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Abstract

Space launch operations at Kennedy Space Center and Cape Canaveral Space

Force Station (KSC/CCSFS) require near-real time determination of lightning risk.

Meteorological sensor networks produce data that are often noisy, high volume, and

high frequency time series for which traditional forecasting methods are often ill-

suited. Current approaches result in significant residual uncertainties and consequen-

tially may result in operational policies that are excessively conservative or inefficient.

This work proposes a new methodology of wavelet-enabled semiparametric model-

ing to develop accurate and timely forecasts robust against chaotic functional data.

Wavelet methods are first used to de-noise the weather data, which is then used to

estimate a single-index model for forecasting of lightning. This semiparametric tech-

nique mitigates noise of the chaotic signal while avoiding any possible distributional

misspecification. A screening experiment with augmentations is used to demonstrate

how to explore the complex factor space of model parameters, guiding decisions re-

garding model formulation and gaining insight for follow-on research. Imputation

methods are applied on the spatially-based sensor time series making use of the in-

herent autocorrelation within the data, resulting in improved modeling using machine

learning and artificial intelligence techniques. Results indicate a promising technique

for operationally relevant lightning prediction from chaotic sensor measurements.
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persistence model. This model develops a forecast using
only the lightning state of the previous timestamp. For
instance, if there is no lightning at time t, then the
model predicts no lightning at t+ 1. The wavelet
enabled semi-parametric modeling approach
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Wavelet Methods for Very-short Term Forecasting of Functional Time Series

I. Introduction

Weather operations at Kennedy Space Center and Cape Canaveral Space Force

Station (KSC/CCSFS) are complicated by unique requirements for near-real time

determination of risk from lightning. KSC/CCSFS experiences one of the world’s

highest incidence of lightning, which impacts both the launch of space vehicles and

daily support activity. Accurate lightning forecasts are essential for safe flight line

operations through the prediction of lightning onset and the cessation of lightning

events following a storm. The accuracy of these forecasts is complicated by sensor

data that is both inherently noisy and collected in time series. KSC/CCSFS weather

policy literature suggests current methodologies are far too conservative in nature,

resulting in widespread operational inefficiencies. This study proposes a method to

apply discrete wavelet transformations and semi-parametric single index model to

time series weather sensor data to improve the timeliness and accuracy of lightning

prediction for KSC/CCSFS.

Cape Canaveral possesses a dense array of weather sensors that includes both tra-

ditional sensors and tailor-made systems such as the electric field mill (EFM) network

and lightning detection and ranging (LDAR) system. Weather forecasters also use

traditional weather measurements, a local weather radar (WSR-88D), National Light-

ning Detection Network (NLDN), and daily weather balloon launches. These sensor

networks inform an operational warning system that manages ten warning regions

spread throughout Cape Canaveral. These warning regions consist of 5NM or 6NM

circles centered on key infrastructure locations, sometimes heavily overlapping [81].
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The data produced by these sensor networks is inherently noisy and inappropriate

for standard modeling approaches due to the complexity of movement of atmospheric

electrostatic potential [44]. EFM data collection is further perturbed by dense net-

works of antennas, radar arrays, and other equipment and facilities supporting space

launch and communication. There have been attempts made to mitigate these distur-

bances, such as ceasing collection of an individual EFM sensor if maintenance crews

are mowing grass in the area, but these disturbances remain.

The LDAR detects both radar and flashes emitted by lightning to produce a

3D map of all lightning events within 54NM of Cape Canaveral [87]. The system

was originally designed by NASA to meet their unique operational requirements that

includes the ability to detect total lightning. The system has above a 90% correct

detection rate out to 54NM, increasing to over 99% within 14NM of Cape Canaveral

[87]. LDAR data contains timestamps for all detected lightning events, to include a

detection range and azimuth from the system’s central tower. The LDAR data are

used in this study as the response for model training and evaluation.

Predictive models such as linear regression are prevalent due to their ease of

interpretation; however, they require certain assumptions to be made concerning un-

derlying relationships within the data. These assumptions may cause a model to

over-smooth a predicted response, resulting in a failure to capture a significant event

that is of most interest to research. Furthermore, these models are not the best suited

to time series data and can not mitigate statistical noise. The proposed approach em-

ploys DWT as a computationally efficient method to transform a meteorological time

series for accurate modeling while simultaneously reducing observed noise. Addition-

ally, semi-parametric models are used to capture complex phenomena observed in

meteorological events without assumptions of the underlying data.

Wavelet transformations are a relatively new method that allows re-expression of
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data from the time domain into a frequency domain in an very computational efficient

manner. These methods facilitate accurate modeling of a complex response in time,

producing analysis of both frequency and time content simultaneously. Motivated by

the Fourier transform, the DWT consists of a linear transformation that reduces a

complex response to a single vector of coefficients. An inverse DWT (IDWT) can then

be applied to perfectly reproduce the original data. This method allows manipulation

to remove noise or extraneous data, with common applications in signal analysis, data

compression, and image analysis. This method is especially useful in evaluation of

time series as it allows analysis without auto-correlation that would otherwise cause

overestimation of a response.

Semi-parametric models, such as a single index model or generalized linear model,

are methods that bridge the capabilities of parametric and non-parametric models.

Non-parametric methods approximate a function strictly using the data and without

any required assumptions; however, these models often fail to converge for higher

dimension problems. A semi-parametric model makes some basic assumptions of lin-

earity to accommodate high dimensional problems while maintaining some beneficial

properties of non-parametric models. The semi-parametric single-index model (SIM)

is a generalization of many parametric models to include Normal regression, Logit,

Probit, and Tobit. Similar to these methods, the SIM models the relationship between

a response and predictive variables but without any distributional assumptions.

1.1 Problem Statement

Senior leaders require forecasting models that provide the timeliness and accuracy

required to effectively informs critical decisions. Modern systems produce data that is

high volume, high frequency time series, and of differing data types that traditional

time series forecasting methods are ill-suited to address. This research identifies,
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evaluates, and applies a methodology for accurate and timely operational forecasting

derived from complex and noisy time series data.

1.2 Summary

Chapter II presents a survey of wavelet methods for time series analysis and fore-

casting, to include an examination of novel wavelet techniques from three disparate

fields developed to address unique requirements. These techniques offer powerful

techniques for pre-processing time series by de-noising or feature extraction, thus fa-

cilitating greatly improved model estimation and performance in artificial intelligence

and machine learning applications. Unlike other filtering methods, such as the Fourier

transform and exponential smoothing, wavelets offer an efficient method to model a

function in terms of time and frequency simultaneously. This facilitates improved

de-noising and feature extraction techniques.

Chapter III proposes a forecasting methodology using wavelet decomposition of

chaotic weather sensor time series and semiparametric single-index models to mitigate

the chaotic signal and any possible distributional misspecification. Space launch oper-

ations at Kennedy Space Center and Cape Canaveral Space Force Station (KSC/CCSFS)

are complicated by unique requirements for near-real time determination of risk from

lightning. Weather sensor networks for lightning forecasting produce data that are

noisy, high volume, and high frequency time series for which traditional forecasting

methods are often ill-suited. Current approaches result in significant residual uncer-

tainties and consequentially may result in forecasting operational policies that are

excessively conservative or inefficient. A screening experiment with augmentations

is used to demonstrate how to explore the complex factor space of model parame-

ters, guiding decisions regarding model formulation and gaining insight for follow-on

research. Results indicate a promising technique for operationally relevant lightning
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prediction from chaotic sensor measurements.

Chapter IV employs a spatiotemporal imputation technique that simultaneously

accounts for autocorrelation between spatially correlated measurements collected as a

time series. Wavelet methods are used as an additional pre-processing step, serving to

de-noise the chaotic EFM measurements to allow faster convergence and estimation

of spatiotemporal models. Instead of a purely time series or spatial model, spacetime

approaches use all available data to infer predicted values. These methods prove

highly useful in situations in which large amounts of a particular time series are

missing and need to be estimated. Although complex in application, such methods are

of increasing importance due to the increasing prevalence of modern sensor systems.

Results indicate significant improvements upon the previous wavelet-enabled single-

index model.

1.3 Contributions

The literature review, survey of wavelet methods, advances in methods and tech-

niques developed by this body of work contribute to the general field of Operations

Research, specifically to both meteorological forecasting and military and security

operations research. The survey of wavelet methods (Chapter II) provides the first

cross-functional analysis of current applications in three disparate fields using predic-

tive models. The paper provides a discussion of wavelet theory, to include a concise

presentation of the application of wavelets in time series applications. The paper

also provides an overview of current applications of wavelets in machine learning and

artificial intelligence applications to present general application methods and best

practices. This includes an overview of applications in wind speed prediction, very

short-term prediction of earthquake magnitude, and traffic congestion prediction.

A new method of wavelet-enabled semiparametric modeling builds upon exist-
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ing literature, improving both the safety and efficiency of flight line operations at

KSC/CCSFS (Chapter III). This work identifies and evaluates a wavelet-enabled

semiparametric single-index modeling approach for lightning warning derived using

chaotic time series data at KSC/CCSFS. This approach develops forecasts designed

to meet operational requirements for timeliness and accuracy from a data source

previously considered too noisy for successful use in machine learning and artificial

intelligence applications. The novel application of a designed experiment is used to

aide in model formulation, guiding the selection of model parameters to ensure the

best possible forecast.

Building upon the initial model formulation, spatiotemporal kriging is applied

as an imputation method to further improve model performance (Chapter IV). This

approach accounts for both spatial and temporal autocorrelation within the EFM

data to estimate values missing due to sensor maintenance, interference, or technical

malfunctions. Most applications using machine learning are not robust to missing

values, and poorly estimated values from competing imputation methods could per-

turb any modeling forecast. Spatiotemporal kriging proves to be a powerful method

for completing the EFM dataset for machine learning and artificial intelligence appli-

cations. In this particular implementation, the model developed a forecast with over

95% accuracy using the EFM data with imputed estimates.
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II. Wavelet Methods for Pre-processing Time Series for
Forecasting using Artificial Intelligence and Machine

Learning

Accurate and timely time series forecasts have become increasingly important for

short-term weather forecasting. However, parameter estimation and interpretation in

such models has become particularly difficult due to the high volume of data produced

by modern meteorological sensors. Wavelet methods offer powerful techniques for pre-

processing time series by de-noising or feature extraction, thus facilitating greatly

improved model estimation and performance in artificial intelligence and machine

learning applications. Unlike other filtering methods, such as the Fourier transform

and exponential smoothing, wavelets offer an efficient method to model a function

in terms of time and frequency simultaneously. This facilitates improved de-noising

and feature extraction techniques. This paper presents a survey of wavelet methods

for time series analysis and forecasting, to include an examination of novel wavelet

techniques from three disparate fields developed to address unique requirements. 1

2.1 Introduction

Accurate and timely time series forecasts are becoming increasingly important;

however, estimation of such models are likewise becoming increasingly difficult due to

the high volume of data produced by modern meteorological sensor networks. These

complex systems collect data that can be noisy, high volume, and high frequency time

series. Developing a forecast with traditional time series analysis using this type of

data may be inappropriate as parametric assumptions may not hold. Additionally,

parametric assumptions may over-smooth the response and lose the signal of interest

within the noise. The result is a model with a high degree of residual uncertainty

1Paper submitted to the journal Weather and Forecasting.
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that forces decision makers to implement policies that are excessively conservative or

inefficient.

Extensive current literature points to the power of these methods for time series

analysis; however, each modeling approach has limitations and includes specific re-

quirements for full specification. The Box-Jenkins methodology models a time series

using polynomials, which can sometimes over-smooth a particularly abrupt response.

Furthermore, time series must be a stationary process with constant variance for full

specification. Although this condition can be met in many industrial processes, it

can be too strict an assumption for situations with a chaotic response. For instance,

some sensor networks produce high frequency, high dimensional datasets often col-

lected as noisy and non-stationary time series. The artifacts of interest within these

series frequently consist of sharp and abrupt changes that traditional modeling ap-

plications may fail to accurately capture. Section 2.2 includes a concise presentation

of the Fourier transform, which is a powerful filtering method but lacks the ability

to model a function in terms of both frequency and time. Wavelet methods are be-

ing increasingly used in such situations due to their ability to model abrupt change

in a computationally efficient manner without the requirement for a stationary time

series. Early works, such as Lau and Weng [45], point to the power of wavelet tech-

niques in meteorological time series analysis. These methods have only developed

into more powerful tools, especially with the growth of machine learning and arti-

ficial intelligence. Wavelet methods are being employed as a preprocessing method,

either for de-noising and smoothing a time series or serving as a feature selection

method. Wavelet techniques offer new avenues of analysis overcoming some of the

the limitations of traditional approaches.

This work is a cross-functional analysis of current applications in three disparate

fields of wavelet methods in predictive models. These methods are common across
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applications using machine learning and artificial intelligence, however the author is

unaware of any attempts to survey these methods to investigate best practices for

use in weather forecasting. The paper is organized as follows: Section 2.2 provides

background to wavelet methods and Section 2.3 provides a brief overview of general-

ized applications methods. Section 2.4 provides an overview of current applications

of wavelets in machine learning and artificial intelligence applications. This includes

an overview of applications in wind speed prediction, very short-term prediction of

earthquake magnitude, and traffic congestion prediction. Section 2.5 provides anal-

ysis into assessed best practices, assessed weaknesses of wavelet methods, and areas

for additional research.

2.2 Wavelet Theory

Wavelets model a function in time and frequency simultaneously by approximating

functions at increasing levels of resolution expressed as a linear combination of scaling

functions φj,k combined with the difference in approximations expressed as a linear

combination of wavelets ψj,k [69]. This is accomplished by projecting approximations

of that function into a series of nested subspaces, each of which provide a different

level of resolution in time. Wavelet functions represent a family of unique func-

tions designed to be localized in time and frequency, typically defined as a mother

wavelet (ψ) and father wavelet (φ). Through dilation and translation operations,

these wavelets produce an entire basis of wavelet functions [69]. These basis func-

tions can be used to model a function in a Multiresolution Analysis (MRA) which

consists of successively detailed approximations of the function. Wavelets provide sig-

nificant advantages over competing methods, namely the discrete Fourier transform

and windowed Fourier transform, to localize frequency in time by adapting the size

of their window of approximation to the frequency at each resolution level [69]. The
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result is a time to resolution level analysis method that optimizes the tradeoff between

certainties in frequency and time across each nested and consecutive resolution level.

2.2.1 Properties of Wavelets

A wavelet is a small wave that grows and decays in a relatively limited time.

Percival and Walden [73] define wavelets as real-value functions ψ(·) over the real

axis (−∞,∞) that satisfy the following two properties:

1. The function ψ(·) integrates to zero,

∫ ∞
−∞

ψ(u)du = 0. (1)

2. The square of ψ(·) integrates to unity,

∫ ∞
−∞

ψ2(u)du = 1. (2)

Equation 1 forces ψ(·) into a wave shape, where any non-zero activity must be

mirrored in an integral equivalent non-zero activity of opposite sign. Equation 2 forces

non-zero activity and ensures that the function can be used to form an orthonormal

basis within L2(R). The space L2(R) forms a Hilbert space of square integrable

functions with a defined inner product where

L2(R) =

{
f : R→ C

∣∣∣∣ ∫ ∞
−∞
|f(x)|2dx <∞

}
.

Furthermore, for a given ε where 0 < ε < 1 there exists an interval [−T, T ] of

finite length such that ∫ T

−T
ψ2(u)du > 1− ε. (3)
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As ε approaches zero, ψ(·) can only deviate insignificantly outside of [−T, T ]. The

non-zero activity of ψ(·) is considered small and the interval [−T, T ] is insignificant

compared to the real number line, resulting in the formation of a little wave [73].

The consequence of this is a function whose dilations and translations are localized

in both time and frequency that are capable of serving as basis functions.

2.2.2 Wavelet Features

The following section overviews how wavelets approximate functions and is derived

from [69] unless otherwise specified.

The oldest and most basic example of a wavelet was developed by [25] and is given

by

ψ(x) =


1 0 ≤ x < 1

2

−1 1
2
≤ x < 1

0 otherwise

. (4)

As defined, ψ(x) is known as the mother wavelet for the Haar system. The dilation

operation compresses or stretches the wavelet, while the translation moves it back and

forth in time. These operations manipulate a wavelet to best approximate a function.

Letting j represent the dilation index and k represent the translation index, the

mother wavelet is then defined as

gtψj,k(t) = 2j/2ψ(2jt− k) j, k ∈ Z. (5)

These dilation and translation operations allow any arbitrary function f ∈ L2(R)

to be reasonably approximated with linear combinations of the mother wavelet, ψj,k.

An example of the approximation of a function is shown in Figure 1, the presentation

of which was motivated by Percival and Walden [73]. Piecewise constant functions are
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used to approximate a function with increasing levels of dilation j. The approximation

of the function improves as j increases.

The piecewise continuous nature of the Haar function results in a blocky represen-

tation of the signal, however works of Daubechies [13] and others provide much more

elegant wavelets. Figure 2 provides a representation of two such wavelets compared

to the Haar. Wavelet basis function selection is made by application and based upon

a particular wavelet’s ability to model a function.

2.2.3 Multiresolution Analysis

MRA is one of the most important consequences of basic wavelet mechanics. The

basic principles of MRA state that an approximation of a function can be accom-

plished through an additive decomposition: an approximation f j at resolution level

j can be decomposed into a coarser approximation f j−1 and a detail function gj−1

at level j − 1. Mallat [59] first identified the properties required for a sequence of

subspaces to result in a wavelet system. Frazier [20] defines the properties of a MRA

with a sequence of functional spaces (Vj)j∈Z in L2(R) as follows:

1. Monotonicity. The sequence of subspaces is increasing for all j ∈ Z where

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 . . .

2. Scaling function. There exists a scaling function φ ∈ V0 with resolution level

factor j and shift factor k defined as

φj,k(t) = 2j/2φ(2jt− k) j, k ∈ Z. (6)

This function is commonly referred to as the father wavelet [69]. This function

scales through dilation and scaling operations, providing orthonormal bases for
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Figure 1: Piecewise constant approximations of a function (top left) with increasing
levels of dilation j. The approximation by the piecewise continuous Haar function
starts blocky (top right) but becomes smoother at higher levels of dilation (bottom
right).

V0 and all j resolution levels of this subspace or

Vj = span{φj,k, k ∈ Z} j ∈ Z.

3. Dilation property. f ∈ Vj if and only if f(2·) ∈ Vj+1. This implies every

subspace is a scaled version of the original space V0.

4. Trivial intersection property. ∩j∈ZVj = {0}

5. Density. ∪j∈ZVj is dense in L2(R), or for any f ∈ L2(R) there exists a sequence

{fn}∞n=1 such that each fn ∈ ∪j∈ZVj and {fn}∞n=1 converges to f in L2(R).

With these properties we can now fully articulate the mechanics of the MRA. A
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Figure 2: Three examples of mother wavelets (ψ). From left to right, the Haar
wavelet; a wavelet related to the first derivative of the Gaussian probability density
function (pdf); and the Mexican hat wavelet related to the second derivative of the
Gaussian PDF [73].

“detail space” is defined based upon the mutually orthogonal property of wavelets,

for wavelets of the same dilation index j where

Wj = span{ψj,k, k ∈ Z}.

A consequence of the monotonicity of the sequence of subspaces is that for certain

choices of ψ and φ, the scaling function φj,k is orthogonal to a wavelet ψj′,k′ whenever

j ≤ j′. This implies that for an MRA

Vj = Vj−1 ⊕Wj−1 (7)

where ⊕ denotes the direct sum of subspaces Vj−1 and Wj−1, where Vj = Vj−1 +Wj−1

and Vj−1 ∩Wj−1 = {0}. Extending this recursively results in

Vj = Vj−2 ⊕Wj−2 ⊕Wj−1

and thus

Vj = Vj0 ⊕
j−1⊕
`=j0

W`.
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Wavelet Transform Benefits Constraints
CWT -Beneficial for data exploration -Highly Redundant

-Produces 2D image of 1D signal -Difficult to apply in hybrid models
DWT -Time/scale decomposition -Requires sample size of dyadic length

-Efficient computation (O(N)) -Shift variant filter; does not align with
-Succinct representation of coefficients original time series

- Resolution scales with level
-Assumes periodicity; boundary effects

MODWT -Shift invariant; stationary representation -Highly redundant
-Well defined for all sample sizes -Slower computation(O(N log2N))
-Provides high resolution at every resolution level -Each resolution level results in a vector length N
-Does not assume periodicity in data

DWPT -Time/frequency decomposition -Assumes periodicity; boundary effects
-Mimics DFT on intervals of time -Downsampling results in coarser
-Succinct representation of coefficients approximations at high level
-MODWPT method available

Table 1: Summary of wavelet decomposition methods for time series analysis

This result gives a key insight to wavelet analysis; a function can be approximated

at increasing levels of resolution expressed as a linear combination of scaling functions

φj,k combined with the difference in approximations expressed as a linear combina-

tion of wavelets ψj,k, all accomplished through the use of translation and dilation

operations [69].

2.2.4 The Wavelet Transform

This section briefly introduces various wavelet transforms being used in current

time series analysis applications. This presentation includes an assessment of relative

strengths and weaknesses of particular approaches to complement later discussion

of current literature. The wavelet transform is well documented, and particularly

helpful and in-depth presentations are found in Percival and Walden [73] and Ogden

[69]. Table 1 provides a concise analysis of the benefits and constraints for the wavelet

transforms presented later in this section. Wavelet methods require the selection of

one of these transforms based upon capability tradeoffs within each application.

2.2.5 Continuous Wavelet Transform

Equation 5 defines the translations and dilations of the mother wavelet for integer

values of j and k. Relaxing the restrictions on the indices and allowing them to take
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continuous values results in the Continuous Wavelet Transform (CWT). Ogden [69]

defines the continuous mother wavelet for a > 0, b ∈ R as

ψ(a,b)(x) = a−1/2ψ

(
x− b
a

)
(8)

and the CWT defined for any f ∈ L2(R) as

(Wψf)(a, b) = a−1/2
∫ ∞
−∞

f(t)ψ

(
t− b
a

)
dt. (9)

If ψ(a,b) is assumed to be a suitable window function, then the CWT provides infor-

mation about a signal in the time domain centered at b with radius a∆ψ [69]. This

results in a window defined as

(b− a∆ψ, b+ a∆ψ)

where the size of the window scales relative to its continuous dilation index a. Unlike

the rigid windowing of the Discrete Fourier Transform (DFT), wavelet methods scale

windows automatically to frequency. This unique property of wavelets optimizes the

approximation of a function in frequency and time simultaneously.

2.2.6 Discrete Wavelet Transform

These results naturally lead to the introduction of the discrete wavelet transform

(DWT). The DWT can be applied to the additive decomposition of a time series into

constituent detailed time series (ψj,k) reflecting variations at resolution level j and a

smoothed version of the time series (φj,k) reflecting averages at resolution level j [73].
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Therefore with wavelets defined as

φj,k(t) = 2j/2φ(2jt− k) (10)

ψj,k(t) = 2j/2ψ(2jt− k) (11)

a time series can be represented as

f(t) =
∑
k

cj0,kφjo,k +
∑
j

∑
k

dj,kψj,k (12)

where cj,k = 〈f, φj,k〉, dj,k = 〈f, ψj,k〉, and j, k ∈ Z. The time series is thus represented

as a linear combination of the shifted and scaled versions of the wavelet functions as

estimated using the wavelet coefficients cj,k and dj,k. An important consequence of

equation 34 is the separation of the approximation and detailed representations of a

signal.

Figure 15a, motivated by and adapted from presentations in the MATLAB Wavelet

Toolbox [61], provides a rudimentary representation of a three-level, j = 3, DWT of a

signal X, where X ∈ RN . The levels D1, D2, and D3 represent the detailed resolution

levels whereas S3 is representative of the smoothed approximation of the function.

The decomposition results in a concatenation of these resolution levels into a single

vector of wavelet coefficients W ∈ RN the length of the original sample.

In practice, execution of this transform is accomplished through a filter bank

approach. This approach processes a signal using decimation or downsampling by two,

where every other value of the signal is removed. This reduces the size of the signal

by half at every level of decomposition. This results in a quick and highly efficient

algorithm as every iteration requires half the number of calculations. The inverse

implementation requires a similar filter bank approach governed by upsampling, or

doubling the size of the sample by inserting zeros between every value. However, this
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Figure 3: Depiction of three-level wavelet decomposition of signal X to wavelet coef-
ficients W with decimation

approach suffers from some limitations and weaknesses.

1. The filter bank method of the DWT requires a signal sample size of dyadic

length, or an integer multiple of 2j.

2. The DWT is not shift invariant, meaning the values of the details and smooths

do not shift with the values of the original signal. The result is that the inverse

DWT can give a different reconstruction compared to the original time series

even when accounting for the shifts.

3. The DWT requires a periodicity assumption in the signal. For non-stationary

time series, this means that the DWT transform is highly dependent upon

when the time series is sampled. Significant changes in the time series across

the sample will result in significant boundary effects.
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2.2.7 Maximal Overlap Discrete Wavelet Transform

The maximal overlap discrete wavelet transform (MODWT) is a modified version

of the DWT better suited for certain applications, such as time series analysis. This

particular transform is found throughout wavelet literature under different names,

such as undecimated DWT, shift invariant DWT, wavelet frames, translation invariant

DWT, stationary DWT, time invariant DWT, and non-decimated DWT [73]. This

research adopts the use of MODWT as in Percival and Walden [73] due to their

thorough and foundational work in applying wavelets to time series. Essentially, the

MODWT does not include downsampling as in the DWT and thus uses all values of

the original signal at every level of decomposition.

The use of the MODWT provides the following key advantages over the DWT.

1. The MODWT is well defined for all sample sizes, unlike the decimated DWT

that requires a sample of dyadic length.

2. The MODWT is shift invariant, meaning each level of decomposed coefficients

aligns with the original time series. The MODWT also avoids boundary effects

found in the decimated wavelet transforms.

3. The MODWT does not down sample at each level, meaning each resolution level

contains the same number of coefficients as the original sample. This produces

a redundant but higher resolution at coarser levels compared to the decimated

wavelet transforms.

These advantages are not without costs. A notable cost is that the transform is

highly redundant and loses orthogonality. This results in dependencies between the

empirical coefficients of the scaling function and wavelets. The details and smooth

resolution level of the MODWT each contain the same number of samples as the

original signal. Although this gives a finer resolution at each level, it results in the
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Figure 4: Depiction of three-level MOWDT decomposition of signal X to wavelet
coefficients W .

number of required computations ON log2N or a cost of O log2N when compared to

the DWT.

The MODWT can be analyzed using a MRA just as in the DWT. Figures 5 and

6 provide examples of this process using four-level wavelet MRAs, utilizing the “la8”

Daubechies wavelet filter, of an ECG signal as presented in Percival and Walden [73].

The ECG sample (top panels) is obtained nasally from a patient who occasionally

experiences arrhythmia. The transform is clearly shift invariant, as the spikes in the

details (D1, . . . , D4) align perfectly with the sharp and abrupt changes in the original

data (top panel). Unlike the progressively coarse levels of the DWT, the resolution in

the higher levels of detail remain the same as the sample size for each level is identical.

2.2.8 Discrete Wavelet Packet Transform

The discrete wavelet packet transform (DWPT) decomposes every resolution level

of coefficients, resulting in a tree-like decomposition of the original signal. The

DWPT does mimic the DFT somewhat and results in a time/frequency decompo-
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Figure 5: The shift variant DWT where movement of coefficients not necessarily
aligned across resolution levels using four-level wavelet MRAs, utilizing the “la8”
Daubechies wavelet filter, of an ECG signal as presented in Percival and Walden [73].

sition, whereas earlier methods resulted in a time/scale representation. Unlike the

DWT, where each detail resolution level is preserved and not reanalyzed, each level

is subsequently decomposed. As such, a representation such as those seen in Figures

5 and 6 are not directly applicable. Similar to the DWT, this method uses downsam-

pling and results in a non-redundant representation. DWPT is used as it can provide

a more detailed analysis of a signal compared to DWT.

Figure 7 depicts the DWPT of a signal X, resulting in a tree-like decomposition.

The resulting vector of wavelet coefficientsW is the same length of the original sample,

and represents the original sample at scale and at different frequency sub-bands.
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Figure 6: The shift invariant MODWT. Movement of coefficients align across reso-
lution levels using four-level wavelet MRAs, utilizing the “la8” Daubechies wavelet
filter, of an ECG signal as presented in Percival and Walden [73].

2.2.9 Wavelet Thresholding

Wavelet thresholding is a dimension reduction and de-noising method that ma-

nipulates the transformed wavelet coefficients. This section introduces thresholding

using a brief discussion on the sparsity of the wavelet representation, followed by both

universal and adaptive thresholding techniques.

2.2.10 Sparsity of Effects

The wavelet transformation results in a sparsity of effects, where most of the key

features of a signal are captured and represented by only a few coefficients. Figure

8 depicts the sorted values of the first four levels of details for both a DWT and

MODWT from Figure 6. It is readily apparent that most of the coefficient values

are near zero for both of the transforms. However, the redundancies of the MODWT
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result in a less sparse representation of the signal, effectively increasing the number

of significant coefficients that describe the power of the signal. This denser represen-

tation becomes more pronounced at higher levels of detail.

The computational efficiency of the DWT is now apparent due to the sparse rep-

resentation. The MODWT provides a finer resolution at each level of decomposition

at the cost of a much denser, redundant representation.

When an observed signal is contaminated with stochastic noise, then an additional

consequence of the sparsity seen in Figure 8 where the noise in the signal is concen-

trated in smaller valued nonzero coefficients. These coefficients can be manipulated

to reduce or remove stochastic noise while the power of the true signal is retained in

only a few significant coefficients. Therefore, the ability of wavelet methods to model

a signal in frequency and time simultaneously grants a powerful ability to capture and

isolate signals of random noise. Manipulation of the coefficients to reduce or remove

random noise is known as thresholding, which can be applied globally to the entire

set of coefficients or adaptively applied using localized rules. Unless otherwise stated,

thresholding methods require the assumption of normally distributed observational

errors.

2.2.11 Global Thresholding

Global thresholding uses a single threshold value λ applied uniformly to all or

nearly all coefficients of the wavelet transform. Consider for a given threshold value

λ, then

f̂λ(t) =
J−1∑
j=0

2j−1∑
k=0

I{|d(n)
j,k |>λ}

d
(n)
j,kψj,k(t) (13)

where I represents the indicator function [69]. This representation of “keep or kill”

is known as hard thresholding, where any value less than or equal to the given value

of λ is set to zero. This enforces sparsity in the wavelet coefficients, resulting in
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Figure 7: Depiction of three-level DWPT decomposition of signal X to wavelet coef-
ficients W with decimation.

maintaining only those coefficients significant for representing the original signal. An

inverse wavelet transform can then be applied to recreate the original signal with

random noise removed. Then, defining the thresholded coefficients as

θ̂j,k = δλ(θ̃j,k) (14)

allows for reexpression of the hard thresholding rules as

δHλ =


x if |x| > λ

0 otherwise

. (15)
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Figure 8: Wavelet coefficients of four detail resolution levels, combined and sorted
by value, of DWT (left) and four detail resolution levels MODWT (right) sorted
individually by value using Haar wavelet from the ill-behaved time series in Figure 6.

Donoho and Johnstone [16] propose an alternative method of soft thresholding defined

as

δSλ =


x− λ if x > λ

0 if |x| ≤ λ

x+ λ if x < −λ

. (16)

Similar to hard thresholding, only wavelet coefficients greater than a threshold are

kept, however their value is shrunk closer towards zero by an amount equal to the

threshold λ [69].

These two methods are widely applied in current applications as a dimension

reduction method. However proper choice of the threshold value remains subjective,

based upon an assessed tradeoff between over- and under-smoothing the function.

Furthermore, these universal methods may underperform adaptive techniques in large

sample sizes. Donoho and Johnstone [16] propose two universal thresholds, the first
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of which is

δ =
√

2σ2 log(N) (17)

to be used when the variance of the original signal (σ2) is known. This method,

commonly referred to as VisuShrink, is a computationally efficient method that can

be applied through either soft or hard thresholding techniques. In application, when

σ2 is frequently unknown, Percival and Walden [73] recommend the use of the median

absolute deviation standard

σ̂(mad) =
median{|W1,0|, |W1,1|, . . . , |W1,N

2
−1|}

0.6745
(18)

using the N/2 values of the first details level of decomposition. Donoho and Johnstone

[16] also introduce minimax thresholding, where the threshold value is numerically

calculated based upon sample size N .

As an example of thresholding, Figure 17 displays annual Nile River minima mea-

sured from 622-1284 A.D. [73]. The raw time series is in blue, and a reconstructed time

series following a MODWT and soft thresholding is in red. Thresholding the function

has effectively smoothed the response, an action that may allow easier interpretation

and implementation into a hybrid model that requires convergence. However, over-

smoothing this function could eliminate some sharp and abrupt changes that may be

the signal of interest. Careful application of thresholding is required dependent upon

application.

2.2.12 Data Adaptive Thresholding

Data adaptive techniques attempt to improve upon global techniques by vary-

ing the threshold within the decomposition. Donoho and Johnstone [15] present

SureShrink as an extension of VisuShrink, combining a level-dependent thresholding
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Figure 9: Annual Nile River minima 622-1284 A.D. (blue) [73] and values of wavelet
approximated smoothed function (red).

technique with Stein’s unbiased risk estimator (SURE) [88]. This method is more

computationally demanding compared to VisuShrink, but is shown to reduce the

mean squared error in estimation.

Cai [9] introduces block thresholding, where a thresholding δ is determined using

groups of coefficients within a resolution level. An important note is that both Vis-

uShrink and SureShrink assume normality of the errors. McGinnity et al. [63] propose

a nonparametric method of block thresholding that does not require this normality

assumption.

2.3 General Approaches for Wavelet Methods in Forecasting

Wavelet methods offer a powerful approach to decompose a time series; however,

these techniques must be implemented in conjunction with other methods to estimate

a predicted response. This section provides an overview of such methods, generalized

into three distinct approaches: data-preprocessing, forecasting in the wavelet domain,

and hybrid models. A more detailed examination of these methods follows in Section

2.4 through a review of current applications across three disparate fields.

2.3.1 Data Preprocessing

The multiresolution analysis method provided by wavelet techniques offers a com-

putationally efficient approach for data preprocessing of a noisy time series. Resolu-
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tion levels of wavelet coefficients associated with random noise can be either removed

or manipulated through thresholding techniques, providing a smoothed approxima-

tion of the true signal of interest. An inverse wavelet transform returns the smoothed

approximation to the original factor space, allowing application of traditional time

series techniques. Figure 17 provides an example of wavelet methods to smooth a

chaotic time series.

2.3.2 Forecasting Wavelet Resolution Levels

The MODWT is both shift invariant and defined for any sample size, facilitating

a unique method of forecasting within the wavelet domain. The resolution levels

resulting from a MODWT MRA can be viewed as individual time series, each more

well-behaved then the original time series. Forecasting models, such as autoregressive

integrated moving average (ARIMA), can thus be applied to produce forecasted values

of the wavelet coefficients at each resolution level. The inverse MODWT is applied to

these extended resolution levels to create a reconstruction of the original signal that

includes forecasted values.

2.3.3 Hybrid Models

The third general application of wavelet methods consists of using the wavelet

coefficients as predictive variables in a hybrid modeling approach. This is the most

complicated approach as the transform adds to the dimensionality of the formulation

by the number of wavelet resolution levels, requiring care in implementation and pos-

sible data reduction techniques. Furthermore, each of these steps requires the manip-

ulation of tunable parameters within the transform as well as possible manipulation

of the coefficients into the predictive model. Wavelet resolution levels can be highly

collinear, requiring special considerations in certain hybrid modeling approaches.

28



Figure 10: Forecast developed in the wavelet domain using the monthly U.S. consumer
price index (CPI) from 1948 to 1999 dataset from the waveslim R package [95]. The
original data is provided in the top subplot, with descending resolution levels of a
four-level MODWT beneath. ARIMA models are fit each resolution level to produce
thirty forecasted values (red), extending each individual resolution level. An inverse
MODWT is applied to the extended resolution levels to a reconstructed CPI to include
thirty forecasted values (red).

Despite these difficulties, estimating a time series model within wavelet space

offers several highly desirable qualities in terms of predictive power, flexibility in im-

plementation, and interpretation of the wavelet parameters for insight. Primarily,

this approach allows full exploitation of the power of the wavelet decomposition as

predictive variables. Use of the coefficients of each resolution level facilitates the

identification and prioritization of individual resolution levels that are most predic-

tive, while less weight can be applied upon those resolution levels that are comprised

primarily of noise. This approach can many times accommodate additional exoge-

nous variables separate from the wavelet transform, allowing for a wide variety of

application. Proper selection of wavelet transform allows for a wide selection of pre-

diction models, with neural networks being the most common application in current
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literature.

Although approaches vary considerably, a generalization of this approach begins

with a wavelet decomposition of the original time series. The wavelet coefficients of

each resolution level are manipulated into vectors of predictive variables, and obser-

vations divided into both training and testing datasets. The training dataset and

respective observed response are used to estimate model parameters, as used in gen-

eral for estimation of models such as support vector machines and artificial neural

networks. The resulting model is the used to produce forecasted results using the

wavelet coefficients in the testing dataset. The model’s forecasted values are finally

compared to the known observed response to develop metrics to measure the model’s

effectiveness.

2.4 Review of Current Applications

The variety of implementation methods and parameters in wavelet methods allows

for tailored application across a wide array of disciplines. As such, the following

section presents a survey of current wavelet methods for forecasting to highlight best

practices and potential research gaps across three disparate fields. These fields are

selected for review due to unique requirements for timeliness and accuracy, driving

unique approaches in the application of wavelet methods. This diversity is examined

deliberately to show the wide variety of possible applications, any of which can be

applied towards meteorological data.

The following section is organized by discipline: wind speed, earthquake, and

traffic. Wind speed prediction is analyzed due to its predominantly short-term pre-

diction requirement to inform resource and operational decisions in a relatively simple,

easily understood system. Conversely, earthquake prediction is reviewed due to its

requirement for a very short-term prediction within seconds. This has driven the
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Time Horizon Range Applications
Very short-term Few seconds to 30 minutes - Electricity Market Clearing

- Regulation Actions
Short-term 30 minutes to 6 hours - Economic Lead Dispatch Planning

- Load Increment/Decrement Decisions
Medium Term 6 hours to 1 day ahead - Generator Online/Offline Decisions

- Operational Security in Day-Ahead
Electricity Market

Long Term 1 day to 1 week or more ahead - Unit Commitment Decisions
- Reserve Requirements Decisions
- Maintenance Scheduling to Obtain
Optimal Operating Cost

Table 2: Time scale classifications for wind speed prediction [85]

development of novel approaches for earthquake warning optimized for streamlined

computational efficiency. Finally, a survey of traffic prediction methods is presented

due to the wide variety of requirements that has driven a very diverse set of approaches

and wavelet method solutions.

2.4.1 Wind Speed Prediction

Research into accurate wind speed prediction models is becoming increasingly cru-

cial as power systems become more reliant upon wind-driven systems. Intermittency

of the wind is the biggest challenge for integration of these systems for managers of

both the electric power grid and electricity markets [85]. Efficient prediction of wind

speed allows improvement efforts in process and prediction yielding optimized output

from wind-driven power generators, reducing consumption of fossil fuels and increas-

ing technical advantage in a rapidly growing market [85]. Comprehensive reviews of

all wind speed prediction methods, to include some wavelet methods, can be found

in Soman et al. [85], Tascikaraoglu and Uzunoglu [90], and Wang et al. [94].

Soman et al. [85] define a series of time horizons for interest in wind speed pre-

diction, shown in Table 2. These provide a good categorization tool as each time
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horizon implies unique requirements in terms of data complexity and computational

efficiency. Wavelet methods for wind speed prediction are commonly aligned with a

short time horizon due to the method’s ability to efficiently analyze high dimension,

high frequency data.

Current studies employ wavelets in a variety of methods, predominantly through

either de-noising the signal, extending the series of wavelet coefficients, or using the

coefficients in a hybrid model. Liu et al. [50] and Singh and Mohapatra [83] both

produce a forecast by extending the series of decomposed wavelet coefficients. These

resolution levels of coefficients are treated as multiple time series that are better be-

haved than the original time series. An Auto-Regressive, Integrated, Moving-Average

(ARIMA) model is fit to extend these decomposed resolution levels, and then the in-

verse wavelet decomposition is applied to reassemble the original time series to now

include extended forecast values.

The most prevalent wavelet method is to use the decomposed coefficients to train

a hybrid model, most commonly a neural network. One notable exception is the

use of support vector machines (SVM) in Zeng and Qiao [98]. Table 3 summarizes

the literature in wind speed prediction to include the method of wavelet application.

This ranges from an application in wavelets and thresholding to de-noise the original

signal, extending the wavelet coefficients with reconstruction of an extended signal,

or use of the wavelet features to train a hybrid model.

Applications of wavelet methods in wind forecasting vary considerably, but com-

mon trends consist of the time period of interest and requirement for data reduction.

With few exception, these models produced predictions of short-term interest to in-

form decisions in economic planning and network management. This is most likely

due to the computational efficiency enabled by wavelet methods, facilitating accurate

predictions must faster compared to competing methods. Data reduction require-
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ments can be seen across methods as redundant wavelet transformations create large

data structures that are both difficult to manage and prevent timely convergence in

hybrid model applications. None of these works point to existing literature to guide

their decision over which data reduction technique to employ, and application of these

methods appears to be ad hoc without existing comparisons.

2.4.2 Earthquake Prediction

Some of the earliest applications of wavelets, such as Goupillaud et al. [23], were

used by the geoscience and seismology communities for the exploration of oil and gas

deposits. Therefore, it should come as no surprise that geoscience researchers continue

to apply these methods in areas such as the prediction of earthquake magnitude

and location. Earthquake seismology is characterized by a series of waves, most

notably the P and S waves [82]. Ruptures emit both low amplitude, high velocity P

waves and high amplitude but slower S waves that can arrive at a monitoring station

several seconds later. The time interval between the arrival of the P and S waves

increases as monitoring stations are located further from the site of the rupture. The

P waves represent low-level and imperceptible motion whereas S waves consist of

the destructive movements typically associated with earthquakes. Characterizations

of these waves are exceedingly complex and depend upon numerous factors such as

ground composition and relative position of rupture and sensor. Through evaluating

these factors, Allen and Kanamori [3] first show that exploiting this time differential

between the initial P waves and damaging S waves could be used to produce an

earthquake warning system.

Earthquake early warning systems attempt to determine the location and magni-

tude of an earthquake in sufficient time to issue a timely alert. Although only seconds

separate the arrival of P and destructive waves, timely alerts allow authorities to mit-
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Study Wavelet Method Hybrid Model Time Horizon
De Aquino et al. [14] DWT, Db3, j=3 Hybrid ANN Short/Medium
Bhaskar and Singh [8] MODWT, Mexican hat Hybrid AWNN Long
Catalão et al. [10] DWT, Db4 j=3 De-noising PSO-ANFIS Short
Catalão et al. [11] DWT, Db4 j=3 Hybrid Levenberg-Marquardt NN Short
Chitsaz et al. [12] Morlet Hybrid WNN using CSO Short
Doucoure et al. [17] DWT, Mexican hat Hybrid AWNN, Hurst predictability Short
Faria et al. [19] MODWT De-noising ARIMA Medium
Hunt and Nason [32] DWPT Hybrid PCA and linear model Short
Khan and Shahidehpour [42] DWT, Db1-4, j=3 Hybrid Spline smoothing/linear model Medium
Lei and Ran [46] DWT, j=6 Extension ARIMA Short
Liu et al. [49] DWT, j=1 Hybrid Support Vector Machine, Genetic Algorithm Short
Liu et al. [50] DWT, Db4, j=3 Hybrid ARIMA Short
Liu et al. [51] DWT, DWPT Hybrid Neuro-fuzzy ANFIS, RBF NN Short
Liu et al. [52] DWT, DWPT Hybrid ANFIS, MLP Short
Liu et al. [54] EWT Hybrid Elman NN Short
Meng et al. [65] DWPT Hybrid Crisscross optimization NN, PSO, ANN Short
Osório et al. [71] DWT, Db4, j=3 Hybrid ANFIS and mutual information Short
Singh and Mohapatra [83] MODWT Extension ARIMA Short
Zeng and Qiao [98] DWT, Mexican hat Hybrid Support Vector Machine Short
Zhang et al. [100] DWT De-noising RBFNN and seasonal adjustment Short

Table 3: Summary of current wavelet methods in prediction of wind speed

Study Wavelet Method Hybrid Model Time Horizon
Hloupis and Vallianatos [29] MODWT Hybrid Linear Model Very-short
McGuire et al. [64] DWT, CDF(2,4) Hybrid Linear Model Very-short
Reddy and Nair [74] DWT, CDF(2,4) Hybrid SVM Very-short
Simons et al. [82] DWT, CDF(2,4) Hybrid Linear Model Very-short

Table 4: Summary of current wavelet methods in earthquake prediction
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igate damage through actions such as stopping trains and alerting the populace [39].

These systems rely upon the findings of previous studies that identified the radiated

seismic energy from the first few seconds of a rupture through the P wave scale with

the final magnitude [3] [96] [70]. Olson and Allen [70] conclude that earthquake rup-

tures are deterministic in nature, allowing early warning systems to calculate a great

deal of information concerning a rupture from only the first few seconds of readings.

These results established requirements in earthquake early warning systems for ro-

bustness to noise and computational speed. Systems must be capable of capturing

the arrival of a P wave inside an inherently noisy seismological time series and then

compute the projected magnitude within the wave arrival time differential to allow

for an operationally relevant alert.

2.4.3 Analysis Using Wavelet Coefficients

Simons et al. [82] were the first to apply wavelet methods to seismological time

series for the estimation of earthquake magnitude using the P wave. This research

focused on providing a fully-automated algorithm with the speed and simplicity to

be deployed in real-world sensor networks. Previous studies conclude direct calcu-

lation of the time-domain expression of recorded waveforms is notoriously difficult

to compute and competing spectral methods produced limited predictive capability.

Simons et al. [82] present the predominant period estimator (PDE) for computing τ 2c

the predominant period of the P wave using

τ 2c = 4π2

∫ τ0
0
u2(t)dt∫ τ0

0
u̇2(t)dt

=

∫∞
0
|û(f)|2df∫∞

0
f 2|û(f)|2df

where u(t) and u̇(t) are the ground motion displacement and velocity as a function of

time t, and τ0 is the duration of the P waveform. The value for τ0 is usually assumed

to be 3 or 4, and τc is determined using an iterative algorithm in real-time. However,
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this method suffers with convergence failure resulting in significant scattering due to

the iteration and recursive calculation. Wavelet methods are then used as they are

complimentary to seismic waveforms, providing the requisite computational speed and

stability while including accepted methods for simultaneously de-noising the data.

Simons et al. [82] analyze 2,272 seismograms recorded by 142 monitoring stations

in California that record 53 seismic events at 34 distinct magnitudes. They employ

the discrete wavelet transform (DWT) using a wavelet basis of biorthogonal construc-

tion with two and four vanishing moments for the primal and dual wavelets termed

Cohen-Daubechies-Feauveau (CDF(2,4)). A DWT is calculated for each seismogram

over five resolution levels using the fast lifting algorithm of Sweldens [89] due to

computational speed and applicability to real-world systems that may have limited

on-board computational power. A threshold is Tj is defined at resolution level j in

terms of the number of coefficients at that resolution level Nj and σ̂j, the median

absolute deviation from the median of the coefficients, as

Tj = σ̂j
√

2 lnNj.

Soft thresholding of the wavelet coefficients is then applied by replacing original co-

efficients by their signed distance from the threshold. This effectively removes all

random noise, leaving only significant coefficients related to P wave detection.

Simons et al. [82] isolate a wavelet coefficient in a particular resolution level which

provides the greatest predictive power using their methodology. This coefficient is

averaged across all detecting stations and used in a linear model to produce an esti-

mate of the resulting earthquake magnitude. Results show this method predicts the

magnitude to within approximately one unit.

The methodology of McGuire et al. [64] build upon Simons et al. [82] to pro-

vide a key insight linking frequency to magnitude in the prediction of devastating
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earthquakes. The study uses the same method of wavelet transformation on sea floor

seismograms of the 8.1 magnitude 2003 Tokachi-Oki earthquake. Notably, McGuire

et al. [64] omit soft thresholding of wavelet coefficients as the arrival of the P wave

was known to be within the window of provided data. Results indicate that smaller

earthquakes result in significant wavelet coefficients typically located very near to

the initial arrival of the P wave. This trend is not found within large magnitude

earthquakes, with the largest-scale coefficients increasing in amplitude as earthquake

magnitude increases. Earthquakes with exceptional large final magnitudes build in

strength during the initial rupture, as shown in the behavior of the P wave. Use of

this method on the 2003 Tokachi-Oki earthquake confirm the findings, providing a

method to predict extremely high magnitude events.

Hloupis and Vallianatos [29] and Hloupis and Vallianatos [30] further build upon

Simons et al. [82], first with an improved magnitude estimator (WME) and later with

a wavelet-based epicenter estimator (WEpE). Hloupis and Vallianatos [29] evaluate

seismograms of 325 earthquakes collected between 2008 and 2011 from the South

Aegean Sea, focusing exclusively upon the Island of Crete. This region contains

two seismological networks resulting in average distance of coverage of 60 km. This

coverage means the network can not be characterized as a dense sensor network used

in previous studies of Simons et al. [82] and McGuire et al. [64].

The use of the MODWT further differentiates Hloupis and Vallianatos [29] work

from previous studies. Previous use of the CDF (2,4) wavelet basis was justified due

to computational speed when paired with the Sweldens [89] lifting algorithm. This

method is incredibly fast, requiring O(N) operations compared to O(N log 2N) for

MODWT. However, this is the same computational price for the popular Fast Fourier

Transformation (FFT) and is therefore deemed acceptable.

Noise is removed using methods presented in Vallianatos and Hloupis [92], where

37



MODWT are applied and certain nuisance resolution levels are removed. This ap-

plication focuses on automation, but specific criteria or automation methods are not

provided. Like previous studies, correlation is shown between maximal values of

wavelet coefficients at certain resolution levels. Therefore, a linear model is fit using

the maximum coefficient of the seventh resolution level. The results of Hloupis and

Vallianatos [29] show that the WME outperforms PDE estimators, but a compari-

son with previous wavelet-based methods is not included. This implies wavelet-based

methods may be superior to competing methods on non-dense sensor networks, allow-

ing deployment of early warning systems to networks that do not meet the system’s

strict requirements.

Hloupis and Vallianatos [30] propose the WEpE using a wavelet azimuth esti-

mation (WAE) and two stations’ sub array method. The WAE relies upon the po-

larization of the P wave for a regional earthquake. This polarization implies that

a de-noised P wave signal will have zero, or minimal, variance except in the line

of travel. The WAE is automated using the methods of Galiana-Merino et al. [21]

of wavelet de-noising, P wave detection, and azimuth estimation. The WAE is im-

plemented in real-world application in 20 shallow earthquakes against Hypoinverse

software, the current industry standard for epicenter estimation. The results show

WAE provides reduced error compared to Hypoinverse and at significantly greater

computational speed, implying the method would be acceptable for use in an early

warning system.

The WEpE combines results of the WAE with an existing method, the two sta-

tions’ sub array, to greatly improve epicenter estimation. The two stations’ sub array

combines detections from two monitoring sites to form an ellipse area of interest. The

inclusion of the direction azimuth found by WAE greatly reduces the size of the ellipse

and significantly improves the predictive power of the method compared to existing
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methods. This is especially apparent in sparse sensor networks, where competing

methods provided unstable estimates.

Reddy and Nair [74] extend the work of Simons et al. [82] by applying a sup-

port vector machine (SVM) statistical learning machine to the decomposed wavelet

coefficients. Reddy and Nair [74] utilize 1,689 seismograms associated with 108 earth-

quakes from KiK-net, an earthquake detecting network in Japan. The magnitude and

epicenter of each earthquake is provided by the National Research Institute for Earth

Science and Disaster Prevention (NIED) and the Japanese Meteorological Agency

(JMA). The wavelet decomposition method closely mirrors that of Simons et al. [82]

with a seven resolution level decomposition using a biorthogonal CDF(2,4) basis.

Soft thresholding from Simons et al. [82] is applied and a SVM is fit using a Mat-

lab toolbox. Results indicate improvements over Simons et al. [82] from one unit of

earthquake magnitude to 0.4 units.

2.4.4 Traffic Congestion Prediction

Short-term traffic forecasting can be applied to traffic incident detection using

factors such as traffic volume, density, speed, or travel times. These forecasts can

be evaluated to decrease emergency resources’ response time to incidents, routing of

traffic around the incident, and civil planning resources to improve roadway design.

Traditionally performed by human analysis, these methods rely upon recorded val-

ues for lane occupancy using spatial and temporal measures for incident detection.

Automated traffic systems have been developed since the 1980’s to accommodate in-

creasing requirements for traffic modeling. The timeliness of these forecasts depend

upon application, ranging from several hours to only seconds. Traffic patterns are

noisy and difficult to fully characterize as they derive from human action. Influences

such as the presence of traffic accidents or changing weather patterns can result in
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ill-behaved time series from traffic sensors, making traditional modeling techniques

difficult. Vlahogianni et al. [93] provide a thorough survey of short-term forecasting

methodologies.

2.4.5 Traffic Incident Detection

Wavelet methods were first applied to the traffic detection problem through a

series of companion papers: Samant and Adeli [79], Adeli and Samant [2], Adeli

and Karim [1], and some extensions to these works. Samant and Adeli [79] present

a wavelet-based two-stage feature extraction algorithm as a preprocessing tool for

training a neural network. This process utilizes a DWT and Linear Discriminant

Analysis (LDA) sequentially to both de-noise and reduce the dimensionality of raw

traffic pattern data. The DWT de-noising is accomplished using Daubechies wavelets

by removing complete detail resolution levels believed to be comprised exclusively

of noise. Human logging errors in observed data require the use of simulated traffic

incident datasets for feature extraction and modeling.

Adeli and Samant [2] apply this pre-processing algorithm to train a neural network

for traffic incident detection. The study aims to improve upon the false alarm rate in

contemporary real-world systems based upon a moving average analysis. Researchers

use an adaptive conjugate gradient neural network learning model, where weights

are chosen in the direction of the greatest improvement to system error. The neural

network displays significantly improved time for converge using pre-processed data.

Some experimentation determines this improvement is primarily due to the effects

from wavelet-based de-noising. The final model results in a faster traffic incident

algorithm with improved accuracy of approximately a 98% detection rate with less

than 1% false alarm rate. These results are shown again in Samant and Adeli [80]

when the pre-processed traffic data is applied to a fuzzy-based neural network.
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Adeli and Karim [1] provide an alternative application of the pre-processed dataset

of a single-station sensor using the methods of Samant and Adeli [79]. Unlike ear-

lier applications, this research applies a soft thresholding technique to the wavelet

coefficients prior to applying an inverse DWT, and then feeding the de-noised sig-

nal into a fuzzy clustering algorithm. The clustering algorithm is applied to reduce

the dimensionality of the dataset, since the DWT is applied only for smoothing the

data and not feature extraction. The smoothed, reduced dataset is then used to

train a radial basis function neural network (RBFNN). Karim and Adeli [41] evaluate

and compare this method against the California algorithm, a contemporary real-

world traffic incident detection method. Both real-world and simulated datasets to

assess the methods’ performance in detection rate, false alarm rate, and detection

time. The wavelet-based method outperformed the California algorithm consistently

through improvements in detection and false alarm rates. However, both algorithms

shared near identical practical detection time rates. One additional strength of the

wavelet-based method is the lack of tunable parameters. The existing California

model requires selection of certain threshold parameters based upon localized traffic

patterns. However, the wavelet-based neural network lacks any tunable parameters as

it is derived exclusively from a nonparametric approach and requires only a training

period for the neural network. Ghosh-Dastidar and Adeli [22] further expand this

work with exploration of differing wavelet and clustering approaches, finding poten-

tial improvements in the use of a Coifman wavelet and Mahalanobis distance data

clustering technique applied to a Levenberg-Marquardt backpropagation neural net-

work. Xie and Zhang [97] replicate this work, comparing a more basic implementation

of wavelets and the Levenberg-Marquardt backpropagation neural network to show

increased performance over existing neural network methods.
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Teng and Qi [91] propose an alternative approach, utilizing the wavelet trans-

form as a feature extraction of occupancy data and directly applying the resulting

coefficients in a neural network for categorization. Only occupancy data is used to

provide a fair comparison of wavelet methods with legacy models based solely on this

information, such as the California algorithm. Soft thresholding is applied to DWT

coefficients and any significant values in the detailed resolution levels are used for

a neural network classification of changing traffic patterns. Results of this method

are compared agains a multi-layer feed-forward (MLF) neural network, a probabilis-

tic neural network, the fuzzy-wavelet RBFNN algorithm of Adeli and Karim [1], a

low-pass filtering algorithm, and the California algorithm. Results indicate signifi-

cant improvements are derived from direct application of the wavelet coefficients into

training the neural network. Furthermore, using wavelets for both de-noising and

feature extraction eliminates the requirement for a clustering algorithm which may

or may not be optimal for use with a neural network.

2.4.6 Traffic Flow Detection

Increased availability of GPS and autonomous detection systems transformed

short-term traffic forecasting from an issue of single incident detection to overall

traffic flow management. These intelligence systems now provide a greater breadth of

situational awareness and control to traffic managers to optimize regional congestion.

Jiang and Adeli [36] present a wavelet-based process to detect atypical changes,

or singularities, in traffic flow. Wavelet methods are use to identify perturbation

in traffic flow outside daily and weekly traffic patterns to allow routing systems to

divert traffic to alternate routes. This research employs the discrete wavelet packet

transform (DWPT) to provide a richer decomposition of the signal. Although compu-

tationally expensive and redundant, the DWPT provides finer detail in the frequency
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information that facilitates an improved de-noising capability compared to the DWT.

Jiang and Adeli [36] apply the DWPT to the traffic sensor data to obtain a MRA of

the de-noised signal, to which statistical autocorrelation function (ACF) is applied

to analyze the correlation between MRA decomposition level and the characteristics

of the original time series. This method is presented to apply additional rigor and

objective processes to the selection of wavelet decomposition level, which is usually

accomplished using trial and error [73]. The hybrid modeling approach is shown to

have promising applicability for traffic forecasting models.

Jiang and Adeli [37] present the first integration of wavelet-methods with a dy-

namic neural network model for both short and long-term traffic forecasting. This

novel application utilizes a nonparametric dynamic time-delay recurrent wavelet neu-

ral network model that relies upon data preprocessed using a MODWT and modified

Gram-Schmidt algorithm. The non-decimated wavelet transform is redundant, how-

ever provides some excellent properties for multidimensional decomposition of a time

series. The MODWT produces far too many vectors of wavelet coefficients to be

computationally feasible in actual implementation. The modified Gram-Schmidt al-

gorithm, first proposed in Zhang [99], is used to select only those wavelet coefficients

required to produce an accurate result and discarding the rest. The resulting data

facilitates timely convergence of the dynamic neural network capable of producing

adequate results for forecasting.

2.5 Analysis of Wavelet Applications

Wavelet methods are an advanced application in signal analysis; however, their

prevalence in software and literature enables easy interpretation and implementation.

Despite this ease of use, several tunable parameters are required that strongly im-

pact the predictive accuracy of the model to include choice of level of decomposition
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and choice of wavelet function. Tascikaraoglu and Uzunoglu [90] suggest that the

complexity of wind speed analysis require the development of site-specific predictive

models. Research in both earthquake and traffic pattern prediction suggest similar

approaches. The tunable parameters of wavelet methods makes them highly adapt-

able to individual sites and allow rapid development of a site-specific model. These

methods are also highly adaptive to varied datatypes, and lack any requirement for

a stationary time series.

Applications suggest that choice of wavelet transform depends upon a tradeoff be-

tween computational efficiency and predictive accuracy. The DWPT and MODWT

and consistently preferred for accuracy; however, a DWT is preferred when com-

putational efficiency is paramount such as in earthquake prediction. None of the

application methods used the MODWPT that combines the resolution in frequency

of the DWPT with the desirable properties of the MODWT in time series analyses.

Thresholding wavelet coefficients is commonly used as a method to reduce noise in

the data, with soft thresholding techniques such as VisuShrink being the most popular

due prevalence in software packages. Very few of the studies explicitly state the

assumption for random Gaussian errors, a critical assumption to most thresholding

techniques. None of the studies under evaluation employed block thresholding and

few used any data adaptive thresholding techniques.

2.5.1 Weakness and Limitations of Wavelet Methods for Forecasting

Current literature indicates wavelet methods are a powerful tool for time series

analysis and forecast estimation; however, these techniques have some inherent weak-

nesses and limitations that must be considered. Primarily, wavelet methods can be

complex to implement and report. Wavelet techniques can require some investment of

time to delve into and understand how to best pair a wavelet method for a particular
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application. Application of wavelet methods is complicated by the wide variety of pa-

rameters for the wavelet transform such as the type of wavelet transform, number of

decomposition layers, and selection of the mother wavelet. As shown above, wavelet

methods are further complicated by their reliance upon other modeling disciplines.

Application of these techniques requires and understanding of both wavelets as well

as traditional time series models or hybrid models, depending upon the approach.

Even if the individual time series analyst understands how to apply wavelet meth-

ods, it can be very difficult to justify conclusions if a thorough understanding of this

complex underlying methodology is required.

The complexity of wavelet methods makes them best suited for very large, complex

datasets. These techniques are not meant to completely replace traditional time

series approaches, which remain highly relevant across many applications. Wavelet

methods do fill critical needs for modeling approaches where computational efficiency

is required or particular assumptions do not hold.

2.5.2 Prospects for Future Research

Many studies apply the MODWT due to its preferential qualities in time series

analysis. However, the redundancy of this transform results in a series of vectors,

equal to the level of decomposition plus one, each of which are the same length as

the original data. This creates issues from both simple data management as well as

in application for convergence in hybrid modeling. Several studies seek to address

this issue through data reduction techniques as seen in Table 5. Most of these studies

apply traditional time series techniques to assess which resolution levels of the wavelet

transform contribute to the predictability in the response, allowing removal of non-

predictable resolution levels and reducing the overall dimensionality. Development

of such measures would facilitate more efficient application of the MODWT, as well
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as enable more analysis through the scarcely used MODWPT. Additional research is

required to assess these competing approaches through comparison and generalization

for use in wavelet methods for time series analysis.

Thresholding techniques for time series are commonly used but rarely explored.

Most applications used soft thresholding techniques, primarily VisuShrink. There

was rarely an assumption or analysis for normality in error terms required by this

approach. Furthermore, application of data adaptive thresholding techniques are very

rare. Further research is required to assess these techniques in time series applica-

tions, particularly to develop guidance for preferred method by application. Soft

thresholding through VisuShrink would most likely continue to be the best in most

applications, yet chaotic time series may benefit from hard or data adaptive thresh-

olding techniques. Furthermore, these same abrupt changes may violate the required

assumption for normality in the errors, requiring a non-parametric thresholding ap-

proach such as the method of McGinnity and Chicken [62].

Selection of wavelet transform varies throughout the literature based upon the ap-

plication requirements. DWT is preferred when computational efficiency is required,

whereas the MODWT and DWPT are both preferred for time series when the sit-

uation allows. The growing prevalence of both the MODWT and DWPT in more

recent literature may be indicative of increasing capabilities of computing power. Liu

et al. [53] offer direct comparison of the performance of competing transforms in ap-

plication, with the DWPT offering the best results. None of the studies employed the

Study Method
Doucoure et al. [17] Hurst Predictability
Hunt and Nason [32] Principle Component Analysis (PCA)
Jiang and Adeli [36] Statistical Autocorrelation Function (ACF)
Jiang and Adeli [37] Modified Gram-Schmidt
Zhang et al. [100] Seasonal Adjustment

Table 5: Examples of data reduction techniques found in current literature using
wavelet methods.
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MODWPT transform or matching pursuit methods outlined in Percival and Walden

[73].

Several studies, such as Tascikaraoglu and Uzunoglu [90], state the complexity

of variables for individual sites requires unique models for every forecast location.

Conversely, several earthquake studies note that models appear to be overfit to either

specific devastating events or niche implementations within regional seismograms of

low grade events. None of the literature examines the impact to forecast, or some

measure of uncertainty, created by generalizing such a model. Wavelet methods have

been shown to be robust across implementation, such as the approach of Hloupis and

Vallianatos [29] on a sparse network array. These methods may be able to provide

a universal model that sacrifices a small amount of predictive accuracy for ease in

implementation.

An extension of Hloupis and Vallianatos [29] could consist of further analysis

into robustness of wavelet methods to sparsity of network, especially focused upon

optimization of network design. Procurement and maintenance of a sensor array is

often a relatively high cost initiative for any organization. The sparse sensor networks

are problematic as they produce fewer readings and the increased distances in sensors

result in greater levels of noise. Wavelet methods are perfectly suited to such an

implementation due to the ability to utilize reduced datasets to identify underlying

features. A possible contribution would be an assessment of network sparsity on

predictive power using various quantities of sensor returns on the same dense network.

Varying sensor quantity would evaluate a model’s ability to predict with limited

inputs. The ability of wavelet methods to provide comparable forecasts using less

sensor would allow organizations to optimize network management.

Wavelet methods rarely include a rigorous evaluation of proposed model parame-

ters such as wavelet basis, level of wavelet decomposition, correlation of coefficient to
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response, or analysis of assumptions and fit of linear models. Parameters are chosen

arbitrarily or due to some assessed quality; however, no attempt is made to quantify

or defend impacts of these selections. A designed experiment using each of these

parameters as an experimental factor would reveal how robust each model is towards

change in a parameter. This in turn would allow researchers to select a model that

is the most accurate and robust to these tunable parameters.

None of the literature reviewed uses wavelets to predict volatility in the response.

Use of wavelet-enabled autoregressive conditional heteroskedasticity (ARCH) models

is common to econometric literature to predict periods of volatility or relative calm in

financial time series. Introducing these methods to the physical sciences may enable

better prediction of periods of uncertainty.
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III. Experimental design in complex model formulation for
lightning prediction

Space launch operations at Kennedy Space Center and Cape Canaveral Space

Force Station (KSC/CCSFS) are complicated by unique requirements for near-real

time determination of risk from lightning. Weather sensor networks for lightning

forecasting produce data that are noisy, high volume, and high frequency time series

for which traditional forecasting methods are often ill-suited. Current approaches re-

sult in significant residual uncertainties and consequentially may result in forecasting

operational policies that are excessively conservative or inefficient. This work first

proposes a forecasting methodology using wavelet decomposition of chaotic weather

sensor time series and semiparametric single-index models to mitigate the chaotic

signal and any possible distributional misspecification. Then, a screening experiment

with augmentations is used to demonstrate how to explore the complex factor space

of model parameters, guiding decisions regarding model formulation and gaining in-

sight for follow-on research. Results indicate a promising technique for operationally

relevant lightning prediction from chaotic sensor measurements.1

3.1 Introduction

Advances in sensor production and scalability have driven the development of

sensor networks that are both relatively cheap to produce and easily deployable. The

Department of Defense has become increasingly reliant upon such networks to perform

tasks such as battlefield surveillance of remote areas through seismic and acoustic

monitoring [4], space-borne missile defense [40], and monitoring of lightning risk at

Kennedy Space Center and Cape Canaveral Space Force Station (KSC/CCSFS) [87].

These sensors collect data that are noisy, high volume, and high frequency time

1Paper to appear in the International Journal of Experimental Design and Process Optimisation.
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series which can be problematic when developing operationally relevant forecasts using

traditional time series analysis. Parametric assumptions may not hold or models may

over-smooth the response, losing the signal of interest in the smoothing process. The

result is a model with a high degree of residual uncertainty that forces operational

commanders to employ policies that are possibly excessively conservative or inefficient.

This research identifies and evaluates a wavelet-enabled semiparametric single-index

modeling approach for lightning warning derived using chaotic time series data at

KSC/CCSFS to meet operational requirements for timeliness and accuracy.

Accurate prediction modeling provides vital insight into complex systems for risk

assessment and management of resources; yet, the implementation and use of these

predictive models is complicated by information availability. Modern sensor networks

meant to feed such models produce high frequency, high dimensional datasets often

collected as noisy and non-stationary time series. The artifacts of interest within

these series frequently consist of sharp and abrupt changes that traditional modeling

applications may fail to accurately capture. Wavelet methods are being used in these

situations due to their ability to tackle these artifacts in a computationally efficient

manner. These wavelet methods are being employed as a preprocessing method, either

for de-noising and smoothing a time series or serving as a feature selection method.

While a hybrid wavelet approach provides ample flexibility for tailored application,

there are several challenges presented during model formulation. Wavelet techniques

can require some investment of time to delve into, especially to comprehend how

to best pair a wavelet method to a particular application. Application of wavelet

methods is complicated by the wide variety of parameters for the wavelet transform

such as the type of wavelet transform, number of decomposition levels, and selection

of the mother wavelet. Application of these techniques requires an understanding of

both wavelets as well as traditional time series models or hybrid models, depending
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upon the approach. Furthermore, the single-index model requires significant com-

putational resources for model estimation from a multivariate dataset. Therefore,

any exploration of model parameters must be efficient and judiciously use available

computational resources.

This study proposes a new modeling framework for lightning prediction and em-

ploys a design of experiments (DOE) approach using a screening experiment with

augmentation to guide and inform the complex model formulation. Section 3.2 pro-

vides an overview of techniques used in this formulation, to include both wavelet

methods and the semiparametric single index model. The intent of this first model

formulation is to apply the wavelet methodology of Section 3.3 using only chaotic

Electric Field Mill (EFM) time series in an attempt to evaluate if the sensors are

indeed predictive of lightning activity, and then evaluate the potential limits of this

particular approach. The use of designed experiments provide a clear structure to

efficiently examine model parameters and their possible interactions. Section 3.4.1

presents the series of experiments and their impact in guiding parameter selection

that produced the results discussed in Section 3.4.2.

3.1.1 Wavelets in Forecasting

Some of the earliest applications of wavelets, such as those of Goupillaud et al.

[23], were used by the geoscience and seismology communities for the exploration of oil

and gas deposits. Therefore, not surprisingly geoscience researchers continue to apply

these methods in areas such as the prediction of earthquake magnitude and location.

Earthquake early warning systems attempt to determine the location and magnitude

of an earthquake in sufficient time to issue a timely alert. Although only seconds may

separate the warning to the arrival of destructive waves, timely alerts allow authorities

to mitigate damage through actions such as stopping trains and alerting the populace
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[39]. These systems rely upon exploiting the findings of previous studies that identified

the radiated seismic energy from the first few seconds of a rupture scale with the final

magnitude [3] [96] [70]. Olson and Allen [70] conclude that earthquake ruptures are

deterministic in nature, allowing early warning systems to calculate a great deal of

information concerning a rupture from only the first few seconds of readings. These

results established requirements in earthquake early warning systems for robustness

to noise and computational speed. Systems must be capable of capturing the arrival

of initial waves inside an inherently noisy seismological time series and then compute

the projected magnitude within the wave arrival time differential to allow for an

operationally relevant alert.

Research into developing accurate wind speed prediction models is becoming in-

creasingly crucial as power systems become more reliant upon wind-driven systems.

Intermittency of the wind is the biggest challenge for integration of these systems

for managers of both the electric power grid and electricity markets [85]. Efficient

prediction of wind speed allows optimized output from wind-driven power generators,

reducing consumption of fossil fuels and increasing technical advantage in a rapidly

growing market [85]. Comprehensive reviews of all wind speed prediction methods,

to include some wavelet methods, can be found in Soman et al. [85], Tascikaraoglu

and Uzunoglu [90], and Wang et al. [94].

Wavelet methods were first applied to the traffic detection problem through a

series of companion papers: Samant and Adeli [79], Adeli and Samant [2], Adeli

and Karim [1], and some extensions to these works. Samant and Adeli [79] present

a wavelet-based, two-stage feature extraction algorithm as a preprocessing tool for

training a neural network. This process utilizes a Discrete Wavelet Transform (DWT)

and Linear Discriminant Analysis (LDA) sequentially to both de-noise and reduce

the dimensionality of raw traffic pattern data. The DWT de-noising is accomplished
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using Daubechies wavelets by removing complete detail resolution levels believed to

be comprised exclusively of noise.

3.1.2 The Lightning Prediction Problem

Figure 11: Cloud-to-ground lightning flash density (1997-2010) for the USA from the
National Lightning Detection Network [77]

KSC/CCSFS experiences one of the world’s highest incidence of lightning, impact-

ing both the launch of space vehicles and daily support activity. Figure 26 provides

a heatmap of cloud-to-ground lightning for the United States, where a high density

of activity can be seen in Florida’s central peninsula. Accurate lightning forecasts

are essential for safe flight line operations to protect both personnel and high-value

equipment, requiring both the prediction of lightning onset and the cessation of light-

ning events following a storm. A wide array of sensors are employed at KSC/CCSFS

to inform a lightning warning system comprised of ten 5 nautical miles (NM) or 6NM

circular warning regions as seen in Figure 28. The Lightning Detection and Ranging

(LDAR) system is a sensor network developed by NASA that detects and records total

lightning (both cloud-to-cloud and cloud-to-ground) within 100NM of KSC/CCSFS.
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A network of Electric Field Mills (EFM) measures the ground-level electric potential

of the atmosphere, detecting when electrified clouds move into the area. The EFM

sensors are spread throughout the KSC/CCSFS region, as seen in Figure 28. These

networks collect measurements at a 50 hertz rate, resulting in very large data sets

available for modeling. Current literature suggests lightning risk can be predicted

by a sudden change of polarity and increase of magnitude of the atmospheric elec-

tric potential as recorded by EFM networks [6] [55]. However, the electric potential

is constantly altered within the clouds which results in a chaotic and nonstationary

EFM signal [44]. The EFM signals have also been shown to experience a strong di-

urnal cycle and spatial variability specific to KSC/CCSFS [56]. These issues of high

chaotic noise and high frequency/volume data have confounded recent attempts for

more accurate predictive modeling of lightning onset or cessation.

Figure 12b depicts the eleven collection sites for Meteorological Terminal Aviation

Routine (METAR) data. These sites collect hourly measures of common meteoro-

logical factors to include cloud cover and height, pressure, temperature, dewpoint,

visibility, wind direction, wind speed, wind gust, and altimeter.

Lightning is a relatively rare event that poses significant risk towards personnel

and property. The study of lightning patterns within the USA is well documented,

with the map in Figure 26 providing one example of a visualization of detected cloud-

to-ground lightning in the contiguous United States. Notably, the concentration of

lightning activity in Florida receives more cloud-to-ground lightning than any other

state. KSC/CCSFS receives approximately 4-10 lightning flashes per kilometer every

year.

The prevalence of lightning in this region drives the need for near real-time deter-

mination of lightning risk to support operations. Launch activities at Cape Canaveral

require the forecasting of lightning activity. Personnel and high value equipment are
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(a) KSC/CCSFS map with locations of
EFM sensors and lightning warning cir-
cles

(b) Regional map of Eastern central
Florida with eleven METARs collection
locations

Figure 12: On the left, location of 12 lightning warning circles (blue) and 31 active
EFM sensors throughout the region containing both KSC/CCSFS and Patrick Air
Force Base (southernmost warning circle). On the right, a regional map of the same
area providing the location of the 11 locations for METARs data collection.

55



frequently moved about the launch complex, which geographically consists primar-

ily of flat, open coastal land with few spots for refuge from lightning. For instance,

rockets loaded with propellant may be moved from a staging area to a launch facil-

ity. A lightning strike to this piece of equipment would result in catastrophic loss of

expensive equipment, not to mention the threat to flight line personnel. Although

cloud-to-ground lightning is the main concern for most operations, flight line oper-

ations also require accurate forecasting of cloud-to-cloud lightning. This forecast of

both cloud-to-cloud and cloud-to-ground lightning, or “total lightning”, is required

for both the onset of lightning activity for stop work safety concerns, as well as the

cessation of lightning activity to allow personnel to safely return to work. Current

policy consists of an “all clear” signal after a thirty minute period without lightning

within a 10NM radius. Available literature suggests the aforementioned process is far

too conservative and results in operational inefficiencies [76]. These inefficiencies are

becoming increasingly problematic due to the growth of private space industry such as

SpaceX, Blue Origin, and numerous start-ups such as Firefly Aerospace. This private

industry growth has dramatically increased the utilization rates of Cape Canaveral

launch facilities, making improved operational efficiencies increasingly important.

Cape Canaveral possesses a dense array of weather sensors that includes both tra-

ditional sensors and tailor-made systems such as the EFM network and LDAR system.

Weather forecasters also use traditional weather measurements, a local weather radar

(WSR-88D), National Lightning Detection Network (NLDN), and daily weather bal-

loon launches. These sensor networks inform an operational warning system that

manages ten warning regions spread throughout Cape Canaveral. These warning

regions consist of 5NM or 6NM circles centered on key infrastructure locations, some-

times heavily overlapping [81]. Of note, three of the lightning warning circles do not

geographically contain a EFM sensor to provide direct coverage, as seen in Figure 28.
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The data produced by these sensor networks is inherently noisy and inappropriate

for standard modeling approaches due to the complexity of movement of atmospheric

electrostatic potential [44]. EFM data collection is further perturbed by dense net-

works of antennas, radar arrays, and other equipment and facilities supporting space

launch and communication. There have been attempts made to mitigate these distur-

bances, such as ceasing collection of an individual EFM sensor if maintenance crews

are mowing grass in the area, but these disturbances remain.

The LDAR detects both radar and flashes emitted by lightning to produce a

3D map of all lightning events within 54NM of Cape Canaveral [87]. The system

was originally designed by NASA to meet their unique operational requirements that

includes the ability to detect total lightning. The system has above a 90% correct

detection rate out to 54NM, increasing to over 99% within 14NM of Cape Canaveral

[87]. LDAR data contains timestamps for all detected lightning events, to include a

detection range and azimuth from the system’s central tower. The LDAR data are

used in this study as the response for model training and evaluation.

EFM sensors measure the vertical electric potential of the atmosphere at ground

level [44]. Each EFM site contains a series of vertically-oriented sensors that are

covered and uncovered by a grounded rotor turning at 1800 rpm yielding a recorded

measurement every 0.1 seconds [35]. The intent is to detect when an electrified cloud

moves into the area that could signify an increased chance for lightning activity,

characterized by a sudden change of polarity and increase of magnitude of the elec-

tric potential [48] [57] [58]. The original Cape Canaveral array used 34 EFM sensors.

However, currently only 31 sensors remain in active service. The network of EFM

sensors are currently used to inform decisions for both daily launch operations and

incorporate into the Launch Pad Lightning Warning System (LPLWS), a legacy sys-

tem used to inform operational decisions for space vehicle launch. A threshold value
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(a) Correlation heatmap of EFM data (b) K-means clustering of EFM sensors

Figure 13: A correlation heatmap of EFM data for 1-14 June 2013 shows predom-
inantly positive relationships between all sensors roughly aligned with geographic
location. Similarly, k-means clustering identifies groups of sensors primarily based
upon geographic location.

approach is employed due to the chaotic nature of the measurements, where a light-

ning warning or launch delay is issued if a sensor reports a measurement that exceeds

that predetermined threshold value.

Figure 13a displays a correlation heatmap between all sensors’ data, showing a

high degree of correlation amongst most of the EFM network. There are highly com-

plex relationships between EFM sensors, not easily explained by geographic location.

Nearly all correlations are positive, which makes sense as weather patterns should

move mostly uniformly despite the large associated geographic area. Of note, sensor

‘FM01’ seems uniquely uncorrelated with a large number of the sensors. Figure 13b

shows clustering analysis using k-means that results in eight identified clusters of

EFM sensors, which seem to closely align geographically as seen in Figure 28. Nor-

mal clustering analysis procedures may be converging towards too many clusters due

to a high degree of chaotic noise within the EFM data. Further research, such as

applications in wavelet-enabled discriminant analysis, may better define relationships

between sensors.
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Figure 14: Detected lightning flashes as binary variable (top) for Central Cape warn-
ing circle and raw EFM data from three sensors showing predictive yet chaotic re-
sponse, over time (seconds) for 22 May 2013.

There are several examples available of field mill data being used for lightning pre-

diction both for KSC/CCSFS and international locations. Speranza [86] employed a

neural network approach to attain a maximum 84% accuracy for KSC/CCSFS light-

ning prediction using both EFM data and surface weather measurements. Skrovan

[84] also looked at the lightning prediction problem using regression models based

upon EFM threshold values, concluding that EFM measurements too noisy to ef-

fectively fit a predictive model. Lucas et al. [56] examined the EFM data for time

series components and characterized both a strong diurnal cycle as well as spatial

variability between sensors. A series of studies looked at lightning warning systems

based on EFM data in Spain and Medelĺın, Columbia [5] [6] [55]. These studies em-

ployed a reverse in field mill polarity and threshold values to successfully indicate an

approaching thunderstorm.

The noisy and chaotic nature of EFM data complicates its direct application

through traditional modeling [44]. Figure 14 provides an example of the behavior of

three randomly selected EFM sensors seven hours prior to a detected lightning event.

A signal is a reverse in electrostatic potential building within the atmosphere prior
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to a storm, and the overall behavior of this building energy is quite erratic. The

relationship between the electrostatic charge of the atmosphere and lightning is well

documented; however, incorporating EFM readings into a model has found limited

success. Krider [44] summarizes the results of a series of early studies that attempt to

model lightning using linear regression and EFM measurements as predictors. Results

indicate that any attempt to apply such a model produces an over-simplification as

the electric charge within a thunderstorm is in constant change due to churning within

the clouds and lightning discharge.

3.2 Background

This section provides a concise overview of the methods and techniques used

in model formulation, to include wavelet methods, the semiparametric single index

mode, and principal component analysis.

3.2.1 Wavelet Transforms

The wavelet transform is used for feature extraction and noise reduction. Wavelets

model a function in time and frequency simultaneously by approximating functions

at increasing levels of resolution expressed as a linear combination of scaling functions

φj,k combined with the difference in approximations expressed as a linear combination

of wavelets ψj,k [69]. This is accomplished by projecting approximations of that func-

tion into a series of nested subspaces, each providing a different level of resolution in

time. Wavelet functions represent a family of unique functions designed to be local-

ized in time and frequency, typically defined as both a mother wavelet (ψ) and father

wavelet (φ). Through dilation and translation operations, these wavelets produce an

entire basis of wavelet functions [69]. These basis functions can be used to model

a function in a Multiresolution Analysis (MRA) which consists of successively de-
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tailed approximations of the function. Wavelets provide significant advantages over

competing methods, such as the discrete Fourier transform and windowed Fourier

transform. Wavelets localize frequency in time by adapting the size of their window

of approximation to the frequency at each resolution level [69]. The result is a time

to resolution level analysis method that optimizes the tradeoff between certainties in

frequency and time across each nested and consecutive resolution level.

3.2.1.1 Discrete Wavelet Transform(DWT)

The DWT can be applied to discrete time series, resulting in an additive decompo-

sition having constituent detailed time series (ψj,k) reflecting variations at resolution

level j and a smoothed version of the time series (φj,k) reflecting averages at resolution

level j [73]. With wavelets defined as

φj,k(t) = 2j/2φ(2jt− k) (19)

ψj,k(t) = 2j/2ψ(2jt− k) (20)

a function of time can be represented as

f(t) =
∑
j

∑
k

dj,kψj,k +
∑
k

sj0,kφjo,k (21)

where sj,k = 〈f, φj,k〉, dj,k = 〈f, ψj,k〉, and j, k ∈ Z. The time series is thus represented

as a linear combination of the shifted and scaled versions of the wavelet functions as

estimated using the wavelet coefficients cj,k and dj,k. An important consequence of

Equation 34 is the separation of the approximation and detailed representations of a

signal.

Figure 15a, motivated by and adapted from presentations in the MATLAB Wavelet

Toolbox [61], provides a rudimentary representation of a three-level, j = 3, DWT of a
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signal X, where X ∈ RN . The levels D1, D2, and D3 represent the detailed resolution

levels whereas S3 is representative of the smoothed approximation of the function.

The decomposition results in a concatenation of these resolution levels into a single

vector of wavelet coefficients W ∈ RN the length of the original sample. The wavelet

decomposition of a time series Xt, t = 1, 2, . . . , T is therefore

Xt =

j∑
k=1

Dk + Sj (22)

where Dj is the wavelet detail coefficients at scale j and Sj are the smoothed coeffi-

cients.

In practice, execution of this transform employs a filter bank approach. This

approach processes a signal using decimation, or downsampling by two, where every

other value of the signal is removed. This reduces the size of the signal by half at

every level of decomposition, resulting in a quick and highly efficient algorithm as

every iteration requires half the number of calculations. The inverse implementation

requires a similar filter bank approach governed by upsampling, or doubling the size

of the sample by inserting zeros between every value.

Although the DWT possesses many desirable attributes, it suffers from some lim-

itations in time series applications. Primary issues of note are that the filter bank

estimation method of the DWT requires a signal sample size of dyadic length, or

an integer multiple of 2j and the DWT is not shift invariant. As such, the values

of the details and smooths do not shift with the values of the original signal. The

inverse DWT can accordingly give a different reconstruction compared to the original

time series even when accounting for the shifts. Finally, the DWT requires a peri-

odicity assumption in the signal. For non-stationary time series, this means that the

DWT transform is highly dependent upon when the time series is sampled. Signifi-

cant changes in the time series across the sample will result in significant boundary
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effects.

3.2.1.2 Maximal Overlap Discrete Wavelet Transform (MODWT)

The maximal overlap discrete wavelet transform (MODWT) is a modified version

of the DWT better suited for applications like time series analysis. This particular

transform is found throughout the wavelet literature under different names, such as

undecimated DWT, shift invariant DWT, wavelet frames, translation invariant DWT,

stationary DWT, time invariant DWT, and non-decimated DWT [73]. This research

adopts the use of MODWT as in Percival and Walden [73] due to their thorough and

foundational work in applying wavelets to time series. Essentially, the MODWT does

not include downsampling as in the DWT and thus uses all values of the original

signal at every level of decomposition.

MODWT provides some key advantages over the DWT. It is well defined for all

sample sizes. The decimated DWT requires a sample of dyadic length, complicating

its use in time series applications. The MODWT is shift invariant, meaning each level

of decomposed coefficients aligns with the original time series. The MODWT also

avoids boundary effects found in the decimated wavelet transforms. The MODWT

does not downsample at each level, meaning each resolution level contains the same

(a) Discrete Wavelet Transform (DWT)
(b) Maximal Overlap Discrete Wavelet
Transform (MODWT)

Figure 15: Depiction of three-level DWT and MOWDT decompositions of signal X
to wavelet coefficients W
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number of coefficients as the original sample. This produces a redundant but higher

resolution at coarser levels compared to the decimated wavelet transforms.

These advantages are not without costs. A notable cost is that the transform is

highly redundant and loses orthogonality. This results in dependencies between the

empirical coefficients of the scaling function and wavelets. The details and smooth

resolution level of the MODWT each contain the same number of samples as the

original signal. Although this gives a finer resolution at each level, it results in the

number of required computations O(N log2N) or a cost of O(log2N) when compared

to the DWT.

Figure 16: LDAR observed lightning (red) and wavelet coefficients of a 13 level
MODWT of EFM sensor FM7 for 1 June 2013

The MODWT can be analyzed using a MRA just as in the DWT. Figure 16 pro-

vides the top levels of a 13-level MODWT of some EFM data from 1 June 2013. The

transform is clearly shift invariant, as the perturbations in the details align perfectly

with the sharp and abrupt changes in the LDAR data. This includes some movement
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in wavelet coefficients several hours prior to the lightning activity, indicating that

these high level detail levels may be predictive of lightning activity. Unlike the pro-

gressively coarse levels of the DWT, due to downsampling, the density of coefficients

in the higher levels of MODWT detail remain identical to the original sample.

3.2.1.3 Wavelet Thresholding

Wavelet thresholding is a dimension reduction and de-noising method that ma-

nipulates the transformed wavelet coefficients. This section introduces thresholding

using a brief discussion on the sparsity of the wavelet representation, followed by both

universal and adaptive thresholding techniques.

The wavelet transformation results in a sparsity of effects, where most of the key

features of a signal are captured and represented by only a few coefficients. These

coefficients can be manipulated to reduce or remove stochastic noise while the power

of the true signal is retained in only a few significant coefficients. Therefore, the

ability of wavelet methods to model a signal in frequency and time simultaneously

grants a powerful ability to capture and isolate signals of random noise. Manipulation

of the coefficients to reduce or remove random noise is known as thresholding, which

can be applied globally to the entire set of coefficients or adaptively applied using

localized rules. Unless otherwise stated, thresholding methods require the assumption

of normally distributed observational errors.

Global thresholding uses a single threshold value λ applied uniformly to all or

nearly all coefficients of the wavelet transform. Consider for a given threshold value

λ and set

f̂λ(t) =
J−1∑
j=0

2j−1∑
k=0

I{|dj,k|>λ}dj,kψj,k(t) (23)

where I represents the indicator function [69]. This representation of “keep or kill”

is known as hard (H) thresholding, where any value less than or equal to the given
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value of λ is set to zero. This enforces sparsity in the wavelet coefficients, resulting in

maintaining only those coefficients significant for representing the original signal. An

inverse wavelet transform is then applied to recreate the original signal with random

noise removed. Then, defining the thresholded coefficients as

d̂j,k = δλ(dj,k) (24)

allows for reexpression of the hard (H) thresholding rules as

δHλ (x) =


x if |x| > λ

0 otherwise

. (25)

Donoho and Johnstone [16] propose an alternative method of soft (S) thresholding

defined as

δSλ (x) =


x− λ if x > λ

0 if |x| ≤ λ

x+ λ if x < −λ

. (26)

Similar to hard thresholding, only wavelet coefficients greater than a threshold are

kept, however their value is shrunk closer towards zero by an amount equal to the

threshold λ [69].

These two methods are widely applied in current applications as a dimension

reduction method. However, proper choice of the threshold value remains subjective,

based upon an assessed tradeoff between over- and under-smoothing the function.

Furthermore, these universal methods may underperform adaptive techniques in large

sample sizes. Donoho and Johnstone [16] propose two universal thresholds, the first

of which is

λ =
√

2σ2 log(N) (27)
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to be used when the variance of the original signal (σ2) is known. This method,

commonly referred to as VisuShrink, is a computationally efficient method that can

be applied through either soft or hard thresholding techniques.

As an example of thresholding, Figure 17 displays annual Nile River minima mea-

sured from 622-1284 A.D. [73]. The raw time series is in blue, and a reconstructed time

series following a MODWT and soft thresholding is in red. Thresholding the function

has effectively smoothed the response, an action that may allow easier interpretation

and implementation into a hybrid model that requires convergence. However, over-

smoothing this function could eliminate some sharp and abrupt changes that may be

the signal of interest. Careful application of thresholding is required dependent upon

application.

Figure 17: Annual Nile River minima 622-1284 A.D. (blue) [73] and values of wavelet
approximated smoothed function (red)

Data adaptive techniques attempt to improve upon global techniques by vary-

ing the threshold within the decomposition. Donoho and Johnstone [15] present

SureShrink as an extension of VisuShrink, combining a level-dependent thresholding

technique with Stein’s unbiased risk estimator (SURE) [88]. This method is more

computationally demanding compared to VisuShrink, but is shown to reduce the

mean squared error in estimation.

Cai [9] introduces block thresholding, where a thresholding δ is determined using

groups of coefficients within a resolution level. An important note is that both Vis-

uShrink and SureShrink assume normality of the errors. McGinnity et al. [63] propose
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a nonparametric method of block thresholding that does not require this normality

assumption.

3.2.2 Principal Component Analysis

The dataset of wavelet coefficients and LDAR observed lightning events are di-

vided into training and testing datasets. Stratified samples are developed from the

training data, where only those observations three hours prior to each lightning event

are selected for model estimation. This helps improve precision of the random sam-

pling and facilitate improved convergence of estimated model parameters. The result-

ing data consist of highly redundant MODWT resolution levels that exhibit a high

degree of multicollinearity. A Principal Component Analysis (PCA) is applied to

these resolution levels to produce orthogonal principal components. Only the princi-

pal components that describe 99% of the variance are retained, resulting in significant

dimension reduction. This is particularly helpful for convergence of the single-index

model.

The MODWT results in an additive decomposition consisting of redundant reso-

lution levels. In certain applications, such as found with EFM sensors, this further

results in a high degree of multicollinearity amongst the highly correlated sensors.

This multicollinearity can cause erratic changes in model estimates and result in

significant issues with numerical estimation methods. PCA re-express these mul-

ticollinear vectors as orthogonal index vectors, while simultaneously providing the

opportunity for overall dimension reduction.

PCA finds combinations of the p EFM sensors across all j sensors to produce un-

correlated indices Z1, Z2, . . . , Zp known as principal components [60]. The procedure

results in a ranked order of indices by relative importance in contribution towards

explaining overall variance in the data Var(Z1) ≥ Var(Z2) ≥ · · · ≥ Var(Zp) [60].
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High levels of multicollinearity within the original data result in much of the variance

being represented by relatively few principal components. This may not be the case

in datasets that are not highly correlated.

3.2.3 Semiparametric Single-Index Models

The single-index model (SIM) combines the lack of distributional assumptions

of nonparametric methods with the dimension reduction capabilities of parametric

methods. The first attribute avoids any issue of distribution misspecification resulting

in model inconsistency. Some basic assumptions of linearity in the index, resulting in

a semiparametric method, significantly reduces the negative impacts of dimensionality

in nonparametric methods. However, these benefits do not come without a cost as

the SIM requires estimation of both a parameter vector and link function. The SIM

is a generalization of many popular parametric models such as normal regression,

logit, probit, and Tobit [28]. The following provides a formal definition of the SIM to

include identification requirements, dominant methods for estimation, and how this

approach is implemented in the forecasting of lightning onset.

3.2.3.1 Defining the Single-Index Model

The SIM is well documented and a general presentation can be found in Li and

Racine [47], Härdle et al. [26], and Henderson and Parmeter [28]. The most general

form of the SIM is

yi = g(ϕ(xi, β)) + ui i = 1, 2, . . . , n (28)

where g(·) is an unknown smooth function, ϕ(·, ·) is a known parametric function with

regressors x and parameter vector β, and the additive error term u is uncorrelated

and independent [28]. The dependent variable yi can be either continuous or discrete,

although some applications restrict yi to be a binary variable. The function ϕ(·, ·) is
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not required to be linear, however Henderson and Parmeter [28] state that linearity

is commonly assumed. This results in ϕ(·, ·) being equivalent to

ϕ(xi, β) = β1x1i + β2x2i + · · ·+ βqxqi

where the model contains an equal number of regressors p and parameters q. The

result is a semiparametric model where the linearity of ϕ(·, ·) is specified while the

form of g(·) is unspecified. The most common representation of the SIM is in matrix

form

Y = g(X′β0) + u (29)

where Y is the dependent variable, X ∈ Rq is the vector of explanatory variables, β0 is

the q×1 vector of unknown parameters, and u is the additive error term uncorrelated

with the index where E[u|X] = 0 [47]. The model derives its name from the scalar

value for X′β0 that provides a “single index” even though X is a vector.

3.2.3.2 Identification Conditions

Certain restrictions are imposed on the index vector to estimate the SIM. As in

linear regression, the X matrix can not be singular [47]. The unknown function g(·)

must be differentiable and can not be the constant function, otherwise β0 can never

be identified [47]. Furthermore, g(·) is assumed monotonically increasing to identify

bounds on β0 [47].

The vector of explanatory variables must have at least one continuous compo-

nent, and varying the discrete components will not divide the support of X′β0 into

disjoint subsets [47]. The use of discrete variables is especially important when de-

termining the estimation method to be employed. For instance, average derivative

estimation (ADE) is a non-iterative method that solves many of the computational
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hurdles of competing methods such as Ichimura [33] and Klein and Spady [43]. The

iterative methods require significant computational cost in terms of n nonparametric

regressions with every evaluation of the objective function while also being suscepti-

ble to nonlinear local minima and saddle points [28]. The non-iterative ADE shows

improved performance in this regard, however requires continuous variables in cal-

culation of the gradients. Horowitz [31] details some methods of evaluating discrete

and continuous variables separately, however the use of discrete variables should be

closely examined in any implementation of SIM.

As specified above, the parameter β0 is only identifiable up to a scale [47]. To

demonstrate this, given two constants α1 and α2, any g(·), and a fixed β, another

function g2(·) can always be identified where g2(α1+α2X
′β) = g(X′β) [47]. Therefore,

β0 is not identifiable without some kind of restriction to the index vector, otherwise

known as normalization. Normalizations of the index vector ensure that β0 can be

identified in location and scale. A common location normalization is to restrict the

vector of explanatory variables X to not contain a constant, meaning the parameter

vector β0 does not contain an intercept or location parameter [47]. Popular scale

normalizations include normalizing the vector β to unit length, ‖β‖ = 1, or assuming

the first component of X is both continuous and a unit coefficient [47]. Note that

coefficients for two SIMs can only be compared if the same normalization is applied

in both models [26].

3.2.3.3 Estimation Procedures

Estimating the SIM is complicated by both β0 and the link function g(·) being

unknown, making direct estimation impossible. If β0 were known, then the model

would simply become a univariate regression problem. If g(·) were known it would

become a standard nonlinear regression problem to estimate β0 [47]. Härdle et al.
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[26] present the following general algorithm for estimating a SIM:

1. Estimate β0 by β̂

2. Compute index values η̂ = X′β̂

3. Estimate the link function g(·) by using a univariate nonparametric method for

the regression of Y on η̂

Estimating the link function g(·) is relevant for most common estimation pro-

cedures, to include all procedures mentioned here. Therefore, estimation of β̂ is

of primary concern and can be accomplished using iterative methods such as semi-

parametric least squares (SLS) and psuedo maximum likelihood estimation (PMLE).

Both SLS and PMLE focus on estimating β0 through use of an objective function

that achieves convergence at the
√
n parametric rate. Nonparametric estimates of β̂

or ĝ(·) are used in the objective function, resulting in a complicated and non-trivial

estimation procedure. The objective function is not guaranteed to converge nor is

it guaranteed to converge to a unique global optimum. As a result, most methods

employ numerous random starts.

Ichimura [33] introduced methods using both SLS and a weighted version (WSLS)

which propose estimating g(X′β0) by the leave-one-out nonparametric kernel estima-

tor

Ĝ−i(X
′
iβ) ≡ Ê−i(Yi|X ′iβ) =

(nh)−i
∑n

j=1,j 6=n YjK
(
X′

jβ−X′
iβ

h

)
p̂−i(X ′iβ)

(30)

where h denotes the bandwidth. This method is effective for both a continuous and

binary response variable. The denominator is defined as

p̂−i(X
′
iβ) = (nh)−1

n∑
j=1,j 6=i

K

(
X ′jβ −X ′iβ

h

)
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but is problematic as it is random. Ichimura [33] compensates for this through the

use of a trimming function to make the denominator positive and relatively large

with high probability to aid in uniform convergence. In the WSLS, the result is to

estimate β0 by minimizing the objective function

Sn(β0) =
n∑
i=1

[
Yi − Ĝ−i(X ′iβ)

]2
w(Xi)1(Xi ∈ An) (31)

where Ĝ−i(X
′
iβ) is estimated from Equation 30, w(Xi) is a non-negative weight func-

tion, and 1(·) is an indicator function. The result is an unbiased estimator β̂ that

converges at the parametric
√
n rate.

3.3 Methodology

While there has been some very good work in the area of lightning prediction,

the current suite of methods are still somewhat lacking. A new methodology for

lightning prediction is outlined in Figure 18 and is comprised of three phases: data

preparation, model development, and evaluation. The following subsections describe

the methodology in detail.

3.3.1 Data Preparation

The raw EFM data consists of very large data frames of EFM measurements

in time series collected at a 50Hz rate. Sensors periodically miss large sections of

collection, either due to routine maintenance or due to local disturbances to the

individual sensor such as mowing activities. The METARs data frame contains hourly

weather measurements from regional airports and weather stations, as seen in Figure

12b. Both EFM and METARs data frames are summarized to the minute and mean

imputation is used to complete the datasets, where the missing values are assigned
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Figure 18: Outline of methodology. The original dataset is partitioned so the first
third becomes a training set, with the rest of the data used as a testing dataset.

the average value of the series. A MODWT is applied to the modified and completed

dataset using the R package “waveslim” [95]. The decomposed wavelet coefficients

are modified by a wavelet thresholding technique, and an inverse MODWT is used

to reconstruct the de-noised data. The resulting time series of EFM measurements

contains far less chaotic noise that facilitates convergence in a hybrid model.

The LDAR dataset consists of timestamped observations of each detected lightning

event, to include three-dimensional coordinates and distance of the lightning relative

to the main LDAR tower in central KSC/CCSFS. This system detects lightning up to

54NM, and so detected events range from the Tampa region in the west to the Atlantic

in the east. Geodesic distances assuming a spherical earth are calculated for each

LDAR detected lightning event to the central point of the desired lightning warning

circle and observations are filtered to those that fall within the desired lightning

warning circle. The LDAR data frame is then joined with the EFM and METARs
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data by time stamp to produce a final dataset for use in model development and

evaluation.

3.3.2 Model Development

The dataset is divided so that the first third is used for model training and the

remainder for testing. Stratified sampling is applied to the training dataset, reducing

the overall size to only those time periods around the relatively rare occurrence of

lightning. The stratified sampling greatly reduces the overall computational require-

ments for convergence in SIM estimation. A PCA is applied to both the EFM and

METARs data individually, and resulting index vectors are combined into a single

data frame. The SIM is estimated using the “np” package in R [27]. This estimation

package automatically selects the method of Ichimura [33] for a continuous response or

the method of Klein and Spady [43] for a binary response. Both of the aforementioned

methods normalize the first element to one and jointly estimate model parameters

and bandwidth. The method also requires at least one continuous variable, which is

satisfied in application with EFM and METARs data.

Despite steps such as dimension reduction, estimation of a SIM remains computa-

tionally demanding within multivariate applications. Computational methods such as

parallel processing can speed up estimation routines. However, there is no method to

reduce the overall requirement for computational resources for parameter estimation.

Furthermore, estimation methods use nonlinear optimization routines that can result

in convergence to localized minima. Multiple estimation routines, or multistarts, are

required to overcome convergence issues. Reduced multistarts and relaxed relative

convergence tolerance can be used for faster convergence during data exploration [27].
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3.3.3 Model Evaluation

The resulting SIM is evaluated by using the predicted response generated from

the training dataset. The training PCA indices are used to estimate a complimentary

set of testing PCA indices. A single PCA of the overall dataset is not used as it would

contaminate the testing dataset with information from the training. Likewise, a PCA

of the testing dataset alone is not used as the orthogonal indices will not align with

those used to train the model. The predicted response from the single-index model

is then evaluated against real-world LDAR observed lightning to produce a confusion

matrix describing model accuracy.

3.4 Analysis and Results

3.4.1 Designed Experiment

The flexible nature of wavelet methods allows for a wide variety of application.

However, this same flexibility results in a large number of tunable parameters which

complicate implementation. As such, wavelet techniques can require some investment

of time to delve into and understand how to best pair a wavelet method for a par-

ticular application. Without existing literature on how to apply wavelet methods to

EFM data, a series of designed experiments are conducted to guide and inform model

formulation. This approach efficiently explores individual factors and interactions to

conserve required time and preserve resources required due to the computational re-

quirements of multivariate single-index model estimation. The intent of these screen-

ing experiments is to explore the complex factor space and gain an understanding of

potential model performance using this methodology derived exclusively from EFM

data. The results of these experiments guide the development of research extensions

to improve upon a model not limited only to EFM inputs. This section presents
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concise summaries of these experiments followed by a brief discussion of some of the

challenges and lessons learned.

3.4.1.1 Experimental Design

Development of the first screening experiment is complicated by a lack of existing

knowledge of the range of values for factors and their effect upon a lightning forecast.

The results of some initial “one factor at a time” experimentation develop factors and

levels, shown in Table 6. Factor A is the size of window used to produce stratified

sampling in the training data, where larger window size correspond to longer periods

of EFM data used prior to each observed lightning event. Values are selected based

upon observation of perturbations in EFM readings one to four hours prior to a

lightning event, as seen in Figure 14. Factor B is the total percent of variance retained

following the PCA, where higher degree of variance results in more PCA indices

used for model formulation. Factor C is a two-level categorical denoting use of the

entire EFM sensor network or restriction of the data to only EFM sensors within

the particular lightning warning circle under evaluation. Factors D and E denote

the thresholding method employed to manipulate the wavelet coefficients, resulting

in smoothed EFM data.

The experimental design produced is a fractional factorial design using the design

of experiments (DOE) tool in JMP. The design chosen is a 16 run 25−1
V fractional

factorial design where no main effects or two-factor interactions are aliased with any

Factor Name Low Level Center High Level
A Sample Stratification Window Size 45 minutes 2 hours 3.25 hours
B Percent of PCA variance 85% 92% 99%
C Localization of Sensors Off On
D Thresholding approach Universal SURE
E Thresholding method Hard Soft

Table 6: Factors and levels for screening experiment
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other main effects or two-factor interactions [66]. Ten center point runs are included

to assess for curvature in the response functions.

Several models are fit using the results of the first experiment, producing Figures

19a and 19b that plot predicted responses against residuals. Figure 19b displays a

slight curvature in shape that could be indicative of curvature in the response. A pair

of t-tests for curvature indicates a lack of evidence for curvature in the true positive

response, but shows sufficient evidence to conclude curvature in the true negative

response to the .05 confidence level. The original design is augmented with eight

additional experimental runs, using D optimality, to include polynomial effects as

necessary. Figure 20 compares the fraction of design space for each design, showing

very reasonable behavior in the prediction variance even in the original design.

Figure 21 provides the color maps of correlations between both the original and

augmented design. The inclusion of eight additional runs in the augmentation allows

for estimation of polynomial effects for continuous Factors A and B. The augmented

design includes some increased aliasing between factors and interactions, however the

impact is acceptable and the design remains near-orthogonal, reducing the standard

(a) True positive (b) True Negative

Figure 19: Plot of residuals against predicted values for both true positive and true
negative rates in the original design. The plots show a generally curved pattern
indicative of possible curvature within the factors.
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Figure 20: Fraction of design space plots for the original design (blue) and augmented
design (purple). Both designs indicate a very reasonable behavior in the prediction
variance across the design space.

error of estimates in resulting models.

Conducting a series of screening experiments proved to be a highly effective ap-

proach to inform decisions regarding the complexity of the wavelet model. The struc-

ture of the experimental design allowed for an efficient exploration of a complex factor

space and provided valuable insight into the model. The approach provided an easy

and efficient framework to guide experimentation and explore factor space, especially

when compared to “one factor at a time” approaches. Initial model runs indicated

several factors may be significant, but were quickly shown to have little or no impact

to model effectiveness. The designed experiment approach proved effective in devel-

opment of an effective training response, possibly one of the biggest challenges in

the formulation of a EFM-only approach to lightning modeling. One improvement to

this approach would be to use a custom design versus a classical experimental design.

Although these modern custom designs can include more complicated alias struc-

tures, such techniques allow for a more targeted approach to focus experimentation

on significant factors using fewer runs.
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Figure 21: Color maps of the absolute value of correlations derived from the design
matrices of the initial screening design (left) and augmentation (right). The inclusion
of eight additional runs for estimation of polynomial effects in the augmented design
results in some partial aliasing within the design. However, the impacts are acceptable
and result in near-orthogonality between main effects, two-factor interactions, and
polynomial factors. The near-orthogonality of these designs reduces the standard
error of estimates in the resulting models.

3.4.2 Results

Results from the experimental design are analyzed using desirability functions

within the JMP prediction profiler. Each factor is considered in producing factor

levels for the best anticipated performance, as seen in Figure 22. Optimal parameters

include the highest levels of PCA variance and stratified sample size. The model

performed best through use of the entire sensor network, versus those geographically

close to the Central Cape warning circle. The parameters for wavelet smoothing

of the EFM data are selected as hard thresholding using the SURE technique. A

final lightning prediction model is formulated using these factor levels to evaluate the

overall performance of this modeling approach.

Figure 23 provides an overall picture of model predictive performance for 20 to

30 June 2013. This time period is a ten-day selection of time within the test dataset
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Figure 22: Prediction profiler in JMP for selection of factor levels to model per-
formance based upon the responses “one-one”, positive lightning identification, and
“zero-zero”, positive identification of lightning absence.

for which the EFM network remains fully operational, providing the best indicators

of model performance under ideal circumstances. At this high resolution, the model

produces a predictive response for all but one lightning event. Furthermore, there

only appears to be one significant false alarm event.

Overall model performance is summarized by the confusion matrix in Table 7

corresponding to a 60 minute lightning warning period for the Central Cape lightning

warning circle. The model’s predictive response, ypred ∈ [0, 1], is assessed based upon

performance in the testing dataset, resulting in a threshold value of 0.98 is chosen as

a triggering event for lightning prediction. This means the model predicts lightning

within the next 60 minutes if ypred ≥ 0.98. Although competing models from the

experiment out-performed in certain measures, this model represents the best tradeoff

between correct lightning identification against an acceptable false positive rate. The

correct identification rate not only informs of approaching lightning threat, but also

lowers the prevalence of false alarms. In the case of space launch, false alarms can
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Figure 23: Plot of overall model fit of predicted response (green) to LDAR observed
lightning within the Central Cape lightning warning circle (black) for 20-30 June
2013.

result in significant money waste.

Observed

0 1

Predicted
0

12,624/13,815

91.38%

1,191/13,815

8.62%

1
26/586

4.44%

560/586

95.56%

Table 7: Confusion matrix for model predictions 60 minutes prior to any observed
lightning within the Central Cape lightning warning circle, 20-30 June 2013. A pre-
diction or observed value of “0” corresponds to no lightning, whereas a “1” denotes
LDAR observed lightning within the lightning warning circle. Results indicate sig-
nificant improvements to existing models, with 95% accuracy in correctly identifying
lightning within the Central Cape warning circle in the next hour and 91% accuracy
in identifying the absence of lightning.

Figure 24 plots the performance of individual experimental runs in regards to
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Figure 24: Plot of results for each experimental run in the designed experiment (black
circles) and the results of the optimal formulation (red triangle). The results indicate
a wide variation in model performance given varying experimental treatments.

overall accuracy in predicting lightning and predicting the absence of lightning. The

results of the optimal formulation identified through the designed experiment is in-

cluded for reference. The results indicate a wide range of trade-offs in model perfor-

mance given varying experimental treatments. Although the model provides decent

performance in many formulations, there can be large discrepancies in performance

that would be very difficult and costly to explore using simple trial and error. This un-

derlines the efficiency and effectiveness of the DOE approach in efficiently identifying

the optimal formulation.

Table 9 provides results from competing näıve models using the same time window

as above, 20-30 June 2013. First, model accuracy is assessed 24 hours prior to any

observed lightning to assess if the model is reacting solely to diurnal variation. A

24 hour prediction offset results in a näıve model, akin to guessing lightning perfor-
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mance based upon time of day or persistence of current conditions. Results indicate

a significant loss in model accuracy due to a 24 hour offset, showing that prediction

is not simply indicative of diurnal variation. Next, the results of a persistence model

is given where a model simply predicts lightning conditions based upon the previ-

ous timestamp’s lightning condition. Results indicate a drop in accuracy for correct

lightning identification, but an increase in the correct identification of “no lightning”.

This increase in performance is due to the rarity of lightning across the entire time

period, making a näıve guess a decent predictor for the absence of lightning while

always missing the onset of lightning activity. Extensions to this research will focus

on improving these identification rates.

Observed
0 1

Predicted
0

1,440/13,815
10.42%

12,375/13,815
89.58%

1
365/586
62.29%

221/586
37.71%

Observed
0 1

Predicted
0

13,698/13,814
99.16%

116/13,814
0.84%

1
116/586
19.8%

470/586
80.2%

Table 8: Confusion matrices built to compare model performance against näıve mod-
els. The results of a simple näıve model (left) measures predictions 24 hours prior
to observed lightning to demonstrate the model is reacting to EFM conditions and
not simply a time cycle. A basic persistence model (right) develops a forecast using
only the lightning state of the previous timestamp. These results indicate that the
model is not just predicting diurnal variation or based upon conditions in the previous
timestamp.

Figures 25a and 25b provide closeups of model behavior against real-world LDAR

detected lightning. The model successfully captures lightning, particularly in periods

of sustained lightning activity. Of particular concern is the amount of false positives

on 26 June 2013 (left) and the lack of a strong model response to lightning onset on 28

June 2013 (right). Continued extensions of this modeling approach will be designed

to increase predictive qualities for such events.
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(a) (b)

Figure 25: Close-up of model predictive response (green) against binary LDAR data
for detected lightning for two time periods of sustained storms.

3.5 Conclusions

The proposed methodology indicates promising improvements to lightning predic-

tion at KSC/CCSFS. The model demonstrates significant improvement over a persis-

tence model for correct positive identification of lightning within the next 60 minutes.

The results could provide a timely predictive metric to support decision making in

space vehicle launch operations. The formulation methodology demonstrates how

the use of experimental design greatly informed and guided possible extensions to the

research. Furthermore, the results of the experimental design offer insight into poten-

tial extensions of this research designed to improve the model’s accuracy in correct

identification of the absence of lightning.

The adaptability of the single-index model to data types is a significant advantage

of this approach, and time series of alternative weather measurements can be quickly
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incorporated. Initial studies using the wavelet coefficients of EFM data moves the

prediction window to the left several hours, but chaotic noise currently prevents the

fit of accurate models. The addition of other weather datasets may allow the model

to not only capture time periods of high lightning risk, but also the triggering events

for each lightning event to provide timely warning.

This work notes a high degree of correlation amongst EFM sensors, and cluster-

ing analysis indicates possible groupings of EFM sensors. Further analysis combining

these methods with wavelet methods could provide an improved analysis of relation-

ships between sensors within the EFM network. A more sparse EFM network may

be able to provide equivalent lightning prediction, possibly providing savings in op-

eration and maintenance costs. Furthermore, this could enable the development of

small, deployable networks to remote lightning prone areas.
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IV. Imputation by Spatiotemporal Kriging and Wavelet
De-Noising of Chaotic Electromagnetic Field Sensors at

Cape Canaveral for Forecasting of Lightning Risk

Space launch operations at Kennedy Space Center and Cape Canaveral Space

Force Station (KSC/CCSFS) require near-real time determination of lightning risk.

Lightning forecasts are developed from large sensor networks that produce very large,

chaotic time series. These time series are frequently missing data due to sensor

maintenance or local perturbations in the signal. Spatiotemporal kriging estimates

data that is autocorrelation both spatially and temporally. Using this method to

impute missing data values for lightning prediction results in marked improvements

to forecasting accuracy. 1

Forecasters develop a risk assessment of lightning activity at Kennedy Space Cen-

ter and Cape Canaveral Space Force Station (KSC/CCSFS) using a dense array of

Electric Field Mill (EFM) sensors. These sensors measure the ground-level electric

potential within the atmosphere directly overhead each sensor, indicating changes in

electromagnetic energy. These changes are a phenomena shown to be predictive of

future lightning activity [6] [55]. The EFM network records data at 50Hz, resulting

in very large data structures that are high frequency and high volume. Furthermore,

these datasets are autocorrelated in regards to both temporal timestamps and spatial

distancing of the fixed EFM sensor sites. As is common across many types of sensors,

the EFM sites periodically experience periods of time missing measurements. This

can be due to routine site maintenance, sensor malfunction, or a purposeful shut-

down due to local disturbances that would perturb the sensor readings. These gaps

in collection prove problematic in some machine learning and artificial intelligence

applications as some methods are not robust to periods of missing data. Imputation

1Paper submitted to the journal Weather and Climate Extremes.
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methods are required to fill these missing gaps of information using inference from

the available data. This study applies imputation methods on the spatially-based

EFM time series making use of the inherit autocorrelation in the data, resulting in

improved modeling using machine learning and artificial intelligence techniques.

Imputation is a data pre-processing method which substitutes missing entries with

estimated values. There are many imputation methods available based upon data type

and application. The simplest imputation methods use a representative value for all

missing entries, such as the mean, median, or mode of available data. Time series

imputation is a sub-discipline which takes into account the autocorrelation between

timestamped values. For instance, use of time stamped observations of air pollutants

to produce an estimate for missing values [38]. Autocorrelation in time series is the

dependence of values between time stamped observations. This results in a great deal

of redundancy of the information within time series data, and if not accounted for can

result in a model that overstates fit [18]. Time series imputation approaches include

use of moving averages, extension of nearest observation, Kalman smoothing, and

linear or spline interpolation [67]. Likewise, spatial imputation methods are a sub-

discipline that estimates missing data values while accounting for autocorrelation

present between spatially correlated measurements. For instance, the estimate of

tree density measurements from nearby measurement sites within an especially dense

forest [75].

This paper employs a spatiotemporal imputation technique that simultaneously

accounts for autocorrelation between spatially correlated measurements collected as

a time series. Wavelet methods are used as an additional pre-processing step, serving

to de-noise the chaotic EFM measurements to allow faster convergence and estima-

tion of spatiotemporal models. Instead of a purely time series or spatial model,

spacetime approaches use all available data to infer predicted values. These methods
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prove highly useful in situations in which large amounts of a particular time series

are missing and need to be estimated. Although complex in application, such meth-

ods are of increasing importance due to the increasing prevalence of modern sensor

systems. Section 4.1 provides an overview of the EFM dataset, wavelet methods for

de-noising a time series, and spatiotemporal modeling techniques. Section 4.2 presents

the methodology and results of wavelet techniques and spatiotemporal modeling as

an imputation method. Section 4.3 applies the EFM dataset, to include values es-

timated by spatiotemporal kriging, using an existing methodology and compared to

a baseline imputation method. Conclusions and applications for future research are

provided in Section 4.4.

4.1 Methodology

4.1.1 EFM Sensor Network

Figure 26: Cloud-to-ground lightning flash density (1997-2010) for the USA from the
National Lightning Detection Network [77]

Lightning activity is particularly concentrated in the KSC/CCSFS region of cen-
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tral Florida, as can be seen in the heat-map of Figure 26. Accurate and timely

forecasts of lightning activity is essential to inform operational risk assessments that

guide both flight line and space launch activities. Current studies indicate EFM net-

works can be predictive of lightning activity through either a relatively sudden change

of polarity or an increase in magnitude of the atmospheric electric potential [6] [55].

However, constant movement and churning actions within the atmosphere result in

a chaotic response of electrostatic potential by the EFM network [44]. Figure 27

provides three examples of typical and chaotic EFM measurements prior to observed

lightning within KSC/CCSFS. Current literature also indicates a diurnal cycle to the

EFM network at KSC/CCSFS [56]. The highly chaotic EFM response stored in very

large datasets has confounded many attempts to create models to estimate lightning

prediction.

Figure 27: Top subplot is binary response of observed lightning, followed by three
typical EFM measurements chosen randomly across the entire KSC/CCSFS region
over time in seconds. The EFM measurements indicate a natural steady state in
the absence of lightning, becoming increasingly chaotic as electromagnetic potential
builds within the atmosphere.

Figure 28 provides a map of the KSC/CCSFS region with the location of all thirty-

one EFM sensors. No significant shift in EFM measurements are noted at the 50Hz
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rate, so the data is reduced by summarizing by the per minute mean of the 50Hz

signal to reduce overall data size.

For evaluation of the imputation method, data for field mill 25 is extracted from

the main data frame. The data for field mill 25 is estimated using spatiotemporal

imputation methods, and then compared against the actual observed response.

Figure 28: KSC/CCSFS map with locations of EFM sensors.

4.1.2 Wavelet De-noising

Wavelet techniques are used as part of data preprocessing to reduce chaotic noise

within the EFM response. Similar to the Fourier transform, wavelet transforms model

a function in terms of its constituent frequencies. However, wavelet methods employ

a family of unique functions that localize this approximation in time. This allows

for the simultaneous approximation of a function in terms of frequency and time.

Wavelet methods accomplish this by projecting approximations of a function into a
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series of nested subspaces, each providing a different resolution in time.

A Discrete Wavelet Transform (DWT) can be applied to a discrete time series

to produce an additive decomposition having constituent detailed time series (ψj,k)

reflecting variations at resolution level j and a smoothed version of the time series

(φj,k) reflecting averages at resolution level j [73]. Let φ represent the father wavelet

function and ψ represent the mother wavelet. Daubechies [13] provides a wide variety

of choices for this functions which generate an orthonormal basis. With wavelets

defined as

φj,k(t) = 2j/2φ(2jt− k) (32)

ψj,k(t) = 2j/2ψ(2jt− k) (33)

a function of time can be represented as

f(t) =
∑
j

∑
k

dj,kψj,k(t) +
∑
k

sj0,kφjo,k(t) (34)

where sj,k = 〈f, φj,k〉, dj,k = 〈f, ψj,k〉, and j, k ∈ Z. The time series is thus represented

as a linear combination of the shifted and scaled versions of the wavelet functions as

estimated using the wavelet coefficients cj,k and dj,k. An important consequence of

Equation 34 is the separation of the approximation and detailed representations of a

signal.

This study employs a Maximal Overlap Discrete Wavelet Transform (MODWT),

a variant of wavelet transform well-suited for applications in time series analysis.

Unlike the standard DWT which requires a dyadic sample size, the MODWT is well

defined for any sized sample. Also unlike the DWT, the MODWT is shift invariant.

This means that the wavelet coefficients remain aligned in time with the original

time series. A Haar wavelet basis is used in this implementation due to its ability
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to model jumps in the response signal. Figure 29 provides a visual representation

of the MODWT decomposition for three detail coefficient levels and a smooth level.

These properties allow the wavelet coefficients to remain aligned with regards to the

temporal position of the original time series. However, the MODWT is a redundant

transform that results in O(N log2N) required computations or a cost of O(log2N)

when compared to the DWT.

Figure 29: Depiction of a three-level MODWT decomposition of signal X to wavelet
coefficients W .

4.1.2.1 Wavelet Thresholding

A DWT or MODWT results in a sparse representation of the decomposed signal

in the form of detail and smooth wavelet coefficient levels. This sparse approximation

contains all the power of the original signal within relatively few wavelet coefficients.

The remainder of the coefficients are either zero or of relatively low magnitude, and

predominantly represent stochastic noise in the original time series. Thresholding ma-

nipulates these coefficients to reduce how stochastic noise represented in the wavelet

model.

This paper uses global thresholding, where a single threshold value λ is applied
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uniformly to all or nearly all coefficients. Consider a given threshold value λ and set

f̂λ(t) =
∑
j

∑
k

I{|dj,k|>λ}dj,kψj,k(t) (35)

where I represents the indicator function [69]. This method is known as hard (H)

thresholding, where the policy is to set coefficients to zero if less than or equal to the

given value of λ. The result that only those high magnitude coefficients are kept that

represent the original signal. Then, defining the thresholded coefficients as

d̂j,k = δλ(dj,k) (36)

allows for representation of the hard (H) thresholding rules as

δHλ (x) =


x if |x| > λ

0 otherwise

. (37)

Donoho and Johnstone [16] propose an alternative method of soft (S) thresholding

defined as

δSλ (x) =


x− λ if x > λ

0 if |x| ≤ λ

x+ λ if x < −λ

. (38)

Soft thresholding is similar to hard methods, but values are shrunk towards zero by

an amount equal to the threshold λ [69].

4.1.3 Spatiotemporal Modeling

Spatiotemporal modeling assumes a Gaussian spatiotemporal random field Z de-

fined over a spatial domain S and a temporal domain T [24]. A vector of samples
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z = (z(s1, t1), . . . , (z(sn, tn)) is then a collection of n measurements at distinct lo-

cations and times (s1, t1), . . . , (sn, tn) ∈ S × T ⊂ R2 × R [24]. Measurements may

include repeated values over time for the same location, or multiple values for various

locations at the exact same time. Estimated values for unmeasured points (s0, t0) can

be made since z can be assumed to be the realization of a spatiotemporal random

function.

Spatiotemporal kriging is a modeling approach that produces estimated values

for unmeasured locations and time using the values from the surrounding area. The

method is named after Danie Krige who developed the technique to improve the ac-

curacy of predicting the location of underground ore reserves [7]. Kriging requires

the assumption that the response is a continuous random variable over the region of

interest S × T [75]. Furthermore, this modeling approach requires an assumption

of stationary and spatially isotropic values across the domain of interest [24]. This

means independence between the univariate probability, equal probability of occur-

rence regardless of location, and the bivariate probability law, where the value of

the underlying random function between two points depends only upon their relative

distance [34].

The field Z can then be characterized with a covariance function Cst where co-

variance depends only upon distance h ∈ R and time u ∈ R [24]. The general

spatiotemporal covariance function can thus be given as

Cst(h, u) = Cov(Z(s, t), Z
(
s̃, t̃)

)
(39)

for any pair of points (s, t), (s̃, t̃) ∈ S × T where ‖s = s̃‖ = h and |t− t̃| = u [24].

Kriging modeling parameters retain the original nomenclature from geostatistics

as seen in Figure 30. The nugget effect is the point at which the semivariogram

intersects the y-axis representing semivariance. Although ideally a semivariogram
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Figure 30: Example spatial semivariogram plot from gstat package [24] [72] annotated
to include location of key kriging parameters nugget, sill, and range.

would intersect at the origin, in application measurement error may result in variance

amongst spatially similar measurements. The nugget effect could also be due to

variations at distances smaller than the sampling distances. The range is the distance

at which the semivariogram function levels off, representing the distance at which

measurements are no longer autocorrelated. The sill is the value of semivariance for

the range.

In practice, the covariance is modeled using a series of variograms. Model estima-

tion is performed using the gstat package for R [72] [24]. First, the observed data are

used to derive an empirical variogram that depicts the spatial and temporal autocor-

relation of the sample points. This empirical variogram is then used as an input to a

fitting routine for a generalized variogram model capable of describing covariance at

varying spatial distances and times.
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There are classes of generalized covariance models such as the separable covari-

ance model, product-sum model, metric covariance model, sum-metric covariance

model, and simplified sum-metric covariance model [24]. Each class includes a trade-

off between required assumptions and computational complexity. For instance, the

separable covariance model assumes spatiotemporal covariance can be represented as

Csep(h, u) = Cs(h)Ct(u)

or the product of the spatial and temporal term [24]. This results in the variogram

represented as

γsep(h, u) = sill · (γ̄s(h) + γ̄t(u)− γ̄(h)γ̄t(u))

with standardized spatial and temporal variograms, γ̄s and γ̄t, with separate nugget

effects and joint sill of 1 [24]. This study employs the Simple Sum-Metric model as it

provides the best prediction values. This modeling approach assumes identical spatial

and temporal covariance functions only with spatio-temporal anisotropy [24]. Space

and time are then matched using an anisotropy correction κ. The Simple Sum-Metric

model is calculated by

γssm(h, u) = nug · 1h>0∨u>0 + γs(h) + γt(u) + γjoint

(√
h2 + (κ · u)2

)

which uses a single nugget effect for the spatial, temporal, and joint variograms [24].

The stationary assumption of ordinary kriging further implies an assumption for

an unknown and constant mean over a search neighborhood about the estimation

point. This differs from simple kriging which assume a known mean over the en-

tire domain of interest. Ordinary kriging is a best linear unbiased estimator of an
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estimated point ẑ(s0, t0) as

ẑ(s0, t0) =
n∑
i=1

wi ∗ z(si, ti)

where wi are the spatiotemporal kriging weights, which are allowed to change across

time and location [34]. The optimal kriging weights are then found via a search neigh-

borhood of n points about the estimation point by solving the system of equations


∑n

j=1wjCst(si − sj, ti − tj) + µ = Cst(si − s0, ti − t0), ∀i = 1, . . . n∑n
i=1wi = 1

where µ is the Lagrange parameter [34] [78]. Representing the ordinary kriging system

of equations in matrix form results in

C · w = D

C̃11 . . . C̃1n 1

...
. . .

...
...

C̃n1 . . . C̃nn 1

1 . . . 1 0


︸ ︷︷ ︸

(n+1)×(n+1)

·



w1

...

wn

u


︸ ︷︷ ︸
(n+1)×1

=



C̃10

...

C̃n0

1


︸ ︷︷ ︸
(n+1)×1

whose solution, in the form w = C−1 ·D, yields the kriging weights [34].

4.2 Imputation Results and Discussion

This new methodology is evaluated by applying it to the EFM dataset. First,

the raw EFM data are summarized to the minute to reduce the overall size of the

EFM data structure. Time series data for field mill 25 is removed and stored for later

comparison against the estimates produced by spatiotemporal kriging.
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Figure 31: Observed data for field mill 25 (black) and estimated values (red) using
a Simple Sum-Metric model and spatiotemporal kriging for 1-19 June 2013, MSE
=0.474 and RMSE = 0.688.

A MODWT transform is applied to each individual EFM time series, hard thresh-

olding applied, and an inverse MODWT is conducted to reproduce the de-noised time

series. This pre-processing step reduces chaotic noise within the time series, facilitat-

ing more accurate and efficient convergence in later machine learning and artificial

intelligence applications.

Spatiotemporal modeling is accomplish using the gstat package. An empirical

spatiotemporal variogram is estimated from the EFM dataset. All available variogram

models in the gstat package are fit and assessed. The Simple Sum-Metric model results

in the best fit by RMSE, and is thus chosen for application. Spatiotemporal kriging

is then applied to interpolate values for the geodesic position of the missing field mill

site.

Figure 31 provides a visual example of the estimated response (red) against the

actual observed response (black). Despite the chaotic nature of EFM data, the spa-

tiotemporal modeling technique reconstructs much of the signal for field mill 25, with

an observed Mean Squared Error (MSE) of 0.474 and Root Mean Squared Error
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(RMSE) of 0.688. Many of the perturbations in the response are captured and mod-

eled correctly, if not always to the full magnitude of the original observed response.

This is possibly due to either the chaotic nature of the EFM data or wavelet threshold-

ing. However, this may be a desirable property as the interpolated signal is relatively

smooth and well-behaved in comparison to the chaotic raw signal. The benefit of

this smoothing would depend entirely on the impact on any further application using

machine learning or artificial intelligence.

Some modeling formulations using EFM for lightning forecasting employ mean

imputation to fill for periods of lost sensor data. Mean imputation applies the mean

of the existing time series to missing timestamped data points. Although this method

appears to provide MSE of 0.6651 and RMSE of 0.8155, the constant response fails

to provide any of the signal perturbations indicative of impending lightning activity.

Furthermore, the relatively high assessed levels of MSE and RMSE are simply due to

the EFM signal predominantly existing at a steady state measurement. The spikes

out of steady state are the artifacts of interest in EFM applications, and are the

indicators required in forecasting using machine learning or artificial intelligence.

4.3 Application of Imputed Data

The fully estimated datasets are applied to the methodology of Nystrom et al.

[68] to evaluate the impact of using a fully imputed dataset. This methodology uses

the same EFM data but with greatly reduced range of the time series to only those

periods with a high proportion of EFM sensors active. Large blocks of data estimated

by mean imputation caused the model to behave erratically. The application in this

study seeks to apply the methodology using spatiotemporal imputation and without

regard for any periods of EFM inactivity. Figure 32 provides the count of missing data

points by minute for the EFM network in June 2013 as used in Nystrom et al. [68].
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Observed
0 1

Predicted
0

27,597/27,708
99.5%

111/27,708
0.5%

1
87/1,164

7.5%
1,077/1,164

92.5%

Mean Imputation

Observed
0 1

Predicted
0

27,578/27,708
99.5%

130/27,708
0.5%

1
51/1,164

4.4%
1,113/1,164

95.6%

Spatiotemporal Imputation

Table 9: Confusion matrices for model predictions using EFM data 60 minutes prior
to any observed lightning within the Central Cape lightning warning circle for 28,872
observations during 10-30 June 2013. A prediction or observed value of “0” corre-
sponds to no lightning, whereas a “1” denotes observed or predicted lightning within
the lightning warning circle. Results indicate sizable improvements in the positive
identification of lightning when spatiotemporal imputation is used to complete the
EFM dataset.

A majority of the sensors are missing data from short periods of less than 30 minutes

when the entire network is inoperable. Linear interpolation is used to complete these

time series, as there is no data available for interpolation. The spatiotemporal kriging

methodology is then applied to the remaining time series to interpolate missing values.
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Figure 32: Count of missing data by minute for all 31 EFM sensors in June 2013,
sorted by count. Sensor KSC25 is missing the most with 17,061 minutes of missing
data, or about 39% of all data for the month.

Table 9 provides the results of lightning prediction using both mean imputation

and spatiotemporal imputation on the original EFM dataset. Results are presented
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in a confusion matrix, where the predicted state of no lightning “0” or lightning

“1” is paired against actual lightning conditions observed for the same period at

KSC/CCSFS. Model results predicting a lack of lightning are comparable between

the two datasets. Spatiotemporal imputation results in a marked increase in the

prediction accuracy for the presence of lightning (1,1) from 92.5% to 95.6%. Further-

more, this lowers the false alarm rate (1,0) that could reduce the operational impact

of unnecessary lightning warnings. These improvements in model performance both

increase safety for launch conditions and increase operational efficiency of launch and

space flight line activities. This increase in accuracy is most likely due to the preserva-

tion of perturbations within the EFM dataset using spatiotemporal kriging, providing

the semi-parametric model the key indicators for impending lightning activity.
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Figure 33: Predicted model response (green) using imputed EMF dataset against
actual observed lightning (black) on Cape Canaveral, June 2013.

Figure 33 provides a visual representation of the model’s prediction response

against the actual observed lightning at KSC/CCSFS for 10-30 June 2013. This

predicted response is estimated using the spatiotemporal imputed EFM dataset. The

model provides a predictive response to nearly all the observed lightning, with three
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apparent false alarms during the period. Some further analysis indicates the false

alarm predictions align with lightning storms within the KSC/CCSFS region that

did not produce lightning within the lightning warning circle under consideration

for the model. Future extensions of this work will focus on reducing the impact of

regional lightning storms.

Observed
0 1

Predicted
0

13,698/13,814
99.16%

116/13,814
0.84%

1
116/586
19.8%

470/586
80.2%

Table 10: Confusion matrix for performance of the näıve persistence model. This
model develops a forecast using only the lightning state of the previous timestamp.
For instance, if there is no lightning at time t, then the model predicts no lightning at
t + 1. The wavelet enabled semi-parametric modeling approach outperforms a näıve
model in this implementation and indicates this new methodology has explanatory
power in the prediction of lightning phenomena.

Table 10 provides the results of a näıve model based upon persistence, where the

model predicts the state of lightning for time t + 1 based exclusively on the state

of lightning at time t. This manner of comparison is common in the meteorological

literature, and shows whether the model under evaluation is providing explanatory

insights to weather phenomena. The wavelet-enabled semi-parametric modeling ap-

proach outperforms the persistence model, most notably in the identification of the

presence of lightning.

4.4 Conclusion

Spatiotemporal kriging provides an excellent method to recreate a missing time

series that includes spatial autocorrelation. The technique proved robust, despite the

chaotic nature of EFM measures of atmospheric electrostatic potential. Furthermore,

the interpolated time series displays evidence of some smoothing while also preserving
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the signal of interest for lightning prediction. Both of these qualities may aid in

convergence in additional machine learning or artificial intelligence applications while

still facilitation accurate and timely predictions.
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V. Conclusion

This research develops and evaluates methods to inform critical decisions using

data that is both chaotic and incomplete. The review of current literature and survey

of wavelet methods in forecasting time series are provided to examine current tech-

niques and best applications. A wavelet-enabled forecasting methodology for light-

ning is proposed using the chaotic EFM data from KSC/CCSFS. Wavelet de-noising

is applied to the chaotic EFM time series during pre-processing. A semiparametric

single-index model is then estimated from a training dataset, and then evaluated in a

testing dataset. A designed experiment is used to efficiently explore the factor space

of model parameters. Results indicate a promising method for lightning forecasting

against the baseline persistence model. Furthermore, once a model is estimated a

forecast can be quickly and efficiently calculated using updated EFM measurements.

A further research extension is the inclusion of spatiotemporal kriging as an imputa-

tion for the spatially and temporally autocorrelation EFM dataset. Results indicate

the improved imputation method produces a forecasting accuracy of over 95% using

a process that is robust to large missing pieces of the EFM time series. Comparing

the results of the proposed methodology against näıve models clearly indicates clear

improvements to lightning prediction.
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