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Abstract

Predicting the orbits of satellites is a critical capability for organizations in-

volved in space operations. It is often just as important to know how uncertain

such a prediction is. Therefore, satellite prediction models must be capable of ac-

curately reporting the uncertainty of their predictions if they are to be most useful.

The drag acceleration caused by the Earth’s atmosphere is a significant cause

of prediction uncertainty for low Earth orbit satellites. Most existing research has

focused on improving deterministic atmospheric density predictions or on density

as a random variable. This research investigates a new paradigm and focuses on

modeling the uncertainty caused by air drag using the ballistic coefficient, a com-

ponent of air drag that is independent of the model used to predict the density.

By considering the ballistic coefficient to be a random variable in a stochastic

dynamical system, this research calculates time series of ballistic coefficient values

and models them as random processes. These random processes are then used as

the foundation of a stochastic satellite prediction model that, given observational

data in the form of position and velocity vectors, calculates the parameters of the

random processes and predicts satellite orbits with realistic uncertainty. The model

is developed using the Unscented Transform and is validated using Monte Carlo

simulation and empirical analysis.

Finally, the model proves effective for any choice of atmospheric density model

and a variety of dynamical formulations. This validates the novel paradigm of

this research and demonstrates that modeling the ballistic coefficient as a random

variable can effectively model the overall prediction uncertainty of the underlying

dynamics formulation.
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STOCHASTIC SATELLITE AIR DRAG WITH THE BALLISTIC COEFFICIENT

AS A RANDOM VARIABLE

I. Introduction

Estimating the future positions and velocities of satellites is a critical compe-

tency for military, government, and civilian organizations. Accurate satellite or-

bit prediction enables or enhances Space Domain Awareness (SDA), conjunction

analysis, mission planning, and other important functions [1]. (Note that the term

“satellite” throughout this document refers generally to any resident space object

orbiting the Earth and is used to aid readability.)

Tools for estimating the future state of a satellite are often referred to as orbit

“prediction” or “propagation” methods and model the satellite’s spatial and tem-

poral behavior using a variety of dynamical system formulations. Some of these

formulations leverage analytical expressions, while others require numerical inte-

gration of the system’s differential equations of motion. The dynamics of an Earth-

orbiting satellite are complex, dynamic, and subject to several perturbing external

forces, and these attributes create decision points for anyone trying to model them.

Analytical methods, for example, often incorporate fewer physical phe-

nomenon in their development than numerical methods (to make them tractable),

and therefore tend to yield more approximate results. The benefit of analytical

methods, however, is that they are generally faster to calculate than numerical

methods. Numerical methods, contrarily, can model as many physical phenom-

ena as desired, however there is a trade-off between accuracy and computational

requirements (speed and stability) as equations of motion get more complex.
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Even the most accurate numerical orbit propagators, regardless of their formu-

lation, are not perfect in their results. This uncertainty has several causes, such

as measurement error, unknown or ignored physical phenomena, or uncertainty

within the environment. This reality—the impossibility of perfect estimates—

implies that just predicting the future state of a satellite is not enough. The un-

certainty of the estimate must also be characterized.

With respect to satellite predictions, the appropriate characterization of un-

certainty depends on the underlying probability density function (PDF) (as any

uncertain state prediction is really a random variable). If the initial uncertainty

distribution is assumed to be Gaussian and the system dynamics are linearized,

for example, uncertainty is exactly characterized by the covariance matrix of the

multi-dimensional Gaussian random vector that is the estimate. In this case, the

positional uncertainty of the satellite can be visualized as a three-dimensional el-

lipsoid [2, pg. 26]. While this is simple to understand and visualize, it is based on

simplified, linearized dynamical systems and Gaussian assumptions, and it rep-

resents the true uncertainty of the estimate only so far as the linearization and

Gaussian assumptions are valid.

Thus, keen interest in “uncertainty realism” has developed within the field of

astrodynamics—that is characterizing the uncertainty of satellite predictions in

a way that accurately reflects the “true” uncertainty. Performing astrodynamics

work with realistic characterizations of uncertainty is critical. In the absence of

uncertainty realism, conjunction analysis becomes less reliable, track correlation

in the realm of SDA becomes difficult, tracking asset allocation and scheduling is

ill-informed, and mission planning decisions may be misguided [1].

Uncertainty in a satellite state prediction is the result of many factors, includ-

ing sensor inaccuracies, mismatches between the dynamics model and reality, and
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random or chaotic behavior within the satellite’s environment [1]. Regarding the

space environment, satellites in low Earth orbit (LEO) (those with a perigee of less

than 2000 km [3], though there is little consensus on this value [4, pg. 37]) en-

counter air in the upper regions of Earth’s atmosphere, and this air imparts a drag

force on those satellites. A representation of the air drag acceleration on a satellite

in LEO is [5, pg. 551]

aD = −1
2

CD A
m

ρvrelvrel (1)

aD = −B∗ρvrelvrel (2)

where ρ is the air density, vrel is the velocity of the spacecraft relative to the atmo-

sphere and vrel is its magnitude, A is the projected cross-sectional area, m is the

mass, and CD is the drag coefficient. The first three variables in Equation 1 and the

leading 1/2 are often grouped into a single parameter called the ballistic coefficient

B∗ = (1/2)CD A/m as in Equation 2 (defined here without the use of a reference

air density as it sometimes is).

Every variable in Equation 2 is potentially uncertain to some degree, particu-

larly when predicted into the future:

• CD is an imperfectly known quantity in general, and is difficult to calculate

accurately [6–8].

• For active satellites, the cross-sectional area A changes with satellite orienta-

tion or upon actuation of movable parts, and even if known at a given time

by the operator may not be reliably predicted. For inactive satellites or debris

A and its fluctuations may not be known at all.

• The mass m is likely known to some detail by the operator for active satellites,

but fuel consumption or initial load-out may be imperfectly measured. Mass
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can also be difficult or impossible to determine for third-party satellites or

debris.

• Air density ρ is uncertain due to modeling errors and the difficulty of pre-

dicting the behavior of the upper atmosphere, despite the significant levels

of accuracy achieved by recent atmospheric models [8].

• Relative velocity vrel is not perfectly known (even if the satellite’s inertial

velocity somehow is) due to uncertainty in the movements of gases in the

upper atmosphere.

Therefore, while the exact probabilistic nature of the acceleration due to air

drag may not be fully known, it is evident that the effect of air drag is uncertain to

some degree. Further, because air drag acts in a direction opposite to the satellite’s

velocity vector relative to the atmosphere (which is close to the satellite’s inertial

velocity vector), its contribution to the uncertainty of a satellite prediction is ap-

plied almost entirely in the “in-track” direction. This has the effect of elongating

the positional uncertainty of the satellite along the orbit path and implies that the

orbit path is more well-known than the satellite’s location on the path [9].

This insight has great bearing on uncertainty realism, as a prediction model

which does not incorporate the effects of air drag on uncertainty will likely dra-

matically underestimate its prediction uncertainty along the orbit track. In light of

this, the overall aim of this research is to assess the effects of air drag on predic-

tion uncertainty and develop a novel method of ensuring prediction uncertainty

characterizations realistically capture those effects.
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1.1 Motivation

The principal motivator of this research is enhancing the uncertainty realism of

LEO satellite state predictions via analysis of air drag as a dynamically stochastic

effect. It is discussed above that some or all constituent variables of Equation 2

are uncertain to some degree, and given that many of these variables are time-

varying (the air density and relative velocity, for example) uncertainty likely exists

within the system’s dynamics. If air drag is considered to be dynamically stochastic

in the formulation of a satellite state prediction method, then the dynamical sys-

tem’s equations of motion become stochastic differential equations. Modeling the

dynamics of the system as stochastic in this way, rather than as deterministic, is

essential to generating satellite state estimates with realistic uncertainty character-

izations [9–12].

Assuming that the system dynamics (particularly the effect of air drag) are

stochastic raises additional questions with respect to building a satellite prediction

model: because every variable of the air drag equation is potentially stochastic,

the designer of such a model must decide which of these components to model

stochastically and which to model deterministically. Modeling all variables as ran-

dom variables greatly increases the complexity of uncertainty characterization due

to the non-linear nature of their relationship in Equation 2. Additionally, the data

available to a prediction model may or may not grant observability of the various

terms, meaning that only certain combinations of terms may or may not be simul-

taneously estimated. As a result, existing prediction models that involve stochastic

dynamics tend to consider only one component of air drag as a random variable,

and allow the error associated with modeling other truly stochastic terms as deter-

ministic to accumulate into the single random variable.

Most existing work considers the atmospheric density to be the lone random
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variable of air drag [6, 13–21]. Doing so seems intuitive since the behavior of the

upper atmosphere is chaotic and difficult to predict, but developments which take

this approach are generally tied to the atmospheric model used to calculate the air

density or to a class of these models. While such prediction models can be effec-

tive and provide realistic characterizations of uncertainty, their linkage to specific

atmospheric models and potential dependence on assumed random processes for

either the density error or atmospheric model inputs limits their general applica-

bility.

Ultimately, selecting only one component of air drag to model as a random

variable leaves some uncertainty un-modeled, and those phenomena which are

modeled stochastically are done so imperfectly (i.e. no atmospheric model output

is exactly known, nor is the uncertainty of any such output). Therefore, regardless

of which component of aD is modeled stochastically, errors from the deterministi-

cally modeled components will accumulate in the uncertainty of the estimate [12].

Other efforts have attempted to rectify the potential mismatch caused by modeling

a stochastic reality with deterministic dynamics via the use of covariance scaling

methods or consider parameters, but scaling covariance matrices often requires

manual tuning or other modeling assumptions, and consider parameters are gen-

erally more suited to time spans within the scope of available observational data

than to prediction [21].

In summary, previous approaches either (a) work around or ignore the stochas-

tics which are likely present within the dynamics (which makes such approaches

ill-suited to prediction) or (b) consider the atmospheric density as a random vari-

able, often assuming a random process model for the density error or atmospheric

model inputs. Instead, this research is motivated by the possibility of a predic-

tion method that produces realistic characterizations of uncertainty whilst remain-
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ing indifferent to the choice of atmospheric model and requiring no manual tun-

ing of random process parameters or manual scaling of uncertainty characteriza-

tions. Ideally all information needed for the prediction model could be available

on-board a satellite and require no operator input whatsoever.

Considering these desires, there is an insight to be gained from the discussion

above: if accurate estimates with realistic characterizations of uncertainty can be

obtained by modeling only one component of aD as a random variable, then choos-

ing the ballistic coefficient B∗ as that single random variable makes a great deal of

sense [9]. A prediction model that considers B∗ as the only random variable would

have the following novel benefits:

• Interoperability with a wide range of atmospheric density models.

• Adaptability to various dynamics formulations and perturbation forces.

• Dependence on observational data to inform the parameters of the random

process within the stochastic dynamics, rather than assuming them

• Adaptability to on-board use if regular observational data is available (from

an on-board Global Positioning System (GPS) receiver, for example).

It is these potential advantages of modeling B∗ as the only random variable in a

stochastic satellite prediction model that are the principal motivation of this re-

search.

1.2 Research Hypotheses and Tasks

1.2.1 Research Hypotheses

The preceding section made several assertions, which are summarized here as

the research’s hypotheses:
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1. Air drag is the principal source of model prediction uncertainty for LEO

satellites.

2. The ballistic coefficient B∗ can be analyzed as a stochastic process and pa-

rameterized via analysis of a time-series of B∗ estimates calculated from ob-

servational data.

3. A stochastic prediction model which models aerodynamic uncertainty using

B∗ as the only random variable of air drag can produce accurate predictions

with realistic uncertainty.

The following section enumerates the research tasks that were undertaken in

assessing these hypotheses.

1.2.2 Research Tasks

The research introduced above was organized around completing the following

research tasks:

1. Confirm the effect of air drag on model prediction uncertainty via analysis of

the time-growth of covariance matrices calculated from observational data

(referred to below as “empirical covariance analysis”).

2. Calculate and analyze a time-series of ballistic coefficient B∗ values, charac-

terize the resulting B∗ random process, and construct a method of parame-

terizing the random process using the B∗ time series.

3. Create a B∗ random process generator which generates realizations of said

random processes.

4. Develop a dynamically stochastic prediction model which, given initial con-

ditions and previously estimated B∗ random process parameters, predicts the
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future state of a satellite and provides a realistic characterization of the pre-

diction’s uncertainty, considering only B∗ to be a random constituent variable

of air drag.

5. Validate the stochastic prediction model using Monte Carlo simulation.

1.3 Summary of Literature Review

A robust review of current literature on the aforementioned topics is presented

in Chapter II. A summary of this review is presented here to facilitate the discus-

sion of research contributions in the next section.

The introduction of the literature review briefly discusses the foundations of

orbit estimation [22, 23], and re-emphasizes the importance of accurate orbit esti-

mation and the realistic characterization of estimate uncertainty [1]. Deterministic

orbit estimation methods (methods using only deterministic dynamics models) are

then reviewed, including general perturbations [19, 24–47], SP methods [5, 48–52],

and hybrid/semi-analytical methods [53–56].

Next, the generation and deterministic propagation of estimate uncertainty is

reviewed. The phrase “deterministic propagation of uncertainty” seems paradoxi-

cal, but it refers to propagating some initial characterization of an estimate’s uncer-

tainty to a different time using deterministic dynamics models. Until quite recently,

the majority of uncertainty characterizations were propagated this way using a

variety of methods [57–85]. This section of the literature review also discusses

methods of generating an approximate estimate uncertainty using different types

of available data [9, 86–91].

The concept of stochastic orbit estimation (orbit estimation using dynamics

models which include uncertainty) is then introduced and reviewed and is of the

most interest to this research and the upcoming section regarding its originality.
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One topic that is related, but ancillary to, this research is “density calibration”, or

using satellite data to improve atmospheric density models, develop new models,

or refine density calculations for scientific purposes [92–97]. Atmospheric density

is the focus of most existing research in stochastic orbit estimation, the bulk of

which considers atmospheric density ρ in Equation 2 to be the only uncertain

variable in the system’s dynamics [6, 11–21]. A smaller number of research efforts

have considered the ballistic coefficient B∗ as an uncertain variable [18, 94]. Some

of this work is based on Wright and Woodburn’s development of a method which

considered both ρ and B∗ to be uncertain and estimated them simultaneously

using a batch method [94, 98]. Multiple researchers have also explored the linkage

between dynamical uncertainty of air drag and positional uncertainty [9–12, 14,

20, 99], while others have shown the effects of uncertain air drag on positional

uncertainty using only deterministic dynamics [100–102]. Finally, while many of

the aforementioned methods attempt to estimate (solve-for) one or more uncertain

variables (such as ρ or B∗), Markley developed the use of “consider parameters”

(variables which are considered uncertain for the purpose of uncertainty charac-

terization but which are not estimated) in orbit estimation [103, 104]. Consider

parameters are currently in use by the Department of Defense (DoD), as well [1,

17].

Finally, a critical component of realistic uncertainty characterizations is the co-

ordinate frame in which the state estimate is resolved, and various choices of coor-

dinate frame and how the choice of coordinate frame affects underlying probability

distributions are reviewed [9, 62, 63, 105–110].
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1.4 Contributions

The following novel contributions to the field of astrodynamics are described

in this research and are summarized here for reference.

The first contribution is expanded confirmation that air drag is a dominant

source of prediction uncertainty for LEO satellites. This is significant for the re-

search hypotheses because two SP prediction models with very different atmo-

spheric models calculate essentially the same empirical uncertainty when estimat-

ing B∗ as an augmented element of the state vector, as is detailed in Chapter IV.

This contribution is distinct from previous work [9, 86–91] in that this research con-

siders multiple satellites, additional prediction methods including analytical and

special perturbations varieties, and more robust observational data.

The second contribution of this research is the analysis of B∗ as a random pro-

cess based upon calculation of time-series of B∗ estimates derived from robust

observational data. This is the first analysis of the behavior of B∗ as a random

process derived from observational data and the first application of such an anal-

ysis to satellite prediction model uncertainty. While previous research efforts have

utilized stochastic satellite dynamics and modeled the atmospheric density error

or ballistic coefficient as a Gauss-Markov process [14–16, 94], Ornstein-Uhlenbeck

process [6], or other (i.e. manually tuned white noise, Brownian motion, etc.) pro-

cess [12, 18, 91], these processes have been selected using either assumptive or the-

oretical justifications. One exception is the work of Rich et al., wherein B∗ values

from a selection of two-line element sets (TLEs) were used to create a histogram

that was fit with a Gaussian PDF to help justify the assumption that the B∗ random

process is likely Gauss-Markov. However, none of these previous efforts have used

satellite data to construct a time-series of B∗ estimates, and from this analyze and

parameterize the B∗ random process.

11



The final contribution of this research is a stochastic satellite prediction model

which provides realistic uncertainty characterizations considering B∗ as the only

dynamically random variable. A principal advantage of this model compared with

previous efforts is that it permits any choice of atmospheric model. This includes

atmospheric models which do not require external data (such as indices of solar ac-

tivity) to function, making the model potentially viable for on-board use if a GPS

receiver is available. The model can also include a variety of perturbing forces

(third body perturbations, etc.)—the only restriction on the dynamics is the use of

an air drag model described by Equation 2, which is very common. This contribu-

tion is distinct from previous work in dynamically stochastic orbit estimation, the

bulk of which focuses on modeling the atmospheric density or the solar inputs to

atmospheric models as uncertain, rather than only the ballistic coefficient [6, 10–

21, 99] or requires some manual tuning or assumptions regarding random process

parameters [91, 94, 98]. This research is also distinct from the work of Rich et al.

[9], which does consider B∗ as the only uncertain variable, as their work used only

TLEs and Simplified General Perturbations-4 (SGP4) to assert the stochastic nature

of B∗ and did not build a prediction method.

1.5 Document Outline

The remainder of this document is structured in the following way. The next

chapter presents a review of previous literature in the field. Chapter III then dis-

cusses several topics that are relevant to multiple or all of the subsequent chapters.

The following three chapters (Chapters IV—VI) are structured such that each

one covers a single main research concept and details the methodology, results,

and conclusions relating to that concept. These three concepts are the analysis of

empirically calculated prediction covariance matrices, the analysis of the ballistic
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coefficient as a dynamically random process, and the development of the stochastic

prediction model. Finally, conclusions are presented in Chapter VII, followed by

appendices and the bibliography.
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II. Literature Review

2.1 Introduction

The study of astrodynamics and the prediction of orbits can trace its roots to

antiquity [22], and much work has been done in the field over the successive cen-

turies. Before Newton, Kepler derived his three laws of planetary motion and

solved the two-body problem with his famous equation in the early 17th century

[22]. Gauss then developed a method for estimating an orbit using observational

data when he successfully predicted the orbit of the asteroid Ceres in 1801 [23].

Gauss realized that the measurements used to predict Ceres’ orbit were imperfect,

however the astrodynamics used were deterministic.

While these and other foundational advances were concerned with predicting

the positions of the celestial bodies, astrodynamics and orbit prediction surged in

importance with the dawn of the space age in the 1950s. As humankind launched

its first artificial Earth-orbiting satellites, ways to accurately model their dynamics

and predict their positions were needed and developed. These methods have been

expanded and refined in the successive decades, and many are currently employed

to track and control (if possible) the 23,287 tracked objects in Earth orbit (as of

June 1, 2021) [111].

The ever-increasing number of satellites and debris in Earth orbit have made or-

bit prediction an engineering necessity. Being able to accurately predict a satellite’s

location and motion is fundamental to avoiding conjunctions, pointing ground-

based control and tracking equipment, mission planning, communication, and an-

alyzing scientific data. However, it is not possible to know the exact value of any

physical quantity (such as the position and velocity of a satellite) because all mea-

surements are beset with some level of error and uncertainty, models constructed
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to emulate physical realities are imperfect, and the physical reality itself often con-

tains elements of random chance. Therefore, it is essential to recognize that any

predicted satellite state is an estimate, and also to have some measure of how good

that estimate is. The accurate quantification of uncertainty, then, is critical to useful

orbit prediction [1].

Uncertainty in satellite orbit prediction comes from many sources, such as

measurement errors, imperfectly known physical quantities, internal dissipative

forces, and the unpredictable space environment. One particular component of

the LEO space environment that is difficult to predict is air drag. Despite advances

in modeling the behavior of the outer atmosphere, a certain amount of unpre-

dictability appears to be inescapable. Despite employing advanced atmospheric

models to predict the behavior of the atmosphere, some methods of orbit predic-

tion ignore the inherent uncertainty in air drag by propagating satellite orbits as

though drag effects were perfectly known (as if they were deterministic when they

are likely stochastic) [9]. A good deal of air drag research remains rooted in the

same determinism as the origins of astrodynamics.

In the following subsections, current methods of deterministic orbit prediction

and deterministic propagation of uncertainty are reviewed. Then, dynamically

stochastic orbit prediction methods are considered. Finally, research regarding the

effects of coordinate frames on orbit estimation is reviewed, as are current widely

available orbit prediction models.

2.2 Deterministic Orbit Propagation

There are two general categories of satellite orbit prediction methods. “Gen-

eral perturbation” methods are based on (often simplified) analytical perturbation

theory and can usually be applied to an entire class of satellite orbits (hence “gen-
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eral”), while “special perturbations” methods are based on numerically integrating

the dynamical system’s differential equations of motion, and generally only apply

to the satellite orbit for which the initial conditions are valid (hence “special”). A

third category also exists, and consists of hybrid methods which incorporate com-

binations of general perturbations, special perturbations, and other techniques.

2.2.1 General Perturbations

Though earlier formulations were used during the first years of satellite track-

ing [24], the analytical foundations of many implementations of general perturba-

tions are established in the works of Brouwer [25] and Kozai [26]. These analytical

satellite theories were updated over the years by many contributors, including an

improvement by Lyddane [27] to remove some mathematical singularities and the

addition of terms to account for air drag, and were eventually synthesized into

an implementation known as Simplified General Perturbations [24]. An analyti-

cal model for atmospheric density that improved drag calculations was thereafter

developed by Lane and Cranford, and was implemented in 1969. By that time,

however, the number of satellites to catalog had grown to the point that available

computers lacked the processing to implement the full model, and the model was

simplified significantly to create SGP4, deployed operationally in 1970 [24]. All of

this development was under the auspices of project SPACETRACK [24], and de-

tailed development of the 1970 implementation of SGP4 was published by Lane

and Hoots in SPACETRACK Report No. 2 [28].

After the launch of the first “deep space” satellites (those with a period of

greater than 225 minutes), SGP4 was updated to include effects of the Moon, the

Sun, and some Earth resonance terms [24]. Details of this updated version of SGP4

were published by Hoots and Roehrich [29], and a version of the model is still
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used today by Combined Force Space Component Command (CFSCC) to create

the publicly available satellite catalog in the form of TLEs [30].

Although SGP4 is the analytical model in use by CFSCC and the only recom-

mended propagation method for CFSCC TLEs [30], the current version has been

updated substantially since its implementation in 1979 [32]. For those wishing to

implement SGP4, source code which is believed to closely represent the CFSCC

implementation is provided by Vallado in multiple programming languages [31,

32]. Compiled libraries of the actual CFSCC implementation are also available

from CFSCC’s public website [30].

While SGP4 is a common analytical method of orbit propagation in use today, it

is certainly not the only one. Although special perturbations is typically regarded

as achieving higher accuracy than general perturbations, the analytical methods

of general perturbations can often produce results of acceptable accuracy using

fewer computational resources. The computational efficiency of general perturba-

tion methods can be particularly desirable for predicting large numbers of satellites

for purposes such as cataloging and conjunction analysis [33].

Wnuk provides an informative review of various advancements in analytical

orbit theories (up to 1999) as they relate to perturbations caused by the Earth’s

non-spherical geopotential and the effects of various resonant periods with the

Earth’s rotation [33]. Advances in the treatment of Earth’s gravitational poten-

tial (the “geopotential”) start with the aforementioned work of Brouwer [25] and

Lyddane [27], which were first-order theories incorporating only the second and

fourth zonal harmonics [33], then progress through the works to extend this theory

to higher orders by Kozai [112], Deprit and Rom [34], Aksnes [35], Kinoshita [36],

and Coffey and Deprit [37], before culminating in Wnuk’s own general formula-

tion [33] and Breiter’s more recent second-order theory to arbitrary degree in the
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geopotential [38].

With respect to resonance effects, Wnuk notes that the general solution of the

perturbation effects due to all resonances remains unsolved, despite the work of

many others regarding resonances in the geopotential [33] and other recent ad-

vancements by Sochilina [39], Lane [40], and Delhaise and Henrard [41]. These

advancements, while distinct, generally seek to provide a fundamentally similar

type of solution—an analytical perturbation method which (by incorporating more

complex perturbations) is more accurate while remaining non-singular.

Another particular class of analytical general perturbation methods which

has seen recent advancements involves transforming the Newtonian form of

the perturbed two-body problem by way of a time transformation and use of

Kustaanheimo-Stiefel (K-S) coordinates using the method presented by Scheifele

and Stiefel [19]. Bond derived perturbed K-S canonical equations using variation

of parameters which permits perturbations that can be derived from a potential

function and those which cannot, though the resulting equations were not solved

in closed form and must be numerically integrated [42]. Engels and Junkins also

used K-S coordinates to formulate a solution to Lambert’s problem (finding the

initial velocity given a satellite’s initial and final positions) that can be solved

analytically up to inclusion of the J2 (“oblateness”) term [43]. Raj and Sharma

have developed a non-singular analytical method using K-S canonical equations

that incorporates the J2, J3, and J4 zonal harmonics for short-term periodic orbits

which agrees with a numerically integrated solution to within tens of meters

[113]. This is based on Sharma’s earlier analytical theory which incorporated

the J2 oblateness term and air drag [45]. More recent work by Raj and Sharma

applies the K-S canonical equations to obtain a non-singular analytical solution to

long-term orbits incorporating Earth’s oblateness and air drag (using a spherical
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atmosphere) [44].

Other recent developments in general perturbations include those of Marti-

nusi et al., who developed a non-singular analytical propagation method for low

eccentricity, near Earth satellites which incorporates the Earth’s oblateness and air

drag, using the equinoctial elements and “averaging” the equations of motion [46].

Lara et al. have examined the 3 to 5 tesseral resonance ratio as it applies to the con-

stellation of Galileo satellites, which can be done analytically by itself or coupled

with numerical integration when the perturbation effects of the Moon and Sun are

included [47] (hybridization of general and special perturbations is reviewed in

Section 2.2.3).

2.2.2 Special Perturbations

Special perturbations as a category of orbit propagation methods encompasses

a vast diversity of implementations. Since special perturbations generally refers to

any propagation method which numerically integrates the satellite’s equations of

motion, the array of implementations is as varied as the possible combinations of

satellite equations of motion and numerical integration schemes.

Far too many formulations exist to review them all here, however a good start-

ing place for a review may be the work of Montenbruck, which compares various

numerical integration methods available circa 1992 and assesses their applicability

to orbit propagation of celestial bodies and Earth satellites. This work compared

various single-step, multi-step, and extrapolation methods and found that multi-

step methods are generally preferable [48].

It is also worthwhile to note that special perturbation methods often leverage

one of two general formulation types: Cowell’s Method, in which the equations of

motion are integrated directly, or Encke’s Method, in which a nominal two-body
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problem is calculated via a known solution and the error between this reference

trajectory and the more detailed dynamics models is solved for numerically [5, pg.

523].

Work on new and improved special perturbation techniques continues. For ex-

ample, Bradley et al. developed a new technique that employs “generalized Gaus-

sian quadratures” coupled with a collocation method instead of polynomials with

an implicit Runge-Kutta integration, to decrease the computational resources re-

quired of special perturbations to keep pace with the increasing size of the satellite

catalog. Results showed that the new method is (for the case of LEO satellites)

equally or more efficient than other currently utilized numerical integration tech-

niques, with further expected improvements if the implementation is optimized

for parallel processing [49, 50].

In a 2012 survey of numerical propagation methods, Jones and Anderson ref-

erence the historical foundations of some methods commonly in use today (noting

that “special perturbation propagation of the Air Force space object catalog relies

on the Gauss-Jackson integrator first presented in 1924”) before reviewing newer

approaches which use either a symplectic formulation of the Hamiltonian dynam-

ics or collocation methods (as in Bradley et al., from above). Their work showed

that collocation methods are effective and relevant for application to astrodynamic

numerical integration problems like special perturbations of Earth satellites and

that while symplectic methods showed promise, more work was needed before

they could be readily applied to such problems [51].

It is worthwhile to note that while most perturbations methods (general or spe-

cial) use the classical Keplerian two-body problem as the fundamental problem

(with known solution) which is then perturbed, any sound mathematical satellite

model which can be formulated as a system of ordinary differential equations can
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be used with special perturbations. For example, Wiesel has developed a theory

for nearly circular drag-free orbits using periodic orbits and the full zonal geopo-

tential as the fundamental problem, achieving meter-level agreement for at least

one numerical experiment [52].

2.2.3 Semi-Analytical Methods

Recently, semi-analytical or “hybrid” methods have been employed to merge

the computational efficiency of analytical methods and the high accuracy of nu-

merical integration together. As more and more orbiting objects need to be tracked

and cataloged by various agencies concerned with SDA, fast but accurate methods

of orbit propagation are desirable. Additionally, the precision required of a prop-

agation method varies by task, which suggests that a method which is adjustable

concerning the output accuracy and, by association, computation time could be

valuable [53].

For example, the Draper Semi-analytical Satellite Theory (DSST) Standalone

Orbit Propagator Package is a semi-analytical propagator for which development

started in 1984 and that has been improved as reported by Neelon et al. to include

the Earth geopotential up to order and degree 50, tidal motion, and enhancements

to the modeling of short-term periodic motion [54].

Setty et al. compared an improved version of the DSST to high-fidelity numer-

ical integration methods for a variety of orbit altitudes, eccentricities, and inclina-

tions. The results of this comparison showed that the DSST semi-analytical method

achieved the required accuracy with computational savings of 70-90% compared

to pure special perturbations. Their work also examined the feasibility of the DSST

method within the context of maintaining the entire space catalog, concluding that

doing so results in vast computational savings at the cost of propagation accuracy,
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but that the resulting propagations were accurate enough for general SDA require-

ments. The results were not compared directly with CFSCC’s current TLE public

catalog [53].

Additionally, Lara et al. have applied the semi-analytical approach to the long-

term effects of third-body perturbations. After considering the short-term peri-

odic effects analytically, the remaining system can be numerically integrated us-

ing “very long time-steps” at significant computational savings [55]. Recently,

Nie et al. similarly applied semi-analytical theory to the general third-body per-

turbation problem, but improved the results by altering the averaging method ap-

plied to the analytical portion [56].

Notably, all of the above analytical theories treat the dynamical propagation of

a satellite’s state deterministically.

2.3 Generation and Propagation of Uncertainty

The previous section reviewed deterministic methods of propagating a satel-

lite orbit. The term deterministic implies that the dynamical process is perfectly

known—that there is no uncertainty—so what is meant by the phrase “propaga-

tion of uncertainty”? While it is true that in a deterministic prediction model the

mathematics of the dynamics are assumed to be perfectly known, there is no guar-

antee (in fact it would be quite impossible in reality) that the original satellite state

estimate to be propagated is perfectly known. In other words, even a determin-

istically propagated orbit will have uncertainty associated with it, and this un-

certainty should not be expected to remain constant—it also must be propagated

through time.
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2.3.1 Generation of Uncertainty

Before the uncertainty of a satellite state estimate can be propagated, a charac-

terization of the uncertainty must be available. This section reviews methods of

characterizing the uncertainty of an orbit estimate.

One relevant type of uncertainty is model prediction uncertainty, the uncertainty

due to errors in the prediction method itself (from mis-modeled dynamics or ex-

cluded physical phenomena, for example). Calculating a true prediction uncer-

tainty can be difficult because obtaining the true error between a prediction and

the true satellite state is often impossible, however methods exist for estimating

the prediction uncertainty using available data.

Many researchers have used public information in the form of TLEs published

by CFSCC to generate covariance matrices and analyze the prediction uncertainty

of satellite orbits. This is necessary because covariance information is not provided

with published TLEs [86]. Peterson et al., for example, generated estimated covari-

ances via pair-wise differencing using TLEs alone [87]. More recently, Geul et al.

proposed a new method of estimating covariance matrices from TLE data which

removed some of the earlier results’ difficulties with time bias [88].

The choice of coordinate frame when estimating covariance matrices greatly

influences their subsequent analysis. Resolving a covariance matrix in the inertial

frame (as in the above efforts), for example, makes assessing the uncertainty in

the satellite-orbit frame directions quite difficult. Osweiler, however, estimated

covariances using TLEs but resolved the errors in a radial, in-track, and cross-track

coordinate frame [89]. Rich et al. expanded Osweiler’s effort but calculated the in-

track error separately before calculating the out-of-track errors in a rotated orbital

coordinate frame, which isolated in-track error growth for analysis [9].

While the above efforts used TLEs exclusively, others have used more precise
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orbit data to analyze satellite prediction errors. Kelso used precision ephemerides

of GPS satellites to investigate the validity of prediction covariances generated us-

ing the method of Peterson et al., and discovered biases in them [86]. Hyeon-

Jeong and Dae-Won used high-precision data from the KOMPSAT-2 satellite to

validate covariances generated using Osweiler’s TLE method and concluded that

TLE-generated covariances were sufficient for preliminary analysis, but that time-

shift biases were present [90]. They appear to have used the same coordinate frame

as Osweiler, and while the results show that the largest errors are in-track, they also

exhibit large radial errors.

Additionally, Hesar et al. detail a method of generating realistic prediction co-

variances for the NASA GPM spacecraft called the Covariance Realism Tool (CRT),

which has been operating since early 2017. CRT works by first performing an

“overlap comparison analysis” that compares a precise orbit-determination solu-

tion to propagated satellite states to form an initial covariance [91]. The method

also adds “process noise” into the propagation, and this is discussed in Section 2.4.

Another relevant type of uncertainty is orbit estimation uncertainty, which is the

result of estimating the orbit of a satellite from imperfect observational data. Due

to measurement errors and mis-modeled or un-modeled dynamics, the result of

an orbit determination method is an orbit estimate with some error with respect to

the true state, and this error is the root of uncertainty in the estimate.

One common method of orbit estimation, weighted non-linear least squares

(which originated with Gauss), produces the covariance of its estimate directly as

an output of the algorithm [2, pg. 72]. In addition to these “theoretical state error

covariances”, Frisbee has developed a method of calculating an empirical covari-

ance matrix from the observational data and asserts that mismatches between this

method and least squares may indicate significant modeling or measurement er-
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rors [114].

While weighted least squares is a batch method that ingests all available ob-

servations to produce a state estimate, sequential estimation methods also exist.

There are many varieties, from the Bayes filter which takes as input a previous

estimate and its associated covariance along with the data to the fully-sequential

Kalman family of filters that ingest observations individually. Though many va-

rieties of the Kalman filter exist and can be used in orbit determination, the key

similarity is that they output a state estimate and an associated covariance.

2.3.2 Propagation of Uncertainty

Once the uncertainty of a satellite state estimate is known, propagating it for-

ward in time is possible via several methods. In this context, uncertainty propaga-

tion refers to deterministically propagating estimate uncertainty to another point in

time, versus the upcoming discussion in Section 2.4 which reviews fully stochastic

satellite state estimation methods in which dynamical uncertainty is incorporated

into the prediction.

First, it should be noted that while uncertainty is often characterized by a co-

variance matrix, this implies that the underlying probability density function is a

multi-dimensional Gaussian, and is thus sufficiently described by the mean and

covariance [115]. This is not necessarily the case for satellite orbit prediction, even

if the initial uncertainty is Gaussian, due to the non-linear dynamics involved.

Many of the methods discussed below are applicable only if the dynamics are lin-

earized and all PDFs are Gaussian (or assumed to be Gaussian), while others can

be applied to fully non-linear models and arbitrary PDFs. If employing a method

which linearizes the system in some way and assumes Gaussian PDFs, the more

general term “uncertainty” is typically replaced by the “covariance” matrix of the
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Gaussian distribution.

Many methods of propagating uncertainty exist and are reviewed quite thor-

oughly by Luo and Yang [57]. Many of the methods described below are summa-

rized in their review. Broadly speaking, propagation methods fall into two general

categories: those that require linearization of the system and those that do not.

2.3.2.1 Linearization Methods

Typically, methods which require linearization of the system dynamics do so in

conjunction with the assumption that all PDFs are Gaussian [57]. Doing so often

greatly simplifies uncertainty propagation, as the PDF of a Gaussian distribution

is fully described by the mean and covariance matrix and remains Gaussian after

a linear transformation [115].

Perhaps one of the most well-known examples of propagating a covariance

matrix is by way of a Kalman-type filter, such as an extended Kalman filter in

which the dynamics are linearized and the error between the linearized solution

and a reference solution is estimated [116]. This type of linearization, wherein the

system dynamics are linearized, is termed “local linearization” by Luo and Yang

[57]. Linearizing the system dynamics usually consists of evaluating the Jacobian

of the deterministic dynamics at one or many linearization points.

This type of linearization method was applied by Geller and Geller et al. in the

context of autonomous orbital rendezvous [58, 59]. Lee et al. also applied this type

of linearization in developing an analytical method of calculating the uncertainty

in the position of a deputy satellite in satellite formation flying [60].
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2.3.2.2 Non-Linearization Methods

Methods that do not linearize the system can sometimes offer greater accuracy

than linearization methods at the expense of greater computation time [57].

A well-researched and often used non-linear method is Monte Carlo (MC) sim-

ulation, in which many random samples of the uncertain system are propagated

using the full non-linear dynamics. The distribution of these random samples very

closely approximates the arbitrary PDF of the uncertain estimate when the num-

ber of samples is large, via the Law of Large Numbers. This concept also forms the

basis of the propagation step of the particle filter [117].

As accurate Monte Carlo simulation requires a large number of samples to ef-

fectively approximate the estimate’s PDF, the method is computationally expen-

sive. Arora et al. recently developed an orbital propagation tool that used Monte

Carlo simulation and parallel processing on a graphics processing unit to dramat-

ically speed-up the method [61].

Several researchers have concluded that orbital prediction errors (and there-

fore estimate uncertainty) become non-Gaussian when the propagation time is

large due to the non-linear dynamics [62–65], though this is somewhat depen-

dent on the choice of coordinates (see Section 2.5). This inherent non-linearity

of orbital mechanics is the key motivating factor for using methods which require

less-restrictive PDF assumptions, like Monte Carlo methods and many of the other

types of methods described below.

One method of incorporating non-linear dynamics and non-Gaussian PDFs

without using the computational resources required by Monte Carlo methods is

to approximate a non-Gaussian PDF as the weighted sum of Gaussian PDFs using

Gaussian mixture models [66]. In a Gaussian mixture, the mean and covariance

matrix of each Gaussian random variable is propagated and the weights are cho-
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sen via some numerical optimization method. The method of determining these

weights is the focus of more recent research on Gaussian mixture models. Vari-

ous methods and implementations of Gaussian mixture models were proposed by

Terejanu et al. in their original paper [66], by Horwood et al. [67], and DeMars and

DeMars et al. [68–70].

Another way to handle the non-linearity of orbital dynamics in propagating

uncertainty is to employ the Unscented Transform (UT) developed by Julier et al.

(which forms the basis of the Unscented Kalman Filter (UKF)), the premise of

which is to approximately fit a Gaussian to the propagated distribution of key

“sigma points” rather than approximate the system’s dynamics via linearization

[71, 72]. With regard to orbital dynamics, Raihan and Chakravorty designed a hy-

brid estimator using a UKF and Monte Carlo methods for space object tracking

[73].

Polynomial chaos methods represent another tool for handling non-linear dy-

namics when propagating estimate uncertainty [118]. Such methods, applied to

stochastic differential equations by Xiu and Karniadakis [74] and to the propaga-

tion of orbit estimation uncertainty by Jones et al. [75], can utilize existing propaga-

tors as a “black box”, including orbital non-linearities [57]. Jones et al. and others

have also applied polynomial chaos methods to collision probability estimation

that is not based on Gaussian assumptions [76, 77].

Whereas most non-linearization methods rely on numerical solutions in some

way, there exist analytical methods of propagating estimate uncertainty which

are based on higher-order Taylor series approximations of the non-linear dynam-

ics. These higher-order Taylor series approximations (versus first-order in the lin-

earization case) result in “state transition tensors” which are used to propagate

a Gaussian mean and covariance in a non-linear manner, as in the work of Park
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and Scheeres [78, 79]. State transition tensors are also used by Majji et al. for the

higher-order “jth-Moment Extended Kalman Filter”, which is then applied to orbit

estimation given sparse measurements [80]. Park also used state transition ten-

sors, coupled with a purposefully simplified dynamics model, to analytically and

non-linearly propagate satellite estimate uncertainty [81, 82].

2.3.2.3 Hybrid Methods

Other approaches for propagating uncertainty exist which are hybrids of afore-

mentioned methods.

Jones and Weisman, for instance, recently developed a hybrid method of un-

certainty propagation that uses a quick, but less accurate, “low-fidelity” solver

to propagate a particle ensemble and then identify the most important members

of the ensemble for re-propagation using a more computationally expensive, but

much more accurate, “high-fidelity” solver [83].

Another hybrid application which leverages Monte Carlo methods is that of

Aristoff et al., wherein an implicit Runge-Kutta method is used to propagate the

ensemble of particles collectively rather than propagating each particle individu-

ally by noting that the propagation problems have similar initial conditions and

are otherwise identical, resulting in significant computational savings [84].

A third hybrid method is that of DeMars, which applies a synergistic approach

to the problem of uncertainty propagation in developing a new algorithm for un-

certainty propagation called the “splitting Gaussian mixture unscented Kalman

filter” which detects when a non-linear prediction of uncertainty disagrees suffi-

ciently with a simpler linear prediction, and only then applies a splitting Gaussian

mixture algorithm to account for the non-linearities [68].

Finally, Vittaldev et al. developed a hybrid method composed of Gaussian mix-

29



ture models and polynomial chaos, wherein the use of Gaussian mixture models

decreased the order of polynomial necessary to achieve a desired accuracy, thereby

mitigating the computational costs of applying polynomial chaos expansions to

systems of high dimensionality [85].

2.4 Stochastic Orbit Prediction

Stochastic orbit prediction refers to satellite estimation or prediction methods

which incorporate uncertainty within the system’s dynamics (sometimes referred

to as “process noise”). This is in contrast to the previous section, in which dynam-

ics formulations were deterministic. In stochastic formulations, the system states

are random variables and the equations of motion represent a system of stochastic

differential equations. As such, any state prediction is an estimate with probabilis-

tic properties.

Of the various sources of dynamic uncertainty present in the prediction of or-

bits, uncertainty in the density of the upper atmosphere (and thus uncertainty in

the perturbing acceleration due to air drag) was noted as a key driver of satellite

position uncertainty as early as 1962, by Karrenberg et al. [10]. While air drag is not

the only source of dynamical uncertainty for Earth satellites, it is widely regarded

as the most influential for those in LEO [92, 94, 98, 99].

Consider again the representation of satellite air drag given in Equation 2, in

which all the variables may be uncertain. Uncertainties in the atmospheric density

ρ and the ballistic coefficient B∗ are correlated, but can be estimated and consid-

ered separately as well, as shown by Wright and Woodburn in their development

of a real-time sequential estimator and batch smoother which are capable of esti-

mating errors and uncertainty of both atmospheric density and ballistic coefficient

simultaneously [98]. Their method used a Jacchia atmosphere [119] with the solar
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input converted from three-hour step function to a continuous spline. Half-lives

for the ρ and B∗ Gauss-Markov processes appeared to have been chosen based on

earlier work of Akella et al. [15], and the research found that the half-lives of at-

mospheric density and ballistic coefficient must be considerably different to allow

observability and estimation of both simultaneously. Their work also concluded

that atmospheric density errors are highly correlated with position estimate errors,

while errors in the ballistic coefficient were negligibly correlated with position es-

timate errors when both types of error were considered simultaneously.

Uncertainty in air drag effects many types of calculations and analyses involv-

ing LEO satellites, including collision probability in the realm of conjunction anal-

ysis [13, 17] and calculating decay lifetimes [99, 120, 121]. Thus, the development

of orbit determination and propagation methods which acknowledge uncertain air

drag in their dynamics, estimate relevant uncertain parameters, and output orbit

estimates with realistic uncertainty characterizations is of great interest.

Marcos et al. recognized the role of air drag uncertainty and improved orbit

determination accuracy by using satellite data to calculate updates to atmospheric

models [92]. Nazarenko et al. also applied corrections to atmospheric density using

multiple satellites, and implemented a “density tracking process” in parallel with

an orbit determination method to improve the orbit determination results [93].

While these efforts estimated the errors of atmospheric models to calculate cor-

rections, Lee and Alfriend examined the effect of employing stochastic versus de-

terministic atmospheric density models in more detail. By modeling the atmo-

spheric density error as first-order Gauss-Markov random processes, their work

investigated the errors introduced by calculating the probability of collision of a

secondary object with the International Space Station using a perfect dynamics

model versus modeling atmospheric density as uncertain [14]. Their work also
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utilized MC simulation in the calculation of covariance matrices.

Using similar stochastic representations, Wilkins and Alfriend improved the

method of scaling a deterministically computed covariance matrix to achieve

better realism by incorporating dynamical uncertainty in the form of first-order

Gauss-Markov processes into an Extended Kalman Filter (EKF)-based orbit de-

termination method. Parameters of the Gauss-Markov random processes were

tuned manually, and the method used multiple processes with different time-scale

parameters. Along with estimating the orbit, the EKF also estimated the overall

density perturbation (but not the individual components or parameters of the

processes) and the ballistic coefficient. The authors conclude that the use of the

EKF with Gauss-Markov process noise results in more realistic covariance growth

[16]. Their choice of using a first-order Gauss-Markov process to characterize the

atmospheric density uncertainty was informed by prior work by Akella et al.,

which concluded that atmospheric density perturbations could be modeled by

a stationary first-order Gauss-Markov process [15]. Akella et al. chose to model

density errors as first-order Gauss-Markov processes for the purposes of “illustra-

tion”, and noted that other distributions could be used but that drag uncertainty

was inherently difficult to parameterize due to its variables’ being functions of

both position and time.

Other types of stochastic processes have been applied to characterizing uncer-

tainty in atmospheric density, such as the modified Ornstein-Uhlenbeck process

employed by Sagnieres and Sharf in their study of the effect of atmospheric model

uncertainties on satellite orbit prediction. In their study, Sagnieres and Sharf ana-

lyzed three atmospheric models using modified Ornstein-Uhlenbeck random pro-

cesses to characterize density uncertainty and then numerically solved the result-

ing stochastic differential equation to analyze the atmospheric uncertainty’s effect
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on orbit prediction. The purpose of their study was concerned more with the orbit

itself than the satellite’s position within the orbit, and therefore the analysis was fo-

cused on the uncertainty’s effect on the orbit’s parameters, specifically semi-major

axis and mean anomaly [6].

McLaughlin et al. also estimated atmospheric density, using Wright and Wood-

burn’s technique [98], in a precise orbit determination method. Using precise orbit

data from the Challenging Minisatellite Payload (CHAMP) satellite, the method

estimates two different corrections to the modeled atmospheric density (one “con-

sistent” over a long time scale and one “dynamic” which fluctuated on a shorter

time scale) and applied the corrections during orbit determination. The method

then applied a smoother using all the data which improved accuracy and esti-

mated the ballistic coefficient [94].

McLaughlin et al. also used data from multiple satellites to estimate atmo-

spheric densities, and compared the results to accelerometer-based truth data and

found general agreement [95]. Others have employed satellite data to refine our

knowledge of the upper atmosphere and improve existing atmospheric models

or develop entirely new ones [96, 97]. Many more examples exist of density cal-

ibration efforts, however they are not reviewed here as this research is focused

on linkages to uncertainty characterizations, and not on improving or analyzing

atmospheric models.

Additionally, Anderson et al. used data from the CHAMP satellite to numeri-

cally analyze the effects of atmospheric variation on the error of satellite orbit pre-

dictions, in an effort to characterize the sensitivity of such predictions to variations

in the atmosphere and thus inform future improvements to atmospheric models

[100]. Subsequent work by Anderson et al. studied how the time lag between an

unexpected atmospheric disturbance and when an atmospheric model reflected
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the effects of the disturbance (often on the order of 1–4 hours) related to errors

in orbit prediction, and found that the time lag caused noticeable errors in orbit

predictions [101]. Both works used deterministic dynamics models, but demon-

strate that uncertainty in atmospheric properties contribute directly to errors and

uncertainty in orbit predictions. Leonard et al. performed a similar type of analy-

sis on the fluctuations of the troposphere and their effect on orbit prediction (again

using deterministic dynamics), and found that this type of atmospheric fluctua-

tion causes significant (on the order of 200 meters) satellite prediction errors in the

in-track direction [102].

Emmert et al. have made multiple contributions to the aforementioned problem

of using stochastic dynamics to improve uncertainty realism. Motivated by reduc-

ing false-positives in conjunction analysis, Emmert et al. developed a method of

analytically approximating in-track position uncertainty from uncertainty in the

relative density error [11]. A more recent work by Emmert et al. developed equa-

tions for analytically approximating errors of the mean motion and mean anomaly

of a satellite orbit from atmospheric density errors. Their results showed that the

in-track prediction variance grows with ∆t3 if the relative density error is a white

noise process, and ∆t5 if it is a Brownian motion process [12]. Schiemenz et al.

also developed extended least squares estimation algorithms that incorporate the

variance relationships developed by Emmert et al. [21]. Another, apparently con-

current effort by Schiemenz et al. developed an analytical method for relating un-

certainties in atmospheric model inputs (indexes of solar activity) directly to uncer-

tainty in the relative atmospheric density, independent of the atmospheric model

itself (i.e. without another call to the atmospheric model) [20].

The aforementioned work of Rich et al. examined the time-growth of in-track

variance using a simplified perturbation theory approach which used the ballistic
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coefficient B∗ as the single random constituent variable of air drag rather than

assigning random processes to the density error. Their results showed that in-track

position variance grows with ∆t4 using the most recent TLE as a proxy for the true

satellite state [9]. Coppola and Tanygin also noted that position uncertainty tends

to be greater in the in-track direction, and noted that Cartesian ellipsoids do not

model positional uncertainty well [107].

The impact of air drag uncertainty on conjunction analysis (specifically proba-

bility of collision calculation) was studied by Bussy-Virat et al. using the Spacecraft

Orbital Characterization Kit (SpOCK) [17]. SpOCK is a full-featured mission de-

sign tool which is capable of propagating satellite orbits with uncertainty in the

satellite state and attitude, atmospheric density, and ballistic coefficient. In the

presence of uncertain dynamics (i.e. non-zero uncertainty for atmospheric density

or ballistic coefficient), SpOCK uses Monte Carlo methods to propagate an ensem-

ble of trajectories and thus compute a realistic uncertainty along with the state

estimates [18]. The conjunction analysis study used Monte Carlo methods and un-

certainty in the atmospheric model input parameters and resulted in accurate con-

junction calculations in approximately 1 hour “using 200 cores”. The authors also

note that the DoD recently (circa 2018) began considering atmospheric density er-

rors in conjunction analyses through use of a “consider-parameter” [17]. Consider

parameters were developed by Markley et al. in their presentation of batch and

sequential methods capable of dealing with many forms of uncertainty (including

uncertain dynamics), by splitting the system state vector space into “solve-for” (el-

ements which are to be estimated by the methods) and “consider” (elements which

are not to be estimated but are considered to be uncertain, and therefore impact

the resulting uncertainty calculations) parameters [103, 104]. Another conjunction

analysis which considered drag uncertainty was performed by Hejduk and Snow,
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and focused solely on re-processing “serious conjunction events” to determine if

the consideration of uncertainty in air drag resulted in changing the severity cate-

gory of the conjunction. They found that in many cases the inclusion of uncertain

drag effects upgraded the severity of possible conjunctions [13].

A final example of an implementation which incorporates uncertainty in the

satellite dynamics is the Covariance Realism Tool (CRT) in use for maneuver plan-

ning of the NASA GPM satellite (mentioned above in Section 2.3.1), which adds

dynamical process noise in the form of linear additive white Gaussian noise to the

propagation of state estimate uncertainty. The tool does not attempt to charac-

terize the parameters of the added noise, but requires “tuning” by the operator to

ensure the covariance growth of the prediction coincides statistically with previous

characterizations [91].

2.5 Coordinate Frames

In any effort to estimate the future state of a satellite and characterize that esti-

mate’s uncertainty, the choice of coordinate frame has a significant impact on the

underlying probability distributions. Critically, the linearity of the system (and

therefore the Gaussian nature of any errors and uncertainty) is preserved better in

some coordinate frames than in others.

For example, the two-body problem dynamics are linear in the equinoctial ele-

ments, and thus propagation of an initially Gaussian uncertainty remains Gaussian

[105]. Contrarily, the dynamics are not linear when resolved in Cartesian coordi-

nates, and propagation of an initially Gaussian uncertainty quickly becomes non-

Gaussian because linear approximations are valid only near the reference point.

This concept extends to perturbed dynamics which are still dominated by two-

body dynamics, in that dynamics resolved in equinoctial elements are nearly linear
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and propagated uncertainty remains Gaussian longer than if resolved in Cartesian

coordinates [63, 105]. Polar coordinates represent another option for leveraging

linear dynamics and Gaussian uncertainty characteristics [9], as initial Gaussian

uncertainty remains Gaussian when propagated using polar coordinates for two-

body circular orbits [63], however this breaks down for eccentric orbits as non-

linearities appear [62, 106].

Equinoctial element formulations, while offering the advantage of increased

linearity versus cartesian coordinates, suffer from a co-mingling of position and

velocity information which makes visualizing position uncertainty difficult [107].

This, coupled with polar coordinates only preserving linearity for circular orbits,

motivates the use of “curvilinear” coordinates which preserve linearity and Gaus-

sian characteristics well for eccentric orbits [106–109].

Multiple researchers have concluded that equinoctial elements and curvilinear

coordinates preserve linearity and Gaussian characteristics better than Cartesian

representations [63, 106–108]. Methods have also been developed to transform

uncertainty characterizations from polar to Cartesian [63] and Cartesian to curvi-

linear [107], and also for analyzing proximity operations in curvilinear coordinates

[110].

2.6 Review of Widely Available Estimators

Within the realm of orbit prediction there a several widely available software

packages, both commercial and open-source. Of these, the most widely used seem

to be Analytical Graphics Inc.’s Systems Took Kit (STK), FreeFlyer by a.i. solutions,

NASA’s General Mission Analysis Toolkit (GMAT), and the open-source Java As-

trodynamics Toolkit (JAT).

Of these products, only STK is capable of considering stochastic air drag. This
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consideration takes the form of treating the ballistic coefficient as a consider pa-

rameter within STK’s high-precision orbit propagator (HPOP) [122].

The other three products use only deterministic dynamics. GMAT accepts stan-

dard deviation values in solar input data files, but this appears to be for file inter-

pretation purposes as the drag calculation is entirely deterministic [123]. FreeFlyer

offers a variety of atmospheric models, but calculates all dynamics deterministi-

cally [124], and JAT uses only deterministic dynamics as well [125].

2.7 Summary

This chapter has presented a review of previous research related to satellite or-

bit prediction (both deterministic and stochastic), the generation and propagation

of model uncertainty, coordinate frames and their relationship to satellite dynam-

ics, and current widely used satellite estimators.
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III. Preliminaries

Chapters IV–VI below share some or all of the same prediction models, ob-

servational data sources, analysis scenarios, and coordinate frame considerations.

This chapter details these preliminary topics for clarity.

3.1 Prediction Models

3.1.1 Models

The literature review of Chapter II noted that satellite orbit prediction models

can be generally divided into two groups: analytical methods or “general pertur-

bations” and numerical methods or “special perturbations”. The research detailed

in the following chapters uses both.

The analytical model used is SGP4, in two implementations. The first imple-

mentation was obtained via Vallado et al. [32] and is referred to henceforth as

“SGP4 A”. This implementation is believed by Vallado et al. to be close to the ver-

sion in use by CFSCC, which was obtained from CFSCC’s public website [30] in

compiled library form and is referred to henceforth as “SGP4 B”. TLEs were also

obtained for all relevant satellites from CFSCC’s public catalog [126] for use with

these two prediction models.

The SP methods used refer to numerical integration of the satellite system’s dy-

namical equations of motion. These numerical equations of motion are formulated

identically for the two models, and are derived such that they are of the form

dX
dt

= Ẋ = f (X, t) (3)

where X is the system state vector. Let this state vector be composed of the satel-
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lite’s Cartesian position r = {x, y, z} and velocity v = {vx, vy, vz} in an Earth-

centered inertial reference frame, along with the ballistic coefficient B∗ as in Equa-

tion 4. The ballistic coefficient is appended to the state vector so that it may be

estimated from observational data along with position and velocity. This is nec-

essary even though a constant B∗ could be approximated from satellite properties

because estimating B∗ from observational data allows B∗ to act as a catch-all for

modeling errors and discrepancies, following from the hypothesis that letting B∗

be the single random variable in the air drag equation (Equation 2) can capture the

model’s overall prediction uncertainty (Research Hypothesis 3).

X =
{

x, y, z, vx, vy, vz, B∗
}T (4)

The equations of motion are formed using Hamiltonian coordinates q = (x, y, z)T

and momenta (which per unit mass are simply velocities) p = (vx, vy, vz)T. For an

Earth satellite affected only by the Earth’s gravity in an inertial reference frame,

the Hamiltonian (H) per unit satellite mass is

H =
1
2

(
v2

x + v2
y + v2

z

)
+ V (5)

where V is the Earth’s geopotential function. Then the equations of motion in
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Equation 6 are obtained from Hamilton’s canonical equations.

Ẋ = f (X, t) =



∂H
∂vx

∂H
∂vy

∂H
∂vz

− ∂H
∂x

− ∂H
∂y

− ∂H
∂z

0



=



vx

vy

vz

− ∂V
∂x

− ∂V
∂y

− ∂V
∂z

0



(6)

Note that B∗ and its associated equation of motion Ḃ∗ = 0 have been appended to

the state vector and the equations of motion. In a deterministic sense (and when

satellite attitude is not considered, as it is not in this case), letting Ḃ∗ = 0 is the best

predictive statement about the dynamics of B∗ that can be made. This is the case

for the analysis in Chapter IV, however the analysis of B∗ as a random process in

Chapter V will lead to this formulation morphing into a stochastic one in Chap-

ter VI. Also note that augmenting the state vector with B∗ allows initial conditions

that include B∗ to be estimated for each prediction by applying non-linear least

squares to a subset of data preceding each prediction’s initial time, but also has the

effect of grouping additional modeling errors into the B∗ estimates as mentioned

above.

The Earth’s aspherical geopotential V is implemented using the common spher-

ical harmonics model given by Equation 7

V = −µ

r

∞

∑
n=0

n

∑
m=0

(
r

R⊕

)−n
Pm

n sin(δ)
(
Cnm cos(mλ) + Snm sin(mλ)

)
(7)

where µ is the gravitational parameter, R⊕ is the equatorial radius of the Earth,
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Pm
n are the associated Legendre polynomials, Cnm and Snm are gravitational

model coefficients, n and m are the degree and order of the gravity model,

r =
√

x2 + y2 + z2 is the magnitude of the satellite’s position vector, δ is the satel-

lite’s geocentric latitude, and λ is the satellite’s longitude [52]. The geopotential

model coefficients Cnm and Snm are provided by the gravity models described

below.

The partial derivatives of the geopotential with respect to the Cartesian x, y,

and z coordinates in Equation 6 are not carried out directly. Rather, the satellite’s

position vector is converted to an Earth-fixed reference frame and the first and

second derivatives of the geopotential are carried out using a modified version (to

enable normalized calculation of the second partial derivatives) of Pines’ algorithm

as provided by Eckman et al. [127, 128]. The resulting acceleration vector and

matrix of second partials is then converted back to the inertial reference frame

for use in the predictions. Derivations of the partial derivatives of V are widely

available (for example in Vallado [5, pgs. 549–550]) and are not reproduced here.

The effects of air drag are then applied to equations of motion simply by adding

the components of the air drag acceleration given by Equation 2, resulting in the

equations of motion in Equation 8.

Ẋ = f (X, t) =



vx

vy

vz

− ∂V
∂x + aD,x

− ∂V
∂y + aD,y

− ∂V
∂z + aD,z

0



(8)
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The velocity of the spacecraft relative to the Earth’s atmosphere (vrel in Equation 2)

is calculated by assuming that the atmosphere rotates with the Earth via Equa-

tion 9, where ω⊕ is the rotation rate of the Earth in radians per second.

vrel =


vx + ω⊕y

vy −ω⊕x

vz

 (9)

Both SP models are formulated per the preceding development. The difference

between the two SP models is the coefficients used within the gravity expansion

(referred to as “gravity models”) and the atmospheric models used to obtain the

density in the air drag acceleration. The first SP model, termed “SP A”, uses the

EGM96 gravity model [129] and a relatively simple atmosphere model from Re-

gan and Anandakrishnan [130]. This atmosphere model requires no input other

that the satellite’s position. The second SP model, termed “SP B”, uses the more

up to date EGM2008 gravity model [131] and NRLMSISE-00 atmospheric model

[132]. The NRLMSISE-00 atmospheric model is more robust than that of Regan and

Anandakrishnan, and requires several types of input data along with the satellite’s

position, including two varieties of the solar flux and various geomagnetic activity

indices (see Section 3.2 for information regarding data sources).

In addition to the equations of motion used for numerical integration, the dif-

ferential state transition matrix Φ(t, t0) is required for the SP models for use in

non-linear least squares estimation of system states (both for initial conditions and

for estimating B∗ time series). Φ(t, t0) is obtained by calculating the first-order
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linearization matrix A and numerically integrating according to

A(t) =
∂ f
∂X

∣∣∣∣∣
X(t)

(10)

.
Φ(t, t0) = A(t)Φ(t, t0) (11)

where Φ(t0, t0) = I and I is the identity matrix. Details on calculating the A matrix

are given in Appendix A and an overview of the non-linear least squares algorithm

used is given in Appendix B.

Numerical integration of Equations 8 and 11 was accomplished with the

Adams-Bashforth-Moulton (ABM) numerical integrator. The ABM integrator is a

variable-step-size, variable order (up to order 12) predictor corrector method [133]

which accepts desired relative and absolute error values as inputs and adapts

its step size to maintain those error thresholds. The ABM integrator is also the

basis of MATLAB’s “ode113” numerical integrator [134], which is said to be very

suitable for orbital dynamics work [135]. Source code for the ABM integrator in

the C++ language was obtained from the website of Florida State University [136]

and modified for use in special perturbations by the author.

3.1.2 Parameter Sensitivity

While the SGP4 models needed no input parameters aside from pre-formatted

CFSCC TLEs, the SP models have many tunable parameters that alter their perfor-

mance. The values for these parameters used generally throughout this research

are tabulated in Table 1, where σr and σv are the standard deviations of the input

position and velocity observational data used in least squares estimation and NLS

is the number of data points used for each least squares estimation, unless other-

wise specified.
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Table 1. Special Perturbations Prediction Model Parameters

Parameter Value

Geopotential Order 25
Geopotential Degree 25
Absolute Integration Tolerance 1× 10−9

Relative Integration Tolerance 1× 10−9

σr (CHAMP, GRACE A/B) 5 cm
σv (CHAMP, GRACE A/B) 5 cm s−1

σr (SOS) 1 m
σv (SOS) 1 mm s−1

NLS 540

The performance of the SP models is sensitive to these parameters. The two

most impactful parameters are the order and degree of the geopotential model and

the number of data points used as input to the least squares estimation of initial

conditions (NLS). Results of a sensitivity analysis performed by executing 3-day

Monte Carlo simulations for various values of NLS and the degree/order of the

geopotential are tabulated in Tables 2 and 3 and visualized in Figure 1.

Table 2. Sensitivity of Special Perturbations Models to Degree and Order of Geopotential
(NLS = 720)

Geopotential Average Position Computation
Order & Degree Error (km) Time (min)

10 21.8 1.48
15 17.8 2.16
20 10.3 2.47
25 8.88 3.58
30 8.83 4.38
35 8.30 5.22

In general, the effect of NLS on the SP models is to increase model prediction

accuracy as NLS increases, and increasing the degree and order of the geopotential

also had the effect of improving model accuracy (though the accuracy improve-

ment decreases noticeably after the order and geopotential reach about 25). The
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Table 3. Sensitivity of SP Models to NLS (Geopotential Degree/Order of 25)

Average Position Computation
NLS Error (km) Time (min)

360 20.4 2.11
540 12.5 2.73
720 8.88 3.50
900 7.58 4.15

1080 6.90 4.66
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Figure 1. Sensitivity of Special Perturbations Models to Degree and Order of Geopotential and
Number of Data Points Used for Least Squares Estimation

trade-off for increased accuracy is computation time, however. Therefore, the val-

ues of 540 for NLS and 25 for the degree and order of the geopotential were chosen

for this research as a balance between model fidelity and computation time. Recall

also that this research is concerned with the uncertainty realism of the models, not

necessarily their accuracy when compared to truth data, so long as they’re of a rep-

resentatively useful fidelity. Similar reasoning informed the choice of 1× 10−9 for

the integration tolerances, while σr and σv were chosen to best match the quoted

or assumed accuracy of the respective observational data (see Section 3.2).

Finally, it is not surprising that altering the various input parameters changes

the performance of the SP models. Changing any significant parameters (the order

of the geopotential model, for example) should affect model performance—what’s
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important is that the models are self-consistent for similar parameters, which is

why the analyses in Chapters IV–VI use the common parameterization given by

Table 1 (unless otherwise noted) and common scenarios given in Tables 6 and 7

(analysis scenarios are discussed in greater detail below). After all, this research

is an examination of modeling uncertainty—different models will exhibit different

performance characteristics, and the aim here is to have the SP models reflect ac-

curate characterizations of their own modeling uncertainty, which is certainly tied

to the parameters inherent within the models.

3.2 Data Sources

Two types of observational satellite data were needed for the research activities

described in Chapters IV–VI, namely TLEs and vector position and velocity data.

Data of these types was acquired for four different LEO satellites to facilitate the

various analyses: Challenging Minisatellite Payload (CHAMP), Gravity Recovery

and Climate Experiment (GRACE)-A/B, and the Air Force Institute of Technology

Center of Space Research and Assurance’s Space Object Self-Tracker (SOS) pay-

load.

CHAMP was a German satellite that operated from 2000-2010 fulfilling various

science missions related to Earth’s gravity field, magnetic field, and ionosphere

[137]. CHAMP’s orbit was nearly circular (eccentricity ≈ 0.004) and nearly polar

(inclination ≈ 87 deg), with an altitude between 300 km and 450 km [138]. An

artist’s impression of the CHAMP satellite is shown in Figure 2.

The GRACE mission consisted of an identical pair of satellites (A/B) and was a

joint US/German mission that operated from 2004-2017, making detailed observa-

tions of Earth’s gravity field from an approximate altitude of 500 km [140]. The pair

of GRACE orbits were also nearly circular (eccentricity ≈ 0.001) and nearly polar
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Figure 2. Artist’s Impression of the CHAMP Satellite [139]

(inclination≈ 89 deg) [141]. Note that because the pair of GRACE satellites orbited

in formation, they experienced nearly the same dynamical forces and therefore re-

sults for GRACE-A and GRACE-B throughout this research should compare very

closely to each other. An artist’s impression of the GRACE satellites is shown in

Figure 3.

The SOS payload was hosted onboard NASA’s Green Propellant Infusion Mis-

sion (GPIM) satellite which launched into a circular low Earth orbit in June 2019

at an inclination of 24 deg and altitude of approximately 720 km [143]. An artist’s

impression of the GPIM satellite is shown in Figure 4.

Observe in Figures 2–4 that the CHAMP, GRACE, and GPIM satellites are

shaped differently. Specifically, the GPIM satellite has solar arrays which extend

outward from the main body while CHAMP and GRACE-A/B do not. With re-

spect to how these differences might influence the effects of atmospheric drag,

recall that the shape and orientation of a satellite is accounted for by the ballistic
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Figure 3. Artist’s Impression of the GRACE-A/B Satellites [142]

coefficient B∗ in Equation 2. Therefore, such differences did not affect prediction

performance or uncertainty realism for the purposes of this research because B∗

was estimated from observational data, however a larger area to mass ratio (if

the solar arrays of GPIM were oriented perpendicular to the satellite’s direction

of travel, for example) may be expected to increase the uncertainty of a satellite

prediction. This effect was not distinguishable in this research, however, as the po-

sitional accuracy of the SOS data is lower than that for CHAMP and GRACE-A/B

and therefore effects of the area to mass ratio could not be observed.

TLEs were obtained for all four of these satellites from CFSCC’s public catalog

[126]. Catalog numbers for each satellite are listed in Table 4. The TLEs were

used as initial conditions for the satellite predictions conducted using both SGP4

propagators as detailed in Chapter IV.

Table 4. CFSCC Catalog Numbers for Analyzed Satellites

Satellite TLE Catalog Number

CHAMP 26405
GRACE-A 27391
GRACE-B 27392
GPIM (SOS) 44342
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Figure 4. Artist’s Impression of the GPIM Satellite [144]

The vector data for CHAMP, GRACE-A, and GRACE-B consists of the follow-

ing at 30 second intervals: time in Terrestrial Time, post-processed position and ve-

locity state vectors resolved in the Conventional Terrestrial System reference frame

(an Earth-centered, Earth-fixed (ECEF) rotating frame), attitude angles (roll, pitch,

and yaw), a maneuver flag to identify if a data element was effected by a maneu-

ver, and other science mission data flags [145]. The position vectors are claimed

to be accurate to approximately 5 cm [146]. This data was downloaded from Geo-

ForschungsZentrum Potsdam’s Information System and Data Center for CHAMP

from 2000-2010 and for GRACE-A/B from 2004-2017 [147].

The vector data for SOS consists of position and velocity information from the

on-board GPS receiver. Time codes are in GPS weeks and GPS seconds, and po-

sition and velocity data are in an ECEF reference frame. Positional data is pro-

vided with significant digits to 1 m, and velocity data contains significant digits to

1 mm s−1.
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Unfortunately, the SOS data is not nearly as regular as that for CHAMP and

GRACE-A/B, and has gaps of various time lengths throughout. Figure 5 demon-

strates the prevalence of gaps within the SOS data, however the visualization is

incomplete as shorter data gaps are not visible due to resolution limitations. Ta-

ble 5 therefore lists all time spans of greater than four days within the available

SOS data for which the maximum data gap was less than 900 seconds, of which

there are four. The longest of these is just over six days in length and was used

for the SOS analysis presented in this research. Four days was used as the mini-

mum acceptable length of a data interval because the propagation time ∆T used

throughout this research is three days, and some leading data must be available

to permit estimation of initial conditions via non-linear least squares. Also, choos-

ing 900 seconds as the maximum allowable data gap was a subjective selection

and increasing this value may make additional data intervals available, however

the number of intervals doesn’t improve drastically (increasing the allowable data

gap to 2 hours yields 7 good data intervals of at least 4 days, and none longer than

7 days) and 900 seconds already represents approximately 1/6 of an orbit period

for SOS. The concern associated with increasing the size of the allowable data gap

too much is that estimating the initial conditions and B∗ time series as discussed in

later chapters may become unreliable or infeasible. For example, estimates of B∗

time-series in Chapters V and VI have a sample rate of one estimate every 10 min-

utes. Finally, note that the lack of available data for SOS precluded its inclusion

in the empirical covariance analysis of Chapter IV, as there simply isn’t enough

consecutive data to permit the sampling of enough propagations to justify the use

of the expectation operator in the covariance calculation of Equation 30.

For the stochastic prediction analysis of Chapter VI, the SOS data is used in its

unaltered form when being used as observational data and in a smoothed form
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Figure 5. SOS Data Gap Visualization, ≤ 900 s Gap Permitted

Table 5. Available Intervals of SOS Data, ≤ 900 s Gaps Permitted

Interval Start (UTC) Interval End (UTC) Interval Length (d)

29-Jun-2019 21:32:58 04-Jul-2019 09:13:18 4.5
15-Jul-2019 15:59:10 19-Jul-2019 19:34:30 4.1
30-Jul-2019 16:46:59 05-Aug-2019 17:54:22 6.0
08-Sep-2019 15:59:24 13-Sep-2019 12:06:59 4.8

when being used as “truth” data. This smoothed “truth” data was obtained by

performing rolling least squares estimates at evenly spaced (30 seconds to match

the frequency of CHAMP and GRACE-A/B data) output points.

3.3 Propagation Scenarios

The analyses that constitute this research were performed using the aforemen-

tioned satellites at times selected from periods of high solar activity and periods of

low solar activity (one of each for each satellite, except for SOS for which data is

only available during times of low solar activity). “Low” and “high” solar activity

refer to the solar flux incident upon the Earth at the 10.7 cm wavelength, commonly

referred to as the F10.7 solar flux. This measurement is also used as input to many

atmospheric models, including the NRLMSISE-00 model used in SP B. Solar flux

data was obtained from a website maintained by the University of Colorado [148].

Two versions of each propagation scenario were used, a “long” version and a

“short” version. The long versions were necessary for the empirical covariance

analyses described in Chapter IV to permit the use of enough TLEs to justify the

calculation of covariance matrices using the expectation operator. These long ver-
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sions used six months of input data. The short versions were used for the analyses

described in Chapters V and VI (including the empirical results presented in the

latter). These consist of one month of input data, and were used to better repre-

sent a more realistic operational timescale and to ensure the applicability of the

stationarity property of the B∗ random processes described in Chapter V.

Figure 6 shows the observed F10.7 solar flux as well as the time periods used in

this research, and Tables 6 and 7 list the details of each prediction scenario as used

throughout this research. Note the data shown in Figure 6 has been smoothed

by applying a 14-day moving average for the purposes of this visualization only

(data used in the SP models was not smoothed). Also note that the “Date Range”

columns in Tables 6 and 7 refers to the data window for random sampling of em-

pirical covariance analysis propagations, while the “Date/Time” column in Table 7

refers to the initial time used for single stochastic predictions.
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Figure 6. Smoothed Observed F10.7 Solar Flux with Scenario Regions Highlighted
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Table 6. Details of Research Scenarios, Long Versions

Solar Date Average
Satellite Level Year Range F10.7 (sfu)

CHAMP Low 2008 1 Jan–30 Jun 70.4
CHAMP High 2001 1 Jan–30 Jun 168.0
GRACE-A/B Low 2008 1 Jan–30 Jun 70.4
GRACE-A/B High 2014 1 Jan–30 Jun 146.4

Table 7. Details of Research Scenarios, Short Versions

Solar Date Average Date/Time Daily
Satellite Level Year Range F10.7 (sfu) (UTC) F10.7 (sfu)

CHAMP Low 2008 1–30 Jun 65.9 Jun 8, 10:00 64.9
CHAMP High 2001 1–30 Jun 174.1 Jun 8, 10:00 178.7
GRACE-A/B Low 2008 1–30 Jun 65.9 Jun 8, 10:00 64.9
GRACE-A/B High 2014 1–30 Jun 122.4 Jun 8, 10:00 148.8
SOS Low 2019 30 Jul–5 Aug 67.0 Aug 1, 20:00 67.2

Finally, geomagnetic activity indices are optional inputs to the NRLMSISE-00

atmospheric model which were used in SP B. Geomagnetic index data was ob-

tained from GeoForschungsZentrum Potsdam’s Information System and Data

Center [149].

3.4 Coordinate Frames

The research described in the subsequent chapters involves the calculation of

ensembles of prediction error vectors for each of the scenarios described in Tables 6

and 7. As mentioned in Section 2.5, the choice of coordinate frame that such error

vectors are resolved in has a significant impact on their probabilistic distribution,

specifically with respect to what degree the resulting ensembles resemble Gaussian

random variables. Covariance matrices are used throughout this research to rep-

resent the uncertainty of the various model predictions, which implies a Gaussian

assumption such that the mean of the ensemble and the covariance matrix com-
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pletely describe the distribution. The validity of this assumption depends greatly

on the choice of coordinate frame and on the propagation time of the prediction

as the non-linear system dynamics tend to make the ensembles less Gaussian as

propagation time increases (as Section 2.5 mentions). The use of a radial, trans-

verse, normal (RTN) coordinate frame, centered on the satellite, for resolving er-

ror vectors is described later in this section, and had the benefit of maintaining

“Gaussian-ness” much longer than the Cartesian coordinate frames used within

the SP prediction models [63]. Additionally, a three-day propagation time was

used for the predictions throughout this research and resultant error vector en-

sembles remained nearly Gaussian (this will be discussed in more detail in later

chapters).

Another consideration regarding coordinate frames is that, as Chapter I intro-

duces, the effects of air drag on prediction uncertainty manifest mainly along a

satellite’s orbit track. This is very difficult to visualize if covariance matrices are

resolved in Cartesian coordinates [9, 89], but becomes very apparent if RTN coor-

dinates are used. This is demonstrated in Figure 7, which shows an example pre-

diction covariance matrix as it develops with propagation time ∆t in both Carte-

sian and RTN coordinates, where P22 is the in-track element of the RTN covariance

matrix.

The RTN coordinate frame is constructed given a Cartesian satellite state vector

consisting of position and velocity by letting the radial direction be coincident with

the satellite’s position vector, the normal direction be perpendicular to the orbit

plane defined by the satellite’s position and velocity vectors, and the transverse

direction as the normal direction crossed with the radial. The creation of the unit

vectors of the RTN frame and conversion of position and velocity vectors from
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Figure 7. Empirical Covariance Matrix Elements in Cartesian and RTN Coordinate Frames,
CHAMP High Solar

Cartesian to RTN coordinates is detailed in Equations 12–17

R̂ =
rxyz

||rxyz||
(12)

N̂ =
rxyz × vxyz

||rxyz × vxyz||
(13)

T̂ = N̂ × R̂ (14)

C =

[
R̂ | T̂ | N̂

]
(15)

rxyz = C rRTN vxyz = C vRTN (16)

rRTN = CT rxyz vRTN = CT vxyz (17)

where r and v are the satellite’s position and velocity vectors in the indicated co-

ordinates, R̂, T̂ , and N̂ are the unit vectors describing the RTN frame, and C is a

rotation matrix formed from those unit vectors. Note that C−1 = CT because C is

orthonormal.

Note that the “transverse” direction in RTN coordinates corresponds to the
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in-track direction for perfectly circular orbits, and is a close approximation to

the in-track direction for very low eccentricity orbits such as those of CHAMP,

GRACE-A/B, and SOS. Therefore, the remainder of this document refers to

the transverse element in RTN coordinates as the “in-track” direction, utilizing

this approximation. This is akin to assuming circular orbits and using polar

coordinates as advocated by Rich et al. [9].

Additionally, and distinctly from the preceding conversation regarding coordi-

nate frames, the various prediction models and data sources do not use the same

reference frames or time systems. For example, the source data for CHAMP and

GRACE-A/B is in terrestrial time and an ECEF reference frame, the source data for

SOS is in GPS weeks and seconds and an ECEF reference frame, the output of SGP4

prediction models is in Universal Time Coordinated (UTC) time and a true equator,

mean equinox Earth-centered inertial reference frame, and the SP prediction mod-

els utilize the J2000 Earth-centered inertial frame and barycentric dynamical time.

The SP models were constructed in this way because inertial Cartesian coordinates

are native to the equations of motion in Equation 8 and barycentric dynamical time

is the standard time used by NASA’s “SPICE” toolkit. SPICE is a publicly avail-

able set of astrodynamics programming libraries created by NASA’s Navigation

and Ancillary Information Facility [150, 151], and is used throughout the code un-

derlying this research to handle conversions between various reference frames and

time systems. Data displayed in figures and tables throughout this document are

labeled with the associated time or reference system, unless they represent differ-

ences between quantities wherein only physical units are required.
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IV. Effect of Air Drag on Model Prediction Uncertainty

It was asserted in Chapter I that the acceleration caused by air drag has the

effect of increasing in-track prediction uncertainty for LEO satellites, that this effect

is the predominant cause of model prediction uncertainty for LEO satellites, and

that this can be confirmed via analysis of prediction covariance matrices calculated

from empirical data.

This chapter details the methodology, results, and conclusions of an empirical

covariance analysis, in which ensembles of prediction error vectors are calculated

for the various prediction models described in Section 3.1 to facilitate the calcula-

tion of prediction error covariance matrices as functions of propagation time ∆t.

This analysis, described below, corresponds to Research Task 1.

4.1 Methodology

4.1.1 Theoretical Expectations

Beyond expecting that air drag increases model prediction uncertainty in the

in-track direction, prior research suggests several growth rates that might be ex-

pected for the in-track prediction variance under the influence of air drag. Specif-

ically, the work of Rich et al. suggests in-track variance grows with ∆t4 [9], while

Emmert et al. suggest either ∆t3 or ∆t5 depending on the random process assigned

to the atmospheric density error [12]. Understanding the expected behavior of the

in-track variance for the prediction models to be tested in this research is help-

ful with regard to interpreting the results and the effect of air drag, therefore the

expectations given by these two prior research efforts are explored below.

aD = −B∗ρvrelvrel (2)
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Beginning with Rich et al. [9] and adapting their development slightly by omit-

ting the reference air density to correspond to Equation 2 (restated above), consider

a basic dynamics model for a LEO satellite that begins with a time-derivative of the

mean motion n = n(t) =
√

µ/a2

..
M =

.n = −3
2
√

µa−
5
2
.a (18)

where M = M(t) is the mean anomaly, µ is the Earth’s gravitational parameter,

and a = a(t) is the semi-major axis. Similarly, taking a time-derivative of the

relation for the semi-major axis and the specific energy E = E(t) in Equation 19

gives Equation 20.

a = − µ

2E (19)

d
dt

a =
d
dt

(
−µ

2
1
E

)
=

µ

2

.
E
E2

.a =
2a2

µ

.
E (20)

If air drag is assumed to be the only non-conservative force acting on the satel-

lite, then the orbit’s specific energy E must be equal to the work rate of air drag,

which leads to the result in Equation 21 (assuming for simplification that vrel = v).

.
E = v · aD = v · (−B∗ρvv) = −B∗ρv3 (21)

If the orbit is assumed circular then v =
√

µ/a and

.
E = −

(µ

a

)3
2

ρB∗ (22)
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which can be substituted into Equation 20 to yield Equation 23.

.a = −2
√

µaρB∗ (23)

Substituting this into Equation 18 then gives Equation 24.

..
M = 3

µ

a2 ρB∗ (24)

After integrating twice with respect to time from initial time t0 to time t whilst

using the perturbation theory approach of letting µ, a, and B∗ be constants on the

rights sides of the interposing equations gives Equation 25.

M(t) = M(t0) + n0(t− t0) +
3
2

µ

a2 ρB∗(t− t0)2 (25)

Equation 25 represents a simplified model for the mean anomaly of a circular

orbit under the influence of air drag. When multiplied by the semi-major axis a the

result is (for a circular orbit) an in-track distance. Then, considering that the prob-

lem may be stochastic, let the initial mean anomaly M0, the initial mean motion n0,

and the ballistic coefficient B∗ be statistically independent random variables (note

that here the same assumption made in Chapter I applies—assume the probabilis-

tic features of air drag can be captured by a single random variable, and let that

random variable be B∗). Then, finally, the variance of this in-track distance is

Pin-track = E

[(
aM(t0) + an0(t− t0) +

3
2

µ

a
ρB∗(t− t0)2

)2
]

(26)

Pin-track = a2σ2
M0

+ a2(t− t0)2σ2
n0

+
9µ2

4a2 ρ2(t− t0)4σ2
B∗ (27)

where cross terms featuring multiple random variables have an expectation of zero
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due to the assumption of statistical independence and σ2
M0

, σ2
n0

, and σ2
B∗ are the

variances of M0, n0, and B∗. In this equation the random variable B∗ represents

uncertainty caused by air drag, while the initial mean anomaly M0 and initial mean

motion n0 represent the initial uncertainty present in the position and velocity of

an orbiting satellite in the two-body problem.

Note that under this simplified model, which considers B∗ to be the random

constituent variable of air drag, the in-track variance is expected to growth with

∆t4. This result of Rich et al. appears to contrast with the results of Emmert et al.,

however this is not the case. It is important to note that the variety of anticipated

in-track variance growth rates (∆t3, ∆t4, and ∆t5) arise from different theoretical

developments. The development of Rich et al. in Equations 18–27 chooses B∗ as

the random constituent variable of air drag, and assumes that other modeling er-

rors are consumed by estimations of B∗ or ignores them completely, assigning no

assumptions or random processes to any errors in the atmospheric density ρ. Em-

mert et al. take a different approach—their development arises from assigning ei-

ther white noise or Brownian motion random processes to the relative atmospheric

density error. It’s important to remember that the expected growth rate of ∆t4 pro-

duced by the method of Rich et al. and the growth rates of ∆t3 or ∆t5 produced by

Emmert et al. are the expected growth rate of the variance of the model prediction

error, based on the model used in the construction of the dynamical system. In

other words, different expected growth rates arise from different formulations of

the system stochastics.

Thus, it is entirely expected that the different theoretical formulations yield dif-

ferent expectations for the growth of in-track variance. The key similarity is that

if air drag is stochastic, then the growth rate of the in-track variance is greatly in-

creased beyond the ∆t2 that is expected for deterministic dynamics (if σ2
B∗ = 0 in
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Equation 27).

4.1.2 Calculating Empirical Prediction Covariance Matrices

Analyzing the growth rate of prediction covariance matrices required the cal-

culation of ensembles of true prediction error vectors according to

etrue = Xtrue − Xpred (28)

where etrue is the true prediction error, Xtrue is a representation of the true state

of the satellite (though it cannot be perfectly known and thus cannot be precisely

“true”, see Section 3.2 for a discussion on sources of “truth data”), and Xpred is the

state predicted via one of the prediction models discussed in Section 3.1.

For each scenario listed in Table 6, a number N of three-day predictions were

made using each of the four prediction models, and error vectors were calculated

at n evenly spaced output points between each prediction’s initial time t0 and fi-

nal time t f . This resulted in the creation of a collection of N propagation error

functions e(∆ti) for each scenario and prediction model combination, where ∆ti is

defined by Equation 29.

∆ti =
(t f − t0)i

n
i = {0, . . . , n} (29)

The initial time of each propagation within a collection was uniformly sampled

from a given time window of interest (again see Table 6). In the case of the SGP4

models which use TLEs as input data, the initial time for each prediction was the

closest TLE epoch time to the sampled t0. This uniform sampling of initial propa-

gation times removes any selection bias and buoys confidence that these empirical

covariance matrices accurately reflect the true model prediction uncertainty for
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each model and scenario.

The method by which initial conditions were obtained for each prediction de-

pended on the prediction model used. Initial conditions for SGP4 predictions were

TLEs, which contain the necessary the epoch, position, velocity, and drag (B∗) data

in a defined format. For SP predictions, the initial position, initial velocity, and

B∗ (which for deterministic uses is a constant for each prediction) were estimated

from observational data using the non-linear least squares algorithm detailed in

Appendix B.

After the predictions were carried out and ensembles of error vectors at discrete

propagation times e(∆ti) were available, the model prediction covariance matrix

for each scenario/model pair was calculated as a function of propagation time

according to Equation 30 [115, pg. 170].

P(∆ti) = E
[
e(∆ti)e(∆ti)

T
]
− E

[
e(∆ti)

]
E
[
e(∆ti)

T
]

(30)

Covariance matrices (the central moment) were used because the mean error is not

necessarily zero (even for large N), particularly in the in-track direction where im-

perfect estimates of the ballistic coefficient B∗ may eventually lead to mis-modeled

air drag.

4.1.3 Comparing Sources of Model Uncertainty

An assessment of the predominant source of the uncertainty observed in the

empirical covariance matrices was also conducted for each SP scenario (SGP4 sce-

narios lack the necessary data for such an analysis, such as the average atmo-

spheric density ρ in Equation 32). To accomplish this, a curve fit of the form of

Equation 31 and in the likeness of Equation 27 was applied to the in-track pre-

diction variance element (P22 = Pin-track) of each empirical prediction covariance
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matrix.

P22(∆t) ≈ γ + β ∆t2 + α ∆t4 (31)

Equation 27 was used as the basis of the curve fits (in lieu of those developed by

Emmert et al. [12], for example) because the underlying development most closely

matches the SP dynamics models and the relevant research hypotheses investi-

gated in this document—wherein B∗ is the representative random variable in air

drag and no assumption regarding the air density error process is required (indeed

density errors are assumed to be entirely absorbed by estimates of B∗). Note that

the purpose of applying these curve fits was not to compare the validity of the

expected growth rates or select an appropriate model. Rather, Rich et al.’s model

was assumed to be a viable candidate based on the similarities between their de-

velopment and this research’s central paradigm. The purpose, then, of applying

these curve fits was to compare the contributions of the various random variables

to the overall prediction uncertainty, and specifically to test the hypothesis that air

drag is the principal contributor.

The coefficients α, β, and γ from the polynomial curve-fits (Equation 31) where

used to determine the dominant source of the observed in-track prediction uncer-

tainty. Comparing these coefficients with the terms of Equation 27 and calculating

average values of the semi-major axis (a) and atmospheric density (ρ) for each sce-

nario allowed approximations of the variances σ2
M0

, σ2
n0

, and σ2
B∗ to be calculated

via Equation 32.

σ2
M0
≈ γ

a2 σ2
n0
≈ β

a2 σ2
B∗ ≈

4αa2

9µ2ρ2 (32)

The relative standard deviations (σ) were then calculated according to

σM0 =
σM0

M
σn0 =

σn0

n
σB∗ =

σB∗

B∗
(33)
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where M, n, and B∗ are the average values of the mean anomaly, mean motion, and

ballistic coefficient (note that M is a cyclical quantity, and as such the half-range

value π was selected as the average as only the order of magnitude is of interest).

The relative standard deviation is used here as a method of comparing the relative

uncertainties of M0, n0, and B∗ against each other.

4.2 Results

Prediction covariance matrices were calculated for each of the scenarios in Ta-

ble 6 for each of the four prediction methods described in Section 3.1 using N =

1000 predictions for the SP models and N = 20000 predictions for the SGP4 mod-

els. (As an aside, 20000 predictions were calculated for the SGP4 models despite

the limited number of possible TLE epochs to utilize the same underlying code

as SP predictions, which randomly samples initial times. Using a large number

of predictions ensured that each of the available TLEs within the scenario interval

was selected about the same number of times to avoid biasing.) Figure 8a shows

example results for the GRACE-A Low Solar scenario for SP A, for the purposes

of demonstrating that only the in-track element (P22) of the covariance matrix is

distinguishable from zero. Figure 8b depicts example results for the same scenario

for the SGP4 A propagator, and shows that other covariance elements do in fact

deviate perceptibly from zero, however the in-track variance remains orders of

magnitude larger. All tested scenarios exhibited similar behavior and, based on

the dominance of the in-track covariance matrix element, plots of the remaining

results depict the in-track variance only for visual clarity. These are Figures 9–11,

which show the in-track variance for all scenarios of each satellite along with the

polynomial curve fits described in the preceding section. Note that care should

be taken in comparing results from different scenarios against one another (for ex-
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ample the high and low solar pair of scenarios for a particular satellite), as the

scenarios are separated by several years and various properties of the orbit (the

semi-major axis, for example) had likely changed. The purpose of including high

and low solar scenarios in this research was to obtain results for a range of environ-

ments to help validate the wide applicability of any conclusions to LEO orbits, not

delve into the causal relationship of the solar environment to in-track uncertainty

(though that may be of interest for future research).
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Figure 8. Example Full Empirical Covariance Matrices

The results in Figures 9–11 demonstrate several things. For one, note that the

results of SGP4 A and SGP4 B match very closely (so much so that they tend to

overlap causing one to not be visible), which indicates that for this purpose the

Vallado and DoD implementations of SGP4 produce nearly identical results.

Additionally, the growth curves of the in-track prediction variance for the two

SP propagators are very similar, despite the two models using disparate atmo-

spheric models. This agreement between the two SP models gives at least some

indication that using B∗ as the only random variable reasonably captures the in-
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Figure 9. Empirical In-track Variance, CHAMP

track uncertainty without constraining the choice of atmospheric density model.

This is possible even though the two atmospheric models give quite different val-

ues for the air density because B∗ is estimated from observational data for each

model, such that the differences between the atmospheric models tend to be can-

celled out as modeling errors are absorbed by the estimation.

Differences between the fidelity of the SP and SGP4 prediction models become

apparent in Figures 9–11 as well. For example, the SGP4 prediction variances os-

cillate considerably while those of the SP models do not. This is attributable to

SGP4 being an analytical approximation with sinusoidal terms in it, a fact which

becomes particularly evident when the in-track prediction variance becomes small

enough that the scaling of the y-axes reduces and the oscillations become pro-
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Figure 10. Empirical In-track Variance, GRACE-A

found, as in Figures 10 and 11.

Figures 10 and 11 also reveal that the initial prediction variance when using

SGP4 is larger than when using SP, which is due to the use of TLEs as input data

for the SGP4 models. The SP models do not exhibit this behavior as their initial

conditions are estimated from the representative data, resulting in very small ini-

tial errors (generally less than a meter).

Results of the polynomial coefficient analysis described in Section 4.1.3 are tab-

ulated in Table 8, which also lists the values for the average semi-major axis and

average atmospheric density. These results represent the SP B prediction model,

as gathering the requisite data (specifically the atmospheric density) is impossible

for the SGP4 propagators and covariance growth results of SP A are duplicative.
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Figure 11. Empirical In-track Variance, GRACE-B

As is the case for Figures 9–11, care should be taken if comparing rows of Table 8

to one another, for the same reasons.

These results indicate that σB∗ is much larger than either σM0 or σn0 for each

scenario, confirming that the uncertainty due to air drag is the dominant source

of in-track prediction uncertainty for LEO satellites (at least when compared to

uncertainties in the mean anomaly and mean motion). This is true for both high

and low levels of solar activity for all scenarios. These results also demonstrate

that the growth-rate of in-track variance is primarily with ∆t4, indicating that B∗ is

acting as a random variable and that air drag is a stochastic effect.

Finally, though this research is concerned primarily with prediction uncer-

tainty, this is a good opportunity to discuss the accuracy of each prediction
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Table 8. Relative Standard Deviations of Mean Anomaly, Mean Motion, and Ballistic Coefficient

Solar σM0 σn0 σB∗

Satellite Activity ρ (kg km−3) a (km) (%) (%) (%)

CHAMP Low 1.99× 10−3 6705.8 < 0.01 < 0.01 22
CHAMP High 1.85× 10−3 6808.5 < 0.01 < 0.01 24

GRACE A Low 1.06× 10−4 6839.8 < 0.01 < 0.01 63
GRACE A High 1.61× 10−3 6797.5 < 0.01 < 0.01 13
GRACE B Low 1.06× 10−4 6839.7 < 0.01 < 0.01 64
GRACE B High 1.62× 10−3 6797.9 < 0.01 < 0.01 13

model. It was mentioned briefly in Section 3.1 that the SP models in particular

are sensitive to various input parameters and Figure 1 gives some indication

of the average modeling error, however the ensembles of error vectors used to

calculate the covariance matrices discussed above are useful for visualizing model

accuracy in greater detail. Therefore, the respective accuracy of each model, using

the parameters given in Table 1, is shown for the CHAMP High Solar scenario in

Figure 12.

Note that the SGP4 prediction models have a significantly larger average error

magnitude at ∆t = 0, which reflects some disagreement between the CFSCC TLEs

used for SGP4 and the more precise vector data. Other scenarios showed similar

error variance between the average TLE and the precise vector data at the epoch

time, which is unsurprising given that SGP4 is an analytical approximation.

Also note that the SGP4 prediction models here are comparable in accuracy to

the SP models as parameterized. If increased accuracy is desired the SP models

can be made significantly more accurate by increasing both the order and degree

of the geopotential and NLS. This is demonstrated in Figure 13 for a geopotential

degree/order of 35 and NLS = 1080, calculated using 100 propagations. As men-

tioned in Chapter III, refining the accuracy of the SP models this way increases

computation time significantly, and therefore the original parameters of Table 1
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Figure 12. Average Magnitude of Empirical Position and Velocity Errors, CHAMP High Solar

were used throughout this research as the uncertainty of the model predictions

and the uncertainty’s realism are of the greatest interest in this research.

4.3 Conclusions

The results of the preceding section confirm that the air drag on LEO satel-

lites dramatically increases in-track model prediction uncertainty. Further, the rel-

ative uncertainty analyses via polynomial fit coefficients confirm that air drag is

the principal source of in-track model prediction uncertainty, as hypothesized in
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Figure 13. Average Magnitude of Empirical Position and Velocity Errors, CHAMP High Solar,
High Fidelity Special Perturbations Models

Research Hypothesis 1. This confirms the expectation of the theoretical develop-

ments presented above, and also satisfies our intuition given the difficulty associ-

ated with predicting the behavior of the atmosphere.

Also, the fact that the two SP models with dissimilar atmospheric models cal-

culated very similar empirical covariance matrices via estimation of B∗ implies

that there is some validity to the hypothesis that a single random variable in the

air drag equation can capture model prediction uncertainty without restricting the

atmospheric model used.

A key implication of these results is that air drag is a stochastic effect. This,

along with known difficulties in predicting various uncertain drag factors (such as

the behavior of the upper atmosphere), implies that the dynamics of a LEO satel-

lite may be stochastic and therefore that some dynamical variables may really be

random processes. This leads to the next chapter, wherein the ballistic coefficient

B∗ is modeled and analyzed as a random process to test this hypothesis.
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V. B∗ As a Random Process

The preceding chapter concluded that air drag dramatically increases in-track

model prediction uncertainty for LEO satellites and hypothesized that air drag

may be dynamically stochastic. This would mean that at least one dynamical vari-

able within the system is really a random process. Results of Chapter IV also began

to substantiate the hypothesis that a single random variable within air drag can

capture model prediction uncertainty.

Chapter I introduced the notion that if a single random variable is to be used

in the air drag equation, then choosing the ballistic coefficient B∗ has potential

benefits. This was also reinforced in the preceding chapter as the SP models were

able to produce similar characterizations of uncertainty by estimating initial states

and B∗ from observational data.

This chapter examines B∗ as a random process, with the aim of incorporating it

into a stochastic dynamics model for the prediction of LEO satellites in the follow-

ing chapter. This analysis corresponds to Research Tasks 2 and 3.

5.1 Methodology

5.1.1 Characterizing Random Processes

Before considering B∗ as a random process, first consider the definition of a

random process in general. Let T denote a time of interest and Ω be a sample

space of relevant function arguments, including potential random variables. Then,

for the purposes of this research, consider a “random process” x to be a T and

Ω-dependent function, such that for any fixed time instant t ∈ T the value of

the function x(t, ·) is a random variable [116, pg. 133]. Additionally, for each

realization of variables ω ∈ Ω, the time-function x(·, ω) is a “realization” of the
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random process [116, pg. 134].

Strictly speaking, a random process can only be fully characterized by the com-

plete probability density function (PDF) formed from the set of random variables

as functions of time, which may not exist or may be very difficult to calculate. As

such, stochastic processes are often described by moments of the PDFs, and if the

random variables within a process are Gaussian then the first two moments con-

tain enough information to completely characterize the process [116, pg. 135].

It will be useful to define several properties of random processes, including

the first two central moments referenced above, as shown in Equations 34–38 (ob-

tained from Maybeck [116, pgs. 136–137]). The first two moments of a random

process x(t) are given by the mean value function (Equation 34)

mx(t) , E{x(t)} (34)

and the covariance matrix (second central moment, Equation 35).

Pxx(t) , E
{

[x(t)−mx(t)][x(t)−mx(t)]T
}

(35)

The covariance matrix can be generalized to include time-dependent behavior of

x(t) by defining the covariance kernel, given by Equation 36.

Pxx(t1, t2) , E
{

[x(t1)−mx(t1)][x(t2)−mx(t2)]T
}

(36)

Finally, the correlation matrix (second non-central moment, Equation 37) is

Ψxx(t) , E
{

x(t)x(t)T
}

(37)
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and can be similarly generalized to the correlation kernel in Equation 38.

Ψxx(t1, t2) , E
{

x(t1)x(t2)T
}

(38)

These relationships are useful both for categorizing random processes and for as-

sessing stationarity and ergodicity.

The stationarity of the B∗ random process was of interest in this research be-

cause establishing or assuming stationarity permits the calculation of the process

autocorrelation function as a function of a time difference τ = t1 − t2 only, indi-

cating that the process does not depend on the absolute time, but only the relative

time within the process. There are two types of stationarity, strict and wide-sense

stationarity. As wide-sense stationarity is generally easier to establish, the B∗ ran-

dom process was tested for wide-sense stationarity using the following criteria

[116, pg. 140].

1. The correlation matrix (Equation 37) is finite.

2. The mean value function (Equation 34) is constant.

3. The covariance and correlation matrices (Equations 35 and 37) are constant.

If the B∗ random process proves to be stationary within a time frame of interest, it

implies that it is a constant mean process for which the covariance and correlation

have no dependence on absolute time within that time frame.

Another property of random processes that was investigated with respect to

the B∗ random process is ergodicity. Ergodicity is, formally, a property only of

strictly stationary processes. Strict stationarity was not established for the B∗ ran-

dom process, however as the B∗ random process was assessed regarding wide-

sense stationarity making an ergodic assumption was partially justified by com-

paring statistics calculated from many realizations of the B∗ random process with
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statistics calculated from a single realization. If such statistics of a random process

prove comparable, the process is more likely to be ergodic [116, pg. 144]. Asserting

ergodicity remains an assumption and fully justifying it would require strict sta-

tionarity and an infinitely long realization of the process, but by performing this

test the assumption was at least provided some justification.

Whether or not the B∗ random process is ergodic informs if the process can

be characterized by analyzing a single realization. This is important because a

single time-series of B∗ estimates is exactly what is calculated from observational

data of satellites’ positions and velocities in this chapter, and could potentially be

calculated autonomously on-board on a satellite if data was available.

Another purpose of assessing the stationarity and ergodicity of the B∗ random

process was to inform the calculation of the autocorrelation function. The autocor-

relation function is a method of characterizing a random process, and in the case

of a stationary process is dependent only on the time lag variable τ. The autocorre-

lation function was calculated by modifying Equation 38 for the correlation kernel

such that the result is dependent only on τ, as in Equation 39 [116, pg. 140].

Ψxx(t, t + τ)→ Ψxx(τ) = E
{

x(t)x(t + τ)T
}

(39)

5.1.2 Calculating B∗ Time Series

Before discussing how B∗ random processes were analyzed, first consider what

is meant by the phrase “B∗ random process”. Strictly speaking, a B∗ random pro-

cess exists for the entire orbital life of a satellite, but a LEO satellite experiences

potentially drastic changes in its environment over this lifespan (due to the 11-

year solar cycle and its effect on the atmosphere, orbital maneuvers or decay, etc.).

As such, a satellite’s B∗ random process is likely not stationary when considered
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over the lifespan of the satellite. Therefore, references to a B∗ random process are

meant as references to a section of a satellite’s overall B∗ random process on some

time interval within which it remains stationary as defined above.

Time series of B∗ values that span the time intervals listed in Table 7 were

obtained by estimating individual values of B∗ from each satellite’s position and

velocity observational data using non-linear least squares with the SP prediction

models. These B∗ values were estimated at evenly spaced output points. Two

types of B∗ time series were calculated: single realizations and ensembles. In the

single realization case, a single time series was calculated for the entire interval. In

the ensemble case, a number of initial times were randomly sampled from within

the time interval of interest and B∗ time series of a chosen length were estimated

from each sampled initial time. Note that ensembles constructed in this manner are

not precisely ensembles of the same random process, as the initial time and hence

the satellite’s environment are different for each ensemble member. However, this

is the best method available for calculating ensembles of B∗ time series given the

available data, and it is assumed that ensemble members calculated from a win-

dow in which the B∗ random process is relatively stationary are similar enough in

their properties to be considered members of the same random process.

It is these time series which were then analyzed as realizations of empirical B∗

random processes, with the ensemble cases being used primarily to assess random

process properties such as stationarity and ergodicity and the single realizations

being primarily used for parameterization (though this can be conducted with ei-

ther type) and in the stochastic prediction models of Chapter VI.

There were also many parameters which could be tuned during the process of

generating these B∗ time series, such as the spacing of the output points (which

corresponds to the sampling rate of B∗ points), how long each time series should
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be, how many time series to generate in the ensemble case (with initial times ran-

domly sampled from within the interval), and how much data to use as input to

the least squares algorithm for each B∗ estimate. Values used for these parameters

are included with relevant results in the next section.

5.1.3 Gauss-Markov Random Processes

Several researchers have applied Gauss-Markov (or Ornstein-Uhlenbeck) pro-

cesses to the stochastic behavior of satellite air drag [6, 9, 14–16, 94]. For a process

to be a Gauss-Markov process, it must first be a Gaussian random process [116, pg.

146]. A random process x(t) is Gaussian if the joint PDF for any finite collection of

process random variables {x(t1), x(t2), . . . } is Gaussian [116, pg. 139].

A Markov process is any random process for which the PDF at the current time

step conditioned on all previous time steps is equivalent to the PDF conditioned

on only the previous time step [116, pg. 146]. In other words a Markov process

is fully characterized by the information available from the preceding time step,

without need of information prior to that. Maybeck puts it like this: “the Markov

property for stochastic processes is conceptually analogous to the ability to define

a system state for deterministic processes” [116, pg. 146].

With respect to the B∗ random process considered in this research, recall that

B∗ is the only variable of satellite air drag to be modeled stochastically, and that

values of B∗ are estimated from observational data using the implementations of

special perturbations in the SP prediction models. As such, while B∗ remains re-

lated to physical properties of the satellite, its stochastic behavior is expected to

accumulate effects of other variables which are stochastic in reality but modeled

deterministically in these models. Therefore, it was assumed that this B∗ process

will prove to be Gaussian due to the accumulating effect of several error sources.
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Additionally, the history of B∗ values prior to the “current” value has no intuitive

bearing on the fluctuation of B∗ in the future—the previous time history does not

inform the predicted deviation of the next value from the mean (though it does

give an idea of the expected future mean)—and the B∗ random process was there-

fore assumed to satisfy the Markov property. Therefore, it will be assumed for the

remainder of this document that B∗ random processes, in this context, are Gauss-

Markov processes.

Finally, note that the B∗ random process for a satellite will not be zero-mean (if

B∗ were zero mean it would mean that the average effect of drag would be that

there was none at all). Therefore, consider instead the following representation of

B∗

B∗ = B∗0 + B∗e (40)

in which B∗0 is the mean of the B∗ time series and B∗e is a zero-mean Gauss-Markov

process which represents the stochastic deviation of B∗ from its expected mean

value B∗0 .

5.1.4 Parameterizing and Simulating B∗ Random Processes

Creating a stochastic prediction method that leverages calculated B∗ random

processes required obtaining the parameters of the B∗ random process from the

time series. This was accomplished via calculation of process statistics and the au-

tocorrelation function. An example autocorrelation function from a one-day long

B∗ time series from the CHAMP High Solar scenario is shown in Figure 14. Consid-

ering that B∗ was assumed to be a Gauss-Markov process and noticing the damp-

ened oscillatory nature of the autocorrelation, modeling B∗ random processes as

second-order Gauss-Markov (SOGM) processes was a logical choice. This isn’t

the only plausible choice of random process model—a first-order Gauss Markov
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process could be sufficient to approximate the system stochastics, for example.

However, the SOGM process model was selected to allow simulated B∗e random

processes to match their empirical counterparts as closely as possible.
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Figure 14. Example Empirical B∗e Autocorrelation Function, CHAMP High Solar

The general autocorrelation function for a SOGM process is given in Equa-

tion 41

Ψ(τ) =
σ2

cos(η)
exp (−ξωn|τ|) cos

(√
1− ξ2 ωnτ − η

)
(41)

where σ2, η, ξ, and ωn are the four parameters which define the behavior of the

process. It is these parameters which needed to be extracted from an empirical

autocorrelation such as the one in Figure 14.

The variance of the B∗e random process σ2 was readily available either via di-

rection calculation from the values or as the peak value of the empirical autocorre-

lation when τ = 0. Then, by examining the second cosine term in Equation 41 the

frequency of the oscillations is given by f =
√

1− ξ2ωn. The period of the oscilla-

tion can be read from the autocorrelation and is related to the frequency according
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to f = 2π/P. Combining these gives Equation 42.

ωn =
2π

P
√

1− ξ2
(42)

Obtaining the oscillation period P from the autocorrelation was simplified by

assuming that the time-lag of the first valley to the right of the y-axis τm was equal

to half the period, which is akin to assuming that the slope of the autocorrelation

function at the peak is zero. An example location of τm and the corresponding

value of the autocorrelation Ψm = Ψ(τm) is illustrated in Figure 15. The derivative

of the autocorrelation with respect to τ is (for the half of the domain to the right of

and including τ = 0)

Ψ′(τ) =
σ2ωn

cos(η)
exp (−ξωnτ)

[√
1− ξ2 sin

(
η −ωn

√
1− ξ2 τ

)
− ξ cos

(
η −ωn

√
1− ξ2 τ

) ]
, τ ≥ 0

(43)

and employing the assumption that the slope is zero at the peak (Ψ′(0) = 0) gives

0 =
σ2ωn

cos(η)

(√
1− ξ2 sin (η)

)
− ξ cos (η) (44)

which simplifies to Equation 45.

tan η =
ξ√

1− ξ2
(45)

Thus Equations 42 and 45 give expressions for η and ωn in terms of only ξ and

known period P.

To estimate ξ, consider the exponential decay term exp (−ξωn|τ|) which damp-

ens the oscillations of the autocorrelation. At τm, the time-lag of the first valley, the

81



0 1 2 3

= (hrs)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

B
$ e

A
u
to

co
rr

el
a
ti
o
n

(m
4
/
k
g
2
)

#10!6

Figure 15. Location of the Point (τm, Ψm) on Example B∗e Autocorrelation

oscillation is at its minimum. Given the behavior of the cosine function, this im-

plies that
√

1− ξ2ωnτm = π (this can be equivalently obtained using Equation 42

and recalling that P = 2τm). Substituting this relationship into Equation 41 and

removing the absolute value as only the τm > 0 half of the autocorrelation is being

considered gives Equation 46.

Ψm =
σ2

cos(η)
exp (−ξωnτm) cos (π − η)

Ψm =
σ2

cos(η)
exp (−ξωnτm) (− cos (η))

Ψm = −σ2 exp (−ξωnτm) (46)

Solving Equation 46 for ωn yields

ωn =
−1
ξτm

ln
(−Ψm

σ2

)
(47)

which, letting γ = ln(−Ψm/σ2) and substituting τm = P/2 in the denominator
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gives Equation 48.

ωn =
−2γ

ξP
(48)

Finally, equating Equations 48 and 42 gives the relationship

−2γ

ξP
=

2π

P
√

1− ξ2
(49)

which simplifies to give the result in Equation 50.

ξ2 =
1(

π
γ

)2
+ 1

, where γ = ln
(−Ψm

σ2

)
(50)

Therefore, given σ2 and a single point from the autocorrelation (τm , Ψm), the

three other parameters of the SOGM process model could be quickly approximated

using Equations 50, 42,and 45. While this parameterization was easy to implement

programmatically and yielded good results considering that the SOGM process is

an approximate model for the B∗e random processes, it is not the only way to divine

the random process (RP) parameters from the estimated time series. Least squares

estimation could have been applied to problem, for example, but the above method

was developed and used for its simplicity and speed.

These parameters have multiple uses in upcoming chapters, one of which in-

cludes generating realizations of B∗e random processes for use in Monte Carlo sim-

ulation. In order to do this, the shaping filter given in Equation 51 was used [116,
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pg. 183].

ẋ1(t)

ẋ2(t)

 =

 0 1

−ω2
n −2ξωn


x1(t)

x2(t)

+

a

c

w(t) (51)

α = arctan(ξ/
√

1− ξ2) = η (52)

a =
√

(2σ2/ cos(η))ωn sin(α− η) = 0 (53)

b =
√

(2σ2/ cos(η))ω3
n sin(α + η) (54)

c = b− 2aξωn (55)

In this two-state linear shaping filter state x1 is the B∗e random process realiza-

tion and w(t) is scalar white Gaussian noise. Note that η = α and a = 0 are mathe-

matical consequences of the assumptions made above that P = 2τm and Ψ′(0) = 0.

This stochastic system of equations was simulated using random draws from the

standard normal distribution for w(t) via numerical integration.

To illustrate the calculation, parameterization, and generation of B∗e random

processes the SOGM model, Figure 16 presents autocorrelations of three example

B∗e random processes—one empirically calculated, one plotted using Equation 41

and parameters obtained using the above parameterization method, and one gen-

erated via Equation 51 using those same parameters and 500 realizations.

Note from the figure both that the approximate parameterization and subse-

quent generated results closely match the empirical result through at least the first

valley, but less well after that. This is to be expected when working with auto-

correlations calculated from real-world observational data, as the SOGM process

model is a mathematical ideal that is rarely exactly realized in reality. All told, the

SOGM process model was determined to be a sensible approximation of empirical

B∗e random processes, and was used through the remainder of this research.
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Figure 16. Example Empirical, Parameterized, and Generated B∗e Autocorrelation Functions

5.2 Results

The methodology above was used to calculate ensembles and single realiza-

tions of B∗e time series for the CHAMP satellite. Ensembles consisted of 300 half-

day long realizations from 1–30 Jun 2001 and single realizations were for the 7-day

time period preceding Jun 8, 2001 10:00:00 UTC (the date-time group for stochas-

tic propagations given in Table 7). Additional satellites and time scenarios are not

referenced in this chapter for the sake of brevity, however the method described

above applies to all tested scenarios and was used to obtain the results of the next

chapter. Figure 17 shows the ensemble time series, calculated using the SP B prop-

agator (results from the SP A propagator were very similar and are covered in

more detail in the next chapter).

These time-series were created for two values of NLS, the number of data points

given to the least squares algorithm for the estimate of each B∗ value. Various

parameters affect the calculation of these time series as discussed in Section 3.1.2,

but NLS has an additional effect relating to the frequency the B∗e random process
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Figure 17. Ensembles of Estimated B∗e Time Series

oscillations.

The effect is visible in Figure 17, but is more obvious in Figure 20, which shows

two-dimensional autocorrelation functions of both types of time series (ensemble

and single realization) for both values of NLS calculated according to Equation 39.

The output spacing of input data for these analyses is 30 seconds, which means

that an NLS value of 360 is equivalent to 180 minutes or 3 hours of data being used

as input for the least squares algorithm, while NLS = 540 corresponds to 270 min-

utes/4.5 hours. Couple this information with the fact that least squares estimates

for B∗ are returned from the middle of the supplied data and the effect of NLS be-

comes clear: NLS directly effects when the calculated B∗ time series de-correlates

with itself (at what time shift τ the first valleys appear in the autocorrelation on

either side of τ = 0). Note that when NLS = 540 (4.5 hours) the autocorrelation in

Figure 20a bottoms out at about 2.25 hours either side of τ = 0, while for NLS = 360

(3 hours) the valleys in Figure 20b are at approximately τ = ±1.5 hours. This was

a sensible discovery to make, as the estimate of B∗ returned for a given time in the
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time series was based only on the data provided to the least squares algorithm,

and the next point was based on the same amount of data but that data had been

shifted down the timeline of the time-series. Further, it is not surprising that alter-

ing NLS effects the character of the calculated B∗ process, for the same reasons that

were discussed in Section 3.1.2.

For the purposes of assessing stationarity, first note that in Figure 17 the mean

value functions of the ensembles are relatively constant (a requirement of wide-

sense stationarity) and also stay quite nearly zero (which is what the B∗e construc-

tion of Equation 40 ensures). Additionally, Figure 18 shows the three-dimensional

autocorrelation surface of the B∗e ensembles, calculated according to Equation 38.

Note that the “ridge” or “peak” of this surface, which occurs when ∆t1 = ∆t2, is

fairly constant and doesn’t tend to increase or decrease steadily. (Note ∆t1 and ∆t2

are used instead of t1 and t2 because the ensembles are from different times within

the time window and are instead aligned via the time elapsed since t0.) That the

peak of the correlation is relatively constant indicates that the process variance is

roughly constant with ∆t, a requirement of wide-sense stationarity. Further, Fig-

ure 19 shows the correlation surface rotated to look flattened as a two-dimensional

autocorrelation dependent only on time-lag would look. Indeed, a “slice” of the

surface taken across either Figure 18a or 18b from equal points on the two base axes

represents an autocorrelation of the random sample of the ensembles at a given

∆t1 = ∆t2. Noticing from Figure 19 that these autocorrelations are relatively con-

stant indicates that the autocorrelation is dependent on the time lag τ = ∆t1 − ∆t2

only (another requirement of wide sense stationarity), and can be represented by a

two-dimensional autocorrelation calculated via Equation 39.

The preceding figures provide evidence for assuming that the B∗e random pro-

cess is wide-sense stationary, at least on the time scales investigated, based on
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(a) NLS = 540 (b) NLS = 360

Figure 18. Three-Dimensional Correlation Surface of Estimated B∗e Time Series

meeting the three criteria of a constant mean value function, finite correlation sur-

face, and relatively constant correlation and covariance matrices.

With wide-sense stationarity established, ergodicity was then assessed. A prac-

tical way of assessing whether or not a process is ergodic is to see if a single realiza-

tion of the process replicates the statistics of an ensemble. Figure 20 demonstrates

this comparison for the B∗e example processes by plotting the two-dimensional

(possible for the ensemble due to the stationarity assertion justified above) au-

tocorrelations together. Note the general, however imperfect, agreement between

the two.

This agreement between the autocorrelation calculated from the ensemble and

that calculated from the single realization can be improved by lengthening the du-

ration of the single realization. In fact, ergodicity is only possible theoretically

for an infinitely long, strict-sense stationary process [116, pg. 144]. This is obvi-

ously impossible in the real world, but it informs why a longer single realization

strengthens the agreement between the two autocorrelation functions. Figure 21
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(a) NLS = 540 (b) NLS = 360

Figure 19. Three-Dimensional Correlation Surface of Estimated B∗e Time Series, Rotated

demonstrates this effect by depicting ensembles calculated from within the inter-

val of 1 Jun–31 Aug 2001 against single realizations calculated over that entire time

period (which are much longer than the 7-day single realizations used above).

Assessing the ergodicity of the B∗e time series, as much as practical, was key

because a single realization is the type of data that is readily calculable from ob-

servational data, particularly on-board a satellite. Single realizations of B∗ values

were also used to characterize the random processes used in the stochastic propa-

gation methods of the next chapter.

The results detailed above demonstrate that there was evidence for justifying

an ergodic assumption for the B∗e random processes, and that longer single real-

izations make this assumption more robust. However, the 7-day long realizations

did show general agreement with the ensemble case, are likely more applicable to

potential real-world implementations of the methods here discussed, and are more

computationally efficient. Therefore, 7-day long realizations were used through-
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(b) NLS = 360

Figure 20. Two-Dimensional Autocorrelation Function of Estimated B∗e Time Series, Ensemble
and Single Realization

out the remainder of this research.

There is another way to consider the ensembles of B∗e being here discussed. Up

to now the ensembles have been considered as time series—as random processes.

They can instead be considered as a collection of random variables where each

random variable consists of the estimated values of B∗e at a specific ∆t. In this case,

each random variable consists of 300 samples and can be subjected to probabilistic

tests to determine its nature, specifically whether or not it is a Gaussian random

variable to assess the applicability of Gaussian process models.

Figure 22 is a quantile-quantile plot of a B∗e random variable against an ap-

propriately scaled and shifted normal distribution. If B∗e ensembles were exactly

distributed as a Gaussian random variable, the blue markers would perfectly align

with the red reference line. Such perfect agreement is not seen in Figure 22, how-

ever the fit is quite close, particularly in the middle quantiles (most of the deviation

appears to be in the tails of the distribution). Figure 23 shows the ensemble of nor-
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Figure 21. Two-Dimensional Autocorrelation Function of Estimated B∗e Time Series, Ensemble
and Long Single Realization

malized B∗e random variables’ cumulative density functions (CDFs) plotted against

the standard normal distribution. Once again the alignment is not perfect, how-

ever in both the quantile-quantile plot and CDF comparisons the B∗e ensembles

appear to be roughly normal. While certainly subjective, this analysis provides

some justification for assuming that B∗ random variables are Gaussian, and that

assumption was made for this research.

The final two steps required in this analysis of B∗ as a random process were pa-

rameterization via Equations 50, 42, and 45 and the generation of realizations via

Equation 51. A demonstration of the success of both techniques, applied to the ran-

dom process calculated above, is shown in Figure 24 which depicts the calculated

empirical autocorrelation of the B∗e time series along with the parameterization

and the autocorrelation of a generated ensemble. The relatively close agreement,

particularly through the first cycle either side of τ = 0 demonstrates that the B∗e

time series can be approximated as a SOGM random process and that samples of a
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(b) NLS = 360

Figure 22. Quantile-Quantile Plots of B∗e Random Variables and a Scaled and Shifted Normal
Distribution

like random process can be generated for use in later Monte Carlo analysis. Also

note that the agreement between the mathematical SOGM model and the empiri-

cal autocorrelation is better for NLS = 360 than for NLS = 540. It was noted that, in

general, as NLS increases the autocorrelation functions resemble the SOGM model

less and less, indicating that for larger choices of NLS an alternative random pro-

cess model may be required. However, at NLS = 540 (as used in this research),

the SOGM model remained useful and capable of producing the results of the next

chapter.

Finally, it should be re-emphasized that applying any mathematical process

model to empirical data is an approximation. Noting that, the SOGM process

model used here is a fit for the portion of the B∗e autocorrelation functions which

correspond to the time window of available estimation data, and was chosen as the

best option available for parameterizing and generating realizations of the process

for the stochastic prediction methods discussed in the next chapter.
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Figure 23. Cumulative Distribution Functions of Normalized B∗e Random Variables and the
Standard Normal Distribution

5.3 Conclusions

The results above demonstrate, chiefly, that time series of B∗ estimates can be

modeled and parameterized as a random process. While the analysis is not with-

out the usual caveats and assumptions that accompany the analysis of empirical

data, the B∗e random processes analyzed were found to be both stationary and

ergodic. Additionally, the B∗e ensembles were found to be roughly distributed as

Gaussian random variables. Coupled with a Markov assumption and the noted os-

cillations in calculated autocorrelation functions, this Gaussian property suggested

modeling the B∗e random processes as second-order Gauss-Markov processes.

Results further demonstrated that the parameters of the modeled random pro-

cess could be used to generate realizations of B∗e random processes which mimic

their empirical counterparts. It was therefore shown to be possible that, from ob-

servational data only, the B∗e random process can be calculated empirically, param-

eterized, and generated, confirming Research Hypothesis 2.
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Figure 24. Autocorrelation Functions of Empirical, Parameterized, and Generated B∗e Random
Processes
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VI. Stochastic Orbit Prediction

The culminating hypothesis of this research is that modeling the prediction un-

certainty caused by air drag using B∗ as the only random air drag variable can

serve as the basis of a stochastic prediction method, and that the method will be

capable of realistically characterizing its modeling uncertainty without restricting

the choice of atmospheric density model or the dynamics formulation (Research

Hypothesis 3).

This chapter presents research addressing this hypothesis using new develop-

ments and the results of the previous two chapters. The next section discusses the

stochastic prediction of LEO satellite orbits using Monte Carlo (MC) simulation,

and the following section presents the results of using Unscented Transform pre-

diction (essentially the propagate steps of an Unscented Kalman Filter (UKF)) to

achieve a stochastic prediction model capable of realistic uncertainty characteriza-

tions. These two sections represent the accomplishment of Research Tasks 4 and 5.

The chapter concludes with brief sections on other potential methods of stochastic

propagation and the potential applicability of this paradigm to on-board stochastic

prediction.

6.1 Monte Carlo Simulation

The principal utility of MC simulation is that fully non-linear, stochastic dy-

namics (such as those under consideration in this research) can be effectively mod-

eled. Each realization of a MC simulation ensemble is a single realization of the

system’s stochastic dynamics, and the distribution formed from a collection of

NMC realizations approaches the true distribution as NMC becomes large via the

Law of Large Numbers [115, pg. 233]. An additional benefit is that no simplifying
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assumptions need to be applied to the dynamical system to use MC simulation—

as longs as the system can be dynamically propagated and any embedded random

processes can be generated, MC simulation can be used. Specifically, MC simula-

tion was used in this research for two purposes.

The first was to validate the stochastic representation of B∗ and B∗e discussed

in the preceding chapter—namely to verify that the uncertainty of stochastic pre-

dictions made using the SOGM characterization of B∗ agreed with the empirical

uncertainty for a similar prediction model. The comparison of empirical uncer-

tainty to uncertainty characterizations derived from MC simulation isn’t a perfect

one, which will be discussed later in further detail, however it was useful evidence

that the MC model’s uncertainty (and therefore the underlying stochastics of the

B∗e random process) coincided with the best available depiction of the prediction

model’s true uncertainty.

The second purpose was that once the MC simulation had been validated via

comparison to the empirical results, MC simulation then served as a validation

model for other stochastic propagation methods. This is leveraged later in this

chapter when MC simulation is compared to the results of stochastic prediction

via the Unscented Transform. Note, however, that MC is not generally suitable

as a stochastic prediction method itself for the purposes of this research, as the

desire is for a stochastic prediction method that does not require the large number

of realizations that MC simulation does, chiefly for reasons of speed.

6.1.1 Methodology

Monte Carlo simulation began with a mean initial conditions vector X(t0) and

the associated uncertainty of those initial conditions, in this case a covariance ma-

trix PX(t0) as the initial uncertainty distribution was assumed to be Gaussian as
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discussed previously. Then, for each realization i ∈ {1, . . . , NMC} perturbed initial

conditions were obtained via random sampling of a multi-variate normal distribu-

tion using Equation 56

Xi(t0) = X(t0) + mvn (0, PX(t0)) = X(t0) + Xpert,i (56)

where mvn (m, P) is a function which draws a single NMC × 1 sample vector from

the multi-variate normal distribution with mean vector m and covariance matrix

P (the definition of the intermediate perturbation vector Xpert,i = mvn (0, PX(t0))

will be useful below). As NMC becomes large, the MC ensemble’s initial conditions

will tend to be distributed according to the supplied initial mean and covariance,

per Equation 57.

X(t0) ∼ N(X(t0), PX(t0)) (57)

Each realization’s initial conditions were then propagated through the system’s

full, non-linear, stochastic dynamics (discussed below), and the resultant ensemble

of final points was then a random variable whose distribution converged to the

model’s true prediction uncertainty distribution (if NMC is large).

Obtaining estimates of the initial mean position and velocity and their associ-

ated covariance matrix for MC simulation required a combination of least squares

estimation and B∗e time series analyses as described in the previous chapter. Least-

squares estimation was performed for each MC realization using the deterministic

dynamics models detailed in Section 3.1, which yielded estimates of the mean po-

sition and velocity and their covariance. However, instead of the usual estimate

covariance calculated using the algorithm in Appendix B, the position and veloc-

ity covariance returned by the least squares algorithm was modified for MC to be

the covariance of the position and velocity residuals of the final propagation run
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within the least squares algorithm.

The conceptual reason for doing this is that the initial covariance of the MC en-

semble should represent the uncertainty of the MC initial conditions with respect

to the “truth” because this is the best available representation of initial prediction

uncertainty, and in this case the “truth” is represented by the observational data.

Since the residuals calculated within the least squares algorithm are an ensemble

of error vectors between the model’s expected state and the state given by obser-

vational data, it was assumed that the distribution of these residuals was a decent

approximation of the distribution of the true error at t0, and hence of PX(t0). How-

ever, the covariance normally returned by the least squares algorithm as described

in Appendix B is not at all dependent on the residuals [2, pg. 73], and thus the

covariance of the residuals was used instead. Practically, the original covariance

returned by the original least squares algorithm turned out to be orders of magni-

tude too small, and using the covariance of the residuals resulted in much closer

agreement between the initial MC covariance and the initial empirical covariance

calculated using the methodology of Chapter IV. Using the covariance of the resid-

uals in this manner is a simplified solution to the notoriously difficult problem of

estimating true covariance matrices from observational data, and Vanli and Taylor

[152] note that this method generally underestimates the covariances. While there

is a wide body of research into alternative methods of estimating this type of co-

variance, a survey of which is provided by Dunı́k et al. [153], the method of using

the covariance of the residuals was used in this research.

The coordinate frame in which the residuals were resolved was critical to the

effectiveness of this procedure. Because the residuals were calculated at various

points in the satellite’s orbit during least squares estimation, leaving the residu-

als in the inertial {x, y, z} representation made little sense as these directions are
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not consistent throughout the least squares algorithm. Instead, residuals were re-

solved in the RTN coordinate frame (which is satellite-centric), and the resulting

covariance was therefore also based in RTN coordinates.

The initial mean value of the ballistic coefficient and its variance were obtained

for each MC simulation using the random process analysis method described in

the previous chapter. This random process analysis also yielded the parameters of

the B∗e random process necessary to simulation realizations for use in the Monte

Carlo simulation (in Monte Carlo simulation the deterministic B∗ of the SP A and

SP B models is replaced by simulated realizations of B∗ random processes, which

is discussed in more detail below).

Ultimately, the state of the MC initial conditions after the least squares estima-

tion is given by

X(t0) =


rest

vest

B∗

 (58)

PX(t0) =

Presid,RTN 0 (6× 1)

0 (1× 6) σ2
B∗

 (59)

where rest and vest are the position and velocity estimates returned by least squares

in inertial coordinates, Presid,RTN is the 6× 6 covariance matrix of the least squares

residuals resolved in the RTN frame, and B∗ and σ2
B∗ are the mean and variance of

the calculated B∗e SOGM process. Note that this method necessarily removes any

statistical dependence between B∗ and the position and velocity (the final row and

column of PX(t0) are zeros except for the diagonal element) because the residuals

contain position and velocity information only. The B∗e random process analysis of

the previous chapter was used to obtain the values relating to B∗, meaning that a
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B∗ time series was calculated and analyzed as a SOGM RP. Then B∗ was set to the

mean of the calculated B∗ time series and σ2
B∗ was set to the variance of the SOGM

process (which coincides with the variance of the time series).

Note that because the residuals covariance matrices were in the RTN frame, an

intermediate step was required when computing Xpert,i in Equation 56. The per-

turbing vector was first sampled using the covariance matrix in RTN coordinates,

and the position and velocity components were then converted back to inertial

coordinates before being applied to the mean. Since the construction of PX(t0)

removed any cross-correlation between B∗ and the position or velocity, this proce-

dure did not affect the B∗ perturbation, which was carried through unchanged.

Additionally, note that full-state (position and velocity) measurements were

used for least squares estimation in this research because the data was available,

both in the post-processed CHAMP and GRACE-A/B science orbits and in the SOS

data. Position-only measurements (or another type of measurement altogether,

such as radar or optical) could also readily be used by modifying the H matrix in

Equation 117 in Appendix B. Throughout this research results were found to be

much more sensitive to changes in positional data than to velocity, which implies

that the velocity data did not contribute much to the least squares estimates and

gives confidence that the methods herein would remain effective if position-only

data was used.

The dynamics for MC simulation were the same as the deterministic dynam-

ics described in Section 3.1, except that for each MC realization a SOGM process

realization based on the parameterized B∗e analysis and with an initial B∗0 value as

perturbed from the random sampling described above was propagated in parallel

to the MC realization. The SOGM process was propagated using a fourth-order

Runge-Kutta propagator and Equation 51, where w was sampled from the stan-
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dard normal distribution and scaled by dividing by the square root of the SOGM

∆t. The B∗ value in use by the MC was updated at each SOGM time step to reflect

to the current value of the SOGM realization. Trial and error revealed that a SOGM

time step of ∆tSOGM = 5 min was quite effective for this method of generating re-

alizations.

Each realization of the MC simulation was propagated from its unique per-

turbed initial condition using this hybrid method. The benefit of applying the B∗e

SOGM in parallel with an otherwise deterministic prediction was that the MC sim-

ulation could utilize the exact same dynamics formulation (and even code) as the

deterministic propagation used for empirical analysis. This was both convenient

and ensured comparability of empirical and MC results, at least from a dynam-

ics perspective. A visual representation of this MC simulation method is given in

Figure 25.
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MC
Ensemble

at t0

Prediction
Model

SOGM RP
Propagation

MC
Ensemble

at t f

rest, vest, Presid

B∗, σ2
B∗ B∗ Values B∗ Updates

Figure 25. Monte Carlo Simulation Process Overview

6.1.2 Results

The first purpose of MC simulation stated above was to verify that the uncer-

tainty characterizations of a stochastic prediction founded on the SOGM charac-

terization of B∗ agreed with the empirically calculated covariance matrices. Before

discussing the results of this comparison, it is important to note that comparisons

between empirical covariance matrices calculated using the method described in
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Chapter IV and the MC simulation described above are not direct comparisons, as

the two methods are fundamentally different. The empirical covariance analyses

generated ensembles of prediction errors by randomly sampling initial times from

a time interval and performing a single prediction for each one. Therefore, the

empirical ensembles are ensembles of unique predictions and the covariance ma-

trices calculated from them represent the empirical modeling uncertainty in and

around that time interval. In contrast, the ensembles generated by MC simulation

represent a large number of realizations of the same prediction from a single initial

time, and the resultant mean of the MC ensemble is akin to what would be a single

realization within the empirical ensemble. The covariance of the MC simulation (a

single prediction) is not directly comparable to the empirical covariance which is

based on many predictions—they are different things.

However, because the MC simulations were calculated with the same predic-

tion models as the empirical covariance analyses (SP A and SP B) and the empirical

prediction covariance matrices represent the models’ prediction uncertainty, the

resultant MC covariance matrices should be close to the empirical results because

the MC results converge to the true model uncertainty for large NMC. In other

words, general agreement between the results of the empirical covariance analy-

ses and MC simulation is expected (provided the results are for the same scenario

and prediction model)—but this is not because the two types of results represent

precisely the same thing.

Comparison between covariance matrices obtained via empirical analysis (EA)

and MC simulation results for two example scenarios from Table 7 is first provided

in Figure 26, which shows the growth of the in-track standard deviation (σ22(∆t) =

+
√

P22(∆t)). Standard deviations are shown in Figure 26 instead of variances to

provide unit agreement between the various types of figures in this chapter, and
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also because the curve fit analysis of Chapter IV (which was carried out in terms

of the variance) was not necessary here.

Note the close agreement between the growth of the in-track standard deviation

for EA and MC in Figure 26. This agreement indicates that the MC simulation as

formulated per the preceding section results in realistic uncertainty in the in-track

direction when compared to the empirical results.
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Figure 26. In-track Uncertainty Growth for Empirical Analysis and Monte Carlo Simulation

The growth of the in-track uncertainty only considers one direction in the RTN

coordinate frame, of course, and Figure 27 shows a more complete comparison by

depicting the final ensembles and 1σ Gaussian error ellipses for the same example

EA and MC scenarios for all two-dimensional combinations of the RTN principal

directions.

The figures demonstrate that MC simulation results agree quite well with the

EA results in both the radial and in-track directions, however there is an obvious

disparity between the two in the normal direction. In the normal direction the MC

uncertainty is at least an order of magnitude smaller than the EA results.
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Figure 27. Empirical Analysis and Monte Carlo Simulation Prediction Error Ensembles at t f

One possible reason for this disparity is related to the fundamental difference

between EA and MC discussed above and the fact that all satellites for which the

EA analysis is available inhabited highly inclined orbits. Recalling that empirical

analyses were computed from ensembles of predictions from within a time inter-

val of an entire month (see Table 7), recognize that the Moon will have completed

roughly an entire orbit around the Earth in that time span. Therefore, the pre-

dictions which make up the EA ensemble commit unique errors by omitting the

Moon’s gravitation because the Moon is in a variety of positions. Contrast this

with the MC analyses which represent a single prediction such that every realiza-

tion within the MC ensemble commits essentially the same error by ignoring the

Moon’s gravitation.
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For the purpose of demonstration, consider the simplified case of a circular,

polar satellite orbit around a spherical Earth with the Moon’s orbit co-planar with

the Earth’s equator, as depicted in Figure 28 where rmoon is the vector from the

Earth to the Moon, and {R̂A, T̂A, N̂A} and {R̂B, T̂B, N̂B} are RTN position vectors

to example satellite locations A and B. Notice that in cases where the satellite’s

orbit plane is more perpendicular to rmoon, the normal direction of the RTN frame

doesn’t change its orientation with respect to rmoon much as the satellite completes

its orbit. Also note that in this perpendicular case the radial and in-track directions

are perpendicular to rmoon. These observations imply that when the orbit plane

is more perpendicular to the moon vector the effect of the Moon’s gravity is pre-

dominantly in the normal direction while its effect on the radial and transverse

directions tends to zero. In the parallel case, however, it is the normal direction for

which the effect of the Moon’s gravity tends to zero, and the radial and transverse

directions will notice oscillatory effects of the Moon’s gravity as the satellite com-

pletes each orbit. This implies that in the parallel case the effect of the moon tends

to cancel out in the radial and transverse direction over many orbits.

Considering both cases together, the normal direction is the direction of the

RTN frame which experiences the most bias due to the effect of the Moon’s grav-

ity, meaning that as the orbit plane becomes more perpendicular to the moon di-

rection the gravitational effect in the normal direction doesn’t tend to cancel out

due to oscillations or tend to zero. This demonstration is an oversimplification,

as of course the angle between the orbit plane and the moon direction “rotates”

in a sense through all available angles, however this illustrates a potential reason

why the uncertainty of the EA analyses is so much greater in the normal direction

specifically than the MC simulations.

The reasoning above implies that the increased uncertainty shown in the nor-
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Figure 28. Simplified Demonstration of Orbit Plane and Moon Vector Alignments

mal direction for EA may be an artifact of the method by which EA covariance ma-

trices are calculated. The empirical analyses use ensembles with a variety of initial

times as that is the only way of obtaining sufficient numbers of different propa-

gations to enable calculation of a covariance matrix, however this method means

that each prediction takes place in a unique dynamical environment. This is not

true in the case of MC simulation. Controlling for this change in environment can

be accomplished by including the effect of lunar gravity within the SP dynamics

models (see Appendix C for details on how third-body gravitational perturbations

were incorporated into the dynamics formulated in Section 3.1).

The effect of including lunar gravity is demonstrated in Figure 29a. Note that

the uncertainty of the EA results in the normal direction was nearly halved by

controlling for lunar gravity, indicating that the effect described above does cause

some erroneous uncertainty in the normal direction if lunar gravity is not ac-

counted for in the dynamics model. Incorporating solar gravity into the dynamics

model along with lunar gravity results in an additional decrease in EA normal
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direction uncertainty, as shown in Figure 29b, for the same reasons as discussed

above.

Final values for the radial, transverse, and normal 1σ uncertainty of the three

configurations are Tabulated in Table 9. Note that including third body gravity

perturbations has no perceptible effect on the MC analysis because every ensem-

ble of the MC analysis experiences essentially the same dynamical environment

with respect to the location of the moon and sun across the realizations—the dif-

ferences between the MC realizations are tiny compared to the movement of the

moon and sun throughout a time span of empirical analysis. Finally, these results

demonstrate that the effect of third body gravity perturbations effect the normal

direction for EA almost exclusively, as asserted above.
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Figure 29. Effect of Lunar and Solar Gravity on Empirical Analysis and Monte Carlo Results at
t f , CHAMP High Solar
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Table 9. Uncertainty of Empirical Analysis and Monte Carlo Predictions for Various Third-Body
Gravitational Perturbations

Gravity σR (m) σT (m) σN (m)
Modeled EA MC EA MC EA MC

Earth Only 53.8 59.6 8964 8743 98.6 3.12
Earth, Moon 53.6 59.6 8944 8743 56.0 3.12
Earth, Moon, Sun 53.5 59.4 8944 8743 29.3 3.12

Though controlling for the effect of third body gravity perturbations does help,

the disparity in the normal direction between EA and MC results remains evi-

dent, indicating that there are additional error artifacts caused by the method of

EA analysis or that there is some physical phenomenon at work in the normal

direction which is ignored by the SP models (solar radiation pressure or an ef-

fect related to the relative velocity of the satellite with respect to the atmosphere,

potentially). Importantly, the uncertainty in the normal direction is generally the

smallest component, and the in-track direction is of more concern to this research

as it is the direction impacted most by air drag and the motivation of this research.

This agreement between MC simulation results and empirical results is a signifi-

cant indicator of the uncertainty realism achieved by the stochastic formulation.

While the above results demonstrate the agreement of the MC and EA models

in the radial and, more importantly, the in-track direction—it does not confirm

the efficacy of the B∗e random process model. To do that, a comparison was made

between the predictions of MC simulation both with and without the effects of the

B∗e random process to ensure that the resultant covariance matrices are not simply

the result of high-fidelity propagation of the initial uncertainty.

The results of this comparison are shown in Figures 30 and 31 for a single ex-

ample scenario (CHAMP High Solar) and tabulated for all scenarios in Table 10.

Figure 30a shows the covariance growth of MC simulation when initial values for

B∗ were perturbed using the variance of the B∗e random process, but the random
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process was not applied dynamically (
.

B∗ = 0 as in the deterministic case and no

SOGM RP was used or propagated). Figure 30b demonstrates the fully stochas-

tic case where initial values were perturbed and full realizations of the B∗e random

process were generated for MC simulation as in the above discussion. Figure 30c

demonstrates the results of MC simulation if no B∗ time series were available and

initial B∗ values were perturbed using the covariance matrix returned by the nomi-

nal least squares algorithm during the estimation of initial conditions. As an aside,

note that these covariance matrices exhibit the same behaviors as those for the EA

analysis—an overwhelming predominance of uncertainty growth occurs in the in-

track direction. Lastly, the B∗ ensembles generated for the two scenarios are in-

cluded for demonstration as Figure 31, to illustrate the difference between the be-

havior of B∗ when it was modeled deterministically (Ḃ∗ = 0) versus as a random

process.

There are two key takeaways from Figure 30. First, calculating a time-series of

B∗ estimates is absolutely vital for the success of MC simulation, as the variance

of that time series is necessary for perturbing the Monte Carlo initial conditions—

simply using the covariance of the least squares estimate for B∗ results in in-track

uncertainty that is underestimated by at least two orders of magnitude. Second,

the application of the dynamical SOGM random process has a significant effect on

the resulting prediction, contributing approximately 15–20% of the in-track uncer-

tainty as tabulated in Table 10. The table lists the final in-track variance P22(t f ) for

all scenarios along with the percentage difference between the RP on and RP off

cases. The significance of this is that applying the stochastics of B∗ to the prediction

model dynamically is key to achieving uncertainty realism.

Altogether, these results indicate that the uncertainty characterization provided

by MC simulation which uses the B∗ random process analysis as its stochastic
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Figure 30. Prediction Covariance Matrices for Three Configurations of the B∗e Random Process,
CHAMP High Solar

foundation agrees with empirical prediction uncertainty characterizations for the

same model. In other words, the MC simulation achieves uncertainty realism us-

ing the best method of comparison available. This indicates that the paradigm

investigated by this research (using B∗ as the only random variable in a stochas-
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Figure 31. B∗e (t) Ensembles for Three Configurations of the B∗e Random Process, CHAMP High
Solar

tic orbit predictor) is viable and confirms a key research hypothesis—that model-

ing B∗ as a random process results in a stochastic orbit prediction method which

achieves uncertainty realism.

Finally, note that the accuracy performance of the stochastic model obtained
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Table 10. Comparison of B∗e Random Process Implementations

P22(t f ) (km2) Percent
Scenario No RP RP Difference (%)

CHAMP High Solar 58.5 73.4 20.3
CHAMP Low Solar 133 164 18.9
GRACE-A High Solar 92.3 111 16.8
GRACE-A Low Solar 35.6 42.6 16.4
GRACE-B High Solar 92.1 111 17.0
GRACE-B Low Solar 35.7 42.6 16.2
SOS Low Solar 356 422 15.6

via MC simulation is very similar to the accuracy of the deterministic model used

for empirical covariance analysis. To demonstrate this, the average magnitude of

the position and velocity error of the CHAMP High Solar is scenario is shown in

Figure 32a for MC simulation and in Figure 32b for empirical analysis. This com-

parison demonstrates that adding the B∗ stochastics to the model formulation does

not significantly impact prediction accuracy. Therefore, the MC-based stochastic

prediction not only achieves uncertainty realism, but also maintains prediction ac-

curacy of the underlying dynamics model.
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Figure 32. Average Magnitude of Position r and Velocity v Errors, CHAMP High Solar, SP A
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6.2 Stochastic Prediction Via the Unscented Transform

While the Monte Carlo simulation described in the preceding section is a

stochastic prediction method utilizing the B∗e SOGM formulation, the aim of this

research is to produce such a model that does not require the large number of

realizations required for MC simulation. This stochastic prediction model must

also produce realistic characterizations of its own prediction uncertainty, which is

the main thrust of this research.

This section details the development and performance of such a stochastic

prediction model using the Unscented Transform (UT)—essentially the propagate

steps of an Unscented Kalman Filter. The benefits of this method are that it is

generally faster than MC simulation, does not require evaluation of the system

Jacobian (the A matrix), and is generally capable of performing predictions for

non-linear dynamics such as those of an orbiting satellite. The main drawback

when compared with MC simulation is the necessity of assuming all random

variables are Gaussian, but that was an assumption already made with regard to

this research and ways of avoiding it are discussed later in the chapter.

6.2.1 Methodology

The premise of using the Unscented Transform (UT) for the prediction of non-

linear systems, as stated eloquently by Julier et al. in their seminal paper [71], is

that “it should be easier to approximate a Gaussian distribution than it is to ap-

proximate an arbitrary nonlinear function”. In the case of this research, the distri-

bution of the model prediction error was assumed to be Gaussian, therefore rather

than trying to approximate the satellite’s very non-linear dynamics (as must be

done in an Extended Kalman Filter, for example) the method used the non-linear

dynamics and relied on the Unscented Transform (UT) to obtain the statistics of
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the Gaussian distribution after propagation through the non-linear dynamics.

In a stochastic prediction model, the system state vector at some time step k is

actually a random variable X(k) (assumed to be Gaussian) with mean X(k) and

covariance PX(k). The propagation of this initial random variable through the

non-linear satellite dynamics to the next time-step k + 1 represents a non-linear

transformation to the posterior random variable X(k + 1) with mean X(k + 1) and

covariance PX(k + 1). To utilize the Unscented Transform (UT) and determine the

statistics of the distribution at k + 1, a selected set χ of 2n + 1 points was con-

structed that had the same mean and covariance as X(k), where n is the number

of states in the system (7 in this case). (Note that this development used a discrete

time formulation, hence time step indices like k rather than the continuous time

variable t. Continuous time formulations are also available, such as that of Särkkä

[154], however a discrete formulation was used here for reasons discussed below.)

The samples that make up this set χ are usually called “sigma points”, and

were selected according to Equations 60–64 [72]

χ0(k) = X(k) (60)

χi(k) = X(k) +

(√
(n + κ)PX(k)

)
i

(61)

χi+n(k) = X(k)−
(√

(n + κ)PX(k)

)
i

(62)

W0 =
κ

n + κ
(63)

Wi = Wi+n =
1

2(n + κ)
(64)

for i = {1, . . . , n} and where κ is a tuning parameter which controls the spread

of the sigma points,
√

(n + κ)PX(k)i is the i-th column of the covariance matrix

multiplied element-wise by
√

n + κ, and each W represents the weight of each
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respective sigma point which was used in weighted averaging schemes presented

below. This method of selecting sigma points ensured that the set χ had the same

mean, covariance, and odd-number higher moments as the random variable X(k)

[72] and represented the mean and covariance “accurately to the 3rd order (Taylor

series expansion) for any nonlinearity” [155].

After propagation through the system’s dynamics, the mean and covariance

of the transformed random variable X(k + 1) were nominally obtained via the

weighted sums in Equations 65 and 66.

X(k + 1) =
2n

∑
i=0

Wi χi(k + 1) (65)

PX(k + 1) =
2n

∑
i=0

Wi
[(

χi(k + 1)− X(k + 1)
) (

χi(k + 1)− X(k + 1)
)]

(66)

However, one common drawback of UKFs and prediction using the UT is nu-

merical instability, particularly the possibility of the covariance matrix becoming

non-positive, semidefinite at some point during the prediction. This is a com-

mon issue when approximating higher orders of probability distributions [72], and

there are two main ways of remediating this. First, Julier notes that replacing the

mean X(k + 1) in Equation 66 with χ0 guarantees a positive definite covariance

matrix [72]. Additionally, “square-root” versions of the UKF exist in which the

square-root of the covariance matrix is only computed once at the initial step, not

at every time step, therefore removing the necessity of a positive-definite covari-

ance matrix [156]. The first method was used in this research, and the mean and

covariance of the transformed random variable X(k + 1) were actually obtained
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via Equations 67 and 68.

X(k + 1) =
2n

∑
i=0

Wi χi(k + 1) (67)

PX(k + 1) =
2n

∑
i=0

Wi [(χi(k + 1)− χ0(k + 1)) (χi(k + 1)− χ0(k + 1))] (68)

To calculate each orbit prediction using the UT method, a B∗ random process

was calculated and parameterized and the initial mean and covariance were ob-

tained using Equations 58 and 59. Then, initial sigma points χ(0) and constant

weights Wi were calculated from the initial mean and covariance. Example ini-

tial sigma points are shown in Figure 33, which depicts the MC analysis initial

ensemble and a 1σ Gaussian error ellipse, initial sigma points and a 1σ Gaussian

error ellipse, and a 1σ Gaussian error ellipse constructed from the initial covari-

ance matrix for the GRACE-A Low Solar scenario as an example (other scenarios

had similar results). Note that both the MC and UKF 1σ ellipses match that of the

initial covariance so well that they overlap almost perfectly, indicating that both

stochastic models approximated the estimated initial uncertainty very well. The

spread of the sigma points in the figure was controlled by the tuning parameter,

which for this research was set to κ = −6. As n = 7 in this case, this means that

the sigma points generated by Equations 61 and 62 were scaled by
√

n + κ = 1

standard deviation in each “direction”. Choosing this value for κ was done via

trial and error, seeking a value which produced reliable results without causing

stability issues.

Each sigma point χi was then propagated through the system’s dynamics,

yielding the set of transformed sigma points at the next time-step χ(k + 1). This

propagation was accomplished by numerically integrating each sigma point from

the time at time step k to the time at time step k + 1, using the deterministic

116



-2 -1 0 1 2

Radial Error (km)#10!3

-4

-2

0

2

4

In
-T
ra
ck
E
rr
or
(k
m
)

#10!3

MC Ensemble
MC 1< Ellipse
UKF ' Pts
UKF 1< Ellipse
P0 1< Ellipse

-5 0 5

Normal Error (km)#10!3

-4

-2

0

2

4

In
-t
ra
ck
E
rr
or
(k
m
)

#10!3

-2 -1 0 1 2

Radial Error (km)#10!3

-6

-4

-2

0

2

4

6

N
o
rm
al
E
rr
or
(k
m
)

#10!3

Figure 33. Initial Monte Carlo Ensemble and Unscented Transform Sigma Points Versus Initial
Covariance, GRACE-A Low Solar

dynamics formulation developed in Chapter III (how this UT became stochastic is

addressed below). High-fidelity numerical integration was used to avoid potential

dynamical discretization errors.

Once the new sigma points χ(k + 1) were available, the mean X(k + 1) and

covariance PX(k + 1) were calculated per Equations 67 and 68. Then the effect of

the B∗ SOGM RP was added via a discretized process noise matrix Qd, which was

calculated using the parameters of the SOGM, the SOGM shaping filter in Equa-

tion 51, and a numerical calculation method developed by Van Loan [157][158,

pg. 104]. The benefit of this method of incorporating the RP is that because the

parameters of the SOGM shaping filter are time-invariant the resultant discretized

noise Qd is constant for equally spaced time steps and only needed to be computed

once prior to executing the prediction. The incorporation of this process noise was

accomplished simply by adding the value of Qd to the last diagonal element of

PX(k + 1), representing the additional uncertainty of B∗ due to the RP.

While this method of incorporating the uncertainty caused by the B∗ RP was a

simplification in some sense, it proved sufficient to produce the results of the next

section. A model utilizing a fully stochastic dynamics formulation wherein the two
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states of the B∗e random process are elements of the state matrix may be an avenue

of future research, however. Additionally, a later discussion will reveal that other

stochastic propagation methods may better serve the cause of uncertainty realism,

so this simplified yet effective method is presented here as demonstration of the

viability of the overall research paradigm—that modeling B∗ as a random process

informed by observational data is an effective method of achieving uncertainty

realism. The overall UT prediction algorithm is given in Algorithm 1, where Nk is

the number of time steps to propagate.

Algorithm 1: Stochastic Prediction Using the Unscented Transform

Data: Initial mean X(k = 0), initial covariance PX(k = 0), tuning
parameter κ, and B∗ SOGM parameters

Result: Mean and covariance of posterior distribution at discrete time steps
Calculate Ws and Qd
for k=0 to Nk do

Calculate χ(k) using X(k) and PX(k)
Propagate χ(k)→ χ(k + 1)
Calculate and store mean X(k + 1)
Calculate and store covariance PX(k + 1)
Add Qd to the last diagonal element (B∗) of PX(k + 1)

end
Write outputs

6.2.2 Results

Stochastic predictions using the UT prediction method described in the pre-

ceding section were performed for all scenarios listed in Table 7. Example results

showing the full covariance matrix growth produced by MC analysis and UT pre-

diction for the CHAMP High Solar scenario are shown in Figure 34. Note that

almost all uncertainty growth takes place in the in-track direction (P22) for both

MC and UT prediction, and also that the two results are nearly identical.

As in the MC simulation case in the preceding section, however, viewing re-
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Figure 34. Monte Carlo and Unscented Transform Prediction Covariance Growth, CHAMP High
Solar

sults in this format leaves out some information. For that reason results of the

UT predictions and MC simulations are shown in Figures 35–41, wherein distri-

bution point clouds (representing ensembles of realizations in the MC case and

sigma points in the UT case) and 1σ Gaussian error ellipses are plotted at the final

time for all two-dimensional combinations of the RTN principal directions for all

scenarios and both SP prediction models.

Note the very close agreement between the results of MC simulation and UT

prediction, which implies two things. Chiefly, the agreement validates the UT pre-

diction scheme in terms of its uncertainty realism, as the MC model was already

validated against the empirical results in a preceding section. Secondly, the agree-

ment reaffirms the validity of letting B∗ be the representative random variable

within the air drag equation, as two stochastic prediction methods (MC simula-

tion and UT prediction) which achieve uncertainty realism were developed using

this paradigm.

The foundation of this approach is, of course, the calculation of the B∗ time se-
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Figure 35. Monte Carlo and Unscented Transform Prediction Final Covariance, CHAMP Low
Solar

ries from observational data using estimation theory—a process which allows B∗

to account for the overall prediction uncertainty of the underlying model. In this

way B∗ and the resulting time series contains more information than the physical

definition of B∗ in Equation 2, meaning B∗ also acts as a correction variable which

adjusts the model to the observational data. That this is true is also demonstrated

quite clearly by the fact that the parameters of the B∗ random process are very dif-

ferent depending on which SP model is being used (generally differing by an order

of magnitude or more), which reflects the paradigm’s ability to adapt to different

atmospheric models. For example, reference the tabulated values of the B∗ time

series’ mean and variance for the various scenarios for the two different SP models

in Table 11. If B∗ were still acting as simply the physical quantity represented by
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Figure 36. Monte Carlo and Unscented Transform Prediction Final Covariance, CHAMP High
Solar

B∗ = (1/2)CD A/m as in Equation 2, then this would not be observed. Instead, it

is demonstrated that B∗ becomes the desired correction variable and absorbs the

overall modeling uncertainty when modeled as a random variable and estimated

from observational data. Note that this means the values in Table 11 no longer

represent the physical definition of B∗, despite the units which are shown for con-

sistency with Equation 2. (This also explains why B∗ is sometimes less than zero

when estimated or propagated as a SOGM RP, even though it physically should

never be so.)

Additionally, note the very close agreement between UT results computed with

the SP A prediction model and those computed with SP B. Again the results are

nearly identical, which indicates that the UT stochastic prediction method can pro-
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Figure 37. Monte Carlo and Unscented Transform Prediction Final Covariance, GRACE-A Low
Solar

Table 11. Mean and Variance of Calculated B∗ Time Series for Each SP Prediction Model

Solar B∗ (m2/kg) σ2
B∗ (m4/kg2)

Satellite Level SP A SP B SP A SP B

CHAMP Low 7.94× 10−5 1.96× 10−3 2.28× 10−9 1.35× 10−6

CHAMP High 3.22× 10−4 2.77× 10−3 1.12× 10−8 8.96× 10−7

GRACE-A Low 2.73× 10−5 3.35× 10−3 1.47× 10−8 2.14× 10−4

GRACE-A High 2.62× 10−4 3.66× 10−3 1.20× 10−8 2.01× 10−6

GRACE-B Low 2.68× 10−5 3.32× 10−3 1.45× 10−8 2.14× 10−4

GRACE-B High 2.61× 10−4 3.65× 10−3 1.19× 10−8 2.01× 10−6

SOS Low 1.41× 10−6 5.57× 10−3 1.16× 10−7 4.08× 10−2

duce realistic characterizations of uncertainty whilst being indifferent to the choice

of atmospheric model. This provides additional evidence of the effectiveness of the

B∗ paradigm discussed in the preceding paragraph, and is also a potential benefit
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Figure 38. Monte Carlo and Unscented Transform Prediction Final Covariance, GRACE-A High
Solar

over stochastic methods which model the atmospheric density, the density error,

or the solar flux inputs to an atmospheric model as random variables. The rea-

son for this is the atmospheric model can be changed entirely in this development,

and the realism of the uncertainty characterizations remains unchanged without

needing to make any other updates to the formulation.

It is also important to recognize that these are the first results which contain

the SOS scenario (again because SOS data was not robust enough to support em-

pirical analysis). Examining Figure 41, note that the same agreement is present

between MC simulation and UT prediction and between the results of SP A and

SP B for the SOS scenario. This demonstrates that neither the viability of the

stochastic prediction models nor the validity of the underlying paradigm are pred-
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Figure 39. Monte Carlo and Unscented Transform Prediction Final Covariance, GRACE-B Low
Solar

icated on extremely precise observational data such as was used for CHAMP and

GRACE-A/B, but that the models and paradigm are also effective when used with

the type of position and velocity data received from a GPS receiver.

Finally, consider that the 1σ error ellipses depicted in Figures 36–41 assume

that the joint distribution formed by the two coordinates in each sub-figure is a

two-dimensional Gaussian random variable. Subjectively this seems to be a very

reasonable assumption for all scenarios when considering the in-track/normal and

the radial/normal pairs of coordinates, however the 1σ error ellipses seem less

effective at depicting the true uncertainty distribution for the in-track/radial co-

ordinate pair. In the case of the in-track/radial coordinate pair the cloud of er-
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Figure 40. Monte Carlo and Unscented Transform Prediction Final Covariance, GRACE-B High
Solar

ror points seems to “bend” in a way that Gaussian error ellipses cannot precisely

represent. This is indicative of what has been mentioned above—that non-linear

satellite dynamics quickly cause the distributions of an orbit prediction to become

non-Gaussian.

The use of the RTN coordinates helps but does not altogether eliminate this

problem, however there are other actions that can be taken to enhance the realism

of the uncertainty characterizations with respect to “Gaussian-ness”. The first op-

tion is to simply make the propagation time ∆t shorter, as the non-Gaussian nature

of the resulting probability distribution grows with time. This research used a ∆t

of 3 days, but in some applications this may be a longer prediction than is needed.

A second option would be to reformulate the dynamics or transform the result
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Figure 41. Monte Carlo and Unscented Transform Prediction Final Covariance, SOS Low Solar

into a coordinate system that maintains Gaussian characteristics even longer than

the RTN frame used here, such as equinoctial elements [63] or curvilinear coordi-

nates [106]. Finally, a third option is to use a different stochastic prediction method,

abandoning or modifying the UT method in favor of one that either doesn’t require

the random variables to be Gaussian or lessens this restriction. One example class

of methods are those that use Gaussian mixture models wherein a non-Gaussian

distribution is approximated as a weighted sum of Gaussian distributions [66].

Gaussian mixture models can be used with UT methods and can capture non-

Gaussian posterior distributions with high fidelity [68]. Other types of stochastic

propagation exist as well, some of which were reviewed in Chapter II.

Ultimately, the mismatch between the Gaussian assumption inherent in UT pre-

diction and the results above is not extreme, and the results presented above were
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deemed useful for analysis and the drawing of conclusions with the acknowledg-

ment that Gaussian error ellipses are imperfect representations of some of the re-

sulting distributions.

Finally, recall that one of the aims of the stochastic prediction model was that

it not require a large number of realizations as MC simulation does. This is mo-

tivated by the computational expense of MC simulation and the desire that the

stochastic model be faster than MC simulation for practical use purposes. To that

point, the UT prediction method described above is considerably faster than MC

simulation (NMC = 250), particularly for the simpler atmosphere used in SP A. Ex-

ample computation times on a personal laptop computer for MC simulation and

UT prediction are given for a single example scenario in Table 12 as a demonstra-

tion of this.

Table 12. Computation Times for Monte Carlo Analysis and Unscented Transform Prediction,
CHAMP Low Solar

Prediction Computation Time (min)
Method SP A SP B

MC Simulation 7.3 15.2
UT Prediction 2.0 7.4

6.3 On-board Stochastic Orbit Prediction and Real-Time Filtering

While not the main thrust of this research, it is interesting to consider that the

stochastic prediction methods presented herein may be viable for use on-board a

satellite equipped with a GPS receiver. The results of stochastic propagations for

the SOS scenario demonstrate this most readily as they are based on just the type

of data that may be available on-board a satellite.

The feature of this research which makes this feasible is the method’s adapt-

ability with respect to the atmospheric density used in the dynamics, which is

127



directly enabled by allowing B∗ to be the representative random variable for air

drag. For example, the Regan and Anandakrishnan density model used in SP A

does not require any external data whatsoever—all results above which used the

SP A prediction model needed only position (and velocity, optionally) observation

data. Therefore, the only limiting factors for a satellite to perform stochastic orbit

predictions on-board (and even autonomously) via this method is the availabil-

ity of position data and enough computing power to calculate and analyze the B∗

time-series and then perform the stochastic prediction.

In general, calculating a 7-day B∗ time series as used in the stochastic predic-

tion methods above took an average time of approximately 4 minutes on a laptop

computer, however an on-board computer could drastically reduce this by stor-

ing the estimated B∗ values in a rolling buffer and calculating only one new B∗

value when observational data is available (which on the same laptop took ap-

proximately 1–2 seconds) and then calculating the new autocorrelation and SOGM

parameters (which took fractions of a second). Estimating the latest B∗ value can

also return the estimated state vector given the most updated observational data

as well, meaning the only remaining task would be to execute the stochastic pre-

diction. This took an average of 2 minutes (again on a laptop computer), however

the underlying computer code has not been optimized for speed and other, more

efficient UKF formulations than the method used above are likely possible.

Though the preceding discussion is not an in-depth study and the computa-

tional power on-board a satellite is likely to be significant less than that of a laptop

computer, it is evident that on-board use of the stochastic prediction methods pre-

sented here is possible. Such a capability could help with a variety of autonomous

satellite missions. Additionally, it’s worth noting that the computer code used for

this research was written in C++, a compiled language which is generally straight-
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forward to adapt for use on microcontrollers or microcomputers, if it isn’t sup-

ported natively.

A final consideration regarding stochastic prediction is that of real-time filter-

ing. The focus of this research has been on stochastic prediction, that is estimating

the state of the satellite at some time in the future beyond available observational

data. Calculating the initial conditions for predictions has been accomplished via

non-linear least squares, which is a batch estimation method. It should also be

possible, if desired, to use a filtering scheme to update a satellite’s state and uncer-

tainty in real time as observational data becomes available. In its simplest form,

such a scheme would be an alternative method of obtaining the initial conditions

from which to initiate a stochastic prediction, however it may also be possible to

estimate B∗ and possibly even the values and/or nature of the B∗ random pro-

cess in a real-time filtering scheme. This is mentioned here as a possible avenue of

further research and is not investigated further.

6.4 Conclusions

The results presented in this chapter demonstrate the effectiveness of the re-

search’s central paradigm: that a stochastic prediction method which models the

uncertainty caused by air drag with a single random variable B∗ can produce pre-

dictions with realistic characterizations of uncertainty. This was chiefly demon-

strated by the agreement between the results of Monte Carlo simulation and em-

pirical covariance matrix analysis which links the stochastic model with the physi-

cal reality, and agreement of the Unscented Transform stochastic prediction model

with MC simulation which validated the uncertainty realism produced by Un-

scented Transform model. Additionally, the fact that omitting the B∗ random pro-

cess from the stochastic model results in significant underestimation of the in-track
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uncertainty while including it results in model agreement is evidence that model-

ing B∗ as the lone random variable of air drag is a viable stochastic foundation for

these stochastic prediction models.

A core benefit of this paradigm is that the resultant stochastic prediction models

are effective for a wide range of atmospheric density models. This is confirmed by

the very close agreement of results obtained using SP A and SP B, which employ

disparate atmospheric density models. Additionally, that the performance of the

predictor when using a relatively simple atmosphere model compares so closely

with the performance when using a much more refined atmosphere model is fur-

ther evidence that modeling B∗ as a random variable and then forming the system

stochastics around a time series of B∗ estimates compensates for modeling errors

very well and enables realistic characterizations of uncertainty.

Finally, results for the SOS scenario demonstrate that the stochastic prediction

methods presented above remain effective with less refined input data. This result,

coupled with the advantage that an atmospheric model which requires no external

input data can be used, means that the stochastic prediction model may be suitable

for use on-board an orbiting satellite.

The results presented in this chapter confirm the expectations of Research Hy-

pothesis 3.
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VII. Conclusion

This chapter presents conclusions based on the results of this research, rein-

forces the contributions made by this research, and lists several possible research

avenues that could be pursued in the future.

7.1 Research Conclusions

The aim of this research was to investigate a new paradigm related to the satel-

lite prediction uncertainty caused by air drag: that modeling the ballistic coeffi-

cient B∗ as the only dynamically random variable can yield a stochastic prediction

model which realistically characterizes its modeling prediction uncertainty. The

first step toward doing this was to validate the effect of air drag on LEO satellite

orbit prediction.

Analyzing empirically calculated prediction covariance matrices, particularly

how these covariance matrices grow with the length of the propagation time,

demonstrated that air drag is the predominant source of modeling prediction

uncertainty for LEO satellites. Additionally, it was found that nearly all of this

prediction uncertainty is resident in the satellite’s in-track direction, the principal

direction of action of air drag.

It is also relevant that two special perturbations prediction models which use

disparate atmospheric models produced nearly identical empirical covariance ma-

trices and prediction accuracy by estimating B∗ values from observational data.

Although the dynamics formulation used for empirical analysis is deterministic,

this result starts to validate the idea that B∗ is a variable that can absorb and ac-

count for modeling errors very effectively by estimating its value using non-linear

least squares and observational data.
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Extending this insight from the regime of determinism to that of stochastic pre-

diction, successive B∗ estimates were assembled into time series and then analyzed

as random processes. Analysis of ensembles and single realizations of these time

series provided evidence for assuming that the B∗ random process is both station-

ary and ergodic (the ergodicity assumption is more valid for longer single realiza-

tions than for shorter ones). The fact that the random processes possessed both

stationary and ergodic properties, coupled with the nature of the processes’ auto-

correlation functions, led to the selection of a second-order Gauss-Markov (SOGM)

process to model the B∗ random process. It was then shown that the B∗ random

process can be parameterized programmatically using only the autocorrelation of

the calculated B∗ time series, and that the parameterization could be used to gener-

ate realizations of the random process with statistics that agreed quite closely with

those of the calculated random processes. That the random process parameteriza-

tion was completed without need of manual tuning or other operator assumptions

is a distinction of this method.

The SOGM process model proved to be a suitable fit to the calculated B∗ ran-

dom processes, but the random processes were sensitive to how much observa-

tional data was provided to the least squares algorithm that estimated each B∗

value and a different random process model may be more applicable for values

of NLS greater than about 900. The fact that the random process was sensitive to

model parameters indicates that the model is self-consistent and provides further

evidence that capturing modeling uncertainty via a B∗ random process results in a

model that is capable of realistic uncertainty characterization. The reason for this

is that the random process sensitivity demonstrates that B∗, when estimated us-

ing observational data, takes on more information than its physical definition and

becomes a correction factor which absorbs errors in the underlying model.
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This B∗ random process analysis was used as the stochastic foundation of

Monte Carlo simulation. Monte Carlo simulation results confirmed that a stochas-

tic prediction model which models B∗ as a random process in the above manner

is capable of achieving uncertainty realism. This is demonstrated by the agree-

ment of Monte Carlo simulation results with the results empirical covariance

analysis—linking the stochastic prediction model with the physical reality.

A second stochastic prediction model using the Unscented Transform proved

equally capable of realistically characterizing its modeling uncertainty. This was

demonstrated by agreement between the results of the Unscented Transform pre-

diction model and those of Monte Carlo simulation which were already validated

by comparison to empirical results. Additionally, the Unscented Transform pre-

diction model was shown to be at least twice as fast as Monte Carlo simulation,

with additional optimization likely being possible.

The stochastic prediction models produced nearly identical results for formu-

lations using the same two special perturbations models as the empirical analyses.

These two special perturbations models use very different atmospheric density

models, which indicates that the uncertainty realism of the stochastic prediction is

not linked to a choice of atmospheric model. This demonstrates two things. First,

this shows that modeling B∗ as a random process and the only constituent random

variable of air drag is a viable method of capturing overall modeling uncertainty—

via estimation from observational data B∗ acts as an absorber of modeling errors

which leads to realistic uncertainty characterizations. Second, the stochastic model

is more adaptable than stochastic formulations which are tied either directly or in-

directly to a particular atmospheric model or class of models.

An example benefit of this stochastic prediction model is that it is effective

when using an atmospheric model which requires no external input data, such
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as that used by special perturbations model “A”. The stochastic model was also

demonstrated to be effective when using the type of observational data that could

be available on board a satellite equipped with a GPS receiver, as in the SOS sce-

nario. These two facts suggest that the stochastic prediction models presented in

this research, or a similar model based on this research’s novel paradigm of regard-

ing B∗ as a random variable, could be used autonomously on-board a satellite.

7.2 Contributions

The research presented here makes four distinct contributions to the field of

astrodynamics. First, the results of the empirical analyses expand the verifica-

tion that air drag is the predominant source of modeling prediction uncertainty

and that this uncertainty is almost entirely realized in the in-track direction. This

expands previous research by using more prediction models and additional data

sources.

Next, previous work in the stochastics of air drag have generally focused on

the air density, relative density error, or inputs to atmospheric models as random

variables. This research adopts a novel paradigm: that letting B∗ be the only con-

stituent random variable of air drag frees the stochastic development from any

dependency on a particular atmospheric density model.

This is also the first work to calculate a time series of B∗ estimates, characterize

and parameterize a random process model from said time series, and use this as

the foundation of a stochastic prediction model. Further, this process is completed

programmatically, requiring no manual tuning or operator assumptions. This is

distinct from previous work in LEO satellite stochastic prediction, which has gen-

erally assumed a type of random process and/or manually tuned the process pa-

rameters.
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The final contribution is the stochastic prediction model based on this novel

paradigm. The model’s chief distinctions from prior work are its adaptability

to various dynamics formulations and atmospheric density models, and that the

stochastic parameters can be estimated directly from observational data via esti-

mation of B∗. The model is also likely viable for on-board use.

7.3 Future Research

There are several potential extensions to this research available for future work.

For one, the Unscented Transform-based stochastic prediction model could be re-

formulated to use a stochastic propagator which is better able to handle non-

Gaussian posterior distributions. Doing so need not invalidate the basis of the B∗

random process or the paradigm on which the stochastics are founded, as other

available stochastic propagation or filtering methods readily handle non-linear,

stochastic dynamics. Some of these are reviewed in Chapters II and VI.

Another possible method for handling non-Gaussian prediction results could

be to reformulate the prediction methods using an alternative coordinate system.

Curvilinear coordinates, for example, are known to remain Gaussian in predictions

longer than either Cartesian coordinates or the radial, transverse, and normal co-

ordinates used in this research.

There are also two discrepancies in the stochastic model formulations which

were noted in the preceding chapters and could be improved upon in future re-

search. The first is the difference between uncertainty values in the normal direc-

tion when comparing empirical analysis with Monte Carlo simulation. The second

is that the method used for estimating the initial covariance of a prediction likely

underestimates the uncertainty, which could be rectified by exploring other meth-

ods that exist for the purpose which are mentioned in Chapter VI.
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Another modification could enable the use of satellite attitude information to

potentially increase prediction accuracy, if desired. By appending a dimensionless

correction variable S to Equation 2 as in Equation 69 and performing the random

process analysis described in Chapter V using S as the random variable, B∗ could

be used to incorporate knowledge of any changes in the satellite’s orientation that

affect cross-sectional area (or other known changes in any constituent variable of

B∗).

aD = −SB∗ρvrelvrel (69)

Approaching the stochastics this way is essentially the same method as that pre-

sented in this research, except S would be appended to the state vector and be-

come the correction variable that characterizes the predictions’ stochastics when

estimated from observational data and B∗ would revert to a deterministic variable

with dynamics described by whatever is known about the satellite’s orientation.

Additionally, this research considered prediction scenarios during periods of

high and low solar activity based on the F10.7 solar flux index for the purpose of

validating the stochastic model’s performance for a range of space environments.

The linkage between solar activity and positional uncertainty could certainly be

explored further, however, including from a causation perspective.

Finally, it is postulated in this research that the stochastic prediction model is

viable for use on-board a satellite with a GPS receiver, though this assertion was

not rigorously tested. Future research in this area could include optimizing and

re-compiling the stochastic prediction model for use on a micro-controller which

is suitable for use on-board a satellite, and culminate with running a hardware-

based simulation.

136



Appendix A. Partial Derivatives of the A Matrix

The A matrix (the Jacobian of the equations of motion) for the SP models de-

scribed in Chapter III is given by Equation 70.

A(t) =
∂ f
∂X

∣∣∣∣∣
X(t)

=



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

A41 A42 A43 A44 A45 A46 A47

A51 A52 A53 A54 A55 A56 A57

A61 A62 A63 A64 A65 A66 A67

0 0 0 0 0 0 0



(70)

The non-trivial elements of A, labeled as Aij in Equation 70, are given by Equa-

tions 71–91.

A41 =
∂

∂x

(
−∂V

∂x
+ aD,x

)
= −∂2V

∂x2 +
∂aD,x

∂x
(71)

A51 =
∂

∂x

(
−∂V

∂y
+ aD,y

)
= − ∂2V

∂x∂y
+

∂aD,y

∂x
(72)

A61 =
∂

∂x

(
−∂V

∂z
+ aD,z

)
= − ∂2V

∂x∂z
+

∂aD,z

∂x
(73)

A42 =
∂

∂y

(
−∂V

∂x
+ aD,x

)
= − ∂2V

∂y∂x
+

∂aD,x

∂y
(74)

A52 =
∂

∂y

(
−∂V

∂y
+ aD,y

)
= −∂2V

∂y2 +
∂aD,y

∂y
(75)

A62 =
∂

∂y

(
−∂V

∂z
+ aD,z

)
= − ∂2V

∂y∂z
+

∂aD,z

∂y
(76)

A43 =
∂

∂z

(
−∂V

∂x
+ aD,x

)
= − ∂2V

∂z∂x
+

∂aD,x

∂z
(77)

A53 =
∂

∂z

(
−∂V

∂y
+ aD,y

)
= − ∂2V

∂z∂y
+

∂aD,y

∂z
(78)
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A63 =
∂

∂z

(
−∂V

∂z
+ aD,z

)
= −∂2V

∂z2 +
∂aD,z

∂z
(79)

A44 =
∂

∂vx

(
−∂V

∂x
+ aD,x

)
=

∂aD,x

∂vx
(80)

A54 =
∂

∂vx

(
−∂V

∂y
+ aD,y

)
=

∂aD,y

∂vx
(81)

A64 =
∂

∂vx

(
−∂V

∂z
+ aD,z

)
=

∂aD,z

∂vx
(82)

A45 =
∂

∂vy

(
−∂V

∂x
+ aD,x

)
=

∂aD,x

∂vy
(83)

A55 =
∂

∂vy

(
−∂V

∂y
+ aD,y

)
=

∂aD,y

∂vy
(84)

A65 =
∂

∂vy

(
−∂V

∂z
+ aD,z

)
=

∂aD,z

∂vy
(85)

A46 =
∂

∂vz

(
−∂V

∂x
+ aD,x

)
=

∂aD,x

∂vz
(86)

A56 =
∂

∂vz

(
−∂V

∂y
+ aD,y

)
=

∂aD,y

∂vz
(87)

A66 =
∂

∂vz

(
−∂V

∂z
+ aD,z

)
=

∂aD,z

∂vz
(88)

A47 =
∂

∂B∗

(
−∂V

∂x
+ aD,x

)
=

∂aD,x

∂B∗
(89)

A57 =
∂

∂B∗

(
−∂V

∂y
+ aD,y

)
=

∂aD,y

∂B∗
(90)

A67 =
∂

∂B∗

(
−∂V

∂z
+ aD,z

)
=

∂aD,z

∂B∗
(91)

The second partials of the geopotential V are obtained from the Pines algorithm as

explained in Chapter III.

Separating Equation 2 into its Cartesian components and expanding vrel ac-
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cording to Equation 9 gives the following.

aD,x = −B∗ρ(r)
(

(vx + ω⊕y)2 + (vy −ω⊕x)2 + v2
z

) 1
2

(vx + ω⊕y) (92)

aD,y = −B∗ρ(r)
(

(vx + ω⊕y)2 + (vy −ω⊕x)2 + v2
z

) 1
2

(vy −ω⊕x) (93)

aD,z = −B∗ρ(r)
(

(vx + ω⊕y)2 + (vy −ω⊕x)2 + v2
z

) 1
2 vz (94)

The final values needed for A matrix are the partial derivatives of Equations 92–

94, given below (note that ρ is used as shorthand for ρ(r) = ρ(x, y, z)).

∂aD,x

∂x
= −B∗vrel,x

(
∂ρ
∂x vrel −

ω⊕ρvrel,y

vrel

)
(95)

∂aD,x

∂y
= −B∗

(
vrel,xvrel

∂ρ
∂y +

ω⊕vrel,x
2ρ

vrel
+ ω⊕ρvrel

)
(96)

∂aD,x

∂z
= −B∗vrel,x

∂ρ
∂z vrel (97)

∂aD,y

∂x
= −B∗

(
vrel,y

∂ρ
∂x vrel −

ω⊕vrel,y
2ρ

vrel
−ω⊕ρvrel

)
(98)

∂aD,y

∂y
= −B∗vrel,y

(
ω⊕ρvrel,x

vrel
+ ∂ρ

∂y vrel

)
(99)

∂aD,y

∂z
= −B∗vrel,y

∂ρ
∂z vrel (100)

∂aD,z

∂x
= −B∗vz

(
∂ρ
∂x vrel −

ω⊕vrel,yρ

vrel

)
(101)

∂aD,z

∂y
= −B∗vz

(
ω⊕vrel,xρ

vrel
+ ∂ρ

∂y vrel

)
(102)

∂aD,z

∂z
= −B∗vz

∂ρ
∂z vrel (103)

∂aD,x

∂vx
= −B∗ρ

(
vrel,x

2

vrel
+ vrel

)
(104)

∂aD,x

∂vy
=
−B∗vrel,yvrel,xρ

vrel
(105)
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∂aD,x

∂vz
=
−B∗vzvrel,xρ

vrel
(106)

∂aD,y

∂vx
=
−B∗vrel,yvrel,xρ

vrel
(107)

∂aD,y

∂vy
= −B∗ρ

(
vrel,y

2

vrel
+ vrel

)
(108)

∂aD,y

∂vz
=
−B∗vzvrel,yρ

vrel
(109)

∂aD,z

∂vx
=
−B∗vzvrel,xρ

vrel
(110)

∂aD,z

∂vy
=
−B∗vzvrel,yρ

vrel
(111)

∂aD,z

∂vz
= −B∗ρ

(
v2

z
vrel

+ vrel

)
(112)

Finally, some atmospheric models (such as the Regan and Anandakrishnan one

used in this research) provide the density gradient in the form ∂ρ
∂r where r = ||r||=√

x2 + y2 + z2. This can be separated into Cartesian coordinates for use in the

above equations via Equations 113–115.

∂ρ

∂x
=

∂ρ

∂r
∂r
∂x

=
∂ρ

∂r
x
r

(113)

∂ρ

∂y
=

∂ρ

∂r
∂r
∂y

=
∂ρ

∂r
y
r

(114)

∂ρ

∂z
=

∂ρ

∂r
∂r
∂z

=
∂ρ

∂r
z
r

(115)

140



Appendix B. Non-Linear Least Squares Estimation Algorithm

The non-linear least squares implementation used in this research is adapted

from Wiesel [2, pgs. 69–72] and begins with a reference orbit Xref which is nu-

merically integrated from the time of the first observational data point t0, and its

differential state transition matrix Φ(t, t0) (see Equation 11). In this research Xref

was initialized using the position and velocity of the first observation point and

a guessed initial value for B∗ (the value of 0.00045 was used throughout this re-

search as convergence occurred very quickly and there was no need to alter the

guess between scenarios).

Let each subsequent observation at time ti be zi, and define the residual ri as the

difference between the actual observation zi and the expected observation given

reference orbit Xref(ti)

ri = zi − zi,predicted = zi − HXref (116)

where H is a linear relationship (in this case) between the state and observation

data given by Equation 117.

H ≡
[

I(6× 6)
∣∣ 0(6× 1)

]
(117)

Each observation zi has uncertainty associated with it, given by the matrix Qi.

For this research Qi is constant, diagonal, and composed of the σr and σv values
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given in Table 1, as shown in Equation 118.

Qi =



σr 0 0 0 0 0

0 σr 0 0 0 0

0 0 σr 0 0 0

0 0 0 σv 0 0

0 0 0 0 σv 0

0 0 0 0 0 σv


(118)

As Qi is diagonal, its inverse is easily calculated by taking the reciprocal of each

individual element, as in Equation 119.

Q−1
i =



σ−1
r 0 0 0 0 0

0 σ−1
r 0 0 0 0

0 0 σ−1
r 0 0 0

0 0 0 σ−1
v 0 0

0 0 0 0 σ−1
v 0

0 0 0 0 0 σ−1
v


(119)

At this point data rejection can be implemented if desired by rejecting obser-

vations for which the residual is “larger” than a threshold value. In this research

data was rejected if the magnitude of the position vector of the observational data

point differed from the magnitude of the position vector of the reference orbit by

more than a threshold value. This threshold value was set to 250 kilometers, how-

ever (effectively deactivating data rejection), as data rejection turned out not to be

necessary due to the quality of the available data (including for SOS).

The output of each iteration of the non-linear least squares method is a correc-

tion to the initial state of the reference orbit δX(t0). Assuming that this correction
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is small, it can be propagated using the first-order linear approximation of the

satellite dynamics given by Φ(ti, t0) according to Equation 120.

δX(ti) = Φ(ti, t0)δX(t0) (120)

Each residual ri is related to the propagated correction according to Equation 121

ri = HΦ(ti, t0)δX(t0) = TiδX(t0) (121)

where Ti = HΦ(ti, t0) is an intermediate variable introduced for convenience.

The necessary correction to the reference orbit at t0 and the covariance of this

correction are then (as given by Wiesel, see [2] for greater detail if desired)

δX(t0) =
(

TTQ−1T
)−1

TTQ−1r (122)

PδX =
(

TTQ−1T
)−1

(123)

where T, Q, and r are matrices formed by concatenating Ti, Qi, and ri for each

accepted observation per Equations 124–126 [2, pg. 63]. In practice, these results

are calculated using running summations inside programmatic loops as given in

Algorithm 2, which summarizes the non-linear least squares implementation.

T ≡



T1

T2

...

TN


(124)
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Q ≡



Q1 0 . . . 0

0 Q2 . . . 0
...

... . . . ...

0 0 . . . QN


(125)

r ≡



r1

r2

...

rN


(126)

Once the correction δX(t0) is available, it is applied to the previous initial state

of the reference orbit and the process is iterated until it converges. In this imple-

mentation convergence is determined by examining the relative change in S which

is the quantity minimized by the algorithm (S is akin to the sum of the squares of

the error in a scalar case) and is given by Equation 127.

S = rTQ−1r (127)

Again in practice running summations are used rather than the concatenated ma-

trices r and Q.

The least squares algorithm was considered converged if the relative change in

S between the current iteration j and the previous iteration j − 1 was less than a

threshold value Sratio, as in Equation 128.

|Sj − Sj−1|
Sj−1

< Sratio (128)

The value for Sratio used in this research was 1× 10−4, or 0.01%.
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Algorithm 2: Non-Linear Least Squares Estimation Algorithm
Data: Collection of observations (zi, zi+1, . . . , zn), reference orbit Xref(t0),

H, Qi
Result: Estimate of corrected state vector Xref(t0)
while not converged do

for each obs i− 1, starting at i = 1 to n do
numerically integrate Xref(ti−1) and Φ(ti−1, t0) to ti, yielding Xref(ti)
and Φ(ti, t0)

read observation zi
calculate Ti ≡ HΦ(ti, t0)
calculate zi,predicted = TiXref(t0)
calculate residual ri = zi − zi,predicted
add to running sums

TTQ−1T += TT
i Q−1

i Ti

TTQ−1r += TT
i Q−1

i ri

S += rT
i Q−1

i ri
end
calculate P−1

δX = ∑i TT
i Q−1Ti

invert P−1
δX to obtain PδX

calculate correction δX(t0) = PδX
(
∑i TT

i Q−1ri
)

update current estimate Xref(t0)← Xref(t0) + δX(t0)
check convergence
reset running sums

TTQ−1T = [0]
TTQ−1r = [0]
S = 0

end
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Appendix C. Third Body Gravity Perturbations

The effects of a third astronomical body’s gravitation on a satellite orbiting the

Earth can be represented as the potential function given in Equation 129 [159, pg.

103]

V3 = −µ3

(
1

ρ23
− ρ3 · ρ

ρ3
3

)
(129)

where the reference frame is an inertial one centered at the Earth and µ3 is the

gravitational parameter of the third body, ρ23 is the magnitude of the relative posi-

tion vector from the satellite to the third body, ρ3 is the position vector of the third

body relative to the Earth and ρ3 is its magnitude, and ρ is the position vector of the

satellite relative to the Earth. Figure 42 depicts an example arrangement of objects

and the relevant position vectors in which the moon is the third body. Relative

position vectors from Earth to any major third body in the solar system (specifi-

cally the moon and the sun) were obtained using the SPICE library mentioned in

Chapter III.

Earth

Moon

Satellite

ρ3

ρ
ρ23

Figure 42. Third Body Perturbations Arrangement and Position Vector Example (Not to Scale)

In this case the relative positions of the third body and the satellite with respect

to Earth are the same as their position vectors in the Earth-centered inertial frame,

but ρ is used in place of r for consistency. Additionally, Wiesel notes that this for-

mulation ignores the gravitational force exerted by the satellite on the third body,
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which in the case of a satellite is minuscule [159, pg. 103].

Applying Equation 129 to a satellite’s equations of motion is done by calculat-

ing the first partials with respect to x, y, z and adding the results as additional accel-

eration terms in Equation 8. To compute these partial derivatives, let ρ = [x, y, z]T,

ρ3 = [s, t, u]T, and therefore ρ23 = ρ3− ρ = [(s− x), (t− y), (u− z)]T. Substituting

into Equation 129 the yields

V3 = −µ3

(
1√

(s− x)2 + (t− y)2 + (u− z)2
− s x + t y + u z

ρ33

)
(130)

and the first partials required for the equations of motion are given in Equa-

tions 131–133.

∂V3

∂x
= −µ3

(
s− x
ρ233 −

s
ρ33

)
(131)

∂V3

∂y
= −µ3

(
t− y
ρ233 −

t
ρ33

)
(132)

∂V3

∂z
= −µ3

(
u− z
ρ233 −

u
ρ33

)
(133)

Regarding third-body gravity’s contribution to the system’s A matrix (see

Chapter III and Appendix A), Equation 129 does not contain any velocity compo-

nents or B∗ so the third-body gravity contribution is limited to a 3× 3 sub-block
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of the A matrix A3B as in Equation 134.

A3B(t) =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

A3B,41 A3B,42 A3B,43 0 0 0 0

A3B,51 A3B,52 A3B,53 0 0 0 0

A3B,61 A3B,62 A3B,63 0 0 0 0

0 0 0 0 0 0 0



(134)

The second partials of the third-body potential are given by Equations 135–143.

A3B,41 =
∂2V3

∂x2 = −µ3

(
3(s− x)2

ρ235 − 1
ρ233

)
(135)

A3B,42 =
∂2V3

∂y∂x
= −µ3

(
3(s− x)(t− y)

ρ235

)
(136)

A3B,43 =
∂2V3

∂z∂x
= −µ3

(
3(s− x)(u− z)

ρ235

)
(137)

A3B,51 =
∂2V3

∂x∂y
= A3B,42 (138)

A3B,52 =
∂2V3

∂y2 = −µ3

(
3(t− y)2

ρ235 − 1
ρ233

)
(139)

A3B,53 =
∂2V3

∂z∂y
= −µ3

(
3(t− y)(u− z)

ρ235

)
(140)

A3B,61 =
∂2V3

∂x∂z
= A3B,43 (141)

A3B,62 =
∂2V3

∂y∂z
= A3B,53 (142)

A3B,63 =
∂2V3

∂z2 = −µ3

(
3(u− z)2

ρ235 − 1
ρ233

)
(143)
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uncertainty effects on the orbital lifetime estimation for CubeSats at LEO”.
In: (2017). arXiv: 1709.09128v2.

[121] J. Geul, E. Mooij, and R. Noomen. “Analysis of Uncertainties and Model-
ing in Short-Term Reentry Predictions”. In: Journal of Guidance, Control, and
Dynamics 41.6 (2018), pp. 1276–1289. DOI: 10.2514/1.g003258.

[122] Analytical Graphics, Inc. STK Covariance. Available online. 2019. URL: http:
//help.agi.com/stk/index.htm#hpop/hpop-covariance.htm (visited on
12/13/2019).

[123] The GMAT Development Team. General Mission Analysis Tool (GMAT).
Available online. 2019. URL: http://gmat.sourceforge.net/docs/R2017a/
help.html#Propagator_ForceModel (visited on 12/13/2019).

[124] a.i. solutions. Atmospheric Forces. Available online. 2019. URL: https : / /
ai-solutions.com/_help_Files/atmospheric_forces.htm (visited on
12/13/2019).

158

https://www.space-track.org/basicspacedata/query/class/boxscore/format/html
https://www.space-track.org/basicspacedata/query/class/boxscore/format/html
https://doi.org/10.1086/108753
https://doi.org/10.1086/108753
https://doi.org/10.1016/S0273-1177(03)00175-3
https://doi.org/10.1016/S0273-1177(03)00175-3
https://arxiv.org/abs/1709.09128v2
https://doi.org/10.2514/1.g003258
http://help.agi.com/stk/index.htm#hpop/hpop-covariance.htm
http://help.agi.com/stk/index.htm#hpop/hpop-covariance.htm
http://gmat.sourceforge.net/docs/R2017a/help.html#Propagator_ForceModel
http://gmat.sourceforge.net/docs/R2017a/help.html#Propagator_ForceModel
https://ai-solutions.com/_help_Files/atmospheric_forces.htm
https://ai-solutions.com/_help_Files/atmospheric_forces.htm


[125] D. Gaylor, R. Page, and K. Bradley. “Testing of the Java Astrodynamics
Toolkit Propagator”. In: AIAA/AAS Astrodynamics Specialist Conference and
Exhibit. 2006. DOI: 10.2514/6.2006-6754.

[126] Combined Force Space Component Command. Two Line Element (TLE)
Data. Available online. 2020. URL: https://www.space-track.org/ (visited
on 07/07/2020).

[127] R. A. Eckman, A. J. Brown, D. R. Adamo, and R. G. Gottlieb. Normaliza-
tion and Implementation of Three Gravitational Acceleration Models. Tech. rep.
NASA Johnson Space Center, Houston, Texas, 2016.

[128] S. Pines. “Uniform representation of the gravitational potential and its
derivatives”. In: AIAA Journal 11.11 (1973), pp. 1508–1511. DOI: 10.2514/3.
50619.

[129] F. G. Lemoine, D. E. Smith, L. Kunz, R. Smith, E. C. Pavlis, N. K. Pavlis,
S. M. Klosko, D. S. Chinn, M. H. Torrence, R. G. Williamson, C. M. Cox,
K. E. Rachlin, Y. M. Wang, S. C. Kenyon, R. Salman, R. Trimmer, R. H. Rapp,
and R. S. Nerem. The Development of the Joint NASA GSFC and the National
Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. Tech. rep.
July. Greenbelt, MD United States.: NASA Goddard Space Flight Center,
1998. DOI: 10.1007/978-3-662-03482-8_62.

[130] S. M. Anandakrishnan and F. F. Regan. Dynamics of Atmospheric Re-Entry.
American Institute of Aeronautics and Astronautics, 1993.

[131] N. K. Pavlis, S. A. Holmes, S. C. Kenyon, and J. K. Factor. “The develop-
ment and evaluation of the Earth Gravitational Model 2008 (EGM2008)”.
In: Journal of Geophysical Research: Solid Earth 117.B4 (2012). DOI: 10.1029/
2011JB008916.

[132] J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin. “NRLMSISE-00 em-
pirical model of the atmosphere: Statistical comparisons and scientific is-
sues”. In: Journal of Geophysical Research: Space Physics 107.A12 (2002), SIA–
15. DOI: 10.1029/2002JA009430.

[133] L. F. Shampine and M. K. Gordon. Computer solution of ordinary differential
equations: the initial value problem. Freeman, 1975.

[134] L. F. Shampine and M. W. Reichelt. “The MATLAB ODE suite”. In: SIAM
Journal on Scientific Computing 18.1 (1997), pp. 1–22.

[135] The MathWorks, Inc. ode113. Available online. 2019. URL: https://www.
mathworks.com/help/matlab/ref/ode113.html (visited on 01/11/2020).

[136] J. Burkardt. Shampine and Gordon ODE Solver. Available online. 2012. URL:
https://people.sc.fsu.edu/~jburkardt/cpp_src/ode/ode.html (visited
on 07/22/2019).

159

https://doi.org/10.2514/6.2006-6754
https://www.space-track.org/
https://doi.org/10.2514/3.50619
https://doi.org/10.2514/3.50619
https://doi.org/10.1007/978-3-662-03482-8_62
https://doi.org/10.1029/2011JB008916
https://doi.org/10.1029/2011JB008916
https://doi.org/10.1029/2002JA009430
https://www.mathworks.com/help/matlab/ref/ode113.html
https://www.mathworks.com/help/matlab/ref/ode113.html
https://people.sc.fsu.edu/~jburkardt/cpp_src/ode/ode.html


[137] CHAMP (Challenging Minisatellite Payload) CHAMP. Available online. 2019.
URL: https://earth.esa.int/web/eoportal/satellite-missions/c-
missions/champ (visited on 07/13/2019).

[138] A. Helm. CHAMP Mission and Orbit. Available online. 2000. URL: http :
/ / op . gfz - potsdam . de / champ / orbit / index _ PRD . html (visited on
01/09/2020).

[139] NASA. Challenging Mini-satellite Payload (CHAMP). Available online. URL:
https://eospso.nasa.gov/sites/default/files/sat/CHAMP.jpg (visited
on 08/09/2021).

[140] GRACE Mission Overview. Available online. 2019. URL: https://www.nasa.
gov/mission%7B%5C_%7Dpages/Grace/overview/index.html (visited on
07/15/2019).

[141] GRACE 1. Available online. 2021. URL: https://nssdc.gsfc.nasa.gov/
nmc/spacecraft/displayTrajectory.action?id=2002-012A (visited on
05/14/2021).

[142] NASA. Gravity Recovery and Climate Experiment (GRACE). Available online.
URL: https://www.nasa.gov/sites/default/files/images/623369main_
pia04236-full_full.jpg (visited on 08/09/2021).

[143] Earth Observation Portal. GPIM (Green Propellant Infusion Mission) / STP-
2. Available online. 2020. URL: https://directory.eoportal.org/web/
eoportal/satellite-missions/g/gpim (visited on 04/13/2020).

[144] NASA. Green Propellant Infusion Mission (GPIM). Available online. URL:
https://www.nasa.gov/sites/default/files/thumbnails/image/gpim_

updated.jpg (visited on 08/09/2021).

[145] R. Konig. Format Description: The CHAMP Orbit Format CHORB. Tech. rep.
GeoForschungsZentrum Potsdam, 2001.

[146] G. Michalak and R. König. “Rapid Science Orbits for CHAMP and GRACE
Radio Occultation Data Analysis”. In: System Earth via Geodetic-Geophysical
Space Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 67–77. DOI: 10.1007/978-3-642-10228-8_6.

[147] M. Rothacher. CHAMP Postprocessed Science Orbit for GPS and CHAMP. In-
formation System and Data Center, GeoForschungszentrum Potsdam. Ger-
many, 2000. DOI: 10.1594/GFZ.ISDC.CHAMP/CH-OG-4-PSO.

[148] Penticton Solar Radio Flux at 10.7cm, Time Series. Available online. Boulder,
CO: LASP Interactive Solar Irradiance Datacenter, University of Colorado,
2020. URL: http://lasp.colorado.edu/lisird/data/penticton_radio_
flux/ (visited on 07/16/2020).

[149] J. Matzka, O. Bronkalla, K. Tornow, K. Elger, and C. Stolle. Geomagnetic Kp
index. GeoForschungszentrum Potsdam Data Services. Germany, 2020. DOI:
10.5880/Kp.0001.

160

https://earth.esa.int/web/eoportal/satellite-missions/c-missions/champ
https://earth.esa.int/web/eoportal/satellite-missions/c-missions/champ
http://op.gfz-potsdam.de/champ/orbit/index_PRD.html
http://op.gfz-potsdam.de/champ/orbit/index_PRD.html
https://eospso.nasa.gov/sites/default/files/sat/CHAMP.jpg
https://www.nasa.gov/mission%7B%5C_%7Dpages/Grace/overview/index.html
https://www.nasa.gov/mission%7B%5C_%7Dpages/Grace/overview/index.html
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/displayTrajectory.action?id=2002-012A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/displayTrajectory.action?id=2002-012A
https://www.nasa.gov/sites/default/files/images/623369main_pia04236-full_full.jpg
https://www.nasa.gov/sites/default/files/images/623369main_pia04236-full_full.jpg
https://directory.eoportal.org/web/eoportal/satellite-missions/g/gpim
https://directory.eoportal.org/web/eoportal/satellite-missions/g/gpim
https://www.nasa.gov/sites/default/files/thumbnails/image/gpim_updated.jpg
https://www.nasa.gov/sites/default/files/thumbnails/image/gpim_updated.jpg
https://doi.org/10.1007/978-3-642-10228-8_6
https://doi.org/10.1594/GFZ.ISDC.CHAMP/CH-OG-4-PSO
http://lasp.colorado.edu/lisird/data/penticton_radio_flux/
http://lasp.colorado.edu/lisird/data/penticton_radio_flux/
https://doi.org/10.5880/Kp.0001


[150] C. H. Acton. “Ancillary Data Services of NASA’s Navigation and Ancillary
Information Facility”. In: Planetary and Space Science 44.1 (1996), pp. 65–70.
DOI: 10.1016/0032-0633(95)00107-7.

[151] C. Acton, N. Bachman, B. Semenov, and E. Wright. “A look toward the fu-
ture in the handling of space science mission geometry”. In: Planetary and
Space Science 150 (2017), pp. 9–12. DOI: 10.1016/j.pss.2017.02.013.

[152] O. A. Vanli and C. N. Taylor. “Covariance Estimation for Factor Graph
Based Bayesian Estimation”. In: 2020 IEEE 23rd International Conference on
Information Fusion (FUSION). IEEE. 2020. DOI: 10 . 23919 / FUSION45008 .
2020.9190223.

[153] J. Dunı́k, O. Straka, O. Kost, and J. Havlı́k. “Noise covariance matrices in
state-space models: A survey and comparison of estimation methods—Part
I”. In: International Journal of Adaptive Control and Signal Processing 31.11
(2017), pp. 1505–1543. DOI: 10.1002/acs.2783.

[154] S. Sarkka. “On Unscented Kalman Filtering for State Estimation of
Continuous-Time Nonlinear Systems”. In: IEEE Transactions on Automatic
Control 52.9 (2007), pp. 1631–1641. DOI: 10.1109/tac.2007.904453.

[155] E. A. Wan and R. Van Der Merwe. “The unscented Kalman filter for nonlin-
ear estimation”. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal
Processing, Communications, and Control Symposium (Cat. No. 00EX373). IEEE.
2000, pp. 153–158.

[156] R. Van Der Merwe and E. A. Wan. “The square-root unscented Kalman filter
for state and parameter-estimation”. In: 2001 IEEE International Conference
on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221).
Vol. 6. IEEE. 2001, pp. 3461–3464.

[157] C. Van Loan. “Computing integrals involving the matrix exponential”. In:
IEEE Transactions on Automatic Control 23.3 (1978), pp. 395–404.

[158] R. G. Brown and P. Y. C. Hwang. Introduction to Random Signals and Applied
Kalman Filtering, 3rd Edition. John Wiley & Sons, 1997.

[159] W. E. Wiesel. Modern Astrodynamics. CreateSpace Independent Publishing
Platform, 2010.

161

https://doi.org/10.1016/0032-0633(95)00107-7
https://doi.org/10.1016/j.pss.2017.02.013
https://doi.org/10.23919/FUSION45008.2020.9190223
https://doi.org/10.23919/FUSION45008.2020.9190223
https://doi.org/10.1002/acs.2783
https://doi.org/10.1109/tac.2007.904453


REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

08–01–2021 Doctoral Dissertation Sept 2018 — Sept 2021

Stochastic Satellite Air Drag with the Ballistic Coefficient as a Random
Variable

Everett B. Palmer IV, Maj, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENY-DS-21-S-103

Department of Aeronautics and Astronautics
2950 Hobson Way
WPAFB OH 45433-7765
DSN 271-0690, COMM 937-255-3636
Email: william.wiesel@afit.edu

AFIT/ENY

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The drag acceleration caused by the Earth’s atmosphere is a significant cause of prediction uncertainty for low Earth
orbit satellites. Most existing research has focused on improving deterministic atmospheric density predictions or on
density as a random variable. This research investigates a new paradigm and focuses on modeling the uncertainty caused
by air drag using the ballistic coefficient, a component of air drag that is independent of the model used to predict
atmospheric density. Time series of ballistic coefficient values are calculated and analyzed as random processes. These
random processes are then used as the foundation of a stochastic satellite prediction model that calculates the
parameters of the random process and predicts satellite orbits with realistic uncertainty. The model is developed using
the Unscented Transform and is validated using Monte Carlo simulation and empirical analysis, and proves effective for
any choice of atmospheric density model and a variety of dynamical formulations.

Stochastic Astrodynamics, Satellite Air Drag, Orbit Prediction

U U U U 176

Dr. William E. Wiesel, AFIT/ENY

(937) 255-3636; william.wiesel@afit.edu


	Stochastic Satellite Air Drag with the Ballistic Coefficient as a Random Variable
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Research Hypotheses and Tasks
	Research Hypotheses
	Research Tasks

	Summary of Literature Review
	Contributions
	Document Outline

	Literature Review
	Introduction
	Deterministic Orbit Propagation
	General Perturbations
	Special Perturbations
	Semi-Analytical Methods

	Generation and Propagation of Uncertainty
	Generation of Uncertainty
	Propagation of Uncertainty

	Stochastic Orbit Prediction
	Coordinate Frames
	Review of Widely Available Estimators
	Summary

	Preliminaries
	Prediction Models
	Models
	Parameter Sensitivity

	Data Sources
	Propagation Scenarios
	Coordinate Frames

	Effect of Air Drag on Model Prediction Uncertainty
	Methodology
	Theoretical Expectations
	Calculating Empirical Prediction Covariance Matrices
	Comparing Sources of Model Uncertainty

	Results
	Conclusions

	B* As a Random Process
	Methodology
	Characterizing Random Processes
	Calculating B* Time Series
	Gauss-Markov Random Processes
	Parameterizing and Simulating B* Random Processes

	Results
	Conclusions

	Stochastic Orbit Prediction
	Monte Carlo Simulation
	Methodology
	Results

	Stochastic Prediction Via the Unscented Transform
	Methodology
	Results

	On-board Stochastic Orbit Prediction and Real-Time Filtering
	Conclusions

	Conclusion
	Research Conclusions
	Contributions
	Future Research

	Partial Derivatives of the A Matrix
	Non-Linear Least Squares Estimation Algorithm
	Third Body Gravity Perturbations
	Bibliography

