the current friendly and

enemy abilities to fight back against their adversary. We will demonstrate that the ap-

plication provides a pessimistic application. Due to its lack of determining an enemy

allocation, the enemy may reuse its forces for each mission. The Bayesian network

approach requires a heavy amount of pre-processed data. We provide notional data,

which could be generated by either expert opinion or historical/simulation data. This

approach predicts an expected assessment for the next time-step based on the con-

ditional probabilities between enemy and friendly force allocations. We then present

the Value-Focused Thinking Objectives Hierarchy, which closely mirrors the JCS’s

strategy-to-task framework. This methodology utilizes an additive model based on

the achievement of individual campaign objectives. Lastly, we present a linear pro-

gram for Dresher’s game. This alternative optimizes the next-step’s assessment in

terms of notional objectives, utilizing all logistically friendly and enemy allocations

as inputs.

Before presenting examples of each alternative’s application, we first distill the

game to a point where each assessment methodology can evaluate a hypothetical al-

location and either recommend a next allocation of friendly assets and/or comment

on potential friendly achievement for the next time-step. We utilize this demonstra-

tion in the evaluation of the four alternatives and our created alternative in Chapter

V.
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4.1 Dresher’s Game

Dresher’s Tactical Air War Game consists of a series of maneuvers (a strike)

between two opposing forces - Blue and Red. The original game assumes each side to

have a fixed number of two generic types of aircraft to allocate to missions: bomber

and fighter. We label these initial quantities of these aircraft B, F, β, and φ for

friendly bombers and fighters, and enemy bombers and fighters, respectively.

While the bomber type can be used in “either counter-air or ground support roles,”

the fighter type can be used “in the air defense or ground support roles” (36, p. 1).

Friendly bombers can attack either enemy bomber fields or enemy fighter fields as

part of the counter-air role (36, p. 2), while friendly fighters can prevent either enemy

bombers or fighters from reaching their targets (36, p. 3). Berkovitz and Dresher

assume that each side knows their own and the opponent’s fleet size, but does not

know how the opponent will allocate their bombers and fighters until after a strike

is completed (36, p. 3). They also assume that enemy losses due to “accidents and

ground defenses are small,” and should be considered negligible, as should any planes

lost in air defense and ground support roles (36, p. 5).

In combat adjudication, several additional values are important. Enemy fighters

allocated to air defense will reduce friendly bombers allocated to counter-air missions.

Since the enemy does not know the friendly force’s allocation, enemy fighters do

not distinguish between friendly bombers attacking enemy fighter bases and those

attacking enemy bomber bases (36, p. 4). Let x be the number of Blue bombers

allocated to counter-air missions, and let µ be the number of Red fighters allocated

to air defense missions. Also let c be a constant defining the air defense potential,

or the effectiveness of Blue air defense aircraft. Then the number of Blue bombers

reaching Red air bases is x− cµ, unless cµ > x, in which case no Blue bombers reach

their destination (36, p. 4). When Blue bombers reach Red airfields, we assume that
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each bomber can destroy b1 Red bombers and b2 Red fighters. Any Blue bombers

that fail to penetrate Red defenses are not destroyed, but instead return to base (36,

p. 5). For Red, we let ξ, e, d1, and d2 be analogous to x, c, b1, and b2, respectively, and

let u be the Blue equivalent to Red’s µ.

The objective of Dresher’s game is to support ground operations (36, p. 6). Note

that the objective support ground operations is abstract, and therefore must be inter-

preted. For Dresher and Berkovitz, the value of the objective is

M =
N∑
i=1

[(Bi + Fi − xi − ui)− (βi + φi − ξi − µi)] (14)

where i indicates the strike number. The interpretation of Equation (14) is that the

payoff for Blue, M , is equal to the sum of all strike’s payoffs to Blue. One strike’s

payoff is the difference between Blue and Red ground support sorties, which are

given by the first and second set of parenthetical terms of Equation (14). Note that

an assessment methodology can make implicit assumptions. Equation (14) assumes

that “bombers and fighters are equally effective in the ground support role” (36, p. 6).

Dresher and Berkovitz’s assessment methodology is only one possible method for

quantifying success in this simple simulation of combat. Even given the same abstract

objective support ground operations, other methodologies may define a distinct assess-

ment relationship with the operational environment. For example, the VFT and LP

alternatives would break down this objective into sub-objectives, which may or may

not produce an equivalent value to M . In any case, the assessment methodologies

we present provide an accrued benefit after each time step, given that this combat

simulation is sequential. At the end of each time step, both Red and Blue have a

new number of bombers and fighters available for the next time step’s allocation.

The original game terminates after a “predetermined number of strikes” (36, p. 6),

defined as N .
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For all assessment methodologies, some aspects of combat remain equal. The

Dresher game assumes that assistance to friendly ground forces “can be measured by

the difference between [friendly] ground support sorties and [enemy] ground support

sorties” (36, p. 6). Note that this assumes equal efficacy of the bombers and fighters.

In the original game, the payoff, or benefit, to friendly forces is the sum of these

scores across all strikes (36, p. 7). We have now provided sufficient baseline detail of

the game to demonstrate how to incorporate the four assessment methodologies. A

summary of the structure of attack is provided in Figure 8. Some of the variables in

this figure have been introduced. The remaining will be introduced in the adjudication

below.

Figure 8: Dresher’s Game Objectives Hierarchy
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4.1.1 Dresher’s Game 1st Time-Step Adjudication

Now that we have introduced the basic rules and definitions for Dresher’s Game,

consider the following initialization for our adjudication. In the following four sec-

tions, assume that Blue starts with fB,1 = 10 fighters and bB,1 = 13 bombers, while

Red starts with fR,1 = 10 fighters and bR,1 = 15 bombers. Adjudication for the

CE/CV methodology will use BEAM’s method. For all other methodologies, let the

two air defense potentials be c = e = 0.5, and let b1 = d1 = 1 and b2 = d2 = 2. Of

note, Blue has 11∗11 = 121 ways to allocate its force in the first time step, while Red

has 14 ∗ 9 = 126 ways to allocate its force in the first time step. There are therefore

15, 246 possible allocations for the first time step. Taking a cue from Dresher and

Berkovitz’s analysis of optimal allocations, assume that Blue allocates all bombers to

counter-air – Sbb,B,1 = 1 bomber to attack Red fighter bases, Sbf,B,1 = 12 bombers to

attack Red bomber bases – and allocates all Sf,B,1 = 10 fighters to air defense mis-

sions. Assume analogously that Red allocates all bombers to counter-air – Sbb,R,1 = 1

bomber to attack Blue fighter bases, Sbf,R,1 = 14 bombers to attack Blue bomber

bases – and all Sf,R,1 = 10 fighters to air defense (36, p. 10 – 15).

We now adjudicate the outcome from the above allocation. While Blue allocates

13 bombers to attack red bases, Red allocates its 10 fighters to air defense. Since

e = 0.5, only 5 of the bombers are stopped from reaching their destination. There are(
13
5

)
= 1287 combinations of Blue’s bombers that the Red fighters can stop. 495 of

these combinations include the one bomber attacking a Red fighter base. Therefore,

let a random draw between [0,0.385] denote that Red has stopped Blue’s bomber from

attacking a Red fighter base. Similarly, let a random draw in (0.385,1] denote that

this bomber has not been stopped. Our random draw is 0.110, and so this bomber

returns to Blue’s bomber bases. Additionally, four Blue bombers attacking Red’s

bomber bases return to Blue’s bomber bases.
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Before adjudicating further, we must know how many Red fighters are returned

to their bases. While Red allocates its 15 bombers to attack Blue bases, Blue deploys

its 10 fighters to air defense. Again, since c = 0.5, only 5 of the bombers are stopped

from reaching their destination. There are then
(
15
5

)
= 3003 different ways that the

Red bombers reach Blue’s bases. In 1001 of these, the Red bomber attacking the

Blue fighter base does not reach its destination. So, we let a random draw between

[0,0.333] denote that Blue has stopped Red’s bomber from attacking a Blue fighter

base. Similarly, let a random draw in (0.333,1] denote that this bomber has not been

stopped. Our random draw is 0.960, and so this bomber successfully reaches the Blue

fighter base. Additionally, five Blue bombers attacking Red’s bomber bases return to

Blue’s bomber bases.

Because there are
(
13
10

)
= 286 adjudication outcomes for this interaction, we choose

one randomly. Since 220 of these combinations have in them the Blue bomber at-

tacking a Red fighter base, we let a random draw in [0,0.770] denote that Red has

stopped this bomber. Similarly, a random draw in (0.770, 1] denotes that Red has

not stopped this bomber. A random draw with a random seed produced 0.965, and

so we determine that Red does not stop the bomber attacking one of its fighter bases.

Instead, it stops 10 of the 12 bombers attacking its bomber bases.

During the attack, we assume that the bombers return to their respective bases

before the opponent’s bombers reach those bomber bases. For Blue and Red, five

bombers each are located at their side’s bases. As a result of combat, Red destroys

up to two Blue fighters and up to nine Blue bombers. Blue destroys up to eight

of Red’s bombers. At the end of this time step, Red has bR,2 = 10 bombers and

fR,2 = 10 fighters, and Blue has bB,2 = 8 bombers and fB,2 = 8 fighters.

In the following four sections, we apply each of the assessment methodologies to

a single time-step of combat to illustrate their interaction with a simulated combat
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Table 2: Initialization and First Time-Step Parameters for Dresher’s Game Applica-
tions

Definition Parameter Value

Blue Air Defense Potential c 0.5
Red Air Defense Potential e 0.5

Blue Bomber-Bomber Potency b1 1
Red Bomber-Bomber Potency d1 1
Blue Bomber-Fighter Potency b2 2
Red Bomber-Fighter Potency d2 2

Initial Blue Bombers bB,1 13
Initial Red Bombers bR,1 15
Initial Blue Fighters fB,1 10
Initial Red Fighters fR,1 10

2nd Time-Step Blue Bombers bB,2 8
2nd Time-Step Red Bombers bR,2 10
2nd Time-Step Blue Fighters fB,2 8
2nd Time-Step Red Fighters fR,2 10

Blue Bombers Attacking
Red Bombers - 1st Time-Step Sbb,B,1 12

Blue Bombers Attacking
Red Fighters - 1st Time-Step Sbf,B,1 1

Blue Fighters Defending
Red Bombers - 1st Time-Step Sf,B,1 10

Red Bombers Attacking
Blue Bombers - 1st Time-Step Sbb,R,1 14

Red Bombers Attacking
Blue Fighters - 1st Time-Step Sbf,R,1 1

Red Fighters Defending
Blue Bombers - 1st Time-Step Sf,R,1 10

context. Throughout the methodologies, we reference the parameter values in table

2.

4.2 Combat Effectiveness/Combat Vulnerability in Dresher’s Game

For the CE/CV assessment methodology, the overall objective is predetermined

– maximize combat effectiveness. In this application, we break up the first time-step

into 4 threads, rather than the 16 in BEAM. Although we only perform one time-
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step, we set the probability threshold ρ = 0.70 for resulting in either a win or loss, or

remaining unresolved. However, we will let ∆ = 0.25 define the size of the 5 states:

Enemy Supremacy, Enemy Superiority, Contested, Friendly Superiority, and Friendly

Supremacy.

For this alternative, we use BEAM’s adjudication, rather than that of Dresher’s

game, so that the cross of CE and CV can provide a joint distribution. As this

is the initial time-step, we only have one thread (28, p. 14). The allocation was

previously given, so that we have three missions per side within a singular mission

group. The first two are offensive: friendly bombers attack bomber bases and fighter

bases. The conditional probability tables (CPTs) for these respective missions are in

Tables 3 and 4. The defensive mission is the fighters defending attacking bombers,

which has a corresponding CPT in Table 5. For simplicity, we assume that the CPTs

are equivalent from each side’s perspective.

Table 3: CPT for Enemy Bombers Defending Against Friendly Bombers in a Friendly
Offensive Mission

Def:Off Targeted Asset Quantity Bins
Ratio [0.0] (0, 0.2] (0.2,0.5] (0.5,0.6] (0.6,0.9] (0.9,1.0] [1.0]

0:1 1 0 0 0 0 0 0
1:2 0 0.42 0.29 0.14 0.09 0.06 0
1:1 0 0.12 0.21 0.31 0.22 0.14 0
2:1 0 0.06 0.1 0.15 0.29 0.4 0
1:0 0 0 0 0 0 0 1

Table 4: CPT for Enemy Fighters Defending Against Friendly Bombers in a Friendly
Offensive Mission

Def:Off Targeted Asset Quantity Bins
Ratio [0.0] (0.0,0.25] (0.25,0.4] (0.4,0.6] (0.6,0.85] (0.85,1.0] [1.0]

0:1 1 0 0 0 0 0 0
1:2 0 0.45 0.3 0.12 0.1 0.03 0
1:1 0 0.13 0.22 0.35 0.28 0.02 0
2:1 0 0.02 0.08 0.13 0.22 0.55 0
1:0 0 0 0 0 0 0 1
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Table 5: CPT for Enemy Bombers Defending Against Friendly Fighters in a Friendly
Defensive Mission

Def:Off Targeted Asset Quantity Bins
Ratio [0.0] (0.0,0.2] (0.2,0.5] (0.5,0.7] (0.7,0.8] (0.8,1.0] [1.0]

0:1 1 0 0 0 0 0 0
1:2 0 0.51 0.23 0.13 0.08 0.05 0
1:1 0 0.06 0.29 0.36 0.22 0.07 0
2:1 0 0.03 0.08 0.11 0.3 0.48 0
1:0 0 0 0 0 0 0 1

Since Blue attacks Red’s fighters with just one bomber, we have a defense-offense

ratio of 10:1, which is closest in ratio to 1:0. However, there are still bombers attack-

ing, which cannot be neglected. So, we round up to the ratio 2:1, and so Red fighters

end the time-step with a health distribution of [0.02, 0.08, 0.13, 0.22, 0.55] over the bins

[0, 0.25, 0.4, 0.6, 0.85, 1]. Also, Blue attacks Red’s bombers with a ratio of 15:12, which

is closest to the ratio of 1:1. The resulting Red bombers will then have a health dis-

tribution of (14
15

)[0.12, 0.21, 0.31, 0.22, 0.14] over the bins [0, 0.2, 0.5, 0.6, 0.9, 1]. Lastly,

Blue fighters defend against Red bombers with a ratio of 1:10, which we again round

up to 1:2. So, Red bombers in this mission end the time-step with a health distri-

bution of ( 1
15

)[0.03, 0.08, 0.11, 0.3, 0.48] over the bins [0, 0.2, 0.5, 0.7, 0.8, 1]. Similarly,

Blue’s fighters defending against Red bombers in a Red offensive mission of ratio 2:1

leaves Blue’s fighters with a health distribution of [0.02, 0.08, 0.13, 0.22, 0.55] over the

bins [0, 0.25, 0.4, 0.6, 0.85, 1]. Since we assume equivalent CPTs from both sides, the

Red bomber attack on Blue bombers results in a Blue bomber health distribution

of (12
13

)[0.12, 0.21, 0.31, 0.22, 0.14] over the bins [0, 0.2, 0.5, 0.6, 0.9, 1]. In addition, the

Blue bombers attacking Red fighters end the time-step with a health distribution

of ( 1
13

)[0.03, 0.08, 0.11, 0.3, 0.48] over the bins [0, 0.2, 0.5, 0.7, 0.8, 1]. These results are

summarized in Table 6.

We now aggregate the two missions for each side’s bombers. For the Red bombers,

the two distributions sum to approximately [0.114, 0.201, 0.293, 0.072, 0.088, 0.084,
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Table 6: Red-Blue Def:Off Ratio and Resulting Health Distributions
Actual Rounded

Action Off:Def Ratio Def:Off Ratio Asset Health Distribution Bins
Blue Atk Red F 10:1 2:1 Red F [0.02, 0.08, 0.13, 0.22, 0.55] [0, 0.25, 0.4, 0.6, 0.85, 1]
Blue Atk Red B 15:12 1:1 Red B 14/15[0.12, 0.21, 0.31, 0.22, 0.14] [0, 0.2, 0.5, 0.6, 0.9, 1]
Blue Def Red B 1:10 1:2 Red B 1/15[0.03, 0.08, 0.11, 0.3, 0.48] [0, 0.2, 0.5, 0.7, 0.8, 1]
Red Atk Blue F 10:1 2:1 Blue F [0.02, 0.08, 0.13, 0.22, 0.55] [0, 0.2, 0.5, 0.6, 0.9, 1]
Red Atk Blue B 14:13 1:1 Blue B 12/13[0.12, 0.21, 0.31, 0.22, 0.14] [0, 0.2, 0.5, 0.6, 0.9, 1]
Red Def Blue B 1:10 1:2 Blue B 1/13[0.03, 0.08, 0.11, 0.3, 0.48] [0, 0.2, 0.5, 0.7, 0.8, 1]

Table 7: Discrete-Uniform Quartile Bins for Red and Blue Assets
Asset Distribution Bins

Blue Bombers [0, 0.405, 0.564, 0.782, 1]
Blue Fighters [0, 0.623, 0.864, 0.932, 1]
Red Bombers [0, 0.403, 0.563, 0.779, 1]
Red Fighters [0, 0.623, 0.864, 0.932, 1]

0.147] over the bins [0, 0.2, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. The Blue bombers’ distributions

sum to approximately [ 0.113, 0.200, 0.290, 0.072, 0.091, 0.086, 0.148] over the bins [0,

0.2, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. The discrete-uniform distribution of the Red bombers

has the bins [0, 0.403, 0.563, 0.779, 1], while the discrete-uniform distribution of the

Blue bombers has the bins [0, 0.405, 0.564, 0.782, 1]. Meanwhile, both Blue and

Red fighters have the same discrete-uniform distribution, given by the bins [0, 0.623,

0.864, 0.932, 1]. These results are summarized in Table 7.

We now calculate the CV and CE for each of the Blue and Red perspectives. We

first sum the two Blue discrete-uniform distributions to receive U(CVB), which has

bin boundaries [0, 0.461, 0.677, 0.889]. The Red discrete-uniform distributions sum

to yield U(CVR), which has similar bin boundaries [0, 0.460, 0.677, 0.889].

To calculate CE, we first calculate the discrete-uniform distribution for Blue’s

offensive CE, which is equivalent to Red’s CV distribution. Next, we calculate Blue’s

defensive CE, which is calculated by taking the complement of its defensive assets’

health distribution and then placing it in four equal-probability bins. The result is

the discrete-uniform distribution U(CEB), which is defined by the bin boundaries
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[0.111, 0.464, 0.707, 1]. We analogously calculate Red’s CE, which has a resultant

discrete-uniform distribution U(CER) defined by the bin boundaries [0, 0.114, 0.489,

0.779, 1].

Table 8: CE × CV States at End of First Time-Step
Blue Combat Vulnerability (CV)

[0, 0.25] (0.25, 0.75) [0.75, 1]
[0.75, 1] Friendly Friendly Contested S3

Combat Supremacy S5 Superiority S4

0.001 0.092 0.12
Effectiveness (0.25, 0.75) Contested S3 Contested S3 Enemy

(CE) Superiority S2

0.003 0.189 0.247
[0, 0.25] Contested S3 Contested S3 Enemy

Supremacy S1

0.002 0.15 0.196

Red Combat Vulnerability (CV)
[0, 0.25] (0.25, 0.75) [0.75, 1]

[0.75, 1] Friendly Friendly Contested S3

Combat Supremacy S5 Superiority S4

0.002 0.121 0.159
Effectiveness (0.25, 0.75) Contested S3 Contested S3 Enemy

(CE) Superiority S2

0.003 0.161 0.212
[0, 0.25] Contested S3 Contested S3 Enemy

Supremacy S1

0.003 0.146 0.192

The cross between Blue’s CE and CV and the cross between Red’s CE and CV

are provided in table 8. If we assume that the scenario started in a contested state,

S3, then neither side has won nor lost this scenario. We can see this by summing the

probabilities associated with states S3, S4, S5 – 0.557 for Blue and 0.595 for Red –

and by summing the probabilities associated with states S1, S2 – 0.443 for Blue and

0.404 for Red. Since none of these summations is larger than ρ = 0.70, the scenario

remains unresolved.
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4.3 Bayesian Networks in Dresher’s Game

In this section, we demonstrate the application of Bayesian networks in Dresher’s

Game by building the network and data tables manually. We first define an objec-

tive function, comprised of three notional objectives, which will be pertinent to the

BN, VFT, and LP methodologies. We then utilize the conditional probability rules

established in Section 3.2.2 in order to construct the joint probability distribution of

the Bayesian network for each side’s assessment. We utilize the state-space and each

vector’s associated probability for next time-step’s allocation to obtain an expected

objected value for each side. We consider this expected value to be the assessment

gleaned from this methodology.

Suppose we have three objectives that we would like to utilize for our objective

function: (1) minimize cost, (2) minimize enemy capability, and (3) maximize friendly

capability. A simple way of tracking a cost objective is in total cost, which makes

future actions dependent upon current actions. Suppose that flying a friendly bomber

to attack enemy bombers costs Cbb = $290, 000, that flying a friendly bomber against

enemy fighters costs Cbf = $240, 000, and that flying a friendly fighter to defend

against enemy bombers costs Cf = $110, 000. The total friendly cost through next

time-step can then be represented as the numerator in

CbbSbb,B,i + CbfSbf,B,i + CfSf,B,i + PCi
CbbbB,i + CffB,i + PCi

(15)

where PCi is the previous cumulative cost of the friendly missions flown during the

scenario. Note that the denominator is the maximum cumulative spending that can

occur during the next time step. In our case, we exclude the term Cbf bB,2 since

Cbf < Cbb. Equation (15) is a standardized value for the cost objective on the domain

[0,1]. In order to obtain the cost objective value for Blue during the ith time-step,
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we need only to subtract Equation (15) from unity, as we wish to minimize the cost.

Red’s cost objective function is analogous to subtracting Equation (15) from unity,

as well.

For the capability objectives, we can create a points system in order to weight

the destruction of friendly or enemy assets – Pb = 3 points for destroying bombers

and Pf = 2 points for destroying fighters. This weighting is a notional “relative

importance,” which here means that bombers are 1.5 times as important as fighters.

In application, these weights could be generated using subject matter expert opinion

or by running multiple simulations to understand the relative importance of an asset

to completing combat goals. Within this points system, we want to know the number

of points destroyed (for enemy forces) and the number of points remaining (for friendly

forces). To do this for the next time-step’s combat, we have to invoke the adjudication

portion of combat. We can do this in the objective itself. Note that the number of

Red bombers remaining at the beginning of time-step (i+ 1) is

bR,i − b1(Sbb,B,i −min{Sbb,B,i, eSf,R,i})

where e = 0.5 and b1 = 1 are as defined at the beginning of this chapter. Adding in

the weighted points system for capability, the enemy capability objective from Blue’s

perspective is then

1− 1

PbbR,1 + PffR,1
[Pb(bR,i − b1(Sbb,B,i −min{Sbb,B,i, eSf,R,i}))

+Pf (fR,i − b2(Sbf,B,i −min{Sbf,B,i, eSf,R,i}))] (16)
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and the friendly capability objective from Blue’s perspective is

1

PbbB,1 + PffB,1
[Pb(bB,i − d1(Sbb,R,i −min{Sbb,R,i, cSf,B,i}))

+Pf (fB,i − d2(Sbf,R,i −min{Sbf,R,i, eSf,B,i}))] (17)

where c = e = 0.5, b1 = d1 = 1, and b2 = d2 = 2 are as defined at the beginning of this

chapter. Both objectives have once again been standardized, so that the maximum

number of points is the amount that each side starts with at the beginning of the

scenario. In equation 16, we subtract from unity because we wish to define increasing

progress toward minimizing the enemy’s capability as closer to one.

With our objectives defined in Equations (15) – (17) to all range over [0,1], we

may wish to define an overall objective value which also ranges over [0,1]. Since

we have three objectives, constraining these weights w1, w2, w3 to
∑3

i=1wi = 1 will

accomplish the task. For simplicity, let wi = 1
3
, i = 1, 2, 3. The overall objective is the

inner product of these weights and the three objectives’ values. This overall objective

is the associated assessment with a particular allocation.

With the objectives defined, we proceed to the Bayesian network for Dresher’s

game. The network is defined by the following decision variables: Sbb,B,i, Sbf,B,i,

Sf,B,i, Sbb,R,i, Sbf,R,i, and Sf,R,i, i = 1, 2, . . . , N , where i corresponds to the time-

steps. While the structure of the network remains constant for each time-step, the

CPTs may change relating these decision variables from one time-step to the next.

We know up front that the number of bombers attacking bombers or fighters are

interdependent. We can arbitrarily choose to have Sbb,B,i be an independent cause for

Sbf,B,i, and similarly for Red.

From Blue’s perspective, we assume that Red’s choices are the causes and Blue’s

choices are the effects. Since fighters defend against bombers, we assume that Blue
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bomber choices are dependent upon Red’s fighter choice, and also that Blue’s fighter

choice is dependent upon Red’s bomber choices. Red’s perspective is analogous,

maintaining symmetry between the two side’s assessments. With these dependencies

in mind, we can construct the Bayesian networks as given in Figure 9.

Figure 9: Dresher’s Game Bayesian Network

From each side’s perspective, we have two marginally independent networks. The

joint probability distribution that defines each side’s perspective is the product of

these two networks. From Blue’s perspective, we have

P (
−−→
SB,i) =P (Sbb,B,i, Sbf,B,i, Sf,B,i, Sbb,R,i, Sbf,R,i, Sf,R,i)

= [P (Sbf,B,i|Sbb,B,i, Sf,R,i) · P (Sbb,B,i|Sf,R,i) · P (Sf,R,i)] ·

[P (Sf,B,i|Sbb,R,i, Sbf,R,i) · P (Sbf,R,i|Sbb,R,i) · P (Sbb,R,i)] (18)
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and from Red’s perspective,

P (
−−→
SR,i) =P (Sbb,R,i, Sbf,R,i, Sf,R,i, Sbb,B,i, Sbf,B,i, Sf,B,i)

= [P (Sf,R,i|Sbb,B,i, Sbf,R,i) · P (Sbf,B,i|Sbb,B,i) · P (Sbb,B,i)] ·

[P (Sbf,R,i|Sbb,R,i, Sf,B,i) · P (Sbb,R,i|Sf,B,i) · P (Sf,B,i)] (19)

Now, assume that we have just ended the first time step’s adjudication according

to the scenario defined at the beginning of this chapter. The networks in Figure 9

may be interpreted as defining “the probability of the allocation of Blue and Enemy

forces, based on historical data.” After calculating the probability of a certain state

vector, we determine the expected value of next time-step’s assessment.

We now build notional conditional probability tables with some desired properties.

First, the number of Blue bombers and Red bombers allocated to missions must be less

than or equal to the total number of available bombers, bB,i and bR,i, i = 1, 2, . . . , N .

So, the ordered pair (Sbb,B,2, Sbf,B,2) = (5, 6), for example, must have an associated

probability of 0, since bB,2 = 10. Several of the probability distributions are bi-modal,

as well. This is because we assume it advantageous to allocate either all or none of

the aircraft in a category to a single mission. This assumption is supported by the

majority of optimal decisions provided by Dresher and Berkovitz (36, p. 12).

The conditional probability tables are provided in Appendix A. Note that the

state-space of the Blue Bayesian network’s joint distribution has 534,600 state vectors,

and Red’s joint distribution has 556,600 elements. To obtain these distributions, one

needs only to cross the data in the Appendix A tables according to Equations (18)

and (19).

To reach an overall assessment we can take the probabilities P (
−−→
SB,i) and P (

−−→
SR,i)

and multiply them by their associated overall objective values. Summing over the
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products yields an expected value, or expected assessment value for the next time-

step. When we perform these calculations using the data in Appendix A, we obtain

a Blue assessment of about 0.31 and a Red assessment of about 0.25. We can take

from the CE/CV approach and set our threshold value ρ = 0.7 to be the necessary

assessment score of either the friendly or enemy objectives to declare a win/loss/un-

resolved. Since neither side has an assessment exceeding this value, doing so would

mean that the thread remains unresolved.

4.4 Value-Focused Thinking in Dresher’s Game

In this section, we continue to utilize the original allocation and adjudication re-

sults from Table 2. We also utilize the objectives from the Bayesian network method-

ology presented in Section 4.3 to construct the objectives hierarchy and the attributes

used to score the alternative in terms of the lowest-level objectives. In difference to

the Bayesian network methodology, however, we assess the current time-step’s adju-

dication, rather than projecting one time-step into the future.

We have already three means objectives: minimize cost, maximize friendly ca-

pability, and minimize enemy capability. We now build an OH that envelops these

objectives. Consider that Dresher’s Game occurs at the tactical level. From figure

1, this is the lowest level of warfare considered in the strategy-to-task framework.

Therefore, a reasonable strategic objective could be “support operational-level strate-

gic goals,” which are outside the scope of Dresher’s Game. Directed more toward

tactical-level operations, the overall fundamental objective could be to “win the sce-

nario efficiently.” As it is meant to be very broad, we need to specify what “winning”

means and what “efficiency” means. These two subcategories can be translated into

fundamental objectives as “destroy enemy forces” and “preserve friendly forces at low

cost.” Our means objectives fit nicely under these fundamental objectives. “Minimize
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enemy capability” is a means objective for the “destroy enemy forces” fundamental

objective and both ”minimize cost” and ”maximize friendly capability” are means

objectives for the “preserve friendly forces at low cost” fundamental objective. While

minimizing cost is an observable means objective, we must specify further the other

two means objectives. We can observe the two capability means objectives by ob-

serving the number of remaining friendly and enemy bombers and fighters. This

completes our objectives hierarchy. Figure 10 contains a graphical representation of

the hierarchy.

Figure 10: Dresher’s Game Objectives Hierarchy

We now construct the attributes for the lowest-level objectives. Again, let Cbb =

$290, 000 be the cost of flying a friendly bomber to attack enemy bombers, Cbf =

$240, 000 the cost of flying a friendly bomber against enemy fighters, Cf = $110, 000

the cost of flying a friendly fighter to defend against enemy bombers, bB,i be the num-
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ber of friendly bombers available for the ith time-step’s allocation, fB,i the number of

friendly fighters available for the ith time-step’s allocation, PCi the previous cumu-

lative cost of the friendly missions flown during the scenario, Pb = 3 the number of

points for destroying bombers, and Pf = 2 the number of points for destroying fight-

ers. Again, let bR,1, fR,1, bB,1, fB,1 be the number of Red bombers and fighters and

Blue bombers and fighters, respectively, available at the beginning of the scenario.

The attributes for the enemy capability objective from Blue’s perspective at the

end of time-step 1 are ECBB,1 and ECFB,1, for bomber and fighter destruction,

respectively, which are defined as

ECBB,1 = 1− bR,2
bR,1

(20)

ECFB,1 = 1− fR,2
fR,1

(21)

Similarly, the friendly capability objectives from Blue’s perspective at the end of time-

step 1 are FCBB,1 and FCFB,1, for remaining bombers and fighters, respectively,

which are defined as

FCBB,1 =
bB,2
bB,1

(22)

FCFB,1 =
fB,2
fB,1

(23)

Lastly, the cost objective from Blue’s perspective at the end of time-step 1 is CB,1,

which is defined as

CB,1 = 1− CbbSbb,B,1 + CbfSbf,B,1 + CfSf,B,1 + PC0

CbbbB,1 + CffB,1 + PC0

(24)

although the previous cost, PC0, is 0.

The Red-perspective objectives hierarchy is the same as provided in figure 10.
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In addition, the Red-perspective objectives can be found by analogue to the Blue-

perspective objectives in Equations (20) – (24).

Different from the Bayesian network methodology, we now have five weights – one

for each of the lowest-level objectives. However, to maintain some uniformity, let

wECB = wFCB = 2
15

, wFCF = wECF = 1
5

and wC = 1
3
. This allows us to keep nearly

the same ratio that we integrated via the points system into the Bayesian network

methodology. We also may define utility functions for each of these attributes that

determine the amount of utility returned for specific attribute achievement levels.

For example, the achievement of objectives in the Bayesian network methodology

was strictly linear, and so an increase of from 0.1 to 0.2 in the friendly capability

objective would result in an increase of utility from 0.1 to 0.2. Consider the cost

objective. We know that the value of this objective is a ratio of the cumulative cost

to the maximum possible cumulative cost. Therefore, during each successive time-

step, it will become increasingly more difficult to get a lower value for this objective.

We can offset this property by utilizing an exponential utility function for the cost

objective, namely

UC(CB,1) =
1− e−CB,1/0.410

1− e−1/0.410
(25)

which has the property that UC(0.75) = 0.5.

The remaining utility functions are as follows:

UECB(x) = x UECF (x) = x

UFCB(x) = x UFCF (x) = x

all of which are defined on x ∈ [0, 1], and where x is an objective value returned from

one of the objectives equations. The overall utility function (and assessment value)
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for Blue’s first time-step is

UB,1 =
2

15
[UECB(ECBB,1) + UFCB(FCBB,1)]

+
1

5
[UECF (ECFB.1) + UFCF (FCFB,1)] +

1

3
UC(CB,1) (26)

and Red’s overall utility function for its first time-step is the same, with its corre-

sponding analogous inputs.

Inputting the adjudication and initialization parameters from table 2 yields a Blue

assessment of about 0.31 and a Red assessment of about 0.38. Since neither value is

above the ρ = 0.7 threshold, the current scenario remains unresolved.

4.5 Linear Program in Dresher’s Game

In this section, we continue to utilize the original allocation, as well as the orig-

inal adjudication methods. However, before continuing with the operational envi-

ronment, we need to establish the linear program. The below formulation captures

a multi-objective linear program and demonstrates some intermediate if-then con-

straints which could appear in some contexts. In the LP, we use “friendly-enemy”

terminology, rather than the previous “Blue-Red.” We do this to demonstrate the

interchangeability of the LP from each side’s perspective.

To apply linear programming, we can look at optimization over the next time

step. Consider the following sample formulation:

Objective

The following linear program (LP) optimizes the combat assessment of the

second time-step in the Dresher game outlined in the introduction to this

chapter. There are three objectives: minimize cost, minimize enemy capa-

bility, and maximize friendly capability. The first of these is direct, while
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the latter two objectives require some interpretation. Our interpretation is

provided below. Each of the objectives is scaled to have a value between 0

and 1. We then apply weights to the individual objective values to provide

the relative importance of the objectives and to provide an overall objec-

tive value between 0 and 1. As the interpretation of the objective value

is most naturally interpreted with increasing preference, we introduce a

maximization LP with objective values subtracted from unity.

Assumptions

There are two key assumptions in this LP, beyond those of general logistics

feasibility. First, we assume that the adjudication rules outlined in the

introduction to this chapter remain valid throughout all time-steps. This

allows us to optimize over the next time-step. Second, we assume that

the enemy utilizes the same assessment method, objectives, and weights.

We utilize this symmetry to calculate the enemy’s optimal response to a

friendly allocation. This requires pre-processing and storage of the optimal

enemy allocation in a table to feed the linear program. The result is that

we can make the enemy allocation a set of parameters that get fed in via

this table to correspond with friendly allocation. We can then adjudicate

the projected combat defined by friendly and enemy allocations and assess

the completion of friendly objectives by our LP. In order to reduce the

number of subscripts used, we assume that an allocation is referenced by

a single index.

Sets

We use a singular set as a collection of indices referencing the enemy

allocations:

• J – The set of indices assumed to be contained in the data set con-
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taining optimal enemy responses to friendly allocations, which refer-

ence individual allocations of attacking bombers to fighters, attacking

bombers to bombers, and defending fighters

Parameters

The linear program utilizes the following parameters

• w1, w2, w3 – The weights on objectives 1, 2, and 3, respectively

• bfr,i – The number of friendly bombers at the start of the ith time-

step, i = 1, 2, . . . , N

• ben,i – The number of enemy bombers at the start of the ith time-step,

i = 1, 2, . . . , N

• ffr,i – The number of friendly fighters at the start of the ith time-step,

i = 1, 2, . . . , N

• fen,i – The number of enemy fighters at the start of the ith time-step,

i = 1, 2, . . . , N

• c/e – The air defense potential of Blue/Red fighters, which dic-

tates the effectiveness of both friendly and enemy fighters at blocking

bombers from reaching their target(s)

• b1/b2/d1/d2 – The number of aircraft that Blue/Red destroys upon

successful attack of Red/Blue aircraft

• PCi – The cumulative previous cost, from the beginning of the sce-

nario through the current time-step, of friendly sorties

• Cbb – The cost of flying a single friendly bomber on a mission to

attack enemy bombers

• Cbf – The cost of flying a single friendly bomber on a mission to

attack enemy fighters
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• Cf – The cost of flying a single friendly fighter on a mission to defend

against enemy bombers

• Pb – The number of “points” gained by destroying an enemy bomber

• Pf – The number of “points” gained by destroying an enemy fighter

• [abb,en,i]j – The number of enemy bombers targeting friendly bombers

in the enemy’s jth allocation in the ith time step, i = 1, 2, . . . , N

• [abf,en,i]j – The number of enemy bombers targeting friendly fighters

in the enemy’s jth allocation in the ith time step, i = 1, 2, . . . , N

• [af,en,i]j – The number of enemy bombers defending against friendly

bombers in the enemy’s jth allocation in the ith time step, i =

1, 2, . . . , N

The initial values of these parameters are provided in table 9. Note

that initial values such as Pf and Cbf are designed to keep the trade-off

space interesting and do not reflect real-world values.

Decision Variables

The linear program utilizes the following decision variables

• [Sbb,fr,i]j – The number of friendly bomber sorties to fly next time-

step to attack enemy bombers, given the enemy’s jth allocation, i =

1, 2, . . . , N

• [Sbf,fr,i]j – The number of friendly bomber sorties to fly next time-

step to attack enemy fighters, i = 1, 2, . . . , N

• [Sf,fr,i]j – The number of friendly fighter sorties to fly next time-step

to defend against enemy bombers, i = 1, 2, . . . , N

• x1,j, x2,j, y1,j, y2,j – Proxy decision variables to determine how many

enemy fighters will affect friendly bombers and how many enemy
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Table 9: Initialization Parameters for Dresher’s Game Application of the LP Method-
ology – After the 1st Time-Step’s Adjudication

Parameter Initialized Value Parameter Initialized Value
w1 1/3 w2 1/3
w3 1/3 bfr,1 13
ben,1 15 ffr,1 10
fen,1 10 bfr,2 8
ben,2 10 ffr,2 8
fen,2 10 c 0.5
e 0.5 b1 1
d1 1 b2 2
d2 2 PC1 $4, 820, 000
Cbb $290, 000 Cbf $240, 000
Cf $110, 000 Pb 3
Pf 2

bombers will be affected by friendly fighters, given the enemy’s jth

allocation

• z1,j, z2,j, z3,j, z4,j, z5,j, z6,j, z7,j, z8,j – Binary decision variables to form

if-then constraints, given the enemy’s jth allocation

Formulation

Below is the symbolic formulation for this LP. Although there may be

different values for our time-step-indexed variables, we solve for a par-

ticular i ∈ {1, 2, . . . , N}. We provide the general formulation here, but

will solve for i = 2. After explication, we provide a solution to the LP,

which is equivalent to the assessment of this first time-step utilizing the

LP methodology.

max w1

(
1−

Cbb[Sbb,fr,i]j + Cbf [Sbf,fr,i]j + Cf [Sf,fr,i]j + PCi
Cbbbfr,i + Cfffr,i + PCi

)
+ w2

(
1−

Pb(ben,i − b1([Sbb,fr,i]j − x1,j)) + Pf (fen,i − b2([Sbf,fr,i]j − x2,j))

Pbben,1 + Pffen,1

)
+ w3

(
Pb(bfr,i − d1([Sbb,en,i]j − y1,j)) + Pf (ffr,i − d2([Sbf,en,i]j − y2,j))

Pbbfr,1 + Pfffr,1

)
(27)
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s.t [Sbb,fr,i]j + [Sbf,fr,i]j ≤ bfr ∀j ∈ J (28)

[Sf,fr,i]j ≤ ffr,i ∀j ∈ J (29)

x1,j ≤ [Sbb,fr,i]j ∀j ∈ J (30)

x1,j ≤ e[af,en,i]j ∀j ∈ J (31)

x2,j ≤ [Sbf,fr,i]j ∀j ∈ J (32)

x2,j ≤ e[af,en,i]j ∀j ∈ J (33)

y1,j ≤ [abb,en,i]j ∀j ∈ J (34)

y1,j ≤ c[Sf,fr,i]j ∀j ∈ J (35)

y2,j ≤ [abf,en,i]j ∀j ∈ J (36)

y2,j ≤ c[Sf,fr,i]j ∀j ∈ J (37)

e[af,en,i]j − [Sbb,fr,i]j ≥ −(efen,i + bfr,i)z1,j ∀j ∈ J (38)

x1,j − [Sbb,fr,i]j ≥ −(efen,i + bfr,i)(1− z1,j) ∀j ∈ J (39)

[Sbb,fr,i]j − e[af,en,i]j ≥ −(efen,i + bfr,i)z2,j ∀j ∈ J (40)

x1,j − e[af,en,i]j ≥ −(efen,i + bfr,i)(1− z2,j) ∀j ∈ J (41)

e[af,en,i]j − [Sbf,fr,i]j ≥ −(efen,i + bfr,i)z3,j ∀j ∈ J (42)

x2,j − [Sbf,fr,i]j ≥ −(efen,i + bfr,i)(1− z3,j) ∀j ∈ J (43)

[Sbf,fr,i]j − e[af,en,i]j ≥ −(efen,i + bfr,i)z4,j ∀j ∈ J (44)

x2,j − e[af,en,i]j ≥ −(efen,i + bfr,i)(1− z4,j) ∀j ∈ J (45)

c[Sf,fr,i]j − [abb,en,i]j ≥ −(cffr,i + ben,i)z5,j ∀j ∈ J (46)

y1,j − [abb,en,i]j ≥ −(cffr,i + ben,i)(1− z5,j) ∀j ∈ J (47)

[abb,en,i]j − c[Sf,fr,i]j ≥ −(cffr,i + ben,i)z6,j ∀j ∈ J (48)

y1,j − c[Sf,fr,i]j ≥ −(cffr,i + ben,i)(1− z6,j) ∀j ∈ J (49)

c[Sf,fr,i]j − [abf,en,i]j ≥ −(cffr,i + ben,i)z7,j ∀j ∈ J (50)
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y1,j − [abf,en,i]j ≥ −(cffr,i + ben,i)(1− z7,j) ∀j ∈ J (51)

[abf,en,i]j − c[Sf,fr,i]j ≥ −(cffr,i + ben,i)z8,j ∀j ∈ J (52)

y1,j − c[Sf,fr,i]j ≥ −(cffr,i + ben,i)(1− z8,j) ∀j ∈ J (53)

z2k−1,j + z2k,j = 1 k = 1, 2, 3, 4,∀j ∈ J (54)

[Sbb,fr,i]j, [Sbf,fr,i]j, [Sf,fr,i]j ∈ Z+ ∪ {0} ∀j ∈ J (55)

x1,j, x2,j, y1,j, y1,j ≥ 0 ∀j ∈ J (56)

z1,j, z2,j, z3,j, z4,j, z5,j, z6,j, z7,j, z8,j ∈ {0, 1} ∀j ∈ J (57)

The objective function (27) is broken into three components. The first

of these fractions defines the minimize cost objective. After the adjudi-

cation portion of any time-step, that time-step’s sorties have been paid

for. Therefore, the cost referred to is that of the next time-step. The

total cumulative cost of past and the next time-step is therefore the cost

of each planned sortie for the next time-step plus the previous cost. To

standardize that value, we divide by the maximum possible cumulative

cost at the end of the next time-step. Here, we assume Cbb ≥ Cf , since it

is true for our particular case. Therefore, the maximum possible cumula-

tive expenditure for the end of the next time-step is the more expensive of

the two bomber sorties multiplied by all available bombers plus the cost

of flying all available fighters, plus the previous cost of the sorties during

this scenario. Note that a reduced cost produces a higher cost objective

value, which is desirable for this maximization problem.

The second fraction of the objective function defines the minimize en-

emy capability objective. The numerator is comprised of two portions: the

weighted points of the remaining enemy bombers after the friendly allo-

cation, and the weighted points of the remaining enemy fighters after the
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friendly allocation. The proxy decision variables x1 and x2 are constrained

such that x1 = min{Sbd,fr,i, cSf,en,i} and x2 = min{Sbf,fr,i, cSf,en,i}. Such

constraints ensure the adjudication rules of the game. eSf,en,i will effec-

tively block friendly bombers, after which, the remaining bombers will

destroy b1 bombers and b2 fighters. Note that a reduced enemy force pro-

duces a higher enemy capability objective value, which is desirable for this

maximization problem.

The third portion of the objective function is analogous to the sec-

ond portion, but instead focuses on remaining friendly forces. We do not

subtract from unity for this objective because we wish to maximize it.

The constraints are constructed in groups. Constraints (28) and (29)

limit friendly allocations to the number of respective friendly bombers and

fighters at the beginning of the next time-step.

Constraints 38 – 54 set the values for x1,j, x2,j, y1,j, and y2,j by using

four sets of two if-then constraint sets. For example, constraints 38 and 39

create the logical constraint (e[af,en,i]j ≥ [Sbb,fr,i]j) ⇒ (x1,j ≥ [Sbb,fr,i]j).

Similarly, Constraints 40 and 41 create the logical constraint ([Sbb,fr,i]j ≥

e[af,en,i]j) ⇒ (x1,j ≥ e[af,en,i]j). Coupled with Constraints (30) and (31),

these 6 constraints set x1,j = min{[Sbb,fr,i]j, e[af,en,i]j}, as desired. These

constraints are repeated for x2,j, y1,j, and y2,j alongside constraints (30) –

(37).

LP Solution

When creating the LP in a general programming language (e.g. R, Python), we can

load the enemy optimal allocation data in and loop through each friendly allocation

to find the friendly optimal allocation to the enemy allocation parameters. By storing
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these values, we can then take the highest value and find the corresponding friendly

allocation. If using a mathematical programming language (e.g. GAMS, Lingo), we

can create sets in our data and then solve for the optimal friendly objective all at

once.

The optimal Blue allocation is [[Sbb,fr,2]j, [Sbf,fr,2]j, [Sf,fr,2]j] = [0, 8, 8], which has

a corresponding Red allocation of [0, 10, 10]. The optimal objective value for this

set of allocations is about 0.52. For Red, the optimal allocation is [0, 10, 10] with

a corresponding Blue optimal allocation of [0, 8, 8]. It is a show of LP construction

validation that these optimal allocations match. This allocation provides Red with

an optimal objective value of about 0.65. Note that the objective values are not

complements of each other in this case, since the cost objective is not complementary

when considering each side’s perspective.

We can glean from the approach of the CE/CV alternative and set our threshold

value ρ = 0.7 to be the necessary assessment score of either the friendly or enemy

objectives to declare a win/loss/unresolved. Since neither side has an assessment

exceeding this value, the thread remains unresolved.

In this chapter, we presented Dresher’s Game as a small combat simulation in order

to demonstrate the details of our four assessment methodologies for combat simula-

tion. We applied the Combat Effectiveness & Combat Vulnerability, Bayesian Net-

work, Value-Focused Thinking, and Linear Programming alternatives to Dresher’s,

which will aid in their evaluation in the next chapter. Chapter V provides a detailed

discussion of these methodologies in terms of the value hierarchy from Chapter III.

Chapter V ends in applying value-focused thinking concepts to create a new alter-

native with a better overall evaluation than the four methodologies presented in this

chapter.
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V. Evaluation of Potential Methodologies Using the Value
Hierarchy

In this chapter, we provide a full evaluation of the alternatives utilizing the nine

lowest-level objectives of the value hierarchy defined in Section 3.1. We include com-

ments from the illustration of these methodologies in Dresher’s Game from Sections

4.2 – 4.5. After the explication of the alternative’s evaluations, we create a new al-

ternative from the highest-evaluated methodologies. A summary of the evaluations

is provided in Table 10.

Table 10: Evaluation of Alternatives - Categorical Labels

Realism
Alternatives Simplistic Complete and Accurate Comprehensive

CE / CV Fair Fair Good
Bayesian Network Good Excellent Good

VFT Fair Good Good
LP Good Excellent Good

Efficiency
Alternatives Assumptions Computation Modular

CE / CV Good Poor Poor
Bayesian Network Poor Poor/Inf. Excellent

VFT Good Fair Poor
LP Good Fair Excellent

Robusticity
Alternatives Win/Loss Equitable Across Domains Correlations btwn Objectives

CE / CV Good Good Poor
Bayesian Network Good Good Good

VFT Good Good Good
LP Good Good Fair

5.1 Realism

For the simplistic objective: the CE/CV alternative scores “Fair.” Although the

end state of this methodology is fairly simplistic – one of five categories – the division

65



of each time step into 16 threads and the use of joint probability distributions elevated

the complexity of this approach. Internal reporting of the time step’s probability dis-

tribution into the five categories does simplify its interaction with other modules.

Despite commanders having a generally basic understanding of probability concepts,

the CE/CV methodology incorporates multiple sources of variation and further com-

plexifies communication of this alternative. However, because the joint distribution

is easily distilled into a graphic, we evaluate the alternative as “Fair” for this objec-

tive. This aligns with the evaluation according to the lowest-level objectives under

the simplistic objective. The hierarchical structure of the JCS doctrine is imitated

between the phase goals, which influence the resolution of the time-step’s threads into

one of the five categories. Secondly, the CE/CV approach does not explicitly model

interdependencies between objectives (phase goals). In addition, this methodology

does not incorporate abstract objectives into its phase goals, but rather is itself an

abstract objective. The objective clearly is to obtain friendly superiority, which is

broken out into completion of the phase goals. For this reason, the CE/CV approach

receives a “Fair” for this objective.

Bayesian networks are fairly simplistic to communicate, although hard to establish

in some circumstances. To communicate the methodology to a decision-maker, one

needs only to provide that the Bayesian network is built on the dependencies occurring

in the operational environment. These relationships inform the overall probability dis-

tribution for our allocation. However, the data that build the network are subjective,

either based on expert opinion or historical data. When questioned about why the

assessment methodology produces specific outcomes, communication quickly turns

technical. For this reason, we expect a “Good” evaluation for this objective. Because

of the ease of explanation, we expect a good evaluation from this objective via the

lowest-level objectives. Clearly, this methodology is meant to model interdependen-
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cies between objectives. By putting the network in tiers that flow upward, one can

easily conform a Bayesian Network into a hierarchical structure resembling that of

the JCS doctrine. Direct goals are easily measurable, but so, too, are abstract goals.

By building a network that translates actions into probability distributions, abstract

goals are naturally measurable within this methodology. However, details regarding

the network’s CPTs are not easily explained. So, while the network structure may

be intuitive, the distributions may not be. For this reason, the Bayesian Network

methodology receives a “Good” for this objective.

The VFT alternative is also fairly simple to communicate to leadership. This ap-

proach aligns most with the JCS doctrine, establishing a tiered assessment that could

at times mirror the exact structure from Figure 1. However, its simplicity is slightly

under that of Bayesian Networks. Consider that to incorporate objectives dependen-

cies, the VFT would need interaction terms in the objectives, which often do not have

natural interpretations. These terms are not conditional probabilities, as contained

in the BN alternative, and so explaining the assessment methodology for a partic-

ular scenario can easily be clouded with these terms. We see the simplicity of this

methodology match up with the evaluation of the lowest-level objectives of our value

hierarchy from Chapter III. Due to its more rigid structure, we cannot directly model

interdependencies between objectives. However, both abstract and direct goals are

easily incorporated. Abstract goals are typically measured via constructed attributes,

but may also be broken up into lower-level direct objectives. When included, con-

structed attributes could lead to confusing incorporation into a programmatic model.

Alternatives are typically given subjective scores for constructed attributes. Applying

abstract objectives to a computerized simulation could therefore lead to a disconnect

in communication between the objectives and the implementation. Overall, the VFT

methodology does well in some of the lowest-level objectives and poorly in others for
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the simplistic objective, and so receives a “Fair.”

The linear program approach, while not mathematically simple, has a stream-

lined interpretation. In Section 4.5, we demonstrated an optimization of our objec-

tives over all possible friendly allocations. When questioned about the objectives,

the LP naturally directs the audience to the assumptions that inform the constraints.

Communicating these assumptions leads to direct and top-level discussion regarding

the validity of this assessment methodology. We do not see such an open avenue of

communication with the assumptions in the CE/CV and BN methodologies. Con-

ditional probabilities in the CE/CV and BN approaches force communication about

assumptions into the lower levels of technical detail. While we believe that leadership

would understand the LP approach, the approach does not naturally translate into

the JCS strategy-to-task hierarchy. Comprised of a series of objectives, it would be

possible to visualize the objectives with their associated constraints as sub-objectives,

but the mechanism of assessment is nothing close to a hierarchy. However, the in-

terdependencies between the objectives is well modeled, as these interactions exist

implicitly within the dual problem to the LP. Lastly, this methodology can incorpo-

rate both abstract and direct goals, as previously demonstrated. Altogether, because

the mechanism by which the approach assesses the operational environment differs so

distinctly from that of the JCS doctrine, this alternative receives a “Good” for this

objective, rather than an “Excellent.”

Moving on to the second Realism objective – complete and accurate – the CE/CV

approach performs moderately. We expect this result from the CE/CV approach be-

cause of the worst-case-scenario approach used at the mission level of the calculation.

By assuming that each enemy allocation to friendly missions can access all of their

available assets, the overall assessment is performed on a logistically infeasible set of

mission-level allocations. For this lowest-level objective, the alternative scores “Poor.”
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However, the methodology appropriately assesses the operational environments con-

tribution to phase goals using its joint distribution and categorization mechanisms.

Despite the over-allocation of assets to missions, the operational environment is rep-

resented as being in one of five states in relationship to friendly/enemy phase goals.

We see this relationship as an appropriate alternative for assessing the contribution of

the operational environment. Therefore, the CE/CV approach receives a “Good” for

this lowest-level objective. Combining the scores for the two lowest-level objectives

yields an overall score of “Fair” for the completeness and accuracy objective.

Bayesian networks score “Excellent” for the complete and accurate objective. We

expect this due to how Bayesian networks function. In utilizing evidence from the

operational environment to construct and reinforce the network, the end result spans

the operational environment (completeness) and corresponds well with the evidence

provided (accuracy). Looking at the lowest-level objectives, the BN alternative is

logistically feasible. Because the BN methodology only deals in past progress for

the end of a time-step, the methodology is as logistically feasible as the simulated

combat scenario. Assuming the rest of the model is adequately valid, the BN method-

ology is logistically feasible. Furthermore, by drawing directly from the actions taken

within the operational environment, the BN methodology accurately connects the

operational environment to the network, and therefore to the objectives. For these

reasons, the BN receives an “Excellent” for this objective.

The Value-Focused Thinking alternative scores “Good” for the complete and ac-

curate objective. The VFT is wholly dependent upon the actions taken in the op-

erational environment, as it comments only on past performance. However, in mea-

suring abstract goals, it is possible that the use of constructed attributes may lead

to a slightly inappropriate assessment of the operational environment’s contribution

to the combat goals. The VFT scores a “Fair/Good” for this lowest-level objec-
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tive. The VFT also scores a “Good” for the lowest-level objective logistically feasible.

Upon combining the scores of these two lowest-level objectives, the alternative scores

“Good” for this objective.

The Linear Program approach also does not have any issues with feasibility. In

fact, it optimizes over an overall allocation to a set of missions, and therefore is

constrained by logistics. The LP also appropriately assesses the contribution of the

operational environment to combat goals as constructed by the constraints. The

feasible region allows for partial completion in multiple objectives simultaneously, as

seen in the other three alternatives. For these reasons, the LP alternative receives an

“Excellent” for the complete and accurate objective.

The last of the Realism objectives addresses comprehensiveness across all combat

domains. At this time, there is no reason to believe that any of the alternatives

would not be able to accommodate input from any of the domains. For the CE/CV,

VFT, and LP alternatives, adding one or more domains is a matter of recording the

(projected) adjudication results from the operational environment. Meanwhile, the

BN methodology simply incorporates more data into the mission-level details input

as evidence into the network. For these reasons, each of the alternatives receives a

“Good” for this objective.

5.2 Efficiency

Moving on to the first of the Efficiency objectives – assumptions – we evaluate the

CE/CV alternative as “Good.” While the lack of assumptions on enemy allocation

makes the methodology logistically infeasible in many cases, this aspect of the CE/CV

alternative increases its efficiency.

The Bayesian network, while not assuming a particular enemy allocation, requires

data detailing enemy allocation (conditional) probabilities. The excess computation
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generated by requiring these inputs is inefficient, and may result in an excessively large

joint distribution state-space. Storing these data may become intractable. Therefore,

the BN alternative scores a “Poor” for this objective.

Section 4.4 illustrated that the VFT alternative depends on the enemy allocation

insomuch that the user defines an enemy-incorporating objective. For example, no

knowledge of the enemy’s allocation is necessary for the minimize friendly cost ob-

jective (equation 24), but is required for the two capability objectives (equations 20

– 23). However, even when these data are required the enemy allocation is determin-

istically known. Hence, assumptions do not significantly decrease the methodology’s

efficiency. For this reason, the alternative scores a “Good” for this objective.

The Linear Program relies heavily upon the projection of enemy allocation, but

does not make any outright assumptions. In Section 4.5, we assumed that the enemy

allocation was optimized using the same objectives as the friendly assessment. How-

ever, this was only done in the absence of an adjudication algorithm to calculate the

corresponding enemy allocation. In an operational combat simulation, the LP would

calculate the enemy’s allocation using an adjudication algorithm. We discuss this

in reference to the next objective. Because the LP does not make any assumptions

regarding the enemy’s allocation, we evaluate it at a “Good” for this objective.

The second of the Efficiency objectives is computational overhead. In Section 4.2,

we presented the methodology as applied to a singular thread. The assessment calcu-

lations are mirrored for each of the 16 threads when the simulation is past the initial

time-step. Consequently, the CE/CV approach utilizes a lot of extra computation

while referencing CPTs, re-binning asset distributions, calculating the CE/CV joint

distribution to categorize the threads, and aggregating the threads to obtain a final

assessment. We score this methodology at a “Poor” for this objective.

The Bayesian Network methodology also requires a lot of computational over-
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head, in the form of data collection and network mapping. In order to form the BN

for Dresher’s Game in Section 4.4, we manually created the CPTs, which required

ensuring consistency across the conditional and unconditional distributions for each

variable. We required data for each node and relationship in the network. When

considering many missions and assets within those missions, and operational combat

simulation would require a much more extensive network with many more CPTs.

There exist algorithms that can automate both network construction and conditional

probability tables (37; 38; 39). However, these options require a bit of additional

computational overhead. Coding these algorithms often requires time fine-tuning

scoring parameters to judge the viability of the constructed network (39; 40), some

level of subject matter expertise implicit in the application of the algorithm (41), or

post-hoc evaluation of the Bayesian Network’s accuracy/effectiveness (42). In any

case, the state-space of the joint probability distribution of an allocation can become

intractably large. In the Bayesian network presented in Section 4.3, each side’s joint

probability distribution had more than 500, 000 elements in its state space. When we

extend the number of assets types and increase the number of available assets of a

single type, this methodology could become infeasible to implement. The Bayesian

Network methodology therefore scores “Poor/Inf.” (for Poor/Infeasible) in the com-

putational overhead objective, conditional upon the size of the simulation.

The VFT methodology requires minimal computational overhead. As it is an

additive model, there is little computation required once the module calculates the

individual objective values. Calculating the objective values may require some extra

computation if the utility functions for some of the objectives become complex. How-

ever, all data utilized is deterministically known. Much more of the computational

overhead for this alternative comes in the creation of the hierarchy and the definition

of the attributes and their utility functions. This alternative scores a “Good” for the
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computational overhead objective, because it is extremely efficient once initialized.

Applying a linear program to the assessment of simulated combat requires sig-

nificant computational overhead. On top of initializing the LP with its objectives,

variables, and constraints, the methodology also requires one run of the adjudica-

tion algorithm for every friendly allocation evaluated. Although the Simplex Method

is an exponential-time algorithm in the worst case (34, p. 393), there are efficient

polynomial-time algorithms which quicken the LP solution time, such as Karmarkar’s

algorithm and Khachian’s algorithm (34, p. 401–414). Because this methodology is

dependent upon the efficiency of these allocation and adjudication algorithms, we

assume that these are constructed to be computationally efficient. The result is a

computationally semi-efficient algorithm that requires some preliminary work in its

initialization. The Linear Program alternative therefore scores a “Fair” for the com-

putational overhead objective.

The last of the Efficiency objectives addresses their modularity. The CE/CV

approach has already been implemented in a modular environment. The CE/CV

approach provides feedback in the form of in which of the five states each objective

ends the time-step. Objectives with an end state closer to Enemy Superiority should

receive more attention. However, specific asset resource gaps are not addressed in its

BEAM application. For this reason, the alternative scores “Poor” for the modularity

objective.

The Bayesian network methodology may address resource gaps by comparing the

overall objective values between scenarios. Doing so would require more computation,

but the distribution structure of the network provides a robust basis for addressing

resource gaps. One way to observe resource gaps is to analyze scenarios’ objective val-

ues with their decision variable’s distributions. Doing so internally to an assessment

algorithm would be computationally intensive, but would provide valuable informa-
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tion regarding which assets should be more heavily focused or invested in. Because

of the extreme potential to provide formative assessment, this methodology receives

an “Excellent” for this objective.

The VFT alternative addresses resource gaps in the same way as the CE/CV

alternative. While the assessment algorithm may seek out individual objectives which

are providing low utility, the alternative does not address specific asset weaknesses or

strengths driving these utility levels. For this reason, the VFT methodology scores

“Poor” for this objective.

Lastly, applying an LP to the assessment of simulated combat requires that the

adjudication and allocation portions of the model be modularized, so that they can be

called by the LP. As a module, the LP assessment would be in frequent communication

with this (these) other module(s). The LP also naturally addresses resource gaps via

shadow prices. The logistic feasibility constraints on the allocation of assets are those

from which we can best utilize the shadow prices. The interpretation of the shadow

price in this context is “the additional progress toward our combat objectives which

may be gained by increasing the available number of asset a by one.” If the constraint

it binding at the optimal solution, then we will get a non-zero shadow price. For a

maximization LP, we would want to focus more on the assets whose corresponding

constraints have larger absolute shadow prices. A largely negative shadow price means

that we should devalue the corresponding asset, and the opposite for a largely positive

shadow price. Because of the vast opportunity for formative assessment with linear

programming, this alternative receives an “Excellent” for this objective.

5.3 Robusticity

We now address the last of the three branches in our value hierarchy – Robusticity.

The first sub-objective for this branch is titled Win/Loss, short for the objective
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to categorize the probabilities of multi-thread outcomes into one of Win, Loss, or

Unresolved. As previously described, the CE/CV methodology incorporates such a

categorization, and so receives a “Good” for this objective.

We demonstrated in Sections 4.3, 4.4, and 4.5 that we can use the threshold

probability ρ from the CE/CV methodology to categorize the assessment for the BN,

VFT, and LP methodologies, as well. The categories for each assessment methodology

can be categorized from the friendly perspective by: (1) unresolved if both friendly

and enemy assessment scores are between [0, ρ), (2) won if the friendly assessment

is between [ρ, 1] and enemy assessment is between [0, ρ), and (3) lost if the friendly

assessment is between [0, ρ) and enemy assessment is between [ρ, 1]. Hence, these

three objectives also score “Good” for this objective.

The second sub-objective under Robusticity is Equitable across Domains. As cur-

rently presented, each methodology can place weights on the domains to ensure that

the combat results from each domain provide proportional value to their portion of

the operational environment. If desired, the analyst may use alternative means of

weighting, such as weighting according to the amount of change caused in a spe-

cific domain. In all cases, the alternatives are capable of being equitable across each

combat domain, and therefore receive a “Good” for this objective.

The last objective is Correlations Between Objectives. An important aspect of

assessment is accurately representing achievement. Whenever achievement in one

objective is tied to achievement in another objective, it is important that changes in

the operational environment not receive double credit or double penalty.

The CE/CV alternative weakly incorporates this idea. The application of CE/CV

in Section 4.2 demonstrated the methodology for a single mission group. BEAM ap-

plies the methodology to multiple mission groups. For those groups ending in the un-

resolved category at the end of a time-step, BEAM aggregates each asset’s remaining
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outcome distributions. These distributions are weighted by their associated thread’s

weight. Being weighted by their associated thread and the relative health of each

mission group’s asset distribution, we receive an aggregated asset distribution which

considers these relative weights (28, p. 27). Note that these weights are not weights

on objectives, nor are any relationships between the mission groups themselves con-

sidered. Therefore, the CE/CV alternative receives a “Poor” for this objective.

The Bayesian network presented in Section 4.3 does not incorporate the objectives

explicitly. Rather, the probabilities generated from the network are utilized alongside

an allocation’s corresponding objective value to calculate an expected objective value.

However, dependencies between the objectives could be incorporated by feeding this

decision variable network into a separate objectives Bayesian network. A separate

network is required so that the defining joint distribution of the decision variables

excludes the objectives’ state-space. Rather, the joint distributions of the decision

variables’ BNs would determine the univariate cause nodes of the objectives’ BNs.

Further CPTs between the objectives would then create a joint distribution of the

objectives’ values, from which an expected value is simply calculated. In sum, the

BN alternative is capable of correlating the objectives, although doing so requires

additional computation effort. Therefore, the alternative scores a “Good” for this

objective.

The VFT alternative may include some objectives correlations. In fact, Keeney

conditions the validity of the additive value/utility model on attribute independence

(27, p. 133–138). In order to obtain this independence from otherwise dependent

attributes, we may add a joint-objective term may be added to the hierarchy, defined

as the interaction of two or more objectives. This is distinct from the interaction of

decision variables. Similar to an interaction term in regression methods, this joint-

objective term would output a utility equal to the achievement caused by the simul-
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taneous effects of multiple objectives. This term may not be easily intelligible, nor

easily defined. Also, one could replace the incorporated single-objective terms in the

model with the joint-objective term, so as to not double-count contributions to the

overall assessment. Similar to regression, the utility function of this joint-objective

term would be dependent upon the different levels of achievement in each variable.

One way to accomplish this is to perform function composition. For example, let

x1 and x2 be two objectives and y the utility value for the x1 ∗ x2 objective. Sup-

pose g1(x1), g2(x2) are utility functions for x1, x2, respectively. Then we could let

y = h1(g2(x2)) or y = h2(g1(x1)), where h1(·), h2(·) are defined functions for the in-

teraction dependent upon an x2 or x1 input, respectively. Note that this approach is

dependent upon knowing a theoretical correlation between the two objectives x1, x2 in

order to construct the functions h1(·), h2(·). Alternately, one could utilize data on the

interaction between differing levels of achievement in the original objectives in order

to construct an interaction term. Similar to the BN approach, incorporating multi-

objective consequences into the assessment requires extra computational load. This

approach scores a “Good” for this objective. However, doing so would significantly

increase the amount of computational overhead for this objective, thereby changing

this alternative’s computational overhead evaluation to “Fair.” As we wish for each

methodology to provide as much formative assessment feedback as possible, this is a

desirable trade-off.

The LP alternative implicitly considers correlations between the objectives in

the form of objective trade-offs. From duality theory, we know that if the primal

problem contains an optimal solution, then so, too, does the dual problem, and the

objective values of these problems are equal (34, p. 266). If we define our objectives

well, then each objective will have a maximum value of 1 and a minimum value of 0.

Therefore, as long as we establish the constraints such that there is at least one feasible

77



solution, then both the primal and dual problems will have an optimal solution.

The LP assessment methodology considers objective trade-offs in the implicit dual

problem, whose constraints’ right-hand sides are the objective function coefficients.

As the primal problem works through various allocations, the dual problem performs

objective trade-offs. Therefore, any influence that one objective has on another will

be implicitly considered within each iteration. However, this concept is different from

observing correlations between objectives, because only the boundaries of the dual

constraints are considered. Because of this disparity, the LP alternative receives a

“Fair” for this objective.

5.4 Methodology Creation and Finalization

In this section we compare the four methodologies’ evaluations. We then create a

new alternative from the best methodologies as determined from our nine objectives.

Table 11 provides the distribution of evaluations summarizing the previous three

sections and Table 10. Presented this way, we can see that the VFT and LP alterna-

tives have the least “Inf.” or “Poor” evaluations. In addition, the CE/CV alternative

has more “Fair” evaluations than any other alternative and has the least number of

“Good” evaluations. We therefore consider the CE/CV methodology to be worse

than the VFT and LP alternatives. The BN alternative is evaluated as Infeasible

in the computational overhead objective. As the state-space of a combat simulation

grows, this methodology becomes infeasible to apply. We hypothesize that the BN

alternative would be infeasible for most DoD combat models, but may be applicable

in other gaming areas. For our purposes, we therefore determine the BN alternative

to be worse than the VFT and LP alternatives.

Between the VFT and LP alternatives, Table 11 illustrates that these two method-

ologies are fairly comparable. While the VFT evaluation distribution is heavily
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Table 11: Evaluation Distributions by Objective
Evaluation

Alternative Inf. Poor Fair Good Excellent
CE/CV 0 3 2 4 0

BN 0.5 1.5 0 5 2
VFT 0 1 2 6 0

LP 0 0 2 5 2

skewed-left with a mode of “Good”, the LP distribution is centered on “Good.”

However, the VFT methodology does not have any “Excellent” evaluations. Overall,

the LP methodology appears to be the best alternative from both Table 10 and Table

11.

While the LP objective appears to be the best, we can take key components from

other methodologies considered here to create a new alternative. The intent is that

this new alternative’s set of evaluations would be better than any of the current four

alternatives. Keeney calls this process “alternative creation” (27). By combining the

the VFT and LP methodologies, we can obtain an alternative better than all four of

the methodologies hitherto discussed. We will refer to this alternative as the VFT-LP

alternative.

The new VFT-LP alternative utilizes the VFT methodology as the main assess-

ment structure, and then leverages the optimization of the LP in order to perform

formative assessment and enhance the efficacy of the VFT’s assessment. Consider

the following approach. In order to perform the VFT-LP assessment, first create a

VFT Objectives Hierarchy as described in Sections 3.2.3 and 4.4. Also, devise a linear

program to take any desired weights (e.g., asset weights, objective weights, mission

weights) from the VFT and optimize them for use in the next time-step’s VFT as-

sessment. The LP should be run after a time-step’s VFT assessment, in order to aid

the allocation for next time-step.

Note that the LP could be run before the VFT assessment. However, we may
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use the LP to optimize weights, potentially including asset and mission weights.

Therefore, applying the LP between adjudication and assessment would provide an

assessment based on weights that were not used in the current time-step’s allocation,

and therefore would less accurately assess friendly and enemy forces. Running the

LP after assessment will not only update these values for the next time-step’s assess-

ment, but also can update these weights for other parts of the simulation, including

allocation and adjudication modules.

To instantiate the VFT-LP methodology, consider the following example extend-

ing the VFT applied to Dresher’s Game in Section 4.4. Rather than utilizing the

subsequent LP to find an optimal allocation, we focus on the five objective weights

(wECB, wFCBwFCF , wECF , and wC). These are the five decision variables in the LP

to follow. Since the VFT hierarchy from Section 4.4 did not utilize the asset weights

Pb and Pf , we do not utilize them here. However, the VFT and following LP’s ob-

jective function could be modified to resemble that of the objectives and objective

function, respectively, from our LP application to Dresher’s Game in Section 4.5. Do-

ing so would include these asset weights as decision variables. We then reclassify all

allocation variables (i.e., Sbb,B,i, Sbf,B,i, Sf,B,i, Sbb,R,i, Sbf,R,i, Sf,R,i) parameters. These

allocation variables take on the values from the end of the current time-step. All other

parameters retain their parameters classification. Our objective is the same as from

the LP application to Dresher’s Game in Section 4.5 – maximize the cost and two

enemy capability objectives. However, we utilize the enemy and friendly capability

objectives from the VFT construction, which are slightly different from those of the

LP application. With these changes, consider the following sample LP:
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max wECB,i+1

(
1− ben,i+1

ben,1

)
+ wECF,i+1

(
1− fen,i+1

fen,1

)
+ wFCB,i+1

(
bfr,i+1

bfr,1

)
+ wFCF,i+1

(
ffr,i+1

ffr,1

)
+ wC,i+1

(
1− CbbSbb,fr,i + CbfSbf,fr,i + CfSf,fr,i + PCi

Cbbbfr,i + Cfffr,i + PCi

) (58)

s.t wECB,i+1 + wECF,i+1 + wFCB,i+1 + wFCF,i+1 + wC,i+1 = 1 (59)

wECB,i+1, wFCB,i+1, wFCF,i+1, wECF,i+1, wC,i+1 ≥ 0 (60)

wECB,i+1, wFCB,i+1, wFCF,i+1, wECF,i+1, wC,i+1 ≥ ε (61)

wECB,i+1 − wECB,i
wECB,i

≤ δECB (62)

wECB,i+1 − wECB,i
wECB,i

≥ −δECB (63)

wECF,i+1 − wECF,i
wECF,i

≤ δECF (64)

wECF,i+1 − wECF,i
wECF,i

≥ −δECF (65)

wFCB,i+1 − wFCB,i
wFCB,i

≤ δFCB (66)

wFCB,i+1 − wFCB,i
wFCB,i

≥ −δFCB (67)

wFCF,i+1 − wFCF,i
wFCF,i

≤ δFCF (68)

wFCF,i+1 − wFCF,i
wFCF,i

≥ −δFCF (69)

wC,i+1 − wC,i
wC,i

≤ δC (70)

wC,i+1 − wC,i
wC,i

≥ −δC (71)

For this LP, we vary the values of the next time-step’s weights, and so the decision

variables have time-step index i+1. The objective function (58) minimizes the enemy
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capability objectives and the cost objective, while maximizing the friendly capability

objective.

There are two main constraints. Constraint (59) ensures that the objective func-

tion value remains in the interval [0,1]. Constraint (60) is the typical non-negativity

constraint, which effectually sets the domain of each decision variable to [0,1] when

coupled with Constraint (59).

Constraints (61) – (71) are optional, and are provided here as ideas for changing

the behavior of this LP. Optional Constraint (61) would ensure that each weight is

strictly positive. This optional constraint could also be broken out with different ε

values for each weight, if desired. Constraints (62) – (71) would force the proportional

change in the value of a weight to be restricted from one time-step to another. So,

if one would not want there to be more than a 5% change (i.e., increase or decrease)

in the enemy capability objectives’ weights from one time-step to another, one could

set δECB = δECF = 0.05. Limiting the change could be useful to obtain asymptotic

behavior toward the overall optimal weights for the objectives, rather than highly

variable or quickly flat-lining behavior. A slower change would also allow for different

missions to have a more dominant effect upon the overall assessment, rather than

allowing missions conducted at the beginning of a scenario to have the most significant

impact on the objective weights.

At the beginning of time-step 1, the objective weights were

wECB,1 =
2

15
wECF,1 =

1

5
wFCB,1 =

2

15

wFCF,1 =
1

5
wC,1 =

1

3

Now, suppose that we let ε = 0.001 and δECB = δECF = δFCB = δFCF = δC = 0.5.
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Then, the optimal solution for time-step 2’s weights is

[wECB,2, wECF,2, wFCB,2, wFCF,2, wC,2] = [1/5, 2/15, 1/5, 3/10, 1/6] (72)

These results are very sensitive in relation to the set of δ parameters. For example,

changing δC to equal 0.6 changes the optimal solution to

[wECB,2, wECF,2, wFCB,2, wFCF,2, wC,2] = [1/5, 1/6, 1/5, 3/10, 2/15] (73)

The purpose of a lower delta value is to only slightly change the objective weights

to reflect a good balance. Clearly, having the set of delta values equal 1 would set

the weights of the highest-achieving objectives as large as possible, while setting the

lowest-achieving objectives closer to ε. Limiting the change prevents early time-steps’

allocations and adjudications from immediately setting (a) weight(s) to 1 or ε.

Table 12: VFT-LP Evaluation – Categorical Labels

Objective Category Objective Evaluation
Simplistic Fair

Realism Complete & Accurate Good
Comprehensive Good

Assumptions Good
Efficiency Computation Good

Modular Excellent
Win/Loss Good

Robusticity Equitable Across Domains Good
Correlations btwn Objectives Excellent

Table 12 provides the set of evaluations for the VFT-LP alternative. The VFT-

LP alternative maintains the Simplicity of Communication from the original VFT

methodology, due to the potential for multi-objective attributes to allow for reporting

on objectives correlations. This alternative’s evaluation for the Completeness and

Accuracy and the Comprehensive across All Domains objectives is also the same as
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for the VFT methodology, since the assessment mechanism has not changed.

Under the Efficiency objective, the addition of the LP to the backend of the VFT

methodology does not incur any additional assumptions on the enemy’s allocation.

No additional data for these allocations is required, either. The evaluation is there-

fore equal to that of the VFT alternative. However, the Computational Overhead

decreases, since we no longer have to go through the decision process of determining

accurate weights with a proxy decision-maker. While creating the VFT takes some

initialization with a proxy decision-maker, obtaining appropriate attribute weights

can be a laborious process (27, p. 147–149, 166-171). We have replaced this initial-

ization task with the above LP process. Instead, we now only require any (arbitrary)

weights to initialize the model, and the LP will adjust the weights at each time-step.

Therefore, the evaluation fo the Computational Overhead objective is “Good.” Lastly,

with the additional formative feedback that the LP provides, the likely included asset

weights incorporate resource and asset gaps. We therefore evaluate this alternative

as “Excellent” for the Modular objective.

Under the Robusticity objective, we maintain the Win/Loss and Equitable Across

Domains evaluations from the VFT methodology, which were “Good.” For the Cor-

relations Between Objectives objective, not only may we utilize multi-objective at-

tributes, but we now consider the trade-offs between weighting different objectives

and their impact on the overall objective function value with the addition of the LP.

Therefore, we evaluate the VFT-LP alternative as “Excellent” for this objective.

Table 13: Evaluation Distributions by Objective for Top 3 Methodologies
Evaluation

Alternative Inf. Poor Fair Good Excellent
VFT-LP 0 0 1 6 2

LP 0 0 2 5 2
VFT 0 1 2 6 0

Table 13 provides the evaluation distributions for the top three alternatives. While
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still comparable to the LP methodology’s evaluation distribution, the VFT-LP eval-

uations clearly outshine those of the VFT methodology. Note that the VFT-LP is

evaluated as slightly better than the LP, with the VFT-LP having moved one “Fair”

evaluation to “Good.” Overall, the VFT-LP methodology has a better evaluation dis-

tribution than all of the other considered alternatives. The created alternative also

provides useful feedback internal to a simulation of warfare. We recommend use of

this methodology for combat simulation within the DoD.

In this chapter, we evaluated the four assessment alternatives detailed in Chapter

III and applied in Chapter IV. After evaluating the LP and VFT methodologies as

better than the CE/CV and BN methodologies, we searched for ways to improve upon

these approaches. Specifically, we merged the two highest-evaluated alternatives to

create a new VFT-LP methodology, which resulted in a better evaluation of this

alternative than the other four alternatives. We also provided some examples of

using an LP to optimize the overall objective function by selecting different objective

weights. The next chapter provides conclusory thoughts on the research presented

in this thesis and suggests some aspects of the current research to continue in future

work.
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VI. Conclusion

There is very little research on combat assessment methodologies, although this

area of research’s implications for DoD conduct could be far-reaching. While the

strategy-to-task framework outlined by the Joint Chiefs of Staff (2) provides a skele-

tal structure for military combat and non-combat assessment, there is a lack of guid-

ance for how to carry out that guidance in operational models. This thesis distills

the available DoD guidance alongside attributes from other predominant assessment

areas to develop a reasonably good methodology for application in United States

military combat simulations. We rely heavily upon the Value-Focused Thinking prin-

ciples provided by Keeney (27) to guide our evaluation, as this technique is expert at

distilling qualitative information into a structured evaluation hierarchy. Embedded in

this hierarchy are nine criteria that provide an answer to our first research question

(“what are the desired characteristics of a combat assessment methodology?”). In

particular, we selected the characteristics from JCS doctrine and practice to guide

the value hierarchy while incorporating applicable aspects of other assessment re-

search:

1. Simplicity of Communication 2. Completeness & Accuracy 3. Comprehensive Across All Domains

4. Limit Adversary Allocation Assumptions 5. Limit Computational Overhead 6. Modularity

7. Provide Win/Loss/Unresolved Categories 8. Domain Equity 9. Objectives Correlations

We have added the application of each methodology to a small problem in order

to more accurately evaluate each technique in relation to our value hierarchy. How-

ever, this work does not integrate assessment into a large combat simulation. Future

research could develop the theory and/or application of combat assessment within

large simulations. For example, BEAM currently utilizes stochastic asset health as
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the output of a singular thread. In this work, we have considered only deterministic

asset health distributions for the LP methodology.

Coupled with stochastic asset health is partial termination of a scenario. BEAM

currently integrates this idea at the thread level by terminating whole threads, weighted

by the probability of that thread occurring. However, only a portion of the thread

may be truly lost. Future research could apply mathematical programming to tackle

this problem.

A significant constraint of the assessment methodologies presented in this work

is the assumption of their symmetry. We have assumed that both Blue and Red

forces consider alignment with JCS doctrine a priority when assessing operational

environment outcomes. A great advance in the field would be to determine a realistic

assessment structure and methodology for a general or specific Red actor.

The alternatives we selected for evaluation in this work are by no means com-

prehensive. However, the CE/CV methodology provided a status-quo alternative,

which has been applied inside of an enterprise-level combat simulation. In addi-

tion, the BN, VFT, and LP approaches broadly span the types of methodologies we

could have investigated. The BN methodology is built on Bayesian statistics and a

heavy distributional base. The network aspect of this approach is typical of non-

hierarchical assessment. The VFT approach, in contrast, is rigidly hierarchical and

requires multiple types of independence. In this model, we demonstrate the strengths

and weaknesses of an additive model for assessment within simulated combat. Lastly,

the LP approach is intended to demonstrate the pros and cons of general mathemati-

cal programming for assessment within a simulation of combat. In fact, the examples

presented are mixed-integer linear programs. As an answer to our second research

question (”how should one conduct combat assessment?”), we suggest utilizing the

Value-Focused Thinking – Linear Programming approach.
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The examples of these techniques that we present in chapter IV are foundational

approaches from applied statistics and operations research and do not represent the

wealth of complexity that each technique has to offer. However, by detailing the

mechanics, and exemplifying basic examples, of these methodologies, we intend for

our evaluations to provide only mild error when extrapolated to more nuanced versions

of these techniques. In sum, we consider the archetypal examples considered in this

work to adequately span potential quantitative assessment techniques.
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Appendix A. Dresher’s Game Conditional Probability
Tables for the Bayesian Network Methodology

Table 14: Distribution of Sf,R,2
Sf,R,2 0 1 2 3 4 5 6 7 8 9 10
p(Sf,R,2) 0.2 0.08 0.05 0.025 0.004 0.001 0.02 0.07 0.1 0.2 0.25

Table 15: Distribution of Sbb,R,2
Sbb,R,2 0 1 2 3 4 5 6 7 8 9 10
p(Sbb,R,2) 0.3 0.12 0.045 0.02 0.012 0.006 0.012 0.02 0.045 0.12 0.3

Table 16: Distribution of Sbf,R,2
Sbf,R,2 0 1 2 3 4 5
p(Sbf,R,2) 0.66591 0.07832 0.02445 0.008065 0.004424 0.002491

Sbf,R,2 6 7 8 9 10
p(Sbf,R,2) 0.00659 0.0146 0.03075 0.0714 0.093

Table 17: Distribution of Sf,B,2
Sf,B,2 0 1 2 3 4 5 6 7 8
p(Sf,B,2) 0.0939 0.0244 0.0609 0.0061 0.0478 0.013 0.1084 0.1125 0.5331

Table 18: Distribution of Sbb,B,2
Sbb,B,2 0 1 2 3 4 5 6 7 8
p(Sbb,B,2) 0.202 0.0205 0.0624 0.0061 0.044 0.0075 0.027 0.0627 0.5677

Table 19: Distribution of Sbf,B,2
Sbf,B,2 0 1 2 3 4 5 6 7 8
p(Sbf,B,2) 0.5879 0.0818 0.0102 0.0033 0.0007 0.0026 0.0139 0.0838 0.2157
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Table 20: Distribution of Sbf,B,2|Sf,R,2
Sbb,B,2 \Sf,R,2 0 1 2 3 4 5

0 1 0.02 0.008 0.0003 0.00004 0.00001
1 0 0.25 0.01 0.0009 0.00005 0.000028
2 0 0.73 0.075 0.0013 0.00009 0.0003
3 0 0 0.11 0.0021 0.00126 0.00082
4 0 0 0.797 0.09 0.0069 0.0029
5 0 0 0 0.12 0.013 0.007
6 0 0 0 0.7854 0.087 0.011
7 0 0 0 0 0.143 0.097
8 0 0 0 0 0.74866 0.880942

Sbb,B,2 \Sf,R,2 6 7 8 9 10
0 0.00001 0.00001 0.00001 0.00001 0.00001
1 0.000028 0.000028 0.000028 0.000028 0.000028
2 0.0003 0.0003 0.0003 0.0003 0.0003
3 0.00082 0.00082 0.00082 0.00082 0.00082
4 0.0029 0.0029 0.0029 0.0029 0.0029
5 0.007 0.007 0.007 0.007 0.007
6 0.011 0.011 0.011 0.011 0.011
7 0.097 0.097 0.097 0.097 0.097
8 0.880942 0.880942 0.880942 0.880942 0.880942

Table 21: Distribution of Sbf,R,2|Sbb,R,2
Sbf,R,2 \Sbb,R,2 0 1 2 3 4 5 6 7 8 9 10

0 0.31 0.35 0.45 0.55 0.645 0.71 0.78 0.86 0.94 0.99 1
1 0.13 0.13 0.2 0.195 0.185 0.175 0.15 0.115 0.05 0.01 0
2 0.04 0.045 0.06 0.07 0.09 0.07 0.05 0.02 0.01 0 0
3 0.01 0.02 0.025 0.03 0.04 0.03 0.015 0.005 0 0 0
4 0.0075 0.01 0.01 0.01 0.015 0.014 0.005 0 0 0 0
5 0.005 0.005 0.005 0.005 0.005 0.001 0 0 0 0 0
6 0.0075 0.02 0.02 0.04 0.02 0 0 0 0 0 0
7 0.01 0.05 0.08 0.1 0 0 0 0 0 0 0
8 0.04 0.1 0.15 0 0 0 0 0 0 0 0
9 0.13 0.27 0 0 0 0 0 0 0 0 0
10 0.31 0 0 0 0 0 0 0 0 0 0
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Table 22: Distribution of Sbb,R,2|Sf,B,2
Sbb,R,2 \Sf,B,2 0 1 2 3 4 5 6 7 8

0 0.2 0.002 0.05 0.11 0.12 0.16 0.18 0.21 0.35
1 0.15 0.003 0.02 0.03 0.03 0.1 0.13 0.16 0.12
2 0.1 0.005 0.03 0.01 0.015 0.003 0.06 0.1 0.06
3 0.05 0.21 0.002 0.007 0.01 0.03 0.03 0.05 0.03
4 0.003 0.16 0.003 0.012 0.015 0.012 0.009 0.01 0.003
5 0.001 0.1 0.05 0.023 0.045 0.015 0.005 0.005 0.001
6 0.001 0.05 0.08 0.069 0.085 0.03 0.009 0.01 0.001
7 0.002 0.01 0.12 0.097 0.09 0.07 0.02 0.035 0.002
8 0.1 0.05 0.16 0.137 0.09 0.115 0.1 0.05 0.07
9 0.18 0.15 0.19 0.215 0.18 0.165 0.187 0.12 0.15
10 0.213 0.26 0.295 0.29 0.32 0.3 0.27 0.25 0.213

Table 23: Distribution of Sbf,B,2|Sbb,B,2
Sbb,B,2 \Sbf,B,2 0 1 2 3 4 5 6 7 8

0 0.086 0.1076 0.001 0.001 0.001 0.58 0.1 0.2 1
1 0.03 0.06 0.005 0.005 0.011 0.28 0.3 0.8 0
2 0.01 0.0164 0.008 0.037 0.065 0.1 0.6 0 0
3 0.001 0.0086 0.096 0.107 0.223 0.04 0 0 0
4 0.001 0.001 0.16 0.3 0.7 0 0 0 0
5 0.002 0.0164 0.15 0.55 0 0 0 0 0
6 0.01 0.12 0.58 0 0 0 0 0 0
7 0.06 0.67 0 0 0 0 0 0 0
8 0.8 0 0 0 0 0 0 0 0

Table 24: Distribution of Sf,B,2|Sbb,R,2, Sbf,R,2
Sbb,R,2 + Sbf,R,2 \Sf,B 0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 0 0
1 0.01 0.3 0.69 0 0 0 0 0 0
2 0.001 0.002 0.1 0.12 0.777 0 0 0 0
3 0.0001 0.0005 0.0014 0.0055 0.1505 0.192 0.65 0 0
4 0.00001 0.00004 0.00025 0.0003 0.0084 0.01 0.12 0.15 0.711
5 0.00001 0.00004 0.00025 0.0003 0.0084 0.01 0.12 0.15 0.711
6 0.00001 0.00004 0.00025 0.0003 0.0084 0.01 0.12 0.15 0.711
7 0.00001 0.00004 0.00025 0.0003 0.0084 0.01 0.12 0.15 0.711
8 0.00001 0.00004 0.00025 0.0003 0.0084 0.01 0.12 0.15 0.711
9 0.00001 0.00004 0.00025 0.0003 0.0084 0.01 0.12 0.15 0.711
10 0.00001 0.00004 0.00025 0.0003 0.0084 0.01 0.12 0.15 0.711
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Table 25: Distribution of Sbf,B,2|Sbb,B,2, Sf,R,2
Sbb,B,2 \Sbf,B,2 0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 0 0
1 0.983 0.017 0 0 0 0 0 0 0
2 0.96 0.034 0.006 0 0 0 0 0 0
3 0.88 0.1 0.015 0.005 0 0 0 0 0
4 0.79 0.133 0.065 0.011 0.001 0 0 0 0
5 0.73 0.17 0.067 0.027 0.001 0.005 0 0 0
6 0.6 0.139 0.072 0.0035 0.001 0.0045 0.18 0 0
7 0.45 0.086 0.0164 0.0086 0.001 0.007 0.09 0.341 0
8 0.38 0.11 0.006 0.0035 0.001 0.0035 0.006 0.11 0.38

Table 26: Distribution of Sbf,R,2|Sbb,R,2, Sf,B,2
Sbb,R,2 \Sbf,R,2 0 1 2 3 4 5 6 7 8 9 10

0 1 0 0 0 0 0 0 0 0 0 0
1 0.99 0.01 0 0 0 0 0 0 0 0 0
2 0.94 0.05 0.01 0 0 0 0 0 0 0 0
3 0.86 0.115 0.02 0.005 0 0 0 0 0 0 0
4 0.78 0.15 0.05 0.015 0.005 0 0 0 0 0 0
5 0.71 0.175 0.07 0.03 0.014 0.001 0 0 0 0 0
6 0.645 0.185 0.09 0.04 0.015 0.005 0.02 0 0 0 0
7 0.55 0.195 0.07 0.03 0.01 0.005 0.04 0.1 0 0 0
8 0.45 0.2 0.06 0.025 0.01 0.005 0.02 0.08 0.15 0 0
9 0.35 0.13 0.045 0.02 0.01 0.005 0.02 0.05 0.1 0.27 0
10 0.31 0.13 0.04 0.01 0.0075 0.005 0.0075 0.01 0.04 0.13 0.31

Table 27: Distribution of Sf,R,2|Sbb,B,2, Sbf,B,2
Sbb,B,2 + Sbf,B,2 \Sf,R,2 0 1 2 3 4 5 6 7 8 9 10

0 0.95 0.05 0 0 0 0 0 0 0 0 0
1 0.002 0.3 0.698 0 0 0 0 0 0 0 0
2 0.0007 0.01 0.042 0.05 0.005 0.001 0.005 0.3175 0.5688 0 0
3 0.0007 0.01 0.042 0.03 0.005 0.001 0.005 0.3375 0.5688 0 0
4 0.0007 0.01 0.042 0.03 0.005 0.001 0.005 0.3375 0.5688 0 0
5 0.0007 0.01 0.042 0.03 0.005 0.001 0.005 0.04 0.054 0.2623 0.55
6 0.0007 0.01 0.042 0.03 0.005 0.001 0.005 0.04 0.054 0.2623 0.55
7 0.0007 0.01 0.042 0.03 0.005 0.001 0.005 0.04 0.054 0.2623 0.55
8 0.0007 0.01 0.042 0.03 0.005 0.001 0.005 0.04 0.054 0.2623 0.55
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