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Abstract

The coordinated arrival time problem seeks to control a vehicle’s trajectory to achieve

some pre-defined final state at a desired arrival time. The persistent monitoring

problem is a type of coordinated arrival problem where a stationary or moving ground

target must be constantly observed by a group of aircraft. This research simplifies the

problem to overfly the target at specific time intervals relative to the other aircraft

in the group while increasing the difficulty of the problem by considering aircraft

traveling at vastly different airspeeds. Previously, the problem has been solved with

“plan-and-follow” algorithms or real-time guidance algorithms. However, the “plan-

and-follow” method must recalculate paths when the scenario changes and real-time

guidance algorithms do not incorporate keep-out zone constraints well. This research

combines the benefits of both methods. The result of this research is a real time

guidance algorithm which accurately guides a group of airspeed heterogeneous aircraft

to achieve a desired relative arrival time, predictable flight path, and accounts for

varying wind conditions, keep-out zones, and non-cooperative targets. A wide variety

of scenarios were evaluated with aircraft ranging in speed from 174 knots to 511 knots.

However, a notable scenario utilizing a nonlinear fighter aircraft model demonstrated

the algorithm’s ability to guide a group of four aircraft to achieve the desired time

spacing to within 0.1 seconds in a scenario with 160 knot winds, a target moving at

102 knots, keep-out zones, and moderate wind turbulence.
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A REAL-TIME ALGORITHM TO ACHIEVE PRECISE

COORDINATED ARRIVAL TIMES IN A TIME-VARIANT ENVIRONMENT

I. Introduction

The Merriam-Webster dictionary defines automation as the “automatically con-

trolled operation of an apparatus, process, or system by mechanical or electronic

devices that take the place of human labor”[4]. Humans have been automating ap-

paratus, processes, and systems since the first tools were invented. Recently, there

has been growth in the field of aviation automation. The primary goal of automation

in aviation over the last century has been to reduce pilot workload by taking pilot

performed tasks and having some other system perform the tasks. One of the first

tasks to be automated was the direct control of aircraft; automated with the invention

of the autopilot [5].

The first mechanical autopilot was demonstrated in public on a Curtiss C-2 bi-

plane in 1914 [5]. This autopilot was only able to control heading and attitude but

represented a major accomplishment since the first powered airplane, the Wright

Flyer, had flown only 11 years earlier in 1903 [5, 6]. The development of the autopilot

continued at a steady pace during World War I and World War II resulting in the first

transatlantic flight under the control of an autopilot to include takeoff and landing

[6]. Aircraft continually flew faster and higher eventually requiring power-boosted

flight controls to provide enough power to move the control surfaces. The need for

boosted controls led to the development of automatic stability augmentation which

was notably demonstrated on the X-15 rocket plane in the 1950s and 1960s [6].

The next major advancement in automatic control was the development of the

1



fly-by-wire aircraft. The first digital fly-by-wire (DFBW) aircraft, an F-8 Crusader

modified by NASA, took flight in 1972 [7]. The technology demonstrated by the

DFBW test aircraft eventually supported the development of the F-16 and the Space

Shuttle [6].

The combination of digital systems with the concept and operation of the autopilot

has further expanded the capabilities of the autopilot. Today autopilots are able to

maintain altitude, change to an assigned altitude, intercept courses, and even guide an

aircraft along a pre-programmed path of waypoints [8]. However, the overall purpose

of the autopilot remains unchanged: to help “the pilot focus on the overall status of

the aircraft and flight” [8].

1.1 Motivation

The “Department of Defense (DoD) Unmanned Systems Integrated Roadmap:

2017-2042” calls for “technological advancements that increase the efficiency and ef-

fectiveness of unmanned systems” [9]. These types of advancements will allow un-

manned systems to perform a broader range of tasks (routine navigation, continuous

monitoring, arrival time coordination) with reduced input from human operators.

Subsequently, operators will be able to shift their focus from controlling a single

unmanned system to managing an entire mission made up of multiple manned and

unmanned systems. One of the next steps in achieving these advancements is the au-

tomation of tasks which do not require advanced logic such as artificial intelligence.

Coordinating the arrival time of aircraft is a task which is ready to be automated.

This task requires an aircraft to arrive at a desired state (position, airspeed, etc.) at

some specified time. The specified arrival time may be prescribed such that a group of

vehicles arrives at their desired states at the same time however, simultaneous arrival

is not the only possibility.
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In the case of commercial aircraft arriving at an airport, a set of aircraft should

arrive at specific but separate times in order to allow a plane to land and exit the

runway before the next aircraft is in a position to land. In the commercial landing

scenario, the aircraft may be assigned ”landing times” to target which creates multiple

problems which are not linked together.

Time coordination is also an important task to the United States Air Force be-

cause it enables time synchronization. Time synchronization is key to two of the

nine United States Principles of Joint Operations: mass and surprise [10]. The two

principles depend on the ability to control the time at which a military operation

occurs. Furthermore, automating this task supports the “mission command” tenet of

airpower. Automating this task allows the “centralized command, distributed control,

and decentralized execution,” a key component of mission command, of the arrival

time coordination task by moving the moving the execution and management of the

time coordination task from an operator to the automated aircraft system [10].

Additionally, the commercial aircraft landing scenario may be changed such that

the aircraft must land a set time apart and now the multiple problems are linked by

their landing times. This change represents a variation of the continuous monitoring

problem. The continuous monitoring problem is a term used in intelligence, surveil-

lance, and reconnaissance (ISR) to describe a scenario where a stationary or moving

target must continuously have a sensor observing it. The problem is a type of coor-

dinated arrival problem because the start of an observation segment may be viewed

as the specified arrival time. Subsequently, the next vehicle is prescribed to arrive at

its endpoint when the previous vehicle finishes its observation. In this scenario, the

end of observation of the first vehicle is now linked to the start of observation of the

second vehicle.

Although the coordinated arrival time task is clearly useful to military operations,
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it is not unique to the military. This task is performed many times every day by

pilots and air traffic controllers as aircraft are routed in and out of airports while

maintaining a safe but efficient physical separation. A goal of the Next Generation

Air Transportation System is to rely on a time-based air traffic management system

in the 2026-2030 time frame [11].

One of the capabilities of such a system will be to “accurately predict the air-

craft’s 4-D trajectory” in order support to higher throughput; a “4-D trajectory”

includes time in addition to the three spatial dimensions. Currently, air traffic con-

trollers issue speed, altitude, and heading commands to aircraft in order to achieve

time coordination. The next step in air traffic automation is for simple arrival time

commands to be sent from the ground controllers to the aircraft. The aircraft will

then be responsible for meeting the specified arrival time while avoiding any airspace

restrictions and providing a predictable flight path. A predictable flight path allows

air traffic controllers and other aircraft to identify and address any potential conflicts,

such as a mid-air collision with another aircraft, which may occur along the aircraft’s

flight path.

In order to automate the coordinated arrival time task, the goal of this research

is to develop a practical control algorithm which solves the coordinated arrival time

problem in real time while considering environmental effects, airspace, and maintain-

ing a predictable flight path. The goal of this research is to allow scenarios similar to

the continuous monitoring problem where the arrival time of an aircraft may either

be fixed or dependent on a preceding vehicle.
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1.2 Research Questions, Tasks, and Scope

Research Questions.

Hypothesis: A control algorithm exists which may predictably guide an aircraft

through a constrained environment to achieve a desired final position, heading, and

velocity at a specified arrival time by adjusting both the speed and flight path of the

aircraft

The research questions related to this hypothesis are:

1. What is the time optimal lead turn time for an aircraft, controlled by roll rate,

to closely follow a Dubins path?

2. What technique is best suited to control the arrival time and velocity of an

aircraft in near real time?

3. Is a keep-out zone avoidance feature able to be integrated into the arrival time

control algorithm?

4. How does an arrival time control algorithm perform in the presence of environ-

mental anomalies and time dependent constraints?

Research Scope.

The research is focused on developing predictable methods to autonomously con-

trol the arrival time and arrival velocity of aircraft flying through a realistic wind

environment while adhering to predefined keep-out zone constraints. There are many

options to solve this problem which involve preplanning the path, selecting waypoints,

and then controlling velocity along the defined path. This area has been well studied

therefore, the author believes the real time control of the path and velocity simulta-

neously deserves study.
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The primary result of this work is the development of a stable multi-vehicle arrival

time control algorithm and the characterization of the control algorithm across a wide

range of realistic situations. In this work, stable refers to the property where the

response of the dynamic system (i.e., the closed loop control algorithm) is guaranteed

to remain bounded. The simulation scenarios are focused on single-vehicle situations

which replicate individual components of a multi-vehicle scenario. However, a small

number of multi-vehicle scenarios are studied to ensure the controller behaves as

predicted by the single vehicle characterization and determine any the limitations of

the controller.

Research Tasks.

A number of tasks are accomplished which address the above research questions.

1. Question 1: Solve the minimum time to bank optimal control problem

2. Question 1: Solve the optimal lead turn time problem

3. Question 2: Investigate methods to control arrival time using the aircraft’s flight

path.

4. Question 2/4: Develop a practical arrival time control algorithm that is ca-

pable of providing precise arrival time and velocity control in the presence of

environmental effects and time dependent constraints.

5. Question 3: Investigate and select a method to incorporate keep-out zone con-

straints into an arrival time control algorithm.

6. Question 4: Perform single-vehicle and multi-vehicle simulations with station-

ary/moving targets, single/multiple target visits, environmental effects, and

keep-out zones.
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1.3 Assumptions and Limitations

� The research focuses on fixed wing aircraft flying at constant altitude. This

simulates the aircraft being assigned a fixed altitude in an operational environ-

ment.

� A nonlinear aircraft model is used to evaluate the arrival time control algorithm

for a small subset of simulations. These simulations are used to ensure the

algorithm behaves as predicted when integrated into a realistic aircraft model.

The nonlinear aircraft model is the F-16 model from Ref. [6]. A simple altitude

hold and bank angle control system are developed to accept inputs from the

arrival time control algorithm.

� It is assumed the arrival time control algorithm has knowledge of its position

relative to the desired arrival point, true airspeed, wind speed, heading, and

bank angle.

� The research only addresses predefined keep-out zones and not “pop-up” or

time-dependent keep-out zones.

1.4 Research Methodology

The dissertation research is divided into four parts. The first part defines the dy-

namics models used in this research. A majority of the research utilizes a simplified

dynamics model which is derived from the nonlinear equations of motion. A number

of assumptions are applied to the nonlinear equations of motion to reduce the num-

ber of state variables in the model while accurately modeling fixed wing dynamics.

The primary benefit of the model is the ability to solve optimal control problems,

rapidly perform simulations, and change the aircraft characteristics with a few simple
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parameters. Four types of aircraft models are defined used to determine how aircraft

performance affects the performance of the arrival time algorithm.

A second, nonlinear, dynamics model is used to verify the results of the simplified

model hold for a nonlinear model. The model used is the F-16 dynamics model from

Stevens and Lewis [6]. However, this model represents just the aircraft dynamics

where the inputs are the control surface deflections. Therefore, a control system

which accepts the command inputs from the arrival time control is also developed.

Finally, the environmental model used to generate non-steady wind turbulence is

introduced. The Dryden Wind Turbulence model in MATLAB®is used due to its

ease of integration into Simulink.

The second part of the research focuses on solving the optimal lead turn problem.

This optimal control problem addresses a common issue observed when following

paths defined by straight lines and circular arcs, commonly referred to as Dubins

paths. These paths are commonly used in aircraft path planning due to their sim-

plicity. The transition between the straight and curved path segments would require

an instantaneous change in bank angle to be followed precisely by an aircraft; which

is clearly not feasible. This problem is applicable to this research due to the assumed

path shape used by the arrival time control algorithm, a racetrack.

The goal of the optimal lead turn time problem is to find the control and initial

time/position for an aircraft to transition from the straight path segment to the curved

path segment in minimum time, or vice versa. The dynamics utilize the simplified

model which expands upon Dubins vehicle dynamics by including roll rate and roll

acceleration to model the aircraft roll mode. Determining the optimal lead turn time

for an aircraft to follow a Dubins path will allow the arrival time control algorithm

to better follow Dubins paths.

The third part of the research develops and analyzes an algorithm which is able
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to solve the arrival time problem in real time. The first portion of this phase defines

the path being followed, a racetrack, and the various algorithm subsystems. These

subsystems determine the racetrack size, enforce keep-out zones, and guide the aircraft

to and along the path. The second portion of this phase derives a method to ensure

the stability of the algorithm when used in a multi-vehicle scenario.

Finally, the fourth part of the research consists of testing the capabilities of the

control algorithm in a simulation environment. Simulations are primarily performed

on a simplified aircraft model to more efficiently study variables which affect the

performance of the algorithm. The simulations include a wide range of wind envi-

ronments, arrival time constraints, and moving target conditions. The simulation

difficulty is then increased by studying the effects of changing the desired endpoint

and desired arrival time after the simulation has begun. Multiple arrivals, simulating

a go-around or continuous monitoring, are also studied.

Multi-vehicle scenarios are also studied where the spacing between arrival times is

the priority and the desired arrival time multiple vehicles will depend on the preceding

vehicle. These scenarios directly simulate the continuous monitoring problem and

coordinated arrival time problem. Finally, the algorithm is tested using the non-

linear model on the multi-vehicle scenarios to study the performance of the algorithm

in a more realistic environment.

1.5 Expected Contributions

Specific contributions to the control of autonomous vehicles are made in this

research:

� A near-optimal solution to the optimal lead turn time problem

� A framework for a real-time arrival time controller which compensates for
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steady-state winds, is robust to random turbulence, allows for repeat visits,

and operates within keep-out zone constraints

� A method to guarantee the string stability of a group of airspeed heterogeneous,

nonlinear aircraft with a cascaded interconnection utilizing the developed arrival

time algorithm.

� A performance characterization of the real-time arrival time controller across a

range of wind conditions and arrival requirements

� A demonstration of the arrival time controller in single and multi-vehicle sce-

nario with cooperative and non-cooperative targets

1.6 Document Outline

The research hypothesis of this paper along with the related questions and tasks

have been presented in this chapter. Chapter II will present a survey of existing

literature related to the arrival time problem. Chapter III derives and defines the air-

craft and environmental models this research uses to solve the arrival time problem.

Chapter IV introduces and solves the optimal lead turn problem then analyzes the

solutions effect on a variety of guidance laws. Chapter V develops the racetrack algo-

rithm and its various subsystems. Chapter VI analyzes the stability of the developed

algorithm. Chapter VII presents the results of the extensive simulation effort to verify

the stability of the algorithm and characterize its performance across a wide range of

scenarios to include multi-vehicle simulations. Finally, Chapter VIII summarizes the

conclusions of this research and makes recommendations for the continuation of the

research.
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II. Literature Review

2.1 Introduction

The coordinated arrival time problem is a specialized type of path planning prob-

lem. The purpose of the general path planning problem is to generate a trajectory

or guidance commands which safely transfer a vehicle from an initial state (position,

speed, attitude, etc.) to a final state while minimizing some prescribed cost func-

tional and adhering to any imposed constraints. As an example, a commonly used

cost function is the length of the path or time to travel the path.

This literature review begins with a brief overview of path planning focusing on the

distinction between local and global path planning. Next, an overview of two types

of local path planning is given along with examples from recent research: “Plan-and-

Follow” methods and real-time trajectory guidance. Finally, an overview of string

stability theory is presented to provide insight on a method to analytically determine

the stability of a group of time coordinated vehicles.

2.2 Path Planning

Path planning scenarios may be grouped into two areas: global and local path

planning. Global path planning, also referred to as route planning, desires to find a

route through a set of points of interest. These routes are typically modeled using

straight lines between waypoints and optimized using a wide variety of optimization

methods [12]. Subsequently, a local path planner refines the routes to generate flyable

trajectories. Local path planners generate a flyable trajectory as opposed to a route

through waypoints.

Global path planners are a powerful approach to path planning especially when

the problem contains multiple fixed obstacles such as threats, keep-out zones, or
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buildings. However, the plan and refine approach of global path planners is, at best,

a near real-time method due to the required route optimization. Since the goal of

this research is to develop a real-time guidance algorithm, only local path planning

methods are reviewed.

2.3 Plan-and-Follow

The plan-and-follow method is straightforward in its methodology: plan a flyable

path based on some assumed environment and follow it in real time. This method

allows for complex, iterative optimization techniques to be used in calculating the

path. Subsequently, a real-time path follower allows for the vehicle to account for

minor changes in the environment while still following the planned path. However,

the resulting paths are optimal only for the underlying environmental assumptions.

Major changes to these assumptions may require the path to be re-planned or else

the path being followed may no longer be optimal. This method is broken down into

three distinct components: planning, following, and arrival time control methods.

Path Planning Methods.

This section reviews four methods used to produce optimal paths: Dubins paths,

Pythagorean Hodographs, differential flatness, and optimal control path planning.

Dubins Paths.

One of the most basic path planning problems is finding the optimal path between

two points. With no constraints the solution to this problem is a straight line. A

version of this problem which is more applicable to aircraft is to find the shortest

path between two points with bounded curvature. The solutions to this problem are

referred to as the Dubins paths; named for L.E. Dubins who first proved the solution
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to the problem [13].

The problem is to find the shortest path between two poses (position and heading)

subject to a constraint on the curvature of the path. Curvature describes how fast a

path turns. A path with zero curvature is a straight line while the curvature along

a circular path is constant but not-zero; note that curvature is defined as the inverse

of the circle’s radius. The inclusion of curvature as a problem constraint forces the

solution to curve as opposed to instantaneously changing direction.

In the late 1950s, Dubins provided a mathematical proof of the solution to the

shortest path between two points with bounded curvature [13]. Dubins proved that

the solution to the aforementioned problem is a set of no more than three line-

segments. The first and third segment are constant curvature turns. The second

segment may either be a straight line, or another constant curvature turn.

The six possible types of Dubins paths are presented in Fig. 1 where the paths are

labeled according to the turn order; left (L), straight (S), or right (R). As an example,

a LSR path contains segments in the order of Left, Straight, and then Right. A benefit

of the calculation of these paths is that the length of the path is easily obtained since

the paths are composed of circular arcs and straight line-segments. The solution to

the minimum time problem is then to calculate each possible type of path, at most

six, and select the shortest.

Dubins paths have been further studied by Shkel where the set of possible Dubins

paths was further constrained based on the problem setup [14]. The benefit of this

approach is that each type of path does not need to be calculated. Rather, a small

set of parameters are calculated based on the initial and final poses of the problem.

Shkel characterized the values of each parameter which relate to the different Dubins

path types.

Subsequently, the term Dubins vehicle was coined to describe the dynamics of a
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Figure 1. Dubins Paths

vehicle whose trajectories are Dubins paths. This type of vehicle travels at constant

speed may instantaneously change the curvature of its current trajectory [12]. Dubins

vehicle dynamics have been widely used in aeronautical research because Dubins paths

model aircraft dynamics well and are computationally simple.

Multiple geometry-based methods to calculate the Dubins path are presented by

Tsourdos in Ref. [12]. The methods are not iterative and are computationally in-

expensive. Thus, a typical formulation to solve the minimum time path planning

problem calculates every possible type of Dubins path, then outputs the shortest

path as the solution.

In Ref. [15] Dubins paths were used to find the shortest path from an arbitrary

initial position to a circle of known size. The problem is challenging because the final

pose of the path is not specific. Rather, a set of final poses is acceptable with regard

to the problem being solved. The solution was obtained analytically by utilizing the
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initial pose compared to the position of the circle.

Dubins paths have also been used in the field of artificial intelligence. In Ref. [16],

Dubins vehicle dynamics are used to train a neural network to solve a Tail-Chase

problem where a pursuer unmanned aircraft is attempting to reach a “reward region”

around a moving target while avoiding a “penalty region” which is also near the

target. The output of the neural network is one of two general guidance schemes;

either navigate to the target or avoid the “penalty region.”

In Ref. [17], the problem considered was to find the optimal paths for three vehicles

through a set of waypoints, a type of traveling salesman problem. The objective of

the optimization problem was to minimize the total time to visit all waypoints subject

to constraints on the arrival time and arrival heading at a subset of the waypoints.

The solution utilized a genetic algorithm which generated an initial set of solutions

and then used multiple heuristic methods to improve the “best” solution with regard

to the original problem. The results demonstrated the computational efficiency of

Dubins paths where the solution algorithm calculated over 11,000 Dubins paths per

second on a typical desktop computer.

The effects of the environment have also been considered with regard to the mini-

mum time Dubins vehicle problem. Namely, what is the minimum time path to travel

between two poses in a constant wind field. This problem increases the realism of

the Dubins problem solution with regard to aircraft. One solution to this problem

calculated a Dubins path through the moving air mass then compared the result to

the desired final pose [18, 19]. This approach required multiple iterations which was

possible since basic Dubins paths are computationally inexpensive.

A second approach attempted to find an analytic solution to the constant wind

Dubins problem. Techy was able to obtain analytic solutions for Left-Straight-Left

and Right-Straight-Right types of paths [20]. However, the other types of Dubins
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paths required numerical solutions. Additionally, Ayhan was able to compute turn-

turn-turn type Dubins paths through a constant wind field which were of a specified

length [21].

Time synchronization has also been well-studied utilizing Dubins paths. Reference

[22] used 3-D Dubins paths to plan the simultaneous arrival of multiple unmanned

aircraft. The work further constrains the problem by ensuring the paths are “safe

to fly,” defined as the curvature of the paths are bounded by a prescribed maximum

curvature, a minimum distance between unmanned aircraft at all times is enforced,

and the paths do not intersect at points of equal length.

Dubins paths have been well-researched and are useful in the area of aircraft

path planning. However, the primary limitation of Dubins paths is that they contain

instantaneous changes in heading rate. Instantaneous changes in heading rate would

correspond to instantaneous changes in bank angle for an aircraft which is clearly not

possible. This difference typically creates a small error when an aircraft attempts to

follow a Dubins path which is investigated in Chapter IV.

Pythagorean Hodographs.

Pythagorean hodographs (PH) are a specific type of path parameterization. Path

parameterization optimizes the path by assuming some class of basis functions which

are assembled in a linear combination. If twice-differentiable continuous functions

are used as the basis functions, the resulting path and heading will also be defined

by a continuous function. Thus, the Dubins path limitation of discontinuous heading

rate may be overcome at the cost of optimality and computational efficiency which is

discussed.

The type of parameterization reviewed here is the PH Bézier curve. Bézier curves

are polynomial curves created from linear combinations of Bernstein basis polyno-
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mials. The basis polynomials are defined to be functions of a variable, q, which is

defined to be zero at the beginning of the path and one at the end of the path.

The PH was first introduced in 1990 by Farouki and Sakkalis [23]. A PH exists

for a parametric curve if the sum of squares of its parametric derivatives is equal to

a square number [12]. This special formulation is particularly useful since the length

of a parametric curve may be obtained by integrating the magnitude of the velocity

vector with respect q.

The magnitude of the velocity vector is often difficult to work with mathematically

since it involves taking a square root. However, the radicand of a PH curve is, by

definition, a square and the square root disappears. Thus, the length of a PH curve

is simply the integral of a rational polynomial.

The next step is determining the polynomials for the parametric curve which

satisfy the conditions of a PH. The typical choice of curve is the Bézier curve which is

a parametric curve whose path is defined by the Bernstein basis polynomials. Farouki

provides an extensive review of the Bernstein polynomial basis in Ref. [24]. However,

a subset of numerical properties [24] of Bézier curves and Bernstein polynomials which

are useful to path planning are listed here:

� Bernstein polynomials curves contain N+1 control points where N is the degree

of the Bernstein basis polynomial.

� The integral of a Bernstein polynomial is the sum of the control points divided

by the degree plus one.

� The derivative and arithmetic operations of Bernstein polynomials may be cal-

culated only using the control points and the result is also a Bernstein polyno-

mial.

� An algorithm called de Casteljau’s algorithm separates a Bézier curve into two
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Bézier curves of equal degree using only the control points of the original curve.

� A Bézier curve lies within the convex hull of its control points.

� The second and second-to-last control points, along with the first and last con-

trol points, define the derivative or heading of the Bézier curve at the terminal

points.

The primary strength of these attributes lies in the ability to derive a continuous

path of known length and manipulate the path using only the control points. This

results in fewer degrees of freedom in the optimization problem as opposed to dis-

cretizing the entire path to determine the solution. However, the resultant paths are

optimal only in the sense that they are the optimal Bézier curve as opposed to the

globally optimal path. Note that a Dubins path may not be represented as a Bézier

curve due to the discontinuous curvature of a Dubins path.

The flyability of the path may be analyzed by utilizing the curvature of the path

which is also a Bézier curve if the path is a PH [12]. Using the convex hull property

of Bézier curves, the maximum possible curvature is calculated using the control

points of the curvature function. However, this may be excessively conservative as

the control points may not be near the actual maximum value of the curve. This may

be remedied with the application of de Casteljau’s algorithm.

De Casteljau’s algorithm is used to split a single curve into multiple curves of

the same degree. The benefit is that the control points approach the curve as the

curve is split into smaller and smaller sub-curves. Thus, a set number of iterations

of de Casteljau’s algorithm will allow flyability to be enforced while not being overly

conservative.

An excellent example of implementing PH paths was presented by Choe [25].

Choe’s research describes a general framework for generating time coordinated paths
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using PH Bézier curves. The research also allowed for the inclusion of path separation

constraints which impose a minimum separation distance between paths. The research

also enables greater control over timing by calculating a speed profile in addition to

the path trajectory. The calculated speed profile is also a Bézier curve.

Although the method requires an optimization problem to be solved, the strength

of the method is the reduced size of the optimization problem due to the use of

quintic PH Bézier curves. Applying the PH condition causes the two-dimensional

Bézier curve path to be defined by two second order Bézier curves for a total of 6

path variables per vehicle. Additionally, a timing law is used to control the arrival

time of the vehicles. The integral of the inverse of the timing law is the arrival time

of the vehicle. The timing law is assumed to be a second-order Bézier curve which

only has three control points.

The path and speed profile may be combined to calculate both the curvature

of the path and lateral acceleration of the vehicle. Since the curve is a PH curve,

the curvature is a rational Bézier curve and the acceleration is also a Bézier curve.

De Casteljau’s algorithm may be applied to both of these types of curves which

quickly determines the global maximum or minimum value of the curve. Thus only

4 constraints are imposed for the aircraft dynamics: minimum velocity, maximum

velocity, maximum curvature, and maximum acceleration.

The constraints on the terminal position and heading are applied by simply cal-

culating these values from the design variables describing the path. The distance be-

tween paths is also a Bézier curve and de Casteljau’s algorithm is applied to quickly

find the minimum separation to enforce the spatial path deconfliction constraint.

Finally, the arrival time is calculated using the integral of the inverse timing law,

as previously mentioned. The timing law is a quadratic Bézier curve in this research.

The arrival time constraint may be imposed as a specific arrival time, simultaneous
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arrival time for all aircraft, or a set of arrival times which are equally spaced.

To summarize the method in Ref. [25], the coordinated arrival time problem is a

constrained optimization problem using PH Bézier curves. The resulting paths are

sub-optimal when attempting to find a minimum-time trajectory because of their

assumed shape. However, the problem being solved focuses on meeting the arrival

time constraints. The primary strength of this formulation is the reduction of the

problem size, only nine variables, to describe the continuous path and velocity of each

vehicle. Each vehicle also has four dynamics inequality constraints and 6 terminal

equality constraints. Additional timing constraints are applied depending on the

desired arrival specifications.

The paper also considered and imposed path deconfliction constraints in the case

of multiple vehicles. The method still requires a constrained optimization to be

solved which may not allow for a real-time implementation. However, the calculation

of both path and velocity profiles allows greater flexibility in arrival time than if

velocity were held constant. The method used in Ref. [25] was later extended to

three-dimensions in Ref. [26]. An extensive review of PH curves, Bézier curves, and

their use in cooperative trajectory generation may be found in Ref. [27].

The use of Pythagorean hodographs shows the power of parameterization and the

ability to calculate a path utilizing a small subset of control points. However, as

previously mentioned, this method forces the path to a specific type of shape which

may not be globally optimal. Additionally, the path still requires optimization which

may not be able to occur in real time.

Differential Flatness.

The next “plan-and-follow” method to be discussed is differential flatness. The

method is similar to the previous path parameterization methods and is primarily
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used for trajectory generation. However, not every dynamic system is differentially

flat which limits the application of this method. The concept of differential flatness

was introduced by Fliess in the early 1990s and a summary of the theory may be

found in Ref. [28].

First a basic definition of differential flatness is presented. Assume there is a

system where the derivatives of the state variables are functions of the states and the

inputs. The system is differentially flat if there exist flat outputs, equal to the number

of inputs, which are functions of the state and control derivatives such that the states

and control can be defined as functions of the flat outputs and their derivatives.

The definition of differential flatness is best shown in equation form. Nieuwstadt

gives an excellent definition from Ref. [29]:

A nonlinear system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm

y = h(x), y ∈ Rm (1)

is differentially flat if we can find flat outputs z ∈ Rm of the form

z = ζ(x, u, u̇, ..., u(l)) (2)

such that

x = x(z, ż, ..., z(l)) =: x(z̄)

u = u(z, ż, ..., z(l)) =: u(z̄). (3)

The benefit of this formulation in solving a dynamic system, linear or nonlinear, is

that the problem may be solved in the space of the flat outputs which may be smaller

than the space of the states. In the context of trajectory generation, the flat outputs

and their derivatives are often parameterized by B-splines which are defined by their

control points [29]; similar to PH Bézier curves.

Nieuwstadt provides some useful background and examples with regards to tra-
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jectory generation in Ref. [30, 29]. He also provides a framework for “real-time”

trajectory generation but notes that the definition of “real-time” is ill-defined. The

definition used in the research of a “real-time computation” is a computation “that

can be performed faster than the reference update.”

Nieuwstadt creates two algorithms which attempt to achieve this real-time trajec-

tory generation. The first is effectively a trajectory tracker which controls the system

to achieve a desired state in a receding horizon fashion. A time delay is chosen which

allows an optimization routine to solve for the flat outputs which connect the initial

state of the current iteration to the desired state at the next iteration. A point along

the flat path is chosen and used as the command to the system.

The research notes that there is a trade-off determined by the choice of the time

delay. A shorter time delay results in better performance but higher control mag-

nitudes which could decrease stability. The opposite is true for higher time delays.

Additionally, the research proves the algorithm achieves “real-time asymptotic tra-

jectory generation” with the correct choice of points along the flat path used to derive

the input command. A proof is provided in Ref. [29] which shows the steady state

output error is zero.

The second algorithm attempts to incorporate some cost function into the prob-

lem formulation rather than simply following a reference trajectory. The method is

similar to the first algorithm except that the feasible trajectory from the first algo-

rithm is optimized based on the cost function. The algorithm preemptively stops

the optimization in order to honor the delay time. Thus, at worst case, the second

algorithm outputs the result from the first algorithm. Similarly, the second algorithm

can be shown to eventually converge the error to zero. However, the research shows

the second algorithm is too slow by a factor of ten to support realistic time delays.

In summary, differential flatness is a path parameterization method which may be
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formulated to generate trajectories in real time; depending on the definition of real

time. The method has the potential to reduce the size of an optimization problem

via the correct selection of the flat variables. However, the method is only applicable

to systems which may be written in a very specific form.

Optimal Control Path Planning.

Optimal control theory, in general, seeks to find the optimal control input to a set

of dynamics which minimizes a desired cost function [31]. The computed trajectories

may be truly optimal if a basis function is not assumed for any variables. Thereby

overcoming a limitation of some path parameterization methods. A primary use

of this theory is the development of an optimal open-loop guidance law which will

produce a control which minimizes some prescribed cost functional over time for any

initial state. This section focuses on the calculation of paths using optimal control.

The development of real-time guidance laws using optimal control is addressed in

Section 2.3 and methods to solve optimal control problems will be discussed in Sec. 2.5.

An optimal control problem, if successfully solved, outputs both the optimal con-

trol and resulting optimal states. If the problem were successfully solved, the opti-

mal states adhere to the imposed dynamic constraints of the problem. In applying

this method, an optimal path may be derived which inherently satisfies the dynamic

constraints of the aircraft as opposed to applying geometric constraints to a path op-

timization as in Sec. 2.3. First, the optimal control formulation of the shortest path

between two points with bounded curvature is reviewed. Recall the proven solution

to this problem are Dubins paths which were discussed in Sec. 2.3.

Boissonnat formulated the shortest path between two points with bounded cur-

vature problem as an optimal control problem in Ref. [32]. In this formulation, a

vehicle travels at a constant velocity and is controlled by a heading rate of change
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input. Utilizing optimal control theory Boissonnat solved the problem, and the re-

sultant optimal trajectories were Dubins paths.

A benefit of the optimal control formulation, with regards to cooperative arrival

time problem, is that time is a required component of the problem formulation. In

Boissonnat’s formulation, the end time of the trajectory is a free variable, and the

objective is to find the minimum time path. Optimal control problems are also

formulated as a fixed final time problem allowing for the final time to be specified or

in relation to another vehicle.

A limitation of the optimal control method is that an analytical solution to the

posed problems may only be found in a small subset of circumstances. Typically, these

are problems with two or fewer states and no constraints besides the dynamics of the

system. Thus, a numerical method must often be used to determine the solution to

an optimal control problem.

Optimal Control Path Planning Strategies.

This section presents two examples of optimal control theory being used to gen-

erate an optimal trajectory. The first is detailed in Ref. [33]. The research paper

addresses the computation of the optimal landing paths for large passenger aircraft;

specifically, a Boeing 737-500 and Boeing 767-400.

The continuous descent arrival (CDA) procedure is used as the basis for the prob-

lem. This aeronautical procedure was intended as a means to reduce flight time,

reduce fuel used, and reduce noise perceived on the ground. The procedure achieves

these benefits by minimizing engine thrust for as much of the profile as safely possible.

However, differences in these idle thrust trajectories between aircraft have limited the

use of the procedures due to a required increase in the safety separation distances be-

tween aircraft. This increase in separation decreases rate which aircraft may fly into
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an airport.

Park proposed a solution to this problem which consisted of numerically calculat-

ing an optimal solution to the problem then proposing a simple, sub-optimal solution

which may be readily calculated without the use of optimal control software [33]. This

problem addressed only the vertical maneuvering plane and the states used consisted

of distance from the instrument landing system (ILS), height, and true airspeed. The

control inputs were engine control and flight path angle.

A challenge of this problem was the required use of multiple flap settings by large

commercial aircraft. Aside from changing the overall aerodynamics of the aircraft,

flap position also has an associated minimum and maximum safe airspeed which must

be honored. The requirements of this problem drove the use of a multi-phase optimal

control approach where each flap setting was a different phase.

The optimal flight paths were computed using GPOPS-II [34] and analyzed to

determine a simple analogue to the optimal flight path. The optimal solution typically

resulted in a variable air speed which may be difficult to follow precisely. Therefore,

the research proposed a sub-optimal solution which utilized a constant airspeed for

each segment. The adjusted airspeeds were calculated as a single variable optimization

problem to minimize fuel burn during that portion of the flight. Subsequently, it

was shown that the adjusted airspeeds were a quadratic function of the wind speed

allowing for a simple calculation of sub-optimal airspeed by aircraft and air traffic

controllers.

The optimization method in Ref. [33] highlights the ability to develop a near-

optimal but computationally-efficient trajectory from a numerically-computed opti-

mal trajectory. As a comparison, the fuel optimal trajectory required 53 seconds to

compute using GPOPS-II while the sub-optimal trajectory required only two seconds

to determine the optimal descent speed. Further details regarding this formulation
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or the CDA problem may be found in Ref. [35].

The second example of optimal control path planning is detailed in Ref. [36]. This

research computed terrain-following and terrain-avoidance trajectories using optimal

control theory. The problem was to obtain a flyable trajectory which navigates be-

tween terminal conditions across a mountain range while maintaining a minimum

height above the terrain. In this research the terrain elevation is obtained via a table

lookup of tabulated data based on the vehicle position. The problem formulation

uses a simplified set of aircraft dynamics where load factor rate and roll acceleration

are the only control inputs into the problem.

The problem was formulated as both a minimum time (terrain-avoidance) and

minimum height above terrain (terrain-following) problem. The minimum time prob-

lem allows the final time to be free while the minimum height above terrain problem

fixes the final time at some specified value. This feature of optimal control problems

is valuable to coordinated arrival problems as the arrival time may simply be specified

as an inherent constraint of the problem.

However, the terrain-following problem required over an hour of computation time

on a desktop computer to solve a trajectory which was approximately 60 nautical miles

long and had a flight time of 530 seconds. The terrain-following problem was formu-

lated to activate the terrain path constraint as much as possible which significantly

affected the computational efficiency of the algorithm.

In summary, optimal control path planning is a powerful trajectory generation

method which inherently creates trajectories which are flyable. However, numerical

optimization methods are typically required to solve realistic problems and it is infea-

sible to generate optimal trajectories in real time. Although, the optimal trajectories

may be computationally inefficient, Ref. [33] showed the ability to formulate a simple

near-optimal solution which was able to be determined in real time.
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Path Following Guidance Laws.

Once a path has been planned, the next step is to fly the path. In general,

the goal of a path following guidance law is to drive the error between the vehicle’s

position and the path to zero. Path following is an entire field unto itself, and a

short summary of some useful guidance techniques is provided. The review discusses

linear guidance and non-linear dynamic inversion with respect to path following based

on the overview given in Ref. [12]. Additionally, a brief overview of optimal control

guidance is presented.

Simple Guidance Law Algorithms.

Linear guidance is a simple form of path-following guidance since the control is

linear with respect to the error. The method initially specifies the feedback algo-

rithm to be used as a linear combination of variables with an associated gain. The

gains are chosen through an iterative process to achieve some desired path-following

performance.

An example is given for following a straight line where a vehicle is traveling at

constant velocity and has control over the rate of change of its velocity vector, a

Dubins vehicle. A guidance law for this example would output the rate of change of

the velocity vector as a function of the distance from the line to be followed. Linear

guidance methods are simple in their implementation but typically exhibit error when

tracking curved trajectories.

Non-linear dynamic inversion (NDI) is a type of model reference control. This

method specifies the desired response of the error signal, as a second order differen-

tial equation where the damping ratio and natural frequency are specified for example.

The dynamics of the system are then derived and substituted into the desired dynam-

ics to derive the guidance law as a function of the specified dynamics. The derivation
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results in the controller having knowledge of the turn radius of the reference path in

addition to the difference between the vehicle heading and the path heading at the

closest point. This extra information allows the NDI algorithm to perform better

than the simple linear guidance. The NDI method results in a more complicated

guidance law but often follows both straight and curved paths better than simple

linear guidance.

Figure 2. Linear and Nonlinear Dynamic Inversion Guidance Comparison

A comparison of the linear and NDI guidance presented in Ref. [12] is given in

Fig. 2. The path-following trajectories are attempting to follow the same reference

path. Dubins vehicle dynamics are assumed with constant velocity and the same sat-

uration limit on heading rate of change is applied to both algorithms. Both guidance

laws acquire and follow the straight path segment well, but the NDI guidance law

clearly tracks the curved section of the reference path better than the linear guidance

law.
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Advanced Guidance Law Algorithms.

Amore advanced path guidance method is to use optimal control theory to develop

a path-following algorithm. The optimization problem to be solved, typically, is to

find the control which minimizes the distance from a prescribed path. An analytic

solution for the optimal control must be obtained in order to use the method to

create a path-following algorithm. The control is often obtained using the necessary

conditions for optimal control and Pontryagin’s Minimum Principle in the case of

bounded control [31].

A special class of controller exists if the problem may be formulated such that the

cost functional is quadratic and the dynamics are a linear combination of the states

and the control. If a solution may be found, it is termed the linear quadratic regulator

(LQR) controller. The derivation of the LQR controller and requirements for the

existence of a solution may be found in Ref. [31]. The benefit of this formulation is

that the controller is guaranteed to be stable if a solution may be found. However, the

controller requires full knowledge of all the state variables. If the state information

is not available then a linear quadratic estimator, also referred to as a Kalman filter,

may be used to estimate the required states from the available states.

Another application of optimal control theory is the generalized method of de-

veloping a three-dimensional trajectory tracker found in Ref. [37]. The H∞ method

of control synthesis, an optimal control method, is demonstrated in Ref. [37]. The

method generates a control law by finding the control which minimizes the infin-

ity norm of the closed loop system. The research then demonstrates the controller

performance tracking lines and helices with and without a constant wind field.

The formulation of the algorithm allows the path being followed to be defined by

waypoints or as a continuous function. The primary advantage of this method is that

the only inputs to the trajectory tracker are the current position of the point along
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the trajectory being followed and the heading rate of change of the trajectory at that

point.

Another guidance law was developed as a combination of a NDI and adaptive

guidance law. This guidance law addresses the challenge of following a Dubins path

to include the effects of wind [38]. In this work, the path error is modeled as a

second-order damped oscillation. Choosing the natural frequency and damping ratio

of the error oscillation determines the response of the controller. A limitation of this

controller was observed that a set of parameters, natural frequency and damping ra-

tio, would only achieve satisfactory performance with either a large or small initial

error but not both. An adaptive controller was developed to overcome this limitation

where the natural frequency was adjusted to achieve the desired performance of a con-

troller which worked well both near and far from the path. Simulations demonstrated

reasonable performance with and without wind.

The challenge of following Dubins paths is increased with the assumption of non-

zero wind. The challenge in following a Dubins path in wind is that the earth-fixed

turn radius of the aircraft is affected by both the magnitude and direction of the

wind. Wolek [39] addresses this problem by computing the minimum turn radius for

a given upper bound on the wind speed. The result is a path flyable by a vehicle

with the specified heading rate constraint which is longer than the original Dubins

path. The worst case turn radius would only be observed if the wind vector is in the

same direction as the vehicle’s velocity vector at some point along the path. Thus,

the method is conservative but provides a feasible solution dependent on the wind

magnitude.

There are many methods to path following which vary in their performance de-

pending on the environment and path being followed. In the “plan-and-follow” the

path follower is part of an upper-level open loop control in that the path follower is
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simply following the pre-planned path. In order to affect the arrival time, either the

path must be recalculated, or the airspeed of the aircraft changed.

Arrival Time Control.

Arrival time control, in the “plan-and-follow” method, is primarily achieved in the

“plan” portion of the method. The previous sections have discussed several methods

where a path of a desired time or length is calculated, and a specified arrival time is

achieved by successfully flying the path. The methods have assumed both constant

and variable velocity. In either case the ability to achieve the desired arrival time

depends on the ability aircraft to follow the path and velocity profile.

An example of a “plan-and-follow” formulation utilizing arrival time control may

be found in Ref. [40]. The path may be discretized from any of the previously defined

methods or may be generated from a waypoint path planner such as those described

in Ref. [41, 42]. Arrival time control is achieved via control of the aircraft velocity.

In Ref. [40], the problem is to achieve either simultaneous arrival or spaced arrival.

With a defined path, Nelson implements a cooperative timing function which maps

the range of arrival times for a vehicle to an “energy” cost. The energy cost is

effectively total fuel used; however, the paper is focused on battery powered vehicles.

The cost is calculated assuming constant velocity and straight-line distance between

waypoints. Minimum energy times are selected which achieve the desired timing.

Next, the waypoint-defined path is followed using a vector field path-following

algorithm described in Ref. [43]. The arrival time is estimated using straight line dis-

tances between waypoints and constant current velocity. A simple velocity controller

is then used to adjust the current velocity and minimize the error between the desired

arrival time and estimated arrival time.

Nelson demonstrated this method with multiple flight tests in windy conditions
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where the wind was between 30 and 60 percent of the vehicle airspeed. The simul-

taneous arrival experiments achieved an average arrival time between the first and

last vehicle of 1.6 seconds. The spaced arrival experiments achieved an average error

of 0.6 seconds from the desired arrival time. The method provides a notable ex-

ample of achieving real-time arrival time control using only velocity control once a

time-feasible path had been selected. However, wind is not considered in the path

planning algorithm in this research. In the event the velocity control is saturated and

the desired arrival time is no longer achievable, a new feasible waypoint-defined-path

is calculated.

Plan-and-Follow Summary.

This section reviewed various methods to “plan-and-follow” a path. A number

of these methods showed examples where the vehicle arrival time could be planned

and subsequently achieved by a real-time path follower. The wide variety of methods

allows many types of problems to be addressed; general trajectory, minimum-fuel

descents, terrain-following trajectories, and optimal paths in the presence of wind

were given as examples. The strength of this method is that an optimal trajectory

may be found, and that the trajectory is pre-defined. This allows for the inclusion of

keep-out zones in the trajectory generation and identifies the path to be flown; a key

to predictable path-following behavior.

The primary limitation, regarding cooperative timing, is that the path being fol-

lowed may not be adjusted in real time. This limits the ability to achieve a desired

arrival time when the scenario conditions (endpoint, wind, etc.) are allowed to change.
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2.4 Real-Time Trajectory Guidance

The next set of research focuses on real-time control of an aircraft’s trajectory to

affect the arrival time of the aircraft. These methods are similar to the path-following

methods discussed in Sec. 2.3. However, the error being minimized is no longer the

error between vehicle position and desired path. Rather it is the error between the

desired arrival time and the estimated arrival time. These methods have a potential

advantage over the “plan-and-follow” approach because they may adjust both the

path length and velocity allowing a wider range of arrival times to be achieved in real

time.

Estimating the arrival is as simple as dividing the remaining distance to the final

position by the velocity of the vehicle. However, the calculation of the distance re-

maining is not trivial and additional constraints may quickly complicate this estimate.

This section will review proportional navigation, virtual target, and optimal control

guidance focusing on arrival time performance and path predictability achieved by

each method.

Proportional Navigation Guidance Law.

Proportional navigation is similar to the linear guidance method discussed in

Sec. 2.3. A simple, constant gain is chosen which is applied to some combination of

state variables to produce the control. The first problem to be addressed is to find the

guidance law which maneuvers a vehicle to a terminal point, at a prescribed terminal

heading, at a specified arrival time.

Saleem develops a proportional navigation solution to this problem in Ref. [44].

This method assumes Dubins vehicle dynamics and control over lateral acceleration

which is analogous to turn rate. The feedback gain is calculated based on the initial

geometry of a specific scenario. The method uses several Taylor series expansions to

33



develop a closed-form estimate of the final arrival time by integrating the closed-loop

dynamics forward in time. The estimated arrival time is also the minimum arrival

time for a given state so long as the guidance law is followed to the end of the scenario.

This method is shown to accurately estimate the final arrival time when following the

prescribed guidance law.

With an accurate estimate of arrival time, any desired arrival time greater than

the minimum time may be achieved. Saleem accomplishes this by commanding a

heading rate in the opposite direction of the nominal guidance law command. This

command increases the estimated arrival time and is performed until the estimated

arrival time meets the desired arrival time where the original guidance law is followed.

To summarize Saleem’s work in Ref. [44], a time estimate is obtained by assum-

ing a guidance law and making several approximations which allow the closed-loop

dynamics to be integrated forward in time. The method then commands the vehicle

away from the target until the estimated arrival time matches the desired arrival time

and the original guidance law is followed.

Proportional navigation is also used to avoid obstacles in Ref. [12]. The method

uses geometry to determine if the vehicle path will overfly some keep out area. If

the keep out area will be violated, then a simple proportional navigation controller

takes over from the path follower and avoids the obstacle. At some prescribed point

the path follower retakes control. This method requires a means to determine if

the current path will intersect a keep-out zone which is complicated in the case of

real-time trajectory guidance where the path is constantly changing.

Virtual Target.

Next, a method which adds a constraint on arrival velocity to the previous problem

is reviewed. Bélanger solves this problem using a virtual target to guide the actual
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vehicle towards the target in Ref. [45]. The virtual vehicle moves along a pre-defined

path at the desired final velocity which is set up to coincide with the desired final

position at the desired final time and heading. The solution is achieved by minimizing

the error between the actual vehicle and the virtual vehicle. When the position error

between the vehicle and virtual target is consistently zero, the vehicle will arrive at

the actual target with the prescribed heading, velocity, and arrival time.

This method is similar to the path planning method for arrival time control dis-

cussed in Sec. 2.3. The method uses a simple predefined path for the virtual vehicle

which eliminates “planning” phase of the algorithm. The method is successful if a

sufficient amount of time is given for the vehicle to catch the virtual vehicle.

The algorithm was demonstrated in a hardware-in-the-loop simulation utilizing an

autopilot and six-degree-of-freedom nonlinear unmanned aircraft model with a static

endpoint. The performance of the algorithm was shown to degrade in the case of

moving endpoints. Cooperative moving targets were simply treated as a static target

since the target position at the arrival time was known.

Optimal Control Guidance.

The general formulation of optimal control guidance law development was dis-

cussed in Sec. 2.3 and methods to solve optimal control problems will be discussed in

Sec. 2.5. When utilizing optimal control to follow a predefined path, the cost func-

tion being minimized is typically the distance from the path. This section addresses

a formulation which minimizes the difference of the final state (position, time, and

velocity) from a desired final state.

An unbounded missile guidance law was developed which achieves a desired final

time, position, and velocity [46]. In this work the equations of motion are a simple

double integrator which include the effect of gravity. The derivative of vectorized
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velocity is equal to the control plus gravity. Thus, the control assumes direct control

over the vehicle acceleration along each inertial axis.

The problem is then formulated as a fixed final time optimal control problem with

initial and final position and velocity vectors specified. The cost function takes on an

interesting form in that it seeks minimize the integral of the control divided by the

time remaining. The cost function effectively rewards control when the time remain-

ing is high and penalizes control when the time remaining is low. This behavior is

desirable as it tends to “stabilize” the control near the target. The unbounded opti-

mal control problem is solved using typical optimal control methods. The resultant

control is then a function of the time remaining which needs to be estimated.

The arrival time is predicted by numerically integrating the closed-loop dynamics.

The dynamics are integrated until the resulting integrated range rate to the target

indicates the target has been passed. The operations involve simple arithmetic and

are computationally inexpensive. Multiple additional guidance modes were developed

to either increase, decrease, or maintain the predicted arrival time similar to Ref. [44].

The aforementioned guidance law, developed by Harrison, performed well in simu-

lations but focused on short-duration missile-engagement scenarios. The guidance law

also performed well as a cooperative controller to achieve simultaneous and spaced

arrival. The spaced arrival times were based upon the estimated arrival time of a

preceding missile. A downside of this problem formulation is that there are no means

to enforce keep-out zones to prevent the flight path from crossing a specified area.

Additionally, the flight path may be predicted but only through numerical integration.

Real-Time Trajectory Guidance Summary.

This section addressed real-time trajectory guidance methods which were able

to achieve a specified arrival time. All methods focused on dynamics which were
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simplified from the full non-linear dynamics of an aircraft. The primary benefit of

this method was a wide range of arrival times may be achieved. The methods were

similar in that multiple modes were required to extend the path to achieve a desired

arrival time which was longer than the minimum time.

However, the limitation of this method is that keep-out zones were not included

and in fact no bounds on the path trajectory were enforced. This prevents a pre-

dictable path from being developed. Obstacle avoidance controllers were discussed

in Sec. 2.3 but would likely require a mode-switching algorithm to include with a

real-time trajectory guidance algorithm which achieves arrival time control.

2.5 Methods to Solve Optimal Control Problems

Optimal control problems are typically solved with one of two methods, direct or

indirect. Direct methods numerically solve the optimal control problem by transcrib-

ing the equations of motion of the optimal control problem into a series of constraints

at each time step. The transcription process effectively turns the optimal control

problem into a static optimization problem where the design variables are the control

and/or state at every time step. Indirect methods analytically solve optimal control

problems using the calculus of variations and Pontryagin’s Minimum Principle (PMP)

[31].

Numerical Methods to Solve Optimal Control Problems.

There are a variety of methods to numerically solve optimal control problems and

an in-depth comparison may be found in Ref. [47]. Examples of some methods are

Single Shooting, Multiple Shooting, and the Pseudospectral Method. The first two

will not be addressed in detail as they are typically computationally inefficient [47].

The term shooting refers to the “shooting” of the dynamics based upon a guessed
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control input. Thus, in the shooting methods, the control at the discretized points

in time is the primary design variable. This can be a difficult optimization problem

to solve because every instance of control may have an effect over the terminal state.

It is often seen that the shooting methods provide an accurate solution but have

trouble converging unless the initial guess provided to the solver is near to the optimal

solution.

Another numerical method is the pseudospectral method. In the pseudospectral

method, constraints are also enforced at the discretization points which are referred

to as collocation points. However, the state in addition to the control are the design

variables. Interpolating polynomials are used to the approximate state and control

between the collocation points. A property of these polynomials is that their deriva-

tive may be calculated by a simple matrix multiplication. Thus, the derivative of

the states at every collocation point may be set equal to the dynamics equations

(functions of the state and control) using equality constraints.

Finally, the states may be propagated forward in time and any cost function inside

the integral may be calculated using Gaussian quadrature. Gaussian quadrature is

a mathematically simple method to evaluate the definite integral of a polynomial

where a linear combination of weights and the value of the polynomial at pre-defined

collocation points approximates the value of the integral.

The accuracy of this method depends on the number and spacing of the collocation

points. The collocation points are often spaced over intervals according to the roots of

Legendre polynomials [34] but the roots of other polynomials may be used [48]. The

roots of these polynomials are more densely spaced near the edges of the interval over

which the polynomial is defined. This spacing increases the accuracy of the method

by concentrating collocation points near the edges of an interval where integration

error is often observed.
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The spacing and number of these points, often termed the “mesh,” may be further

adjusted through multiple iterations. The iterative method allows for a coarse initial

guess to be solved quickly and the resulting solution used as the initial guess to further

iterations with a finer, and more accurate, mesh. The pseudospectral formulation also

results in sparse derivative matrices (both the Jacobian and Hessian) which may be

used by advanced non-linear program (NLP) solvers such as IPOPT [49] and SNOPT

[50] to rapidly solve the optimization problem.

Finally, complicated problems may also be formulated as multi-phase problems. In

multi-phase formulations, each phase may be viewed as a small optimization problem.

The different phases are tied to each with constraints on the time and states at the

phase boundaries. A common use of phases may be to optimize a trajectory where the

aircraft aerodynamics change, such as lowering the landing gear. The pseudospectral

method has been used in the generalized optimal control problem solver GPOPS-II

and a description of the specific pseudospectral method used by this software may be

found in Ref. [34]. Several useful examples are given on the GPOPS-II website and

in Ref. [47, 33, 36].

Indirect Methods to Solve Optimal Control Problems.

In the indirect method, several necessary conditions for optimality may be devel-

oped from the problem statement which aid in the solution of the problem. A brief

overview of the indirect method will be given based on Ref. [31].

Take a general optimal control problem defined by

minimize
u

h(x(tf ), tf ) +

∫ tf

t0

g(x(t),u(t), t) dt

subject to ẋ(t) = a(x(t),u(t), t)

(4)

where x is the n× 1 state vector, u is the m× 1 control vector, a is an n× 1 vector of
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the equations of motion, and tf is the final time. The cost functional is comprised of

a terminal cost h and a running cost g. The terminal cost h is dependent on the final

state and the final time. The running cost g is dependent on the state, control, and

time. Equation (4) is used to create the Hamiltonian, H, defined by Eq. (5) where

the variable λ represents the costates of the problem. The costates do not typically

relate to a physical aspect of the problem but are used to determine the solution.

H(x(t),u(t),λ(t), t) ≜ g(x(t),u(t), t) + λT (t)[a(x(t),u(t), t)] (5)

A key idea of the indirect method is Pontryagin’s Minimum Principle (PMP) [31].

The principle states that a control which minimizes the Hamiltonian will also minimize

the cost functional. In minimum time problems, this principle often results in “bang-

bang” control where the value of the control is always the upper or lower control limit

set by the problem statement. Subsequently, applying PMP to an optimal control

problem often results in the sign of the control being related to the costates of the

problem.

The necessary conditions for optimality used in the indirect method are derived

using the calculus of variations in Ref. [31]. The resulting necessary conditions are

defined by Eq. (6) to Eq. (9). The conditions in Eq. (6) to Eq. (8) are applicable to

any type of optimal control problem. The condition defined by Eq. (9), termed the

transversality condition, must always be true for an optimal solution but the variables

change depending on the type of the problem. The variable δxf , the variation in final

state, is zero for a fixed final state problem and δtf , the variation in final time, is zero
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for a fixed final time problem.

ẋ∗(t) =
∂H
∂λ

(x(t),u(t),λ(t), t) (6)

λ̇
∗
(t) = −∂H

∂x
(x(t),u(t),λ(t), t) (7)

H(x∗(t),u∗(t),λ∗(t), t) ≤ H(x∗(t),u(t),λ∗(t), t) for all admissible u(t) (PMP) (8)

0 =

[
∂h

∂x
(x∗(tf ), tf )− λ∗(tf )

]T
δxf

+

[
H(x∗(tf ),u

∗(tf ),λ
∗(tf ), tf ) +

∂h

∂t
(x∗(tf ), tf )

]
δtf (9)

Two other conditions may be derived if the Hamiltonian does not explicitly

depend on time as typically seen in the case of minimum time problems; H =

f(x∗(t),u(t),λ∗(t)). If the problem has a fixed final-time and the Hamiltonian is

not an explicit function of time, then

H = f(x∗(t),u(t),λ∗(t)) = c1 (10)

where c1 is some constant value. If the problem has a free final-time and the Hamil-

tonian is not an explicit function of time, then

H = f(x∗(t),u(t),λ∗(t)) = 0 (11)

The conditions defined by Eq. (6) thru Eq. (11) may be combined with the problem

boundary conditions to find a potentially optimal solution.

2.6 String Stability

The previous sections focused on various methods to control the arrival time of

a single vehicle. Logically, the methods may be extended to multiple vehicles by

41



deriving the desired arrival time of a follower vehicle from the states of the preceding

vehicles. A simple example would be for a group of vehicles to arrive ten seconds

apart based on the estimated arrival time of the preceding vehicle. This introduces a

stability concern as the new system of systems must be robust to perturbations which

may travel through the system of vehicles.

String stability refers to a property of an interconnected dynamic system where,

if stable, the response of the entire system may be bounded regardless of the number

of subsystems [51, 52]. The response is often analyzed based on the error of a system

from some reference value since the desired origin of such a system is zero. To allow

any number of subsystems, the determination of string stability typically revolves

around ensuring that any perturbation of the string is attenuated as the error propa-

gates to other subsystems. The concept of string stability is best demonstrated with

an example.

String Stability Example.

In a cascaded system, information is transmitted sequentially and in a single di-

rection (i.e.,a vehicle only has information about itself and the immediately preceding

vehicle). As an example, take a cascaded system of 10 cars where each vehicle desires

to be 10 ft behind the preceding vehicle; thus, there is zero error when this condition

is achieved. First, Fig. 3 shows the expected behavior of a string stable system. The

maximum error of each subsequent vehicle is less than the preceding vehicle and sta-

bilizes at zero, the desired position. At the end of the simulation, all vehicle errors

are zero indicating that all vehicles are spaced 10 ft apart.

Figure 4a shows a case where the system is string unstable because the error

parameter clearly grows unbounded. However, nonlinear features such as saturation

functions can dramatically change the behavior of a string unstable system. In Fig. 4b
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Figure 3. String Stable Example

multiple nested saturation functions were added to the system in Fig. 4a. Although

the bounds never exceed the initial error, the peak error still grows with each vehicle

down the string. The bound on the maximum error of the system is not independent

of the number of vehicles, therefore the system is also string unstable.

(a) Linear System (b) Saturated and Rate-Limited System

Figure 4. String Unstable Examples

This example presents string stability using position as the error variable. The

concept of string stability is the same when applied to arrival time. The state variable

used to calculate the error is now the estimated arrival time of the vehicle and the

reference is based off the arrival time of the preceding vehicle. The difference is in

the dynamics of the state variables.
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String Stability Literature Review.

The theory of string stability was introduced to analyze the performance of in-

terconnected dynamic systems. Chu took the approach to treat any string of a finite

number of vehicles as a small segment of some infinite string. Chu then provided

a definition of string stability based on the relative position of each vehicle to its

neighbors [51].

Swaroop generalized the problem of determining string stability for a system in

terms of Lyapunov stability allowing for linear and non-linear systems to be analyzed

[52, 53]. Subsequently, Swaroop showed that groups of vehicles spaced with constant

distance must have inter-vehicle communication to guarantee string stability. How-

ever, a string with constant time headway can be shown to be weakly string stable

with only on-board information [54].

More recently, the idea of disturbance string stability was introduced in Ref. [55]

which addresses the effects of external disturbances on the stability of the intercon-

nected system. However, much of this research focused on strings of vehicles which

were homogeneous with regards to their dynamic capabilities.

One of the first studies on the effects of heterogeneity in vehicle strings investi-

gated wheeled vehicles which could generate the same amount of force but carried

different masses while traveling up a hill [56]. Sheikholeslam later showed that a

string of nonlinear heterogeneous vehicles could be string stable in position with the

appropriate choice of control law but provided limited simulations [57, 58]. Subse-

quently, Shaw provided a more generalized analysis of heterogeneous vehicle strings

and showed that any heterogeneous string could be shown to have bounded position-

spacing errors if each vehicle had information of the preceding and the lead vehicle

in the string [59].

The aforementioned research is primarily focused on relative position spacing of
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vehicles in close proximity to each other. However, there is often a need for vehicles

to be spaced in time while not being near to one another. Time spacing is more

applicable than distance spacing when a group of aircraft are capable of traveling

at a wider range of speeds. Furthermore, it may even be desirable for a group of

aircraft to change speeds during a given scenario while maintaining a specified time

spacing. This occurs many times a day in commercial aviation when aircraft begin

their descent towards an airport at a faster speed than the end of the descent at the

final approach to landing [60].

The requirements for an automated aircraft spacing system have recently been

highlighted as the Federal Aviation Administration moves to implement its Interval

Management concept [61, 62]. A variety of control laws have been designed to space

heavy commercial aircraft with both constant speed and constant acceleration profiles

[63, 60, 64, 65]. Additionally, an algorithm to calculate trajectories and guarantee

safety from collision was analyzed for a group of homogeneous aircraft [66].

Furthermore, NASA developed a spacing algorithm and flight tested a prototype

implementation on medium passenger aircraft (Boeing 757 and Boeing 737) as a

part of NASA’s Air Traffic Management Technology Demonstration (ATD-1) [67, 68].

Notably, a common attribute of these aircraft control laws is that only position and

speed information may be passed between aircraft based on existing and planned

aircraft hardware [61].

Due to the emphasis on commercial aviation, the existing aircraft string stability

research has focused on a linear analysis of homogeneous passenger aircraft. However,

there is a lack of research into the string stability of airspeed heterogeneous, nonlinear

aircraft. The scenario is applicable to both current military aviation and future

commercial aviation as smaller unmanned vehicles are integrated into the National

Airspace System. This dissertation aims to expand this area of research.
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2.7 Summary

The coordinated arrival time problem has been well-researched with researchers

primarily solving the problem using a “plan-and-follow” or a real-time guidance

method. The “plan-and-follow” method is able to achieve coordinated arrival time

across a wide range of environmental constraints to include wind and keep-out zones.

The resulting paths are calculated for a given environment and then followed by a

path follower. The path followers reviewed are able to closely follow a path which

allows the predicted arrival time, from the planning phase, to be achieved with little

change in velocity.

However, the “plan-and-follow” method is not robust to changes in arrival time

and a new path is typically required to be computed. This is the primary limitation

of the “plan-and-follow” method in that path calculation is typically not achievable

in real time depending on the definition of real time. If a reference update rate of less

than a second is assumed, then the path calculation is not achievable.

Real-time trajectory guidance is, by definition, able to control the trajectory in real

time. The ability to control trajectory and velocity increases control over arrival time

which is determined by the remaining distance divided by velocity. The method is

also robust to changes in the environment and desired arrival time which are typically

inputs into the guidance law itself.

However, when utilizing real-time trajectory guidance, the path to be flown is

not specified ahead of time which does not allow for a simple prediction of where

the vehicle will maneuver. Subsequently, it is difficult to incorporate keep-out zones

because it is difficult to predict when the path will intersect a keep-out zone.

This research combines “plan-and-follow” with real-time guidance to achieve real-

time arrival time control while including keep-out zone constraints and providing a

predictable path. This is primarily accomplished by separating the path following
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control loop from the arrival time control loop.

First, a simple and easily adjustable path shape is chosen which may be defined by

one or two variables. The path is assumed to be at constant altitude and comprised

of straight and circular path segments; the same as the path segments of a Dubins

path. The simple shape allows for keep-out zones to be avoided by determining if the

assumed path will intersect the keep-out zone. A path follower is then selected which

simply follows the calculated desired path.

An airspeed controller will then be designed to finely control the arrival time in

the final portions of the path when the path size may not be adjusted. String stability

theory is applied in the design and analysis of the algorithm to ensure a cooperative

timing scenario is robust to changes in arrival time and environment. First, the

dynamics models used in the various portions of this research are derived.
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III. Aircraft and Wind Models

3.1 Introduction

Two aircraft flight dynamics models are used in this research. Each model consists

of basic flight dynamics and a limited flight control law. It is assumed the flight con-

trol law accepts airspeed and bank angle commands from the arrival time algorithm

developed in this research. Furthermore, the bank angle commands are assumed to

be calculated to follow straight and circular path segments at a constant altitude.

First, a simplified dynamics and control model is derived which will aid in the

initial design and analysis of the arrival time control algorithm. This type of simplified

dynamics model was common to nearly all research reviewed in Chapter II. The second

model is comprised of a six degree of freedom nonlinear F-16 model provided in Ref. [6]

along with an altitude-hold, bank-hold, and airspeed-hold autopilot which are also

designed in this chapter.

Finally, the effects of wind are significant aspects of this research. The wind is

modeled as a steady state component summed with a noisy component representing

turbulence. The turbulence model outputs the effect of turbulence onto the trans-

lational and rotational rates of the aircraft which will drive how the wind effects

are included into portions of the model. The Dryden Turbulence model used in this

research is discussed at the end of this chapter.

3.2 Simplified Aircraft Model

The benefit of simplified models in the initial design of a system is a reduction in

the number of variables in the system at the cost of a small amount of error. This

section will develop the model used in this research from the basic aircraft equations

of motion. The secondary benefit of this model is a typical aircraft dynamic response
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without knowledge of aircraft forces and moments.

The derivation begins with the flat-earth and body reference frame six degree of

freedom equations of motion taken from Stevens and Lewis [6] presented in Eq. (12)

to Eq. (23); note that sine, cosine, and tangent have been abbreviated s, c, and t for

brevity.

Force equations:

U̇ = RV −QW − gsθ + (XA +XT )/m (12)

V̇ = −RU + PW + gsϕcθ + (YA + YT )/m (13)

Ẇ = QU − PV + gcϕcθ + (ZA + ZT )/m (14)

Kinematic equations:

ϕ̇ = P + tθ(Qsϕ+Rcϕ) (15)

θ̇ = Qcϕ−Rsϕ (16)

ψ̇ = (Qsϕ+Rcϕ)/cθ (17)

Moment equations:

(JxJz − J2
xz)Ṗ = Jxz[Jx − Jy + Jz]PQ− [Jz(Jz − Jy) + J2

xz]QR + Jzℓ+ Jxzn (18)

JyQ̇ = [Jz − Jx]PR− Jxz(P
2 −R2) +m (19)

(JxJz − J2
xz)Ṙ = [(Jx − Jy)Jx + J2

xz]PQ− Jxz[Jx − Jy + Jz]QR + Jxzℓ+ Jxn (20)
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Navigation equations:

ṗN = Ucθcψ + V (−cϕsψ + sϕsθcψ) +W (sϕsψ + cϕsθcψ) (21)

ṗE = Ucθsψ + V (cϕsψ + sϕsθsψ) +W (−sϕcψ + cϕsθsψ) (22)

ḣ = Usθ − V sϕcθ −Wcϕcθ (23)

The control input into these equations of motion is through the aerodynamic

forces (XA, YA, ZA), thrust forces (XT , YT , ZT ), and moments (ℓ,m, n). The forces

and moments are calculated with detailed knowledge of the aircraft aerodynamics

and engine performance. Additionally, the mass properties of the aircraft must be

known to determine the mass (m), moments of inertia (Jx, Jy, Jz) and product of

inertia (Jxz)

The effects of wind on the dynamics are characterized with an axes transformation.

First, the direction cosine matrix (DCM) which transfers the forward-right-down body

reference frame to the north-east-down inertial reference frame is defined as

Cfrd/ned =


cθcψ cθsψ −sθ

(−cϕsψ + sϕsθcψ) (cϕcψ + sϕsθsψ) sϕcθ

(sϕsψ + cϕsθcψ) (−sϕcψ + cϕsθsψ) cϕcθ

 . (24)

As an example, this matrix is also used to derive the navigation equations of

motion by the relation,


ṗN

ṗE

ṗD

 = CT
frd/ned


U

V

W

 . (25)
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Note that D represents the down direction while the equations of motion use h where

−ṗD = ḣ. The DCM is used to relate wind, typically defined in the north-east-down

reference frame, to the body reference frame by the relation,


U ′

V ′

W ′

 =


U

V

W

−Cfrd/ned


WN

WE

WD

 (26)

where the body reference frame wind relative velocities are U ′, V ′, and W ′ and the

inertial frame wind velocities areWN ,WE, andWD. The inertial frame wind velocities

are defined as the velocity along the North, East, and Down axis respectively.

Finally, the true airspeed, angle of attack, and angle of sideslip are defined by the

following equations,

VT = ||[U ′, V ′,W ′]T || (27)

α = tan−1(W ′/U ′) (28)

β = sin−1(V ′/VT ) (29)

Simplifying the full dynamics model will be performed in two sections: assumptions

on the state variables and assumptions on the control.

State Assumptions.

Several assumptions are made on the aircraft state variables. First, it is assumed

the aircraft is a point mass such that

α = β = 0. (30)
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The assumption of zero angle of attack leads to

0 = α = tan−1(W ′/U ′) (31)

0 = W ′. (32)

Next, the assumption of zero sideslip leads to

0 = β = sin−1(V ′/VT ) (33)

0 = V ′. (34)

Finally, the derived results of V ′ = W ′ = 0 lead to

VT = ||[U ′, V ′,W ′]T || (35)

VT =
√
U ′2 + V ′2 +W ′2 (36)

VT = U ′ (37)

The wind reference frame simplifications are then related to the inertial reference

frame utilizing the previously defined DCM. The simplification begins with Eq (26)

rearranged with the inertial body reference frame quantities on the left and the derived

simplifications substituted for U ′, V ′, and W ′;


U

V

W

 =


VT

0

0

+Cfrd/ned


WN

WE

WD

 . (38)

The simplified body reference frame velocities are rotated back to the inertial
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reference frame using Eq (25) which results in,


ṗN

ṗE

ṗD

 = CT
frd/ned



VT

0

0

+Cfrd/ned


WN

WE

WD


 (39)


ṗN

ṗE

ṗD

 = CT
frd/ned


VT

0

0

+


WN

WE

WD

 . (40)

The equations reduce to the simplified navigation equation,

ṗN = VT cos θ cosψ +WN (41)

ṗE = VT cos θ sinψ +WE (42)

ḣ = VT sin θ −WD. (43)

Control Assumptions.

Next, assumptions over the rotational and translational control are defined to

affect VT , θ, and ψ in the simplified navigation equations.

Rotational Control.

A common criterion to evaluate an aircraft’s roll performance is to compute the

equivalent roll-mode time constant [6]. This criterion is often used because the roll

mode may be accurately modeled as a first order system when designing a control

system. This simplification is used for the model presented in this research. Assuming
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a first-order roll mode, the roll acceleration of the model is defined by

Ṗ = − 1

τP
(P + ωP ) +

1

τP
uP (44)

where τp is the roll-mode time constant and ωP is effect of wind turbulence on roll

rate.

The pitch and yaw axes will be addressed by utilizing the relationship between

centripetal acceleration and turn rate. First, it is assumed that load factor (NZ) and

gravity (g) are the only forces acting upon the aircraft in the Y and Z axes. The

acceleration due to gravity is rotated from the inertial frame into the body reference

frame using the previously defined DCM, Cfrd/ned,

afrdg = gCfrd/nede3 =


−g sin θ

g cos θ sinϕ

g cos θ cosϕ

 . (45)

Next, the body axes accelerations due to load factor and gravity are summed resulting

in

afrd = afrdg −NZe3 =


−g sin θ

g cos θ sinϕ

−NZ + g cos θ cosϕ

 . (46)

Finally, it is assumed there are no other accelerations acting upon the aircraft

besides gravity and load factor. The accelerations acting upon the aircraft are trans-

formed into rates using centripetal acceleration as defined by

ω =
ac
VT

(47)
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where ac is the acceleration and ω is the angular rate.

Applying this equation to the Y axis and Z axis using the accelerations defined

in Eq. (46) results in

Q =
g(NZ − cos θ cosϕ)

VT
+ ωq (48)

R =
g(cos θ sinϕ)

VT
+ ωr (49)

which provides a simplified definition for the pitch and yaw rates including the effects

of wind. The simplified angular rates, Q and R, are substituted back into the original

Euler angle kinematic equations, Eq (15) to Eq (17), and reduced resulting in

ϕ̇ = P +
NZg

VT
tan θ sinϕ+ ωp + ωq sinϕ tan θ + ωr cosϕ tan θ (50)

θ̇ =
g

VT
(NZ cosϕ− cos θ)− ωq cosϕ+ ωr sinϕ (51)

ψ̇ =
NZg sinϕ

VT cos θ
+ ωq

sinϕ

cos θ
+ ωr

cosϕ

cos θ
. (52)

Finally, the load factor dynamics are assumed to follow a first-order system of the

form

ṄZ = − 1

τZ
NZ +

1

τZ
uZ (53)

where uZ is the commanded load factor and τZ is the time constant of this system.

This assumption replicates the typical desired time response of load factor control

augmentation systems [6].

55



Translational Control.

The simplified model assumes the aircraft has adequate control over airspeed such

that any commanded airspeed is achievable. The dynamic equation

V̇T = uV − VT (54)

is used to model the airspeed dynamics of the vehicle where uV is the commanded

airspeed. To increase the realism of the model, an asymmetric airspeed rate limit is

implemented to simulate the phenomenon where an aircraft’s magnitude of accelera-

tion is typically lower than the magnitude of deceleration. The rate limit is modeled

with the saturation function where

b

/
a

(x) =


b, x > b

x, b ≥ x ≥ a

a, x < a

(55)

Applying the saturation to the airspeed model with some rate-limits A < B results

in

V̇T =
B

/
A

(uV − VT ) (56)

Simplified Model Summary.

This section summarizes the resulting dynamics of the simplified model as a three-

dimensional and two-dimensional model.
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Simplified Three-Dimensional Model.

The assumptions of the previous derivation are combined and summarized with

the following three-dimensional dynamics model.

ϕ̇ = P +
NZg

VT
tan θ sinϕ+ ωp + ωq sinϕ tan θ + ωr cosϕ tan θ (57)

θ̇ =
g

VT
(NZ cosϕ− cos θ)− ωq cosϕ+ ωr sinϕ (58)

ψ̇ =
NZg sinϕ

VT cos θ
+ ωq

sinϕ

cos θ
+ ωr

cosϕ

cos θ
(59)

ṗN = VT cos θ cosψ +WN (60)

ṗE = VT cos θ sinψ +WE (61)

ḣ = VT sin θ −WD (62)

Ṗ = − 1

τp
(P + ωp) +

1

τp
up (63)

ṄZ = − 1

τZ
NZ +

1

τZ
uZ (64)

V̇T =
B

/
A

(uV − VT ) (65)

Simplified Two-Dimensional Model.

The model is further simplified to a two-dimensional model by assuming constant

altitude and zero vertical component of wind speed for all time. These assumptions

result in

0 = ḣ(t) = VT sin θ(t)− 0 (66)

0 = θ(t). (67)

It follows that if θ(t) = 0 then θ̇(t) = 0. It is assumed that the load factor is precisely

controlled to achieve θ̇(t) = 0. This allows for the load factor to be defined by bank
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angle, commonly referred to as a level turn [69]. The equation is derived as follows,

θ̇ =
g

VT
(NZ cosϕ− cos θ) (68)

0 =
g

VT
(NZ cosϕ− 1) (69)

NZ =
1

cosϕ
. (70)

Equation (70) is accurate for steady-state constant-altitude conditions [69]. However,

the combination of high bank angles and high roll rates result in NZ rates of change

which may not be assumed to be achievable by a realistic aircraft, violating the

assumption that NZ is precisely followed. This is shown by taking the time derivative

of Eq. (70),

ṄZ =
P tanϕ

cosϕ
(71)

where increasing the magnitude of P and ϕ affects the magnitude of ṄZ . The maxi-

mum commanded values of ϕ and P are limited to achieve realistic values of ṄZ ; see

Sec. 3.2.

Finally, apply the preceding state, wind, and control assumptions to the six-degree

of freedom equations of motion presented at the beginning of this chapter results in

58



the following dynamics equations which are referred to as the simplified dynamics:

ϕ̇ = P + ωP (72)

ψ̇ =
g

VT
tanϕ+ ωQ sinϕ+ ωR cosϕ (73)

ṗN = VT cosψ +WN (74)

ṗE = VT sinψ +WE (75)

Ṗ = − 1

τP
(P + ωP ) +

1

τP
uP (76)

V̇T =
B

/
A

(uV − VT ) (77)

Again, this has been derived from the nonlinear equations of motion utilizing

common fixed-wing aircraft state and control assumptions [6, 69]. This model is

extensively used in the design and simulation of the control algorithm.

Aircraft Model Configurations.

Along with the 2-D dynamic equations, multiple aircraft configurations are de-

fined. Four different classes of aircraft are chosen to mirror the aircraft classes used

in flying quality analysis [70, 71]. The parameters which define the aircraft types are

presented in Table 1.

Table 1. Aircraft Class Parameters

Aircraft Vn τp Pmax NZn NZmax ṄZlim
VTmin/max

[A,B]

Type (ft/s) (s) (rad/s) (G) (G) (G/s) (ft/s) (ft/s2)
Light 293 1.0 1.83 1.15 2.0 3.0 [235,352] [-10,4]
Medium Cargo 390 1.4 1.54 1.15 2.0 2.0 [313,468] [-10,4]
Heavy Cargo 544 1.4 0.91 1.15 2.0 4.0 [468,620] [-10,5]
Fighter 864 1.0 2.75 2.00 4.0 6.0 [771,956] [-20,10]

The NZ and ṄZ limits correspond to typical NZ capabilities for the corresponding

aircraft class and determine the bank angle limits for the aircraft assuming constant
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altitude. The roll mode time constant and maximum roll rate were selected to corre-

spond with the Level 1 flying qualities requirements for each aircraft class in the Cat

A flight phase [71].

Simplified Model Bank Angle Command System.

The bank angle command drives a linear quadratic regulator (LQR) bank-angle

command system. In LQR control, a feedback gain matrix K is determined which

minimizes Eq. (78) subject to the dynamics of the linear system defined by Eq. (79)

and Eq. (80). In Eq. (78), Q is a positive semi-definite matrix which determines

the state weight and R is a positive definite matrix which determines the control

weighting. The matrix K is determined by solving a Riccati equation [72].

J =
1

2

∫ tf

0

xTQx+ uTRu dt (78)

ẋ = Ax+Bu (79)

u = −Kx (80)

In this research, the state dynamics used for the LQR controller are Eq. (72) and

Eq. (76) without the wind turbulence effects; the bank angle and roll rate dynamics.

Additionally, the weight matrices Q and R used in this research are chosen to be,

Q =

10 0

0 0

 , R = 1 (81)

The input vector, x, into the LQR system is comprised of the bank angle error

and roll rate. The bank angle error is simply calculated as the difference in bank

angle command, ϕcmd, and bank angle. The bank angle command is then limited
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based on the assumed maximum load factor defined in Table 1 and the corresponding

level-turn bank angle defined by Eq. (70)

The output of the LQR command system is a roll-rate command, u1, defined

by Eq. (82) where KP is the 1 × 2 LQR gain matrix. The roll-rate command is

subsequently limited by Eq. (83) or the aircraft roll rate limit, whichever magnitude

is less, to prevents the assumed aircraft ṄZ limit from being exceeded as described in

Sec. 3.2. The final output of the system is uP , the roll-command input to Eq. (76).

The bank angle command system is depicted for clarity in Fig. 5

u1 = KP [ϕ− ϕcmd, P ]
T (82)

PNZ
=

∣∣∣∣ṄZlim

cosϕ(t)

tanϕ(t)

∣∣∣∣ (83)

Figure 5. Linear Quadratic Regulator Bank Angle Command System

3.3 Nonlinear Aircraft Model

A nonlinear aircraft model provides a more realistic model to verify the perfor-

mance of the arrival time algorithm. The model is based on the F-16 and is provided

in Appendix A of Ref. [6]. The model calculates the forces and moments due to the

aerodynamics and thrust used in the twelve equations of motion, Eqs. (12)-(23), and
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calculates the corresponding rates of change. Additionally, the model incorporates a

first order lag filter which simulates the engine as it spools up and down.

The states of the model are the twelve states of the aircraft equations of motion

and the engine “lag” state. The four control inputs are the aileron deflection, rudder

deflection, elevator deflection, and a throttle setting. Deflection and rate limits are

applied to the surface deflections based on the limits in Ref. [6]. The throttle setting of

0 corresponds to idle power, 0.77 corresponds to “military power,” and 1.0 corresponds

to maximum power (utilizing an afterburner).

Nonlinear Aircraft Model Control Systems.

A control system for the nonlinear model was designed to accept bank angle and

speed commands to follow straight and circular path segments while maintaining a

desired altitude. It is assumed that the circular paths to be followed may correspond

to level turns flown with a load factor of up to 4.5G. The general design process

makes a series of loop closures with a proportional, integral, and/or derivative (PID)

controller for each loop [6]. Each loop is linearized at the appropriate operating

condition and tuned to a desired response as described below. The F-16 model is

assumed to be capable of maintaining a speed between 771 (ft/s) and 956 (ft/s)

knots which allows the controller gains to remain constant without affecting stability.

A sliding control system is used to account for the high bank angles which a fighter

aircraft may attain; a 4.5G level turn requires a bank angle of 77 deg to maintain.

This causes the effectiveness of the primary control variables, NZ and bank angle, to

change with regard to tracking altitude or lateral tracking error.

As an example, an aircraft flying with zero bank angle best controls altitude with

NZ along the body pitch-axis. However, a change in NZ for an aircraft tracking a 2G

turn at a 60 deg bank angle affect both lateral tracking error and altitude error.
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In order to allow for both low and high bank angle path following, a sliding control

is used which interconnects the longitudinal and lateral-directional control systems.

This allows the most efficient control-axis to be used to track the path at any given

time. The design of the low bank angle autopilots is discussed first followed by the

sliding control to follow a circular path.

Level Longitudinal Control Systems.

The overall design of the longitudinal control system is as an altitude hold sys-

tem [6]. The system is a simple cascade of PID controllers which is summarized in

Fig. 6. The “NZ Steady Reference” block is a part of the sliding control which will

be discussed in a later section. However, when wings level the block outputs the level

reference NZ of 1G.

Figure 6. Altitude-Hold Autopilot Overview

The nonlinear model is linearized at an altitude of 10,000 ft and a true airspeed of

864 ft/s. Linear actuator dynamics are included in the linearized model with Eq. (84)

where δ is the actuator deflection angle and δcmd is the commanded deflection. Next,

a pitch rate command loop is designed to meet the Level 1 short period handling

qualities specifications highlighted in Ref. [6] but derived from Ref. [71]. The tuned
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pitch rate command system utilizes a proportional integral (PI) controller, and the

resulting closed loop system is critically damped with a natural frequency of 6.7 rad/s.

δ

δcmd

=
20.2

s+ 20.2
(84)

Next, a NZ command system is looped around the pitch rate command system.

Again, a PI controller is used however, the controller was tuned to simply provide

a rapid and “deadbeat” NZ response. The input to this command system is the

NZ differential from zero pitch rate flight. The “Turn Adjustment” is added to the

command which serves as a reference for zero pitch rate flight. When the bank angle

is zero, this term is simply cos γ which is often seen in altitude hold autopilots. The

reference NZ while turning will be discussed in the circular path tracking section.

A flight path angle command system is used for attitude control instead of pitch

attitude because it more directly ties to altitude rate of change than pitch attitude

for an aircraft which may not be at a low angle of attack while maneuvering. An

equation for the flight path angle is derived by beginning with Eq. (85) which defines

the stability axis airspeeds in terms of inertial velocity and earth-fixed wind speed.

Multiplying both sides of the equation by the transpose of the rotation matrix sim-

plifies to Eq. (87) due to the definition of the navigation equations of motion and

because the rotation matrix is orthogonal.
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The flight path angle is defined as the angle of the inertial speed vector relative to

the horizon which relates the inertial speed to climb rate by Eq. (88). Furthermore,

the stability axis airspeeds are defined in terms of true airspeed, angle of attack, and

angle of sideslip by Eq. (89) through Eq. (91).

ḣ = VT sin γ (88)

U ′ = VT cosα cos β (89)

V ′ = VT cosα sin β (90)

W ′ = VT sinα (91)

Setting Eq. (88) equal to −ṗD from Eq. (87) and substituting in the definition of

the stability axis airspeeds results in Eq. (92); note the shorthand notation s and c

for sin and cos respectively. Assuming the vertical wind speed is small relative to the

true airspeed (WD ≈ 0), the flight path angle is estimated solely as function of the
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Euler angles, angle of attack and angle of sideslip.

γ = − arcsin (WD/VT − cαcβsθ + sβsϕsθ + sαcβcθcϕ) (92)

With an estimate for γ, the process of linearizing the system and determining the

appropriate PID gains is repeated. The γ command system utilizes a PID controller

and was tuned for a quick, deadbeat response.

Finally, the altitude loop utilizes an output limited PID tuned to have a near

deadbeat response with a rise time of approximately 30 seconds. The limiter prevents

an unreasonable climb angle from being commanded where the engine thrust would

be unable to maintain airspeed. Since it limits γ, the limiter also effectively limits

altitude rate which necessitated slower rise time of the response.

The value of the limiter was determined by determining the maximum flight path

angle with the power limited to “military” power which could maintain airspeed while

in a 2G turn. A limit of ± 10 degrees adhered to these limitations.

Level Lateral-Directional Control Systems.

The lateral directional control system is designed as a bank hold autopilot which

incorporates a yaw stability augmentation system [6]. The system is again designed

by linearizing the nonlinear model at 10,000 ft and 864 ft/s then making successive

loop closures. An overview of the control system is given in Fig. 7. The “Climbing

Adjustment” block contains the calculations for the higher bank angle sliding control.

The yaw damper utilizes a sideslip and yaw rate stability augmentation system.

A yaw rate washout filter accounts for the constant, non-zero, yaw rate which occurs

during steady turns. The PID gains are chosen to meet the Level 1 handling qualities

requirements for Dutch roll and result in a critically damped Dutch roll with a natural

frequency of 4 rad/s. The bank hold system consists of a simple proportional roll
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Figure 7. Bank-Hold Autopilot Overview

rate and bank angle gain; kP and kϕ in Fig. 7. Both gains were tuned to achieve a

rapid and deadbeat response to any bank angle command.

Finally, an aileron-rudder interconnect (ARI) is included to improve yaw damping

during roll maneuvers [6]. The ARI provides a rudder command proportional to

the aileron command to proactively address the adverse yaw associated with aileron

deflections. In highly maneuverable aircraft, the gain is often a function of angle of

attack and Eq. 93 is used to calculate the gain in real time [6].

kARI = 0.3α− 0.7 (93)

Circular Path Tracking Control System.

With the nominal lateral and longitudinal autopilots defined, this section discusses

the interconnection between the two which allows for higher bank angle circular path

tracking. Recall that this autopilot assumes the bank angle command inputs, from an

outer loop navigation system, correspond to a constant altitude turn. Therefore, the

input bank angle command also corresponds to a load factor for the level turn. This

load factor is referred to as the “steady reference” load factor in the NZ command

loop, 1G when at constant altitude and zero bank angle.
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Similarly, when at high bank angles the flight path angle commands from the NZ

command loop are converted to a bank angle “climbing adjustment”. Assuming the

aircraft is in a steady level turn at constant load factor, changing the bank angle will

result in an increase or decrease in altitude. The NZ “turn adjustment” is discussed

first.

The NZ command is affected by utilizing the flight path angle and bank angle

commands to generate an NZ command resulting in a steady climbing turn; γ̇ ≈ 0.

This is utilized as the “steady reference” NZ . The appropriate NZ may be derived

from the three-dimensional simplified equations of motion presented in the previous

section, Sec. 3.2.

Recall that two of the assumptions of the simplified dynamics are zero angle

of attack and sideslip which also results in an assumption of γ = θ. Making this

substitution into the θ̇ equations results in Eq. (94) which may be set equal to zero

and solved for NZ , Eq. (95). The command adjustment is calculated with Eq. (96)

utilizing the flight path and bank angle commands.

γ̇ =
g

VT
(NZ cosϕ− cos γ) = 0 (94)

NZ =
cos γ

cosϕ
(95)

NZturn =
cos γcmd

cosϕcmd

(96)

The bank angle command is affected with the control scheme in Fig. 8. The gain,

kγϕ, is tuned to provide improved altitude tracking performance during turns while

not affecting the overall stability of the autopilot. The output of the gain is multiplied

by the bank angle command to increase the contribution of flight path into the bank

angle command as the bank angle increases. The command is used instead of the
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actual bank angle because it represents the state the aircraft should be at in the

future.

Figure 8. Bank-angle Command Climb Adjustment

Airspeed Control System.

The airspeed control system is a true airspeed-hold autopilot. A simple limited

proportional controller was used to control speed error with the throttle command.

The integrator is relatively weak to prevent unnecessary lag in the system. However,

the system is initialized at the throttle required for steady level flight. A secondary

term was added into the throttle command which was proportional to the flight path

angle command as method to account for the change in steady state throttle with

climbs or dives. The gains were tuned to provide a well damped response for both

level and climbing flight.

Summary.

Figure 9 presents a simulation to highlight the performance of the outer-loop au-

topilots when following commands to follow a series of straight and circular path

segments. The circular segments correspond to 2G level turns at 864 ft/sThe sim-

ulation is initialized at a low altitude to show the path tracking performance while

climbing, level, and during the transition between the two. Additionally, moderate

turbulence is included the simulation.

Once the desired altitude is achieved, the altitude is maintained within ±100/ft

of the set altitude, 10,000 ft. The altitude, bank angle, and speed performance are
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all well damped while providing adequate path tracking performance.

Figure 9. Outer-loop Autopilot Performance

3.4 Wind Turbulence Effects Model

Turbulence is included in this research to increase the realism of the scenarios by

incorporating realistic noise into the system. The Dryden Wind Turbulence model

is specified as an acceptable turbulence model in Ref. [71]. The model outputs the

effect of wind turbulence on the translational rates (U , V , W ) and rotational rates

(P , Q, R) of the aircraft as noted in Sec. 3.2. The turbulence effects are created by

passing white noise through a shaping filter for each of the specified outputs. Refer

to Ref. [70, 71] for definitions of the filters and more detailed information on the

turbulence model.

The translational effects are primarily defined by the turbulence intensity while

the rotational effect also incorporates the size of the aircraft. Thus, the rotational

output changes depending on the configuration of the aircraft. First, the global
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parameters, independent of aircraft type, used in this research are presented in Tab. 2

and correspond to the recommendations in Ref. [71].

Table 2. Global Wind Turbulence Parameters from Ref. [2]

Altitude 10,000 ft
Scale Length 1750 ft
Light Turbulence Intensity 5.9 ft/s
Moderate Turbulence Intensity 9.4 ft/s

The aircraft dependent parameters are presented in Tab. 3. The airspeed is taken

from the previous section on aircraft configuration while the wingspans are chosen

to be representative of the aircraft type. The wingspans are based off the C-12, C-

130, C-17, and F-16 for the Light Utility, Medium Cargo, Heavy Cargo, and Fighter

aircraft categories respectively.

Table 3. Aircraft Dependent Wind Turbulence Parameters

Aircraft Type Wingspan (ft) Airspeed (ft/s)

Light Utility 60 293
Medium Cargo 132 390
Heavy Cargo 170 544

Fighter 33 864

A sample output of the turbulence for a Light Utility aircraft is provided in Fig. 10.

Two standard deviations of the output are defined by dashed lines. In the lateral axes,

the turbulence intensity is constant for each axis. In the rotational axes, each axis

has a different intensity which is presented as a dashed line in the same color as the

output effect. This behavior of intensity corresponds to the transfer functions of the

model itself.

Finally, two standard deviations for each output parameter and aircraft type are

given in Tab. 4. Note, the turbulence model effects the rotational axes of larger

aircraft less than smaller aircraft.
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Figure 10. Moderate Turbulence Model Output with Two Standard Deviations (Dashed
Lines)

Table 4. Turbulence Model Two Standard Deviations Value (Light/Moderate)

Aircraft Type Lateral Axis 2σ Roll Axis 2σ Pitch Axis 2σ Yaw Axis 2σ
(ft/s) (rad/s) (rad/s) (rad/s)

Light Utility 5.9/9.4 0.030/0.049 0.019/0.031 0.022/0.036
Medium Cargo 5.9/9.4 0.018/0.029 0.013/0.020 0.015/0.023
Heavy Cargo 5.9/9.4 0.015/0.024 0.011/0.017 0.013/0.020

Fighter 5.9/9.4 0.045/0.072 0.026/0.042 0.030/0.048
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3.5 Wind Triangle

This section provides a brief explanation of the wind triangle because it is the basis

for many calculations in this research. The wind triangle describes the relationship

between the airspeed, wind speed, and ground speed vectors. The ground speed

vector is simply the vector sum of the wind speed and airspeed. Two important

angles result from this definition. The heading, ψ, is the direction of the airspeed

vector referenced to some axis; for example, “North” or the y-axis. The course angle,

χ, is the direction of the ground speed vector referenced to the same axis.

Figure 11. Wind Triangle

The primary use of the wind triangle in this research is the determination of a

heading which corresponds to a desired ground course given some wind vector. First,

assume the desired course is along the y-axis, or “North.” The required heading angle

is one which results in no change in the x-position of the aircraft, ẋ = 0. The required

heading is then derived by solving Eq. (97) for ψ resulting in Eq. (98).

ẋ = 0 = VT sinψ +Wx (97)

ψ = arcsin

(
−Wx

VT

)
(98)
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The relationship in Eq. (98) may be made more general by aligning the y-axis

of this arbitrary reference frame with the desired ground track. The rotation results

in the x-direction being perpendicular to the desired course angle; in the direction

of Wcross in Fig. 11. The required heading along an arbitrary ground course, χ, is

derived by the same method resulting in Eq. (100).

ẋcross = 0 = VT sin(ψ − χ) +Wcross (99)

ψ = arcsin

(
−Wcross

VT

)
+ χ (100)

3.6 Wind Measurement Model

To facilitate accurate timing calculations, it is assumed the wind speed is measured

by some type of on-board system. In practice, the wind may not be measured directly

since the aircraft is moving through the moving wind field [73]. The wind may be

calculated by utilizing the definition of the stability axis airspeeds, reproduced in

Eq. (101).


U ′

V ′

W ′

 =


U

V

W

−Cfrd/ned


WN

WE

WD

 (101)

A GPS or inertial navigation sensor is used to measure U , V , and W while pitot

tubes, angle of attack, and angle of sideslip sensors are used to measure U ′, V ′, W ′.

Taking the difference of the inertial and stability axis velocity vectors results in the

wind speed vector. To simulate the measurement and calculation steps, a simple low

pass filter is applied to the windspeed model which is the sum of the steady-state and
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turbulent wind. The filter time constant is chosen to be 10 s.

3.7 Aircraft and Environmental Models Summary

This chapter defined and derived the various models to be used in this research.

A simplified model was derived from the nonlinear equations of motion to provide

a model which may be used analytically and is efficient to simulate. Additionally,

a nonlinear model and command control system were derived to provide a realistic

model which may verify any results produced by the simplified model. Finally, the

modeling of the wind environment is important to this research to ensure any results

may hold if flight tested in the open air. The next portion of this research utilizes

the simplified model and environmental models to derive and evaluate an analytic

solution to an optimal control problem.
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IV. Optimal Lead Turn Problem

Fixed-wing aircraft cannot precisely track a Dubins path due to discontinuous

changes in the path heading-rate-of-change. The path heading-rate-of-change is sim-

ply the velocity of the aircraft divided by turn radius. Thus, a straight segment with

an infinite turn radius has a heading rate-of-change of zero. Conversely, a circular

segment with a finite, positive turn radius has a finite heading rate-of-change.

The issue with fixed wing aircraft precisely tracking a Dubins path is easily de-

duced using the simplified constant altitude dynamics from the previous section.

Assuming constant altitude, the heading dynamics are given by Eq. (102). The dy-

namics show that a fixed-wing aircraft would require instantaneous changes in bank

angle to generate the discontinuous heading rate required to precisely track a Dubins

path.

ψ̇ =
g

VT
tanϕ (102)

The effect of the inability to instantaneously change bank angle is highlighted

in Fig. 12. Figure 12 shows the desired straight path segment as a dotted red line

and the curved path segment as a dashed red line. If the aircraft begins to change its

bank angle at the transition between the straight and circular segment, when the path

heading rate changes, the black path results and the aircraft will end in a position

off the desired path and not tangent to the path when the desired heading rate is

achieved.

Since travel time is distance traveled divided by velocity, a change to the distance

traveled, assuming constant velocity, will results in a change to the travel time. If

a time constraint is imposed, some form of compensation is required to satisfy the

time constraint. Simply adjusting the airspeed will be investigated in later sections
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Figure 12. Dubins Path Following Example

however, one other option is to minimize the tracking error so that airspeed compen-

sation is not required. For a minimal tracking-error solution to be useful in a realistic

scenario, it must be able to be calculated in near real time.

To correct the tracking error highlighted in Fig. 12, a simple solution is to begin

the turn before the transition point resulting in a final position much closer to the

path. This is shown by the gray path in Fig. 12 which is the same as the black path,

only shifted to begin the turn on the straight segment. Therefore, the design space

in minimizing the tracking error is the location of the initial position and the roll

control during the maneuver.

The following section develops and solves the problem of finding the tracking-

error optimal method to transition between a straight and circular segment, or vice

versa. The problem is initially solved numerically to determine the general form of

the solution which may not be calculated in real-time. Next, a near-optimal analytic

solution is developed by simplifying the original problem. Finally, the near-optimal

solution is integrated into existing guidance laws to quantify the benefit of the near-

optimal lead turn in realistic scenarios. A portion of the research in this section has

been published in [74].

77



4.1 Optimal Lead Turn Problem Definition

The optimal lead-turn problem is to determine the optimal control and initial

position which minimize the tracking error during the segment transitions of a Du-

bins path. The dynamics model used in the problem is the simplified dynamics

model derived in the previous section, reproduced in Eqs. (103)-.(107). In addition

to the assumption of constant altitude, this problem assumes constant true airspeed

throughout the maneuver. As a reminder, the lateral speed effects of wind are mod-

eled through Wx and Wy while the angular rate effects of wind are modeled with ωP ,

ωq, and ωr for the roll, pitch, and yaw axes, respectively. Finally, the course angle is

defined by Eq. (108).

ẋ(t) = VT sinψ(t) +Wx (103)

ẏ(t) = VT cosψ(t) +Wy (104)

ψ̇(t) =
g

VT
tanϕ(t) + ωq sinϕ(t) + ωr cosϕ(t) (105)

ϕ̇(t) = p(t) + ωP (106)

ṗ(t) = − 1

τP
(u(t)− (p(t) + ωP )) (107)

χ(t) = atan2(ẋ(t), ẏ(t)) (108)

The two versions of the desired path are depicted in Fig. 13. The aircraft flight

path is constrained to begin and end tangent to the desired (red-dashed) path. How-

ever, the initial position of the aircraft is used as a design variable in the optimization

problem. The initial position is defined by y0 if the initial segment is straight or s0

if the initial segment is a circular segment. Specifically, s0 is the arc length prior to

the path transition point.
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(a) Straight-to-Turning-Segment Setup (b) Turning-to-Straight-Segment Setup

Figure 13. Optimal Lead Turn Problem Setup

Cost Functional.

The cost functional of the problem is chosen to be the integral tracking error as

defined by Eqs. (109)-.(111). The cost functional is analogous to the L2−norm of the

error. The maximum error, or infinity norm, was not used since any tracking error

will affect the arrival time and not just the maximum path error.

J =

√∫ tf

0

e(t)2 dt (109)

e(t) = x(t), if on straight segment (110)

e(t) = RT −
√

(x(t)−RT )2 + y(t)2, if on circular segment (111)

Terminal Constraints.

The terminal constraints of the problem are for the ground path to be tangent to

the desired path with zero tracking error at the beginning and end of the maneuver.
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The problem defines the straight path segment to be part of the y-axis, so the x-

position must be zero at the appropriate condition. Since wind is included, the course

angle, and not the heading angle, must be zero at this condition. Finally, bank angle

and roll rate must also be equal to zero.

The turning path constraints are derived from the steady state level turn equations

[69]. A constant altitude, constant speed, level turn is defined by Eq. (112). The

position constraints are derived by utilizing the parametric definition of a circle,

Eqs. (113)-(114). Finally, if the initial path segment is circular, the initial course

angle is related to the initial arc-length, s0, through Eq. (115).

ϕ(t) = arctan

(
V 2
T

gRT

)
(112)

x(t) = RT −RT cosχ(t) (113)

y(t) = RT sinχ(t) (114)

χ(0) = RT s0 (115)

As the primary focus of this problem is tracking ground-fixed path, the heading

constraints are defined in terms of course angle. The relationship between airspeed

and groundspeed, the wind triangle, is primarily discussed in Sec. 3.5. Applying the

wind triangle to a straight path segment where the direction of travel is along the

positive y-axis, the relationship between course angle and heading is given by

ψ = arcsin

(
−Wx

VT

)
(116)

The heading along a circular segment is derived in the same manner but the

crosswind must be calculated in the numerator of the arcsine.

80



ψ = arcsin

(
−Wx −Wy sinχ

VT

)
+ χ (117)

Mathematical Definition.

Let the maximum roll-rate command be umax and the final time of the maneuver

be tf . Combining the presented constraints and definitions, the optimal lead turn

problem is mathematically defined by Eq. (118)

arg min
u(t), y0

√∫ tf

0

e(t)2 dt dt (118a)

subject to Dynamic Constraint Eqs. (103)-.(107),

Control Bound Constraint,

|u(t)| ≤ umax, (118b)

Straight-to-Turn Terminal Constraints,

y(0) = y0, x(0) = 0, ψ(0) = 0, ϕ(0) = ϕ0, p(0) = p0, (118c)

x(tf ) = RT −RT cosχ(tf ), y(tf ) = RT sinχ(tf ), (118d)

ϕ(tf ) = arctan

(
V 2

gRT

)
, p(tf ) = 0, (118e)

y0 ≤ 0, (118f)

Turn-to-Straight Terminal Constraints,

x(0) = RT −RT cos(RT s0), y(0) = RT sin(RT s0), (118g)

χ(0) = Rs0, ϕ(0) = arctan

(
V 2
T

gRT

)
, p(0) = 0, (118h)

x(tf ) = 0, χ(tf ) = 0, ϕ(tf ) = 0, p(tf ) = 0, (118i)

s0 ≤ 0. (118j)
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Numerical Solutions.

The problem is first solved numerically using GPOPS-II to determine the form

of the solution [34]. The GPOPS-II solution for a single straight-to-turning-segment

scenario, Fig. 13a, is presented in Fig. 14. Figure. 14 is calculated using an airspeed

of 19 ft/s in order to better show planar trajectory behavior. Multiple solutions were

obtained for a variety of airspeeds, roll-mode time constants, and desired turn radii

representative with all resulting in similar control behavior.
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Figure 14. GPOPS-II Numeric Solution to the Optimal Lead Turn Problem

Figure 14b shows the control, in red, switches twice over the course of the solution

which was observed in each calculated solution. The result of this behavior is better

shown in Fig. 14a where the planar trajectory of the vehicle moves away from the de-

sired path initially before ending precisely on the curved path segment. The bounded

control behavior is often seen as the optimal solution to minimum time problems

[31]. Subsequently, the problem was solved with GPOPS-II using a minimum time

cost functional resulting in identical solutions. This behavior will later be used to

simplify the optimization problem.

The multiple control switches in the solution indicate that an analytic optimal

solution is likely not achievable. However, an analytic near-optimal solution may be
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derived with the addition of several simplifying assumptions.

4.2 Near-Optimal Lead Turn Problem

The primary difficulty of the optimal lead turn problem is the control is unknown.

Thus, the first assumption is that the control will simply achieve the final bank angle

in minimum time. For now, it is assumed this assumption will allow the bank angle

to be analytically defined as a function of time. However, this will be shown to be

true in the following section.

The result of this assumption on the control is the maneuver will be completed

in minimum time, but the final position of the vehicle cannot be guaranteed to be

on the desired path. The cost functional is adjusted such that the terminal distance

from the desired path is minimized using the terminal heading and position boundary

conditions from Eq. (118). The change to the cost functional effectively minimizes

the terminal constraint violation of the original problem.

The modified optimization problem for the turning segment to straight segment

problem is defined by Eq. (119). The dynamic constraints are reduced since ϕ∗(t)

is assumed to be an analytic function of time which incorporates umax, τP , ϕ(tf ).

The initial boundary constraints are defined by Eq. (119e) and Eq. (119f) while the

final boundary constraints from Eq. (118) have been incorporated in the new cost

functional, Eq. (119a). Finally, it is assumed that the wind, Wx and Wy, remains

constant throughout the maneuver.

83



arg min
y0

(x(tf ) +RT cosχ(tf )−RT )
2 + (y(tf )−RT sinχ(tf ))

2 (119a)

subject to ẋ(t) = VT sinψ(t) +Wx, (119b)

ẏ(t) = VT cosψ(t) +Wy, (119c)

ψ̇(t) =
g

VT
tanϕ∗(t), (119d)

x(0) = χ(0) = 0, (119e)

y(0) = y0 (119f)

Similarly, the modified turning path segment to straight path segment problem

is defined by Eq. (120) where the dynamics have again been condensed and the

terminal boundary constraints incorporated in the modified cost functional. The

form of Eq. (120a) is chosen to account for the terminal position and heading terminal

constraints of the original problem. Furthermore, the RT in Eq. (120a) is used as a

weighting factor to ensure the relative magnitude of the position and heading terms is

similar. The minimum time nature of the problem is preserved since ϕ∗(t) is assumed

to be a minimum time control.
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arg min
s0

x(tf )
2 + (RTχ(tf ))

2 (120a)

subject to ẋ(t) = VT sinψ(t) +Wx, (120b)

ẏ(t) = VT cosψ(t) +Wy, (120c)

ψ̇(t) =
g

VT
tanϕ∗(t), (120d)

x(0) = RT −RT cos(RT s0), (120e)

y(0) = RT sin(RT s0), (120f)

χ(0) = RT s0 (120g)

4.3 Near-Optimal Lead Turn Solution

Minimum Time-to-Bank Solution.

To determine ϕ∗(t), an optimal control problem to achieve a desired bank angle in

minimum time will be developed and solved. Without loss of generality, the problem

is defined as starting at rest with wings level and commanding a positive desired bank

angle. It will later be shown in the derivation that the key parameters of the solution

only depend on the total bank angle change.

The resulting optimization problem is a straightforward second order optimal

control problem. The solution approach used in this section utilizes Pontryagin’s

Minimum Principle (PMP) and classical optimal control methods [31]. Equation 121

defines the optimal control problem.
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arg min
u

∫ tf

0

1 dt (121a)

subject to ϕ̇(t) = p(t) , (121b)

ṗ(t) = − 1

τP
p(t) +

1

τP
u(t), (121c)

ϕ(0) = p(0) = p(tf ) = 0, (121d)

ϕ(tf ) = ϕf , (121e)

|u(t)| ≤ umax (121f)

As a minimum-time problem, it is hypothesized that the solution will initially

command a maximum roll rate and then switch to a minimum roll rate command at

a point which achieves the desired bank angle with zero roll rate. Thus, it is expected

there will be a single switching time, defined as t1, when the control switches from

umax to −umax.

Hamiltonian & Pontryagin’s Minimum Principle.

The Hamiltonian for this problem is defined by Eq. (122). Pontryagin’s minimum

principle states that an optimal control will minimize the Hamiltonian [31]. The

result is Eq. (123) which shows the sign of the control depends on the sign of the

second costate, λ2(t).

H(t) = 1 + λ1(t)p(t) + λ2(t)

(
− 1

τP
p(t) +

1

τP
u(t)

)
. (122)
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u(t) =

umax , λ2(t) < 0

−umax , λ2(t) > 0

undetermined , λ2(t) = 0

 (123)

A difficulty of some optimal control problems is the existence of singular intervals.

A singular interval is a “time interval of finite duration during which the necessary

conditions...provide no information about” the control [31]. In this problem, a singular

interval could occur if λ2(t) = 0 for a finite amount of time. However, a property

of minimum time problems involving linear systems of equations is that a singular

interval cannot exist if the system is completely controllable [31]. Recall a system is

controllable if the controllability matrix is full rank.

Lemma 4.1. A singular interval does not exist in the minimum time-to-bank problem

defined by Eq. (121)

Proof. Writing the equations of motion, Eq. (121b) and Eq. (121c), in state-space

form results in Eq. (124) which highlights the A and B matrix used to determine the

controllability matrix. Note, it has been assumed that the states ϕ and p are both

observable. ϕ̇(t)Ṗ (t)

 =

0 1

0 − 1
τP


ϕ(t)P (t)

+

 0

1
τP

u(t) = Ax(t) +Bu(t). (124)

The controllability matrix is then formed in Eq. (125). The matrix in Eq. (125)

is clearly full rank since the roll mode time constant for an aircraft must be a finite

positive value. Thus, the system is completely controllable, and no singular interval
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exists for the minimum time-to-bank problem.

C = [B AB] =

 0 1
τP

1
τP

− 1
τ2P
.

 (125)

■

Costate Response.

A singular interval does not exist due to Lemma 4.1. Therefore, there are only

two possible values for the optimal control which depend on the sign of the second

costate; shown in Eq. (126).

u(t) =

 umax , λ2(t) < 0

−umax , λ2(t) > 0
(126)

The remaining necessary conditions for optimal control are then applied to the prob-

lem statement resulting in,

λ̇1 = −∂H
∂ϕ

= 0 (127)

λ̇2 = −∂H
∂p

= −λ1(t) +
1

τP
λ2(t). (128)

Equations (127) and Eq. (128) are in the form of a linear system whose solution

is define by

λ1(t) = L1 (129)

λ2(t) = L1τP + e
t

τP (λ2(0)− L1τP ) . (130)

As λ1(t) is constant, it is simply defined as L1. It can be concluded that the control

88



switching time, t1, occurs at the precise time when λ2(t) changes signs and is equal

to zero. Next, it is shown that λ2(t) changes sign only once.

Lemma 4.2. Eq. (130) always has one zero in the context of the minimum time-to-

bank problem

Proof. The derivative of λ2(t) is a simple exponential function defined by Eq. (131).

Time is greater than or equal to zero, thus the exponential term will always be

positive. Additionally, the terms inside the parentheses are constant. Thus λ̇2(t),

Eq. (131), does not change sign indicating that λ2(t) will have at most one zero, as

expected. Furthermore, λ2(t) may not be constant and result in an optimal control

because a constant λ2(t) would result in a constant control, due to Eq. (126), which

would clearly not achieve the terminal boundary constraint of p(tf ) = 0. Therefore,

λ2(t) will have one zero in the context of the minimum time-to-bank problem.

λ̇2(t) = e
t

τP

(
1

τP
λ2(0)− L1

)
(131)

■

Due to Lemma 4.2, it is concluded there is only a single control switching which

occurs at time t1. The value of t1 is determined by setting Eq. (130) at time t = t1

to zero and solving for t1 as shown in Eq. (132) and Eq. (133).

0 = λ2(t1) = L1τP + e
t1
τP (λ2(0)− L1τP ) (132)

t1 = τP ln
−L1τP

λ2(0)− L1τP
(133)
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Time Response.

The previous section showed that there is only one control switch, and the control

magnitude is either minimized or maximized. Next, analytic definitions for the states

will be calculated to apply the boundary conditions. First, take the general form of

the solution for a linear system given by,

x = eAtx(0) + eAt

∫ t

0

e−AζBu(ζ) dζ. (134)

Next, separate the integral into two consecutive integrals corresponding to the

switching time t1,

x(t ≤ t1) = eAtx(0) + eAt

∫ t

0

e−AζBu(ζ) dζ (135)

x(t > t1) = eAtx(0) + eAt

∫ t1

0

e−AζBu(ζ) dζ + eAt

∫ t

t1

e−AζBu(ζ) dζ. (136)

The control is constant in each interval but has a different sign due to Eq. (126). The

initial control must be the same sign as the final desired bank angle, assuming the

terminal bank angle is bounded (−π, π), due to the equations of motion. Thus u(t)

in the first integral is replaced with umax and u(t) in the second integral is replaced

with −umax resulting in,

x(t ≤ t1) = eAtx(0) + eAt

∫ t

0

e−AζBumax dζ (137)

x(t > t1) = eAtx(0) + eAt

∫ t1

0

e−AζBumax dζ + eAt

∫ t

t1

e−AζB(−umax) dζ. (138)

Expanding the equations using the matrices A and B from the equations of motion,

Eq. (124), and evaluating the integrals results in Eqs. (139)-(142).
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ϕ(t ≤ t1) = umax

(
t− τP + τP e

− t
τP

)
+ ϕ0 (139)

p(t ≤ t1) = umax

(
1− e

− t
τP

)
(140)

ϕ(t > t1) = umax

(
2t1 − t+ τP − 2τP e

− t−t1
τP + τP e

− t
τP

)
+ ϕ0 (141)

p(t > t1) = umax

(
2e

− t−t1
τP − e

− t
τP

)
− umax (142)

Returning to the generality of the solution, a negative final bank angle, for an initial

bank angle of zero, would simply require a change in the sign of the control due to

the equations of motion. The case of a non-zero initial bank angle, ϕ0 ̸= 0, is less

straight forward.

Take Eq. (141) at time t = tf . Simplify subtracting ϕ0 from both sides yields an

equation for the change in bank angle which is identical to Eq. (141) if ϕ0 = 0.

ϕ(tf ) = ϕf = umax

(
2t1 − tf + τP − 2τP e

−
tf−t1
τP + τP e

−
tf
τP

)
+ ϕ0 (143)

ϕf − ϕ0 = umax

(
2t1 − tf + τP − 2τP e

−
tf−t1
τP + τP e

−
tf
τP

)
(144)

Therefore, the solution for an initial bank angle of zero may be used in the case

of any initial bank angle by assuming that the desired final bank angle used in the

calculations is the desired change in bank angle.

Solving for t1 and tf .

In order to determine t1 and tf as functions of the problem parameters (τP , ϕf ,

etc.), expressions for λ2(0) and L1 must be determined. The Hamiltonian of the

minimum time-to-bank problem is not an explicit function of time and the final time
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is free. Therefore, the Hamiltonian must be equal to zero at any time t [31].

H(t) = 1 + λ1(t)p(t) + λ2(t)

(
− 1

τP
p(t) +

1

τP
u(t)

)
= 0. (145)

Take the Hamiltonian, Eq. (145), at time t = 0. Next, substitute the analytic equa-

tions for the costates, roll rate, and control (derived in the previous sections) at time

t = 0 into Eq. (145). Solving for λ2(0) results in Eq. (146).

λ2(0) = − τP
umax

(146)

The final time, tf , is then determined by expanding the equation for roll rate at

t = tf , Eq. (142), and applying the terminal boundary constraint, p(tf ) = 0. Taking

the resulting Eq. (147), the equation for t1, Eq. (133), and λ2(0) are substituted and

the entire equation is solved for tf resulting in Eq. (148).

0 = umax

(
2e

−
tf−t1
τP − e

−
tf
τP

)
− umax (147)

tf = τP ln

(
L1umax − 1

L1umax + 1

)
(148)

Finally, L1 is determined by evaluating the roll angle boundary condition at tf .

Equation (141) is set equal to the terminal roll angle condition, ϕf assuming an initial

bank angle of zero. The resulting equation then rearranged to solve for L1 resulting

in two solutions defined by Eq. (149).

L1 = ± 1

umax

e
ϕf

2τP umax

√
1

e
ϕf

τP umax − 1

(149)

The sign of the variable L1 is determined by applying the following assumptions.
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First, Eq. (150) is defined in the problem statement. Since umax corresponds to the

initial optimal control, it must logically be the same sign as ϕf , Eq. (151). Finally,

the roll mode time constant (τP ) is defined to be positive, Eq. (152). Thus, both

exponents in Eq. (149) will be positive, the exponentials will both be greater than

one, and the sign of L1 is the same as the plus or minus.

ϕf > 0 (150)

umax > 0 (151)

τP > 0 (152)

The correct solution is the one which results in a positive tf , Eq. (148). Inspecting

Eq. (148), the inside of the logarithm must be greater than one for tf to be positive.

If L1 is positive, the numerator will be smaller than the denominator resulting in a

negative tf . A negative L1 will result in a positive tf only if the inequality −1 >

L1umax is true. Taking this inequality and expanding with the negative solution for

L1 results in,

−1 > L1umax (153)

−1 > −e
ϕf

2τP umax

√
1

e
ϕf

τP umax − 1

(154)

−1 > −

√√√√ e
ϕf

τP umax

e
ϕf

τP umax − 1

. (155)

Since it has been assumed that ϕf > 0, τP > 0, and umax > 0, the exponential

terms will be greater than 1. Thus, the radicand will always be greater than 1 and

the relation is satisfied. Therefore, L1 must be negative, and Eq. (156) is the correct

93



solution.

L1 = − 1

umax

e
ϕf

2τP umax

√
1

e
ϕf

τP umax − 1

(156)

Minimum Time-to-Bank Solution Summary.

To summarize the solution to the minimum time-to-bank problem defined by

Eq. (121), the optimal control is defined by Eq. (157) through Eq. (161).

u∗(t ≤ t∗1) = umax (157)

u∗(t > t∗1) = −umax (158)

t∗1 = τP ln
L1τP

λ2(0)− L1τP
(159)

L1 = − 1

umax

e
ϕf

2τP umax

√
1

e
ϕf

τP umax − 1

(160)

λ2(0) = − τP
umax

(161)

The resulting optimal bank angle as a function of time is defined by Eq. (162) and

Eq. (163). Finally, the duration of the maneuver, t∗f , is defined by Eq. (164). However,

it is noted that the initial bank angle for this problem is zero, identified as ϕ†(t).

ϕ†(t <= t∗1) = umax

(
t− τP + τP e

− t
τP

)
(162)

ϕ†(t > t∗1) = umax

(
2t∗1 − t+ τP − 2τP e

− t−t∗1
τP + τP e

− t
τP

)
(163)

t∗f = τP ln

(
L1umax − 1

L1umax + 1

)
(164)

Too generalize the solution, let ϕ′
0 and ϕ′

f be the actual initial and final bank

angle, respectively, while ϕf is defined by Eq. (165). The general optimal solution
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may then be calculated with Eq. (166) where the change in bank angle, ϕf , is used

in the optimal control solution defined by Eq. (157) through Eq. (161).

ϕf = |ϕ′
f − ϕ′

0| (165)

ϕ∗(t) = sign(ϕ′
f − ϕ′

0)ϕ
†(t) + ϕ′

0 (166)

The analytically determined results were validated by solving the minimum time-

to-bank problem numerically using the GPOPS-II optimal control software [34]. A

rough initial guess which follows the desired path and meets the endpoint constraints

was used and resulted in a locally minimal solution for each scenario calculated.

Several configurations of bank angle, roll-mode time constant, and maximum con-

trol limit were simulated. All simulated configurations achieved the same final time

and switching time using both the analytic and numeric methods. A single config-

uration is shown for comparison. In this case, the desired bank angle is 60 deg, the

roll mode time constant is 1.4 s, and the maximum roll rate limit is 45 deg/s.

Figure 15 presents the bank angle and roll rate comparison. It is easily seen the

bank angle, roll rate, and control for the GPOPS-II computed solution and the analyt-

ically derived solution are well-matched. More precisely, the 2-norm of the difference

between the analytic and GPOPS-II solution for bank angle is 3.54 × 10−4 deg and

for roll rate is 4.64× 10−2 deg/s.

Figure 16 presents the analytic costates and Hamiltonian along with the numerical

estimates calculated with GPOPS-II. Again, the parameters from the two solutions

are well matched. The analytic control is also plotted over λ2(t) to show that the

switching time, t1, for the control corresponds to when λ2 changes sign. Finally, the

analytic Hamiltonian is zero, as expected, and the GPOPS-II estimated Hamiltonian

is also near zero. The 2-norm of the Hamiltonian estimate is 1.81 × 10−3 where the
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Figure 15. Minimum Time-to-Bank Solution Comparison, States

error is due to numerical calculation errors.

Near-Optimal Lead Turn Solution.

The resulting solution for the bank angle, Eq. (166), is integrated through the

equations of motion, Eq. (167) through Eq. (169), to determine the final position and

heading of the aircraft after completing the minimum time to bank maneuver. The

final position is used to determine the optimal maneuver initiation point with regards

to the lead turn problem defined by Eq. (119) and Eq. (120).

ẋ(t) = VT sinψ∗(t) +Wx (167)

ẏ(t) = VT cosψ∗(t) +Wy (168)

ψ̇(t) =
g

VT
tanϕ∗(t) (169)
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Determining Heading as a Function of Time.

Integrating the heading rate equation, Eq. (169), presents a challenge since the

integral contains the term
∫
tan ex dx, which does not have an analytic solution. The

challenge is addressed in this research by utilizing a Taylor polynomial to approximate

the tangent of the bank angle.

Since the bank angle change is not assumed to be small, a different expansion is

used for the two intervals in time, [0, t1] and [t1, tf ]. A second-degree Taylor polyno-

mial approximation is used for both intervals.

The first time-segment approximation is centered at 1
4
ϕf and the second is centered

at 3
4
ϕf . Although these points may not correspond to the bank angle at the center of

each time segment, it is assumed they are close enough to allow for an accurate Taylor

polynomial approximation; the resulting accuracy of this solution will be shown to

validate this assumption. The second-degree Taylor polynomial approximation for

heading rate, ψ̇ap(t), is given by Eq. (170) where the variable a is the center of the

approximation, either 1
4
ϕf or 3

4
ϕf .

ψ̇(t) ≈ ψ̇ap(t) =
g

VT

(
tan a− (tan2 a+ 1)(a− ϕ∗(t)) + (tan3 a+ tan a)(a− ϕ∗(t))2

)
(170)

where a =
1

4
ϕf∀t ≤ t1, a =

3

4
ϕf∀t > t1

The heading is approximated by integrating the corresponding heading-rate ap-

proximation. However, the inclusion of wind into the problem results in the initial

heading being a function of the wind and the initial course angle, χ; discussed in
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Sec. 4.1. In the case of a straight segment, the heading is given by

ψ = arcsin

(
−Wx

VT

)
. (171)

However, the heading along a circular segment is more complex due to the re-

quirement to determine the component of wind perpendicular to the ground path

of the aircraft. Taking the analytic definition of the initial heading while in a turn,

Eq. (172), it is assumed that χ(0) is small. The small angle assumption results in

Eq. (173).

ψ(0) = arcsin

(
−Wx −Wy sinχ(0)

VT

)
+ χ(0) (172)

ψ(0) =

(
−Wx −Wyχ(0)

VT

)
+ χ(0) (173)

Finally, the heading approximation, ψap(t), is defined by Eq. (174) and Eq. (175).

The resulting equations are analytic but complex. The equations themselves were

calculated utilizing symbolic math functions in MATLAB®. The code to derive

these equations is provided in Appendix A.

ψap(t ≤ t1) =

∫ t

0

ψ̇ap(t) dt (174)

ψap(t > t1) =

∫ t1

0

ψ̇ap(t) dt+

∫ t

t1

ψ̇ap(t) dt (175)

Approximating Position as a Function of Time.

Next, the approximated heading is integrated through the position dynamics;

Eq. (176) and Eq. (177). The integral again does not have an analytic solution.

However, only a small amount of heading change is expected over the course of the
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maneuver.

ẋ(t) = VT sinψ(t) +Wx (176)

ẏ(t) = VT cosψ(t) +Wy (177)

To show that the change in heading is small, take an aircraft at an altitude of

5,000 ft above mean sea level traveling at a calibrated airspeed of 180 knots (327 ft/s

true airspeed); similar conditions to a landing approach for large aircraft. Assume

the aircraft has a roll mode time constant of 1.4 and a maximum roll rate of 30 deg/s.

A minimum time-to-bank maneuver, described in Sec. 4.3, from wings level to a

bank angle of 30 degrees would take 2.51s. Numerically integrating the bank angle

through the equations of motion results in heading change of 3.7 degrees; a small

angle by most accounts.

Due to this small observed heading change, a simple small angle approximation

will be made to approximate the trigonometric functions in ẋ and ẏ as shown in

Eq. (178) and Eq. (179); the subscript ap refers to the approximation. The posi-

tion rate approximations are subsequently integrated through the two time-segments

similarly to the heading rate integration.

ẋ(t) ≈ ẋap(t) = VTψap(t) +Wx (178)

ẏ(t) ≈ ẏap(t) = VT +Wy (179)

Straight to Turning Segment Boundary Constraints and Solution.

The initial conditions for the straight to turning problem are applied, resulting

in analytic solutions for the final position and heading as summarized by Eq. (180)

through Eq. (182). The equations are complex, but analytic which allows for the
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determination of an optimal y0. The MATLAB® code to determine the analytic

equations is provided in the digital appendix.

x(tf ) ≈ xap(tf ) = VT

∫ t1

0

ψap(t) dt+ VT

∫ tf

t1

ψap(t) dt+ tfWx (180)

y(tf ) ≈ yap(tf ) = VT tf + y0 + tfWy (181)

ψap(tf ) =

∫ t1

0

ψ̇ap(t) dt+

∫ tf

t1

ψ̇ap(t) dt (182)

Taking the cost functional from the straight to turning segment problem defi-

nition, Eq. (119), a final small angle approximation is made which simplifies the

equation resulting in Eq. (183). Estimating the final heading angle requires the defi-

nition of course angle reproduced in Eq. (184). Utilizing the approximations for the

position dynamics derived in this section along with a small angle approximation on

the arctangent results in an approximation for the final course angle, Eq. (185).

J = (xap(tf ))
2 + (yap(tf )−RTχ(tf ))

2 (183)

χ(t) = atan2(ẋ(t), ẏ(t)) (184)

χ(tf ) ≈
VT sinψap(tf ) +Wx

VT cosψap(tf ) +Wy

(185)

The cost functional is then analytically differentiated with respect to y0, set equal

to zero, and solved for y0 in accordance with classical optimization theory [75]. The

MATLAB® code which generates the analytic definition of y0 is provided in Appendix

A.
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Turning to Straight Segment Boundary Constraints and Solution.

The process of finding the optimal initial point for the turning to straight segment

problem is similar to the straight to turning problem. In this case, different initial

conditions are applied to the heading and position variables, based on the initial arc

length variable s0, before performing a similar integration process as in the previous

section. However, a small angle assumption must also be applied to the initial condi-

tions to obtain an analytic solution. The original initial conditions for this problem

are described by Eq. (186) and Eq. (187) and the original cost functional is Eq. (188).

x(0) = RT −RT cos(RT s0) (186)

y(0) = RT sin(RT s0) (187)

J = x(tf )
2 +RTχ(tf )

2 (188)

To obtain an analytic solution, a small angle approximation is applied to the

trigonometric functions in the initial conditions for position. This aids the solution by

“removing” the design variable, s0, from inside trigonometric functions. Additionally,

χ(tf ) is expanded as the terminal heading plus the crab angle, which is defined by

Eq. (171). The simplified initial conditions and cost functional for the turning to

straight segment problem are now given by Eq. (189) through Eq. (191).

x(0) ≈ 0 (189)

y(0) ≈ RT s0 (190)

J ≈ (xap(tf ))
2 +

(
ψap(tf )− arcsin−Wx

VT

)2

(191)
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The initial conditions are applied to the integrated position dynamics to determine

the final positions and heading. The resulting cost functional is again differentiated,

but with respect to s0, set equal to zero, and the equation solved for s0. Again, the

equation for the optimal s0 is complex. The MATLAB® code which generates the

analytic definition of s0 is provided in Appendix A.

4.4 Near-Optimality of the Solution

The solution derived in the preceding sections will be referred to as the Taylor

Polynomial Approximation Solution (TPAS) in this section. The near optimality of

the TPAS across a wide range of scenarios is determined by comparing the tracking

error of the TPAS, a numerically calculated optimal solution, and a control solution.

In this analysis, the original cost functional of the optimal lead turn problem is used;

reproduced in Eqs. (192)-(194).

J =

√∫ tf

0

e(t)2 dt (192)

e(t) = x(t), if on straight segment (193)

e(t) = RT −
√

(x(t)−RT )2 + y(t)2, if on circular segment (194)

The control solution is defined as a minimum time-to-bank maneuver performed

at the segment transition point, y0 = 0. The optimal solution is optimal with regards

to the original lead turn problem which enforces all terminal constraints and is nu-

merically calculated using GPOPS-II [34]. The cost is evaluated over the minimum

time-to-bank interval to ensure comparable results among the solutions.

The optimality metric is defined to be the difference between the TPAS cost and
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the optimal cost, divided by the control cost for each scenario.

Optimality Metric =
JTPAS − Joptimal

Jcontrol
(195)

This metric allows for the difference in control scenario cost to be accounted for across

a wide range of scenario parameters. The scenarios varied the following parameters:

� Airspeed - 200 ft/s to 800 ft/s

� Roll mode time constant - 0.5 s to 2.0 s

� Maximum roll rate - 15 deg/s to 180 deg/s

� Bank Angle During Turn - 20 deg to 60 deg

� Wind Speed - 0% to 20% of airspeed

� Wind Direction - Ordinal directions (e.g., North-East, South-East,...)

� Path Segment Order (e.g., Straight-to-Turn or Turn-to-Straight)

Finally, each parameter was evaluated at three separate levels except for wind direc-

tion. The result is 1,458 different scenarios which were calculated and evaluated.

The results are summarized in Table 5 with the minimum and maximum metric

for each segment order along with the mean and two standard deviation bounds.

Although the negative metric values indicate the TPAS had a lower cost than some

GPOPS-II solutions, the TPAS does not satisfy all the constraints of the original

problem. Overall, the TPAS cost is within 13.3% of the GPOPS-II solution for every

scenario and within 7.4% for at least 95% of the simulated scenarios. This suggests

that the TPAS is a near-optimal approximation of the optimal GPOPS-II solution

for the parameters studied.
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Table 5. Taylor Polynomial Approximation Solution (TPAS) Optimality Metric

Segment Order Min Mean ±2σ Max
Straight-to-Turn -0.6% 3.7%± 3.4% 8.0%
Turn-to-Straight -5.9% 2.7%± 7.4% 13.3%

The primary benefit of the TPAS is that, although complicated, it takes signif-

icantly less time to compute. The average computation time of all the GPOPS-II

solutions was 0.50 s while the average computation time of the TPAS was 0.001 s.

The quick calculation time of the TPAS allows for the potential to update the near-

optimal lead turn distance in real time, the original motivation for determining an

analytic solution.

4.5 Lead Turn with Existing Guidance Laws

As the TPAS was shown to be near-optimal and efficient to compute, the next

step is to determine if the solution may be integrated into existing guidance laws and

still result in an improvement to tracking performance. In the following section, the

lead turn distance refers to the initial position calculated by the TPAS.

Guidance Law Integration.

The guidance laws selected for evaluation are a nonlinear guidance law from

Ref. [3] (referred to as NGL), a vector field follower from Ref. [76] (referred to as

VFF), a non-linear dynamic inversion controller from Ref. [12] (referred to as NDI),

and a synthetic waypoint guidance controller from Ref. [77] (referred to as SWG). The

different controllers are chosen for their varying levels of complexity and performance.

The SWG controller is a type of “carrot-chasing” algorithm which is one of the

simplest types of guidance laws to implement because it simply drives the aircraft to

point towards an imaginary point moving along the desired path. However, “carrot-

chasing” algorithms typically exhibit poor steady-state path tracking performance
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[77].

Nonlinear controllers tend to involve complicated calculations derived from an

analysis of the path tracking problem. The path tracking performance of nonlinear

controllers tends to be better than “carrot-chasing” algorithms with the additional

benefit of a single controller mode for any type of path. Finally, vector field controllers

derive commands from a vector field around the desired path. Thus, a vector field

controller will have zero steady state error around its design path; lines and arcs are

used in this work. However, this requires the controller to switch between modes

when the path changes from a line to a circle and vice versa [78].

The output of each controller is transformed to a bank angle command which

drives an LQR bank-angle hold autopilot providing the roll rate control input, u,

into the dynamics model [6]. The VFF and SWG guidance laws also require an

intermediate course hold autopilot between the guidance law and bank-angle hold

autopilot [79]. The design of this autopilot is discussed in the following section.

The aircraft model used in the testing is the two-dimensional simplified model dis-

cussed in Sec. 3.2 and controlled by the LQR bank angle command system described

in Sec. 3.2. A condensed summary of the aircraft type parameters defined in Table

1 is reproduced for reference in Table 6. Next, a short description of each guidance

law is given, which focuses on the calculation of the bank angle command input into

the simplified model.

Table 6. Aircraft Class Parameters; reproduced from Table 1

Aircraft Class Vref (ft/s) τP (s)
Light Utility 293 1.0
Medium Cargo 390 1.4
Heavy Cargo 544 1.4

Fighter 864 1.0
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Nonlinear Guidance Law Integration.

The NGL is a single mode controller which uses a specified look-ahead distance to

generate a lateral acceleration command [3]. The look-ahead distance (LD) variable

is the primary design parameter for this control law. Note, the look-ahead distance

is defined as L1 in [3] instead of LD. The nomenclature was changed in this work due

to L1 being used in another section.

Equation (197) is used to determine the value of LD based on the results presented

in Ref. [3]. The lateral acceleration command (as) is then calculated according to

Eq. (196) where η is the angle between the aircraft trajectory and the reference point

as depicted in Fig. 17. Note that the lateral acceleration command is calculated using

ground speed, Vg. The lateral acceleration command is then translated to the bank

angle command input to the simplified model using Eq. (198). Equation (198) may

be derived from the level turn equations [69].

as = 2
G2

LD

sin η (196)

LD =
Vref

√
2

0.23
(197)

ϕcmd = sgn (as) arccos
g√

a2s + g2
(198)

Figure 17. Nonlinear Guidance Law Parameters; Ref. [1]
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Vector-Field Follower.

The VFF is a multi-mode controller which uses a vector field to determine course

angle (χ) commands which are transformed to bank angle commands via a PI con-

troller [76]. The vector field controller creates a vector field of course angle commands

around the desired path as a function of tracking error and course error. The com-

mands are computed with Eq. (199) for a straight path and Eq. (201) for a circular

path.

χcmdline
= ∆χ− 2χfar

π
arctan (klinee) (199)

kline =
1

kdivVref
(200)

χcmdorbit = ∆χ+DT

(
χfar + arctan

(
korbite

RT

))
(201)

In these equations, ∆χ is the course angle error, χfar is the desired course com-

mand when the aircraft is far from the desired path, e is the path tracking error, kline

is the controller gain while following a straight path, and korbit is the controller gain

while following a circular path. In this case, the design variables are kdiv, χfar, and

korbit. The values of the design variables for the χ-command equations are given in

Table 7. Further details of the vector field controller may be found in Ref. [76].

Table 7. Vector Field Follower Parameters

Aircraft Class kdiv korbit χfar (rad)
Light Utility 6 4 π/2
Medium Cargo 4 4 π/2
Heavy Cargo 9 4 π/2

Fighter 4 4 π/2

The course command to bank angle command controller is a simple PI controller

as shown in Fig. 18. The proportional and integral gains, kP and kI respectively, are
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given by Eq. (202) through Eq. (204) with Wχ and ζχ as the design parameters; the

controller is based on a course-hold autopilot design in Ref. [79].

Figure 18. Course Command to Bank Angle Command

kP =
2

g
VT ζχωnχ (202)

kI =
VT
g
ω2
nχ

(203)

ωnχ =
τP
Wχ

(204)

The parameter ζχ represents the desired damping ratio of the course angle follower

while Wχ is a multiple used to separate the natural frequency of the course follower

from the natural frequency of the roll mode (τP ). Finally, the gain kC adjusts the

gain of the controller during a turn. The parameter values used for each aircraft type

are presented in Table 8.

Table 8. Vector Field Follower Course Hold Parameters

Aircraft Class Wχ ζχ kT
Light Utility 5 1.0 0.8
Medium Cargo 8 1.0 0.7
Heavy Cargo 10 0.8 0.8

Fighter 6 0.8 1
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Nonlinear Dynamic Inversion Controller.

The NDI controller [12] calculates a desired course rate of change based on Eq. (205)

where κ is the curvature of the path, ζndi is the desired damping ratio, and ωnndi
is

the desired natural frequency. The variables ζndi and ωnndi
are the design parameters

for this controller. The design parameter values for all aircraft types is presented in

Table 9.

χ̇cmd =
κG2 cos(∆χ)2/(1− κepath)− 2ζndiωnndi

G sin(∆χ)− ω2
nndi

epath

cos(∆χ)G
(205)

Table 9. Nonlinear Dynamic Inversion Follower Parameters, all aircraft

Parameter Value
ωnndi

0.35 rad/s
ζndi 0.8

The values were chosen to provide a balance between stability and path following

performance. Since the course angle rate of change is equivalent to the heading

rate-of-change, the heading-rate equation of motion may be used to calculate the

corresponding bank angle command using Eq. (206); note that ground speed is used

when utilizing the course angle rate of change [79].

ϕcmd = arctan
Vgχ̇cmd

g
(206)

Synthetic Waypoint Guidance.

Finally, the SWG controller guides the aircraft to follow a moving reference point

which is a specific distance from the vehicle. The layout of the parameters is the

same as the NGL controller and Fig. 17 applies; the variable LD will again be used
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for simplicity. However, the SWG controller is a simple “carrot-chasing” guidance law

where the angle η directly relates to the commanded course as described by Eq. (207).

χcmd = η + χ (207)

The χcmd drives the same course-hold guidance law used by the VFF controller,

Fig. 18, but with gains tuned for the SWG controller. The course-command gains

used with the SWG controller are given in Table 10 and the SWG controller uses a

look-ahead distance (LD) of 5Vref ahead of the aircraft which represents a look-ahead

time of 5 seconds.

Table 10. Synthetic Waypoint Guidance Course Hold Parameters

Aircraft Class Wχ ζχ kT
Light Utility 7 1.0 0.8
Medium Cargo 12 1.0 0.7
Heavy Cargo 12 1.2 0.8

Fighter 10 1.0 0.8

Finally, it’s noted that “carrot-chasing” guidance laws inherently have a non-zero

steady-state error that will occur when following a circular path with a positive look-

ahead distance [78]. The error develops because this type of guidance law drives the

line-of-sight angle to the look-ahead point, η, to zero. Analyzing the geometry of the

path in Fig. 19 assuming the aircraft has stabilized in an orbit around the center of

the desired path, a constant heading rate-of-change. Driving η to zero under these

assumptions requires the aircraft to fly an orbit with a turn radius smaller than the

desired path resulting in a steady-state error defined by Eq. (208).

SWG Steady-State Turning Error = RT −
√
R2

T − L2
D (208)
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Figure 19. Synthetic Waypoint GuidanceCircular Orbit Error

Guidance Law Scenarios.

Three different cases are used to evaluate the lead turn when integrated with

existing guidance laws: a control, a lead turn without the optimal roll maneuver, and

a lead turn with the optimal roll maneuver. In a control scenario, the guidance laws

tracks the desired path, Fig. 13, without change to their original design.

The “Lead” case affects the reference point the guidance law uses to calculate

tracking error and generate commands. Prior to the lead turn point, the aircraft

tracks the first path segment then switches to the second segment. The “Optimal”

scenario behaves similarly to the “Lead” scenario except that a minimum time-to-

bank maneuver is performed at the lead turn distance. This method ignores the

guidance law commands at the lead turn distance and provides a minimum time-to-

bank roll rate command to the dynamics. Following the completion of the maneuver,

the controller is reinitialized and tracks the second path segment.

An example of the look-ahead point behavior during “Lead” and “Optimal” sce-

narios is presented in Fig. 20 for the straight-to-turn scenario. Figure 20 shows the

“look-ahead” point, a black star, for the aircraft both before and after the lead turn

distance, y0.

112



(a) Aircraft Prior to Lead Turn Point (b) Aircraft After Lead Turn Point

Figure 20. “Lead/Optimal” Scenario Example, Look-ahead Point Identified as Star

Each integration case is then evaluated over a range of parameters: wind, turbu-

lence, aircraft performance, and path segment order. The steady-state wind speed

was simulated at 0%, 10%, and 20% of the aircraft airspeed in the four ordinal direc-

tions (e.g., northwest, southeast, etc.). Three levels of wind turbulence were tested

(none, light, moderate) using the MATLAB® Dryden Wind Turbulence Model with

25 simulations per scenario to account for the randomness of turbulence. Next, both

path segment orders were tested. Finally, four distinct classes of aircraft were sim-

ulated with airspeeds from 293 ft/s to 864 ft/s; light utility, medium cargo, heavy

cargo, and fighter [70]. The simulation setup resulted in a total of 10,800 simulations

per guidance law.

The steady state wind speed was simulated at 0%, 10%, and 20% of the aircraft

airspeed in the four ordinal directions (e.g., northwest, southeast, etc.). Three levels

of wind turbulence were tested (none, light, moderate) using the MATLAB® Dryden

Wind Turbulence Model. Since the turbulence is generated with random white noise,

25 simulations were performed for each light and moderate scenario. Finally, the four

distinct classes of aircraft were simulated with each guidance law simulating airspeeds
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from 293 ft/s to 864 ft/s; refer to Table 1. The simulation setup resulted in a total

of 10,800 simulations for each guidance law.

4.6 Guidance Law Integration Performance Analysis

Comparison Metric.

The comparison metric is chosen to be defined by Eq. (209); similar to the original

lead turn problem, Eq. (118).

ComparisonMetric =

√∫ tf

t0

e(t)2 dt (209)

The integral is evaluated over the time interval of eight seconds before the calculated

lead turn point to twenty seconds after the lead turn point. The interval captures the

look-ahead distance for each of the guidance laws as well as the resulting transient

behavior. The lead turn point remains the same for each scenario which allows the

intervals to remain the same for the three different scenarios for a given controller, air-

craft, and wind condition. The metric is then compared as a percent difference among

the scenarios to determine the relative effect of the lead turn since each controller has

different baseline, or “control,” performance.

Results.

Figure 21 presents a sample scenario with the NGL path follower to highlight the

behavior of the different integration cases and the comparison metric. The scenario is

a light utility aircraft traveling at 293 ft/s with light turbulence, 59 ft/s wind speed,

and a wind direction of southeast. The metric interval indicates the time interval over

which the performance metric, the 2-norm, was evaluated. The “Roll Interval” is the

time interval during the “Optimal” case when the optimal roll maneuver is being
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performed.

The trajectories are initially identical since the same turbulence is used for all three

cases. Since the NGL controller incorporates a “look-ahead” distance, the “Control”

case trajectory diverges from the other two trajectories when the “look-ahead” point

moves from the straight path to the circular path; this occurs approximately at the

“look-ahead” point annotated on the figure. The “Lead” and “Optimal” trajectories

remain the same until the lead turn distance, indicated by the start of the “Roll Inter-

val.” The comparison metric for the “Control”, “Lead”, and “Optimal” trajectories

in this scenario are 309 ft, 287 ft, and 110 ft respectively.
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Figure 21. Nonlinear Guidance Law (NGL) Example: Light Utility Aircraft, Light
Turbulence, with Wind

Figure 22 presents the percent difference in the comparison metric of every “Lead”

and “Optimal” scenario compared to the corresponding “Control” scenario. The data

are split up by guidance law and then subdivided into the three turbulence levels.

In each subdivision, all data points are colored gray while the average of the “Lead”

and “Optimal” cases are presented as a black circle and “x” respectively. Note that

the two means are nearly identical for the light and moderate turbulence cases.

The primary result is that the “Lead” trajectories show an average 34% decrease

in the comparison metric from the “Control” scenario across all simulations. The
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Figure 22. ℓ2−norm Percent Difference from Control Scenario

“Optimal” trajectories only improved this performance to a 37% decrease in the

comparison metric from the “Control” cases. The results also indicate that the mag-

nitude of the average decrease in cost is heavily dependent on the level of turbulence.

This is shown in Fig. 22 by the “Lead Mean” points which are seen to increase as

turbulence increases for each controller except the SWG controller. Additionally, the

optimal maneuver only shows a significant benefit to the NGL and the NDI controllers

in scenarios without turbulence while all other scenarios show a similar 2-norm for

the “Lead” and “Optimal” solutions.

It is hypothesized that the SWG controller does not benefit from the lead turn

because the design of the SWG controller and the course command controller intro-

duces a steady-state tracking error when following a circular path due to the “pure

pursuit” nature of the controller. The resulting steady-state error violates the ter-

minal constraint assumption that the aircraft be on and tangent to the path, which

diminishes the benefit of the lead turn.

This behavior is highlighted in Fig. 23. Near the lead turn point, the “Lead” and

“Optimal” scenarios do maintain a lower error. However, once the SWG controller

reactivates, the error is driven towards the steady-state turn value. While a different
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metric interval would likely yield different results, the interval was chosen to capture

the time when the trajectories are significantly different to capture the effect of the

lead turn.

(a) Top-Down Trajectory Comparison (b) Tracking Error Comparison

Figure 23. Synthetic Waypoint GuidanceError Comparison

4.7 Near-Optimal Lead Turn Conclusions

This section developed and analyzed a method designed to improve the Dubins

path tracking performance of an aircraft by deriving a near-optimal lead turn point

and near-optimal maneuver in a windy environment which could be calculated in

near real time. The maneuver was then integrated into existing path followers to

determine the benefit of the maneuver in a more realistic scenario.

The results show that simply transitioning from one path segment to the next at

the computed lead turn point improves tracking performance for three of the four

tested controllers on average. However, it was seen that the assumption of zero

terminal error in the derivation of the lead turn distance reduced the benefit of the

lead turn and reduced the tracking performance in scenarios where the assumption

was violated.

The near-optimal roll maneuver further increases performance in simulations with

zero turbulence but has a negligible impact, on average, for scenarios with turbulence.
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The results demonstrate the use of a simple calculation which may improve the Du-

bins path tracking performance of an aircraft which is controlled by a wide variety

of guidance laws. This maneuver will be utilized in the arrival time algorithm to

improve path tracking performance during transitions between straight and circular

path segments.
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V. Racetrack Algorithm Development

5.1 Introduction

The racetrack algorithm is the primary control algorithm designed to enable a

group of aircraft to achieve coordinated arrival time with a real time control algorithm.

First, the general principles of how the racetrack algorithm affects arrival time is

presented. This is followed by the introduction of the racetrack reference frame which

is the foundation for the arrival time estimate calculations. Next, two methods that

accurately calculate the time to travel along the racetrack are introduced. The two

methods will be compared in the results section and only one method used extensively

in simulation.

Then, a short description of the implemented model predictive control path fol-

lower is given. Finally, the upper-level racetrack manager is described. The manager

enforces keep-out zones and determines which portion of the racetrack the aircraft

should be following.

5.2 Primary Controls

To develop an algorithm which can achieve coordinated arrival time in a windy

environment which may have keep-out zones, two primary control effectors are chosen:

path length and airspeed. First, a path whose definition may be changed by a single

variable is assumed, a racetrack. Adjusting the length of the racetrack, as shown

in Fig. 24, allows for rapid control over total path length which is able to quickly

respond to changes in the environment and scenario constraints. The solution reduces

the complexity of the problem by decoupling the path-following controller and the

arrival-time controller.

The algorithm is designed so that the airspeed control is always active, but be-
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Figure 24. Effect of Adjusting a on the Racetrack Shape

comes the primary arrival time controller when the path length reaches a limit. This

limit could be either a minimum limit (a circular orbit) or a maximum limit due to

an external keep-out zone. A virtual target-like control is used, which allows for both

arrival time and arrival airspeed constraints to be met.

5.3 Racetrack Reference Frame

The path to be followed, a racetrack, is depicted in Fig. 24. To standardize

the control algorithm calculations for various turn directions, headings, and final

positions, a left-hand racetrack reference frame is introduced in Fig. 25; referred to

as the racetrack reference frame.

Figure 25 also presents the variables used in the racetrack reference frame. The

bottom right corner of the racetrack is assumed to be fixed to the desired final position

for the trajectory; the point [xf , yf ]. Each of the four path segments, two straight

lines and two circular arcs, are in four separate areas referred to as quadrants (Q);

as an example, quadrant one is labeled as QI . The racetrack is oriented such that

the final segment in QIV is in the direction of the final desired ground course in the

earth-fixed reference frame, χf .

The parameters a and b are used to determine the size of the racetrack. The

parameter a defines the distance from the center of the racetrack to the center of

120



Figure 25. Left-Hand Racetrack Definition

either turn circle such that the length of the straight section in quadrants two and

four is 2a. The parameter b defines the turn radius for the turns on either end of

the racetrack. The parameter a will be controlled to meet the coordinated timing

requirements while b remains constant.

Figure 26 presents the relationship between the earth-fixed axes, {x(e), y(e)} and

the racetrack reference frame axes, {x(r), y(r)}, in the case of a right-hand turning

racetrack. Note, the racetrack axes appear to flip in the earth-fixed reference frame

between Fig. 26 and Fig. 25 because the racetrack reference frame is defined as a coun-

terclockwise racetrack. The origin of the earth-fixed reference frame is arbitrary while

the origin of the racetrack reference frame is defined as the center of the racetrack,

[xc, yc].

To transform variables from the earth-fixed reference frame to the racetrack refer-

ence frame, the vehicle and environment state variables must be rotated and flipped

into the left-hand racetrack reference frame. A turn direction variable, DT , is intro-

duced to standardize calculations between counterclockwise and clockwise racetracks.

The variable is defined as DT = 1 for counterclockwise racetracks and DT = −1 for
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Figure 26. Left-Hand Racetrack Definition

clockwise racetracks. In summary, the entire path for a racetrack is defined by the

final position, final course and the variables a, b, and DT .

The rotation matrix M, Eq. (210), projects parameters from a reference frame X

onto another reference frame Y [6]. If frame Y has been rotated clockwise from frame

X, the projection of a point x on frame X onto the reference frame Y is xY =Mx.

M(θ) =

cos θ − sin θ

sin θ cos θ

 (210)

When applied to the problem of projecting parameters from the earth-fixed refer-

ence frame to the racetrack reference frame, the rotation matrix alone will not suffice

because the direction of y(r), with respect to the earth-fixed reference frame, also de-

pends on turn direction. The previously defined turn direction variable, DT , is used

to account for the change in turn direction.

First, the translation of windspeed between the earth-fixed and racetrack reference

frame is discussed. The earth-fixed reference frame wind speeds are projected into the

racetrack reference frame via Eq. (211), noting the use of the variable DT to account
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for turn direction. The relationship of the earth-fixed and racetrack axes is depicted

in Fig. 27. The rotation is through an angle of χf −π/2 since the earth-fixed heading

is measured clockwise positive from the y-axis, “North.”

Figure 27. Reference Frame Rotation

W (r)
x

W
(r)
y

 =

1 0

0 DT

M
(
χf −

π

2

)Wx/e

Wy/e

 (211)

Next, the center of the racetrack with respect to the earth-fixed reference frame,

[x
(e)
c , y

(e)
c ], is determined to compute the aircraft position relative to the center of the

racetrack. The calculation is performed with Eq. (212) where the rotation matrix

is now applied to parameters in the racetrack reference frame which requires the

transpose of the rotation matrix. The calculation of the center of the racetrack

accounts for a left or right turn by multiplying b by DT in Eq. (212).

x(e)c

y
(e)
c

 = MT
(
χf −

π

2

) −a

DT b

+

xf/e
yf/e

 (212)

Finally, the position of the aircraft in the racetrack reference frame is calculated
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using Eq. (213).

x(r)
y(r)

 =

1 0

0 DT

M
(
χf −

π

2

)x(e) − x
(e)
c

y(e) − y
(e)
c

 (213)

5.4 Arrival Time Estimation

The most important aspect of the time-coordination problem is to accurately

estimate the arrival time of the aircraft. It is assumed that the earth-fixed position

of the aircraft is accurately measured along with true airspeed, heading, bank angle,

and roll rate. The wind speed measurement is modeled by filtering true wind speed,

including turbulence, through a low pass filter to provide an estimate of the current

steady-state wind speed; described in Sec. 3.6.

The time-estimate calculations follow a simple formula; distance remaining divided

by groundspeed. Two primary assumptions are made in these calculations. First, it

is assumed that the current measured wind speed remains constant for the remainder

of an orbit. Second, the calculations assume that the aircraft travels at the desired

airspeed, Vref , and corresponding groundspeed for the remainder of the orbit. This

assumption will be shown to aid in simultaneously achieving a desired arrival time

and arrival airspeed; see Sec. 5.5. The racetrack path is comprised of two primary

path shapes, a circle and a line, which allows the time estimates to be separated by

shape.

Straight Section Time Estimation.

In accordance with the general arrival time formula, the time to travel a straight

section is simply the distance remaining in the segment divided by the nominal

groundspeed, Gref . The distance remaining is calculated as the distance from the

endpoint of the segment to the point defined as the vehicle’s position projected onto
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the segment as shown in Fig. 28. This requires the assumption that the path is

precisely followed.

Figure 28. Straight Racetrack Section, Quadrant IV

The time remaining to complete a straight path segment in quadrant IV is ap-

proximated using the desired ground velocity according to Eq. (214) and Eq. (215).

Eq. (214) is relatively simple because the straight segment is parallel to the race-

track x-axis winds, W
(r)
x . Equation (215) is derived from the wind triangle discussed

in Sec. 3.5. In this case, the desired course is π/2 and the crosswind component

is −W (r)
y when calculating the time remaining for quadrant IV. In quadrant II, the

desired course is 3π/2 and the crosswind component is W
(r)
y .

TremQIV
(t) ≈ d(t)

Gref

=
d(t)

Vref sinψ(r) +W
(r)
x

(214)

ψ(r) = arcsin

(
W

(r)
y

Vref

)
+
π

2
(215)

Curved Section Time Estimation.

Estimating the time to travel a circular segment is more complicated than a

straight segment because the wind direction relative to the path is constantly chang-
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ing. As a result, the aircraft groundspeed also changes constantly. Two curved

section time estimation techniques are initially investigated and described in this sec-

tion. However, only a single method is chosen for integration into the algorithm; a

comparison is made in Sec. 7.3. The first assumes a ground fixed path with constant

turn radius is followed. The second assumes a constant bank angle turn between

straight segments.

Gaussian Quadrature Arrival Time Estimation.

The first method assumes the aircraft follows a constant-radius, ground fixed path

and utilizes a Gaussian quadrature to accurately estimate the arrival time. Again the

general time estimate is calculated as distance divided by groundspeed. However, the

groundspeed cannot be assumed to remain constant and requires different assump-

tions to accurately estimate an arrival time. Figure 29 presents a depiction of the

curved section variables for quadrant I. For quadrant III, similar calculations are used

by changing the sign for W
(r)
x and W

(r)
y . The remaining calculations will be discussed

for quadrant I only.

First, the distance remaining is determined by projecting the aircraft position

onto the circular path and determining the angular amount of turn remaining, θ.

The distance remaining, d, is calculated as the arc length associated with θ, d = θb.

Next, the groundspeed is calculated as the magnitude of the vector addition of

the airspeed vector and the wind vector. Since the component wind speeds, W
(r)
x and

W
(r)
y , are already calculated by the control algorithm, the groundspeed at any angle,

θ, may be calculated using Eq. (216).

G(θ) =
((
Vref sinψ

(r)(θ) +W (r)
x

)2
+
(
Vref cosψ

(r)(θ) +W (r)
y

)2) 1
2

(216)
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Figure 29. Curved Racetrack Section, Quadrant I

Since the path is assumed to be precisely followed, the heading required to achieve

a ground course tangent to the circular path, ψ(r)(θ), is determined by Eq. (217);

derived from Sec. 3.5 assuming a ground course of θ − π/2.

ψ(r)(θ) = arcsin

(
−Wcross

Vref

)
+ θ − π

2
(217)

Finally, the crosswind component of wind at any angle θ is calculated using Eq. (218)

which projects the racetrack reference frame winds onto x′ as shown in Fig. 29. The

axes {x′, y′} are oriented such that y′ is tangent to the circular path.

Wcross(θ) = W (r)
x cos(θ − π

2
)−W (r)

y sin(θ − π

2
) (218)

Thus, the magnitude of groundspeed for any angle θ may be calculated using Eq. (216)

through Eq. (218).

However, the calculated groundspeed will change throughout the turn when the
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wind is non-zero. A potential solution to achieve an arrival time estimate is to com-

pute the time-weighted average ground velocity through the turn defined by Eq. (219).

Gavgt =
1

tf − t0

∫ tf

t0

G(t) dt (219)

However, the time-weighted average requires knowledge of the time remaining and

groundspeed as a function of time which are unknown. An alternative is to calculate

the angle-weighted integral as defined by Eq. (220).

Gavgθ(θ) =
1

0− θ

∫ 0

θ

G(θ) dθ =
1

θ

∫ θ

0

G(θ) dθ (220)

A problem with the angle-weighted formulation is the angle-weighted integral is

not equal to the time-weighted integral when winds are non-zero because dθ is not

constant with respect to time. This may be shown by taking time derivative of the

definition of arc length, s, and solving for dθ,

θ(t) =
s(t)

b
(221)

dθ(t) =
G(t)

b
dt. (222)

Note that the direction of ṡ is tangent to the circle, by definition. Therefore the

magnitude of ṡ is identical to the groundspeed, G. Since dθ depends on groundspeed,

which changes over time, dθ must also change over time.

A solution is to approximate Eq. (220) as a weighted-average integral, Eq. (223),

and utilize Eq. (222) to determine the integration weight, h(θ). Examining Eq. (222),

the weighting function is chosen to be the inverse of groundspeed as a function of θ.

The result is Eq. (224).
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Gavgw(θ) =

∫ θ

0
h(θ)G(θ) dθ∫ θ

0
h(θ) dθ

(223)

Gavgw(θ) =
θ − 0∫ θ

0
1

G(θ)
dθ

(224)

The integral in the denominator of Eq. (224) does not have a closed form solution

but is continuous. A Legendre-Gauss quadrature is used to approximate Eq. (224)

using Eq. (225) [80]. The nodes, θi, are obtained by applying an affine transformation

to the roots of Legendre polynomials of some fixed degree, transforming them from

the interval [−1,+1] to [0, θ]. The quadrature weights, wi, are defined based on

the degree of the polynomials; note the quadrature weights are different from the

previously defined integration weight. The change in the numerator from Eq. (224)

to Eq. (225) is due to the affine transformation.

Gavgw ≈ 1− (−1)∑N
i=1

wi

G(θi)

(225)

The accuracy of this estimation is demonstrated in Fig. 30. In this example, the

aircraft airspeed is 300 ft/s with a 50 ft/s constant wind. The wind is oriented such

that there is initially a 50 ft/s tail wind. Finally, the aircraft competes a 180-degree

turn resulting in a 50 ft/s head wind at the final time.

First, the true groundspeed was numerically integrated to determine the true av-

erage groundspeed over the course of the turn. Next, each polynomial approximation

is shown for comparison and the time equivalent location of the nodes, θi, are marked

with an ×. The degree of the polynomial is n for each approximation pn. Finally, the

percent difference in the calculated average groundspeed is shown in the legend.

All of the investigated approximations were accurate to under 0.05 ft/s. How-

ever, the largest accuracy improvement appears to be from third to fourth degree
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Figure 30. Average Airspeed Quadrature Estimate Comparison

polynomials and it was determined that the accuracy of fifth order polynomials was

not needed. Therefore, fourth degree polynomials were chosen for implementation

into the algorithm.

Finally, the time remaining in the quadrant is estimated by dividing the estimated

distance remaining, bθ, by the estimated average velocity as shown in Eq. (226) where

b is the turn radius of the circular path segment.

TremQI/III
≈ b θ

Gavgw

(226)

Navigation Based Arrival Time Estimation.

The second curved-segment time-estimation method assumes a constant bank an-

gle throughout the turn. In contrast to the Gaussian-quadrature method in the

previous section, this method may not result in a circular path when the wind is

non-zero. This is because a constant bank angle turn creates a constant radius turn

through the moving air mass rather than a constant radius ground-fixed path.

Figure 31 presents an example of a moving turn circle. Assume that an aircraft
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starts a turn at time t0 and ends at time t1. At time t1 the aircraft is required to be

traveling in the opposite direction. The aircraft performs a constant bank angle turn

resulting in a constant radius turn with turn radius RT . In this example, assume that

the wind is moving from left to right.

t
0

t
1

R
T

Figure 31. Constant Bank Angle Turn Ground Path

The turn circles at different points in time in the moving air mass are shown

in blue with the center in each turn circle identified by a red ×. Each dashed red

line is of constant length RT . The aircraft will follow the turn circle as it moves

from left to right resulting in the skewed shape of the aircraft path shown in black.

Note, the distance between markers is greater at the beginning of the turn since the

airspeed vector and wind-speed vector are in the same direction resulting in a higher

groundspeed.

Since a constant bank angle turn follows a circular path through the moving air

mass, the ground referenced position at the end of a constant bank angle turn may

be calculated by adding the movement of the air mass to the final position of a turn

in zero wind. The following calculations will be shown for a turn in QI .

Figure 32 presents a depiction of a turn in the moving air mass along with the

variables used in the following calculation. Assume that the aircraft begins at an

arbitrary heading, ψ
(r)
0 , at an arbitrary position, [x0, y0] and is traveling at constant
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altitude and airspeed. Let the final position of the turn be defined as the point [x1, y1].

The final heading of the first turn, ψ
(r)
1 , is the heading which will achieve a ground

course of −π/2 in the presence of some steady-state wind. Finally, it is assumed

that the aircraft will complete the turn at a single, negative bank angle, ϕ1, since the

racetrack reference frame is a counterclockwise racetrack.

Figure 32. Air Mass Turn Calculations

First, the final position of the aircraft relative to the moving air mass, [x
(a)
1 , y

(a)
1 ],

will be calculated by performing two vector sums defined by Eq. (227). The equation

is derived by computing the vectors which relate the initial position of the aircraft

to the center of the turn circle and the center of the turn circle to the final desired

position. Note that the air mass has not moved at the initial position, [x0, y0], and so

the value of the initial position is the same relative to the racetrack as to the moving

air mass. x(a)1

y
(a)
1

 =

x(r)0

y
(r)
0

+RT

sin(ψ(r)
0 − π

2
)

cos(ψ
(r)
0 − π

2
)

+RT

sin(ψ(r)
1 + π

2
)

cos(ψ
(r)
1 + π

2
)

 (227)
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Next, the final heading is defined by Eq. (228) based on the definition of the wind

triangle from Eq. (100). In this case, W
(r)
y replaces Wcross from Eq. (100) since it is

perpendicular to the final ground course.

ψ
(r)
1 = arcsin

(
−W

(r)
y

VT

)
− π

2
(228)

Finally, the turn radius, RT , for an aircraft traveling at constant altitude, constant

airspeed, and in a counterclockwise orbit is defined by Eq. (229) [69]. Note, the

signum function is applied to the equation to ensure a positive turn radius value in

lieu of a negative bank angle.

RT = sgn(ϕ)
VT

ψ̇
= sgn(ϕ)

V 2
T

g tanϕ1

(229)

The air mass relative position is then transformed to the racetrack reference frame

by accounting for the distance that the air mass moves for the duration of the turn as

defined by Eq. (230) where T1 is the estimated time remaining to complete the turn

in the first quadrant.

x(r)1

y
(r)
1

 =

x(a)1

y
(a)
1

+ T1

W (r)
x

W
(r)
y

 (230)

Finally, Eq. (227) through Eq. (229) are substituted into Eq. (230) resulting in

Eq. (231), the final position relative to the racetrack reference frame. Additionally,

the incremental change in x(r) from the initial to the final position is defined as x
(r)
turn

by Eq. (232). The parameter, δx
(r)
turn will be used in a subsequent section.
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x(r)1

y
(r)
1

 =

x(r)0

y
(r)
0

− V 2
T

g tanϕ1

 cos(ψ
(r)
0 )

− sin(ψ
(r)
0 )

− V 2
T

g tanϕ1

cos(ψ(r)
1 )

sin(ψ
(r)
1 )

+ T1

W (r)
x

W
(r)
y


(231)

δx
(r)
turn = x

(r)
1 − x

(r)
0 (232)

Next, the turn time, T1, is calculated as the total change in heading divided by

the magnitude of heading rate, Eq. (233). Since it was assumed that the aircraft is

traveling at constant altitude, airspeed, and bank angle, it follows that the heading

rate throughout the turn will also be constant. Again, the signum function is used to

ensure a positive turn time. In Eq. (234), ψ̇(r) will have the same sign as ϕ1.

T1 = sgn(tanϕ1)
∆ψ(r)

ψ̇(r)
(233)

ψ̇(r) =
g

VT
tanϕ1 (234)

The required change in heading is given by Eq. (235), assuming that the both heading

values, ψ
(r)
0 and ψ

(r)
1 , are defined [−π, π]. The previously made assumptions result in

a positive ∆ψ(r).

∆ψ(r) = ψ
(r)
0 − ψ

(r)
1 = ψ

(r)
0 −

(
arcsin

(
−W

(r)
y

VT

)
− π

2

)
(235)

The turn time, T1, is calculated by substituting Eq. (234) and Eq. (235) into Eq. (233)

resulting in Eq. (236).

T1 = sgn(ϕ1)
VT
g

ψ
(r)
0 − ψ

(r)
1

tanϕ1

(236)
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Finally, the bank angle required to achieve the desired final y(r)-axis position

must be determined to accurately estimate the arrival time and provide a bank angle

command. First, the final y(r)-axis position in Eq. (231), y
(r)
1 , is defined as b, the

desired turn radius of the racetrack. The equation is then solved for sgn(ϕ1) tanϕ1

resulting in Eq. (237), where ϕ1 is the bank angle which will achieve the correct y-axis

position at the end of the turn.

sgn(ϕ1) tanϕ1 =
VT

(
W

(r)
y ψ1 −W

(r)
y ψ

(r)
0 + VT sinψ

(r)
1 − VT sinψ

(r)
0

)
g
(
b− y

(r)
0

) (237)

Both sides of Eq. (237) are positive allowing for the magnitude of the bank angle

to be easily determined by taking the arctangent of the right-hand side. Since a

counterclockwise turn is assumed, the value of ϕ1 will be negative. Subsequently,

the time remaining in the turn may be estimated with Eq. (236), assuming that the

aircraft maintains a constant bank angle, ϕ1, throughout the turn.

The previous calculations specifically apply to a turn in quadrant I. However,

quadrant III turns are calculated using the same equations by rotating the reference

frame by π such that quadrant III is identical to quadrant I. Once the initial position,

heading, and winds have been rotated, the calculations are identical.

Path Acquisition.

A key assumption of the previous section is that the path is precisely followed.

However, it is desired for the aircraft to be able to begin off path and still maintain

accurate timing. In fact, it will be shown that this occurs whenever an orbit is

completed against a moving target, see Sec. 5.8. The approach chosen is to guide the

aircraft to the path quickly where the path tracking assumptions are valid.
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This operation is performed by navigating the aircraft at a right angle to the

path. However, the result is that the projection of the aircraft onto the path, used in

estimating the time remaining, will not change position. Subsequently the estimated

time remaining will not change, and the estimated arrival time will increase as time

increases. In the case where the aircraft is not on the racetrack, an estimate for the

time to return to the racetrack is made to provide a more accurate overall arrival

time estimate.

The estimate is calculated in the same manner as the straight path segments,

Sec. 5.4. The estimate assumes that the aircraft flies directly towards the path and is

calculated as the path error (the distance remaining) divided by the current reference

groundspeed. The groundspeed is calculated by rotating the winds to be tangent to

the closest point on the path and adding the appropriate component to airspeed, a

similar rotation to Eq. (211).

Since some path tracking error is expected, a dead zone is utilized to prevent

excessive additions to the time estimate once the path is acquired. Based on initial

simulations, a dead zone equivalent to the desired turn radius is used. Although the

path follower is able to stay well within this value, see Sec. 5.7, it was observed that

this value provided minimal deviation in arrival time estimate when acquiring the

path. Once the aircraft is within the dead-zone, it is assumed that the aircraft is

once again successfully following the path and that the time estimates of the previous

sections are valid.

5.5 Arrival Time Control

Taking the arrival time estimates of each segment from the previous section, the

arrival time at the end of the racetrack is estimated as the sum of the estimated time

to travel along each remaining segment added to the current time. The arrival time
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error, Te, is defined by Eq. (238) where Trem is the estimated time remaining until

the endpoint, Tref is the reference or desired arrival time, and t is the current time.

A positive arrival error indicates that the aircraft will arrive “late.” Two controls are

available to affect Trem(t): airspeed and length of path.

Te(t) = Trem(t) + t− Tref (238)

Arrival Time Control Via Airspeed.

First, assume that the path length is fixed and airspeed is the only control which

may affect the arrival time estimate. Recall, the arrival time estimate assumes that

the aircraft travels at the desired airspeed for the remainder of the trajectory, as

opposed to the current airspeed or some non-constant airspeed profile. The desired

airspeed is used because it aids the control algorithm in achieving a desired final

airspeed in addition to a desired arrival time; this is best shown with an example.

At some time t1, let there be an aircraft a distance d from the endpoint; represented

by a triangle in Fig. 33. The aircraft is traveling from left to right at a constant

airspeed of VT such that the dynamics of the aircraft position relative to the endpoint

are ḋ(t) = −VT ; assuming that the wind speed is zero. The arrival time estimate

is defined to be the distance remaining, d, divided by the desired airspeed, Vref as

defined in Eq. (239). The arrival time error for the aircraft is then defined by Eq. (240)

Trem(t) =
d(t)

Vref
(239)

Te(t) =
d(t)

Vref
+ t− Tref (240)

Setting the error equation, Eq. (240), to zero at time, t1, allows a distance d∗ to
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Figure 33. Velocity used in Time Estimation Example

be computed by Eq. (241). The variable d∗ describes a position at the current time,

t1, where the desired arrival time will be achieved if the aircraft travels at the desired

airspeed, Vref .

0 =
d∗(t1)

Vref
+ t1 − Tref , (241)

Now, assume that the current arrival time error at time t1 is greater than zero

indicating the aircraft is estimated to arrive “late.”

0 < Te(t) =
d(t1)

Vref
+ t1 − Tref , (242)

Combining Eq. (242) and Eq. (241) results in the inequality,

d∗(t1)

Vref
+ t1 − Tref <

d(t1)

Vref
+ t1 − Tref (243)

d∗(t1) < d(t1) (244)

as shown in Fig. 33.

Therefore, a controller which drives the arrival time error to zero will also drive

the position of the aircraft to a moving position d∗. Since d∗ is moving at Vref ,

the arrival time and arrival airspeed constraints will be simultaneously satisfied if

d = d∗. The result is similar to a virtual target approach without explicitly tracking

a virtual target [45]. In Chapter VI, the arrival time error dynamics will be derived

and analyzed for this airspeed control scheme.

138



Arrival Time Control Via Path Length.

Now assume that the path-length is not fixed. The path length may only be

adjusted in quadrants I and II because adjusting the path in quadrant III would

result in large tracking errors while adjusting the path length in quadrant IV would

not have any affect since the endpoint is fixed. This can be seen in Fig. 34. The

racetrack size could simply be controlled with a PI controller and drive the arrival

time error to zero. However, this section will derive an analytic expression for the

desired racetrack size as a function of the estimated time remaining and the desired

arrival time.

Figure 34. Effect of Adjusting a on the Racetrack Shape

Equations (245)-(246) expand the definition of the estimated time remaining as

the sum of each remaining path segment if the aircraft is in quadrant I or II. The time

remaining for the current segment will decrease as the aircraft moves along the path.

However, the time remaining for each straight segment is a function of the racetrack

size since the length of each segment is defined to be 2a. Finally, with the aircraft in

quadrant I or II, the estimated time remaining in quadrant III is constant.

Trem(t) = TremQI
(t) + TremQII

(a) + TremQIII
+ TremQIV

(a), in QI (245)

Trem(t) = TremQII
(t, a) + TremQIII

+ TremQIV
(a), in QII (246)
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Recalling that the estimated time remaining for each of the straight segments is

simply distance divided by desired groundspeed, the time remaining equations are

expanded to Eqs. (247)-(248). In this expression, Vsref is the crosswind corrected

reference speed defined by Eq. (249) which was derived using the wind triangle from

Sec. 3.5. Adding the current headwind/tailwind component of windspeed to Vsref

results in the desired groundspeed, the denominator component.

Trem(t) = TremQI
(t) +

2a

Vsref +W
(r)
x

+ TremQIII
+

2a

Vsref −W
(r)
x

, in QI (247)

Trem(t) =
x(r)(t) + a

Vsref +W
(r)
x

+ TremQIII
+

2a

Vsref −W
(r)
x

, in QII (248)

Vsref = Vref sin arccos

(
−W

(r)
y

Vref

)
(249)

In the racetrack algorithm, all of the parameters in Eqs. (247)-(249) have already

been calculated as part of the time estimate calculations. The definition of arrival

time error, Eq. (250), is then set equal to zero and solved for the racetrack size a.

After simplifying the expression, the result is Eqs. (251)-(252).
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Te(t) = Trem(t, a) + t− Tref (250)

In QI ,

a = −

(
Vsref

2 −W
(r)
x

2
)(

TremQI
+ TremQIII

+ t− Tref

)
4Vsref

(251)

In QII ,

a = −

(
Vsref +W

(r)
x

)(
x(r)(t) + Vsref

(
TremQIII

+ t− Tref

))
3Vsref −W

(r)
x

+

(
Vsref +W

(r)
x

)(
W

(r)
x

(
TremQIII

+ t− Tref

))
3Vsref −W

(r)
x

(252)

When this expression is active in the algorithm, the arrival time error is zero,

by definition. Small perturbations to the error are expected in simulation due to a

discrete time step. If a is calculated at each time step, then there will be a small

amount of time between calculations when the information used to calculate a is not

exactly the true value. These perturbations are minimized with a small time step.

5.6 Path Tracking Effect on Arrival Time

If the size of the racetrack is fixed, the aircraft may intentionally fly off the desired

path to affect arrival time. Additionally, it is expected there will be some path

tracking error in simulation due to the dynamics of the path follower interacting with

the effects of wind and turbulence. This section evaluates the effect path tracking

error may have on the arrival time error. The main cause of this effect is the difference

between true groundspeed of the aircraft and the groundspeed of the reference point

moving along the path.
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Straight Segments.

This effect of path tracking error on arrival time error is shown in Fig. 35 for the

case of a straight segment. Note, true groundspeed and ground course angles are

used. In Sec. 5.4, the time to travel a straight segment is calculated by projecting the

aircraft position onto the segment. Similarly, the rate of change of that projection

is based on the projected groundspeed, Gs. When the ground course error (∆χ) is

small, the difference between G and Gs is negligible. It is reasonably assumed that

the ground course error will be small while the path follower is successfully tracking

the path. Therefore, in the case of a straight path segment while the aircraft is near

the path, the effects of path error are negligible.

Figure 35. Straight Racetrack Section, Quadrant IV

However, in the case of an aircraft that is reacquiring the path, the heading may

not be small and the speed of the projected point could be zero when perpendicular

to the path. Therefore, a path error correction term, discussed in Sec. 5.4, is added

to approximate the time to get to the path and alleviates any large changes in the

arrival time estimate when acquiring a path segment.

Curved Segments.

In the case of a curved segment, the effect of path track error on arrival time is

only discussed for the Gaussian Quadrature estimation method, Sec. 5.4 because the

Navigation method does not track a path during a turn. Take the scenario in Fig. 36
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where the aircraft is tracking a curved path, turn radius RT , but has a tracking error

of e. Based on simple geometry, the arc length, s, of some arc angle θ will be larger

for the desired path than the aircraft’s current circular trajectory, shown as a bold

line.

Figure 36. Circular Segment Error

Recall, the quadrature method projects the aircraft position to the circular path

in order to estimate the time remaining to complete the segment. The arc length

is related to arc angle by some turn radius, R, as defined by Eq. (253). Taking the

derivative of this equation, assuming constant R, results in Eq. (254). Equation (254)

may be used to relate the measured groundspeed of the aircraft, Gmt to the measured

groundspeed of the projected position on the reference path, Gm.

s = θR (253)

ṡ = θ̇R (254)

θ̇t =
Gmt

RT − e
(255)

Gm =
GmtRT

RT − e
(256)
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The angular rate of change is a function of the aircraft position rate of change,

equivalent to groundspeed. Therefore, the true angular rate of change, θ̇t, is defined

by Eq. (255). Finally, the rate of change of a point projected on the path, Gm, is

determined utilizing the true angular rate of change as defined by Eq. (256). Note,

the variable Gm is used as the rate of change of the projected point because it is

equivalent to Gm which will be used Sec. 6.2 and assumes the aircraft remains on the

path. The actual of effect of flying off the desired path is analyzed in the results,

Sec. 7.4

5.7 Model Predictive Control Path Follower

As previously mentioned, the racetrack algorithm effectively decouples arrival time

control from path following control. This requires a navigation controller which can

accurately track the path and provide quick path acquisition when the aircraft is away

from the desired path. Any controller which can meet these requirements could be

integrated into the racetrack algorithm.

However, this research utilized a model predictive control (MPC) navigation con-

troller primarily because of its flexibility with regards to providing fine path tracking

in addition to gross acquisition. In general, a MPC controller determines a control

output by finding the control which minimizes some cost function over a finite time

horizon.

Choosing the cost function to be tracking error, a single MPC controller will direct

the aircraft towards the path when far away and provide fine tracking when near the

path. In this research, the MPC controller determines a single bank angle, ϕm which

minimizes Eq. (257) at every time step t; th is the time horizon of the controller.

J(ϕ) =

∫ t+th

t

e2(ϕm, t) + kδδ
2(ϕm, t) (257)
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The position error (e) and heading error (δ), depicted in Fig. 37, are determined

by integrating the single bank angle through the simplified dynamics and LQR bank

angle command system presented in Chapter III then comparing the output to the

desired path. The dynamics are reproduced in Eqs. (258)-(264). Recall, umax is the

aircraft defined roll rate limit and ṄZmax is the assumed maximum rate of change of

NZ the aircraft can generate; see Sec. 3.2.

ẋ(r)(t) = VT cosψ(r)(t) +W (r)
x (258)

ẏ(r)(t) = VT sinψ(r)(t) +W (r)
y (259)

ψ̇(r)(t) =
g

VT
tanϕ(t) (260)

ϕ̇(t) = p(t) (261)

Ṗ (t) =
1

τp
(Pcmd(t)− P (t)) (262)

Pcmd(t) =
Pmax

/
Pmin

−Kp[ϕ(t)− ϕm, P (t)]
T (263)

Pmax = −Pmin = min

(
umax,

∣∣∣∣ṄZlim

cosϕ(t)

tanϕ(t)

∣∣∣∣) (264)

Figure 37. Path Follower Variables

The cost is calculated assuming constant airspeed based on the airspeed at each

time step (i.e., the airspeed may change each time a new bank angle is calculated).

Finally, the path error is calculated as the tangential distance from the circular or
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straight path segment. The error is calculated differently depending on the quadrant

mode of the controller; the quadrant mode logic is discussed in detail in Sec. 5.8.

Nominally, the distance from each evaluated point to the full racetrack is used to

determine the tracking error. However, this method guides the aircraft to the closest

portion of the racetrack. When acquiring the path or executing a re-orbit, it is desired

for the follower to ignore portions of the racetrack and fly to the desired segment.

As an example, a re-orbit may be commanded in quadrant IV to send the aircraft

back to quadrant II. The aircraft is closest to the quadrant IV segment and needs

to ignore that portion of the path. Therefore, a re-orbit is commanded, Sec. 5.8, or

when commanded to fly to quadrant II while acquiring the path, the path segments

in quadrants I and IV are ignored. A loop is prevented because the quadrant mode

will return to a nominal condition once the quadrant II path is reacquired.

The course error gain, kδ, is a variable that is a function of both heading error

and path error. The gain is zero when the aircraft is near the path, a positive value

when acquiring the path, and zero again when far from the path.

Combined with the path error component of Eq. (257), this approach ensures that

the aircraft begins to orbit in the correct direction when acquiring the path and allows

the aircraft to turn around if initialized near the path in the wrong direction.

The optimization problem is numerically solved with a finite number of iterations

to ensure a bank angle is computed before the next control-algorithm time step. The

output of the MPC controller is a bank angle command which is limited based on the

assumed turn performance for the aircraft; defined in Chap. III.

Arrival Time Control Features.

As previously mentioned, arrival time control via speed is limited by the capability

of the aircraft. To improve the ability of the controller to negate large arrival time
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errors to zero, two path adjustment features were added to the MPC algorithm:

s-turns and turn radius adjustment. Both features are implemented by adding or

subtracting a bounded parameter from the calculated tracking error. This effectively

“commands” a non-zero path error which the MPC algorithm attempts to achieve.

The features are only enabled if the absolute arrival time error is greater than five

seconds.

The purpose of the s-turn is to increase the arrival time in the event of racetrack

size limitation due to a keep-out zone. The s-turn causes the aircraft to weave across

a section of path which increases the length of the actual path compared to the path

segment. This feature is only enabled in Quadrant II since flying inside of a turn

would cause the arrival time to decrease. The s-turn is implemented by adding a

sine signal to the actual path error. The magnitude of the signal is 700 ft for fighter

aircraft and 300 ft for all others.

The turn radius adjustment feature directs an aircraft in a turn to fly inside or

outside of a turn to affect its arrival time. Clearly, a smaller turn radius will result

in a shorter path and an aircraft traveling at the same speed will get to the end of

the turn faster with a smaller turn radius. The magnitude of this adjustment is also

limited to 80% of the reference airspeed value which was chosen based on observed

performance. A gain of 40 is applied to any time error outside of ±5 seconds to

calculate the non-limited adjustment. Overall, these features enable the algorithm to

quickly diminish large arrival time errors in the event the desired endpoint or path

abruptly changes.

Model Predictive Control Parameters and Performance.

The MPC time horizons were selected for each aircraft to achieve a maximum

path following error of 500 ft in an environment with a windspeed of half the aircraft
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airspeed and moderate turbulence. The time horizons are listed in Table 11.

Table 11. Model Predictive Control Aircraft Parameters

Aircraft Type Horizon (s)

Light Utility 6
Medium Cargo 8
Heavy Cargo 7

Fighter 6

An example of the MPC tracking performance is also presented in Fig. 38; the bank

angle command and desired quadrant are given in the first graphs. The simulation is

a heavy cargo aircraft, Vref = 544 ft/s, following a racetrack in moderate turbulence

and a steady state wind of 190 ft/s (112 knots). The error is within 200 ft for the

duration of the orbit and the control does not exhibit overly active behavior.

Figure 38. Heavy Cargo Aircraft Path Following Performance Example

Finally, Fig. 39 presents a simulation which highlights the path acquisition, s-

turn, and turn radius adjustment logic. The reference airspeed is 864 ft/s and the

windspeed is 259 ft/s with a heading of 97 deg. The path acquisition is nominal and

followed by s-turns at approximately 50-100 seconds. After traveling the remainder of
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the orbit nominally, the turn radius adjustment is activated after passing the endpoint

(red triangle) at approximately 250 seconds. The adjustment commands the follower

to fly outside the desired turn radius to increase the estimated arrival time. The

command slowly decreases as the arrival time error decreases below a set threshold

value.

(a) Top Down View
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Figure 39. Fighter Aircraft Arrival Time Control Feature Example

An identical simulation run with only the turn radius adjustment active reached

the s-turn deactivation threshold upon entering the final quadrant; coordinates (0, 8).

A subsequent simulation without s-turns or turn radius adjustment results in reaching

the s-turn deactivation threshold when crossing the endpoint. This highlights the

benefit of both the s-turn and turn radius adjustment logic.

5.8 Racetrack Manager

The racetrack manager determines a number of high-level parameters which affect

the calculations and behavior of the racetrack. The manager calculates the desired

arrival time, the maximum size of the racetrack, the orbit direction, the location of

the endpoint, whether airspeed control is enabled or not, and the current quadrant

the aircraft is commanded to follow.
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Arrival Time Communication.

The arrival time for a single aircraft is straight forward; this is equivalent to the

lead aircraft case. It is simply the desired orbit duration added to the start time of

the current orbit. The start time is either the initialization of the simulation or the

time when the aircraft last overflew the endpoint.

In the case of multiple aircraft, the desired time spacing is added to the estimated

arrival time of the preceding aircraft. Finally, to simulate data communication, the

estimated arrival time of the preceding aircraft is delayed by 0.7 seconds and updated

once per second. This provides an approximate simulation of data calculation and

transmission in a realistic environment. The effect of a delay on stability of the system

is of interest but beyond the scope of this dissertation.

Enabling Airspeed Control.

Airspeed control is allowed to be turned on and off to prevent undesirable behavior

during racetrack initialization. To achieve this, the airspeed command is set to the

desired airspeed for the first 7 seconds of each orbit to allow any large perturbations

in arrival time error due to endpoint changes to stabilize.

Endpoint Estimation.

When evaluating the arrival time and airspeed performance of the algorithm, it is

with reference to the endpoint of the racetrack. In this research, it is assumed that

the desired outcome is overflight of some ground target at a desired time, heading,

and airspeed. The case of a static target is trivial, and the endpoint will overlay the

target itself.

There are two primary approaches to overfly a moving target; predict the endpoint

or track the target directly. In either case, it is first assumed that the aircraft has

150



some method to accurately measure the position and velocity vector of the target.

The first approach is to extrapolate the movement of a target to the estimated

arrival time, depicted in Fig. 40. This method assumes that the target continues at

a constant speed and direction through the estimated arrival time. The estimated

arrival time is used, as opposed to the desired arrival time, because if the arrival time

is not met, the target is still overflown. If the desired arrival time were used, both

arrival time and overflight of the target may not be met.

Figure 40. Method 1: Constant Target Speed, Fixed End Point

Calculating the estimated endpoint is done by multiplying the velocity vector by

the estimated time remaining. If the target velocity vector is constant, the estimated

endpoint in Fig. 40, the triangle, will remain constant. The disadvantages of this

method occur if the target changes its motion before the arrival time. The result is

a large step change in the endpoint which moves the entire racetrack being followed.

The aircraft must reposition to the new racetrack and adjust its speed accordingly.

The second approach is to let the endpoint move with the target, depicted in

Fig. 41. In this situation, the racetrack pattern will always be moving which isn’t
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inherently a disadvantage. In fact, this method is more robust to changes in target

speed. However, this movement will cause the ground course that the aircraft overflies

the target to be affected by the motion of the target, shown as the vector G in Fig. 41.

This is because the motion of the racetrack must be added to the motion of the aircraft

following the racetrack.

Figure 41. Method 2: Constant Target Speed, Moving End Point

In this research, priority is given to overflying the target at the desired heading

and it is assumed that the target will maintain a relatively constant speed and head-

ing. Therefore, the endpoint extrapolation method, Fig. 40 is implemented in the

algorithm.

Racetrack Reset Trigger.

The racetrack manager triggers several separate functions if a large change to the

endpoint is detected. This is defined as a “Racetrack Reset”. Two different types of

resets are used.

The first type of reset triggers the keep-out zone calculations and is termed an

“endpoint reset.” The initial location of the endpoint is saved as a reference point. If
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the current endpoint moves greater than 500 ft from the reference point, an “endpoint

reset” is triggered.

The second type of reset is triggered when the filtered velocity of the endpoint is

greater than seven times the reference airspeed; the filter is a low pass filter with a

one second time constant. This may occur when large changes to the estimated time

remaining are experienced such as stopping targets or at the beginning of an orbit.

This reset, referred to as a “Quadrant Reset” causes the quadrant logic to execute a

hold and reset; described in Sec. 5.8.

The reason for two different sets of resets is that recomputing the keep-out zone

limits is computationally intensive and a rapid succession of resets resulted in sim-

ulation errors. On the other hand, the quadrant control is able to handle a quick

succession of resets. Since the quadrant command is part of the arrival time calcula-

tions, it is necessary to ensure it is up to date, discussed in Sec. 5.8.

Keep-Out Zone Determination.

In this research, keep-out zones are enforced by determining the maximum race-

track size which does not overlap a keep-out zone. This method limits ensures the

desired path does not violate the keep-out zone but does not directly limit the aircraft

trajectory. As an example, the turn radius adjustment in Sec. 5.7 could cause the

aircraft to violate the keep-out zone when the desired path is touching the keep-out

zone. To accommodate the expected variation in path tracking, a “pad” is included

in the calculations which ensures the desired path remains a specified distance from

the keep-out zone, identified as the variable pad in calculations.

Additionally, determining the maximum size of the racetrack could be performed

by a separate navigation algorithm which is specifically designed to manipulate shapes

around exclusion zones. However, the racetrack algorithm is set up as a single model
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which includes its own keep-out zone enforcement.

The keep-out zone enforcement is performed as an optimization problem to max-

imize the size of the racetrack while honoring the keep-out zone constraints. The

problem is also formulated to allow for an arrival heading tolerance. This is imple-

mented to allow the racetrack to rotate to avoid a keep-out zone or provide a larger

maximum arrival time.

To formulate a feasible problem, it is assumed that any keep-out zones do not

enclose the endpoint and do not overlap a racetrack of size a = 0, a circle. This

represents an infeasible scenario which is outside the scope of this algorithm.

It is assumed that any keep-out zones are ground-fixed and time invariant. Subse-

quently, it is assumed that any keep-out zone may be modeled by a series of ground-

fixed elliptical or rectangular areas. These assumptions allow the keep-out zones to

be modeled as superellipsoids [81].

Superellipsoids are a special set of closed curves where the curve is defined by

Eq. (265). The variables a1 and a2 determine the size of the semi-major and semi-

minor axes while ε2 determines how “rectangular” the curve is; note ε1 is used for

three-dimensional shapes. Figure 42 displays multiple superellipsoids with varying

ε2; a1 = a2 = 1 in each graph.

(
x

a1

) 2
ε2

+

(
y

a2

) 2
ε2

= 1 (265)

The strength of superellipsoids is that the definition of the curve is related to an

“in-out” function, Eq. (266). This function may be used to determine if a point is

inside or outside the shape. If F = 1 the “query” point is on the curve. If F > 1 the

“query” point is outside the curve and if F < 1 the “query” point is inside the curve.

This function is referenced to the center of the superellipsoid in a specific orientation.
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(a) ε2 = 0.5 (b) ε2 = 0.5 (c) ε2 = 0.1

Figure 42. Change in Superellipsoids with ε2

To allow for rotated keep-out zones which may be placed somewhere around the

racetrack, any “query” point in the earth-fixed reference frame must first be referenced

to the center of the superellipsoid and then rotated to the orientation shown in Fig. 42.

F (x, y) =

(
x

a1

) 2
ε2

+

(
y

a2

) 2
ε2

(266)

To develop the optimization problem, the “query” points must be defined. The

“query” points are selected to be 10 evenly spaced points on each circular segment of

the racetrack, to include the endpoints of each circle, for 20 points total. The linear

segments of the racetrack are not queried because the initial guess of the optimization

problem is a circle. As the racetrack lengthens, the linear segment remains between

the endpoints of the circular segment. Therefore, the circular segment will encounter

a constraint before the linear segment if the optimization is performed correctly. The

racetrack reference frame is reproduced in Fig. 43 for reference.

Utilizing the racetrack reference frame, the “query” points in the earth-fixed ref-

erence frame may be defined as a linear function of the racetrack size. Let E
(r)
I be a

2× 1 vector of the x(r), y(r) coordinates of a “query” point in the first quadrant. The

keep-out zone “pad” is added to the desired racetrack turn radius when computing

the “query” points.
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Figure 43. Left-Hand Racetrack Definition

Recall that M is simply a clockwise axis rotation matrix, therefore MT rotates

the racetrack axes counterclockwise and the racetrack is rotated clockwise. Addi-

tionally, recall that DT is the turn direction variable which is defined to be 1 for a

counterclockwise orbit and -1 for a clockwise orbit.

Then the earth-fixed coordinates of a quadrant I point may be defined by Eq. (267).

Note that quadrant I is independent of the racetrack size variable a, as expected. Sim-

ilarly, let E
(r)
III be a 2×1 vector of x(r), y(r) coordinates of a quadrant III “query” point

with racetrack size a = 0. Again, an adjusted turn radius to include the keep-out

zone “pad” is used to calculate E
(r)
III .

In the racetrack reference frame, quadrant III is simply translated along the nega-

tive x-axis as the racetrack size increases. Therefore, the earth-fixed coordinates of a

quadrant III point may be defined by Eq. (268); note that this is linear with respect

to a.
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 (267)

E
(e)
III(a) = MT
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π
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)1 0

0 DT
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0


+

x(e)f
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(e)
f

 (268)

Each “query” point is evaluated with Eqs. (267)-(268) to result in a 2× 20 set of

coordinates, E(e). Let the rotation of a keep-out zone be defined as ψ
(e)
k and the earth-

fixed coordinates of the center of the keep-out zone be (x
(e)
k , y

(e)
k ). The “query” points

are shifted and rotated into the keep-out zone reference frame, see Fig. 42, using

Eq. (269). Finally, the inequality constraint, Eq. (270), is evaluated using Eq. (266)

for each “query” point and each keep-out zone in the scenario.

E(k) = M(ψ(e)(k))E(e) −

x(e)k

y
(e)
k

 (269)

F (E(k)) ≥ 1 (270)

The resulting optimization problem may be summarized by Eq. (271). This op-

timization problem is evaluated whenever an “Endpoint Reset” is commanded as

described in Sec. 5.8

minimize − a (271a)

subject to −F (E(k)(a)) ≤ −1 (271b)
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Quadrant Control.

To provide flexibility in arrival time control, the quadrant the aircraft is following

is controlled by a state machine modeled in the StateFlow language of MATLAB ®.

The output of this state machine is the quadrant “mode” of the algorithm (i.e., the

portion of the racetrack the aircraft should be following). The state machine is used

because it allows for a wide range of edge cases to be addressed. The primary benefit

of the quadrant control is commanding the correct quadrant in the event the endpoint

moves, such as after orbit completion with a moving target. This requires a robust

state machine since the endpoint may move to any racetrack quadrant depending on

the target heading, target speed, wind direction and windspeed.

In the state machine, the physical quadrant that the aircraft is in is labeled as

ActualQuad; this is an input into the state machine. The output of the state machine

is the quadrant mode which is labeled as SetQuad. This parameter directs which part

of the racetrack the racetrack should be following. When the simulation begins, the

quadrant mode is initialized to the quadrant the aircraft is physically unless the

simulation is a multi-pass simulation. In the latter case, the quadrant initializes as if

an orbit was just successfully completed.

The quadrant control varies depending on the how the curved section arrival time

is estimated. Either a ground-fixed racetrack is assumed, the Gaussian Quadrature

method, or a constant bank angle turn is assumed, see Sec. 5.4. The latter results in

a racetrack whose size changes with the magnitude of the wind. This necessitates a

slightly different method to control the quadrant mode. Three overall control loops

are used: nominal, reset, and re-orbit.
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Ground-fixed Path Nominal Flow.

In the nominal ground-fixed case, it is assumed that the aircraft precisely follows

the desired racetrack, Fig. 44. When the aircraft physically moves into the next

quadrant, defined by Fig. 44, then the quadrant mode is incremented to the quadrant.

Figure 44. Left-Hand Racetrack Definition

The lead turn time calculated in Chapter IV is also used as a condition to in-

crement to the next quadrant. In the case of a repeat pass completed nominally,

the quadrant mode is set to either one or two depending on the relative location of

the aircraft to the new racetrack. This forces the aircraft to fly towards the desired

quadrant and ensures the racetrack size may adjust. Once the aircraft is within a

turn radius of the desired path, the quadrant logic returns to its nominal flow. This

loop is depicted in Fig. 45.

Figure 45. Ground-fixed Path Nominal State Machine
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Constant Bank Angle Nominal Flow.

In the case of a constant bank angle turn, the endpoint of each turning path

segment is variable and dependent on Eq. (272); from Sec. 5.4. The variability of these

endpoints requires a modification to the previous method of quadrant determination

based on how the wind affects the ground track.
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y
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(272)

δx
(r)
turn = x

(r)
1 − x

(r)
0 (273)

The variability of the turning segment endpoints is highlighted in Fig. 46 where

the endpoint of each turn is shifted in the direction of the x(r)-axis wind. Dotted

lines are used to delineate the different quadrants are to either straight or curved

path segments. The wind in the upper racetrack image is moving from right to

left and left to right in the lower image. To correctly determine the quadrant, two

assumptions and a racetrack size limit are required.

Figure 46. Wind Direction Effect on Ground Track
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First, the end of a turning quadrant is defined as some fixed y(r)-axis position.

This is implemented because the required bank angle determined by Eq. (237) ap-

proaches zero as the required change in heading approaches zero. This could result in

a trajectory which asymptotically approaches the next straight path segment without

ever reaching the segment itself. Therefore, the transition from turning to straight

segment must occur before the remaining change in heading approaches zero. This

results in a transition point which is not precisely on the straight path segment but

is close enough for the straight-segment path follower to quickly eliminate any error.

A value of 95 percent of the turn radius was determined to provide reasonable timing

performance and resulted in smooth quadrant transitions.

The second assumption fixes key points relative to the center of the racetrack.

It is desired that the transition point [x3, y3] be at a racetrack relative position of

[−a,−b]. However, this point is the endpoint of a turn which is variable. Since the

relative change in x(r) between x2 and x3 is known from the turn calculations, δx
(r)
turn

from Eq. (273), the beginning of the turn, point [x2, y2], may selected to achieve the

desired end position assuming a nominal turn. Thus, the start of the turn in quadrant

III is defined as Eq. (274) and Eq. (275).

[x
(r)
2 , y

(r)
2 ] = [−a′, b] (274)

a′ = a+ δx
(r)
turn (275)

Finally, it can be seen that if a = 0 in the case of the upper image in Fig. 46, then

the point [x2, y2] would need to occur in quadrant I, before the end of the first turn, to

achieve the correct end of turn position, x3. This issue is remedied by increasing the

minimum bound of a to account for δx
(r)
turn in the case whereW

(r)
x < 0, the upper image
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of Fig. 46. Combining these assumptions, the aircraft’s current quadrant is governed

by Fig. 47. Repeat passes are treated identically to the Gaussian quadrature method.

In the case of a repeat pass completed nominally, a “Quadrant Reset” is commanded.

Figure 47. Constant Bank Angle Quadrant Determination

Quadrant Reset.

The quadrant logic is reset to one whenever a significant change in the endpoint

is detected. The endpoint will move if the estimated end time changes rapidly due to

the preceding aircraft or upon orbit completion. The reset occurs when a “Quadrant

Reset,” Sec. 5.8, is triggered by the Racetrack Manager while the aircraft is in quad-

rants I, II, and III. When a reset is triggered, the quadrant is simply re-initialized

to quadrant I. Initializing to quadrant I allows the racetrack size to re-adjust while

also allowing the quadrant mode to increment to an appropriate number. A similar

“reset” occurs upon successful orbit completion however, this is considered nominal

behavior and is discussed in Sec. 5.8

The primary purpose of specifying the quadrant is to prevent the aircraft from

following the “wrong” portion of the racetrack after a reset. Take Fig. 48 for example

and let the aircraft currently be on time with the current racetrack shown as a solid

path. If the target stops at some time t1, the racetrack will move to the dashed
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path and the aircraft will move from quadrant II to IV. If the mode were switched

to quadrant IV, the aircraft would likely arrive early due to its proximity to the

endpoint.

Figure 48. Target Stop at time t = t1

Re-Orbit.

A “re-orbit” logic is used to improve the arrival time performance in cases where

the aircraft is significantly early, and the size of the racetrack may not change. This

could occur due to an endpoint change which results in the aircraft ending up in the

final two quadrants or due to a keep-out zone preventing the racetrack from extending

to the desired size. Recalling that one of the primary arrival time controls is path

length, if the racetrack size is fixed, the aircraft may simply return to an early portion

of the racetrack to increase the path length.

To prevent a re-orbit from resulting in a late arrival, the logic is only allowed when

the arrival time error is more negative than an estimate of a time to complete a re-

orbit. The re-orbit time estimate is based on the calculation of the time to complete

half an orbit at the desired turn radius and airspeed. In quadrant IV, the arrival time
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error must be negative and a greater magnitude than the re-orbit time estimate. In

quadrant III, half the re-orbit time estimate is used. The re-orbit is performed by

commanding the aircraft to fly towards the quadrant II segment until within a turn

radius of the path. At that point, the quadrant control returns to its nominal flow.

Full State Machine.

Combining the nominal, reset, and re-orbit logic of the previous sections results

the entire state machine which determines the quadrant mode for a ground-fixed path

is depicted in Fig. 49. A similar quadrant mode state machine may be derived using

the mode changes of Fig. 47 for the constant bank angle time estimate.

The three primary loops are highlighted in Fig. 49. The nominal loop sets the

quadrants in numerical order; highlighted in blue. The reset loop allows transitions

from quadrant II or III to quadrant I if a reset is triggered due to a change in the

position of the endpoint; highlighted in red. Finally, the re-orbit loop allows the

quadrant to move from III or IV back to II to increase the estimated arrival time;

highlighted in orange.

Figure 49. Full Quadrant State Machine
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VI. Racetrack Algorithm Stability Analysis

String stability was introduced in Sec. 2.6 as a method to characterize the stability

of an interconnected group of vehicles. This chapter applies the theory of string

stability to the racetrack algorithm to determine a set of airspeed control gains and

limits which result in a stable system under a wide set of environmental conditions.

This theory is not applied to the racetrack size control since the size of the racetrack

is calculated to result in zero arrival time error, see Sec. 5.5

6.1 Definitions

First, the string stability definitions used in this chapter are defined following the

definition given in Ref. [53]. Consider a group of N non-autonomous interconnected

systems, i ∈ IN := {1, 2, ..., N}, where the leader is referenced as vehicle i = 1 and

whose dynamics may be described by the system

ẋ1 = f(t,x1, 0,w1)

ẋi = f(t,xi,xi−1,wi) (276)

where f : [0,∞)× Rn × Rn × Rm → Rn is locally Lipschitz in xi and wi. Note that

each vehicle i may have multiple states or disturbances such that n ≥ N .

Definition 6.1. The system, Eq. (276), is string stable if for any ϵ > 0, there exists

a δ > 0 such that, for all N ∈ Z,

sup
i∈IN

||xi(t0)||∞ < δ → sup
i∈IN

||xi(t)||∞ < ϵ, ∀ t ≥ t0. (277)

Definition 6.2. The system, Eq. (276), is asymptotically string stable if the system
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is string stable and

sup
i∈IN

||xi(t0)||∞ < δ → lim
t→∞

sup
i∈IN

||xi(t)||∞ = 0. (278)

Next, a stability definition based on input-to-state stability is presented [82]. First,

class K and KL functions are defined. A function α : [0, a) → [0,∞) belongs to class

K if it is strictly increasing and α(0) = 0. A function β : [0, a) × [0,∞) → [0,∞)

belongs to class KL if for each fixed s, the mapping β(r, s) belongs to class K with

respect to r and, for each fixed r, the mapping β(r, s) is decreasing with respect to s

and β(r, s) → 0 as s→ ∞ (Def. 4.2 and Def. 4.3 from Ref. [82]).

Definition 6.3. A system, ẋ = f(t,x,u), is input-to-state stable if there exists a class

KL function β and class K function γ such that for any initial state and bounded input

u(t), the solution x(t) exists for all t ≥ t0 and satisfies

||x(t)||∞ ≤ β (||x(t0)||∞, t− t0) + γ

(
sup

t0≤τ≤t
||u(τ)||∞

)
. (279)

Finally, the definition of exponential stability is included from Ref. [82] for com-

pleteness. Consider a single member of the interconnected system, Eq. (276),

ẋ = f(t,x). (280)

Definition 6.4. The equilibrium point x = 0 of Eq. (280) is exponentially stable if

there exist positive constants c, k, and λ such that

||x(t)|| ≤ k||x(t0)||e−λ(t−t0), ∀ ||x(t0)|| < c. (281)
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6.2 Arrival Time Problem Dynamics

Building on the general dynamics of Eq. (276) the arrival time problem is in-

troduced based on the algorithm described in Chapter V and the simplified aircraft

model described in Chapter III. Consider a group of airspeed heterogeneous aircraft,

i ∈ IN := {1, 2, ..., N}, which follow individual ground-fixed paths and desire to

overfly a specified endpoint at some reference time and airspeed. The reference, or

desired, arrival time for each aircraft is defined to be the arrival time of the preceding

aircraft plus some spacing in time. If the spacing is set to zero, all aircraft would

arrive at their endpoints simultaneously.

It is assumed that each aircraft has airspeed limitations such that the airspeed

state is bounded by a minimum and maximum airspeed, Vmin/maxi
along with a mini-

mum and maximum airspeed rate of change, Ai and Bi respectively; the rate of change

limits may be asymmetric. The aircraft are assumed to be flying in a non-zero wind

field which is modeled as the sum of a measured component and an unmeasured

component similar to turbulence. These two components simulate an aircraft which

can measure a steady state windspeed but is not sensitive enough to pick up small

changes in windspeed due to turbulence.

The state variables, as they apply to Eq. (276), are the arrival time error and

the arrival airspeed error. In the sense of string stability, the variable of interest

is only the arrival time error since limits have been assumed on the airspeed which

subsequently bound the airspeed error.

Finally, this section also assumes that the desired ground track is precisely fol-

lowed, similar to the racetrack algorithm time estimates. There may be some tracking

error due to external disturbances. However, these errors will be shown to have a sim-

ilar effect on stability as turbulence, see Sec. 5.6.
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Wind and Airspeed Relationship.

The challenge with wind is that many aircraft parameters, including the primary

speed control, rely on airspeed while navigation and timing rely on groundspeed.

The overarching relationship is that groundspeed is the vector sum of windspeed

and airspeed; often referred to as the wind triangle which was discussed in Sec. 3.5.

However, this relatively simple relationship becomes challenging if the true windspeed

is not known.

In this research, it has been assumed that the wind vector is measured by some

on-board system which has the effect of filtering out noise due to turbulence, see

Sec. 3.6. Thus, the true wind speed vector, Ws, is the sum of the measured (filtered)

wind vector, Wf , and the unmeasured (turbulent) effects on the wind speed vector,

Wt.

Since it is assumed that the path is precisely followed, the airspeed vector can be

projected onto the desired path using only the measured crosswind and true airspeed;

the variable Vsi represents this projection. It is defined by Eq. (282) where Wcrossi is

the component of measured wind perpendicular to the ground path at the aircraft’s

current position; shown in Fig. 50.

Vsi = VTi

√
1− Wcrossi

2

V 2
Ti

(282)

Additionally, the true groundspeed, Gi, and the measured groundspeed, Gmi
,

need to be separated. This difference will be clarified in the next section, but the

overarching reason for the difference is because the control algorithm estimates arrival

time with the measured windspeed/groundspeed while the dynamics are affected by

the true groundspeed.
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The difference between Gi and Gmi
is Wui

, the unmeasured windspeed vector

projected along the direction of the ground path. Figure 50 depicts the variables used

in this work and their geometric relationship. The aircraft identification subscript i

has been omitted from the figure for clarity but is used in the remainder of this work.

Figure 50. Wind Triangle Variables

Since it is assumed that the path is followed with negligible error, the directions

of the variables Gi, Gmi
, Wmi

, Wui
, and Vsi are also assumed to be along the desired

path. This assumption allows the variables to be mathematically related by Eq. (283)

and Eq. (284).

Gmi
(t) = Vsi(t) +Wmi

(t) (283)

Gi(t) = Gmi
(t) +Wui

(t) (284)

Wind Assumptions.

One of the two primary constraints of the coordinated arrival time problem is that

each aircraft should arrive at its designated endpoint at some desired airspeed. From
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Chapter V, this airspeed is defined to be Vrefi for each aircraft. A scale factor, FVi
,

is also introduced which relates the minimum airspeed to the reference airspeed by

Eq. (285).

VTmini
= FVi

Vrefi , 0 ≤ FVi
≤ 1 (285)

The coordinated arrival time problem becomes infeasible if the windspeed is

greater than airspeed capability of the aircraft since the aircraft would not be able to

decrease its distance to the endpoint. To practically bound the problem space, let the

true windspeed be less than the lowest minimum airspeed of all aircraft multiplied by

some a factor FW < 1, Eq. (286). This assumption ensures that the distance to the

endpoint may always decrease for any aircraft. Since the true windspeed magnitude

is bounded, it follows that the unmeasured windspeed, Wui
(t), is also bounded. This

bound would be based on the level of turbulence and properties of the wind filter.

This bound is defined by Eq. (287).

sup
i∈IN

||Wtruei(t)|| ≤ FW min
i∈IN

FVi
Vrefi , 0 ≤ FW < 1, ∀ t ≥ t0 (286)

0 ≤ |Wui
(t)| ≤ Wumaxi

, ∀ t ≥ t0 (287)

Applying the reference airspeed to variables from the previous section, Vsrefi and

Grefi(t) are defined by Eq. (288) and Eq. (289) which are derived from Eq. (282) and

Eq. (283) with VTi
(t) = Vrefi .

Vsrefi (t) = Vrefi

√
1− Wcrossi(t)

2

V 2
refi

(288)

Grefi(t) = Vsrefi (t) +Wmi
(t) (289)

170



Error Definitions.

With bounds on windspeed and defined reference airspeeds, a relationship between

airspeed and groundspeed error may be derived. Let the airspeed error be defined

by Eq. (290) and the groundspeed error be defined by Eq. (291) for each aircraft i

in the string. Similarly, the minimum and maximum airspeed limits are converted to

airspeed error limits by Eq. (292).

Vei(t) = Vi(t)− Vrefi (290)

Gei(t) = Gmi
(t)−Grefi(t) (291)

Vemin/maxi
= VTmin/maxi

− Vrefi (292)

Next, the variable σi(t) is introduced and defined by Eq. (293) such that Eq. (282)

may be simplified to Eq. (294). The wind magnitude assumptions allow σi(t) to

be bounded by Eq. (295). Similarly, the variable σrefi(t) is introduced defined by

Eq. (296) which simplifies Eq. (288) in the same manner as Eq. (294).

σi(t) =

√
1− Wcrossi(t)

2

VTi
(t)2

(293)

Vsi = σi(t)VTi
(t) (294)√

1− F 2
W ≤ σi(t) ≤ 1 (295)

σrefi(t) =

√
1− Wcrossi(t)

2

V 2
refi

(296)

Next, the measured groundspeed error is simplified to Eq. (299) by utilizing the
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definition of Vsi in Eq. (283) and Eq. (294). However, Vei(t) is the variable of interest.

Gei(t) = Gmi
(t)−Grefi(t) (297)

Gei(t) = Vsi(t) +Wmi
(t)− (Vsrefi (t) +Wmi

(t)) (298)

Gei(t) = σi(t)Vi(t)− σrefi(t)Vrefi (299)

In order to isolate Vei(t), a variable, si(t), is introduced which is the ratio of

groundspeed to airspeed according to Eq. (300). This equation is expanded to

Eq. (301) by substituting Eq. (299) and Eq. (293). Since, si(t) is a function of wind

and airspeed, its magnitude is bounded. Solving for si(t) results in Eq. (302) which is

mathematically undefined when VTi
(t) = Vrefi . However, since the groundspeed error

is defined to be zero when the airspeed error is zero, this point will be ignored for

now.

Gei(t) = si(t)Vei(t) (300)

si(t)Vei(t) =

(√
V 2
Ti
(t)−Wcrossi(t)

2 −
√
Vrefi

2 −Wcrossi(t)
2

)
(301)

si(t) =

(√
V 2
Ti
(t)−Wcrossi(t)

2 −
√
Vrefi

2 −Wcrossi(t)
2

)
VTi

(t)− Vrefi
(302)

The lower bound of si(t) is 1 which occurs when the magnitude of the crosswind

is zero. This case results in the groundspeed error being equal to the airspeed error.

The upper bound of si(t) occurs with maximum windspeed and minimum airspeed.

The derivation of the conditions associated with the limits (e.g., zero airspeed for

minimum si(t)) is presented in Appendix B.1. The derivation also addresses the

point where si(t) is undefined, zero airspeed error. Based on the assumptions of the

problem, si(t) is bounded by Eq. (303) which is only dependent on the wind and
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airspeed limitations.

1 ≤ si(t) ≤

√
1− F 2

Vi
F 2
W −

√
F 2
Vi
(1− F 2

W )

1− FVi

(303)

Virtual Target Control.

Arrival Time Dynamics.

To control the arrival time error and airspeed error, the controller in Ref. [83]

implemented a virtual target airspeed control system. This section derives the error

dynamics of a similar control system.

Let there be a virtual target for each aircraft which is moving at the reference

airspeed/groundspeed along the corresponding path. Next, let the virtual target be

positioned such that it will achieve the arrival time constraints if it traverses the

remainder of the path at the desired airspeed. If the error between aircraft i and

the corresponding virtual target is zero, it will achieve the desired arrival time and

desired arrival airspeed simultaneously [45, 83]. Figure 51 presents the virtual target

setup if the paths of vehicle i and i− 1 are the same.

Let the estimated time remaining of aircraft i, Tremi
(t), be a function of the actual

distance remaining, di(t), and the average reference groundspeed along the remainder

of the path, Grefavgi
(t). The average reference groundspeed is calculated as an average

value integral as defined by Eq. (304).

Grefavgi
(t) =

1

(Tremi
(t) + t)− t

∫ Tremi (t)+t

t

Grefi(τ) dτ (304)

Since a constant desired airspeed is specified, the desired groundspeed varies as

the direction of the path relative to the wind changes. The average remaining ground-
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Figure 51. Virtual Target Variables

speed was used in Ref. [83] because it allows the effect of these changes to be captured.

The calculation of the average groundspeed assumes the measured wind vector with

respect to the ground remains constant for the remainder of the path. Substituting

Eq. (304) into Eq. (305) results in Eq. (306).

di(t) = Tremi
(t)Grefavgi

(t) (305)

di(t) =

∫ Tremi (t)+t

t

Grefi(τ) dτ (306)

The arrival time error is defined as the difference between desired and estimated

arrival time, Eq. (307). The variable Ti(t) is the estimated arrival time of aircraft i

and Trefi is the reference arrival time for the aircraft. In the case of the first aircraft,

the target arrival time Trefi is constant. However, in the case of following aircraft,

this term is a function of the preceding aircraft arrival time and the desired time

spacing, Si.
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Tei(t) = Ti(t)− Trefi(t) = Tremi
(t) + t− Trefi(t) (307)

Trefi(t) = Constant, i = 1 (308)

Trefi(t) = Tremi−1
(t) + t+ Si, i > 1 (309)

Taking the time derivative of Eq. (307) results in Eq. (310) as a general form of

the arrival time error dynamics. Next, the dynamics of the estimated time remaining,

Ri(t), are derived.

Ṫei(t) = Ṫremi
(t) + 1− Ṫrefi(t) (310)

Equation (305) may be rearranged to solve for the estimated time remaining as a

function of di(t) and Grefi(t), Eq. (311). Note that Grefi(t) must be positive due to

the wind assumptions. Taking the derivative of Eq. (311) results in Eq. (312) which

has been simplified using the Leibniz integral rule. This equation is further simplified

with a few substitutions.

Tremi
(t) =

di(t)

Grefavgi
(t)

=
di(t) ((Tremi

(t) + t)− t)∫ Tremi (t)+t

t
Grefi(τ) dτ

(311)

Ṫremi
(t) =

Tremi
(t)ḋi(t) + di(t)Ṫremi

(t)∫ Tremi (t)+t

t
Grefi(τ) dτ

+
Tremi

(t)di(t)
(
Grefi(t)−Grefi(t+ Tremi

(t))
(
Ṫremi

(t) + 1
))

(∫ Tremi (t)+t

t
Grefi(τ) dτ

)2 (312)

First, the derivative of distance remaining, ḋ, is defined as negative groundspeed
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since the path is assumed to be perfectly followed, Eq. (313). The reference ground-

speed integral term is also equivalent to distance remaining; Eq. (306). Next, the

term, Grefi(t + Tremi
(t)), is the reference groundspeed at the estimated arrival time,

which occurs at the end of the path by definition. This term is redefined as Greffi
(t)

and is constant if Vrefi and the wind vector are constant. Making these substitutions

and collecting Ṫremi
(t) to one side of the equation results in Eq. (314).

ḋi(t) = −Gi(t) (313)

Ṫremi
(t) = −Gi(t)−Grefi(t)

Greffi
(t)

− 1 (314)

Returning to the arrival time error, Eq. (314) is substituted into Eq. (310) re-

sulting in Eq. (315). The groundspeed term is separated into its measured and un-

measured components, from Eq. (284), resulting in Eq. (316). Finally, the definition

of groundspeed error, Eq. (291), is substituted and the dynamics are separated into

three primary terms, Eq. (317): a groundspeed term which includes the measured

effects of wind, an unmeasured wind term, and the reference time dynamics which

are either constant or a function of the preceding vehicle.

Ṫei(t) = −Gi(t)−Grefi(t)

Greffi
(t)

− Ṫrefi(t) (315)

Ṫei(t) = −Gmi
(t) +Wui

(t)−Grefi(t)

Greffi
(t)

− Ṫrefi(t) (316)

Ṫei(t) = − Gei(t)

Greffi
(t)

+
Wui

(t)

Greffi
(t)

− Ṫrefi(t) (317)

The previously introduced variables, si(t) and σi(t), are then used to obtain dy-

namics which are a function of airspeed error. First, the final reference groundspeed
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is defined by Eq. (318). The variable, σreffi , is calculated using the reference airspeed

and the crosswind at the end of the path whileWmfi
is defined as the measured wind-

speed projected along a line tangent to the end of the path. Making the appropriate

substitutions, the result is Eq. (319).

Greffi
(t) = σreffi (t)Vrefi +Wmfi

(318)

Ṫei(t) = − si(t)

σreffi (t)Vrefi +Wmfi

Vei(t)

− Wui
(t)

σreffi (t)Vrefi +Wmfi

− Ṫrefi(t) (319)

Next, Vei is non-dimensionalized by Vrefi resulting in the non-dimensionalized air-

speed error Vei being defined by Eq. (320). The non-dimensional airspeed error allows

a unified stability analysis to apply to aircraft flying at a wide range of airspeeds.

Introducing Vei(t) into Eq. (319) results in Eq. (321)

Vei(t) =
Vei(t)

Vrefi
(320)

Ṫei(t) = − si(t)Vrefi
σreffi (t)Vrefi +Wmfi

Vei(t) · · ·

− Wui
(t)

σreffi (t)Vrefi +Wmfi

− Ṫrefi(t) (321)

Although Eq. (321) is complicated, it is noted that the coefficient to Vei(t) and the

unmeasured wind term are comprised entirely of bounded variables; therefore, each

term is also bounded. The bounded terms are grouped into the multiplicative airspeed

term, mi(t), and the additive windspeed term wi(t) resulting in Eq. (322). The terms

mi(t) and wi(t) are defined by Eq. (323) and Eq. (324) respectively. Utilizing the

assumptions of the previous section, mi(t) is bounded by Eq. (325) while ui(t) is
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bounded by Eq. (326).

Ṫei(t) = −mi(t)Vei(t)− wi(t)− Ṫrefi(t) (322)

mi(t) =
si(t)Vrefi

σreffi (t)Vrefi +Wmfi

(323)

wi(t) =
Wui

(t)

σreffi (t)Vrefi +Wmfi

(324)

0 <
1

FVi
FWi

+ 1
≤ mi(t) ≤

FVi

√
1− FWi

2 −
√

1− FVi

2FWi

2

(FVi
− 1)

(
−FVi

FWi
+
√
1− FWi

2
) (325)

0 ≤ |wi(t)| ≤
Wumaxi

−VrefiFVi
FWi

+ Vrefi
√

1− FWi

2
(326)

Although this may appear to be an oversimplification, the terms mi(t) and wi(t)

are exogenous with respect to the dynamics because they primarily depend on the

magnitude of the wind. To bring some physical meaning to these terms, a positive

wi(t) translates to an unmeasured tailwind component. In the sense of arrival time,

a positive wi(t) would cause the true groundspeed to be greater than the measured

groundspeed therefore, the aircraft would arrive early if corrections were not made.

However, the estimated arrival time is also dependent on distance to the end-

point. Thus, in the dynamics, a positive wi(t) causes the estimated arrival time to

decrease, Ṫei < 0. In terms of magnitude, moderate turbulence generated by the

MATLAB®Dryden Turbulence model varies by approximately ±30 ft/s. Assuming

an aircraft traveling at 293 ft/s and with zero steady state wind, |wi(t)| ≤ 0.1 (s/s).

The variable mi(t) is more convoluted since it is multiplicative and the result of

multiple simplifications. However, the entire term mi(t)Vei(t) represents the effect

measured groundspeed error has on the arrival time and so mi(t) is the scale factor

which effectively translates airspeed into groundspeed with respect to their effect on

arrival time error. Additionally, the numerator of mi(t) contains the “local” wind
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effects which are a function of the current aircraft heading while the denominator

terms are based on the windspeed projected along the final direction of the path.

Finally, the derivative of the definitions for reference arrival time of the 1st or i’th

vehicle, the derivative of Eqs. (308)-(309), are substituted into Eq. (322) resulting

in the arrival time error dynamics. Equation (327) defines the arrival time error

dynamics for the first aircraft while Eq. (328) defines the arrival time error dynamics

for the following aircraft.

Ṫei(t) = −mi(t)Vei(t)− wi(t), i = 1 (327)

Ṫei(t) = − (mi(t)Vei(t) + wi(t)) +
(
mi−1(t)Vei−1

(t) + wi−1(t)
)
, i > 1 (328)

Airspeed Error Dynamics.

The arrival time error is affected by changing the current aircraft’s airspeed which

is modeled as a rate-limited first order airspeed command system. In order to enforce

the rate limit and airspeed limits for each aircraft, let the saturation function be

defined by Eq. (329).

b

/
a

(x) =


b, x > b

x, b ≥ x ≥ a

a, x < a

(329)

Since the non-dimensional airspeed was defined in the previous section, the upper

and lower airspeed rate limits, Ai and Bi respectively, are also scaled by the desired

airspeed to conform to the non-dimensionalized airspeed model.

Ai =
Ai

Vrefi
(330)

Bi =
Bi

Vrefi
(331)
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Applying the rate-limits and saturation function, the airspeed error dynamics are

modeled by Eq. (332) where u(t) is the non-dimensional airspeed error command. The

model assumes that the aircraft can achieve a critically damped airspeed response.

V̇ei(t) =
Bi

/
Ai

(ui(t)− Vei(t)) (332)

Lemma 6.1. Take the dynamics defined by Eq. (332) and let Mi be a compact subset

of R, Ai < 0, and Bi > 0. If u(t) ∈ Mi and Vei(t0) ∈ Mi then Vei(t) ∈ Mi for

t ≥ t0.

Proof. The system defined by Eq. (332) is stable with an equilibrium point of u(t) ∈

Mi when the saturation function is inactive. Without saturation, the system is a

single variable linear system with A matrix, and eigenvalue, equal to −1. Thus,

the unsaturated system is stable and critically damped towards the equilibrium point

resulting in no overshoot. Since it is assumed that Vei(t0) ∈ Mi, therefore Vei(t) ∈ Mi

for t ≥ t0 when the system is unsaturated.

Since 0 ∈ [Ai,Bi], it follows that

sgn

(Bi

/
Ai

(ui(t)− Vei(t))

)
= sgn (ui(t)− Vei(t)) (333)

and Vei(t) is driven towards the equilibrium point when the saturation function is

active. Furthermore, since Ai ̸= 0 and Bi ̸= 0, the saturation function must become

inactive at some time t = t1 prior to Vei(t) reaching the equilibrium point.

Since Vei(t0) ∈ Mi, then Vei(t1) must also be within Mi. Therefore, t1 may be

viewed as a new initial condition where the saturation function will not activate again

prior to reaching the equilibrium point. ■
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Control Bounds.

In the previous section, it was shown that the airspeed error dynamics are bounded

given the bounds of the control u(t). This section will determine the appropriate

bounds on the control so that an equilibrium arrival time error is reachable for an

interconnected system. However, it is assumed that wi(t) is unknown and therefore

may not be used to determine the bounds on the control. Subsequently, the steady

state analysis is performed assuming wi(t) = 0. The interconnected arrival time error

dynamics with wi(t) = 0 are reproduced in Eq. (334).

Ṫei(t) = −mi(t)Vei(t) +mi−1(t)Vei−1
(t) (334)

Let the airspeed bounds of aircraft i at a given point in time be defined as Mi(t).

The equilibrium point of the arrival time error occurs when Eq. (335) is satisfied.

The equilibrium point is reachable if there exists a Vei(t) ∈ Mi(t) for any Vei−1
(t) ∈

Mi−1(t).

mi(t)Vei(t) = mi−1(t)Vei−1
(t) (335)

One solution to ensure a reachable equilibrium is to define Mi(t) in terms of the

windspeed and a common airspeed limit. Let Mi(t) be defined by Eqs. (336)-(338).

Recall, that Vemaxi
, Vemini

, Vrefi , and mmin are constants defined by the assumed

aircraft and environmental limits.
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Mi(t) =

[
mmin

mi(t)
Vemin

,
mmin

mi(t)
Vemax

]
=
[
Vei

−(t),Vei
+(t)

]
(336)

Vemax = min
i

{
Vemaxi

Vrefi

}
i

, Vemin
= max

i

{
Vemini

Vrefi

}
i

(337)

mmin ≤ mi(t) (338)

This formulation creates symmetric limits, Vemax and Vemin
, which are scaled by

the measured windspeed variable, mi(t). First, V+
ei

≤ Vemax and vice versa for the

minimum limit, due to Eq. (338). Next, if Vei−1
(t) is assumed to equal the upper

bound of Mi−1(t) then the equilibrium point is the upper bound of Mi(t).

mi(t)Vei(t) = mi−1(t)V+
ei−1

(t) (339)

mi(t)Vei(t) = mi−1(t)
mmin

mi−1(t)
Vemax (340)

Vei(t) =
mmin

mi(t)
Vemax (341)

Therefore, the arrival time error equilibrium point is always reachable if Vei(t) ∈

Mi(t) where Mi(t) is defined by Eqs. (336)-(338).

Control Selection.

This research investigates a nonlinear control formulation which utilizes informa-

tion assumed to be available to the racetrack algorithm, arrival time error and airspeed

error. This control minimized the amount of information required to be transmitted

between aircraft; estimated arrival time of the previous vehicle and whether the cur-

rent vehicle is the leader or follower.

First, the airspeed command, ui(t), is scaled by the variablemi(t) which is hypoth-

esized to improve performance among aircraft experiencing different wind conditions.
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This results in airspeed dynamics now being defined by Eq. (342).

V̇ei(t) =
Bi

/
Ai

(
ui(t)

mi(t)
− Vei(t)

)
(342)

Next, two proportional gains are applied to the arrival time error and non-dimensional

airspeed error, kT and kV respectively. Combining the assumed control bounds and

airspeed control into the dynamics, the non-dimensional airspeed error dynamics are

defined by Eq. (343) where V+
ei
(t) and V−

ei
(t) are defined in the previous section by

Eq. (336).

V̇ei(t) =
Bi

/
Ai

[
Vei

+(t)

/
Vei

−(t)

(
kT
mi(t)

Tei(t) +
kV
mi(t)

Vei(t)

)
− Vei(t)

]
(343)

6.3 String Stability Analysis

The combined non-dimensionalized arrival time and airspeed error dynamics are

summarized by Eq. (344) through Eq. (348) where mmin may be calculated as the

lowest lower bound of Eq. (325) for all vehicles in the system. This section analyzes

the stability of the system with and without unmeasured airspeed disturbances wi(t).
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Ṫei(t) =

 −mi(t)Vei(t)− wi(t) , i = 1

− (mi(t)Vei(t) + wi) +
(
mi−1(t)Vei−1

(t) + wi−1(t)
)

, i > 1

 (344)

V̇ei(t) =
Bi

/
Ai

[
Vei

+(t)

/
Vei

−(t)

(
kT
mi(t)

Tei(t) +
kV
mi(t)

Vei(t)

)
− Vei(t)

]
(345)

Vei
−(t) =

mmin

mi(t)
Vemin

, Vei
+(t) =

mmin

mi(t)
Vemax (346)

Vemin
= min

i

{
Vemini

Vrefi

}
i

, Vemax = min
i

{
Vemaxi

Vrefi

}
i

(347)

mmin ≤ mi(t) (348)

First, the areas where the rate limit or saturation are active are characterized by

analyzing the airspeed error dynamics, Eq. (345). The positively limited areas are

defined by Eq. (349)-(356) where M is the set of reachable airspeeds, R+ is the set

where the positive rate limit is active, W+ is the set where the positive command

saturation is active but not the positive rate-limit, and U is the set where no limits

are active (the unlimited dynamics). Note that the “−” in Eq. (355)-Eq. (356) refers

to a set difference.
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Mi(t) =

{
Vei(t) :

mmin

mi(t)
Vemin

≤ Vei(t) ≤
mmin

mi(t)
Vemax

}
(349)

S+
i (t) =

{
Tei(t),Vei(t) ∈ Mi(t) : Tei(t) ≥

mmin

kT
Vemax −

kV
kT
Vei

}
(350)

Q+
i (t) = {Tei(t),Vei(t) ∈ Mi(t) : Tei(t) ≥ Ωi(t)} (351)

Ωi(t) =
mi(t)

kT

((
1− kV

mi(t)

)
Vei(t) + Bi

)
(352)

P+
i (t) =

{
Vei(t) : Vei(t) ≤

1

mi(t)− kV
(mminVemax − Bimi(t))

}
(353)

R+
i (t) = Q+

i (t) ∩ P+
i (t) (354)

W+
i (t) = S+

i (t)− P+
i (t) (355)

Ui(t) = Mi(t)−R+
i (t)−W+

i (t)−R−
i (t)−W−

i (t) (356)

The areas are presented graphically in Fig. 52 for clarity. Similar definitions may

be derived for the negative limits utilizing V−
e , Ai, and changing the sign of all the

inequalities except for M.

Figure 52. Rate-Limiting and Saturated Sets
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Equilibrium Point.

The airspeed equilibrium point of Eqs. (344)-(345) is important to this problem

because the range of permissible airspeeds is limited by the command saturation

representing the limits of the aircraft. With regards to the stability analysis of the

system, the airspeed equilibrium point is reachable where the equilibrium point de-

fined by Eq. (357) must be reachable, Veieq
(t) ∈ Mi(t).

Veieq
(t) =

mi−1(t)Vei−1
(t) + wi−1(t)− wi(t)

mi(t)
(357)

Since Mi is defined by the measured windspeed, it is possible to violate the

assumption for certain combinations of wi(t) and wi−1. However, it is hypothe-

sized that the random nature of turbulence will only result in small intervals where

Veieq
(t) /∈ Mi(t). Although the response of these intervals is not bounded by this pa-

per, the response is expected to remain relatively small. Simulations of this condition

are discussed in the results. Simulations of this condition are discussed in Sec. 7.4.

Simplifying the Time Variant System.

To address the command saturation and rate-limit non-linearities, variables are

introduced to transform the nonlinear system with command saturation and rate-

limits, Eqs. (344)-(345), into a which may be viewed as a polytropic linear differential

inclusion (LDI). The benefit is that polytropic LDIs may be used to determine gains

resulting in an exponentially stable system.

When saturated, the following inequality must be true, by definition,

V+
ei
≤
∣∣∣∣ kT
mi(t)

Tei(t) +
kV
mi(t)

Vei(t)

∣∣∣∣ . (358)
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The variable δ(t) is introduced to replace the saturation function. If the system is

unsaturated, δ(t) is defined to equal one. When saturated, δ(t) will vary between

0 < δ(t) ≤ 1 to satisfy Eq. (359).

V+/−
ei

= δ(t)

(
kT
mi(t)

Tei(t) +
kV
mi(t)

Vei(t)

)
(359)

The process is repeated with the rate-limit saturation function. The variable ρ(t)

is introduced to model the rate limit resulting in Eq. (360). When the rate-limit is

active, Eq. (361) will be satisfied, and when the rate-limit is inactive, ρ(t) is defined

to be one. It follows that ρ(t) is bounded identically to δ(t); 0 < ρ(t) ≤ 1.

The system, Eq. (360) models the effects of the unlimited, saturated, and rate-

limited system. The variables δ(t) and ρ(t) are dependent on the state variables and

the degree to which Eq. (360) is linear may be questioned. However, the variables

are also bounded and in the next section, it will be shown if a linear system has a

bounded A matrix, then the stability of the system may be determined for any A

within the defined bounds.

Ṫei(t)V̇ei(t)

 =

 0 −mi(t)

ρ(t)δ(t) kT
mi(t)

ρ(t)
(
δ(t) kV

mi(t)
− 1
)

Tei(t)Vei(t)


+

0 mi−1(t)

0 0


Tei−1

(t)

Vei−1
(t)

+

−1 1

0 0


 wi(t)

wi−1(t)

 (360)

Ai or Bi = ρ(t)

(
δ(t)

(
kT
mi(t)

Tei(t) +
kV
mi(t)

Vei(t)

)
− Vei(t)

)
(361)
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Single Vehicle Stability.

The stability of the system, Eq. (360), is first analyzed as a polytropic LDI allowing

constraints to be derived which guarantee exponential stability, defined by Def. 6.4.

The problem is then formulated and solved numerically as an optimization problem.

First, an overview of polytropic LDI stability is given. From Ref. [84], for a system

defined by

ẋ = A(t)x, A(t) ∈ {A1, · · · ,AC} (362)

where the set {A1, · · · ,AC} is convex, the necessary and sufficient conditions for

quadratic stability are

P > 0, AT
j P+PAj < 0, j = 1, · · · , C. (363)

Simply put, if Eq. (363) is satisfied and A(t) ∈ {A1, · · · ,AC}, then the system is

exponentially stable for any A(t) ∈ {A1, · · · ,AC}.

In the case of Eq. (360), the vertices of the convex set which contains A(t),

Aj, correspond to the eight possible combinations of the upper and lower bounds of

mi(t), δ(t), and ρ(t). Although δ(t) and ρ(t) may be dependent on the state, they

are bounded allowing for Eq. (360) to be represented in the form Eq. (362).

To determine the matrix P , three optimization design (i.e., independent) variables

are defined. The first two are the two elements of a diagonal matrix Q which are part

of the Lyapunov equation, Eq. (364). The third variable is the identifier for a vertex,

n ∈ {1, 2, ..., C}, of the set {A1, · · · ,AC} to be used to solve Eq. (364).

The three variables allow the calculation of a symmetric, positive definite matrix,

P, which satisfies Eq. (364). The matrix P is calculated for vertex n and then used

to evaluate the stability constraints at the remaining vertices, Eq. (363).
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AT
nP+PAn = −Q (364)

The exponential stability constraints and P matrix definition are then formulated

into an optimization problem defined by Eq. (365). The design variables of this

problem are the system gains, elements of the diagonal matrix Q, and the guessed

vertex, n, used to calculate the matrix P. The cost functional to be minimized,

J , may be chosen based on the desired performance of the system. As an example,

maximizing the value of kV tends to decrease the settling time of the system. However,

the stability of the system does not depend on J , only on the constraints.

minimize
q1, q2, kT , kV , n

J

subject to AT
nP+PAn = −

q1 0

0 q2

 ,
1 ≤ n ≤ 8,

AT
j P+PAj < 0, j = 1, · · · 8,

q1, q2, kT ,−kV > 0

(365)

To numerically solve the optimization problem, estimates on reasonable lower

bounds of δ(t) and ρ(t) are made using Eq. (366) and Eq. (367) respectively. These

estimates must be made since the lower bound for any state, {Tei(t),Vei(t)}, ap-

proaches but does not reach zero. This is a limitation of numerical solvers which are

designed to address ≤ types of inequalities rather than < inequalities.
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δmin =
Vemaxm

2
min

mmax (kTTemax + kVVemin
)

(366)

ρmin =
mini (min{|Ai|, |Bi|})

2Vemax

(367)

Equation (366) assumes some worst case Temax and solves Eq. (359) for the smallest

value while Eq. (367) assumes a saturated system with Vei the opposite sign of the

command. The numerator determines the lowest magnitude rate-limit of each aircraft

then selects the smallest. Since a successful solution results in an exponentially stable

system, this formulation effectively assumes the initial arrival time error may be

bounded by ±Temax .

This assumption is valid in the context of the racetrack algorithm since the dy-

namics in this section become active when the racetrack size becomes fixed. Since

a free racetrack size is continually adjusting to set the arrival time error to zero,

it is expected that the arrival time error will also be near zero when the racetrack

transitions to a fixed state.

The problem was successfully formulated and numerically solved utilizing the

MATLAB® routine fmincon. To summarize, if |Tei(t)| ≤ Temax , Eq. (357) is sat-

isfied, and a solution to Eq. (365) is found, then the system is exponentially stable.

String Stability Analysis.

Finally, the string stability of Eqs. (344)-(345) is addressed. Let there be a finite

number of aircraft in the string, i ∈ IN = {1, ..., N}. Furthermore, let A(t) be a

member of the convex set defined by {A1, · · · ,AC} whose vertices correspond to the

bounds of mi(t), δi(t), ωi(t); [mmin,mmax], [δmin, 1], [ωmin, 1] respectively.

Lemma 6.2. Assume that |wi(t)| < r for some positive constant r, Temax ≥ ∆, and
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Veieq
(t) ∈ Mi(t) is satisfied for all t. If a feasible solution to Eq. (365) exists, then

the system defined by Eqs. (344)-(345) is string stable according to Definition 6.1.

Proof. Equations (344)-(345) are equivalent to the LTV system defined by Eq. (360)

with state variables Tei and Vei and input variables Tei−1
, Vei−1

, wi, and wi−1. The

system is globally Lipschitz in M since mi−1(t) is bounded and continuously differ-

entiable. Additionally, the unforced system is exponentially stable, Def. 6.4 since a

solution to Eq. (365) exists. Therefore, the Eq. (360) is also input-to-state stable

which yields Eq. (368) where xi(t) is the state vector of aircraft i while γ, ξ, and υ

are class K functions (see Lemma 4.6 in Ref. [82]). Equivalently, the nonlinear system

defined by Eq. (360) is also input-to-state stable; from Definition 6.3.

||xi(t)||∞ ≤ β(||xi(t0)||∞, t− t0) + γ

(
sup
τ≥t0

|Vei−1
(τ)|
)

+ ξ

(
sup
τ≥t0

|wi(τ)|
)
+ υ

(
sup
τ≥t0

|wi−1(τ)|
)

(368)

Next, Vei(t) is uniformly bounded for all aircraft i due to the identical limits of

the saturation function defined by Eq. (347). Additionally, it has been assumed that

wi(t) is uniformly bounded. Then Eq. (368) may be rewritten as Eq. (369) where

Γ, Ξ, and Υ are positive constants associated with the largest values of γ, ξ, and υ

respectively.

||xi(t)||∞ ≤ β(||xi(t0)||∞, t− t0) + Γ + Ξ + Υ (369)

The expression is then evaluated over all aircraft i resulting in Eq. (370). Since β

is a class KL function, it is bounded as a function of ||xi(t0)||. Therefore, the entire
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system is bounded by some positive ∆ independent of time which is equivalent to

Definition 6.1. Therefore, the system under the stated assumptions is string stable in

the case of non-zero disturbances.

sup
i∈IN

||xi(t)||∞ ≤ β

(
sup
i∈IN

||xi(t0)||∞, t− t0

)
+ Γ + Ξ +Υ ≤ ∆ (370)

Note that the condition, Temax ≥ ∆, may be verified via simulation after determining

the control gains which satisfy Eq. (365). ■

Corollary 6.2.1. The system defined by Eqs. (344)-(345) is asymptotically string

stable with no external disturbances, wi(t) = 0.

Proof. From Theorem 6.2, each individual aircraft is input-to-state stable, Eq. (371).

In the case of the first aircraft, i = 1, the input is zero (Vei−1
= 0). Subsequently,

the input to the second aircraft, Vei−1
(t), will be bounded by Eq. (371) as shown in

Eq. (372).

||x1(t)||∞ ≤ β(||x1(t0)||∞, t− t0) (371)

Subsequently, the input of the second aircraft will also approach zero as time

approaches infinity. This logic may be cascaded to all vehicles such that the input to

aircraft N approaches zero as time approaches infinity, Eq. (372). Since the system

is string stable and Eq. (372) holds, the system with no external disturbances meets

the definition of asymptotic string stability, Definition 6.2.

sup
i∈IN

||xi(t)||∞ → 0, t→ ∞ (372)
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■

6.4 Stability Analysis Summary

This chapter performed a string stability analysis on the controller used by the

racetrack algorithm described in Chapter V to control aircraft airspeed. The analysis

derived a method to select control gains which result in a string stable system for a

variety of wind conditions to include unmeasured turbulence. The analysis guarantees

that each individual aircraft is input-to-state stable and that the error state of an

entire string of aircraft is bounded.

Applying this guarantee to the racetrack algorithm, the lead aircraft is exponen-

tially stable towards zero arrival time error with a small tolerance which is dependent

on the magnitude of turbulence. This tolerance represents the expected arrival time

error range when an aircraft completes a nominal orbit.

The arrival time error of each of the following aircraft is also bounded and inde-

pendent of the number of vehicles. This ensures that the arrival time error of the

second vehicle will be near the origin when the lead aircraft arrives and the second

aircraft becomes the lead aircraft. Therefore, the aircraft which is about to arrive will

always be exponentially stable to the origin. The results of this method are analyzed

in the next chapter.
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VII. Simulation Results and Performance Characterization

The performance characterization of the arrival time algorithm discussed in this

research is split in four parts. First, two early versions of the algorithm are compared

and a single version selected for further evaluation. Next, the arrival time stability of

is analyzed based on the gains selected using the methods described in Chapter VI.

This analysis evaluates the string stability assuming zero path error and presents an

analysis of the effect of tracking error on the arrival time.

Then, the single vehicle performance of the selected controller is characterized

across a wide range of environment and target scenarios. Finally, the performance

of the controller and its various features are demonstrated in a set of challenging

multi-vehicle scenarios utilizing both the simplified and full nonlinear aircraft models

discussed in Chapter III.

7.1 Performance Metrics and Variables

The primary performance metric is the arrival time error calculated as the differ-

ence between the actual and desired arrival times. First, the actual arrival point is

determined as the point in space when the aircraft was closest to the target during

the terminal portion of an orbit. To prevent the initial point from being identified as

the arrival point, the evaluation algorithm only considers points which are at a time

greater than half the desired arrival time.

The actual arrival time is the time associated with the actual arrival point. The

secondary performance metric is arrival airspeed error calculated as the difference

between actual and desired airspeed at the arrival point.

Next, several variables are non-dimensionalized to evaluate the algorithm across

aircraft traveling at different airspeeds. First, the desired arrival time is non-dimensionalized
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by a “minimum orbit time,” and the resulting parameter is referred to as the track-

time scale-factor (TTSF ), Eq. (373). The minimum orbit time, Tminorbit is calculated

as the time to complete a circular orbit with zero wind at the desired airspeed. Equa-

tion (374) defines Tminorbit. The nominal or reference bank angle, ϕref , is the bank

angle which corresponds to ground turn radius of b with zero wind. As an example,

a TTSF of 1.0 sets the desired arrival time equal to the predicted time to complete a

circular orbit without wind. This formulation was chosen because the reference orbit

size is the minimum size of the racetrack.

TTSF =
Tref

Tminorbit

(373)

Tminorbit =
2π

ψ̇ref

=
2πVref
g tanϕref

(374)

Next, the wind speed and target ground speed are non-dimensionalized by the

aircraft reference speed, Vref , and are referred to as the wind speed ratio and target

speed ratio respectively. In the non-cooperative simulations, the target stop-time

ratio is used to define when the target stops. It is calculated as the actual target stop

time divided by the desired arrival time with respect to the beginning of an orbit.

Finally, a notable derived variable is the direction of the wind or target relative

to the y(r) axis. This variable is calculated via Eq. (375) and combines the effects of

turn direction and wind or target direction.

ψ
(r)
tgt/wind = ψ

(e)
tgt/wind −

(
ψ

(e)
f +

π

2
(−DT )

)
(375)
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7.2 Solver Configurations

The racetrack algorithm and dynamics model are modeled and evaluated using

MATLAB®and the associated modeling software Simulink; MATLAB®version 2019b

was used to produce all simulations. Since Simulink is designed to handle a variety

of dynamics models, multiple types of numerical solvers are available to integrate the

dynamics. The primary considerations in choosing a solver are the number and types

of states. The racetrack algorithm is simply a discrete command system with a small

number of states only relating to signal filters. The arrival time control has no states

since the primary command is proportional to airspeed and arrival time, which are

explicitly calculated based on the current aircraft state. The simplified model is an

entirely continuous model while the nonlinear model is a mix of continuous states and

discrete states utilized in the various autopilots. The specific solvers are discussed

below but were chosen for accuracy in evaluating the different types of models based

on the recommendations in the MATLAB®documentation [85].

The simplified dynamics model is solved utilizing the MATLAB®solver ode45,

with default settings, since the model is primarily made up of continuous states. The

solver ode45 is a fifth-order variable-step Runge-Kutta numerical integration method

based on the formulae developed by Dormand and Prince [86]. Variable step methods

change the integration step size at each integration based on an estimate of the

solution error at the current time step. In general, the error of variable-step Runge-

Kutta methods is determined by comparing the solutions of two different orders. In

the case of ode45, the fifth order solution is compared to a fourth order solution to

determine the local error. When the error increases above some specified tolerance,

the time step is decreased until the error is below some specified tolerance. This

method allows the numerical integration to remove time steps when the dynamics are

slowly varying and add time steps with rapidly changing dynamics, increasing the
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overall efficiency of the algorithm.

The accuracy of the simplified model solution calculated with ode45 was qual-

itatively evaluated by recomputing the solution with a lower relative tolerance as

recommended by the MATLAB®documentation [87]. The accuracy was evaluated

using the non-cooperative scenario in Sec. 7.7 which results in large changes to the

endpoint. The accuracy evaluation was performed by lowering the relative tolerance

from the default value of 1× 10−3 to 1× 10−4. The arrival time error of any vehicle

changed by less than 0.01 s and the arrival airspeed error changed by less than 0.1

ft/s. The arrival tracking error of any vehicle changed by less than 1 ft. Therefore,

it is concluded the solver ode45 with default settings provides accurate solutions to

simplified model scenarios.

The increased complexity of the nonlinear dynamics model necessitates a differ-

ent approach to evaluating the Simulink model. Initial simulations showed the ode45

algorithm utilized for the simplified model is inefficient in solving multi-aircraft sim-

ulations using the nonlinear model. This behavior is expected due to the mix of

continuous and discrete states in the nonlinear model which may cause a variable-

step solver to try and accurately model sharp step changes in the dynamics [85]. A

fixed-step solver was used due to the greater number of discrete states in the model

[85]. The solver ode8 was used with a fixed time-step of 0.05 s which corresponds to

the smallest discrete step in the model, the aircraft control system.

The solver ode8 is an eighth-order fixed-step Runge-Kutta method also developed

by Dormand and Prince [88]. Similar to the simplified model, the accuracy was

evaluated using the multi-aircraft nonlinear non-cooperative scenario in Sec. 7.8 to

evaluate the solution with large changes to the endpoint. The accuracy evaluation was

performed by lowering the time-step from the default value of 0.05 s to 0.01 s. The

arrival time error of any vehicle changed by less than 0.02 s and the arrival airspeed
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error changed by less than 0.1 ft/s. The arrival tracking error of vehicles with low

arrival time error changed by less than 2 ft. However, the scenario resulted in an

initial vehicle with a higher arrival time error and the path tracking error changed by

57 ft. Although high, this error is acceptable since it is associated with an aircraft

which did not arrive on time and is still well within the demonstrated tracking error

performance. Therefore, it is concluded that the solver ode8 with a fixed time step of

0.05 s provides accurate solutions to nonlinear model scenarios.

7.3 Initial Controller Performance Comparison

In Chapter V, two different arrival time estimation methods were developed as

potential candidates for the final racetrack algorithm. The two methods are referred

to as the “Quad” controller and the “Nav” controller. The Quad controller follows a

ground-fixed path, Sec. 5.4, while the Nav controller assumes a constant bank angle

during turns, Sec. 5.4. This approach was chosen as it allowed the initial development

to focus on two timing methods, chose the better performing method, and focus the

remaining development effort on a single method.

In the initial performance comparison, the arrival time error is evaluated as the

average absolute value of the arrival time error for a given set of data. This provides

a single variable to compare the two time-estimation methods. Finally, the initial

performance comparison only evaluated the fighter aircraft type since initial testing

showed similar performance among the aircraft types.

Controller Configurations.

The initial controllers tested do not have the full functionality discussed in Chapter

V and were not analyzed for string stability. The controllers do not have the re-

orbit, Sec. 5.8 or keep-out-zone avoidance Sec. 5.8 enabled. This allows the initial
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comparison to focus on performance in a more benign environment.

The following airspeed command gains were used in the tested initial controllers:

kT = 0.07 (376)

kV = 0 (377)

The gains were selected to provide well damped single vehicle performance.

Static Target Simulations.

The static target simulations evaluated the performance of the controllers while

varying the following parameters:

� TTSF : 1 to 1.7

� Wind Speed Ratio: 0 to 0.5 (half the reference airspeed)

� Wind Direction: 0 deg to 360 deg in increments of 45 degrees

� Orbit Direction: Counterclockwise

High wind speeds were studied in this comparison to determine the point where

the controllers’ arrival time performance degraded. The contours effectively define a

“feasible set” of arrival times and wind speeds which achieve some average perfor-

mance defined by the contour lines. As an example, the one-second feasible set for a

controller would be all combinations of wind speed and TTSF below the one-second

contour for the controller.

The “Quad” controller clearly has a larger feasible set than the “Nav” controller.

The “Nav” controller shows a slight increase in performance with an increase in

TTSF but it appears that there is a limit to the wind speed the “Nav” controller

can compensate for regardless of TTSF in this configuration; approximately a 0.3
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wind speed ratio to achieve an average arrival time error of one second. However,

arrival time performance between the two controllers was similar within the one-

second feasible set of the “Nav” controller. This indicates that both controllers achieve

similar arrival time errors in “easier” scenarios with lower wind speeds and higher

desired arrival times. It was also observed that the racetrack size was saturated on

the minimum bound in scenarios with an absolute value of error greater than one.

This indicates that airspeed control alone cannot compensate for high wind speeds in

every situation.
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Figure 53. Initial Comparison Static Endpoint Arrival Time Error (s)

The arrival airspeed performance is not presented because it is closely related to

arrival time performance and results in a similar relationship as shown in Fig. 53. This

is because arrival airspeed is not being directly controlled; the commanded airspeed

is simply a function of current arrival time error. Arrival airspeed errors of 67 ft/s

tend to correspond to arrival time errors of one second for both controllers, indicating

a saturated airspeed condition.

The smaller feasible set of the “Nav” controller is due to the assumption of a

constant bank angle turn. This effect is best shown by Fig. 54 with two scenarios

where the position of each aircraft at equal points in time is noted. In both scenarios,

the TTSF is 1.4 and the wind direction is 0 deg (North). In Fig. 54a, the wind

speed ratio was 0.2 and both controllers achieved an arrival time error less than 0.1
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seconds. However, the semi-major axis of the “Nav” racetrack is smaller due to the

longer length of the turns.
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Figure 54. Ground Track Comparison, ‘×’ Markers are Equivalent Time

The same scenario with a wind magnitude of 0.4 knots is shown in Fig. 54b. In this

case, the “Nav” controller had an arrival time error of 12 seconds while the “Quad”

controller arrival time error was -0.3 seconds. This presents a case where the sce-

nario is outside the one-second “feasible set” of the “Nav” controller but within the

one-second “feasible set” of the “Quad” controller. The ground track of the “Nav”

controller is clearly longer than the “Quad” controller and equivalent time marks, the

‘×’, show that the “Nav” controller was always behind the “Quad” controller. Al-

though, the “Nav” controller did not achieve the desired time, it accurately predicted

it would not achieve the time and commanded maximum airspeed during the entire

simulation.

Finally, Fig. 55 presents a comparison of the average time-of-arrival error as it

varies with wind direction. The results highlight the skewing effect of the wind on

the “Nav” controller racetrack which results in higher time-of-arrival errors for wind

directions parallel to the x(r)-axis of the racetrack; 0 and 180 degrees. Conversely,

crosswinds, wind directions of 90 and 270 degrees, relative to the x(r)-axis result in
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much lower time-of-arrival error which are similar to the “Quad” controller.

Crosswinds have a lower effect on the time-of-arrival error because they do not

substantially increase the path length. As an example, holding the bank angle con-

stant and increasing the crosswind would change the resulting y(r)-axis position of

the aircraft at the end of a turn which would not line up with the desired straight

segment. However, the controller calculations solve for the bank angle which achieves

the correct y(r)-axis position compensating for the effects of wind in this direction.

The “Quad” controller performance is not affected by wind direction since the path

of the “Quad” controller does not change with the wind.
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Moving Target Simulations.

Multi-pass Simulations.

The multi-pass simulations create scenarios where the aircraft accomplishes mul-

tiple passes on a target moving with constant speed and heading. This simulates a

continuous monitoring scenario with a moving target. In this initial comparison, the

scenarios are setup such that the aircraft begins over the point where the target will

be at the desired arrival time for the first pass. After the first pass the aircraft must

202



fly to the path associated with the next target endpoint.

The arrival time performance for the last pass in each simulation is used as the

data point for each simulation. The simulations result in a step change in the end-

point, similar to the non-cooperative scenarios except that the change occurs at the

beginning of each pass. In this initial comparison, the wind direction and magni-

tude were not varied to only compare the effects of a moving target. Finally, the

parameters varied in this comparison are:

� TTSF 1.4

� Clockwise and count-clockwise orbits

� Target Speed Ratio: 0 to 0.5 (half the desired airspeed)

� Target Heading: 0 deg to 360 deg in increments of 30 deg

� Number of Repeat passes: 1 to 4

Figure 56 presents the contours of average absolute arrival time error as it changes

with number of passes and target speed. The performance of both controllers does not

significantly change for more than two passes. This is expected since additional passes

repeat the same re-positioning maneuver of the previous pass. However, the “Quad”

controller demonstrated an ability to achieve one second arrival time performance for

faster vehicles than the “Nav” controller. This observation is used to design the final

configuration multi-pass characterization in Sec. 7.6.

Finally, it was noted that both controllers achieved arrival time performance under

0.5 seconds for any target speed simulated, up to a target speed ratio of 0.5, when

the target heading relative to the yr-axis was 180 degrees. Since the final desired

course is “North,” a target relative heading of 180 degrees corresponds to a target

traveling “East” for a counterclockwise orbit and “West” for a clockwise orbit. This

observation may inform more advanced logic of future iterations of the controller.
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Non-Cooperative Target Simulations.

The non-cooperative target simulations create a scenario where the target is ini-

tially traveling at constant heading and speed, then stops at some point during the

simulation. The result is a step change in the final desired position of the path when

the target stops due to the calculation of the estimated arrival point, see Sec. 5.8.

The scenario challenges the ability of the controller to correct for a new final position

while still attempting to achieve the desired arrival time.

Again, the wind direction and magnitude were set to zero to isolate the effects

of the target stopping. The primary variables changed in the non-cooperative target

sensitivity were:

� TTSF 1.4

� Clockwise and count-clockwise orbits

� Target Speed Ratio: 0 to 0.5 (half the desired airspeed)

� Target Heading: 0 deg to 360 deg in increments of 30 deg

� Target Stop-Time Ratio: 0.2 to 0.8
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Figure 57 presents the time-of-arrival error contours as they vary with target

speed and target stop-time scale factor. In the case of the “Quad” controller, the

relatively constant error below a target stop-time scale factor of 0.4 corresponds to

targets which stop in quadrant I or II allowing the size of the racetrack to change and

compensate for the error induced by the stopping target. The performance decreases

when the target stops in quadrant III, the final turning quadrant, because the size

of the racetrack is fixed and cannot compensate for any arrival time error. Finally,

the performance increases above a stop-time scale factors of 0.6 since the target stops

closer to the original endpoint.
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Figure 57. Initial Comparison Non-cooperative Target Average Magnitude of Arrival
Time Error (s)

The “Nav” controller non-cooperative target performance is similar to the “Quad”

controller for higher target stop-time scale factors because the two controllers are

identical in quadrant IV. However, the “Nav” controller is unable to correct for earlier

target stop-times as well as the “Quad” controller. This is likely due to the constant

bank angle turns calculated by the controller which may not maneuver the aircraft

to the new path in a timely manner. This may result in an unnecessarily long path

to the new endpoint which prevents a lower arrival time error.
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Controller Selection.

The initial comparison results show the “Quad” controller has lower time-of-arrival

errors on average in scenarios where the target endpoint are static, moving with mul-

tiple passes, and a non-cooperative stopping scenario. Additionally, the assumptions

of the “Nav” controller result in larger trajectories for certain wind conditions when

compared to the “Quad” controller. Finally, the ground-fixed path of the “Quad”

controller is expected to be able to integrate with the keep-out-zone avoidance algo-

rithm.

Thus, it is concluded that the quadrature-based controller performs better over a

wider range of scenarios and will be used to further develop the arrival time algorithm.

However, it should be noted that both controllers achieve arrival time errors near zero

in scenarios with low wind speed and slower targets. Therefore, the “Nav” controller

may be a better controller for some future work where a steady aircraft bank angle

is more desirable to keep-out-zone avoidance and high-wind performance.

7.4 Arrival Time Stability Analysis

The following section analyzes the string stability performance of the airspeed

controller. In this section, the dynamics presented in Sec. 6.3 are assumed. Recall,

the primary assumptions of these dynamics are that path length is fixed, the path

is perfectly followed, and the arrival time estimates are accurate. This limits any

change in arrival time to the airspeed controller, steady state wind, and turbulence.

The airspeed command gains used in the final controller were selected to be string

stable, Chapter VI, and result in a multi-aircraft steady-state error of approximately

206



0± 0.5 s, discussed in this section,

kT = 0.4922, (378)

kV = −1.9635. (379)

As discussed in Section 6.3, a maximum arrival time error was assumed to calculate

the gains utilizing the numeric optimization routine. The chosen gains satisfied the

constraints of the optimization problem with an assumed maximum error, Temax in

Eq. (366), of 1000 s indicating the gains result in a string stable system for a large

range of initial conditions. Arrival time errors near 1000 s were not observed during

any simulations discussed in this Chapter.

String Stability.

Figure 58 presents the results for a twenty aircraft simulation. In this scenario

the upper and lower aircraft rate-limits are randomized between a magnitude of 5

ft/s2 and 15 ft/s2 and the reference airspeed is randomized across a range of 200

ft/s to 800 ft/s. The lead aircraft, i = 1, is initialized with an arrival time error of

5 seconds, Te1(0) = 5.

Moderate turbulence was generated separately for each aircraft and the measured

wind was generated as a bounded random sine wave with varying mean, frequency,

amplitude, and phase. The parameters of the random sine wave assume the magnitude

of the measured wind remains less than half the reference airspeed for each aircraft

and the rate of change is less than an aircraft performing a 2G turn; the parameters

were randomly selected for each individual aircraft.

The tailwind component of wind (measured plus unmeasured) is shown in the

fourth plot assuming the wind direction is aligned with the aircraft heading. Although

the magnitude change may seem extreme, keep in mind an aircraft experiencing a

207



Figure 58. Twenty Aircraft, String Stable with Wind and Turbulence
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100ft/s tailwind will experience a −100ft/s tailwind (a headwind) if it turns around

and flies in the opposite direction.

Figure 58 highlights that the control system and gains discussed in this paper re-

sult in a string stable system in an environment with both measured and unmeasured

wind effects. Qualitatively, the system exhibits a string stable response in arrival time

error as desired. Once the initial error diminishes at approximately 175 seconds, the

arrival time error of all the following vehicles, i ≥ 2, remained between ±0.5 seconds

for the duration of the simulation. Additionally, the third subplot shows that the

control system may handle a wide range of true aircraft speeds and remaining stable

due to the non-dimensionalization of the airspeed.

Single Aircraft Nominal Performance.

The previous section highlighted that the arrival time error for a string of aircraft

decreases to a small range once any initial error has been diminished. In terms of the

racetrack algorithm, the actual arrival time is always determined by the first vehicle

in the string. This is because the first vehicle becomes the last once it overflies the

endpoint, and the second becomes the first. Mathematically this causes the wi−1 term

and Vei−1
term to be zero for the arriving aircraft, see Sec. 6.3.

Figure 59 presents a simulation of the lead aircraft only with changing wind and

turbulence; the aircraft is a light utility aircraft. In this case, the arrival time error is

bounded by [−0.32, 0.79] seconds the entire simulation. This performance is demon-

strated with a large change in the steady state wind and turbulence, shown in the

fourth plot.

Mathematically, the equilibrium point of the first vehicle is determined by Eq. (380)

which gives an expectation of actual arrival time performance since the system is ex-

ponentially stable. First, it is clear the minimum value of mi(t) maximizes the value
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of the equilibrium point holding the other terms constant.

Teieq (t) = wi(t)

(
kV

kTmi(t)
− 1

)
(380)

Table 12 presents the maximum and nominal value of the equilibrium point along

with the maximum observed value of wi(t) for each aircraft class. A wind term of

mi(t) = 0.67 is used to calculate Teieq which corresponds to the minimum bound of

mi(t), Eq. (325) in Sec. 6.2. The maximum value of wi(t) is determined through a

300 second simulation of the Dryden Wind Turbulence model in MATLAB®with the

output turbulence being converted to wi(t) using Eq. 324.

Table 12. Nominal Arrival Error and Turbulence Effects

Aircraft Class Teeqnom
(s) wσ (1/s) Teeqmax

(s) wmax (1/s)

Light Utility 1.32 0.16 3.95 0.28
Medium Cargo 0.50 0.06 2.88 0.21
Heavy Cargo 0.37 0.05 2.00 0.14

Fighter 0.23 0.03 1.28 0.09

The maximum value of the equilibrium point defines the steady state arrival time

error if a constant unmeasured wind with magnitude wmax is encountered. This bound

is significantly larger than the observed variation in arrival time error in Fig. 59. Since

the turbulence is randomly generated, it is unlikely the maximum magnitude will be

sustained for any length of time. However, one standard deviation of wi(t), wσ, better

estimates the observed variation in arrival time error.

Therefore, the term nominal arrival time performance is used in the remainder of

this section to define arrival time error performance which is bounded by ±Teeqnom

which is calculated utilizing wσ in Eq. (380). Since the control is similar to a virtual

target, the nominal performance level may be viewed as variation around the desired

virtual target. This value corresponds to the expected level of performance when the
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lead aircraft is not airspeed saturated.

Saturated Airspeed and Turbulence.

As discussed in Chapter VI, the stability guarantees do not apply to certain satu-

rated conditions. An example of such a condition is when the airspeed is at its upper

limit to reduce time error, but the headwind is strong enough to cause the arrival

time error to increase.

Figure 60 presents a simulation where this condition occurs multiple times. In

the scenario, the lead (i = 1) aircraft is initialized with a high arrival time error

and saturated airspeed to force the following aircraft to saturate its airspeed on a

upper limit. The baseline result, in dashed line, has zero unmeasured wind effects,

wi(t) = 0.

Figure 60. Airspeed Saturated Aircraft with Turbulence; Tei−1
(t) > 5

The simulation with turbulence, the solid line, shows that the airspeed may desat-

urate depending on the magnitude of the unmeasured wind but remains saturated for

most of the simulation. While saturated, the arrival time error is dependent on the

unmeasured turbulence of the current and preceding aircraft which is not controllable.
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Although this means the response may not be mathematically bounded, this sim-

ulation highlights that the magnitude of this effect due to realistic turbulence is small

enough to not cause unstable error behavior. Furthermore, Fig. 58 showed that any

initial arrival error is diminished rapidly enough that it is unlikely for two sequential

aircraft to both have a saturated airspeed for more than a few seconds.

Effect of Path Tracking Error on Arrival Time.

Section 5.6 identified that tracking error while following, not acquiring, the path

significantly affects arrival time error during curved racetrack segments with the se-

lected time estimate method, the Gaussian Quadrature method. This error may be

due to typical path track performance or the turn radius adjustment feature of the

MPC follower which intentionally flies inside or outside the path to affect arrival time

error.

Equation (382) reproduces Eq. (316) which defines the rate of change of arrival

time error as a function of measured ground speed. Next, assume that Gm is equal

to Eq. (381), from Sec. 5.6. Taking the result, Eq. (383), 0 = Gm(t)−Gm(t) is added

to the numerator to obtain the original groundspeed error term, Gm(t)−Gref .

Gm =
GmtRT

RT − e
(381)

Ṫe(t) = −Gm(t) +Wu(t)−Gref (t)

Greff (t)
− Ṫrefi(t) (382)

Ṫe(t) = −
Gmt (t)RT

RT−e(t)
−Gref (t) +Wu(t)

Greff (t)
− Ṫref (t) (383)

Ṫe(t) = −
Gm(t)−Gref (t) +Wu(t) +

Gmt (t)RT

RT−e(t)
−Gm(t)

Greff (t)
− Ṫref (t) (384)

Gepath =
Gmt(t)RT

RT − e(t)
−Gm(t) (385)
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Equation (385) defines the ground speed error as a function of path tracking

error. With regards to the string stability dynamics, this term may be treated as an

additional component of Wu(t) with the assumption that the path tracking error is

bounded while following a path. This does not address path acquisition which affects

the Ṫref term.

Table 13 compares the magnitude of the change in groundspeed error, Gepath , to the

magnitude of the effect of moderate turbulence, |Wu|. The comparison assumes zero

steady-state wind, the aircraft traveling at the desired ground speed, and a tracking

error magnitude equivalent to 80% the ft of tracking error to the inside of a circular

turn; based on the maximum turn radius adjustment in Sec. 5.7. The maximum

values of Wu(t) were determined via a 200 second simulation for each aircraft. The

data show that the effect of path error is the same order of magnitude as the effect

of turbulence for all aircraft.

Table 13. Zero steady wind, Moderate Turbulence, 500 ft path error Comparison

Aircraft |Wu(t)|, (ft/s) |Gepath|, (ft/s) Vemax , (s/s) wmax, (s/s)

Light Utility 32.5 15.4 0.20 0.24
Medium Cargo 29.8 15.2 0.20 0.16
Heavy Cargo 34.2 15 0.14 0.13

Fighter 41.0 47.0 0.11 0.10

The maximum non-dimensional airspeed is shown in addition to the bound on

wi which corresponds to the observed |Wu(t)| for each aircraft. When the wind

magnitude is zero, these two terms are simply added together to determine the rate

of change of the arrival time error, see Sec. 6.2. Since the track error term may be

added to the turbulence term, it is concluded that the effect of tracking error on

arrival time error during a turn is similar to the effect of turbulence.

In a non-zero wind condition, flying inside a turn has approximately half the

effect on the rate of change of arrival time error as flying at the maximum airspeed
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as indicated by the similar values of Vemax and wmax for all aircraft except the fighter.

For fighter aircraft, the effect is approximately the same.

A more physical example for a light utility aircraft is that flying 234 ft inside a turn

(a magnitude of 80% of Vref ) is similar to flying 1.5 times as fast on the desired path

with zero wind. For a fighter aircraft, it is equivalent to flying on the desired path

twice as fast with zero wind. This quantifies the effect of the turn radius adjustment

function of the MPC controller may have on arrival time error. Similar performance

may be shown when flying outside the path to increase the estimated arrival time.

The stability guarantees remain unchanged with the assumption that the path

error is also bounded. Based on this conclusion, it is expected that the arrival time

error will vary more in turns than in straight segments during simulation due to

turbulence. However, this is not expected to affect the non-saturated arrival time

performance since the endpoint follows a straight segment.

7.5 Final Controller Configurations

The final version of the controller consists of all features discussed in Chapter V

to include the re-orbit, keep-out-zone, and the turn radius adjustment features which

were not enabled in the initial configurations. As discussed in the previous section, the

final version of the controller utilizes the quadrature-based arrival time estimate, see

Sec. 5.4. The remainder of this section documents the values of pertinent parameters

As discussed in the Sec. 7.4, the airspeed command gains used in the final con-

troller and were selected to be string stable and result in a multi-aircraft steady-state

error of approximately 0± 0.5 s:

kT = 0.4922, (386)

kV = −1.9635. (387)
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Additionally, the previous section identified the effect of flying inside or out a turn

to provide additional control over arrival time error. The turn radius adjustment is

an offset applied to the desired path which causes the aircraft to shift the tracking

reference point left or right. The adjustment is directly applied to the error calculation

in the MPC controller, Sec. 5.7, which is formulated in the racetrack reference frame.

Therefore, a positive adjustment causes the aircraft to track outside the turn while

a negative adjustment tracks inside the turn. The adjustment is enabled when the

arrival time error is outside of ±5 s and is calculated as

eadj(t) =
−0.8Vref

/
0.8Vref

−40 (Te(t)− 5sgn (Te(t))) . (388)

The saturation limits and gain on the error were chosen based on the results in

Sec. 7.4.

Next, the keep-out zone avoidance logic includes a “pad” to account for the typical

path following performance of the MPC path follower. As mentioned in Sec. 5.8, the

keep-out zone avoidance method determines the maximum of the racetrack which

does not cross into a keep-out zone. If zero pad were used, the desired path would

“touch” the edge of the keep-out zone. However, some tracking error is expected

since the MPC path follower was tuned to ensure nominal path tracking performance

within 500 ft. Therefore, a pad of 0.8Vref = 500 is used to account for the typical

path tracking performance combined with the turn adjustment limits.

Finally, Table 14 provides a summary list of pertinent aircraft specific parameters.

Table 14. Aircraft Dependent Parameters

Aircraft Class Vref (ft/s) Max NZ (g) MPC Horizon,th (s)

Light Utility 293 2 7
Medium Cargo 390 2 7
Heavy Cargo 544 2 6

Fighter 864 4.5 6
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7.6 Final Controller Performance Characterization

This section identifies the overall level of performance of the racetrack algorithm

and its sensitivity to changes in the scenario. This section is not intended to fully

model the performance of the algorithm in every situation. Similar to the initial

controller comparison, multiple variables are changed however, a finer grid of points

is used to obtain a high-fidelity characterization.

In this section, the performance data are presented as a mean and standard de-

viation plot rather than just the average absolute error used in Sec. 7.3. This format

is chosen because whether the aircraft arrives early or late is meaningful to the char-

acterization.

The data from all simulations for a given subset of data are used to generate each

plot. In the case of Fig. 61a, each data point of the contour plot represents the average

of all simulations with a given windspeed factor and TTSF . Similarly in Fig. 61b,

each data point is the standard deviation of all simulations for a given windspeed

factor and TTSF combination.

These metrics characterize the average performance of a variable while also pro-

viding a sense of the range in performance at the windspeed and TTSF condition.

For example, a low standard deviation indicates all simulations for a given condition

produced similar results while a higher standard deviation indicates more variation

in the data. However, the data are not assumed to be normally distributed, therefore

the standard deviation metric is treated as qualitative metric.

Static Target Simulations.

The first set of data evaluates the algorithms performance against a static target.

Each simulation is initialized with the aircraft over the target in the desired head-

ing. The following parameters were varied in the characterization resulting in 12,544
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simulations:

� TTSF : 1 to 1.5

� Orbit Direction: Clockwise and Counterclockwise

� Wind Speed Ratio: 0 to 0.5 (half the reference airspeed)

� Wind Direction: 0 deg to 360 deg in increments of 22.5 degrees

� All aircraft types

� Turbulence: None and Moderate

A simple linear regression was initially performed to determine which variables

significantly affected the arrival time error in the static scenarios. The primary sig-

nificant variables (p-value≤ 0.05) are the wind speed ratio and TTSF . Additionally,

the aircraft type was treated as a categorical variable, and it was shown that the

performance of the fighter type aircraft was significantly different (p-value≤ 0.05)

from the other three aircraft types. However, the other three aircraft types were not

significantly different (p-value> 0.05) from each other. Notably, the linear regression

did not show that turbulence had a statistically significant on the average arrival time

error. Since the turbulence is random, it is not unexpected that the mean does not

change.

Figure 61 presents the average arrival time error and two standard deviations for

different combinations of wind speed ratio and TTSF . Moderate turbulence is shown

in solid lines while a single contour of the no turbulence data, dashed line, is shown as

a comparison. The minimum average error of the turbulent data set is −0.02 s while

the minimum of the no turbulence data is −0.1 s. Additionally, the red lines bound

the region for each data set where the nominal level of performance was achieved for

all scenarios at that data point, corrected for aircraft type.
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Figure 61. Final Algorithm Static Arrival Time Error

Overall, higher wind speeds, shorter arrival times, and turbulence tend to increase

the error dramatically once a certain limit is reached. Higher wind speeds and shorter

arrival times correspond to configuration when the racetrack size is minimized, a

circular orbit, and the aircraft commands maximum speed the entire orbit. This

effectively represents a saturated system and any decrease in arrival time or increase

in wind will increase the arrival time error. The standard deviation highlights that this

also increases the variability in the data indicating that different scenarios saturate

at different times others. Conversely, the simulations show no scenarios where the

aircraft arrives earlier than the nominal performance estimates. This is expected

since the wind magnitude tends to increase the arrival time error but there is not a

variable in this data set which would reduce the arrival time.

Comparing the turbulent and non-turbulent data shows there are conditions where

the turbulent and non-turbulent data behave differently. However, the difference

is not statistically significant. Generally, a nominal level of performance may be

achieved for a slightly wider set of conditions with no turbulence.

Figure 62 presents a similar set of data for the arrival airspeed error. The gen-

eral relationship between airspeed error, wind speed ratio, and TTSF is the same,
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but with larger error magnitudes. This is expected since a portion of the airspeed

command is proportional to arrival time error. However, turbulence tends to increase

the average error and standard deviation of the error more so than the arrival time

error. In fact, a performing a linear regression on the arrival airspeed error shows

that turbulence is a significant variable (p ≤ 0.05).
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Figure 62. Final Algorithm Static Arrival Airspeed Error

Finally, although the aircraft type was statistically significant, it was observed

that an analysis of the fighter type aircraft alone exhibited similar trends and error

magnitudes as the average of all aircraft together. Analyzing the remaining aircraft

individually showed that the arrival error was nearer to zero on average compared

to the average of all aircraft together. Overall, the algorithm still demonstrates a

nominal level of performance for a wide range of wind conditions and arrival time

requirements regardless of aircraft types.

Moving Target Simulations.

Multi-pass Simulations.

The multi-pass simulations are calculated for a single pass but are initialized as if

the aircraft had just completed a pass. Figure 63 depicts this setup at the beginning
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of a repeat simulation. The target is represented by an orange box with a speed vector

arrow attached to it. A dashed line connects the target to the predicted endpoint

which is used as the final point of the racetrack. The aircraft began directly over the

target heading “East” and must now reacquire the racetrack for the next pass.

Figure 63. Multi-Pass Setup Example

A similar set of parameters were varied in these simulations, as compared to the

static simulations, with the exception of turbulence. Due to the trends in performance

between the turbulent and non-turbulent data sets of the static scenarios, only a

moderate turbulence level was evaluated. The following parameters were varied in

the characterization resulting in 38,400 simulations:

� TTSF : 1 to 1.5

� Orbit Direction: Clockwise and Counterclockwise

� Wind Speed Ratio: 0 to 0.5

� Wind Direction: 0 deg to 360 deg in increments of 60 degrees

� Target Speed Ratio: 0 to half the reference airspeed
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� Target Direction: 0 deg to 360 deg in increments of 36 degrees

� All aircraft types

� Turbulence: Moderate

Initially, a simple linear regression was performed on the data set to determine

which variables significantly affected the arrival time performance and warrant inves-

tigation. The regressions identified wind speed ratio, TTSF , wind direction relative

to y(r), target direction relative to y(r), target speed ratio, and aircraft type as signif-

icant variables.

Figure 64 presents the same type of plots used in the static scenario analysis,

average error and standard deviation of error contours. Additionally, a single contour

from the static simulation data set is included for comparison on each plot.
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Figure 64. Repeat Pass Comparison to Static Target

On average, the arrival time error increases substantially compared to the errors

achieved in static scenarios. Note, the no single data point had nominal performance

for all scenarios in the point (indicated by a red line in the static section). The

one-second average error contour occurs at higher arrival times (TTSF ) and lower

wind speeds than with the static scenarios. This is expected since each data point
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is calculated with every target speed and heading combination. The repeat scenar-

ios may require the aircraft to travel farther than a corresponding static scenario.

Additionally, the standard deviation shows that there is more variation in all the

corresponding sets of scenarios than the static target. The high standard deviation

indicates that, as shown by the regression, additional variables likely impact the ar-

rival time error. There is not a single set of scenarios where all scenarios achieved

nominal performance.

Figure 65 presents the arrival time error data set averaged for different combina-

tions of target speed ratio and wind speed ratio. Intuitively, the arrival time error

decreases with lower wind and target speeds. This is because higher target speeds

result in a larger change in racetrack position from one pass to the next requiring a

longer distance to be traveled. This causes the racetrack size to be minimized for lower

wind speeds when compared to the static case. Additionally, there is a small portion

of scenarios, which achieved nominal performance for all tested scenarios; bounded

by the red line. The next set of data will show that the arrival time performance is

also heavily dependent on target heading.
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Figure 66 presents the arrival time error data set averaged for different combi-
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nations of target speed ratio and heading relative to the y(r) axis. A clear desired

heading is seen in around a relative heading of 180 deg. Viewed from an aircraft on

the final path segment, this is a target moving from left-to-right for a counterclockwise

orbit. This is a “desirable” heading because it causes Quadrant II of the racetrack to

move towards Quadrant IV once the orbit is complete. However, no set of scenarios

achieved nominal performance for all tested scenarios.
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Figure 66. Multi-pass Average Arrival Time Error (s), Varying Target Speed and
Heading

The behavior is highlighted in Fig. 67. The aircraft is positioned such that it just

completed an orbit and the solid target and trajectory represent a 180 deg relative

heading while the empty target and dashed trajectory are a 0 deg relative heading.

The desired path of the target moving at a 180 deg relative heading is much closer

than the target moving in the opposite direction. This information may be used to

choose an orbit direction if it does not matter to a specific scenario.

Figure 68 compares the relative wind and target heading for two data sets. Figure

68a utilizes all scenarios in the multi-pass data while Fig. 68b is limited to TTSF =

0.5, Wind Speed Ratio ≤ 0.4, and Target Speed Ratio ≤ 0.4.

The dashed lines are values of relative wind heading as a function of the target

heading. The main observation in both data sets is that the best arrival time errors
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Figure 67. Changing Target Heading for a Counterclockwise Orbit

occur in an oblong area with a semi-major axis which roughly corresponds to an equal

wind and target direction. The area is again centered at 180 deg which matches the

observations in Fig. 66. However, no set of scenarios achieved nominal performance

for all tested configurations in Fig. 68a.
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(b) TTSF = 1.5, Wind Speed Ratio ≤ 0.4, Target
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Figure 68. Multi-pass Average Arrival Time Error (s), Varying Wind Direction and
Target Direction

Figure 68a also shows that the worst performance occurs with a target heading

near 0 deg relative to y(r) with a windspeed in an opposite direction. However, the

performance in the same area is significantly better in Fig. 68b. The average perfor-
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mance suffers when both target and windspeed are near half the reference airspeed

but in opposite directions. The poor performance in this area is due to a combination

of variables. The target heading near zero requires the aircraft to fly farther to ac-

quire the path and travel in the same direction as the target; the light car and dashed

path in Fig. 67. The wind direction results in a full headwind. When the windspeed

and target speed are both half the reference speed, then the reference groundspeed is

the same as the target speed, preventing the aircraft from quickly catching up to the

target. The result is a very late arrival.

However, Fig. 68b highlights that this degradation in performance is primarily

due to a small number of extreme cases. Limiting the data to higher TTSF and

marginally lower wind and target speeds results in a large portion of the data which

achieves nominal performance.

Again, the relative change in parameters did not change with aircraft type. In re-

peat scenarios, the relative performance of the aircraft corresponded with the turning

capability (minimum turn radius) of the respective aircraft. Thus, aircraft types from

best to worst performing are light utility, medium cargo, fighter, and heavy cargo.

This result is attributed to longer distance a higher turn radius aircraft must fly to

reacquire the desired path. Aircraft speed is likely not a factor since the target speeds

are scaled off the desired aircraft speed.

Overall, the algorithm performed well in multi-pass scenarios and a clear region

of headings was shown to result in significantly better performance. This characteri-

zation may be used to choose a preferred arrival heading or turn direction when not

constrained by the scenario.
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Non-Cooperative Target Simulations.

The non-cooperative scenarios are setup such that the aircraft begins in a position

to overfly the moving target and then the target will stop at some point prior to the

aircraft completing the orbit. Figure 69a shows the position of the aircraft and target

prior to the stop. The target is off the racetrack but moving towards the predicted

endpoint (red triangle). Note the aircraft began at the current predicted endpoint.

Figure 69b shows the position of the vehicles after the target stopped and the endpoint

has shifted to the now static target. The shift is most notable by comparing the initial

path of the aircraft (black) and the new desired path (dashed blue).

(a) Non-cooperative Setup Example Pre-Stop (b) Non-cooperative Setup Example Post-Stop

Figure 69. Final Algorithm Non-cooperative Arrival Airspeed Error

The following parameters were varied in the characterization resulting in 19,200

simulations:

� TTSF : 1.3

� Orbit Direction: Clockwise and Counterclockwise

� Wind Speed Ratio: 0 to 0.3

� Wind Direction: 0 deg to 360 deg in increments of 60 degrees
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� Target Speed Ratio: 0 to half the reference airspeed

� Target Direction: 0 deg to 360 deg in increments of 36 degrees

� Target Stop-Time Ratio: 0.1 to 0.9

� All aircraft types

� Turbulence: Moderate

The initial simple linear regression showed that windspeed ratio, target speed

ratio, target stop-time ratio, relative target heading, and aircraft type were all sig-

nificant variables (p ≤ 0.05) affecting the arrival time error. First, Fig. 70 presents

the average and standard deviation of arrival time error as it varies with target speed

and target stop time.
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Figure 70. Non-Cooperative Target Speed Ratio v. Target Stop Time Ratio

The average arrival error plot shows interesting behavior due to the highly nonlin-

ear nature of the scenario. Of note, the red contour demonstrates if a slow target stops,

nominal performance is achievable regardless of when the target stops. However, in-

teresting behavior occurs at a target stop-time ratio of 0.5. This is a particularly
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difficult time because halfway through the orbit is approximately when the aircraft

will enter the final turn and the racetrack size becomes fixed.

The average arrival error differences are primarily due to the simulation length.

The slowest (maximum) arrival time errors are limited by the length of the simulation

while the earliest are not. The standard deviation plot highlights that there is a high

variation in arrival time errors at this point.

Figure 71 presents the average and standard deviation arrival time error as it

varies with target stop time and relative target heading. Similar behavior is seen

as with Fig. 70. In general, the average arrival time error magnitude and standard

deviation are lower when the target heading is near 0 deg relative to the racetrack

y(r) axis.
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Figure 71. Non-Cooperative Target Stop Time Ratio v. Target Relative Heading

The highest magnitude errors are observed near 180 deg target heading and 0.5

stop time scale factor. These scenarios correspond to an aircraft at the beginning of

the final turn and the target moving away from the aircraft. After the target stops,

the final leg of the desired path moves towards the aircraft resulting in an early arrival

time. The standard deviation plot highlights that there is an increased variation in

arrival time errors at this condition.
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Overall, the racetrack algorithm is not as successful at achieving the desired arrival

time with a non-cooperative target compared to a steady moving target or a static

target. This is not unexpected since the algorithm was designed to achieve good

performance with multiple passes on a constantly moving target. Furthermore, this

data set was only simulated for a single TTSF and it is expected that errors would

improve when as TTSF increases based on the static and multi-pass performance.

An increased desired arrival time allows the aircraft more time to correct for any error

which is a result of the target stopping.

Single Vehicle Analysis.

A single vehicle scenario is analyzed to highlight the detailed behavior of different

parts of the racetrack algorithm. The scenario is a non-cooperative moving target

scenario with a keep-out zone. A light utility aircraft is flying with a steady windspeed

of 88 ft/s (52 knots) which is 30 % of the reference airspeed. The desired arrival time

is set at 175 s which corresponds to a TTSF of 1.7 to activate the keep-out zone and

target is initially traveling at 58 ft/s (20% of the reference airspeed) at a heading of

300 degrees. The target stops at 52 seconds (30% the desired arrival time). Finally,

the initial positions of the aircraft and target were set such that the initial estimated

endpoint was at the coordinates (0, 0) and the aircraft began over that point as well.

Figure 72 presents the results of the simulation at two different points in time

to highlight the movement of the desired racetrack. The arrival time error at the

end of the orbit is −0.08 s with −0.7 ft/s arrival airspeed error, within the nominal

performance range. The vehicle trajectory abruptly turns just after the snapshot

in Fig. 72a to correct to the now stopped target. The effect is that the estimated

endpoint, represented by the red triangle, moved from (0, 0) to its final location in

Fig. 72b, shifting the desired racetrack.
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The keep-out zone avoidance logic is also active in this sample scenario. The

racetrack size is initially free but near the point of becoming saturated. Once the

target stops, the racetrack size saturates. The space between the keep-out zone and

the final desired path is equal to the specified “pad” distance. Note that, as expected,

this “pad” space is approximately equal to the distance outside the path the flown

by the aircraft due to the turn radius adjustment.

(a) Top-Down View Before Overflying Target (b) Top-Down View After Overflying Target

Figure 72. 58 ft/s Target stopping with aircraft in first turn

Inspecting the parameter time histories in Fig. 73 expands on the behavior shown

in Fig. 72. First, the rapid changes in arrival time error and racetrack size at the

beginning of the simulation are due an artifact of the algorithm initialization. Next, a

sharp jump in the racetrack size, the parameter a, occurs when the target stops at 52

seconds. Before this point, the racetrack size changes slightly to keep the arrival time

error near zero. Once the target stops, the racetrack size reduces to the keep-out zone

constrained value resulting in an arrival time error which shows an early arrival. This

commands the airspeed to a minimum value and triggers the turn radius adjustment

logic resulting in the tracking error to plateau near 1500 ft just prior to 100 s. The

tracking error decreases with arrival time error as expected. Once the arrival time

error is near zero at approximately 150 s, the algorithm behaves nominally until the
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end of the orbit at 175 s.

0 50 100 150 200 250

0

2

4
 (rad)

 cmd (rad)

Quadrant

0 50 100 150 200 250
250

300

A
ir
s
p

e
e

d
 (

ft
/s

)

V
T

Cmd

0 50 100 150 200 250
0

5000

a
 (

ft
)

0 50 100 150 200 250

-15
-10

-5
0
5

T
im

e
 E

rr
o

r 
(s

)

Actual

Estimated

0 50 100 150 200 250

Time (s)

0

2000

4000

6000

T
ra

c
k
in

g
 E

rr
o

r 
(f

t)

200 ft

Figure 73. Sample Scenario Time History

7.7 Cooperative Control Simulations

This section analyzes the performance of a coordinated group of four aircraft for

in three constrained scenarios. The scenarios are chosen to demonstrate the string

stability performance of the algorithm while activating the advanced logic features of

the algorithm such as keep-out zone avoidance, s-turns, turn radius adjustment, etc.

In these simulations, the aircraft are color-coded by arrival order: blue, red, yellow,

purple (respectively). The heterogeneous aircraft simulations all utilize the same

order of aircraft class: light utility, medium cargo, heavy cargo, fighter. Although

the order remains constant, the stability analysis in Chapter VI showed that the

algorithm performance is independent of the aircraft order based on the selection of
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the command gains and limits. Finally, lead aircraft becomes the last aircraft upon

orbit completion.

In the top-down views, aircraft trajectory is shown as a solid line in the correspond-

ing color, the desired racetrack is a dashed line, the predicted endpoint a color-coded

triangle, and keep-out zones are a shaded red area. All aircraft are initialized at a

common point indicated by the black circle. The target is an orange rectangle with

a speed vector arrow. The arrival time plots are also color coordinated and the end

of each orbit is marked by a black vertical line.

Videos of both the simplified dynamics model and nonlinear dynamics model

scenarios may be found at the following YouTube link, https://www.youtube.com/

watch?v=PV1fjO8ocFY. The location of each specific scenario is provided in the video

description and a short description of each scenario is given prior to each simulation.

Static Target with Keep-Out Zones.

The static scenario commands a heterogeneous group of aircraft to overfly a static

target at equally spaced intervals while avoiding keep-out zones. The keep-out zones,

both rectangles and ovals, are positioned so that the size of each aircraft’s racetrack

is constrained. This ensures the keep-out-zone logic works as intended and forces

any arrival time error to be corrected by airspeed only. The main parameters of the

scenario are:

� Initial Orbit Arrival Time: 260 s

� Time Spacing: 65 s

� Steady Wind Speed: 59 ft/s (20% of slowest reference airspeed)

� Steady Wind Heading: 315 deg
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Table 15 presents the arrival error results for each aircraft. All errors are within

the nominal range for each aircraft as expected due to the wind conditions, desired

arrival times, and the static target.

Table 15. Simplified Model Static Results at Orbit Completion

Aircraft Arrival Time Arrival Airspeed Distance to
Error (s) Error (ft/s) Target (ft)

1 0.08 4.0 27
2 -0.02 -1.0 124
3 0.02 1.9 58
4 0.00 0.5 126

Figure 74 presents the resulting trajectories of the static scenario. First, note

the seemingly errant turns in the purple and yellow trajectory which occur at the

approximate coordinates of (−5, 19) and (−2, 5) respectively. The turns are short

activation of the keep-out zone logic at approximately 100 s when the arrival time

error decreases below the threshold to activate the s-turn logic, 5 seconds.

In Fig. 74a it is clear the keep-out zone logic works as intended since the aircraft

approach but do not cross into the keep-out zones during the first orbit. Since the

aircraft begin at the same location, the size of the subsequent racetracks for aircraft

2-4 are shorter for the subsequent pass. This is because the first arrival time included

the time for the first vehicle to complete a full orbit plus the time for the other

aircraft’s time spacing. After the first orbit, the aircraft are correctly spaced apart

and each orbit will be the desired orbit time. Finally, the small amount of space

between the trajectories and the keep-out zones is due to the “pad” variable used in

the keep-out zone constraint; see Sec. 5.8.

In Fig. 74b it is clear the system is string stable in arrival time error since the

errors remain bounded. Additionally, the variation in error of a subsequent aircraft

noticeably decreases when the preceding aircraft arrives. This highlights how the

lead aircraft is able to maintain a lower bounds on arrival time error because its
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(b) Arrival Time Error v. Time Comparison

Figure 74. Scenario 1: Static with Keep Out Zone

equilibrium point is zero, see Sec. 6.3.

The equilibrium point for the remaining aircraft depends on the preceding aircraft

which causes the error to drift towards the error of the preceding aircraft. This effect

can be seen as the time error of aircraft two through four decreases towards the value

of the preceding aircraft for the first half of the simulation after which the error

returns to zero. Overall, this scenario demonstrates the arrival time performance and

stability of the racetrack algorithm while managing keep-out zones against a static

target.

Moving Target with Keep-Out Zones.

The next scenario is representative of a continuous monitoring scenario where each

aircraft must overfly a moving target at equally spaced intervals. In this scenario,

the arrival heading for each aircraft remains constant for each pass. Non-constant

headings are demonstrated in Sec. 7.8. A keep-out zone is included which limits the

racetrack size of one of the aircraft on the first pass; the fighter aircraft (purple).

Finally, the aircraft are all initialized at the same (x, y) coordinates and must acquire
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the initial desired racetrack.

� Initial Orbit Arrival Time: 260 s

� Time Spacing: 65 s

� Steady Wind Speed: 59 ft/s (20% of slowest reference airspeed)

� Steady Wind Heading: 315 deg

� Target Speed: 147 ft/s (50% of slowest reference airspeed)

� Target Heading: 270 deg

The arrival error results for each orbit are presented in Table 16. All aircraft

demonstrated nominal arrival time error performance and low tracking error from

the target at orbit completion due to the predictive calculation of the endpoint; see

Sec. 5.8.

Table 16. Simplified Model Multi-Pass Results at Orbit Completion

Orbit 1
Aircraft Arrival Time Arrival Airspeed Distance to

Error (s) Error (ft/s) Target (ft)

1 0.08 4.2 71
2 -0.01 -0.0 47
3 0.02 1.8 46
4 0.01 1.4 16

Orbit 2
Aircraft Arrival Time Arrival Airspeed Distance to

Error (s) Error (ft/s) Target (ft)

1 0.21 11.9 85
2 0.19 13.1 61
3 0.26 26.9 64
4 0.00 1.1 105

Of note is the high target speed relative to the slowest (blue) aircraft; 50% of the

blue aircraft reference airspeed. Although the speed is associated with higher errors,
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on average, the heading and turn direction of the blue aircraft results in a near zero

target heading relative to the blue aircraft’s y(r)-axis, a heading associated with lower

error on average. Additionally, it is interesting that most of the aircraft resulted in

a slightly higher arrival time error on the second orbit however, this is likely due to

wind turbulence since the error is within the range of nominal performance.

The top-down trajectory is shown in Fig. 75a. The purple trajectory is clearly

limited by the keep-out zone as designed which also activates the s-turn logic. The

purple trajectory approaches but does not violate the keep-out zone as desired. In

this case, the turn radius adjustment is active pushing the trajectory to the edge of

the keep-out zone “pad,” see Sec. 5.8.
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Figure 75. Scenario 2: Moving Target with Keep Out Zone

Figure 75b presents the arrival time errors. The error of the first three aircraft

is small for the initial portions of the orbits. These sections with error near zero

correspond to times when the racetrack size is not limited and is able to efficiently

correct any arrival time error. As expected, the error of the fourth aircraft is initially

negative (early) prior to slowly increasing towards zero due to the racetrack size

limitation caused by the keep-out zone.
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This simulation also highlights the behavior where the error variation increases as

an aircraft enters the final turn. This occurs just before 200 s for the first aircraft.

The arrival time error variation increases due to a combination of the racetrack size

becoming fixed and the increased variation in arrival time error expected during

turns, see Sec. 5.6. The increased variation in arrival time error of the first vehicle

then propagates to the following vehicles once their racetrack sizes become saturated.

The errors remain bounded due to the string stable design of the algorithm. Overall,

this scenario demonstrates the algorithm’s ability to repeat this pattern indefinitely

in lieu of a higher target speed and keep-out zone.

Non-Cooperative Target with Keep-Out Zones.

The final scenario is a non-cooperative target with keep-out zones. The keep-out

zone is positioned to affect the first aircraft and require the maximum racetrack size

to decrease when the target stops. Although this presents a challenging scenario,

the nominal arrival time error performance is achieved for all aircraft. Similar to the

moving target scenario, the aircraft are initialized at a common point and must first

acquire their respective desired paths. The parameters of the scenario are:

� Initial Orbit Arrival Time: 279 s

� Time Spacing: 70 s

� Steady Wind Speed: 88 ft/s (30% of slowest reference airspeed)

� Steady Wind Heading: 330 deg

� Target Speed: 57 ft/s (20% of slowest reference airspeed)

� Target Heading: 270 deg

� Target Stop Time: 139 s (50% of first aircraft desired arrival time)
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The results at the completion of each aircraft’s orbit are presented in Table 17.

It is not unexpected that the first aircraft arrives early due to the stopping of the

target however, the error is within nominal performance tolerances for a light utility

aircraft. The stopping target forces the aircraft to re-position to a new orbit while

achieving the same desired arrival time.

Table 17. Simplified Model Non-Cooperative Results at Orbit Completion

Aircraft Arrival Time Arrival Airspeed Distance to
Error (s) Error (ft/s) Target (ft)

1 -1.00 -31.4 67
2 0.01 1.7 9
3 0.03 2.9 56
4 -0.04 -6.2 96

Figure 76a presents a close-up view of the trajectories; the upper portion of the

purple trajectory is not shown because it behaves nominally. The most notable feature

of the trajectory are the sharp turns which correspond to the time the target stops.

The effect is seen in the figure at the (x,y) coordinates of approximately (−6, 12)

where the purple trajectory turns sharply. The parallel portions before this turn

indicate the initial and final racetrack position.

In the arrival time plot, Fig. 76b, the target stops at 139 seconds where the arrival

time error of all aircraft exhibits a large change due to the racetrack algorithm resting

to the new endpoint. The blue aircraft becomes keep-out zone limited immediately

after this stop as indicated by the slower decrease in arrival time error after the target

stops. The blue aircraft increases its turn radius and executes a number of s-turns to

drive the arrival time error to zero.

Each following aircraft’s arrival time error decreases once the aircraft the racetrack

size becomes fixed due to reaching the final turn (purple and red aircraft) or due to

the keep-out zone (yellow aircraft). The decrease in error occurs because the blue

aircraft is expected to arrive “early” after the target stops and the following aircraft
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Figure 76. Scenario 3: Non-Cooperative Target with Keep Out Zone

adjust their racetrack sizes to maintain spacing off the estimated “early” time. The

errors decrease towards zero once the error of the preceding aircraft also nears zero.

The string stable design of the algorithm ensures the errors remain bounded in

lieu of the error variation of the lead vehicle. Overall, this scenario demonstrates the

ability of the algorithm to adapt to a moving endpoint while adjusting for previously

inactive keep-out zone constraints.

7.8 Nonlinear Aircraft Model Simulations

This section is the primary evaluation of the nonlinear aircraft model developed

in Chapter III. The model is first compared to the simplified model to verify the as-

sumption that the simplified model accurately represents the nonlinear model. Then,

the nonlinear model and racetrack algorithm are evaluated in graduation exercises

similar to those in the previous section.
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Comparison to Simplified Model.

Chapter III simplified the full nonlinear equations of motion with several assump-

tions. In addition to allowing the stability analysis in Chapter VI, the time to cal-

culate the trajectory utilizing the simplified model is significantly lower than when

using the nonlinear model. First, the simplified and nonlinear model are compared

in an identical scenario to determine if the simplified model characterization is likely

to apply to the nonlinear model.

A multi-pass single-aircraft scenario was chosen to stress the algorithm to observe

the differences between the two models. The scenario begins with the aircraft over the

target as if a pass was just completed. The target continues at a steady speed while

the aircraft reacquires the racetrack to overfly the target a second time. The wind

and target speeds are chosen to represent a difficult scenario for any aircraft based on

their scale-factors. Note that the speeds are less realistic when applied to the desired

speed of the fighter aircraft. Finally, turbulence is included in the simulations. The

set of parameters for this scenario is listed below:

� TTSF : 1.6

� Target-Speed Scale-Factor: 0.3 (259 ft/s or 153 knots),

� Target Heading: 133 deg,

� Wind speed Scale-Factor: 0.4 (346 ft/s or 205 knots),

� Wind Heading: 257 deg,

� Final Racetrack Ground Course: 10 deg,

� Counterclockwise Orbit.

Figure 77 presents the trajectory and parameter comparison of the two models;

the aircraft are initialized at the coordinates (0, 0). Equal points in time are identified
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by × marks in both plots. The simplified model resulted in an arrival time error of

0.03 s and an airspeed error of 3.5 ft/s while the nonlinear model resulted in an

arrival time error of 0.03 s and an airspeed error of 6.3 ft/s. The similarity in arrival

errors supports the assumptions of the simplified model remain valid and allow the

simplified model to be an accurate approximation of the nonlinear model when a

nominal level of performance is achieved. However, it is also of interest to evaluate

the difference between the two models over the course of the entire simulation.
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Figure 77. Simplified Model and Nonlinear Model Repeat Pass Comparison

In Fig. 77a the simplified model performs a slightly tighter initial turn resulting

in a position further south of the nonlinear model trajectory once both are tracking

the southward leg the racetrack. This is due to the simplified model reaching the

maximum load factor more rapidly than the nonlinear model.

The difference in turns results in an average distance between the two trajectories
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of 1254 ft. However, the racetrack algorithm determines a racetrack size based on

the current position and time. The result is that the two simulations have a slightly

different racetrack size as indicated by the difference in final turn location near the

bottom of the plot. The effect of the different racetrack sizes is that the trajectories

converge during the final quadrant of the racetrack.

Moreover, the average difference between the simulations during the final straight

segment is only 35 ft. A similar behavior is apparent in the average arrival time

error. The average arrival time error difference prior to orbit completion is 0.54 s

while the average arrival time error difference in the final quadrant is only 0.02 s.

The behavior during this final segment indicates the simplified model dynamics are

an acceptable approximation of the nonlinear model dynamics.

The difference in track size will affect the overall performance characterization

for scenarios near racetrack saturation with large path acquisition turns. Therefore,

it is concluded that a nonlinear model characterization would not be significantly

different from the simple model in static scenarios. Moving and non-cooperative

scenarios would likely see a small increase in average arrival time error for scenarios

which require more path acquisition (fast target and/or early stop times). However,

the racetrack algorithm performs as expected for both models and the trends in arrival

time error with respect to scenario parameters are not expected to change between

the models.

Nonlinear Cooperative Control Scenarios.

The nonlinear cooperative control scenarios are similar to the three scenarios pre-

sented Sec. 7.7. However, only a fighter-like nonlinear model is analyzed and the

scenarios were modified to demonstrate similar algorithm functions as demonstrated

in Sec. 7.7. The nonlinear dynamics model itself is described in Chapter III.
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As in the simplified model scenarios, aircraft trajectory is shown as a solid line in

the corresponding color, the desired racetrack is a dashed line, the predicted endpoint

a color coded triangle, and keep-out zones are a shaded red area. All aircraft are

initialized at a common point indicated by the black circle. The target is an orange

rectangle with a speed vector arrow. The arrival time plots are also color coordinated

and the end of each orbit is marked by a black vertical line.

Videos of both the simplified dynamics model and nonlinear dynamics model

scenarios may be found at the following YouTube link, https://www.youtube.com/

watch?v=PV1fjO8ocFY. The location of each specific scenario is provided in the video

description and a short description of each scenario is given prior to each simulation.

Static Target with Keep-Out Zones.

The static case is designed to cause each aircraft to be keep-out zone limited and

force the algorithm to correct some initial arrival time error. The pertinent scenario

parameters are:

� Initial Orbit Arrival Time: 139s

� Time Spacing: 34.7 s

� Wind Speed: 172 ft/s (20 % of reference airspeed)

� Steady Wind Heading: 315 deg

The scenario and resulting trajectories are presented in Fig. 78 and the actual

arrival errors are shown in Table 18. All aircraft achieved nominal performance.

In this scenario, the first and fourth aircraft are immediately racetrack size limited

while the second and third are not. The estimated arrival time of the first aircraft

slowly increases corresponding to the slow increase in arrival time error. The race-

track size of the second and third aircraft increases to match the desired spacing
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Table 18. Nonlinear Model Static Results at Orbit Completion

Aircraft Arrival Time Arrival Airspeed Distance to
Error (s) Error (ft/s) Target (ft)

1 -0.02 -4.2 88
2 0.05 6.7 144
3 0.02 5.5 109
4 0.00 -0.6 110

until limited by the keep-out zone at approximately 50 s when the arrival time error

decreases slightly.
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Figure 78. Nonlinear Model: Static Target with Keep Out Zone

Also of note is the behavior of the fourth aircraft where the arrival time error

remains near −5 s for the majority of the simulation. This is because the keep-out

zones resulted in early estimated arrival times for both the first and fourth aircraft.

In the case of the first aircraft, the desired arrival time is constant while the es-

timated arrival time increases. In the case of the fourth aircraft, the desired arrival

time is also increasing since it is a function of the preceding aircraft. Therefore, it

is expected that the fourth aircraft’s arrival time error beings decreasing at approxi-

mately the same time the first aircraft’s arrival time error approaches zero. Finally,
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a short segment of s-turns is initiated in the purple trajectory at approximately 75 s

when the arrival time error passes the threshold to activate the logic, an arrival time

error of −5 s. Overall, this scenario demonstrated nominal performance and avoided

keep-out zones as desired.

Multi-pass.

The multi-pass scenario is designed to activate keep-out zone logic while the algo-

rithm guides the aircraft to overly a moving target at specified intervals. Unlike the

simplified demonstration, this scenario changes the arrival heading between the first

and second orbit. The pertinent scenario parameters are:

� Initial Orbit Arrival Time: 149 s

� Time Spacing: 37.2 s

� Target Speed: 173 ft/s (20 % of reference airspeed)

� Target Heading: 90 deg

� Wind Speed: 259 ft/s (30 % of reference airspeed)

� Steady Wind Heading: 330 deg

The actual arrival time errors for each pass are shown in Table 19. All aircraft

achieved nominal performance on each orbit.

Figure 79a presents the trajectory for the nonlinear multi-pass scenario. Note,

the arrival heading changes from first to second pass. The red aircraft trajectory is

constrained and avoids the keep-out zone as designed.

Figure 79b shows the arrival time error behaves as expected due to the effect

keep-out zones in the case of the red aircraft. Additionally, the blue aircraft has an

increase in arrival time error after completing the first orbit due to a combination
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Table 19. Nonlinear Model Multi-Pass Results at Orbit Completion

Orbit 1
Aircraft Arrival Time Arrival Airspeed Distance to

Error (s) Error (ft/s) Target (ft)

1 -0.00 0.4 83
2 -0.03 -2.5 84
3 -0.06 -7.1 144
4 -0.00 2.9 75

Orbit 2
Aircraft Arrival Time Arrival Airspeed Distance to

Error (s) Error (ft/s) Target (ft)

1 0.03 2.0 89
2 -0.10 -9.5 83
3 -0.01 -1.8 91
4 0.01 -0.8 61

of becoming a following aircraft and a large change in the endpoint conditions. The

blue aircraft’s first arrival point was at the coordinates (0, 0) with a heading approx-

imately East while the second point is approximately at (−5, 0) in a South-southeast

direction. Overall, this demonstration highlights the ability of the algorithm to adapt

to changing final headings with a moving target and keep-out zones.
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Figure 79. Nonlinear Model: Moving Target with Keep Out Zone
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Non-Cooperative Target with Keep-Out Zones.

The final nonlinear cooperative scenario is a non-cooperative target scenario. Sim-

ilar to the simplified case, the scenario was set up such that the keep-out zone logic

for at least one aircraft would activate after the stopped moving. The pertinent

parameters of the scenario are:

� Initial Orbit Arrival Time: 149 s

� Time Spacing: 37.2 s

� Target Stop Time: 89 s (60% of first aircraft desired arrival time)

� Target Speed: 259 ft/s (30 % of reference airspeed)

� Target Heading: 221 deg

� Wind Speed: 259 ft/s (30 % of reference airspeed)

� Steady Wind Heading: 330 deg

The actual arrival time errors of the non-cooperative scenario are presented in

Table 20. This scenario highlights a case where the first aircraft was unable to

achieve the desired arrival time due to the time the target stopped. The target

stop time ratio corresponds to conditions which resulted in large arrival time errors

in the performance characterization. However, the remaining aircraft all adapted and

demonstrated nominal performance.

Figure 80 presents the trajectories of the scenario. First note the trajectory of

the lead aircraft, in blue. The sharp turn in the blue trajectory at the coordinates

(−2,−5) correspond to the point when the target stopped. The relative position of

the aircraft, target position, and target airspeed caused the endpoint to shift to the

Northeast. The result is the blue aircraft was approximately at the start of the final
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Table 20. Nonlinear Model Non-Cooperative Results at Orbit Completion

Aircraft Arrival Time Arrival Airspeed Distance to
Error (s) Error (ft/s) Target (ft)

1 -12.38 -83.3 134
2 0.07 9.6 150
3 -0.02 1.5 116
4 -0.03 -0.4 80

turn prior to the target stop and just over halfway through the final turn prior to the

target stop. This results in the large decrease in arrival time error indicating an early

arrival. The re-orbit logic did not occur in this scenario because a full orbit would

result in a late arrival.
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Figure 80. Nonlinear Model: Stopping Target

Although the first aircraft did not meet its initial arrival time, the remaining

aircraft were able to adapt and achieve nominal performance. Figure 80b shows that

the red aircraft exhibits large arrival time error changes since the target stopped

while the red aircraft was in its final turn, increasing the distance to the endpoint.

However, aircraft apparently had sufficient time to correct the error while utilizing

the turn radius adjustment to fly outside the desired path. Overall, the scenario
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demonstrated the ability of the racetrack algorithm to adapt to a non-cooperative

target utilizing the nonlinear dynamics model.

7.9 Results Summary

Overall, the results demonstrated that the stability and performance of the race-

track algorithm utilizing the Gaussian Quadrature arrival time estimation method.

The performance was characterized for a single aircraft across a wide range of scenar-

ios which were similar to multi-aircraft scenarios. Next, the string stability analysis

from Chapter VI was verified through simulation. Finally, three graduation exercises

were used to demonstrate the algorithm’s performance in realistic scenarios utilizing

both the simplified model with a heterogeneous group of aircraft and the nonlinear

model with a group of fighter aircraft.
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VIII. Conclusion

8.1 Research Questions and Contributions

The goal of this research is to develop a practical control algorithm which solves

the coordinated arrival time problem in real time while considering environmental

effects, airspace, and maintaining a predictable flight path. The goal of this research

is to allow scenarios similar to the continuous monitoring problem where the arrival

time of an aircraft may either be fixed or dependent on a preceding vehicle. This

resulted in the hypothesis:

A control algorithm exists which may predictably guide an aircraft through a con-

strained environment to achieve a desired final position, heading, and velocity at a

specified arrival time by adjusting both the speed and flight path of the aircraft

Overall, this research supported the hypothesis with the development and analysis

of the racetrack algorithm. Four research questions were identified and answered

which support this hypothesis:

1. What is the time optimal lead turn time for an aircraft, controlled by roll rate,

to closely follow a Dubins path?

2. What technique is best suited to control the time of arrival and velocity of an

aircraft in near real time?

3. Is a keep-out zone avoidance feature able to be integrated into the arrival time

control algorithm?

4. How does a arrival time control algorithm perform in the presence of environ-

mental anomalies and time dependent constraints?

To support these questions, five contributions to the control of autonomous vehi-

cles were made:
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� A near-optimal solution to the optimal lead turn time problem,

� A framework for a real-time arrival time controller which compensates for

steady-state winds, is robust to random turbulence, allows for repeat visits,

and operates within keep-out zone constraints,

� A method to guarantee the string stability of a group of airspeed heterogeneous,

nonlinear aircraft with a cascaded interconnection utilizing the developed arrival

time algorithm,

� A performance characterization of the real-time arrival time controller across a

range of wind conditions and arrival requirements,

� A demonstration of the arrival time controller in single and multi-vehicle sce-

narios with cooperative and non-cooperative targets.

In order to develop an algorithm which can achieve coordinated arrival time in a

windy environment which may have keep-out zones, two primary control effectors have

been identified: path length and airspeed. The desired path is defined as a racetrack

because the overall length of the path may be changed by a single variable, the

width of the racetrack. This scheme allows for rapid control over the remaining path

length, allowing the estimated arrival time to rapidly be controlled. Furthermore,

the racetrack shape is well defined as a set of straight and circular path segments

allowing for keep-out zone constraints to be enforced. Finally, utilizing this approach

reduces the complexity of the coordinated arrival time problem by decoupling the

path-following controller and the arrival-time controller.

The arrival time algorithm is built around a framework which allows parts of

algorithm analyzed in this paper to be interchanged. The path follower, keep-out zone

control, and upper-level path manager may be changed out or handled by a separate

algorithm or computer. This may be desired when implementing the algorithm in
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hardware based on the constraints of the hardware system. Finally, the racetrack

algorithm and subsequent analysis are performed in MATLAB®and Simulink®. Two

different dynamics models were used to develop and analyze the algorithm.

The dynamics models used in this research are derived in Chapter III. A simplified

model identified key assumptions which allowed the number of dynamic states to

be reduced from the nonlinear equations of motion. With fewer state variables, the

model allowed the formation of the optimal lead turn problem, a robust string stability

analysis, and an extensive characterization of the racetrack algorithm. To further the

realism of the simulation analysis, a control system which accepted airspeed, altitude,

and bank angle commands was developed for an existing nonlinear dynamics model

of a fighter aircraft [6]. Finally, two key assumptions of this research are that the

windspeed and target speed are limited to half the desired airspeed of the slowest

aircraft in a group. This assumption prevents the infeasible scenario where the aircraft

and target relative speed is zero.

Optimal Lead Turn.

The first research question addressed in this research is, “What is the time optimal

lead turn time for an aircraft, controlled by roll rate, to closely follow a Dubins path?”

This question is addressed in Chapter III and Chapter IV. The question is derived

from the chosen path, a racetrack, which is a type of Dubins path where the initial

and final pose are connected. The simplified dynamics model developed in Chapter

III allows for the development of the optimal lead turn problem, Chapter IV, which

seeks to determine the optimal control that maneuvers a fixed wing aircraft from one

section of a Dubins path to the next with minimal path error.

Several assumptions have been applied to the optimal lead turn problem to allow a

near-optimal, but analytic, solution to be developed, referred to as the TPAS solution
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in this research. The three primary assumptions of the TPAS solution are that the

maneuver is completed in minimum time, that the aircraft begins tangent to the initial

path segment, and that the position and heading dynamics may be approximated

Taylor polynomials. The resulting solution consists of a lead turn point to begin the

segment transition and a definition of the optimal roll maneuver.

The near optimality of the TPAS solution has been confirmed in this research

by comparing the TPAS solution to a numerically calculated optimal solution. The

chosen performance metric is the tracking-error cost relative to the tracking-error

cost of a control scenario where no lead turn is performed. The results show that

the TPAS solution is within 3.2% of the numerically calculated optimal solution on

average but varies between −5.9% to 13.3% over 1,458 different scenarios. This level

of similarity supports the claim that the TPAS solution is near-optimal.

This research further evaluated the TPAS solution by integrating the TPAS so-

lution into existing guidance laws to determine if the maneuver improved tracking

performance in more realistic scenarios with non-zero wind and turbulence. Four

types of existing guidance laws have been studied: carrot-chasing algorithm, nonlin-

ear dynamic inversion, nonlinear guidance law, and a vector field follower. The results

show that simply transitioning to the next path segment at the lead turn point im-

proved tracking performance by 34% on average for three of the four controllers when

compared to the baseline controller performance. However, the results also show that

the benefit of the lead turn decreases as the level of turbulence increases because

turbulence the terminal state constraints used to calculate the TPAS solution to be-

come invalid (e.g. the TPAS assumed zero initial tracking error which could not be

guaranteed in a realistic environment with turbulence).

Overall, the contribution of the optimal lead turn research is the derivation of

the optimal lead turn problem and the subsequent development and analysis of a
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near-optimal solution to the optimal lead turn problem which is shown to provide a

tracking benefit in realistic scenarios with non-zero wind and turbulence.

Arrival Time and Airspeed Control.

The second research question addressed by this dissertation is, “What technique

is best suited to control the time of arrival and velocity of an aircraft in near real

time?” This question is addressed in Chapter V-VII. This question is derived from

the requirement of the coordinated arrival time problem to ensure that an aircraft

arrives at some desired time which may be fixed or a function of the arrival time of a

preceding aircraft. First, it has been shown that assuming a ground-fixed racetrack

allows the time to fly along the path to be accurately estimated even with non-

zero wind conditions. This estimate utilizes a Gaussian quadrature to accurately

incorporate the non-constant effect wind has on the aircraft ground speed which, in

turn, determines the estimated arrival time.

With an accurate time estimate, it is then shown that estimating the time remain-

ing assuming the aircraft traveled at some desired airspeed allows for both a desired

arrival time and desired arrival airspeed to be achieved. This formulation is similar

to a virtual target controller in that the arrival time error is defined to be zero at

some virtual point on the path. The point is determined such that an aircraft at the

point which travels along the path at the desired airspeed will arrive at the endpoint

at the desired time. Therefore, a controller which drives the arrival time error to zero

will also drive the airspeed error to zero. In order to show the controller does drive

the arrival time error to zero, string stability theory has been applied.

The stability implications of a group of interconnected vehicles is analyzed in

Chapter VI. The literature review in Chapter II discusses the concept of string sta-

bility as the stability of a group of interconnected dynamic systems. This research
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expands upon the string stability body-of-knowledge by deriving a method to guar-

antee the string stability of a group of airspeed heterogeneous aircraft with respect

to arrival time error.

The airspeed control includes two proportional terms, arrival time error and ar-

rival airspeed error, which minimizes the amount of information transmitted between

aircraft. Utilizing this control, only the estimated arrival time and the relative order

of each aircraft is required to be transmitted between aircraft. The arrival time error

and airspeed dynamics of the chosen control scheme, utilizing a desired airspeed to

estimate the arrival time, are derived and non-dimensionalized in airspeed error. The

dynamics are then transformed into nonlinear time-variant system to formulate the

method to determine appropriate control gains.

An exponentially stable set of control gains is derived by re-formulating the dy-

namics as a polytropic linear differential inclusion. The benefit of this formulation is

that it defines the constraints which guarantee that a specific set of gains result in an

exponentially stable system across all wind conditions, assuming the wind magnitude

is bounded. The aircraft defined airspeed command limits are adjusted to account for

the speed of the other aircraft and the windspeed. The combination of the exponen-

tially stable gains and airspeed command limits proves that the entire interconnected

system of aircraft, regardless of number of aircraft, is string stable.

Regarding the racetrack algorithm, this guarantees that any arrival time distur-

bances experienced by a leading aircraft would not lead to unbounded disturbances of

the following aircraft. Once the lead aircraft arrives, the arrival time estimate of the

next aircraft is guaranteed to be bounded and then exponentially decrease towards

the desired arrival time. Utilizing the calculated control gains in simulation, the sim-

ulation results confirmed string stable behavior for as many as 20 aircraft assuming

all are accurately following their desired paths. The results also confirm string stable
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behavior for smaller groups of four aircraft in realistic scenarios utilizing the racetrack

algorithm.

Two contributions resulted from this research question. The first is a method to

guarantee the string stability of a group of airspeed heterogeneous, nonlinear aircraft

with a cascaded interconnection. The second contribution is the development of a

real-time arrival controller which is able to compensate for steady-state winds, is

robust to random turbulence, allows for repeat visits.

Keep-Out Zone Constraints.

The third research question addressed by this research is, ”Is a keep-out zone

avoidance feature able to be integrated into the arrival time control algorithm?” This

is addressed in Chapter V and Chapter VII. The question is derived from the imposed

constraint that the coordinated arrival time problem should include airspace-like con-

straints. These types of keep-out, or keep-in constraints, are constructed as large,

non-moving keep-out zones. Additionally, a secondary constraint of this question is

that the keep-out zone avoidance method must be implementable in MATLAB®and

Simulink® since these programs are chosen to develop the racetrack algorithm.

The formulation of the racetrack as the desired path allows keep-out zones to be

enforced by simply ensuring the desired path, the racetrack, does not violate a keep-

out zone. While this method does not actively prevent an aircraft from flying into

a keep-out zone, a distance “pad” is used to keep the racetrack a certain distance

from the keep-out zone. This distance corresponds to the expected path tracking

performance of the algorithm. If more control over keep-out zones is desired, a path

follower with active keep-out zone avoidance would ensure the aircraft does not overly

the keep-out zone.

The keep-out zone constraints are enforced by determining the maximum race-
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track size which does not violate the keep-out zone constraints. The optimization

is formulated using superquadrics to define the fixed borders of the keep-out zones.

Superquadrics allow rectangular and circular shapes to be evaluated with a simple

“in-out” function which returns a value grater than one outside the shape and less

than one inside the shape. The optimization is performed using FMINCON® in

MATLAB®whenever a large change to the desired endpoint is detected by the race-

track algorithm. A limitation of this method is that FMINCON® is computationally

inefficient when integrated into a Simulink®. This limitation results in a recommen-

dation to improve the efficiency of the algorithm if implemented.

The framework of the algorithm does not require the keep-out zone enforcement

to occur within the actual racetrack algorithm. The enforcement occurs within the

algorithm due to the requirements of Simulink and the chosen simulation architecture.

For implementation, it is recommended the maximum racetrack size be determined

outside the racetrack algorithm and simply provide the maximum track size as a

variable input to the algorithm.

Overall, the simulation results show that this keep-out zone avoidance method

ensures the racetrack size was limited to avoid keep-out zones as desired for both

rectangular and circular static keep-out zones. This supports the contribution of the

development of an arrival time controller which adheres to keep-out zone constraints.

Arrival Time Control Algorithm Performance.

The final research question addressed by this dissertation is, “How does an arrival

time control algorithm perform in the presence of environmental anomalies and time

dependent constraints?” This question is addressed in Chapter VII. Given the variety

of wind, target, aircraft, and keep-out zone conditions, an exhaustive analysis of

the racetrack algorithm is impractical. With the string stability guarantees made
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in Chapter VI, an extensive single-vehicle characterization has been performed and

a limited number of multi-vehicle “graduation exercises” ensure the nominal string

stable performance is attained in realistic scenarios.

As discussed in Sec. 8.1, a “nominal” level of performance is determined based

on the string stability analysis and the aircraft type. This level of performance de-

termines the expected variation of arrival time error due to wind and turbulence

assuming the path is accurately followed. Since the control is similar to a virtual

target, this variation may be viewed as variation around the desired virtual target.

The highest nominal performance value is 1.32 s associated with the light utility air-

craft and the lowest nominal performance value was 0.23 s associated with the fighter

aircraft.

The single vehicle characterization is performed utilizing the simplified dynam-

ics model for three primary scenario types: static, multi-pass, and non-cooperative

moving target. The multi-pass results most closely mimic the continuous monitoring

problem which is a primary motivation of this research. The non-cooperative scenario

study the effect of a moving target which stops and requires the aircraft to adjust to

a new racetrack to overfly the target at the desired time.

In all scenarios, the aircraft successfully overflew the target. The characteriza-

tion showed that a nominal level of performance was achievable for a wide range

of conditions. An increase in windspeed and target speed were generally associated

with an increase in arrival time error while increasing the desired arrival time was

shown to improve arrival time error on average. Additionally, the multi-pass and

non-cooperative moving target scenarios showed that certain combinations of wind

and target heading resulted in lower arrival time error. However, these variables do

not affect arrival time error linearly.

Returning to the idea of “nominal” performance, if an aircraft achieves nominal

259



performance at some time during a scenario, the error will remain at that level due

to the stability guarantees if the scenario parameters do not change. Therefore,

scenarios with error outside of the nominal performance range represent cases where

the aircraft did not have enough time to acquire the “nominal” level of performance,

which is analogous to acquiring the discussed virtual target. Given a large enough

desired arrival time, the algorithm could achieve a nominal level of performance for

the tested environmental configurations.

Following the single-vehicle characterization, three “graduation exercise” scenarios

have been chosen to evaluate the algorithm in a multi-vehicle, constrained environ-

ment with a group of four airspeed heterogeneous aircraft is simulated with desired

speeds ranging from 173 knots to 511 knots. The static scenario is designed such

that the desired racetrack of each aircraft is size limited by the keep-out zones. The

multi-pass scenario is setup to ensure a keep-out zone is always active for one aircraft.

Finally, the non-cooperative scenario is setup so that one aircraft is initially keep-out

zone limited and the stopping of the target moves estimated endpoint towards the

keep-out zone. This requires the racetrack size to shrink to stay out of the, now,

closer keep-out zone. The results of the graduation exercises utilizing the simplified

dynamics model show the algorithm attained the nominal level of performance based

on the single-vehicle performance characterization.

Next, the performance of the racetrack algorithm is evaluated utilizing the nonlin-

ear dynamics model. The nonlinear model is not used during the extensive simulation

characterization due to its complexity and the large computational cost required. In

the comparison, the only simulation component to change is the dynamics model.

The comparison shows that the racetrack algorithm is able to achieve the same

nominal levels of performance regardless of the dynamics model. However, the be-

havior of the nonlinear model during turns resulted in the conclusion that moving
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target scenarios would likely have a higher average arrival time error due to the ob-

servation that the nonlinear model racetrack size would saturate, and increase arrival

time error, for slightly “easier” scenarios than the simplified model. Although the

non-nominal arrival time errors may be increased, there is no indication that the

relative changes in error due to the scenario parameters would change. Therefore, it

is concluded the error trends in the simplified model characterization would hold for

the nonlinear model.

Finally, three additional graduation scenarios are developed to evaluate the race-

track algorithm integrated with the nonlinear model. Since a single nonlinear fighter

aircraft model with control system was developed, the original graduation scenarios

are tailored for four fighter aircraft. The static scenario results show a nominal perfor-

mance level for all aircraft in the group. The multi-pass and non-cooperative scenario

simulations each result in one aircraft which does not achieve nominal performance

due to the impact of a keep-out zone and the stopping of the target respectively. This

result is not unexpected based on the single-vehicle performance characterization.

Overall, this research question results in the development and evaluation of a

framework for a real-time arrival time controller which is able to compensate for

steady-state winds, is robust to random turbulence, allows for repeat visits, and

operates within keep-out zone constraints. The performance of this controller has

been characterized for wind and target speeds up to half the desired airspeed with

varying arrival requirements. Finally, the performance of the controller has been

demonstrated with cooperative and non-cooperative targets to include challenging

multi-vehicle graduation exercises utilizing both the simplified and nonlinear dynam-

ics model.
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Summary.

To conclude, this research develops and analyzes a practical control algorithm

which solves the coordinated time of arrival problem in real time while considering

environmental effects, airspace, and maintaining a predictable flight path. The results

characterize the performance of the algorithm across a wide range of conditions and

demonstrate its performance in realistic scenarios. The next step in this research is

integration of the algorithm into a hardware system and testing onboard an aircraft.

8.2 Future Work and Recommendations

Three primary areas are identified to expand and refine the research of this dis-

sertation. First, flight testing the racetrack algorithm will determine the validity of

the assumptions in this research and provide a real-world demonstration of the race-

track algorithm performance. Next, specific portions of the racetrack algorithm are

recommended for re-design because they may prohibit successful integration into a

hardware system. Finally, an area of the optimal lead turn research is identified to

expand the evaluation of the results to another type of guidance law.

Flight Test.

The primary focus of the-near term future work is the integration and flight testing

of the racetrack algorithm on board an aircraft. A potential flight test platform for

consideration is the Variable Stability In-Flight Simulator (VSS) Learjet operated

by Calspan [89]. The aircraft is predominantly used by the United States Air Force

Test Pilot School to allow students to experience flying a wide variety of good and

bad flying aircraft. The aircraft’s control system allows the operator to “match the

open-loop flight dynamics” of the desired aircraft while providing a safety envelope

which disables the poor characteristics should the limits be exceeded.
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The VSS Learjet also allows the integration and operation of developmental con-

trol laws and algorithms within a “safety envelope” which will disconnect the devel-

opmental guidance law when certain flight limits are exceeded. The configuration of

the aircraft allows the developmental software to easily be disabled in the event of

unexpected behavior. While it is not the recommendation of the author to specifically

use the VSS Learjet, it is recommended to use a system with a similar ability to safely

integrate and test a developmental control law.

To integrate the racetrack algorithm into any flight hardware, it is recommended

to integrate the algorithm into an appropriate ground test bench first. Integrating into

the ground test bench first would ensure the system is compatible with the aircraft

hardware and software systems prior to testing the system during flight test. This

ground integration provides a confidence to the researcher that the flight test will

provide useful data.

Since the algorithm is designed to simply accept a desired endpoint, the flight

testing may utilize a virtual target to not limit the testing to a physical vehicle on

the ground. A build-up approach is recommended for this type of flight test beginning

with simple static endpoints and increasing to multiple passes on a moving and non-

cooperative target. The limits and test conditions should also be used to define the

limits for another simplified aircraft model which simulates the flight characteristics

of the chosen flight test platform. This model should then be used to simulate the

desired test conditions for comparison to the flight test data.

Racetrack Algorithm Research.

The graduation exercises highlighted that the keep-out zone avoidance method

can be computationally expensive since it is integrated into the racetrack algorithm

itself. When integrating the racetrack algorithm into a hardware system, this could
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prevent the successful implementation of the algorithm.

It is recommended to implement the keep-out zone avoidance method in a separate

loop outside of the control algorithm since keep-out zones only need to be evaluated

when the endpoint substantially moves. This would remove the computationally

expensive portion of the algorithm from the primary control loop.

Additionally, the comparison between the simplified and nonlinear fighter model

showed that small differences in capability affect the overall limitations of the race-

track algorithm. In the results, it was observed that the simplified model could initiate

turns quicker than the nonlinear model resulting in the simplified model acquiring

the desired path faster. Therefore, it is recommended to develop a specific simplified

model which matches the turning and acceleration capabilities of an aircraft prior to

implementation on a physical aircraft. This would allow an accurate and complete

performance characterization.

Optimal Lead Turn Research.

The near-optimal lead turn solution was evaluated on a variety of guidance laws

with the notable exception of the MPC guidance law used by the racetrack algo-

rithm. The MPC guidance law was chosen for its ability to acquire the racetrack

when far away from the path and its ability to follow the simple racetrack well. It

is of interest to this research to determine if the lead turn would improve the path

tracking performance of an MPC guidance law. Both the lead turn and the MPC

guidance law minimize a path tracking error although the time window of the opti-

mization and control assumptions are different. The lead turn minimizes the path

tracking error during the optimal time-to-bank maneuver while the MPC guidance

law chooses a single bank angle which minimizes the path tracking error over some

time horizon; note the time horizons of all aircraft tested in this research are longer
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than the associated lead turn times.
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Appendix A. Near-Optimal Lead Turn Solution Code

This appendix contains a summary of the MATLAB® symbolic commands which

will output the near-optimal Taylor solution.

Straight-to-Turning Segment.

syms t t1 t f tau umax V R g ph i f Wx Wy

%% Optimal Time=to=Bank Resu l t s

l 10 = =exp ( ph i f /(2* tau*umax) ) /(umax*( exp ( ph i f /( tau*

umax) ) = 1) ˆ(1/2) ) ;

l 20 = =tau/umax ;

t1 = tau* l og (=( l 10 * tau ) /( l 20 = l 10 * tau ) ) ;

t f = =tau* l og ( ( l 10 *umax + 1) /( l 10 *umax = 1) ) ;

ph i t1 ( t ) = t *umax = tau*umax + tau*umax*exp(=t / tau ) ;

p h i t f ( t ) = (2* t1 = t + tau = 2* tau*exp(=( t = t1 ) / tau )

+ tau*exp(=t / tau ) ) *umax ;

%% In t eg r a t e Phi with two 3rd order Taylor S e r i e s

Expansions

a = ph i f /4 ; x=phit1 ;

p s i do t t 1 = g/V*( tan ( a ) = ( tan ( a ) ˆ2 + 1) *( a = x ) + (

tan ( a ) ˆ3 + tan ( a ) ) *( a = x ) ˆ2) ;

a = ph i f *3/4 ; x = ph i t f ;

p s i d o t t f = g/V*( tan ( a ) = ( tan ( a ) ˆ2 + 1) *( a = x ) + (

tan ( a ) ˆ3 + tan ( a ) ) *( a = x ) ˆ2) ;

p s i t 1 ( t ) = in t ( ps idot t1 , t , 0 , t )+as in (=Wx/V) ;

p s i t f ( t ) = in t ( p s i do t t f , t , t1 , t )+p s i t 1 ( t1 ) ;
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%% Int eg r a t e Psi with Small Angle Assumptions

xt1 ( t ) = in t ( (V*( p s i t 1 ) ) , t , 0 , t ) ;

yt1 ( t ) = in t ( (V) , t , 0 , t ) ;

x t f ( t ) = in t ( (V*( p s i t f ) ) , t , t1 , t )+xt1 ( t1 ) ;

y t f ( t ) = in t ( (V) , t , t1 , t )+yt1 ( t1 ) ;

%Fina l s t a t e a f t e r maneuver

x f = x t f ( t f )+Wx* t f ;

y f = y t f ( t f )+Wy* t f ;

p s i f=p s i t f ( t f ) ;

%% Solve f o r Optimal Lead Turn ( Small Angle

Assumptions in Cost )

syms y0

x f c = xf+R;

y f c = yf=R*( abs ( (V* s i n ( p s i f )+Wx) /(V* cos ( p s i f )+Wy) ) )+

y0 ;

J = ( ( ( xfc=R)ˆ2+( y f c ) ˆ2) ) ;

dJ =d i f f ( J , y0 ) ;

outy1 = so l v e ( dJ==0,y0 ) ;

Turning-to-Straight Segment.

syms t t1 t f tau umax V R g ph i f s0 Q Wx Wy

%% Optimal Time=to=Bank Resu l t s

l 10 = =exp ( ph i f /(2* tau*umax) ) /(umax*( exp ( ph i f /( tau*

umax) ) = 1) ˆ(1/2) ) ;

l 20 = =tau/umax ;

t1 = tau* l og (=( l 10 * tau ) /( l 20 = l 10 * tau ) ) ;
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t f = =tau* l og ( ( l 10 *umax + 1) /( l 10 *umax = 1) ) ;

ph i t1 ( t ) = =(t *umax = tau*umax + tau*umax*exp(=t / tau )

)+ph i f ;

p h i t f ( t ) = =((2* t1 = t + tau = 2* tau*exp(=( t = t1 ) /

tau ) + tau*exp(=t / tau ) ) *umax)+ph i f ;

%% In t eg r a t e Phi with two 3rd order Taylor S e r i e s

Expansions

a = 3* ph i f /4 ; x=phit1 ;

p s i do t t 1 = g/V*( tan ( a ) = ( tan ( a ) ˆ2 + 1) *( a = x ) + (

tan ( a ) ˆ3 + tan ( a ) ) *( a = x ) ˆ2) ;

a = 1* ph i f /4 ; x=ph i t f ;

p s i d o t t f = g/V*( tan ( a ) = ( tan ( a ) ˆ2 + 1) *( a = x ) + (

tan ( a ) ˆ3 + tan ( a ) ) *( a = x ) ˆ2) ;

%% Def ine I n i t i a l Condit ion based on s0

angle0 = s0 /R;

%Small Angle Assumption

x0 = R=R*1 ;

y0 = R* angle0 ;

Wcross = Wx=Wy* angle0 ;%smal l ang le

p s i 0 = =Wcross/V+angle0 ;%another smal l ang le

%In t e g r a t e Ps idot

p s i t 1 ( t ) = in t ( ps idot t1 , t , 0 , t )+ps i 0 ;

p s i t f ( t ) = in t ( p s i do t t f , t , t1 , t )+p s i t 1 ( t1 ) ;

%In t e g r a t e Pos i t i on

xt1 ( t ) = in t ( (V*( p s i t 1 ) ) , t , 0 , t )+x0 ;
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yt1 ( t ) = in t ( (V) , t , 0 , t )+y0 ;

x t f ( t ) = in t ( (V*( p s i t f ) ) , t , t1 , t )+xt1 ( t1 ) ;

y t f ( t ) = in t ( (V) , t , t1 , t )+yt1 ( t1 ) ;

%Fina l s t a t e a f t e r maneuver

y f = y t f ( t f )+Wy* t f ;

x f = x t f ( t f )+Wx* t f ;

p s i f=p s i t f ( t f ) ;

%% Solve f o r Optimal Lead Turn ( Small Angle

Assumptions in Cost )

J = xf ˆ2+(Q*( p s i f=a s in (=Wx/V) ) ) ˆ2 ;

dJ =d i f f ( J , s0 ) ;

outy2 = so l v e ( dJ==0,s0 ) ;

269



Appendix B. Proofs

B.1 Bounds on si(t)

Let si(t) be defined by Eq. (389) assuming 0 < Vmin ≤ Vi ≤ Vmax, 0 < Vmin ≤

Vni
≤ Vmax, and 0 ≤ Wcrossi < Vmin.

s =

(√
V 2
i −Wcrossi

2 −
√
Vni

2 −Wcrossi
2
)

Vi − Vni

(389)

Next, let Vi and Wcrossi be defined by the scalars KV and KW as defined by

Eq. (390) and Eq. (391). The previous assumptions translate to 0 < KVmin
≤ KV ≤

KVmax , 0 < KVmin
≤ 1 ≤ KVmax , and 0 ≤ KW < KVmin

.

Vi = KV Vni
(390)

Wcrossi = KWVni
(391)

Substituting these definitions for Vi andWcrossi into Eq. (389) results in Eq. (392).

s =

√
K2

V −K2
W −

√
1−K2

W

KV − 1
(392)

Lemma B.1. Assume KV ̸= 1 then ∂s
∂KV

≤ 0
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Proof.

∂s

∂KV

=
K2

W −KV +
√

1−K2
W

√
K2

V −K2
W

(FV − 1)2
√
K2

V −K2
W

≤ 0

K2
W +

√
1−K2

W

√
K2

V −K2
W ≤ KV√

1−K2
W

√
K2

V −K2
W ≤ KV −K2

W

−K2
WK

2
V +K2

V +K4
W −K2

W ≤ K2
V − 2KVK

2
W +K4

W

−K2
WK

2
V −K2

W ≤ −2KVK
2
W

−K2
V − 1 ≤ −2KV

−(KV − 1)2 ≤ 0

■

Lemma B.2. Assume KV ̸= 1 then ∂s
∂KW

> 0

Proof.

∂s

∂KW

=
KW

(KV − 1)
√

1−K2
W

− KW

(KV − 1)
√
K2

V −K2
W

> 0

1

(KV − 1)
√

1−K2
W

− 1

(KV − 1)
√
K2

V −K2
W

> 0

If KV > 1,

1√
1−K2

W

− 1√
K2

V −K2
W

> 0

1√
1−K2

W

>
1√

K2
V −K2

W

K2
V −K2

W > 1−K2
W

K2
V > 1
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which holds with KV > 1 .

If KV < 1,

1√
1−K2

W

− 1√
K2

V −K2
W

< 0

1√
1−K2

W

<
1√

K2
V −K2

W

K2
V −K2

W ≤ 1−K2
W

K2
V < 1

which holds with KV < 1. ■

Lemma B.3. The point KV = 1 is a point discontinuity of the function s and the

derivative ∂s
∂KV

for all 0 ≤ KW < KVmin

Proof. Utilizing the rationalization technique, it can be shown that

lim
KV →1

s =
1√

1−K2
W

lim
KV →1

∂s

∂KV

=
K2

W

2 (1−K2
W )

3/2

■

Theorem B.1. Given the function defined by Eq. (389) whose variables are bounded

such that 0 < KVmin
≤ KV ≤ KVmax, 0 ≤ KW < KV , KW < 1, s is maximized when

KW = min{KVmin
, 1} and KV = KVmin

Proof. By Lemma B.1 and Lemma B.2 the maximum of s will occur at the largest

bounded value of KW and the lowest bounded value of KV . Although a discontinu-

ity exists at KV = 1, Lemma B.3 shows that it is a point discontinuity where the

derivative approaches the same value from both sides of the limit. ■
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