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Abstract

Evaluating quantum networks is an expensive and time-consuming task that ben-

efits from simulation. The scale of computation, however, grows exponentially in

relation to the input. In order to better enable the study of such networks, it is

desired to have a software framework that is both accurate and performant. A po-

tential improvement is to utilize graphics processing units (GPUs), namely by lever-

aging NVIDIA’s programming framework, CUDA. To avoid performance pitfalls of

higher level languages and programming models such as the so called “two language

problem,” the Julia Programming Language provides the basis for the development

effort [1]. This research develops a prototype quantum network simulation frame-

work using GPUs and Julia. Performance of the software is measured and compared

against other languages such as MATLAB. In one evaluation, this research simulates

the Hong-Ou-Mandel (HOM) Interference Experiment, whereby the coincidence rate

of two entangled photons is measured. We consider this an important baseline for

further research and development of a successful GPU-accelerated quantum simula-

tion framework due to the experiment’s relation to many core quantum networking

concepts. A two-module framework is developed, one providing the basic simula-

tion implementation and a second that extends the former with GPU compatibility.

This allows developers and quantum researchers to utilize the same framework with

consistent syntax regardless of whether they have a CUDA-compatible GPU.
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Approaches to Improve the Execution Time of a Quantum Network Simulation

I. Introduction

The Department of Defense (DoD) has expressed interest in the field of quantum

science [2, 3]. An investment in quantum capabilities will provide the warfighters and

decision makers with revolutionary technologies that would provide a competitive

edge in a post quantum epoch. Due to significant investment in time and resources

required to perform quantum experiments, the DoD has invested in to further the

field of study.

The introduction of quantum networks and computing is a significant security

threat to any non-quantum enabled adversary. With the promise of securing commu-

nication protocols, classic cryptographic breaking prime number factorization, reach-

ing the quantum level has become the arms race of the 21st century [4, 5]. In order to

not fall behind in this field, it has become ever more essential to enable the efficient

study, development, and experimentation of quantum networks.

This research aims to address these objectives by accelerating the speed at which

quantum optical simulations can be performed while maintaining a high degree of

accuracy in the output. Through examining core quantum experiments and processes,

ways to improve performance are developed. Using these results, software is developed

to perform the calculations on graphics processing units (GPUs) to further improve

execution runtime.

1



1.1 Problem Statement

The set up and execution of quantum experiments is an expensive and time-

consuming task [6]. The ability to instead perform accurate simulations of these

phenomena would be advantageous. However, many existing quantum optics simu-

lation frameworks and libraries either fail to provide a sufficient accuracy or require

substantial runtime for quantum systems larger than a couple qubits. Quantum

software such as SimulaQron is not aimed at accurate time dependencies, error cor-

recting code, or the study of noise [7]. For this, The Network Simulator for Quantum

Information using Discrete events (NetSquid) [8] is recommended. NetSquid is pro-

prietary, however, and an open source alternative would be preferred. Another such

library often discussed in the literature is the Quantum Toolbox in Python (QuTiP)

[9, 10]. QuTiP, generally favored for its performance and open-source nature, is often

benchmarked against by newer libraries.

Our research has selected the Julia Programming Language as the basis to develop

performant quantum network simulations. Within the Julia ecosystem of libraries,

there are competitors to QuTiP in terms of performance. Both Julia-based libraries,

QuantumInformation.jl and QuantumOptics.jl, leverage Julia’s capability to write

code that supports the use of multiple dispatch, LLVM, and Just-In-Time (JIT)

compilation [11, 12].

Larger systems are necessary in order to simulate anything more complex than

the most trivial quantum networks. Considering the magnitude of computation grows

exponentially as the number of qubits are increased, a rather large barrier is placed.

GPUs, however, offer a potential solution, but none of the common quantum simula-

tion frameworks currently available take advantage of GPU acceleration. We define

our work as experimenting with the use of the Julia Programming Language to de-

velop a quantum simulation library that is intentionally designed from the ground

2



up with the use of GPUs in mind. This library should be modular and open-source

where possible, and it should ensure the speed and accuracy of the simulation in an

easy to use framework. Physicists, and other researchers, should be able to write code

as close to normal quantum notation as possible. It is desired for this framework to

be well-documented, accurate, performant, and scalable in order to enable the study

of real-world quantum networks and phenomena efficiently and cost effectively.

1.2 Research Objectives

The first objective is to compare the benchmarks across multiple versions of a

previously written MATLAB script that simulates the effects associated with Hong-

Ou-Mandel (HOM) Interence. These benchmarks provide an important baseline to

develop and compare further work against. The next objective will be to re-implement

the effects of this MATLAB-based simulation in the Julia Programming Language and

the execution runtimes compared. These efforts will then lead into the main objective

of developing a prototype framework which leverages the execution performance of

GPUs to perform calculations.

Progress will be measured in the number of quantum experiments we are able to

successfully simulate with the framework, as well as by measurable execution perfor-

mance improvements. The prototype framework should be able to at least successfully

simulate the HOM Interference and Mach-Zehnder experiments.

1.3 Organization

This thesis is organized in a scholarly article format with three papers to be

submitted for publication. Chapter II is a published conference paper presented at

The 2020 World Congress in Computer Science, Computer Engineering, and Applied

Computing [13]. In it, an overview of the Julia Programming Language as well as the

3



concept of containerization focusing on the high performance computing (HPC) con-

tainer engine Singularity is provided. The motivation for using the two in conjunction

to leverage the computational benefits of GPUs in our research is then established.

Chapter III reprints the second paper. The discussion in this paper focuses on the

first real attempted use of the Julia Programming Language to perform simulation of

quantum computation in this research. The problem area centered on using Julia’s

multi-threading capabilities to simulate quantum process tomography. To better un-

derstand how robust the language is in this area, we execute our simulation on the

Air Force Research Laboratory’s supercomputer Mustang. The results of this exper-

iment show that the version of Julia used was able to maintain close to theoretical

performance until a significant number of threads, at which point performance was

lost.

Chapter IV is our third paper. This paper analyzes and compares an initial

conversion of a pre-existing MATLAB script that simulated HOM interference to

Julia. After this initial conversion, techniques used to improve runtime and memory

usage are discussed. These techniques are applied to the Julia version, and the results

are compared to the initial attempt. It is shown that in some cases, Julia is indeed

faster than MATLAB.

Chapter V concludes with a summary of the contributions made to the field, the

current status of the library in the development, and gives proposals for future work.

Finally, the appendices document the current state of the two-module framework

developed as a result of this research. Appendix A focuses on encapsulating doc-

umentation and design philosophy of the overall framework. Appendix B provides

code listings and examples of the framework. Lastly, Appendix C contains framework

benchmarks of the HOM Interference and Mach-Zehnder experiment simulations.

4



II. Julia and Singularity for High Performance Computing

The following conference paper was presented at The 2020 World Congress in

Computer Science, Computer Engineering, & Applied Computing. It was accepted

for publication and was included in Springer’s Advances in Parallel & Distributed

Processing, and Applications [13, 14].

5



Julia and Singularity for High Performance
Computing

Joseph Tippit
Air Force Institute of Technology
Wright-Patterson AFB, OH, USA

joseph.tippit@afit.edu

Douglas Hodson, PhD
Air Force Institute of Technology
Wright-Patterson AFB, OH, USA

douglas.hodson@afit.edu

Michael Grimaila, PhD
Air Force Institute of Technology
Wright-Patterson AFB, OH, USA

michael.grimaila@afit.edu

Abstract—High performance computing (HPC) is pivotal in the
advancement of modern science. Scientists, researchers, and engi-
neers are finding an increasing need to process massive amounts
of data and calculations faster and more accurately than ever
before. This is especially true in our work of developing a general
quantum library for researchers to use in their simulations. Much
of this effort revolves around getting the maximum performance
enhancements offered by GPUs as possible. We have found that
the relatively newer programming language Julia has offered
us a productive means of development with minimal overhead.
Combined with the container engine Singularity, we can ensure
maximum distributability and reproducibility.

Index Terms—high performance computing, GPUs, Julia, con-
tainer engine, Singularity

I. INTRODUCTION

Our research team is focusing on developing a software suite
of tools to simulate quantum systems, specifically in regards to
quantum teleportation. Our goal is to create a library general
enough for researchers to be able to apply our software to
many different quantum problems rather than one specific one
and to keep it as open source and distributable as possible.
Due to the high level of computation needed to fully model
these systems, code run-times can easily and exponentially be
driven upwards as the matrices involved become increasingly
larger.

High level, dynamic languages such as Python, despite their
benefits in ease of use and readability, simply do not offer
the speed we require. However, lower level languages such
as C offer considerably less flexibility and greater difficulty
in developing and maintaining code. As a middle grounds to
this, we have chosen to use the relatively newer programming
language Julia. Julia, while being a dynamic language, was
developed with speed in mind, targeting researchers and data
scientists hoping to get as much performance out of their code
as possible while still maintaining inherit readability and ease
of use. This made it an obvious first choice for our research.

Also, due to the high level of matrix calculations involved
in quantum mechanics, our research can benefit greatly from
the performance gains offered by running as much of our
code as possible on GPUs rather than the traditional CPU.
Julia offers an extensive amount of support in this area, as
it has native GPU programming capabilities offered by the
CUDAnative.jl library, as well as multiple other libraries for
support. Combined with Julia’s Just-In-Time Compiler, these

libraries offer a great level of efficiency in the kernel launch
sequence.

In keeping distributability in mind, we have also opted to
develop our library inside of the container engine Singularity.
Collaborators can be limited by local security practices and
administrative privileges needed to install dependencies re-
quired to run the software and code of others. This is combined
with the need to maintain version control of software libraries
fundamental to their own workflow. Containerization as a
technology has risen to meet these needs. Containers offer
similar benefits to virtual machines such as managing library
dependencies and running multiple, isolated operating systems
(OS) from the same machine. They do, however, have certain
advantages more critical to our work.

Specifically, Singularity makes use of a definition file, where
software such as the operating system and essential libraries
are defined. This allows us to share our work with others,
ensuring all versions and libraries will exactly match our own
without interfering with their workflow. This also offers a kind
of version control for our work and makes it easier to develop
on one machine and execute on another. All that is required
is to simply build the container from the definition file, and
everything that is required will be installed without having
to worry about system administration. Companies such as
NVIDIA also offer large repositories of containers pre-built to
meet many different needs, allowing us and other researchers
to further focus on our research.

Another key benefit we see in using containers is their
ability to directly share the kernel of the host OS without the
need for a hypervisor, defined later, as is required for a virtual
machine. This allows them to directly access the resources of
a physical machine with minimal overhead. This is crucial,
as much of our code will revolve around utilization of GPUs
and getting as much of their speed up as possible. Combined
with the definition file, containers only need to install what is
absolutely essential to our workflow, sharing everything else
with the host OS. This is in contrast to virtual machines, which
need to install and run a full OS, requiring more overhead.

Singularity has also been developed with researchers in
mind, assuming no administrative privileges and targeting high
performance computing. These reasons have made it ideal for
our research. Throughout the course of this paper, we will
provide further justification for why we chose both Singularity



and Julia as fundamental tools to our work.

II. THE JULIA PROGRAMMING LANGUAGE

Traditionally, high level, dynamic languages have lagged
behind lower level, static languages in terms of performance.
The emphasis on readability, ease of use, and productivity is
believed to come at the cost of run-times and execution speeds.
Prototyping is thus done in a high level language and then fully
implemented in a low level language for speed.

With Julia, this is not the case. From its initial development,
the Julia Programming Language was designed with speed in
mind while still offering the same productive programming
of a high level language. In a blog post about why they
created it, Julia’s developers are quoted as saying, “We want
the speed of C with the dynamism of Ruby. We want a
language that’s homoiconic, with true macros like Lisp, but
with obvious, familiar mathematical notation like Matlab. We
want something as usable for general programming as Python,
as easy for statistics as R, as natural for string processing
as Perl, as powerful for linear algebra as Matlab, as good at
gluing programs together as the shell” [1].

By examining Julia’s Pythonic syntax with natural mathe-
matical notation, as well as the micro-benchmarks in Figure 1
and 2, we can easily see that they have achieved their goals. We
will further examine three key features that lend themselves
to this success:

• Julia’s Just-In-Time Compiler and Type System
• Low-Level Virtual Machine (LLVM)
• Native GPU Support

A. Just-In-Time Compilation

Just-In-Time (JIT) compilation is a technique that converts
high level languages into machine code executable directly on
the CPU when it is run [3]. This means that Julia, unlike
Python, is a compiled language. This is a benefit for its
speed, as it drops the overhead of interpretation. The difference
between a language such as C, however, is that the code is
compiled at run-time rather than beforehand. To adequately
benchmark Julia run-times, it is therefore necessary to run

Fig. 1. Julia Micro-Benchmarks [2]

Fig. 2. Language Speedups Relative to C [3]

the code once so that it is compiled, and then a second time
to benchmark. Otherwise, you will also time the overhead of
compiling the code as well.

We can see the steps involved in the Julia compilation
process in Figure 3 below. Julia also offers macros to allow
the programmer to see the output of each step. For example,
if one is interested in seeing the LLVM bitcode output, the
@code llvm macro could be placed in front of the desired
function. If, instead, one wanted to see the actual assembly that
Julia compiled to, use the @code native instead. These macros
can give the programmer insight into where optimizations in
their code can be made.

The speed ups offered by Julia are also largely due to
multiple dispatch. Essentially, this is a method whereby mul-
tiple functions are automatically created to perform the same
operation, and one is selected based on the types of the

Fig. 3. Julia Compilation Process [3]



individual inputs. This allows the compiler to make certain
optimizations and improvements to each function without the
user needing to manually define the same operation for every
combination of possible input types.

Adding two numbers together is an excellent example of
this. On the computer hardware, the value 1.0 is stored
uniquely different from 1. The former is stored as a float
and the latter as an integer. Summing these together would
output 2.0, a float. If instead, both had been kept integers, the
resulting output would have also been an integer.

A central idea behind multiple dispatch is type stability.
Type stability is the concept that the type of a return value
depends only on the types of the individual inputs and not on
their values. It is, ultimately, what makes multiple dispatch
work by allowing the compiler to choose the correct func-
tion to perform the desired operation. The book, Julia High
Performance Second Edition by Avik Sengupta has a simple
example of this highlighted in the code examples below [3].

f u n c t i o n pos ( x )
i f x < 0

r e t u r n 0
e l s e

r e t u r n x
end

end

We can see that inputting float 2.5 will return the float 2.5.
However, -2.5 will return zero as an integer. This is type
instability. Julia offers many ways to identify and fix type
instability, however, Julia’s compiler has been optimized to
make even code with type instabilities execute almost as fast
as code without. The ability to focus more on writing our
code while letting the compiler worry about the lower level
optimizations is a huge benefit to our work.

B. LLVM

Prior to being passed off to the JIT compiler, Julia uses
the compiler infrastructure LLVM to convert its syntax into
an intermediate representation in memory. This syntax allows
LLVM to make different optimizations before being compiled
to machine code [5]. These optimizations are implemented
as passes in LLVM, and there are three different categories:
Analysis, Transform, and Utility Passes [6].

In the Analysis passes, information is collected for other
passes to use in regard to debugging and program visualiza-
tion, and Transform passes will all mutate the program in some

Fig. 4. High Level LLVM Overview [4]

way. Utility passes is a categorical catchall for passes that have
some utility but do not fit into the other two [6]. The final
output is the intermediate representation, which is a low level
language similar to assembly. As previously mentioned, it can
be viewed by adding the @code llvm macro to a function.
Figure 4 shows a high level overview of this process.

C. Native GPU Support

One of the most influential reasons in using Julia for our
research is its native GPU support. Julia has multiple libraries
for utilizing the GPU at differing levels of abstraction, as
shown in Figure 5. As we will be using NVIDIA GPUs,
CUDA support is of the greatest interest to us. Using the
CUDAnative.jl library, in conjunction with CUDAdrv.jl and
CuArrays.jl, we are capable of doing the same low level
GPU programming that could be done in CUDA C++. These
libraries provide a means of interfacing with the CUDA
driver and run-time libraries, writing kernels, and managing
execution [7].

These libraries integrate into Julia’s JIT compiler, allowing
the code to be compiled directly to GPU assembly. Ultimately,
what this means is that you can use Julia for the GPU
almost exactly how you would for the CPU. This gives the
programmer the same productivity Julia offers and combines
it with the inherent parallelism of the GPU, generating efficient
PTX code [7]. Similarly to how we can view the LLVM
intermediate representation and native assembly code, we can
also view the PTX generated by the LLVM PTX compiler
backend using the @device code sass macro.

Fig. 5. Julia GPU libraries at differing levels of abstraction [7]



Fig. 6. Overview of the CUDAnative.jl compiler [7]

Additionally, the Julia team has been porting the Rodinia,
a benchmark suit for heterogeneous computing, to Julia. The
Rodinia benchmark suite works by measuring parallel comm-
munication patterns, synchronizations techniques, as well as
power consumption in order to provide a standard benchmark
to compare platforms [8]. We can see how Julia compares
against CUDA C++ in Figure 7.

CUDAnative.jl can be considered the basic library essential
to using CUDA in Julia, however, CuArrays.jl is arguably the
most signficant. GPU code must be vectorized in order to gain

Fig. 7. Performance difference between CUDA C++ and CUDAnative.jl using
the Rodinia Benchmark [7]

any performance increases, and the array is the fundamental
type for this. The CuArrays data type allows arrays to be
created for use on the GPU just like any other array in Julia [3].
Overall, these libraries make Julia just as useful and powerful
for programming on the GPU as C++ while still keeping in line
with a high level language paradigm. Intuitive mathematical
syntax, a highly optimized compiler, and the ability to make
low level GPU abstractions have given Julia a competitive
edge in high performance computing as well as making it the
decisivie choice for our research.

III. CONTAINERIZATION

A. Differences between Containers and Virtual Machines

Virtualization developed as a means of meeting the demands
of shared resources amongst a large collection of users [9].
Universities and companies alike utilize virtual machines
(VMs) to provide their students and employees with a way
of accessing the organization’s computer resources remotely
from a shared server. This can reduce the costs of having to
provide users these same resources physically.

Conceptually, virtualization is an abstraction of the hard-
ware and resources of a physical machine from the operating
systems and software running in a virtual machine. Fundamen-
tal to this is the software called the hypervisor. A hypervisor,
or virtual machine monitor (VMM), isolates the operating
system and resources on the physical machine (the host) from
the virtual machine (the guest) and oversees all VMs on the
host. Users can create many VMs on one machine, allocating
different amounts of resources such as memory and storage
to each. The hypervisor sees these resources as a pool and
manages their utilization amongst every running VM as needed
[10].

Essentially, the virtual machine exists on the host as a folder.
This allows it to be easily moved and copied around. The
image containing the VM includes a complete operating sys-
tem and its corresponding applications, allowing for different
operating systems and environment regardless of what the host
OS is. However, this comes at the price of storage space
and having potentially significant overhead in terms of CPU
resources and RAM [11].

In contrast to this, containers exist on the host OS as either a
file or collection of files, allowing them to be highly portable
and configurable. Since containers share the same kernel as
the host OS, they drop the need for a hypervisor and have
direct access to system resources without needing to emulate
them. We show a high level view of this difference in Figure
8.

Containers also come with just the necessary run-time files,
dependencies, and software to run the required software. Due
to this, they are more lightweight than a VM and will run
natively on a Linux operating system while still isolating their
applications from the OS [12]. The file system is also isolated
and will only mount certain prescribed and user directed
directories from the host OS. Other than these directories, the
file system paths and the files they hold will be different from
the host.



Fig. 8. High Level View of Containers vs Virtualization [12]

Both Singularity and Docker, another popular container
engine, set up their container environments from a definition
file or Dockerfile, respectively. This allows users to maintain
a level of version control when sharing their work. These files
define the operating system environment and library/software
requirements of the application being contained, giving col-
laborators a straightforward means to ensure all dependencies
will be exactly what the original developer intended without
needing to have a system administrator install anything. Since
containers are also isolated from the host, they will run as just
another process and will not interfere with any other workflow
or library dependencies.

B. Docker versus Singularity

Docker is one of the most widely known and used container
engines available today. There are a plethora of options avail-
able to researchers to immediately pull a container suitable to
their needs and begin working. NVIDIA’s own GPU Cloud, a
hub for high performance computing container images, hosts
their work environments natively as Docker images.

However, Docker was designed to be an enterprise focused
container. No HPC center allows it as it was not intended to
support highly distributed parallel applications [13]. Docker
also assumes administrative or root privileges and runs appli-
cations as such. Not only does this not solve the problem of
sharing our work (if collaborators do not have the proper local
privileges, they will not be able to run our containers), but this
also causes potential security risks as well. Since applications
are run as root, any user accessing the container can also be
granted the same escalated privileges.

Singularity, on the other hand, assumes no privileges what-
soever and was specifically designed to support HPC and
MPI applications. This no trust model makes it ideal for
sharing work amongst researchers and other collaborators,
as everything run in the image will be executed with the
same privileges as the user. The run-time writes the UID
and GID information to the files within the container, so
the privileges are the same because the user is the same.
Singularity has a slightly different philosophy from Docker,
one of “Integration over Isolation” [14]. This means it supports
being able to map more directories from the host operating
system into the guest, integrating and embedding it directly
into your workflow. Overall, Singularity is a paradigm targeted

Fig. 9. General Container Architecture compared to Singularity [15], [16]

at scientific workloads to address the core missions of Mobility
of Compute, Reproducibility, HPC support, and Security [14].

It also supports converting Docker containers directly to
Singularity containers in a single command (it will even pull
directly from Docker Hub and NVIDIA GPU Cloud, as well
as its own Singularity Hub), which means every image on the
NVIDIA GPU Cloud will also be supported on Singularity
as well. Taken collectively, and in keeping in line with other
HPC workflows, we have found Singularity to be the best
suited container engine for our applications.

C. Singularity and GPUs

Singularity, by default, makes all host devices accessible to
the container. This provides for a seamless integration with
GPUs and other devices common to HPC. In fact, Singularity
comes stock with command line options to control the usage
of GPUs, choosing which to run and when [14].

As previously mentioned, NVIDIA offers many different
container options for researchers to pull and immediately
begin working. These images come set up with everything
one needs to access their GPUs from within a container with
similar performance to what one would expect from the host
(see Figure 10 below), and much of NVIDIA’s documentation
covers using them from within Singularity [17]. Singularity
even has direct access to the host’s driver libraries. These
reasons led us to choose Singularity as the container engine
of choice for our research.

CONCLUSION

Performance and productivity are two areas crucial to our
research. The need to perform massive matrix calculations
efficiently have turned us to utilizing GPUs to leverage their
inherent parallelism. We have found the programming lan-
guage Julia, with its highly optimized compiler and native
GPU support, to be the ideal basis on which to develop our
quantum libraries. Providing us with a high level language
paradigm combined with speeds comparable to C, as well as
essentially equivalent support for CUDA as C++, it was a clear
choice as a way forward.



Fig. 10. NGC Performance: Containers vs. Bare-Metal [17]

However, distributability and reproducibility were two other
key factors, leading us to delve into container technology as a
solution. Designed with HPC and direct host resource access
in mind, Singularity provides us with a means to share our
work to the highest degree possible with minimal performance
impacts.
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Abstract—The simulation of computation is important as the
study of quantum computers evolves. Unfortunately, this exciting
new area necessitates a quantum computer to examine the
benefits offered over classical computing. For now, researchers
will continue to use available tools to study and understand
quantum computer capabilities. A library of essential components
and protocols to model quantum computation is therefore desired
to allow researchers the ability to quickly and efficiently develop
software to meet their simulation needs.

Simulating quantum phenomena is expensive, and the com-
plexity and resources needed grow exponentially when modeling
larger systems. However, the parallelism inherent to quantum
computations allows us to see them as ideal candidates for
which to develop parallel algorithms. With speedups subject to
Amdahl’s Law and software development efficiency subject to
the programming language of choice, a balance must be found
between the two [1]. To further examine this, the performance
of applying parallel algorithm techniques to the simulation of
quantum process tomography (a technique used to characterize a
quantum system) is measured. The programming language Julia
is utilized because of its native parallel computation support,
easy-to-learn syntax, and inherent speed [2].

Index Terms—quantum computation, quantum computers,
parallel algorithms, quantum process tomography, Julia

I. INTRODUCTION

Our research team is focused on developing a software
suite of tools to simulate quantum systems, with special
consideration of teleportation. Our goal is to create a library
general enough for researchers to be able to apply our software
to many different quantum problems rather than developing
towards one specific problem. Of particular interest to our team
is leveraging parallel capabilities as much as possible.

One problem of interest is quantum process tomography, a
means of characterizing quantum systems, and can be used
for error and noise detection [3]. In any system, a number
of things can go wrong that prevent it from performing or
working as expected, and this is especially true when working
in the quantum realm. Decoherence, or any other interference
in the system, can produce errors in an output of a prototype,
and detecting these errors is fundamental to a simulation. Thus,
an important task for developing quantum networks is to be
able to characterize the network [4]. With quantum process
tomography’s myriad amount of matrix operations, we see it
as an ideal candidate for parallelization.

A procedure by which quantum process tomography can be
performed is thus examined. Using this procedure, a means in

which to parallelize this process is developed and applied to
a controlled-NOT gate as an example.

II. BACKGROUND

This section first describes some quantum theory concepts to
provide a working understanding of the methodology outlined
in later sections. Starting with the idea of a qubit, the concept
of qubit gates is developed. The concepts presented here
explain why quantum process tomography is an important task
to model and simulate. Finally, this section concludes with
an introduction to the Julia Programming Language and an
overview of its benefits.

A. Qubits

Analogous to the bit in classical computing is the concept
of a quantum bit (qubit) in quantum computation. A qubit,
like a bit, has a binary state, and represents values 0 or 1.
Quantum theory uses dirac notation (or bra-ket notation) and
represents the states 0 and 1 in kets as |0〉 and |1〉 respectively.
Any combination of two possible values to represent these
states could have been used, but using |0〉 and |1〉 is special
- these represent the computational basis states and form an
orthonormal basis for the vector space [3].

Extending this concept to multiple qubits, a qubit register
of length n could now be represented as a vector of size 2nx1.
This discussion focuses on a two qubit system, where states
are represented as a combination of the individual qubit states.
If both qubits are in state |0〉, in ket notation, it would be
written as |00〉. More generally, the superposition of a single
qubit system would be displayed as:

α |0〉+ β |1〉 (1)

where |α|2 + |β|2 = 1 [5]. Therefore, a qubit will be in state
|0〉 with probability |α|2 and state |1〉 with probability |β|2. In

vector form, this superposition is written as
[
α
β

]
. For example,

a qubit known to be in the state |0〉 can be written as
[
1
0

]
[3].

Extending this concept to multiple qubits, we could now
represent a qubit register of length n as a vector of size 2nx1.
We focus on a two qubit system, which we represent a state as
a combination of the individual qubit states. If both qubits are
in state |0〉, in ket notation, we would write this as |00〉. More



generally, the superposition of a two qubit system would be
displayed as:

a |00〉+ b |01〉+ c |10〉+ d |11〉 (2)

where |a|2+|b|2+|c|2+|d|2 = 1 and the vector representation

is




a
b
c
d


 [5]. Using this notation, it is trivial to extend this

system to more qubits.
The coefficients, which are amplitudes of the quantum

systems, could take on any value - real or complex. This is
also true for any quantum system.

For a system with n qubits, there are 2n possible com-
binations of individual qubit states, each with an amplitude
of xi where 1 ≤ i ≤2n and xi ∈ C. With this description,
the notion of the bra (the conjugate-transpose of the ket) can

be conveyed. For an n-qubit state, |X〉 =




X1

X2

...
X2n


, the bra

〈X| =
[
X∗1X

∗
2 . . . X

∗
2n
]
. With these two notations, ket and

bra, we can perform familiar linear algebra operations between
two states |X〉 and |Y 〉 such as the inner product 〈X|Y 〉 and
the outer product |X〉 〈Y | [3].

B. Qubit Gates

Performing linear algebra operators on qubits allows for the
introduction of the concept of a qubit gate. Just as there exists
logic gates that operate on classical digital bits, there also
exists this quantum counterpart. A qubit gate acting on a single
qubit takes input as a 2x1 vector representing the state of the
qubit and outputs a 2x1 vector representing the state of the
output qubit. We visualize this as:

X

[
αi
βi

]
=

[
αo
βo

]
(3)

where i and o designate the α and β input and output
respectively, and the matrix operator X represents the gate.

X must be a 2x2 matrix. In general, for a gate acting on n
qubits, the matrix representing the gate must be of size 2nx2n;
when the matrix is unitary, it is considered to represent a valid
gate. That is, X†X = I , where X† is the conjugate-transpose
of X and I is the identity matrix [3].

Three useful single qubit gates to be familiar with are the
NOT, Z, and Hadamard gates. Their matrix representations and
operations are defined in Table I for an input of α |0〉+ β |1〉.

At this point, the only 2 qubit gate of concern is the CNOT
gate. It takes as input two qubits, a control and target, and
“flips” the state of the target qubit if the control is in state
|1〉 [4]. Its classical computing counterpart is the XOR gate.
Equation 4 shows its matrix and operation.

TABLE I
COMMON SINGLE QUBIT GATES [3]

Gate Symbol Matrix Result

NOT X
[
0 1
1 0

]
β |0〉+ α |1〉

Z Z
[
1 0
0 −1

]
α |0〉 − β |1〉

Hadamard H 1√
2

[
1 1
1 −1

]
α
|0〉+|1〉√

2
+ β

|0〉−|1〉√
2

TABLE II
TRUTH TABLE FOR AN IDEAL CNOT GATE [5]

Input Ouput
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

CNOT ≡




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (4)

C. Quantum Process Tomography

Quantum tomography, or quantum state tomography, is a
procedure used to characterize an unknown quantum state
by repeatedly preparing identical states and taking different
measurements on them. This process is done in order to
develop a “complete description” of the state being measured.
Similarly, quantum process tomography is a procedure to
describe the dynamics that a (potentially unknown) quantum
system undergoes experimentally. Some applications include
determining the performance of a quantum gate or measuring
the effects of noise on a quantum system [3]. Any quantum
operation can be written in the operator-sum representation
where the sum is over k Kraus operators, E1-Ek, for some
input state ρ [4]:

ε(ρ) =
∑

k

EkρE
†
k (5)

For a d dimensional quantum system, d2 quantum states
|Ψ1〉 , ... |Ψd2〉 are required such that their density matrices
|Ψ1〉 〈Ψ1| , ..., |Ψd2〉 〈Ψd2 | form a basis set [3]. Each state is
then subjected to the operation being characterized. The goal
is to ultimately determine the Ek for ε with the condition that∑
k E
†
kEk ≤ I [4].

These Kraus operators resultantly describe the quantum
system, including its measurement and decoherence [4]. This
discussion is focused on a two-qubit system (and thus d=2,
requiring 4 input states). Reference [4] describes the entire
process, which is the basis of our CNOT gate.

Let I, X, Y, and Z represent the Pauli Matrices, and ρ(αβ)

denote a 4x4 matrix where all elements are zero with the



exception of a one at row α and column β. Let ε(ρ) represent
the quantum operation we are attempting to characterize [4].
With ⊗ denoting the tensor product, we have:

λ = (Z ⊗ I +X ⊗X)⊗ (Z ⊗ I +X ⊗X)/4 (6)

P = I ⊗ [ρ(11) + ρ(23) + ρ(32) + ρ(44)]⊗ I (7)

K = Pλ (8)

The procedure for this case is thus summarized as needing
to calculate the 16x16 χ matrix, where the ε are calculated in
Equation 10, of the form:

χ = KT



ε(ρ(11)) ε(ρ(12)) . . .
ε(ρ(21)) ε(ρ(22)) . . .

...
...

. . .


K (9)

We can determine each ε(ρ(αβ)) by solving the matrix in
Equation 10:

(10)

where a = 1+i
2 . For example: ε(ρ(12)) = −aε(ρ(HH)) −

aε(ρ(HV )) + ε(ρ(HD)) + iε(ρ(HR)), such that the letter com-
bination denotes a tensor product of two of the input states

ρ(H) =

[
1 0
0 0

]
ρ(V ) =

[
0 0
0 1

]

ρ(D) = 1
2

[
1 1
1 1

]
ρ(R) = 1

2

[
1 −i
i 1

]
, e.g. ρ(HR) = ρ(H) ⊗

ρ(R) [4].

D. The Julia Programming Language

Released in 2012, Julia is a programming language designed
for speed and efficiency. In a 2012 blog post, the language
developers discuss how the many different languages currently
available are all excellent at certain aspects of their work
while being absolutely terrible at others. They sum up their
motivation for developing Julia as, “We are greedy: we want
more” [6].

The design of Julia addresses the language as being a
solution to what they have identified as some notions previ-
ously held as law in the numerical computing landscape: that
because high level languages are slow, one must prototype in
one language and deploy in another, and that there are parts
of the language better left untouched [7]. Benchmarks show
that Julia does indeed address the first issue by offering good
execution performance [2], [8], [9].

There are several features of the language that provide ex-
ceptional performance: multiple dispatch, Just-In-Time Com-
pilation, and the use of LLVM. Multiple dispatch is a key
characteristic of the language whereby the type information
of a function’s arguments are used to select a method im-
plementation at run time [10]. Many times, this process is
done automatically for the programmer, such as in the trivial
example of adding two numbers together. The compiler is
able to optimize based on this type information. A unique
implementation in the Julia Programming Language is that
this dispatch is symmetric [11]. This feature allows Julia to
place equal emphasis on the types of all arguments during
method selection [12].

A vital part of leveraging Julia’s multiple dispatch capabil-
ities is ensuring so called “type stability.” The key concept is
that return types only depend on the types of the inputs and
not on their actual values. This practice allows for greater
specialization and optimization in the compilation process
[11]. Types are pivotal in ensuring the greatest performance
of code in Julia, which is why all types are considered “first-
class,” meaning both native and user-defined types are equally
important during compilation [13]. Many of the performance
tips in Julia revolve around the proper use of types [14].

Furthermore, code in Julia is actually compiled as opposed
to being interpreted despite its high level syntax and function-
ality. Similar to Java, Julia uses Just-In-Time compilation to
convert code to native machine code at runtime, also meaning
that programs will run slower the first time it is executed [15].
This is why when benchmarking code in Julia, it should be
ran twice - once to compile it, and the second time to get an
accurate runtime measurement [2].

To further optimize code, Julia also makes use of LLVM,
an open-source compiler framework used by several other
languages such as Clang and Swift [16]. This framework
provides its own Intermediate Representation (IR) upon which
multiple passes are performed to further optimize execution
performance. Overall, there are three main categories of
passes: Analysis, Transform, and Utility Passes. The output
of this is an IR similar to Assembly [17]. A quick overview
of the entire Julia Just-In-Time (JIT) compilation process is
as follows:

1) The Julia source code is parsed into an abstract syntax
tree.

2) The resulting trees are then transformed into a Julia-
unique intermediate representation for optimization.

3) This IR is then translated into the LLVM IR whereby
further optimizations take place to generate native ma-
chine code.

4) The executable code is generated [11].
The second issue, the notion that a developer must have a

prototype language and deployment language, is a concept the
developers refer to as “the two language problem” [10], [16].
Developers write code in a higher level language to prototype
functionality, then rewrite performance critical sections in a
higher performance, lower level language. Julia aims to solve
this by allowing developers to write in a high level Python-



like syntax, yet execute it in a manner that is optimized
for performance. This ability is critical when a developer
leverages GPUs to perform computation. As an example, Julia
natively supports kernel development using CUDA without
having to switch to C or C++ [18]. Julia’s CUDA libraries
directly integrate into the JIT compilation process, allowing
for the code to be compiled to GPU assembly. This lets
the programmer develop code almost the same way as one
would do for the CPU, offering the same productivity of the
language itself alongside the performance enhancements of
GPUs [19]. The more recent release of CUDA.jl introduces
more features and enhancements to CUDA development in
Julia. Key improvements include support for CUDA 11.1
as well as CUDA’s simplified stream programming model
which simplify concurrency [20], [21]. Performance also does
not suffer by using Julia’s CUDA implementation. The Julia
team has ported portions of Rodinia, a benchmark suite for
general purpose computing, to Julia, and the results are almost
identical to statically compiled CUDA C++ [22], [23].

We feel that Julia is a useful language and ecosystem
for numerical computation and high performance computing
domain. There exists an active community with a growing
list of research, pushing it to prominence in these areas [24].
With performance and productivity at its core, Julia seems well
aligned for computational research.

III. METHODOLOGY

This section discusses the parallelization of the process
above and relates it to the platform it will be executed on.

A. Parallel Algorithm Model

The description is based on the Master-Slave model
whereby a process (known as the master) manages a pool of
available tasks and distributes them to other processes (referred
to as the slaves) [1]. The procedure we have previously de-
scribed for quantum process tomography can be decomposed
into a series of 4 stages:

1) Compute the tensor product combinations ρ(αβ) where
α, β ∈ {H,V,D,R}.

2) Compute the respective ε(ρ) of the above.
3) Compute the elements of the center matrix of the χ

matrix shown in Equation 9.
4) Compute the complete χ matrix.
It is noted that each time a system is measured, some

level of noise or interference could affect the accuracy of our
measurement, leading this to be a stochastic process. We would
thus like to perform quantum process tomography a variable
number of times n for our given system and report the average
measurement. In the case of the CNOT gate, ε(ρ) can now be
represented as:

ε(ρ) = pCNOTρCNOT+(1−p)ρ,where p represents noise
(11)

The value of p can ranges from 0 to 1, where 1 represents
an ideal CNOT gate [4]. This noise can be simulated by

generating a random value of p each time the tomography
is performed. Each instance of the tomography can run inde-
pendently, and every instance needs to perform the same set
of identical tasks previously described with the added task of
first generating a value for p.

Stages 1-3 have sixteen tasks. Stage 1, computes the tensor
product combinations and their respective ε(ρ) in Stage 2.
Stage 3 computes the elements of the center matrix of χ -
each of which is a 4x4 matrix, resulting in a 16x16 matrix.
The final stage performs two matrix multiplications, where
each matrix is 16x16. The task-dependency graph of the first
four tasks in each of Stages 1-3 in Figure 1.

With each task in Stages 1-3 computing a 4x4 matrix,
this mapping is described as having a fine-grained granularity
with a degree of concurrency of 16. For n computations of
the tomography, the degree of concurrency is 16n. The task-
interaction of Stage 2 is developed by examining the matrix
in (10), indicating these interactions are static and read-only.
The task-interaction graph for the first six tasks in Stage 2 is
shown in Figure 2. These are thus irregular interactions due
to the lack of pattern in the matrix.

All tasks are known a priori for a given number of compu-
tations n; therefore, tasks are statically generated. Tasks in the
same stage are uniform. Across stages, however, tasks are non-
uniform. Knowledge of task size varies across the stages as
well. In Stage 1, for example, computing the tensor product
combinations is known, but calculating ε(ρ) varies with the
quantum operation being performed. The size of the data being

Fig. 1. Task-Dependency Graph for the first 4 tasks in Stages 1-3.



Fig. 2. Task-Interaction Graph for the first 6 tasks in Stage 2. The direction
of the arrow indicates the task data is retrieved from.

computed in each task is ultimately a 4x4 matrix.
To avoid an imbalanced workload due to not having full

knowledge of each task size, a dynamic centralized scheme
is used. There is a central master process keeping track
of the tasks that have not yet been performed. A source
of the overhead associated with Master-Slave models is the
contention of accessing a shared common data source [1].
Every worker process interacts with the master process in order
to get more tasks. This is partly resolved through overlapping
computation with interaction.

B. Mustang and Julia

Code is executed using the Department of Defense Super-
computing Resource Center’s fastest machine, Mustang, with
a peak performance of 4,777.6 TFlop/s. It has 12 login nodes,
1,1228 stand memory nodes, 24 large memory nodes, and 24
GPU accelerated nodes [25]. Mustang, an SMP architecture,
shares memory among all the cores of a given node. This mem-
ory is not shared throughout the cluster; nodes communicate
via message-passing [26].

Additionally, Mustang uses the Intel Omni-Path intercon-
nect in a Non-Blocking Fat Tree [26]. With p equal to the
number of standard memory nodes, the first switch in the tree
has a total of p communication links, with p/2 going to each
half [1]. Therefore, it has a bisection width of 1, 128/2 = 564.
A fat tree will also have p links at every layer of the network
down to the leaves. With p leaves, this gives a cost of
pdlog2 pe = 1, 128dlog2 1, 128e ≈ 12, 408. Similarly, the
diameter can be found to be 2dlog2 pe = 2dlog2 1, 128e ≈ 22
with an arc connectivity of one.

The software implementation uses Julia’s thread library. At
the time of writing, these features are an experimental interface
and types, macros, and functions are still evolving [27]. Julia
v1.4.2 is used to leverage the latest features of the threads
library available at the time of writing. Since version 1.3.0,
Julia has added the ability to multi-thread nested for loops
(previously only the outermost loop was possible) [28].

Additionally, support for thread-safe condition variables and
locks have been added and developed [28]. This threading
system is able to adapt to the available number of cores by
dynamically scheduling work. Refined work on current fea-
tures, in addition to support for more features, have continued
to the current version as the developers work on maturing a
composable set of parallel libraries for Julia [29].

To test our code, we increase the problem size for a given
number of available threads. We will start with one thread,
which is the default in the Julia environment. Each of problems
sizes n = 1, 2, 4, 8, 16, 32, 64, and 96 will be executed on
thread counts of 1, 2, 4, 8, 16, 32, 64, and 96 respectively for
a total number of 64 tests. This is discussed further in the next
section.

IV. ANALYSIS

Defining the problem size as the number of times quantum
process tomography is performed on a given system, the serial
runtime is defined as TS = W = O(n). Following the
derivation of the isoefficiency function, W = KTo(W,p):

W = Kp (12)

The isoefficiency function of this mapping is thus θ(p).
This function indicates that whatever ratio the problem size
is increased by, the number of processing elements will also
have to be increased by the same ratio in order to keep the
efficiency constant [1]. We report the results of our experiment
in Table 3.

The diagonal of the table results in both a doubling in
the problem size and in the number of threads. Based on
the isoefficiency function, a roughly equivalent run-time along
these diagonals should be expected, and this is approximately
the case. For example, starting in the top left corner of the
table (thread count = problem size = 1) and going down its
diagonal results in an increase in run-time of approximately
0.1 ms with every doubling. The diagonals of other problem
sizes within the single thread count column act similarly. This
additional overhead appears to approximately constant in each
instance.

Another thing of note is that for most instances with 32 or
more threads, we start seeing increasing run-times. This is to
be expected for a problem size of 1 - its degree of concurrency
is only 16, and thus additional threads over 16 would not be
employed effectively [1]. However, for 32 threads, a decrease
in run-time for a given problem size is not seen until a problem
size of 32.

Further research into the issue reveals that Julia’s garbage
collector is not concurrent and could thus be a source of this
overhead for a large number of threads [30]. Measurements
were made using the BenchmarkTools.jl package, which pro-
vides some insight into this issue [31]. Using this package
to examine the percentage of time the code was in garbage-
collection for larger numbers of threads does show a consider-
able increase. A quick inspection showed that for numbers of
32 or more, average percent time in garbage collection ranged
from 60% to over 80%.



Thread Count
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1 2 4 8 16 32 64 96
1 1.6 1.4 1.2 1.1 1.1 1.2 1.5 1.7
2 3.1 1.7 1.4 1.3 1.2 1.3 1.8 2.9
4 6.1 3.4 1.8 1.4 1.3 1.6 2.1 3.4
8 12.1 6.8 3.6 1.9 1.6 1.9 2.7 3.0
16 24.5 13.8 7.4 3.9 2.1 2.5 2.7 4.2
32 52.6 27.7 14.9 8.2 4.9 4.4 4.7 6.0
64 116.5 61.3 35.9 19.5 11.1 8.8 9.7 9.7
96 181.8 96.8 70.6 30.3 16.8 14.7 15.9 18.6

Table 3: QPT Run-time in milliseconds: Program run-times for increasing problem sizes and thread counts.

V. CONCLUSION

This experiment provided useful insights into the Julia
Programming Language and gave a better understanding of
quantum process tomography and quantum computations in
general. The exercise of first developing the parallel model
also helped expose the inherent parallelism of quantum com-
putations. The work presented here will therefore be highly
beneficial for future efforts.

Though relatively robust, Julia’s parallel computation li-
braries are still experimental. Despite increasing run-time
with a considerably higher number of threads, results up to
a respectable amount were approximately in the range of
theoretical performance. Additional work should be done to
develop the algorithm to handle the tomography of more
qubits, therefore generalizing the procedure and providing
another means by which to measure performance. It would
also be interesting to do further research into Julia’s garbage
collector. The lack of concurrency there could be a bottleneck
to increased performance and better speedups for a large
number of threads.
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IV. Execution Performance of a Julia-based
Hong-Ou-Mandel Simulation

The following paper, “Execution Performance of a Julia-based Hong-Ou-Mandel

Simulation,” is planned for submission to the Journal of Defense Modeling and Sim-

ulation.
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Abstract—Interest in quantum networking has elicited research
into quantum optics and its applications. Due to the significant
time and resources required to conduct quantum optics exper-
iments, the capability to create accurate models and execute
simulations is therefore important. Existing simulation libraries,
however, tend to include models oriented for either accuracy or
performance.

In this paper, we examine the features offered by the Julia
programming language as a means to orient our models for
both goals. This effort focuses on developing a quantum network
simulation library which exploits the features of the Julia
Programming language by re-implementing a MATLAB-based
simulation of the Hong-Ou-Mandel experiment. The results show
that exploiting Julia’s unique features improves the simulation’s
execution performance.

Index Terms—high performance computing, Hong-Ou-Mandel,
Julia, simulation, quantum

I. INTRODUCTION

Performant software is of high interest when the underlying
code is performing dense complex calculations. This situation
arises when simulating large scale quantum optical systems
which provide the foundation for modern quantum networking
architectures. We examine the modeling and simulation of the
Hong-Ou-Mandel (HOM) interference experiment using both
MATLAB-based code and Julia-based code. The comparative
results explore the impact that programming languages have
on the performance of the simulation of quantum optical
elements.

The HOM interference experiment is a fundamental quan-
tum optics experiment which demonstrates the concept of
photon indistinguishability [3]. Use of the HOM experiment
is of particular interest because it includes effects that cannot
be properly represented by classical physics, exercises basic
quantum optics mathematics, and represents a fundamental
building block in quantum optics systems. The HOM experi-
ment simulation serves as the vehicle to compare the perfor-
mance between a MATLAB-based and Julia-based simulation.

The main research objective is to develop a modular,
scalable quantum network simulation support library. The

hypothesis is that the Julia language provides the high level,
object-oriented features needed to create better (low-level like)
simulations in terms of execution.

The existing simulation of the HOM experiment is currently
written in the scientific computing language MATLAB due to
our subject matter experts’ familiarity with the language. For
this reason, the initial baseline performance of the simulation
is written in MATLAB. We then rewrite the code in the Julia
programming language taking advantage of its features to
determine if it improved.

II. BACKGROUND

Two main topics are important to describe before further
detailing the research effort. The first is to provide a high
level explanation of Hong-Ou-Mandel interference and how it
will further additional research. The second is to introduce the
Julia programming language and the rationale for using it.

A. Hong-Ou-Mandel Interference

Quantum interference is a fundamental concept in many
applications such as quantum repeaters, technology important
in the development of quantum networks [1], [2]. Verified in
1987 by Chung Ki Hong, Zhe Yu Ou, and Leonard Mandel,
HOM interference is the result of two photons interfering on
a 50/50 beam splitter [3], [4]. The idea behind the experiment
is to fire two photons through a 50/50 beam splitter in which
they interfere and then measure the coincidence probability
of the photons. This probability is defined as the likelihood of
detecting one photon at each of the beam splitter’s two outputs
[4]. Ultimately, as the probability drops near to zero, the more
indistinguishable the photons become, resulting in a dip when
plotted. Fig. 1 shows the four possible results of the photons
interfering.

Distinguishability of the photons can be determined in
multiple ways. For example, in the case of polarization, if
one photon was horizontally polarized and the other vertically,
then the two would be completely distinguishable. One could
also measure the distinguishability of the photons as the time



Fig. 1. The four possible interactions of the photons at the beam splitter.

Fig. 2. HOM dip for a Single-Photon Pair with a normal Gaussian distribution.

difference in which the photon pulses where formed. If formed
at exactly the same instance, then the photons would be consid-
ered indistinguishable and would become more distinguishable
the further apart in time they were generated [4]. Fig. 2 shows
a plot of the temporal creation time against the coincidence
probability R; as can be seen, the dip occurs when ∆t = 0, i.e.,
the photons are indistinguishable. At this point, the photons
will always exit the same output of the beam splitter.

Through providing an efficient and general means for sim-
ulating HOM interference, it is hoped to be able to “build
up” the means for simulating larger systems that contain more
components. As an example, simulation of both the photon and
the beam splitter are two pervasive features in many quantum
networks.

B. The Julia Programming Language

Julia is a relatively new programming language designed
with execution performance as a priority. Introduced in 2012,
the developers proposed the language as a solution to what
they refer to as “the two language problem,” whereby logic
is initially implemented in a higher level language for pro-
ductivity and then re-implemented in a lower level language
(such as C or Fortran) for performance [5], [6]. The Julia
language is designed to solve what programmers previously
saw as “the laws of nature” - that high-level languages must be
slow, the two language problem is fact, and that there are parts
of the language that must be left untouched [5]. Benchmarks
show that Julia does indeed offer performance improvements
over other higher-level languages (and in many circumstances,
performance comparable to C) and is a serious competitor for
high performance computing [5]–[11].

There are several aspects of the language that the developers
exploit to improve execution performance: multiple dispatch,
code specialization, and the Just-In-Time (JIT) compiler lever-
aging LLVM [6]. JIT compilation is a technique whereby high-
level languages are converted into machine code executable
directly on the CPU when the code executes [9]. Julia compiles
code the first time it is executed, specializing to function
type information during method selection. The results of this
method specialization are then cached. The next time the
code is executed, Julia is able to re-use the pre-compiled
and specialized results for faster performance. This does mean
there will be an overhead of compilation the first time code
is executed, but subsequent runs will be able to leverage pre-
compiled code existing in the cache [11].

During compilation, Julia also takes advantage of the op-
timizations provided by LLVM, a compiler framework that
provides an intermediate representation (IR) used by several
other languages as well [5], [10]. LLVM implements these
optimizations as passes. There are three different categories of
passes: Analysis, Transform, and Utility Passes. The transfor-
mation process results in an IR that is a lower-level language
similar to Assembly for the x86 architecture [12].

Multiple dispatch is viewed as one of the most significant
features in Julia. A method is a specific instance of a function
for a specific type(s). Julia’s code specialization is based on
the idea of symmetric multiple dispatch - multiple dispatch is
the ability to choose the right methods for the right types of
arguments, and symmetric means that all argument types are
equally important in this selection [6], [11].

Many of Julia’s speedups and performance enhancements
are largely due to multiple dispatch, and central to it is
type stability. Type stability means that the return value type
solely depends on the input types. This relation allows the
compiler to specialize to those types and cache the result for
subsequent executions. Furthermore, the developer can reuse
function names for different code paths: polymorphism [5].
This programming feature is used in implementations such
as mathematics, where operations can mean different things
depending on the inputs. The developers also note that in many



circumstances, code is type stable by default, so programmers
do not need to focus on the type annotations in their code [6].

Additionally, the use of GPUs is a focal point in our re-
search. It has been shown that Julia enables “new and dynamic
approaches for GPU programming” [13]. The introduction of
CUDAnative.jl, as well as the more recent follow-on package
CUDA.jl, make Julia a good fit for developing performant
GPU programs at a higher level of abstraction than traditional
C/C++ code [13], [14]. Furthermore, we note Julia’s GPU
performance compared to C [13]. Combined with the same
productivity and efficiency of the language itself, Julia is a
natural selection for this research.

III. METHODOLOGY

This section discusses the initial development of the
HOM simulation MATLAB code. An overview of the re-
implementation in Julia is also provided, alongside the tech-
niques used to improve and benchmark the code.

A. Initial Development

The original program used was developed in MATLAB
and simulates three different state types with two different
distributions. The states include single-photon pairs, weak co-
herent pulses, and two-mode squeezed vacuum. The available
distributions are Gaussian and Sinc. We attempt to compute the
coincidence rate as a function of the temporal delay between
the generation of two photon pulses.

For each state type, we work with Fock states (or number
states) represented mathematically as a 3x1 matrix. The nec-
essary constants are computed once a state and distribution
are selected, which includes the vacuum and annihilation
operators of appropriate dimensionality formed through the
use of Kronecker products. Time is divided into a series of
time bins, denoted by the variable nt, and the total number of
bins is chosen to be odd because there is a central one needed
for symmetry. These time bins represent the times in which a
photon could be created. A pulse width is defined such that
the time bin range is calculated, and from this and nt, dt (the
length of each time bin) is computed.

Once in the main body of the code, the simulation only ever
considers a single pair of time bins at any given application
of the beam splitter evolution operator and the coincidence
measurement. This occurs through the use of a nested for loop
to calculate the pulse multiplicative factors and then the state
through a series of matrix multiplications and exponentation-
s/sinc functions, depending on the type of distribution used.
Over the course of the series of for loops, the code initializes
the temporal distribution and applies either the single-mode
or two-mode beam splitter unitary operator through matrix
multiplication. The outcome of each step of the loop is either
a 9x1 or 81x1 matrix, depending on whether the time bins are
equal (which corresponds to the photons being created at the
same time).

Lastly, the coincidence rate is calculated by once again
looping over each pair of time bins. At each time step, the

contribution is calculated through application of the appropri-
ately sized annihilation operator and then added to an overall
total. This process is repeated for every point to plot along with
every pair of time bins. In order to generate a plot containing
39 points using 51 time bins, the main body of the code
executes this series of calculations 51,714 times. Once this
is completed, we are able to plot the results and generate the
HOM dip shown in Fig. 2.

B. Re-implementation in Julia and Benchmarking

Implementing CUDA.jl’s workflow, the code was first im-
plemented on the CPU [15]. Initially, the first step translates
the code from MATLAB code to Julia. A notable change is
wrapping the code into a function so it can be benchmarked.
Wrapping also avoids the issue of global variables in Julia
while allowing us to execute the code twice - once to compile
it and once to benchmark it. The benchmarks of execution
performance are measured using the Gaussian distribution for
all three state types.

After initial benchmarks, the Performance Tips section of
the Julia documentation is reviewed and implemented as ap-
propriate [16]. At first glance, some observations are made that
help contribute to reducing the code’s runtime. This includes
the fact that loops in the code use predefined arrays, which
allows for bounds checking to be disabled. Other notable
features are the ability to pull some computation out of nested
loops and merge other loops. The direction of the loops
through the main data structure is also changed to be column-
major, since this is the system Julia uses.

Type information into the code is also introduced in the
code. For example, type information is implemented to provide
the compiler with information on what type of simulation was
being performed (Sinc vs. Gaussian and Single Photon, Weak
Coherent, or Two Mode) as well as functions that operate on
these types. This takes advantage of Julia’s mature application
of multiple dispatch and offloads work to the compiler to
choose the correct method while also ridding the code of its
reliance on if-else statements. This is a benefit over MATLAB,
as it simultaneously makes the code more readable.

Additional research shows that the code can be further
improved by changing the basic linear algebra subprograms
(BLAS) implementation that Julia uses [17]. The use of Intel
CPUs implies that further improvements may be made using
Intel’s BLAS, MKL. Additional benchmarks using Julia’s
implementation of MKL show significant improvement [18].
All further benchmarks are made using MKL.jl. Furthermore,
MATLAB makes use of a multi-threaded BLAS, so further
benchmarks are made explicitly limiting MATLAB to a single
thread in order to more accurately compare it to Julia. All
benchmarks are made on a computer with dual 2.40GHz Xeon
4210R processors and 192GB of RAM using Julia v1.5.3 and
Matlab R2020b.

IV. RESULTS

Initial benchmarks of the MATLAB code yielded runtimes
under 18 seconds for single-photon pairs, under one minute



Fig. 3. Mean execution times for both the default MATLAB multi-threaded
BLAS and with a single thread of execution. Averages are based on the
runtimes of 50 executions.

for two-mode squeezed vacuum, and just over two minutes in
the case of weak coherent. When benchmarks were generated
for MATLAB using only a single thread of execution, the
mean execution time for single photon stayed roughly the
same as for the multi-thread version. Based on 50 runs, the
mean execution time of weak coherent saw approximately an
8% increase while two-mode saw roughly a 17% decrease.
T-tests confirm the benchmark value differences observed - it
indicates differences exist with less than a 1 percent chance
due to purely random effects (p < 0.01). The single-threaded
two mode had a standard deviation of 0.68 seconds and
a maximum runtime of 42.01 seconds. The multi-threaded
version had a larger standard deviation of 1.57 seconds and
a minimum runtime of 46.06 seconds. Fig. 3 displays these
results.

Execution of the initial conversion to Julia took significantly
longer. For example, mean execution time of 5 executions for
weak coherent was over 14 minutes, and times were within
5 seconds of the average in for each of the three cases.
Examining memory usage explains these results somewhat, as
our computations are extremely heavy in linear algebra. Since
this version of the Julia code did not take into consideration
pre-allocating ouput, we were able to target this in our opti-
mization. The largest performance gain was seen by switching
the version of BLAS used from OpenBLAS to MKL.

After this transition, our improved version of the Julia
code executed faster on average than both the default and
single-threaded versions of MATLAB for the single photon
case. Minimum runtimes for the default and single-threaded
MATLAB versions, however, were 15.33 and 16.41 seconds
respectively while the optimized Julia version had a maximum
runtime of 16.46 seconds. The single-threaded MATLAB
version had the smallest standard deviation of 0.24 seconds
while the mutli-threaded MATLAB version and optimized
Julia version had standard deviations of 0.56 seconds and 0.46

Fig. 4. Mean execution times of the original implementation of the Julia code
compared to the version after improvements were made. These averages are
based off 5 repeated executions due to considerably larger execution times.

seconds respectively.
In terms of weak coherent, the average runtime for the

optimized Julia version was approximately 4 seconds faster
as compared to the single-threaded MATLAB version. It
remained approximately 8 seconds slower than the default
MATLAB version, however. The two mode version of Julia
saw the least improvement, remaining just over 30 seconds
slower on average than the default MATLAB version. The
standard deviations for these cases were less than four seconds
for weak coherent and under two seconds for the MATLAB
two mode versions. The optimized Julia version for two mode
was just under two seconds. T-tests were performed between
both versions of the Julia MKL code as well as between the
optimized Julia MKL and both versions of the MATLAB code.
These results were confirmed with p < 0.01. Summaries of the
collected statistics of execution times for each version and state
type of the HOM simulation experiment cases are provided in
Tables I-III.

TABLE I
SINGLE PHOTON SUMMARY STATISTICS: OVERALL SUMMARY STATISTICS

FOR EACH VERSION OF THE SINGLE PHOTON CASE OF THE HOM
SIMULATION EXPERIMENT.

Statistic N Mean (s) St. Dev. (s) Min (s) Max (s)
MATLAB Single-Thread 50 16.92 0.24 16.41 17.46
MATLAB Multi-Thread 50 16.25 0.56 15.34 18.60
Original Julia - MKL 50 24.62 0.37 24.22 26.05
Optimized Julia - MKL 50 15.39 0.46 14.87 16.46

Memory allocation and usage remained the same between
MKL and OpenBLAS, and there was also no noticeable
difference between runs. For example, the single photon case
for the original Julia version always reported the same memory
usage and allocation. This implies that MKL had no effect
on memory. After our improvements to the code were made,
however, notable decreases in memory usage were seen - 25%
for weak coherent and 50% for single photon. Two mode was



Fig. 5. Memory usage of the Julia code before and after the improvements
were made. The optimized version saw a significant reduction in memory
usage due to the care taken in pre-allocating memory and utilizing in-place
operations.

Fig. 6. Mean execution times of the original implementation of the Julia
code compared to the version after improvements were made. These were
done after changing the BLAS to MKL and are based on 50 runs.

TABLE II
WEAK COHERENT SUMMARY STATISTICS : OVERALL SUMMARY

STATISTICS FOR EACH VERSION OF THE WEAK COHERENT CASE OF THE
HOM SIMULATION EXPERIMENT.

Statistic N Mean (s) St. Dev. (s) Min (s) Max (s)
MATLAB Single-Thread 50 154.83 2.47 152.45 160.41
MATLAB Multi-Thread 50 142.82 3.68 138.66 154.90
Original Julia - MKL 50 182.81 2.01 179.18 186.56
Optimized Juila - MKL 50 150.40 3.97 145.72 159.99

once again not as well improved, but still saw an almost 10%
decrease. Allocations also saw improvement, but were not as
significant. Julia is prone to allocating new arrays every time
an array operation is made, which leads us to believe we still
have plenty of room for improvement here. However, this may
not be of much concern once the code is ported to GPUs.

TABLE III
TWO MODE SUMMARY STATISTICS : OVERALL SUMMARY STATISTICS

FOR EACH VERSION OF THE TWO MODE CASE OF THE HOM SIMULATION
EXPERIMENT.

Statistic N Mean (s) St. Dev. (s) Min (s) Max (s)
MATLAB Single-Thread 50 40.09 0.68 39.22 42.01
MATLAB Multi-Thread 50 48.19 1.57 46.06 52.10
Original Julia - MKL 50 76.59 0.94 74.35 80.90
Optimized Juila - MKL 50 72.86 2.72 70.65 87.82

Fig. 7. Memory allocations of the Julia code before and after improvements
were made.

These results are shown in Fig. 7.

V. CONCLUSION

Despite Julia being able to outperform MATLAB in the
single photon instance, it was not a significant difference.
While the memory allocations show that there is still room for
improvement, it appears unlikely Julia will be able to perform
better than MATLAB for these simulations without use of
multi-threading or GPUs. MKL offered a significant runtime
reduction over the original Julia implementation, however, it
is noted that we are using Intel CPUs.

The benchmarks shown here are an important first step
in developing future simulations with improved execution
performance. There is now a better understanding of how a
type representation hierarchy to leverage Julia’s multiple dis-
patch abilities could be developed. These results also provide
a baseline on which future work can be compared. Being
cognizant of Julia’s array allocations and pre-allocating arrays
where possible are areas of further improvement in our work.
However, those problems may be resolved by transitioning the
code to utilize GPUs, the objective of future efforts.
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[4] A. M. Brańczyk, “Hong-Ou-Mandel Interference,” arXiv, pp. 1–17,
2017.

[5] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Rev., vol. 59, no. 1, pp. 65–98,
2017, doi: 10.1137/141000671.

[6] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia: A Fast
Dynamic Language for Technical Computing,” pp. 1–27, 2012, [Online].
Available: http://arxiv.org/abs/1209.5145.

[7] T. Driscoll, “Matlab vs. Julia vs. Python,” 28-Jun-2019. [Online].
Available: https://tobydriscoll.net/blog/matlab-vs.-julia-vs.-python/. [Ac-
cessed: 25-Jan-2021].

[8] S. Hunold and S. Steiner, “Benchmarking Julia’s Communication Per-
formance: Is Julia HPC Ready or Full HPC?,” Sc20, pp. 20–25, 2020,
doi: 10.1109/PMBS51919.2020.00008.

[9] A. Sengupta, Julia High Performance Computing, 2nd ed. Birmingham,
UK: Packt Publishing, 2019.

[10] R. Lakhanpal and A. Joshi, Learning Julia, Birmingham, UK: Packt
Publishing, 2017.

[11] J. Bezanson et al., “Julia: dynamism and performance reconciled by
design,” Proc. ACM Program. Lang., vol. 2, no. OOPSLA, pp. 1–23,
2018, doi: 10.1145/3276490.

[12] LLVM Project, LLVM Documentation, Mar. 2020. [Online]. Available:
https://llvm.org/docs/. [Accessed Mar. 19, 2020]

[13] Besard, T., Foket, C., & De Sutter, B. (2019). Effective Ex-
tensible Programming: Unleashing Julia on GPUs. IEEE Trans-
actions on Parallel and Distributed Systems, 30(4), 827–841.
https://doi.org/10.1109/TPDS.2018.2872064

[14] T. Besard, “CUDA.jl 2.0,” CUDA.jl 2.0 · JuliaGPU. [Online]. Available:
https://juliagpu.org/2020-10-02-cuda 2.0/. [Accessed: 30-Jan-2021].

[15] T. Besard, “Workflow,” Workflow · CUDA.jl. [Online]. Available:
https://juliagpu.gitlab.io/CUDA.jl/usage/workflow/. [Accessed: 02-Feb-
2021].

[16] The Julia Project, Performance Tips, Aug. 2019. [Online]. Avail-able:
https://docs.julialang.org/en/v1/manual/performance-tips/. [Accessed
Feb. 02, 2021].

[17] A. Yahyaabadi, “juliamatlab/Julia-Matlab-Benchmark,” GitHub, 13-Oct-
2019. [Online]. Available: https://github.com/juliamatlab/Julia-Matlab-
Benchmark/blob/master/README-Julia-openBLAS-vs-Julia-MKL.md.
[Accessed: 02-Feb-2021].

[18] V. Shah, “JuliaLinearAlgebra/MKL.jl,” GitHub. [Online]. Avail-
able: https://github.com/JuliaLinearAlgebra/MKL.jl. [Accessed: 02-Feb-
2021].



V. Conclusions

The research presented here was used to develop a prototype software written in

the Julia Programming Language. Using the lessons learned from previous experi-

ments and research, we were able to develop our software with performance and use

of graphics processing units (GPUs) in mind. While not yet released as an installable

package, this two-module library is the first ever quantum optics simulation software

designed from the beginning with GPU-acceleration.

This is an important milestone for further research in quantum network simulation.

While other libraries and frameworks are currently developing support for GPUs, ours

introduced it from the start. This allows one to immediately begin seeing the benefits

of leveraging GPUs to perform the costly calculations involved in quantum simulation.

Along the way, we were also able to make contributions back to several open source

projects. In one instance, we found a bug in the Julia source code which prevented

enabling more than one profiler during installation [15]. As another example, we

designed and proposed a kernel to enable CUDA.jl support for kronecker products

[16].

5.1 Overview

The resulting library has been designed to be a two-module simulation software

- one providing the base functionality and the other extending with GPU support.

For clarity, we call the former QuMSim.jl and the latter CUDAQu.jl. This was done

as a matter of convenience to allow scientists and researchers the ability to use the

codebase in a consistent syntax regardless of whether they have a CUDA-compatible

GPU. In the few instances where syntax consistency between the GPU and central

processing unit (CPU) code is broken, we have opted for a similar styling convention
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used by CUDA.jl. That is, we place CUDAQU. in front of the function name.

QuMSim.jl was developed to be modular, allowing its users to choose their de-

sired level of abstraction. Higher level types, such as Qubit, are provided. However,

through a technique called iterated dispatch, all objects and functions dispatch down

to a lower level AbstractQuantumRepresentation type. These types are all made

available to users. In addition, QuMSim.jl leverages metaprogramming to automat-

ically generate methods for most types in a sort of polymorphic behavior. This

provides developers a means to easily extend or even implement their own types or

underlying mathematical representations.

We were also able to achieve our objectives of using this framework to simulate

both the Hong-Ou-Mandel (HOM) Simulation Experiment and the Mach-Zehnder

Interferometer Experiment. As will be discussed in Appendix C, we saw noticeable

improvements in the execution times of our experiment simulations. These have been

provided in convenient functions along with all the necessary documentation in order

to replicate the results. A more in depth conversation of these modules is provided

in Appendices A to C.

5.2 Future Work

There are four main areas of future work that would be beneficial to this re-

search. The first is adding support for basis information in the codebase to improve

mathematical consistency. Another area is providing comparative benchmarks of this

software against other libraries. One area that is currently in progress is writing a

standalone paper providing detailed documentation on the software. The last area is

releasing the software as an installable Julia package. Further information for each

of these areas is provided in the sections below.
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5.2.1 Add Support for Basis Information

Further additions to the QuMSim.jl framework could include adding support for

basis information within the types. This would provide users with a convenient fall-

back mechanism to ensure consistency within all mathematical operations. Once

included, it would be simple to leverage Julia’s multiple dispatch system to either

raise a warning if multiple bases are detected or, instead, follow a predetermined type

promotion system. For instance, if an operation was performed with two differing

bases, one would be converted to the other basis before performing the operation.

A similar system was incorporated in QuantumOptics.jl, and it is noted as a viable

advantage to the framework we have developed [12].

5.2.2 Detailed Benchmarks Against Other Libraries

One series of tests that was unable to be completed were detailed benchmarks

against other libraries. It is noted, however, that there are currently no robust GPU-

accelerated quantum libraries with the same objectives as ours. For a meaningful

comparison to be made, it would be recommended to only use the base QuMSim.jl

library.

5.2.3 Publish a Standalone Paper on the Software

A separate published paper providing an in-depth review of the software devel-

oped was not included as a part of this thesis. While the appendices do provide an

overview, we wish to further highlight the software in a standalone paper to offer a

more comprehensive assessment and review of the work performed in developing the

software.
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5.2.4 Release as a Julia Package

Lastly, one final step that was not taken here was making QuMSim.jl and CU-

DAQu.jl publicly available. The codebase used throughout this research was built

and installed as a development package, meaning it would be simple to build and

release in the General Registry [17]. However, it would be recommended to mature

the framework before public release.
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Appendix A. Software Documentation

The software developed as a result of this research was implemented in two mod-

ules. The first, QuMSim.jl, implements the base functionality and necessary types in

Julia. CUDAQu.jl, the second module, extends QuMSim.jl to provide CUDA sup-

port. This approach allows developers to use the software with or without GPU

support, which provides a more scalable approach to development.

In this appendix, the design choices in both modules will be discussed. Starting

with QuMSim.jl, the base file structure and type hierarchy will be covered along with

the design methodology used; implementation of operations and mathematics will

be included. From there, an overview CUDAQu.jl and how it extends QuMSim.jl is

provided.

1.1 QuMSim.jl

A goal of QuMSim.jl design was to minimize keep package dependencies; only

two external libraries are required. In the current state, only two external libraries

are listed as dependencies: Distributions.jl and LinearAlgebra.jl from the Julia base

library [1, 18]. All files within the module, along with the module declaration, are

included in the main file, QuMSim.jl. The module’s basic functionality is defined

within base.jl.

1.1.1 base.jl and Type Hierarchy

The most important file in the module, base.jl implements all the necessary func-

tionality for the rest of the module to work properly. This file defines an abstract type

hierarchy that is used throughout the rest of the code base and exports the composite

types at the bottom of the type tree.
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Three main abstract types are defined: AbstractParticle, AbstractOperator,

and AbstractQuantumRepresentation. The structure of these types detaches the

concept of the high level object one wishes to represent (such as a qubit, photon, or

quantum gate) from the lower level mathematical representation of the object. This

allows a modeler or researcher to choose the level of abstraction, whether in terms of

concrete particles or in mathematical representations.

Additionally, the module leverages Julia’s use of multiple dispatch to provide for

a seamless and consistent development approach regardless of the underlying repre-

sentation used. In order to switch from one representation to the next, or to create a

unique representation, one merely just needs to change the underlying representation

used in the initial declaration of a type; all further method calls will be the same.

This convenience is because all high level objects in QuMSim.jl act only as a wrapper

for their underlying representations. Through a process called iterated dispatch, all

methods dispatch down to the representation, which is where the actual data being

operated on is contained. The idea is to dispatch down, and build back up to the

abstraction level being used. Figures 1 and 2 provide a summary of the type hierarchy

for AbstractQuantumRepresentation and AbstractParticle .

Directly under AbstractParticle are three concrete types: Qubit, FockState,

Photon. These are the currently supported high level objects, each taking a repre-

sentation type as input. Qubit and FockState also support directly passing vectors

as a shorthand method to instantiate them.

AbstractQuantumRepresentation is further broken down into two abstract types:

AbstractParticleRepresentation and AbstractOperatorRepresentation, each

for types representing AbstractParticle and AbstractOperator types respectively.

AbstractParticleRepresentation contains two types. The first, Pulse, requires a

function modeling the desired pulse in addition to the type of distribution desired.
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Figure 1: AbstractQuantumRepresentation Type Hierarchy

Figure 2: AbstractParticle Type Hierarchy

Currently, both TemporalDistribution and SpectralDistribution exist as empty

types to fill this need. The second type is DensityMatrix, which takes a two dimen-

sional array as input.

AbstractParticleRepresentation is also broken into another subtype named

AbstractVectorRepresentation. The two structs here are Ket and Bra, which

take vectors as inputs. AbstractOperator and AbstractOperatorRepresentation

is covered in the next section.
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1.1.2 Operators.jl

Operators.jl implements all of the quantum operators in QuMSim.jl. The

types exported by this file all inherent from the AbstractOperator as well as the

AbstractOperatorRepresentation types from base.jl. The highest level objects

are Operator and QuantumGate, both falling directly under AbstractOperator and

taking a representation of type AbstractOperatorRepresentation as input. Simi-

lar to Qubit and FockState, they can also take a two dimensional matrix as input

as well. GenericMatrixRepresentation is currently the only implementation of

AbstractOperatorRepresentation in QuMSim.jl. Its input is a two dimensional

matrix.

Figure 3: AbstractOperator Type Hierarchy

Operators.jl also defines a few functions to simplify the creation of certain com-

mon operators. These functions: AnnihiliationOperator, CreationOperator, and

IdentityOperator each returns an Operator with a matrix representation of the

respective operator contained within a GenericMatrixRepresentation. Inputs to

these functions are merely the datatype of the number desired (e.g. Float32 or

Float64) as well as the maximum number of photons in the system. For a system

containing n photons, an (n + 1)x(n + 1) dimension operator is returned.

Lastly, the Ket and AbstractParticle types are provided the measure! function.
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Use of this function will permanently collapse the state of the object to one of the

possible outcomes. The exclamation point denotes that the input will be directly

modified versus creating a new particle.

1.1.3 QuMath.jl and other Functionality

QuMath.jl contains QuMSim.jl’s math implementations, and this is where the

iterated dispatch methodology becomes prevalent. Each method call on a higher level

object (such as those under AbstractParticle or AbstractOperator) simply recalls

the method on the underlying representation (an AbstractParticleRepresentation

or AbstractOperatorRepresentation). Since almost all representations contain

normal types in Julia, these types are able to dispatch the same method down to

an already defined function within Julia. When a new representation is added, the

methods operating on that representation are the only additions needed for a high

level object to utilize it. For example, Photon does not care how it is represented,

only that it has a representation. Multiple dispatch handles the rest.

Julia also contains robust support for metaprogramming, allowing ease of main-

tenance and scalability for new type additions. In many cases, new high level types

can simply be added to one of the arrays at the top of the file, and Julia will gen-

erate the appropriate methods for them automatically. For example, an addition

to AbstractionVectorRepresentation or AbstractionParticleRepresentation

could simply be added to the correct array in QuMath.jl.

VectorTypes = (:Ket , :Bra);

ParticleTypes = (:Qubit , :FockState , :Photon)

The code contained further down in QuMath.jl would then generate the correct

method for the kron function without any additional action.

# Defines kronecker products for all same type
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# AbstractVectorRepresentation i.e. kron (::Ket ,::Ket),

# kron (::Bra ,::Bra)

for v in VectorTypes

@eval kron(A::$v, B::$v) = $v(kron(A.state , B.state))

end

# Defines kronecker products for all same type

# AbstractParticle i.e. kron (::Qubit ,:: Qubit),

# kron (:: FockState ,:: FockState), kron (::Photon ,:: Photon)

for p in ParticleTypes

@eval kron(A::$p, B::$p) = $p(kron(A.representation , B

.representation))

end

1.2 CUDAQu.jl

As previously stated, CUDAQu.jl extends QuMSim.jl by including support for

CUDA, thus GPU capabilities. It is not a standalone library and requires QuMSim.jl

to be included in the namespace to work. All includes for CUDAQu.jl occur in

the file of the same name. The only external libraries required are CUDA.jl and

LinearAlgebra.jl [1, 19, 20].

CUDAQu.jl’s base.jl file is very simple compared to QuMSim.jl’s. This file only

contains the code to allow CUDAQu.jl to create Qubit and FockState types from

CUDA.jl’s CuArray without needing to declare a representation first. CuOps.jl like-

wise does a similar task for the Operator and QuantumGate types. Additionally,

CuOps.jl redefines the functions for building the common operators in order to lever-

age the GPU.
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Lastly, cuKron.jl defines a kernel for performing Kronecker product calculations

on the CuArray type as discussed in [16]. All code usage is identical to QuMSim.jl

with few exceptions, which will be discussed further in Appendix B.
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Appendix B. Code Examples

The base code is started the normal way in Julia with the using statement.

A natural first step would be to create a state vector, or ket. These can be created

in QuMSim.jl by calling Ket with a vector as an argument.

Operations on Ket types are also permitted. For instance, the adjoint of a ket in

quantum mechanics is a bra, and this holds true for QuMSim.jl as well.

As would be expected, the adjoint of a Bra returns a Ket.

Operations between Ket types are also available, such as the creation of density

matrices.

Kronecker products can also be performed on QuMSim.jl types as they normally

would in the Julia base language.
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QuMSim.jl supports other state types as well, such as Fock (or number) states.

These are created the same way as Ket by calling FockState.

Operator types can also be created in QuMSim.jl, however, functions to generate

both Creation and Annihilation Operators are provided. They have two arguments:

the type of data to store (e.g. Float32 vs Float64) and the max number of photons of

the state. For example, a Float32 Creation Operator for a maximum of three photons

would be generated with the following:

Similarly, Annihilation Operators are generated with the following:

Both will act on FockState types through the natural means of multiplication.
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In order to work at a higher level of abstraction, Qubit types are provided. They

can be created by passing a Ket as an argument.

However, Qubit types can also be created more succinctly by just passing a vector

instead.

Like Ket, Qubit supports Kronecker products.

Additionally, when a measurement is performed on a qubit in quantum mechanics,

the state collapses to one of two states dependent probabilistically on the squares of

its magnitudes. This is nonetheless true in QuMSim.jl, and we demonstrate it with

the following code snippet.

In this example, a Qubit is created 100 times such that it is in state 0 with a

probability of 0.75 and state 1 with probability 0.25. In each instance, the state is

measured and the outcome is recorded. The distribution of the resulting states is

then plotted in a bar graph below. Since each measurement is independent of the

last, the resulting probability is not exactly 75/25, which would also be true in a real

measurement.

40



Pulse types are created by passing both the type of distribution desired as well

as a function modeling its pulse. Currently, temporal and spectral distribution types

are supported.

This Pulse can then in turn be used to created a Photon. Once created, both
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types can be called and evaluated like a normal function.

CUDAQu.jl extends QuMSim.jl with support for CUDA, thus GPU programming.

All previously mentioned functions and types are used the exact same way with

CuArray arguments instead.

The shorthand creation of Qubit types also works in CUDAQu.jl, and Kronecker

products between types can take advantage of the GPU as well.
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Consistent with how CUDA.jl handles the Julia base language, functions with the

same name in both CUDAQu.jl and QuMSim.jl that cannot be determined by context

can be called by appending CUDAQu to the function name.

As a matter of convenience, functions for both the HOM Interference and Mach-

Zehnder experiments are also provided. In the case of the HOM function, two Pulse

types are required as input in addition to the width of the time plot, the maximum

plot point, the number of integration points, as well as the number of plot points.

In the example below, the HOM function is called such that there are 51 integration

points, 51 plot points, and a width of 20 centered at zero. The MachZehnder function

is called similarly to the HOM function but with only one Pulse as input.
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Appendix C. Simulation Benchmarks

Benchmarks of the software using the BenchmarkTools.jl library provides a means

to measure performance [21]. For example, comparing the kron function included in

CUDAQu.jl to that of the one in the base library reveals a 417x reduction in runtime,

a result not overly surprising considering the difference in CPU and GPU execution.

All benchmarks are made on a computer with dual 2.40GHz Xeon 4210R processors

and 192GB of RAM using Julia v1.5.4.

A quick test to measure the overhead of using the software as compared to per-

forming the calculations without shows only shows only a 2.4% increase in runtime.

Since all calculations dispatch down to the predefined methods of the underlying data,

the overhead is solely in the time it takes for the dispatch to occur.

A more interesting examination is in how the runtime is affected by increasing

the number of integration bins used in the calculation. CUDAQu.jl tends to increase
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approximately linear to the number of bins used while QuMSim.jl increases at a

more exponential rate. Examining how this in turn impacts the accuracy of the

simulation to the theoretical results, we see diminishing returns for both libraries

after 23 integration bins, when error drops below one percent. Memory usage and

allocations are also shown as the number of integration bins are increased in Figures 6

and 7.

Figure 4: Runtimes of the HOM Simulation as the number of integration bins are
increased.

Performing the same experiment with the Mach-Zehnder Interferometer Simula-

tion shows an approximately linear increase in runtime for QuMSim.jl but no clear

pattern for CUDAQu.jl. In fact, the longest runtime was at 15 integration bins. The

error plot for this simulation is very simular to that of the HOM Simulation with the

error dropping below one percent at 23 integration bins. Memory usage is interesting,

as it stays constant for several bin increases before stepping to a slightly higher about

of memory. As was done for the HOM Simulation, the number of allocations versus
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Figure 5: The error in the HOM Simulation in percent as the number of integration
bins are increased. The simulation drops to less than one percent error after 23
integration bins are used.

the number of integration bins are provided in Figure 11 as well.

To get a more accurate estimation of the simulations’ runtime, an average is taken

over 100 executions for each. The point where the simulations’ error drops under one

percent (23 integration bins for all cases) is selected, and the results are plotted in

Figures 12 and 13. Runtimes of QuMSim.jl’s HOM and Mach-Zehnder Interferometer

Simulations were comparable, at 2.3107 and 2.3292 seconds respectively. There was

much larger discrepancy in the runtimes from CUDAQu.jl, however. The Mach-

Zehnder Interferometer Simulation was about 3.8x longer than the HOM Simulation’s

despite being simpler in terms of computation. This result is attributed to the matrix

exponentiation performed in the main loop of the Mach-Zehnder code. Summary

statistics are provide in Table 1.
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Figure 6: Memory usage of CUDAQu.jl and QuMSim.jl in performing the HOM
Simulation as the number of integration bins are increased.

Figure 7: The number of allocations of CUDAQu.jl’s and QuMSim.jl’s HOM Simu-
lation as the number of integration bins are increased.

49



Figure 8: Runtimes of the Mach-Zehnder Interferometer Simulation as the number of
integration bins are increased.

Table 1: Simulation Summary: Overall summary statistics for each simulation per-
formed.

Statistic N Mean (s) St. Dev. (s) Min (s) Max (s)
QuMSim HOM 100 2.31 0.07 2.22 2.62
CUDAQu HOM 100 0.17 < 0.01 0.16 0.17
QuMSim Mach-Zehnder 100 2.33 0.01 2.31 2.40
CUDAQu Mach-Zehnder 100 0.64 < 0.01 0.63 0.64

50



Figure 9: The error in the Mach-Zehnder Interferometer Simulation in percent as the
number of integration bins are increased. The simulation also drops to less than one
percent error after 23 integration bins are used.

Figure 10: Memory usage of CUDAQu.jl and QuMSim.jl in performing the Mach-
Zehnder Interferometer Simulation as the number of integration bins are increased.
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Figure 11: The number of allocations of CUDAQu.jl’s and QuMSim.jl’s Mach-Zehnder
Interferometer Simulation as the number of integration bins are increased.

Figure 12: Mean runtimes in seconds of the CPU simulation experiments.
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Figure 13: Mean runtimes in milliseconds of the GPU simulation experiments.
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