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Abstract

This dissertation considers the problem of an intruder attempting to traverse a de-

fender’s territory in which the defender locates and employs disparate sets of resources

to lower the probability of a successful intrusion. This research is conducted in the

form of three related research components: the first component examines the problem

in which the defender subdivides their territory into spatial stages and knows the plan

of intrusion. The second component studies a similar problem but is unaware of the

intrusion plan, introduces more defensive assets capable of lowering the probability

of a successful intrusion, and examines alternative solution methods for instances of

the problem. The third component further studies the underlying problem by using a

game-theoretic framework in which the attacker observes defender location decisions

prior to formulating an appropriate intrusion plan.

Security systems must effectively detect and intercept would-be intruders with

an efficient use of limited assets. For the organization of security operations, these

operations are often decomposed into spatially distinct stages to organize efforts and

facilitate localized management of assets. Given two respective sets of detection re-

sources and interdiction resources, each having different types of resources with het-

erogeneous capabilities, this research addresses the problem of locating and allocating

them over a sequence of spatially-defined stages to effectively detect and intercept an

intruder. We set forth a mixed-integer nonlinear mathematical programming model

– and seven alternative variants – to address the underlying problem using a leading

commercial solver for global optimization. Empirical testing evaluates and compares

the effect of alternative model variants on the efficacy and efficiency of the solver to

identify global optimal solutions over multiple synthetic instances for a set of scenarios
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corresponding to specific problem feature settings. Subsequently, a designed experi-

ment examines the impact of selected problem features on the ability of the leading

commercial solver to address increasingly-sized instances of the underlying problem,

portending its utility for larger applications. The testing results reveal that the num-

ber of types of detection and interdiction resources significantly affect the relative

optimality gap achieved, and the number of defender stages is a significant predic-

tor for the required computational effort required when solving a scenario instance.

Ultimately, the superlative model variant is identified via two phases of empirical

testing and performs well with regard to both solution quality (measured by relative

optimality gap achieved) and required computational effort over various sizes of sce-

narios, identifying solutions within 0.005% of the global optimum for 77.2% of the

900 instances tested, and while only terminating due to the imposed time limit of 900

seconds for 56.8% of the same instances. The research concludes with a description

of the extensions to which these results will be applied.

Effectively detecting and interdicting intruders within a defender’s territory is a

common security problem. Often, the defender’s territory is decomposed into spa-

tially distinct stages for organizational convenience. Given an intruder attempting

to traverse a spatially-decomposed region via multiple possible paths, this research

aims to effectively and cost-efficiently identify a defensive strategy that locates sets

of detection resources and interdiction resources, each of which has different types

of resources that vary by cost and capability. We formulate and validate a mixed-

integer nonlinear programming model to solve the underlying problem first using a

leading commercial solver (BARON) and then via two genetic algorithms (RWGA and

NSGA-II). Computational testing first identifies instance size limitations for identi-

fying a global optimal solution via BARON, motivating the use of metaheuristics.

Subsequent testing demonstrates the superior performance of RWGA and NSGA-II
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on 10 randomly generated instances for each of 20 various instance sizes. For each 20

of these instance sizes, both RWGA and NSGA-II produce higher-quality and more

non-dominated solutions than BARON while using much less computational effort.

Subsequent testing of only RWGA and NSGA-II over a designed set of test instances

identifies NSGA-II as the recommended technique to solve larger-sized instances of

the underlying problem.

A relevant, applied problem in the location analysis literature is the effective loca-

tion and allocation of resources to detect and interdict intruders traversing a defended

region. For selected applications, a defender’s resources are designed to detect and/or

interdict intruders on specific parts (or stages) of the respective paths. Within this

context, this research is motivated by the problem of effectively defending a set of

population centers against attack by a limited number of intercontinental ballistic

missiles (i.e., intruders) via the location of ballistic missile defense resources to detect

and interdict them over a range of launch-to-target missile paths and their respec-

tive, spatio-temporally defined stages of flight. Assumed is an adversary capability to

observe the defensive asset locations and respond with an ICBM targeting strategy

that maximizes the expected damage of an attack. The research presents a bilevel

programming model for the corresponding Stackelberg game and, via transformations

and reformulations, identifies a single-objective mixed-integer nonlinear program that

can be addressed with any of several commercially available solvers. Upon proving

the convexity of the resulting formulation to assure reported solutions are globally

optimal, comparative testing identifies the commercial solver scip as preferred for

solving instances of the underlying problem. Empirical testing via a designed experi-

ment examines which scenario features of the underlying problem are most significant

for predicting the required computational effort to solve problem instances, yielding

insight into the practical nature of this research to address instances of increasing
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size.

In aggregate, this dissertation examines a sequence of models of increasing com-

plexity and fidelity to address the underlying problem of locating defensive assets

within an enterprise designed to detect and interdict intruders. Selected assumptions

vary across the sequence of models, differing in the manner of addressing intruder

detection, the number of intruders, and the rational behavior of an adversary. For

each such model, the research proposes and empirically examines an appropriate,

accompanying solution methodologies, assessing their efficacy and efficiency for real-

istic, synthetically-generated instances. Although the research culminates with the

proposition of a game theoretic model, arguably the most compelling approach to the

problem, aspects of each phase of the dissertation research offer new contributions to

the corpus of modeling and solution techniques to benefit this application and other

asset location problems.
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ENTERPRISE RESOURCE ALLOCATION FOR INTRUDER DETECTION

AND INTERCEPTION

I. Introduction

1.1 Motivation

The advent of the ballistic missile in World War II came with the need for bal-

listic missile defense (BMD) (Missile Defense Agency, 2013). Resulting from the

evolution of missile technology over the ensuing decades, contemporary versions of

these weapons can strike a precise location on a different side of the planet, and they

can carry nuclear warheads as well (i.e., intercontinental ballistic missiles or ICBMs).

Currently, the United States BMD enterprise consists of various, strategically-placed

sensors to detect, identify, and track missile threats. The sensors’ role is a fundamen-

tal component of successful BMD; their destruction would be a critical loss. Working

in concert with the sensors are interceptor launchers deployed to destroy incoming

ballistic missiles; each launcher and its interceptors have certain associated costs and

likelihoods of successful intercept, given positive identification and tracking of an

inbound missile.

If the United States (US) is to become and remain well-defended against various

missile threats in the future, it is important to study the BMD enterprise as a whole

and identify strategies to optimize the enterprise with respect to risk and cost, all

while adhering to the priorities of the Department of Defense (DoD). To wit, Joint

Publication (JP) 3-01, Countering Air and Missile Threats, provides the doctrinal

guidance for defense against air and missile threats targeting the United States and

1



its allies, establishing the US BMD priorities with respect to protecting assets such

as high-value Geopolitical Assets/Areas and high-value air assets (HVAA) (United

States Joint Chiefs of Staff, 2017). Hereafter, we use the term high value assets or

HVAs to refer to the assets being protected by the BMD enterprise, distinguishing

them from the BMD assets (e.g., sensors, interceptors) within the enterprise.

Figure 1. Current and Future Potential Adversary Offensive Missile Capabilities - page
7, 2019 Missile Defense Review (United States Department of Defense, 2019)

The current and future landscape of missile defense must protect against attacks

by each of four types of missiles: ballistic missiles, cruise missiles, hypersonic cruise

missiles, and hypersonic glide vehicles (Speier et al., 2017). Ballistic missiles are

ubiquitous due to arms proliferation, and the defense against these missiles is at the

core of the current missile defense enterprise (United States Department of Defense,

2019). As can be seen in Figure 1, cruise missiles are only owned by China, Russia,

and Iran; they are much fewer in number than ballistic missiles for each nation (United
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States Department of Defense, 2019), yet they pose a threat that must be effectively

countered. Lastly, both types of hypersonic weapons are currently a focus of research

and development by geopolitical adversaries (e.g., China, Russia), and for which the

US has no current defense (Speier et al., 2017).

Although each of the four types of missile threats have flight profiles that can

be decomposed for analysis, ballistic missiles are one of the simpler weapons to de-

scribe in terms of flight phases. The flight path of a BM is typically characterized via

three phases of flight: boost, midcourse, and terminal (National Research Council,

2008). The boost phase consists of the time in which the missile is being powered by

a rocket from its launch, e.g., for an intercontinental ballistic missile (ICBM) hav-

ing a range of over 5500 kilometers, into the upper atmosphere of Earth (National

Research Council, 2008). Once there, the missile separates from the booster, and

the payload adopts a ballistic trajectory towards its target, based upon the Earth’s

gravitational pull. Within the ballistic portion of the missile’s trajectory, the mid-

course phase describes the time between payload separation and when the missile

re-enters the Earth’s atmosphere (National Research Council, 2008). The terminal

phase characterizes the remainder of the BM trajectory (National Research Council,

2008). The exact distinction between the midcourse and terminal phases is not rigid;

it depends on the range of the missile and the specific payload (National Research

Council, 2008). Unlike ballistic missiles, cruise missiles are guided and powered for

the entire flight to the target (United States Department of Defense, 2019). Hyper-

sonic cruise missiles follow a trajectory similar to cruise missiles, albeit at Mach 5.0

or faster, thereby reducing the time during which a defender can detect and intercept

them (Speier et al., 2017). Finally, hypersonic glide vehicles (HGVs) are boosted into

the upper atmosphere (i.e., at 50 kilometers or higher but lower than a BM’s peak

trajectory) and return to the target at hypersonic speed with maneuverability during
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the terminal phase of flight (Speier et al., 2017).

Figure 2. Current Homeland Ballistic Missile Defense Architecture - page 42, 2019
Missile Defense Review (United States Department of Defense, 2019)

Figure 2 provides a visual representation of the assets currently resourced and

operational for US Homeland Ballistic Missile Defense. There are four distinct types

of sensors that comprise the sensing aspect of the BMD System: ground-based

and affixed, sea-based and mobile, space-based, and mobile ground-based. Ground-

based and affixed in location are the Army/Navy Transportable Radar Surveillance

(AN/TPY-2) in Turkey and Japan; Cobra Dane radar at Shemya, Alaska; and Up-

graded Early Warning Radar (UEWR) systems in California, the United Kingdom,

and Greenland. The AN/TPY-2 is the largest air-transportable X-band radar in the

world, and it can discriminate objects in the midcourse phase of flight (Missile De-

fense Agency, 2018b). The Cobra Dane radar also provides midcourse coverage for the

BMD system and is capable of detecting objects out to 2000 miles (Missile Defense

Agency, 2016a). The UEWR provides midcourse coverage as well, but it is able to
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detect objects as far as 3000 miles away (Missile Defense Agency, 2016b). In addition

to the three current UEWR systems, two existing Early Warning Radar systems at

Clear Air Force Station, Alaska, and Cape Cod, Massachusetts, are expected to be

upgraded and operational in the near future (United States Department of Defense,

2019). Sea-based and mobile sensors include the Sea-based X-band (SBX) radar as

well as the Aegis radar system. The SBX radar is an X-band radar mounted on

a self-propelled, semi-submersible platform capable of patrolling the Pacific Ocean

when deployed (Missile Defense Agency, 2018a). The Aegis weapon system, which

is employed on 22 US Navy cruisers and 62 destroyers, uses a AN/SPY radar (US

Navy, 2019). Some of these ships patrol the Pacific Ocean and are capable of detect-

ing (and intercepting) an intruder missile in the midcourse phase (US Navy, 2019).

Space-based sensors include two satellites in orbit that provide accurate tracks of

midcourse re-entry vehicles to BMD system interceptors (Missile Defense Agency,

2017b). This system was successfully demonstrated in 2013 when a test missile was

launched by the US from Hawaii towards a large empty area of the Pacific Ocean.

A space-based sensor relayed information to an Aegis ship, which launched an SM-3

missile and successfully intercepted the “intruder” (United States Department of De-

fense, 2019). Finally, selected, mobile ground-based assets have sensors to support

terminal intercept of inbound BMs. For example, Terminal High Altitude Area De-

fense (THAAD) has a built-in AN/TPY-2 radar that provides updated tracking data

to its interceptors (Missile Defense Agency, 2018b).

The cost and feasibility of successfully detecting and intercepting a missile is not

uniform across the sequential stages of its flight (National Research Council, 2008).

Because intercepting missiles in the boost phase has been deemed to be too imprac-

tical to date, intercepting them in the midcourse phase has been the next logical

point of focus. Interception in the midcourse phase has its own set of challenges,
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such as the midcourse discrimination problem. When a ballistic missile enters the

midcourse phase, the payload is no longer being propelled by its booster and employs

various decoys to make it difficult to intercept (National Research Council, 2008). To

destroy the missile, the interceptor must be able to correctly distinguish the missile

from the decoys. The sensors employed by current missile defense systems are tasked

with identifying the actual missile threat among the decoy threats. Finally, inter-

ception during the terminal phase is accompanied by greater certainty with respect

to detecting, identifying, and tracking a threat, but it has relative disadvantages.

Given the geographic expanse of the Continental United States, terminal defense of

all potential HVAs requires an extensive investment in many systems. More expensive

systems designed for boost or midcourse detection (and intercept) may be less costly,

in aggregate, to achieve the same outcomes.

The US BMD system consists of several assets capable of intercepting a missile

in different phases of its flight, and which are designed to provide a layered de-

fense of assets (United States Department of Defense, 2019; Thompson, 2020). The

US possesses the Ground-Based Midcourse Defense (GMD) system, which consists

of Ground-Based Interceptors (GBI) (United States Department of Defense, 2019).

These interceptors are staged at Fort Greely, Alaska and Vandenberg Air Force Base

in California (United States Department of Defense, 2019). The Terminal High Al-

titude Area Defense (THAAD) is a mobile system capable of intercepting missiles

in their terminal phase of flight (United States Department of Defense, 2019). The

US currently possesses seven THAAD batteries placed around the world, including

Guam and the Republic of Korea (United States Department of Defense, 2019). Each

THAAD battery is comprised of a truck-mounted launcher which can be loaded with

as many as eight interceptors (Missile Defense Agency, 2018b). The Phased Array

Tracking Intercept of Target (PATRIOT) missile defense system is another BMD as-
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set capable of intercepting missiles in their terminal phase of flight (United States

Department of Defense, 2019). There are currently eight battalions with thirty-three

PATRIOT batteries stationed in the US and seven battalions with twenty-seven PA-

TRIOT batteries stationed overseas (United States Department of Defense, 2019).

Each of these batteries consists of six launchers (with some possible exceptions), and

each launcher is capable of firing either 16 PAC-3 missiles or 4 PAC-2 missiles simul-

taneously (Gourley, 2011).

A specific missile threat to the US and its allies that motivates this study arises

from the Democratic People’s Republic of Korea (DPRK). In recent years, there has

been an escalation in the DPRK’s missile capability and testing that poses increasing

danger. In 1998, the DPRK launched their first ballistic missile – the Taepodong-

1 (Arms Control Association, 2019). Shortly thereafter, the DPRK agreed to stop

testing and launching ballistic missiles. For the next ten years, there were only a

few isolated incidents that could be classified as a missile test. However, in the most

recent ten years, there has been a significant increase in testing, and in the last

year alone, there have been at least eight reported tests (Arms Control Association,

2019). These various events comprise testing of both short-range ballistic missiles

and intermediate-range ballistic missiles, most of which terminated their flight in the

Sea of Japan without causing any physical harm (Arms Control Association, 2019).

In addition to the increase in quantity of its ballistic missile tests, the DPRK has

achieved increasing success of its testing. Between 1998 and 2014, there were ap-

proximately six successful DPRK missile launches (Arms Control Association, 2019).

Since then, there have been approximately 25 successful DPRK tests related to bal-

listic missiles. Most of those tests simply launch a missile, but some tests relate to

the engines that propel the missiles into the upper atmosphere.

The US BMD Enterprise includes assets deliberately arrayed to counter the threat
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of ballistic missile attack against CONUS by the DPRK. As discussed previously, the

assets that the US has to intercept a missile fired from the DPRK include the GBIs

in Fort Greely, Alaska, which are staged directly under the expected path of a DPRK

ballistic missile (United States Department of Defense, 2019). In addition, the Aegis

cruisers deployed by the US Navy are capable of defending the areas near Japan that

the DPRK missiles historically have flown over during their tests.

Recently, there has been a lack of consensus regarding not only the investments

that should be made to the future US missile defense enterprise, but also regarding

the question of where to locate the current assets and allocate the existing resources

to be most effective. For example, the US Navy’s Chief of Naval Operations (CNO)

recently advocated for the US Department of Defense to reconsider the use of Aegis

ships being used to statically patrol a region of the Pacific Ocean to protect against

the missile threat from the DPRK, and the CNO proposed DoD simply leverage

ground-based systems to protect those assets instead (Larter, David B., 2018). If the

US missile defense system is to be most effective, an enterprise-wide examination is

necessary, leveraging appropriate modeling to recommend future courses of action for

resource investment.

1.2 Problem Statement

Given the motivating problem, this research seeks to address the following problem

statement:

Efficiently allocate and locate limited detection-and-tracking and interception

resources within a Ballistic Missile Defense enterprise to effectively1 defend a

set of stationary, ground-based assets against an intercontinental ballistic missile

1This adverb implies the US priority goals and tradeoffs via multiple, (potentially) competing
objectives.
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attack, while seeking solution robustness to account for increasingly sophisticated

adversary strategies.

However, we note the necessarily classified nature of selected capabilities in the

U.S. missile defense enterprise. For that reason, this research instead addresses an

analogue to the aforementioned problem statement, while still accounting for impor-

tant characteristics of both ballistic missiles and the BMD enterprise.

Although the aforementioned problem statement indicates defense against a bal-

listic missile threat, we seek to develop models suitable for countering BM, CM, HGV,

or HCM threats, subject to appropriate parameterization. As such, the models within

this research should be generalizable to a threat having characteristics common to

each of these types of missiles. Each type of missile has a launch point, an HVA target,

and a spatiotemporal flight path, the latter of which is commonly decomposed into

phases for the application of defensive assets (e.g., boost, midcourse, and terminal

stages of flight for a BM).

With respect to countering an intruding missile, the defensive efforts in each stage

of flight are comprised of enterprise resources applied to respectively detect, track,

and subsequently intercept the missile. Of course, the entire defensive enterprise

performance is of interest, not any stage-specific performance.

Moreover, successful intercept of missiles is not the only metric for success. If

the enterprise can perform in an efficient manner with respect to other outcomes

(e.g., absolute enterprise cost, modifications to an existing enterprise, return on in-

vestments), the enterprise is more likely to garner the support from military and

political leadership needed to acquire, deploy, and operate it. Additionally, such out-

comes have minimal acceptable standards of performance; whereas cost should be

minimized, there does exist limited capital (i.e., budget) for acquiring new assets for

the enterprise.
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Thus, from a practical perspective, this research addresses the previously men-

tioned problem statement indirectly by orienting instead on the more generalized

problem statement:

Efficiently allocate and locate limited detection, tracking, and interception re-

sources within a defensive enterprise to effectively defend a set of stationary,

assets against an attack by multiple intruding assets, for which the intrusion

paths can be reasonably decomposed into geospatial (and possibly spatiotemporal)

stages, while seeking solution robustness to account for increasingly sophisticated

adversary strategies.

1.3 Intended Contributions

This dissertation will make three contributions to the literature, which collectively

will address the problem statement in Section 1.2, albeit for the more generalized (i.e.,

unclassified) framework of intercepting intruders using assets within a detection-and-

interception enterprise. To wit, this research will:

1. Develop an enterprise model to locate and allocate limited resources for the

effective detection and intercept an agent for which the intrusion plan is known.

2. Develop an enterprise model to locate and allocate resources for the effective

and efficient detection and intercept of agents for which the decision maker has

limited knowledge about intrusion plans.

3. Within the context of a Stackelberg game, develop an enterprise model to al-

locate resources for the effective detection and intercept of agents for which

the possible intrusion paths are known, but the agents observing the location

decisions and subsequently traverse routes corresponding to a (collective) best

response.
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1.4 Organization of the Dissertation

Chapters II, III, and IV respectively address the three enumerated contributions

in Section 1.3 wherein each chapter motivates and describes the problem of interest,

reviews the pertinent literature (or literature to be surveyed) that informs model-

ing and/or solution methodology development, and presents the expected modeling

techniques, solution methods, and/or analyses.
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II. Enterprise Resource Location-Allocation to Detect and
Interdict Intruders

2.1 Introduction

Many contemporary problems require an enterprise model that aims to identify

the appropriate use of disparate resources to detect and intercept intruders in a sys-

tem. One such problem is ballistic missile defense (BMD), wherein a defender must

array sets of radars and interceptors to defend cities against an adversary’s launch

of ballistic missiles. Other problems such as border protection, the interdiction of

refugee movement, cybersecurity, and the prevention of infection spread by natural

biological immune systems are likewise characterized by similar objectives, resource-

outcome relationships, and constraints. Each of these motivating applications entails

a defender seeking to protect fixed assets and an intruder attempting to reach, and

possibly attack, those assets by traversing a spatial region. As it relates to a BMD ap-

plication, intruder missiles seek to destroy high value assets (HVAs) in the defender’s

territory. In the refugee and border protection application, refugees seek safe havens

and resources such as shelter and water within the territory of the defender (Mahecic,

2020). In the cybersecurity application, a hacker may attempt to steal sensitive user

data from a server within a computer network (Schlesinger and Solomon, 2020). In

the immune system application, an infection may attempt to spread to attack vital

organs via the bloodstream (O’Connell and Cafasso, 2018).

Each of these applications also has defenders with a set of HVAs to protect, as

well as limited resources to aid in that protection. The resources of the defender typ-

ically contribute towards either detection or interception of the intruder(s) although,

for selected applications, a subset of resources may serve both purposes. In the bor-

der protection application, sensors along the border and the region within it alert a
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defender to border crossings and enable interceptors (e.g., border agents) to meet,

detain, and process the refugees. In the cybersecurity application, firewalls inhibit

access to a network and alert users of attempts to steal data, as well as enable efficient

employment of (virtual and physical) countermeasures to interdict the intrusion at-

tempt and prevent further penetration of the network. In the immune system, white

blood cells patrol the body and, if an infection is detected by receptors on the surface

of the white blood cell, more are sent to interdict the infection and multiply rapidly

to fight it. (For this application, white blood cells both detect and interdict intruding

infection agents.) In the BMD application, a defender’s radar assets detect and track

intruder missiles, and defender interceptors engage and destroy the missiles.

These applications also exhibit a defender allocating detection and interception

resources to different spatial stages of a would-be intruder’s attack. In the BMD ap-

plication, inbound ballistic missiles have three stages of flight (i.e., boost, midcourse,

and terminal (National Research Council, 2008)), and the defender attempts detect

and intercept the intruder in each stage. In the border application, similar to the

BMD application, there are multiple layers of detection and interception in place.

This framework allows border officials more opportunities to detect refugee move-

ment. In the cybersecurity application, a firewall uses multiple filters to attempt to

detect malicious packets of information and then discards them if they are deemed

malicious. The infection application can be partitioned into stages (e.g., introduc-

tion, bloodstream, organs), although the body’s immune system does not necessarily

consider them separately.

In each of these applications, it is also apparent that an enterprise approach is

necessary. Examining the costs of, and resource allocation to, the various BMD as-

sets should be conducted on an enterprise level rather than an asset-by-asset basis.

Examining only the sensors in the BMD application allows for tracking of an intruder

13



missile, but if the interceptors are not located optimally, the missile can still dam-

age an HVA, unimpeded. In the border security application, if sensors are placed

optimally and the border crossings are detected but the refugees are not intercepted,

the enterprise has failed to achieve its intended outcomes. If users are only alerted

to a network breach after data is stolen by a hacker and there are no firewalls in

place, the cybersecurity enterprise is likewise unsuccessful. If the human body fails

to rapidly multiply the white blood cells surrounding an infection, the infection will

continue to spread and attack more areas of the body. A holistic approach allows

for a more cost-effective allocation of resources within the enterprise while addressing

the system-wide outcomes, vis-á-vis a myopic approach that yields suboptimal costs

and performance.

In each of these different applications, optimizing one area of a defense enterprise

is not sufficient. There is a natural trade-space to be examined between the cost

and performance of an enterprise. When considering the relative priorities imposed

on the different objectives, a more detailed tradeoff analysis is appropriate. Given

the motivating problems above, this research seeks to address the following problem

statement:

Given two respective sets of detection resources and interdiction resources, each

having different types of resources with heterogeneous capabilities, locate and

allocate them over a sequence of spatially-defined stages and respective candidate

locations within each stage to effectively detect and intercept an intruder for

which the intrusion plan is known.

2.1.1 Literature Review

There are several threads of research pertinent to the aforementioned problem

statement, and a review of the published, technical literature relating to the different
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threads is necessary. The major areas of research related to this study are resource

location and allocation models, enterprise resource models, and network interdiction

models. The literature on resource location and allocation is rich and extensive,

encompassing various types of problems over a large span of time. This research

thread can be traced back to Hakimi’s (1964) early study of location problems, and

later followed by Matlin (1970), who studied the Missile Allocation Problem (MAP).

MAP adopts the offensive framework of allocating missiles to targets in a manner

that maximizes the expected damage inflicted. Beyond the more abstract problem

of allocating resources is the examination of resource location, as well as resource

location-and-allocation. Considering binary coverage assumptions (i.e., a demand ei-

ther is covered or not by a located facility), there are two major classes of models

in this thread. Within the first major class, set covering location problems (e.g.,

Church and ReVelle (1976)) and maximal covering location problems (e.g., Church

and ReVelle (1974); Berman and Krass (2002)) identify the optimal location of fa-

cilities having fixed covering distances to serve demands and seek to minimize the

number (or cost) of facilities used as well as maximize the demands covered, alter-

natively as objectives or constraints. Within the second major class, p-median and

p-center techniques determine location-and-allocation decisions (Hakimi, 1964, 1965),

wherein every demand is covered by (i.e., assigned to) a facility, but a specified, lim-

iting covering range does not exist for facilities. Additional examinations consider

partial coverage (Karasakal and Karasakal, 2004) and probabilistic coverage (Daskin,

1983). Beyond the scope of this review are several extensive surveys of the related

literature. An interested reader is referred to works by Drezner and Hamacher (2001),

Daskin (2011), Laporte et al. (2015), and Church and Murray (2018).

The literature that specifically applies resource location and allocation method-

ologies to locating detection and interdiction resources (hereafter referred to equiva-
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lently as a sensor and interdictor location problem) is also quite extensive, although

the applications are more nuanced. Related to BMD, there is work within a game

theoretic context that studies optimally placing missile batteries (e.g., Han et al.

(2016), Boardman et al. (2017)). These works use the framework of a two-person,

three-stage, extensive form, zero-sum game for which there is assumed to be complete

and perfect information between players to model the BMD engagement. In a border

protection application, Musman et al. (1997) studied the issue of detecting elusive

targets along a border with using limited sensor assets, and Lessin et al. (2019) ex-

amined the problem of relocating sensors to account for incapacitated or degraded

sensors. In the cybersecurity domain, allocating sensors to an information system to

minimize compromised information is also studied (e.g., Nandi et al. (2016)). Re-

lated to biological immune systems, Huang (2000) developed algorithms that mimic

the body’s immuno-response to disease or infection, leveraging those algorithms to

solve other location-allocation problems.

Unlike resource location and allocation research, the published literature is rela-

tively sparse as it pertains to enterprise resource models for sensor and interdictor

location problems. Within the literature, there does exist a robust stream of research

pertaining to enterprise resource planning (ERP) (e.g., see Shehab et al., 2004), a

field of research focusing on the business processes within an organization, as well

as the sub-discipline of material requirements planning (MRP) (e.g., see Morecroft,

1983), a production-focused examination of the materials, processes, and resources

leveraged to attain a specific product. The frameworks for resource planning in these

areas differ too much from the problem herein to inform a modeling approach, so we

refer a reader interested in more information on ERP to the works of Umble et al.

(2003) and Monk and Wagner (2012). The relative dearth of literature specific to

this enterprise resource modeling results from a number of factors. Among these fac-
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tors, it is challenging to represent disparate assets within an enterprise with accurate

representation of their effects with respect to common performance metrics. One

related work that applied this concept to anti-terrorism efforts is a study by Lunday

et al. (2010), for which the goal was to model the application of defense resources to

combat terrorism efforts and minimize the expected damage caused by a terrorist or-

ganization. Another study by Moghaddam and Nof (2014) examined the problem of

making location-allocation decisions in collaborative networks of service enterprises.

While similar, this differs too greatly from the scope of this work since it focuses

mainly on meeting overall demands of completing tasks instead of a multi-stage loca-

tion problem like the one studied herein. Beyond these studies, finding related works

that apply a holistic approach to solving the sensor and interdictor location problem

are elusive.

Because the current research problem seeks to detect and interdict intruders, the

literature related to network interdiction can yield relevant modeling frameworks and

insights. Within a military context, the concept of network interdiction originated in

Ancient Roman times when the Persian cavalry cut Greek supply lines and routes to

water sources in battle (Wood, 2010). The general problem can be stated easily in

the context of a directed graph, in which an enemy attempts to traverse from node

s to node t and an interdictor tries to “break” arcs in order to stop the enemy from

being able to complete the journey (Wood, 1993). Beyond the scope of this work,

there exist several surveys of this field of literature. Interested readers are referred to

works by Cormican et al. (1998), Israeli and Wood (2002), and Wood (2010).

Several articles exist that specifically apply network interdiction to a sensor and

interdictor location problem. For example, Brown et al. (2005) examined a two-

sided approach to theater BMD and used network interdiction principles to set a

framework for the problem. In a border security, Morton et al. (2007) formulated
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models to interdict drug smugglers with nuclear material in the Former Soviet Union

by locating radiation sensors. In the cybersecurity application, Nandi and Medal

(2016) proposed four network interdiction models designed to aid in removing links

in a computer network to minimize the spread of infections. Even using the human

immune system as an application to network interdiction has been attempted in recent

years. The author de Grey (2005) proposed interdicting (in this case, deleting) the

genes required for telomere elongation from as many cells as possible, which is a large

factor in cancerous growths reaching a life-threatening stage.

Because our problem consists of modeling two agents and their interactions, a

game theoretic context has merit for consideration. To wit, the aforementioned net-

work interdiction studies are Stackelberg games (Shoham and Leyton-Brown, 2008),

a form of two-player, extensive form games with perfect information and complete in-

formation. Within the network interdiction literature, several works of note examine

such games in the absence of either the perfect information assumption (e.g., Zheng

and Castañón (2012), Yates (2013)) or the complete information game (e.g., Zhang

and Ramirez-Marquez (2013), Borrero et al. (2016)). The work herein describes a

framework in which one player is making decisions, and thus is not a game-theoretic

framework. However, this literature motivates extensions to this research that inform

the modeling structures. Herein, we seek a model for the underlying problem that

achieves high quality solutions quickly, so it will portend practical tractability when

embedded within a game theoretic framework in a sequel to this research.

This research makes three contributions to the literature. First, it sets forth

a baseline mathematical programming model – and seven alternative variants – to

address the underlying problem of allocating limited resources for the detection and

interdiction of an intruder. Second, it conducts empirical testing to evaluate and

compare the effect of alternative model variants on the efficacy and efficiency of a
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leading commercial solver to identify optimal solutions. Third, it rigorously examines

the impact of selected problem features on the ability of a leading commercial solver

to address larger instances of the underlying problem, portending its utility for larger

applications.

The remainder of this paper is organized as follows. Section 2.2 presents the mod-

eling notation (e.g., sets, parameters, and decision variables) and the mathematical

programming formulation variants. Section 2.3 presents the empirical testing, results,

and analysis. Finally, Section 2.4 concludes the work and provides recommendations

for future research.

2.2 Models and Solution Methodology

To formulate the mathematical program to address the underlying problem, it is

necessary to define the following sets, parameters, and decision variables.

Sets.

• N = {1, 2, ...,N} is the number of distinguishable geo-spatial stages over which

the intruder may be detected and interdicted by the defender’s enterprise of

sensors and interdictors, indexed by n. (If N = 1, the following models remain

valid, but the indexing of selected sets, parameters, decision variables, and

constraints on n can be set aside.) Relative to the set of stages, two assumptions

are made regarding the intruder’s path. First, we assume that the intruder’s

intended path transits every stage. Second, the stages are numbered according

to the order in which the intruder will attempt to transit them.

• D = {1, 2, ...,D} is the set of different detection resource types, indexed by d,

each of which pertains to different capabilities (e.g., range, effectiveness).

• J = {1, 2, ...,J } is the set of possible locations at which detection resources can
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be located, indexed by j.

– The set J is partitioned by stage, i.e., J =
⋃
n∈N Jn and

⋂
n∈N Jn = ∅.

• I = {1, 2, ..., I} is the set of different interdiction resource types, indexed by

i, each of which has different capabilities (e.g., speed, range, probability of

success).

• K = {1, 2, ...,K} is the set of possible locations at which interdiction resources

can be located, indexed by k. Similar to set J , the set K is likewise partitioned

over N .

Parameters.

• uDd : The maximum number of detection resources of type d that can be em-

placed.

• uIi : The maximum number of interdiction resources of type i that can be em-

placed.

• pDdj : The probability that an intruder is detected by a detection resource of type

d emplaced at location j.

• pIik : The conditional probability that an intruder is interdicted by an interdic-

tion resource of type i emplaced at location k given it has been detected.

Decision Variables.

• xdj : equals 1 if a detection resource of type d is emplaced at location j, and 0

otherwise.

• yik : equals 1 if an interdiction resource of type i is emplaced at location k, and

0 otherwise.
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• αik : equals 1 if an interdiction resource of type i emplaced at location k ∈ Kn

is used to attempt to interdict the intruder in stage n, and 0 otherwise.

• πD
n : The conditional probability that an intruder is detected in stage n given it

has successfully traversed previous stages, i.e., 1, . . . , n− 1.

• πI
n : The conditional probability that an intruder is interdicted in stage n given

it has successfully traversed previous stages, i.e., 1, . . . , n− 1.

• πD
⋂

I
n : The conditional probability of an intruder being detected and interdicted

in stage n given it has successfully traversed previous stages, i.e., 1, . . . , n− 1.

• πD
⋂

I : The total probability of an intruder being detected and interdicted.

Leveraging the aforementioned notation, we formulate the Resource Allocation for

Intruder Detection and Interdiction (RAIDI) model as follows.

max πD
⋂

I (1)

s.t. πD
⋂

I = 1−
∏
n∈N

(
1− πD

⋂
I

n

)
, (2)

πD
⋂

I
n = πD

nπ
I
n, ∀ n ∈ N, (3)

πD
n = 1−

∏
d∈D

∏
j∈Jn

(
1− pDdj

)xdj , ∀ n ∈ N, (4)

∑
d∈D

xdj ≤ 1, ∀j ∈ J, (5)

πI
n = 1−

∑
i∈I

∑
k∈Kn

αik
(
1− pIikyik

)
, ∀ n ∈ N, (6)

∑
i∈I

∑
k∈Kn

αik = 1, ∀ n ∈ N, (7)

αik ∈ {0, 1} , ∀ i ∈ I, k ∈ Kn, n ∈ N, (8)

21



∑
j∈J

xdj ≤ uDd , ∀d ∈ D, (9)

∑
k∈K

yik ≤ uIi, ∀i ∈ I, (10)

xdj ∈ {0, 1}, ∀d ∈ D, j ∈ J (11)

yik ∈ {0, 1}, ∀i ∈ I, k ∈ K (12)

The decision maker seeks to maximize the probability of the detection and subse-

quent interdiction of an intruder via the objective function (1). Constraint (2) com-

putes this probability as a function of the stage-specific probabilities of detection-

and-interdiction, which are assumed to be independent. Likewise, Constraint (3)

calculates each stage-specific probability as the product of the respective probabili-

ties of detecting and interdicting the intruder in a given stage, each of which are also

assumed to be independent. Constraint (4) calculates the overall probability that an

intruder is not detected in stage n. For the purpose of computing stage-specific prob-

abilities of interdiction, this model assumes one interdiction resource is to be used in

each stage to interdict a possible intruder. Constraint (5) prevents the emplacement

of more than one detection resource at any location. Constraint (6) calculates the

probability of an intruder not being interdicted in each stage, which is calculated to

be the smallest probability that the intruder is not interdicted over every interdiction

resource type in stage n. Constraints (7) and (8) set limitations on the αik-variables

such that at most one interdiction resource-location combination may be utilized in

each stage. Lastly, Constraints (9) and (10) limit the number of resources that can be

emplaced and Constraints (11) and (12) ensure that the decision variables are binary.

One can alternatively impose Constraint (13) in lieu of Constraint (4), provided

it can be assumed that at most one detection resource of any type would be emplaced

at any location j ∈ J , as enforced by Constraint (5). This limitation is not enforced
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on the interdiction assets, so it is possible that more than one interdiction asset can

be emplaced at a single location.

πD
n = 1−

∏
j∈Jn

(
1−

∑
d∈D

pDdjxdj

)
, ∀ n ∈ N (13)

Likewise, one can consider a linear set of constraints as an alternative to Con-

straint (6). Defining a new decision variable βik = aikyik, Constraint (6) is alterna-

tively represented as Constraint (14) with the βik-variables restricted to binary values

via Constraint (18). In lieu of the defined nonlinear transformation, the effective re-

lationship is enforced linearly via Constraints (15)–(17).

πI
n = 1−

∑
i∈I

∑
k∈Kn

(
αik − pIikβik

)
, ∀ n ∈ N, (14)

βik ≥ αik + yik − 1, ∀ i ∈ I, k ∈ Kn, n ∈ N, (15)

βik ≤ αik, ∀ i ∈ I, k ∈ Kn, n ∈ N, (16)

βik ≤ yik, ∀ i ∈ I, k ∈ Kn, n ∈ N, (17)

βik ∈ {0, 1} , ∀ i ∈ I, k ∈ Kn, n ∈ N (18)

Given the two alternative constraint substitutions, we have four formulation vari-

ants to consider.

2.3 Testing, Results, and Analysis

This section details the design and conduct of empirical testing to evaluate and

compare the efficacy of the alternative formulations corresponding to different com-

binations of methods for computing πD
n and πI

n, respectively. Section 2.3.1 describes

both the overall test design of specific scenarios and the methods by which individ-

ual test instances are generated for each scenario. Section 2.3.2 presents the testing
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results over a set a baseline scenarios, along with an examination of the effects of

alternative formulations on both the solution quality and the time to identify an op-

timal solution. Subsequent analysis in Section 2.3.3 identifies via an experimental

design the effect of selected problem features on both the efficacy and efficiency of

the best performing model.

Each instance of the model variants was solved on a 2.8 GHz PC with 64 GB of

RAM and an Intel(R) Xeon X5660 processor, and using GAMS modeling language

(Version 30.1.0) to invoke BARON (Version 19.12.7), a commercial solver designed

for global optimization of nonconvex math programs. BARON was applied with a

time limit of 15 minutes and a relative optimality gap of 0% for each instance. To

solve subproblems, BARON invoked IBM ILOG CPLEX (Version 12.10.0) and/or

MINOS (Version 5.5), as appropriate. Testing was completed using the NEOS solver

(Gropp and Moré, 1997; Czyzyk et al., 1998; Dolan, 2001), and batch runs were

resubmitted as necessary to ensure all testing was conducted on a platform having

the aforementioned performance specifications, to facilitate equitable comparison of

empirical testing results.

Because BARON leverages a branch and bound framework with the imposition of

both feasibility and optimality cuts, conventional wisdom indicates that solver conver-

gence is enhanced via the imposition of tight lower and upper bounds on all decision

variables to reduce the volume of the hyperrectangle BARON will iteratively decom-

pose (Ryoo and Sahinidis, 1995, 1996; Sahinidis, 1996; Tawarmalani and Sahinidis,

2004, 2005). As such, each of the four model variants is also examined both with and

without the imposition of simple bounds of [0, 1] on each of the πD
n -, πI

n-, π
D
⋂

I
n -, and

πD
⋂

I-variables. Table 1 depicts the eight RAIDI model variants tested in subsequent

sections and, for each model, how its construction differs.
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Table 1. RAIDI Model Variants Tested

Model Variant πD
n Constraints πI

n Constraints [0, 1] Variable Bounding
default (4) (6) NO
altdet (13) (6) NO
altint (4) (14)-(18) NO
altdetint (13) (14)-(18) NO
default-b (4) (6) YES
altdet-b (13) (6) YES
altint-b (4) (14)-(18) YES
altdetint-b (13) (14)-(18) YES

2.3.1 Test Instance Generation

The relative performance of model variants may differ due both to problem fea-

tures and instance features. Within this context, we define problem features for

RAIDI formulations as the number of stages, N ; the number of types of detection

resources, D; the number of possible locations at which detection resources can be

located, J ; the number of types of interdiction resources, I; and the number of pos-

sible locations at which interdiction resources can be located, K. Hereafter, we define

a RAIDI scenario as a specific set of values for the (N ,D,J , I,K)-features.

Scenario generation for testing in Sections 2.3.2 and 2.3.3 is determined via com-

binations of low, medium, and high levels for each of the problem features. Table 2

presents the respective problem feature levels.

Table 2. Feature Levels Examined for RAIDI Problem Scenarios

Problem Feature Levels
Feature Low Medium High
N 3 4 5
D 2 3 4
J 12 16 20
I 2 3 4
K 6 8 10

In contrast, we define an instance of a RAIDI problem to be specific to a given

scenario. Each instance may vary with respect to the respective partitions of possible

detection and interdiction resource locations over stages (i.e., Jn and Kn, ∀ n ∈ N);
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the respective numbers of detection and interdiction resources, by type (i.e., uDd , ∀ d ∈

D and uIi, ∀ i ∈ I); and the respective detection and interdiction probabilities (i.e.,

pDdj- and pIik-parameters, indexed accordingly).

In testing throughout Sections 2.3.2 and 2.3.3, this research generates RAIDI

instances for a given scenario in the following manner. A batch of 30 instances is

iteratively generated for the scenario via fixed pseudo-random number generation

seeds in GAMS, and each instance is iteratively solved for each of the model variants

in Table 1. For the purpose of instance generation and testing, the partitions of

possible locations for respective detection and interdiction resources over stages (i.e.,

Jn and Kn) are stochastically generated within the GAMS model, with the provision

that at least one of each location type is assigned to each stage.

Informing specific parameter values, we assume that higher values of the indices

d and i correspond to more capable detection and interdiction resource types, which

are likely more expensive and, hence, available in lesser amounts. In general, we

expect detection resources to be more prolific than interdiction resources, given for

each stage n ∈ N the RAIDI model considers the effect of all detection resources but

only allows for one interdiction resource to be assigned to the intruder. Accordingly,

we generate a uDd - and uIi-parameters as a function of the scenario parameters. Logical

lower and upper bounds on uDd are respectively induced by (i) an assumption that at

least one detection resource will be emplaced in every stage and (ii) the combination

of the number of resource locations and an assumption that detection resources will

not be co-located. Equation (19) illustrates for uDd , ∀ d ∈ D, the generation of a

value from a uniform distribution on [N ,J ] and the allocation of an integer-valued

proportion of that value by resource type. For example, if D = 3, a ratio of (1/2),

(1/3), and (1/6) of the respectively generated values would be used to compute uDd

for d = 1, 2, 3, respectively. Similarly, for interdiction types, Equation (20) illustrates
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for uIi, ∀i ∈ I, the generation of a value from a uniform distribution on [N , 2N ]. This

upper bound for each type of interdiction resources differs from that of the detection

resources because, as previously mentioned, we expect the amount of interdiction

resources to be less than that of the detection resources. This upper bound limits

each type of interdiction resource to no more than an average of two per stage.

uDd =

⌈[(
(D + 1)− d

)/∑
d∈D

d

]
U [N ,J ]

⌉
, ∀ d ∈ D (19)

uIi =

⌈[(
(I + 1)− i

)/∑
i∈I

i

]
U [N , 2N ]

⌉
, ∀ i ∈ I (20)

Probability parameters also vary by resource type (i.e., d and i, respectively), as-

suming that types having higher indices are the more capable (and more expensive,

hence less available) resources. Accordingly, the instance probabilities are generated

in a manner that assigns higher probabilities of detection and interdiction to the

higher-valued indices of detection and interdiction type, respectively. For detection

assets, a probability range of
[
pDmin, p

D
max

]
= [0.2, 0.8] is partitioned into D intervals

having equal width, assigning the intervals to resource types with the highest-valued

types having the highest probability interval, and so forth. As a modification of the

aforementioned procedure to prevent a completely hierarchical partition of resources

by type, we modify the partitions of the probability range so the individual intervals

overlap one another by 10% of their interval widths. The probabilities of interdiction

by type are generated in an identical manner and with an identical probability range

of
[
pImin, p

I
max

]
= [0.2, 0.8]. Equations (21) and (22) detail the instance-specific gener-

ation of the by-resource-type probabilities of detection and interdiction, respectively,

via uniform distributions, and wherein ∆D =
pDUB−p

D
LB

D and ∆I =
pIUB−p

I
LB

I .

pDdj = U
[
pDLB + (d− 1) ·∆D, pDLB + d ·∆D] , ∀ d ∈ D, j ∈ J (21)
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pIik = U
[
pILB + (i− 1) ·∆I, pILB + i ·∆I] , ∀ i ∈ I, k ∈ K (22)

Figure 3. Illustrative Instance of RAIDI

Figure 3 is an illustrative instance of RAIDI in which N = 3, D = 2, J = 12,

I = 2, and K = 6.

2.3.2 RAIDI Model Variant Testing and Comparison for Baseline Sce-

narios

In this section, empirical testing compares the solution quality and computational

effort required of the BARON commercial solver to identify a globally optimal solution

to each of the RAIDI model variants in Table 1. Each model variant is tested for

30 instances of each baseline scenario presented in Table 3, wherein the scenarios

respectively consist of the low, medium, and high levels for features from Table 2.

Table 3. Baseline RAIDI Problem Scenarios

Scenario (N ,D,J , I,K)
Low Feature Level (LFL) (3, 2, 12, 2, 6)
Medium Feature Level (MFL) (4, 3, 16, 3, 8)
High Feature Level (HFL) (5, 4, 20, 4, 10)
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The hierarchy of metrics to assess the relative performance of model variants are,

in order, the objective function value(s) attained, the relative optimality gap (%)

identified upon termination, the required computational effort, and the number of

instances on which the solver terminated due to limits on the computational effort.

Whereas the solution quality is of foremost importance, we use the relative optimality

gap as the second criterion; if the solver does not find a solution it identifies as globally

optimal – even though it may be globally optimal – upon termination due to time

limitations, it is of notable interest to assess how well the model variant enables

a solver assessment of the solution quality. Of tertiary importance is the required

computational effort. Finally, we report and consider the number of instances for

which the solver terminated due to time limitations (i.e., “terminated early”) before

identifying a global optimum.

Tables 4–6 report the testing results for the LFL, MFL, and HFL scenarios, re-

spectively. The first column in each table presents the model variant tested. For each

variant, the second through fourth columns present the average and standard devia-

tions for the objective function value upon termination, the relative optimality gap

(%) identified upon termination, and the computational effort required (seconds) by

the commercial solver BARON. The final column reports the number of instances (out

of 30) for which the solver terminated due to the 900 second limit on computational

effort.

The results shown in Table 4 indicate that, when feature levels are set to low

values, there is little differentiation in the performance of BARON among the model

variants. The average objective function values obtained for each model variant across

the 30 instances were identical, as were the relative optimality gaps. The only dif-

ference between the model variants was the average computational effort required to

solve the instances, although it is worth noting that BARON did not terminate any
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Table 4. RAIDI Model Variant Performances (Means and Standard Deviations) for
Selected Performance Metrics over 30 Synthetic Instances of the LFL Scenario

Objective Relative Req’d Comp. No. Instances
Model Fn. Value. Gap (%) Effort (sec) Terminated Early
default 0.955 ± 0.029 0 ± 0 4.413 ± 10.619 0
default-b 0.955 ± 0.029 0 ± 0 2.579 ± 8.998 0
altdet 0.955 ± 0.029 0 ± 0 1.083 ± 3.060 0
altdet-b 0.955 ± 0.029 0 ± 0 0.419 ± 1.062 0
altint 0.955 ± 0.029 0 ± 0 2.360 ± 6.650 0
altint-b 0.955 ± 0.029 0 ± 0 1.150 ± 2.079 0
altdetint 0.955 ± 0.029 0 ± 0 1.635 ± 6.841 0
altdetint-b 0.955 ± 0.029 0 ± 0 0.751 ± 1.961 0

instances early for any model variant.

Table 5. RAIDI Model Variant Performances (Means and Standard Deviations) for
Selected Performance Metrics over 30 Synthetic Instances of the MFL Scenario

Objective Relative Req’d Comp. No. Instances
Model Fn. Value. Gap (%) Effort (sec) Terminated Early
default 0.981 ± 0.018 0.016 ± 0.017 750.631 ± 334.090 25
default-b 0.981 ± 0.019 0.017 ± 0.017 800.990 ± 270.612 26
altdet 0.982 ± 0.018 0.012 ± 0.015 653.572 ± 341.859 18
altdet-b 0.982 ± 0.018 0.013 ± 0.018 633.950 ± 347.910 18
altint 0.981 ± 0.018 0.022 ± 0.083 334.852 ± 430.298 11
altint-b 0.981 ± 0.018 0.016 ± 0.018 738.775 ± 328.320 24
altdetint 0.982 ± 0.018 0.008 ± 0.013 570.398 ± 383.965 16
altdetint-b 0.982 ± 0.018 0.014 ± 0.017 751.583 ± 285.066 23

Table 5 describes the results found when the model variants are used to solve

30 instances of the MFL scenario. The average objective function values obtained

were nearly the same, as was the case in the LFL scenario. The average relative

gaps obtained by the eight model variants were also similar in value, ranging from

0.008% to 0.022%. Similar to the LFL scenario results, the average computational

effort required to solve the 30 instances provided the most differentiation between

model variants. The altint model variant yielded the lowest average computational

effort required. However, altint also had the worst relative optimality gap results,

whereas the default-b model variant yielded the highest average computational effort

required. As expected, these two model variants respectively had the least (11) and

most (26) number of instances for which the solver terminated early due to the limit
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on run time.

Table 6. RAIDI Model Variant Performances (Means and Standard Deviations) for
Selected Performance Metrics over 30 Synthetic Instances of the HFL Scenario

Objective Relative Req’d Comp. No. Instances
Model Fn. Value. Gap (%) Effort (sec) Terminated Early
default 0.990 ± 0.011 0.010 ± 0.010 900.015 ± 0.095 30
default-b 0.990 ± 0.010 0.010 ± 0.010 870.275 ± 160.966 29
altdet 0.990 ± 0.010 0.286 ± 0.021 900.050 ± 0.259 30
altdet-b 0.991 ± 0.009 0.009 ± 0.009 900.019 ± 0.116 30
altint 0.990 ± 0.010 0.020 ± 0.059 481.369 ± 446.079 15
altint-b 0.991 ± 0.009 0.009 ± 0.009 870.011 ± 161.447 29
altdetint 0.991 ± 0.009 0.271 ± 0.206 899.990 ± 0.044 30
altdetint-b 0.991 ± 0.009 0.049 ± 0.009 899.994 ± 0.049 30

Table 6 shows the HFL scenario results, which indicate that as the feature levels

rise, there are more differences for the performance of BARON between the model

variants. As was the case in the LFL and MFL scenario results, the objective function

values were nearly identical across all model variants. The average relative optimality

gap amongst the eight model variants varied more widely. Notably, altdet, altdetint,

and altboth had the highest average relative optimality gaps and default, default-b,

altdet-b, and altint-b had the lowest. Collectively, these results indicate that introduc-

ing bounds on decision variables leads to lower relative optimality gaps, as expected.

The average computational effort required to solve the instances are all similarly high

(and close to or effectively 900 seconds), with the exception of the altint model vari-

ant, for which the average computational effort required is much lower. This result

corresponds with the number of instances for which BARON terminated early for

each model variant; for the altint model variant, BARON only terminated early on

15 of the 30 instances, whereas it terminated early on at least 29 of the 30 instances

for every other model variant. The altint model variant finds a solution faster than

the other model variants but at the slight expense of solution quality. In contrast,

BARON terminated early for the other model variants quite often, but the solutions

found are of high quality. Another notable result is that BARON terminated early
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on all 30 instances for model variants that include the alternative constraints for

detection.

Overall, model variants achieved objective function values that were nearly iden-

tical, but both the relative optimality gaps and computational effort required differed

across model variants as the scenario feature levels increased in magnitude. The rel-

ative optimality gaps, required computational effort, and the number of instances

terminated due to the limit on run time increased as the scenario feature levels in-

creased. A common pattern across scenarios is that the altint model variant performed

better with respect to the computational effort required and worse with respect to

relative gap obtained. Another important pattern is that the model variants that in-

cluded the variable bounding performed well in all scenarios with respect to relative

optimality gap. The time limit of 900 seconds was not relevant in the LFL scenario,

but it became more relevant in the MFL and HFL scenarios. It is important to note

that even though BARON may terminate early on a high number of instances for a

particular model variant, it does not mean that it obtained poor objective function

values. Overall, the default, default-b, altdet-b, and altint-b model variants are iden-

tified as higher-quality model variants across these baseline scenarios due to having

both a high average objective function value and a low average relative optimality gap

over the set of three baseline scenarios. Even when these model variants had a high

number of instances terminate early (e.g., in the HFL scenario), they still achieved

the low relative optimality gaps and high objective function values. These five model

variants are examined further in Section 2.3.2.

Insights from Early Model Convergence

The commercial solver BARON terminated prematurely for the majority of HFL

instances for each model variant, and it likewise terminated due to the imposed time
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limit for all HFL instances for a majority of model variants. As such, it is of interest

to examine the degree to which the model variants enabled early vis-á-vis terminal

solution quality.

Table 7 describes the average quality, in terms of average reported objective func-

tion value, for the first and last solutions found by BARON for the model variants in

the HFL scenario. Informing the second column of Table 7, the root node objective

function value corresponds to the solution found by BARON at the first node in its

branch-and-bound sequence; it provides a lower bound upon which the solver seeks

improvement over the 900 second time limit allowed for each instance. In the third

column of Table 7, the terminal objective function values are the same ones reported

in Table 6; the entries denote the average objective function value that BARON

reported upon termination, whether due to reaching the allotted time limit or by

identifying a global optimal solution.

Table 7. RAIDI Model Variant Performance (Means and Standard Deviations) for
Terminal Objective Function Value and Root Node Objective Function Value over 30
Synthetic Instances of the HFL Scenario

Root Node Terminal
Model Obj. Fn. Val. Obj. Fn. Val.
default 0.984 ± 0.013 0.990 ± 0.011
default-b 0.985 ± 0.013 0.990 ± 0.010
altdet 0.985 ± 0.012 0.990 ± 0.010
altdet-b 0.986 ± 0.012 0.991 ± 0.009
altint 0.990 ± 0.010 0.990 ± 0.010
altint-b 0.990 ± 0.011 0.991 ± 0.009
altdetint 0.990 ± 0.010 0.991 ± 0.009
altdetint-b 0.991 ± 0.009 0.991 ± 0.009

The results shown in Table 7 indicate the model variants using alternative con-

straints for interdiction have average objective function values that do not improve

much at all as BARON runs longer, whereas each of the other four model vari-

ants’ performance improves noticeably over time. That is, the model variants altint,

altint-b, altdetint, and altdetint-b provide slightly higher quality solutions early during

BARON’s solution methodology. Since the model variants default, default-b, altdet-b,

33



and altint-b were recommended as higher-quality model variants in Section 2.3.2, and

Table 7 reinforces that these models are still of high quality with respect to root node

solutions, these are the recommended model variants to be explored hereafter.

2.3.3 RAIDI Scenario Feature Examination

Given the superlative performance of the RAIDI model variants default, default-b,

altdet-b and altint-b in Section 2.3.2, herein we test the effects of different scenario

features on the efficacy and efficiency of BARON for solving RAIDI problem instances.

A full factorial experiment on the different feature levels presented in Table 2 to

determine which problem features are most influential to the RAIDI problem would re-

quire examining 35 = 243 unique scenarios (with multiple instances for each scenario).

The model parameters N ,D,J , I, and K are the five factors. Such an endeavor is

computationally expensive, if not prohibitive; therefore, a fractional factorial design

is preferable to garner useful insights with lesser computational effort. A full fac-

torial design has no aliasing between factor combinations; in contrast, the effects of

higher-order interactions between problem features is elusive when examining a frac-

tional factorial design. However, either is preferable to one-factor-at-a-time (OFAT)

analyses for the greater insights that can be obtained.

The fractional factorial experiment used herein is a 35−2
III design with 30 trials in

each treatment combination as depicted in each of Tables 8-11. This experiment

is conducted for each of the model variants default, default-b, altdet-b, and altint-b,

collectively chosen for their relatively superior performance in Section 2.3.2. The pri-

mary response variable of interest is the relative optimality gap (%) achieved within

the 15-minute time limit, whereas the second response variable is the required com-

putational effort, subject to the same upper bound. Tables 8-10 report both the

average and standard deviation for each of these response variables, for each treat-
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ment combination within the experiment, computed over 30 trials. For each of the

three mathematical programming formulation variants, two regression models are de-

veloped – one for each response variable – to garner greater insights via an exploration

individual and combined effects.

Table 8. Treatment Levels and Relative Optimality Gap Metrics (Mean and Standard
Deviation) - default Model Variant

Factors Relative Req’d Comp.
Run N D J I K Gap (%) Effort (sec)

1 3 2 12 2 6 0.000 ± 0.000 0.843 ± 0.921
2 3 2 16 3 6 0.007 ± 0.018 146.223 ± 324.842
3 3 2 20 4 6 0.006 ± 0.017 200.860 ± 364.287
4 3 3 12 3 10 0.003 ± 0.011 98.732 ± 247.415
5 3 3 16 4 10 0.004 ± 0.012 131.411 ± 307.137
6 3 3 20 2 10 0.003 ± 0.008 151.971 ± 336.498
7 3 4 12 4 8 0.005 ± 0.016 122.275 ± 281.447
8 3 4 16 2 8 0.005 ± 0.011 182.823 ± 360.520
9 3 4 20 3 8 0.014 ± 0.011 724.639 ± 360.539
10 4 2 12 3 8 0.002 ± 0.009 266.818 ± 338.228
11 4 2 16 4 8 0.009 ± 0.016 629.090 ± 412.902
12 4 2 20 2 8 0.007 ± 0.008 629.803 ± 414.645
13 4 3 12 4 6 0.011 ± 0.015 686.517 ± 368.972
14 4 3 16 2 6 0.006 ± 0.009 408.144 ± 429.615
15 4 3 20 3 6 0.008 ± 0.010 606.524 ± 417.374
16 4 4 12 2 10 0.007 ± 0.010 702.288 ± 356.076
17 4 4 16 3 10 0.007 ± 0.013 733.427 ± 365.907
18 4 4 20 4 10 0.007 ± 0.007 906.841 ± 13.588
19 5 2 12 4 10 0.008 ± 0.014 825.638 ± 239.568
20 5 2 16 2 10 0.004 ± 0.008 801.153 ± 272.499
21 5 2 20 3 10 0.004 ± 0.006 925.267 ± 21.824
22 5 3 12 2 8 0.004 ± 0.007 768.663 ± 313.157
23 5 3 16 3 8 0.005 ± 0.008 921.277 ± 24.706
24 5 3 20 4 8 0.005 ± 0.009 935.088 ± 20.213
25 5 4 12 3 6 0.009 ± 0.013 885.132 ± 163.099
26 5 4 16 4 6 0.008 ± 0.010 905.427 ± 169.272
27 5 4 20 2 6 0.007 ± 0.007 857.212 ± 228.591

Table 12 presents the feature coefficients corresponding to each of two standard

least squares (SLS) regression models (i.e., one for each of the two responses) for

the respective data summarized in Table 8. For the relative optimality gap response,

only D and I were significant factors. This outcome indicates that only the number

of types of detection and interdiction resources, respectively, are significant predic-

tors of the relative optimality gap. For the required computational effort response,
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Table 9. Treatment Levels and Relative Optimality Gap Metrics (Mean and Standard
Deviation) - default-b Model Variant

Factors Relative Req’d Comp.
Run N D J I K Gap (%) Effort (sec)

1 3 2 12 2 6 0.000 ± 0.000 0.606 ± 0.505
2 3 2 16 3 6 0.007 ± 0.019 121.138 ± 306.765
3 3 2 20 4 6 0.007 ± 0.015 208.996 ± 365.032
4 3 3 12 3 10 0.005 ± 0.012 162.788 ± 340.757
5 3 3 16 4 10 0.006 ± 0.014 212.016 ± 381.700
6 3 3 20 2 10 0.002 ± 0.005 142.214 ± 318.971
7 3 4 12 4 8 0.008 ± 0.015 220.054 ± 381.469
8 3 4 16 2 8 0.002 ± 0.007 147.795 ± 310.475
9 3 4 20 3 8 0.018 ± 0.015 754.672 ± 336.486
10 4 2 12 3 8 0.001 ± 0.003 175.213 ± 306.946
11 4 2 16 4 8 0.007 ± 0.014 480.915 ± 429.437
12 4 2 20 2 8 0.004 ± 0.007 432.141 ± 438.654
13 4 3 12 4 6 0.010 ± 0.014 586.550 ± 407.299
14 4 3 16 2 6 0.008 ± 0.010 550.945 ± 422.964
15 4 3 20 3 6 0.011 ± 0.009 842.138 ± 223.983
16 4 4 12 2 10 0.006 ± 0.011 642.040 ± 371.868
17 4 4 16 3 10 0.007 ± 0.012 822.627 ± 272.632
18 4 4 20 4 10 0.007 ± 0.007 906.627 ± 14.334
19 5 2 12 4 10 0.007 ± 0.014 855.459 ± 195.352
20 5 2 16 2 10 0.004 ± 0.009 812.452 ± 232.288
21 5 2 20 3 10 0.003 ± 0.006 925.904 ± 22.789
22 5 3 12 2 8 0.004 ± 0.008 681.418 ± 382.602
23 5 3 16 3 8 0.004 ± 0.008 890.671 ± 164.932
24 5 3 20 4 8 0.005 ± 0.009 932.129 ± 19.226
25 5 4 12 3 6 0.009 ± 0.013 865.085 ± 194.279
26 5 4 16 4 6 0.008 ± 0.010 904.935 ± 169.255
27 5 4 20 2 6 0.006 ± 0.006 858.293 ± 228.813
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Table 10. Treatment Levels and Relative Optimality Gap Metrics (Mean and Standard
Deviation) - altdet-b Model Variant

Factors Relative Req’d Comp.
Run N D J I K Gap (%) Effort (sec)

1 3 2 12 2 6 0.000 ± 0.000 0.610 ± 0.616
2 3 2 16 3 6 0.000 ± 0.000 43.488 ± 123.951
3 3 2 20 4 6 0.004 ± 0.012 207.874 ± 322.127
4 3 3 12 3 10 0.003 ± 0.011 157.088 ± 279.502
5 3 3 16 4 10 0.003 ± 0.010 622.626 ± 352.349
6 3 3 20 2 10 0.002 ± 0.007 671.558 ± 353.811
7 3 4 12 4 8 0.006 ± 0.015 647.802 ± 306.568
8 3 4 16 2 8 0.008 ± 0.015 886.947 ± 95.039
9 3 4 20 3 8 0.013 ± 0.018 819.566 ± 260.331
10 4 2 12 3 8 0.000 ± 0.000 25.318 ± 59.210
11 4 2 16 4 8 0.006 ± 0.015 347.192 ± 404.525
12 4 2 20 2 8 0.001 ± 0.002 245.071 ± 361.482
13 4 3 12 4 6 0.008 ± 0.014 533.362 ± 380.427
14 4 3 16 2 6 0.006 ± 0.009 590.541 ± 374.052
15 4 3 20 3 6 0.011 ± 0.010 827.984 ± 199.184
16 4 4 12 2 10 0.005 ± 0.013 573.218 ± 342.702
17 4 4 16 3 10 0.008 ± 0.012 913.665 ± 17.731
18 4 4 20 4 10 0.007 ± 0.007 906.601 ± 13.839
19 5 2 12 4 10 0.005 ± 0.012 574.409 ± 352.286
20 5 2 16 2 10 0.001 ± 0.001 553.374 ± 380.002
21 5 2 20 3 10 0.003 ± 0.005 808.234 ± 282.980
22 5 3 12 2 8 0.004 ± 0.009 606.436 ± 377.640
23 5 3 16 3 8 0.004 ± 0.008 919.060 ± 24.276
24 5 3 20 4 8 0.005 ± 0.009 933.915 ± 20.225
25 5 4 12 3 6 0.008 ± 0.013 736.235 ± 304.141
26 5 4 16 4 6 0.007 ± 0.009 935.999 ± 21.709
27 5 4 20 2 6 0.005 ± 0.005 918.517 ± 18.751
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Table 11. Treatment Levels and Relative Optimality Gap Metrics (Mean and Standard
Deviation) - altint-b Model Variant

Factors Relative Req’d Comp.
Run N D J I K Gap (%) Effort (sec)

1 3 2 12 2 6 0.000 ± 0.000 0.903 ± 1.681
2 3 2 16 3 6 0.000 ± 0.000 68.852 ± 176.649
3 3 2 20 4 6 0.003 ± 0.015 74.916 ± 231.779
4 3 3 12 3 10 0.001 ± 0.002 70.736 ± 227.376
5 3 3 16 4 10 0.003 ± 0.011 156.538 ± 302.386
6 3 3 20 2 10 0.007 ± 0.010 362.492 ± 438.878
7 3 4 12 4 8 0.006 ± 0.011 334.629 ± 430.462
8 3 4 16 2 8 0.007 ± 0.010 471.976 ± 440.406
9 3 4 20 3 8 0.010 ± 0.012 565.953 ± 414.857
10 4 2 12 3 8 0.000 ± 0.002 133.974 ± 233.585
11 4 2 16 4 8 0.005 ± 0.015 574.707 ± 407.565
12 4 2 20 2 8 0.005 ± 0.005 641.559 ± 392.923
13 4 3 12 4 6 0.003 ± 0.004 616.691 ± 395.580
14 4 3 16 2 6 0.009 ± 0.011 764.026 ± 309.313
15 4 3 20 3 6 0.007 ± 0.007 870.058 ± 161.228
16 4 4 12 2 10 0.005 ± 0.010 743.093 ± 325.828
17 4 4 16 3 10 0.004 ± 0.005 842.304 ± 216.073
18 4 4 20 4 10 0.003 ± 0.005 785.997 ± 265.275
19 5 2 12 4 10 0.003 ± 0.011 693.944 ± 348.971
20 5 2 16 2 10 0.003 ± 0.007 834.082 ± 217.443
21 5 2 20 3 10 0.002 ± 0.004 900.021 ± 0.007
22 5 3 12 2 8 0.003 ± 0.004 806.637 ± 245.533
23 5 3 16 3 8 0.002 ± 0.007 873.805 ± 141.187
24 5 3 20 4 8 0.002 ± 0.006 899.970 ± 0.156
25 5 4 12 3 6 0.005 ± 0.007 869.986 ± 161.407
26 5 4 16 4 6 0.004 ± 0.006 900.001 ± 0.012
27 5 4 20 2 6 0.006 ± 0.007 870.054 ± 160.962

Table 12. Standard Least Squares Regression Coefficient Estimates for Relative Opti-
mality Gap and Req. Comp. Effort Responses - default Model Variant

Relative Gap (%) Req’d Comp. Effort (sec)
Term Estimate Std Error t Ratio Prob> |t| Estimate Std Error t Ratio Prob> |t|
N 0.00035 0.00049 0.70 0.4822 336.94898 13.78550 24.44 <.0001
D 0.00116 0.00049 2.35 0.0190 88.57609 13.78550 6.43 <.0001
J 0.00017 0.00012 1.36 0.1727 21.96248 3.44638 6.37 <.0001
I 0.00111 0.00049 2.26 0.0241 46.68033 13.78550 3.39 0.0007
K -0.00040 0.00025 -1.61 0.1088 16.10684 6.89275 2.34 0.0197
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every factor is significant in the regression model, with a positive regression coeffi-

cient. As expected, increasing the scenario feature levels leads to a higher required

computational effort. Most notably, N has the largest coefficient; an increase in the

number of stages will most rapidly increase the required computational effort when

using the default model variant to solve RAIDI scenario instances. In addition to the

SLS regression models described by Table 12, another regression model that included

two-factor interactions was constructed for each response. Although not reported

here for the sake of brevity, the N ×D was a significant factor in the relative gap re-

sponse model, and most of the two-factor interactions were significant in the required

computational effort response model, indicating the sensitivity of the latter response

to all features.

Table 13. Standard Least Squares Regression Coefficient Estimates for Relative Opti-
mality Gap and Req. Comp. Effort Responses - default-b Model Variant

Relative Gap (%) Req’d Comp. Effort (sec)
Term Estimate Std Error t Ratio Prob> |t| Estimate Std Error t Ratio Prob> |t|
N -0.00019 0.00049 -0.39 0.6979 319.78156 13.81994 23.14 <.0001
D 0.00161 0.00049 3.30 0.0010 117.18359 13.81994 8.48 <.0001
J 0.00017 0.00012 1.43 0.1538 25.19310 3.45499 7.29 <.0001
I 0.00162 0.00049 3.34 0.0009 57.76532 13.81994 4.18 <.0001
K -0.00049 0.00024 -2.02 0.0439 15.09557 6.90997 2.18 0.0292

Table 13 reports the results attained when fitting two SLS models to the default-

b data that is summarized in Table 9. Similarly to the default model variant, the

results for the relative optimality gap response show that D and I are the significant

predictors and that every factor is significant for the required computational effort

response. Moreover, for the required computational effort response, N has by far

the highest regression coefficient. Indicated is that an increase in the number of

stages correlates to an increase in the required computational effort for the default-

b model variant to solve a RAIDI scenario instance. In addition to the modeling

results in Table 13, additional regression models including two-factor interactions

were also constructed for each response. None of the two-factor interactions were
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significant in the relative gap response model, but most of the two-factor interactions

were significant in the required computational effort response model.

Table 14. Standard Least Squares Regression Coefficient Estimates for Relative Opti-
mality Gap and Req. Comp. Effort Responses - altdet-b Model Variant

Relative Gap (%) Req’d Comp. Effort (sec)
Term Estimate Std Error t Ratio Prob> |t| Estimate Std Error t Ratio Prob> |t|
N 0.00018 0.00045 0.41 0.6813 162.70111 12.66573 12.85 <.0001
D 0.00264 0.00045 5.91 <.0001 251.83217 12.66573 19.88 <.0001
J 0.00016 0.00011 1.47 0.1411 34.51169 3.16643 10.90 <.0001
I 0.00111 0.00045 2.48 0.0133 36.86161 12.66573 2.91 0.0037
K -0.00034 0.00022 -1.54 0.1251 27.39340 6.33287 4.33 <.0001

Table 14 presents the results attained when fitting two SLS models to the altdet-b

data that is summarized in Table 10. These results likewise show that D and I are

significant factors in the SLS regression model for the relative optimality gap response.

Every factor is significant in the regression model for the required computational

effort response. One difference for the altdet-b model variant is that D has the highest

regression coefficient estimate for the required computational effort response, whereas

N has the highest regression coefficient for the other model variants, even though it

is still second highest for the default-b model variant.

Table 15. Standard Least Squares Regression Coefficient Estimates for Relative Opti-
mality Gap and Req. Comp. Effort Responses - altint-b Model Variant

Relative Gap (%) Req’d Comp. Effort (sec)
Term Estimate Std Error t Ratio Prob> |t| Estimate Std Error t Ratio Prob> |t|
N -0.00041 0.00036 -1.14 0.2552 307.86141 13.11231 23.48 <.0001
D 0.00169 0.00036 4.71 <.0001 136.72409 13.11231 10.43 <.0001
J 0.00025 0.00009 2.82 0.0050 23.61705 3.27808 7.20 <.0001
I -0.00060 0.00036 -1.66 0.0975 -25.41281 13.11231 -1.94 0.053
K -0.00016 0.00018 -0.89 0.3731 9.82555 6.55616 1.50 0.1344

Table 15 presents the results attained when fitting two SLS models to the altint-b

data that is summarized in Table 11. These results show that D and J are significant

factors in the SLS regression model for the relative optimality gap response. Only

N , D, J are significant in the regression model for the required computational effort

response. Similar to the other model variants’ SLS regression models, N and D have
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the highest regression coefficient estimates for the required computational effort re-

sponse. Similar to the methodology for the other three higher-quality model variants,

another regression model that included two-factor interactions was constructed for

each response. The collective results were almost identical to those of the default

model variant.

In summary, the results shown in Tables 12-15 indicate that subdividing a de-

fender’s area into more stages will likely result in a higher required computational

effort. Since the defender only uses one interdiction resource per stage, such a decom-

position into a greater number of stages yields more opportunities for a defender’s

assets to interdict an intruder, and so a natural tradespace exists. Whereas the num-

ber of stages is significant in each of the three required computational effort regression

models, the other four main effects are significant as well. Thus, increasing the size of

any scenario feature will likely lead to an increase in the computational effort required

to solve it. Second, the results show that D and I are usually significant predictors to

the relative optimality gap response, depending on the model variant employed. That

is, the more types of assets that the defender is able to place, the better each of the

three model variants perform with respect to the relative optimality gap achieved.

2.4 Conclusions

Given two respective sets of detection resources and interdiction resources, each

having different types of resources with heterogeneous capabilities, this research ad-

dresses the problem of locating and allocating them over a sequence of spatially-

defined stages to effectively detect and intercept an intruder. We set forth a mixed-

integer nonlinear mathematical programming model – and seven alternative variants

– to address the underlying problem using a leading commercial solver for global

optimization.
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For the Resource Allocation for Intruder Detection and Interdiction (RAIDI)

model variants, this work formalizes the definition of problem scenarios as they relate

to key parameters relating to instance size with the intent of determining the rela-

tive effectiveness of model variants to attain high-quality solutions quickly to RAIDI

scenario instances. Development of the model variants allows for a structural exam-

ination of scenarios of many different sizes, and which enables a study to identify

which factors in the RAIDI scenarios influence the solution quality found by the

model variants.

We first use three baseline scenarios to determine which of the eight model vari-

ants are of high quality as indicated by the relative optimality gaps achieved and

computational effort required to solve instances, and the ones that are deemed in-

effective are set aside. The model variants of higher quality are examined further

by using a fractional factorial design to fit simple linear regression (SLS) regression

models to two responses: relative optimality gap and required computational effort.

The main effects in these regression models are simply the feature levels in the RAIDI

scenarios. Testing results identified that the number of types of detection and inter-

diction resources are the significant factors in determining the relative optimality gap

obtained by the model variants, and that every feature level is a significant factor

in determining the computational effort required to solve an instance of a RAIDI

scenario.

After examining the results of both the baseline scenario metrics and the frac-

tional factorial experiments for the higher-quality model variants, it is useful to note

that there is a natural tradespace between solution quality (measured by relative op-

timality gap obtained) and the computational effort required to solve an instance.

Generally speaking, the better a model variant performs when solving an instance in

one of those two metrics, the worse it performs in the other. Another finding shows
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that when the number of stages in a scenario is increased, there is a significant increase

in the computational effort required for a model variant to solve the scenario instance.

Last, results in Section 2.3.3 show that both the number of detection asset types, D,

and interdiction asset types, I, are statistically significant to the relative optimality

gap response obtained by the model variants to solve RAIDI scenario instances.

The superlative RAIDI model variant identified via two phases of empirical test-

ing is the default-b model, which augments the default model with simple upper and

lower bounds on each of the probability calculations to enhance the performance of

the commercial solver’s branch-and-bound procedure. This model variant performed

extremely well across all scenario sizes with respect to both of the responses mea-

sured. Moreover, the results of fitting two SLS regression models (i.e., one each for

the relative optimality gap response and the required computational effort response)

show that D and I are very significant predictors of the relative optimality gap, espe-

cially D. These outcomes, combined with the relatively low standard deviations for

both relative optimality gap obtained and computational effort required when solv-

ing 30 randomly generated instances each for 27 different RAIDI scenarios, indicate

that the default-b model variant performs consistently across many differently-sized

RAIDI scenarios and is worthy of use when considering more complicated modeling

frameworks in a sequel to this work. It is clear that this model variant is no different

than the others in the sense that there is a clear trade off between solution quality

and the computational effort required to solve an instance of a RAIDI scenario, but

the benefits mentioned above are unique to the default-b model variant.

There are multiple areas of future research for this problem thread. Regarding

the intruder, introducing the concept of multiple intruder paths would create several

possibilities for further study in contrast to the single intruder path studied herein.

First, there may exist uncertainty regarding where a single intruder will travel, given
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a set of possible intruder paths. This new problem may be addressed via robust

optimization or stochastic programming, depending on the information available to

the decision maker. Second, a problem that introduces uncertainty about the paths

over which multiple intruders will travel has merit for study. In either case, a refined

version of the RAIDI model can be used, and the superlative RAIDI model variant

identified herein provides a foundational framework for modeling such interactions.
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III. The Weighted Intruder Path Covering Problem

3.1 Introduction

Nations, states, and territories must protect their sovereignty against would-be

intruders, and that protection often entails the location and use of disparate resources

to detect and intercept those intruders. One such problem is ballistic missile defense

(BMD), wherein a defender must array sets of radars and interceptors to defend

cities (i.e., population centers) against an adversary’s launch of ballistic missiles.

Other problems such as border protection, the interdiction of refugee movement,

cybersecurity, and even the prevention of spread by natural biological immune systems

are likewise characterized by similar objectives, resource-outcome relationships, and

constraints. Each of these motivating scenarios entails a defender emplacing fixed

detection and interdiction resources and an intruder or multiple intruders attempting

to traverse the spatial region via a set of paths, where the path used may be unknown

to the defender. As it relates to a BMD scenario, intruder missiles seek to destroy high

value assets (HVAs) in the defender’s territory. In the refugee and border protection

scenario, refugees seek safe havens and resources such as shelter and water within

the territory of the defender (Mahecic, 2020). In the cybersecurity scenario, a hacker

may attempt to steal sensitive user data from a server within a computer network

(Schlesinger and Solomon, 2020). In the immune system scenario, an infection may

attempt to spread to attack vital organs via the bloodstream (O’Connell and Cafasso,

2018). Moreover, an enterprise modeling approach for defensive asset location is

worth examination; subject to the tractability of solution methods, it is preferable

to a “systems of systems” approach that decomposes the enterprise and inherently

tolerates assumed suboptimality of solutions. An enterprise model to identify the

appropriate use of disparate resources to detect and intercept intruders with unknown
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path(s) for intrusion has merit for a variety of applications.

In a preceding work to this study, Haywood et al. (2020) examined a related prob-

lem wherein a single intruder attempts to traverse a region partitioned by the defender

into physical stages (i.e., subregions). In each stage, the defender can place limited

detection and interdiction resources to intercept an intruder traveling on a predeter-

mined path. This research extends the previous work, both with respect to modeling

and solution methodology. From a modeling perspective, it improves the level of

fidelity in three aspects: 1) adopting a multi-objective optimization framework that

accounts for the cost of resources used by a defender, 2) introducing uncertainty re-

garding which path(s) intruder(s) will traverse, and 3) modeling the ability of selected

defensive resources to serve the dual-purpose of both detecting and interdicting in-

truders. Haywood et al. (2020) addressed the cost of the limited resources by making

the higher-quality detection and interdiction resources less plentiful for the defender’s

use. This research seeks to introduce a cost objective for detection and interdiction re-

sources and more thoroughly investigate the tradespace between cost and effectiveness

for various defense configurations. Haywood et al. (2020) did not address the concept

of intruder path uncertainty, and this research attempts to address it by also seeking,

as an objective, to minimize the maximum expected damage over any of the intruder

paths under consideration. For the resulting mixed-integer, nonlinear programming

formulation this research tests selected metaheuristics designed for multi-objective

optimization vis-à-vis a leading commercial solver for global optimization, the latter

of which we demonstrate has limited efficacy for solving instances of the underlying

problem.

The motivating scenarios illustrate a need to examine the uncertainty in the path

an intruder will traverse. In the BMD scenario, a realistic view is that the actual

path of an intruder missile is unknown, but there are some paths are more likely to

46



be traversed than others. In the border scenario, the actual path refugees may take is

unknown, but historical data may indicate more commonly traveled paths and inform

probabilities with which each path may be used. In the cybersecurity scenario, many

firewalls may be in place, but the actual path an intruder may attempt to use when

breaching the servers is unknown. In an immune system, an infection will generally

travel along the path of least resistance but, if there are multiple avenues of least

resistance, then the path is not known with certainty. Figure 4 in Section 3.3.2

provides a graphical depiction of a representative spatial relationship between stages,

intruder paths, and possible locations for detection assets, interdiction assets, or dual-

purpose assets; the notation therein will be formally defined in Section 3.2.

In each of these different scenarios, a multi-objective optimization approach is ap-

propriate; there is a natural trade-space to examine between the cost and performance

of an enterprise. For the aforementioned motivating problems and their structural

similarities, this research seeks to address the following problem:

Given an intruder attempting to traverse a spatially-decomposed region via mul-

tiple possible paths, effectively and cost-efficiently identify a defensive strategy

that locates sets of detection resources and interdiction resources, each of which

has different types of resources that vary by cost and capability.

Within the context of the related literature, this research makes two contribu-

tions. In its first contribution to address the underlying problem, this research sets

forth a mathematical programming model having several collectively complicating as-

pects that differentiate it from other research in the literature, as reviewed in Section

3.1.1. The model addresses the location of assets across an enterprise comprised of

different asset types (i.e., detection and interdiction assets) and capabilities, includ-

ing dual-purpose assets representing actual assets for certain motivating scenarios

(e.g., AEGIS class destroyers in a BMD scenario). The enterprise approach of the
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model considers the location of these assets in a defender’s territory organized into

multiple stages, better representing the geographic boundaries often used to organize

defenses for related applications (e.g., border patrol). Finally, the model employs

a multi-objective approach to enable the examination of the tradeoffs between the

effectiveness and cost of defensive asset configurations. In its second contribution,

this research identifies and empirically tests alternative, conceptually sound solution

methodologies for instances of the underlying problem. Empirical testing first identi-

fies the instance size-specific limitations of a leading commercial, global optimization

solver, motivating the examination of metaheuristics. Subsequent testing compares

the relative efficacy of two metaheuristics for solving larger-sized instances, identifying

the superlative technique that provides practical utility to the relevant mathematical

programming model presented in the first contribution.

The remainder of this paper is organized as follows. Section 3.1.1 reviews the

relevant literature to the application of interest, as well as the literature that informs

either the modeling approach or solution methodologies examined herein. Section 3.2

presents the mathematical programming formulation, and Section 3.3 validates the

model for an illustrative instance and conducts the aforementioned empirical testing.

Section 3.4 concludes the paper with a summary of resulting insights and suggestions

for future research.

3.1.1 Literature Review

Although the published literature does not address the underlying problem ex-

amined herein, it does both inform our modeling approach and provide alternative,

candidate solution methodologies that we consider and empirically test.

Several related modeling techniques from the literature provide insight, yet none

we identified embraces the complexity of the problem examined in this research. On
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a superficial level, most resource location problems emplace a single asset type to ad-

dress a particular demand (e.g., Bell et al. (2011), Basciftci et al. (2021)). Even works

that emplace multiple asset types (e.g., Serafino and Ventre (2016), Paul et al. (2017))

typically consider each asset type to have homogenous capabilities, whereas the prob-

lem studied herein allows a defender to emplace multiple asset types – with each type

having a range of specific asset capabilities – and with asset types contributing dif-

ferently to the objective of interdicting an intruder. Moreover, this research utilizes

an enterprise model in which the stated goal is to detect and subsequently interdict

an intruder using dedicated assets for each task and over all potential intruder paths

and multiple stages. The complexity embraced by this modeling endeavor improves

upon the literature that considers a single intruder path and/or stage (e.g., Hausken

(2010), Karabulut et al. (2017), Lessin et al. (2019)).

Path covering research is a literature thread more closely related to the motiva-

tion for this research, wherein a user seeks to emplace facilities that cover paths or

routes rather than fixed-point demands. In one such example, Capar et al. (2013)

examined the Flow-Refueling Location Model (FRLM) to locate alternative-fuel sta-

tion locations for use by vehicles along their routes. In related extensions, Upchurch

et al. (2009) considered a capacitated variant of the problem, and Capar et al. (2013)

studied heuristic solution methods. An abundance of literature pertaining to similar

applications (e.g., vehicle recharging stations, aircraft refueling locations) exists, but

it typically considers vehicle ranges and adopts a cooperative approach for facility

location. Moreover, the research herein differs in complexity from traditional path

covering problems due to the path of an intruder being decomposed into multiple

stages as opposed to a single path. As such, this literature motivates but does not

directly inform the research herein; it is more strongly informed by traditional facility

location models.
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Given this work seeks to defend (i.e., cover) numerous intruder paths with a (cost-

)limited number of resources, both the Maximal Covering Location Problem (MCLP)

and the Maximal Expected Covering Location Problem (MEXCLP) provide useful

modeling perspectives. Church and ReVelle (1974) introduced the MCLP, which

seeks to cover the maximum amount of demands, subject to bounds on the number (or

cost) of emplaced facilities, wherein coverage of a demand is a binary characterization.

Daskin (1983) extended the MCLP via the MEXCLP modeling framework, wherein

each resource has a probability of being busy (i.e., unable to provide coverage), and

the expected coverage of demands is maximized. A reader interested in the greater

context of location theory would benefit from examining works by Daskin (2011) and

Church and Murray (2018). Of relevance to this research is the general MEXCLP

framework that considers probabilities of coverage and the expected coverage attained

across the enterprise of resource emplacement. An interesting optimization problem

that allocates rectangular strips across a rectangular region is studied by Hu et al.

(2021), an example of a coverage problem wherein a user locates assets to cover a

spatial demand rather than traditional point-based demands. In comparison, the

research herein seeks to provide coverage to paths rather than point demands via

located resources.

Regarding solution methodologies utilized herein pertaining to multi-objective

optimization, this research considers both the effectiveness of system performance and

the efficient use of limited resources. There are two different frameworks for multi-

objective optimization regarding the preferences of a decision-maker over objectives:

a priori and a posteriori (Marler and Arora, 2004). An a priori framework entails

a decision-maker articulation of priorities before identifying a solution, and only one

Pareto optimal solution need be identified. Alternatively, an a posteriori framework

identifies the set (or a subset) of Pareto solutions, characterizing the tradespace for a

50



decision maker to consider and possibly discriminating among the solutions to develop

a recommendation (e.g., via proximity to an ideal point) (Marler and Arora, 2004).

Given the potential benefit of deriving insights attainable by examining the tradeoffs

between across a Pareto front, this research embraces an a posteriori framework.

Among the methods used to identify Pareto optimal solutions to multi-objective

optimization problems are the Weighted Sum Method, the ε-constraint Method, com-

promise programming (i.e., a method of weighted metrics), and scalarizing functions

(Ehrgott (2005); Deb (2014)). The literature in the field of multi-objective optimiza-

tion is vast, and we recommend the works by Deb (2001), Marler and Arora (2004),

and Ehrgott (2005) for an interested reader. When solving multi-objective optimiza-

tion models that are computationally challenging, the precise identification of Pareto

optimal solutions may be challenging to traditional optimization methods, motivating

the use of metaheuristics. Gonzalez et al. (2020) explored the use of a simulation algo-

rithm to solve multi-objective optimization problems instead of a global solver, with

mixed results. Talbi et al. (2012) review this developing area of the multi-objective

optimization literature, including the use of both non-evolutionary approaches (e.g.,

local search, Simulated Annealing, Tabu Search) as well as hybrid metaheuristics

(e.g., Multi-objective Genetic Local Search).

This work solves instances of the problem using selected variants of a class of

metaheuristics known as genetic algorithms (GA). Holland et al. (1975) pioneered

GA development, embedding concepts from nature and evolutionary processes. For

the purpose of multi-objective optimization (MOO), many variations of GAs have

been developed to explore Pareto fronts. Two noteworthy algorithmic components

developed within the MOO GA research thread are elitism and the use of an external

population. Elitism ranks population members by fitness level and ensures the most

fit members survive to the next generation, and it is employed in notable works by
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Murata and Ishibuchi (1995) and Deb et al. (2002). Murata and Ishibuchi (1995)

invented the MOO GA that randomly assigns weights to each objective function for

each population member in an effort to more thoroughly explore the Pareto front,

addressing the shortcoming they identified with other MOO GAs. Adopting the

naming convention used by Konak et al. (2006), the algorithm developed by Murata

and Ishibuchi (1995) will hereafter be referred to as the Random Weight Genetic

Algorithm (RWGA). In another major development, Srinivas and Deb (1994) created

the Nondominated Sorting Genetic Algorithm (NSGA), which does not use elitism

but instead simply makes use of fitness sharing via niching to generate diversity among

subsequent populations. Deb et al. (2002) improved upon this algorithm in creating

NSGA-II, which is widely considered to be one of, if not the, best MOO GAs in

the literature. NSGA-II has success beyond traditional use, as evidenced in research

by (Rabbani et al., 2019), wherein the authors used it in conjunction with Monte

Carlo simulation to create a simheuristic to solve MINLP models. Similarly, research

conducted by Drake et al. (2020) employs NSGA-II as one of several metaheuristics

to solve a multi-objective optimization problem involving deployment of resources for

infrastructure networks, and NSGA-II emerges as the best of the tested MOO GAs.

Traditionally, NSGA-II uses elitism when iterating through generations and, as the

name suggests, assigns fitness values via the use of rankings by examining whether

a solution in the population is dominated. The second major component, the use

of external populations, consists of maintaining a distinct, secondary population and

introducing members of it to the main population when creating the subsequent

generation. This concept is observable in RWGA (Murata and Ishibuchi, 1995); the

algorithm maintains a separate population consisting of solutions heretofore identified

as Pareto optimal and introduces a subset of them to the next generation. For a

detailed comparisons between various MOO GAs, we refer an interested reader to
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comprehensive surveys by Zitzler et al. (2000) and Konak et al. (2006).

Within this research, we apply and compare both the RWGA and NSGA-II multi-

objective GAs. We selected these metaheuristics due to the persistently high perfor-

mance each method has exhibited when tested on various problems, both within the

literature and during preliminary testing on instances of the underlying problem for

this research, and because they are quite different in the mechanisms employed for

diversity, elitism, use of external populations, and fitness assignment.

3.2 Model and Solution Methodology

First, we develop a model of the problem in which a single intruder attempts to

traverse the stages of a defensive region where the intruder’s path is unknown but is

limited to a finite set of possible paths. Moreover, this model is initially tri-objective,

with the objectives respectively seeking to 1) minimize the expected damage caused

by the intruder, 2) minimize the maximum expected damage done by the intruder,

and 3) minimize the cost of the defense configuration.

To formulate the mathematical program to address the underlying problem, it is

necessary to define the following sets, parameters, and decision variables.

Sets

• P = {1, 2, ...,P} is the set of paths over which the intruder may traverse through

the defender’s territory, indexed by ψ.

• N = {1, 2, ...,N} is the set of distinguishable stages over which the intruder

may be detected and interdicted by the defender’s enterprise of sensors and

interdictors, indexed by n. (If N = 1, the following models remain valid, but

the indexing of selected sets, parameters, decision variables, and constraints on

n can be set aside.) Relative to the set of stages, two assumptions are made

regarding the intruder’s path. First, we assume that each path transits every
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stage. Second, the stages are numbered in ascending order, as an intruder would

encounter them when traversing any path.

• D = {1, 2, ...,D} is the set of different detection resource types, indexed by d,

each of which pertains to different capabilities (e.g., range, effectiveness).

• J = {1, 2, ...,J } is the set of possible locations at which detection resources can

be located, indexed by j. J is partitioned by stage, where
⋃
n∈N

Jn = J .

• I = {1, 2, ..., I} is the set of different interdiction resource types, indexed by

i, each of which has different capabilities (e.g., speed, range, probability of

success).

• K = {1, 2, ...,K} is the set of possible locations at which interdiction resources

can be located, indexed by k. Similar to set J , the set K is likewise partitioned

over N .

• B = {1, 2, ...,B} is the set of dual-purpose resource types (i.e., resources that can

both detect and interdict an intruder), indexed by b, each of which pertains to

different capabilities (e.g., speed, range, probability of interdiction, probability

of detection).

• L = {1, 2, ...,L} is the set of possible locations at which dual-purpose resources

can be located, indexed by l. Similar to sets J and K, the set L is likewise

partitioned over N .

Parameters

• vψ: the expected damage that an intruder on path ψ would inflict if not in-

terdicted. As formulated, the math program considers an intruder seeking to

traverse each of the paths ψ ∈ P simultaneously. It may also address a single
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intruder considering which one of the paths to traverse. For such a case, assum-

ing a probability distribution of the intruder over the paths, vψ is the likelihood

the intruder will traverse that path, multiplied by the damage induced if they

successfully traverse it.

• uDd , uIi, uBb : the maximum number of detection, interdiction, and dual-purpose

resources that can be emplaced, respectively of types d, i, and b.

• cDd , cIi, cBb : the cost of emplacing a detection, interdiction, and dual-purpose re-

sources, respectively of types d, i, and b.

• pDdjψ : the probability that an intruder on path ψ is detected by a detection

resource of type d emplaced at location j.

• pIikψ : the probability that an intruder on path ψ is interdicted by an interdiction

resource of type i emplaced at location k.

• pBDblψ, pBIblψ : the probability that an intruder on path ψ is detected or interdicted,

respectively, by a dual-purpose resource of type b emplaced at location l.

• we, wmax, wc: the relative weights assigned, respectively, to the expected total

damage, the worst-case path-specific damage, and the enterprise cost when

solving an instance of the problem with a commercial solver via the Weighted

Sum Method for MOO

Decision Variables

• xdj : a binary variable equal to 1 if a detection resource of type d is emplaced

at location j, and 0 otherwise.

• yik : a binary variable equal to 1 if an interdiction resource of type i is emplaced

at location k, and 0 otherwise.
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• zbl : a binary variable equal to 1 if a dual-purpose resource of type b is emplaced

at location l, and 0 otherwise.

• πD
ψn : the conditional probability that an intruder on path ψ is detected in stage

n given it has successfully traversed previous stages, i.e., 1, . . . , n− 1.

• πI
ψn : the conditional probability that an intruder on path ψ is interdicted in

stage n given it has successfully traversed previous stages, i.e., 1, . . . , n− 1 and

has been detected in stage n.

• πD
⋂

I
ψn : the conditional probability of an intruder on path ψ being detected and

subsequently interdicted in stage n given it has successfully traversed previous

stages, i.e., 1, . . . , n− 1.

• πD
⋂

I
ψ : the probability of an intruder on path ψ being detected and subsequently

interdicted.

• fe: the total expected damage done by the intruder.

• fmax: the worst-case expected damage done by the intruder.

• fc: the cost of the defense configuration employed by the defender.

Leveraging the aforementioned notation, we formulate the Weighted Intruder

Path Covering (WIPC) model as follows.

min (fe, fmax, fc) (23)

s.t. fe =
∑
ψ∈P

vψ

(
1− πD

⋂
I

ψ

)
, (24)

fmax ≥ vψ

(
1− πD

⋂
I

ψ

)
, ∀ψ ∈ P (25)

fc =
∑
d∈D

∑
j∈J

cDdxdj +
∑
i∈I

∑
k∈K

cIiyik +
∑
b∈B

∑
l∈L

cBb zbl, (26)
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π
D
⋂

I
ψ = 1−

∏
n∈N

(
1− πD

⋂
I

ψn

)
, ∀ ψ ∈ P (27)

π
D
⋂

I
ψn = πD

ψnπ
I
ψn, ∀ ψ ∈ P, n ∈ N, (28)

πD
ψn = 1−

∏
d∈D

∏
j∈Jn

(
1− pDdjψ

)xdj ∏
b∈B

∏
l∈Ln

(
1− pBDblψ

)zbl , ∀ ψ ∈ P, ∀ n ∈ N, (29)

∑
d∈D

xdj ≤ 1, ∀j ∈ J, (30)

πI
ψn = 1−

∏
i∈I

∏
k∈Kn

(
1− pIikψ

)yik∏
b∈B

∏
l∈Ln

(
1− pBIblψ

)zbl , ∀ ψ ∈ P, ∀ n ∈ N, (31)

∑
i∈I

∑
k∈Kn

yik +
∑
b∈B

∑
l∈Ln

zbl ≤ 2, ∀ n ∈ N, (32)

∑
j∈J

xdj ≤ uDd , ∀d ∈ D, (33)

∑
k∈K

yik ≤ uIi, ∀i ∈ I, (34)

∑
l∈L

zbl ≤ uBb , ∀b ∈ B, (35)

xdj ∈ {0, 1}, ∀d ∈ D, j ∈ J (36)

yik ∈ {0, 1}, ∀i ∈ I, k ∈ K (37)

zbl ∈ {0, 1}, ∀b ∈ B, l ∈ L (38)

0 ≤ πD
ψn ≤ 1, ∀ ψ ∈ P, ∀ n ∈ N, (39)

0 ≤ πI
ψn ≤ 1, ∀ ψ ∈ P, ∀ n ∈ N, (40)

0 ≤ π
D
⋂

I
ψn ≤ 1, ∀ ψ ∈ P, ∀ n ∈ N, (41)

0 ≤ π
D
⋂

I
ψ ≤ 1, ∀ ψ ∈ P, (42)

0 ≤ fe ≤
∑
ψ∈P

vψ, (43)

fmax ≤ max
ψ∈P
{vψ}, (44)

0 ≤ fc ≤ J ·max
d
{cDd }+K ·max

i
{cIi}+ L ·max

b
{cBb }, (45)
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The objective (23) of this formulation minimizes each of three objective functions,

as respectively either calculated or bound via Constraints (24)-(26). Constraint (24)

calculates the expected damage inflicted by intruders over all paths ψ ∈ P . Constraint

(25) bounds the maximum expected damage from below by the expected damage that

will occur on each of the intruder paths ψ ∈ P . Note that, although this model is

initially tri-objective, we later simplify to a bi-objective model after initial testing in-

dicates a high correlation between two of the objectives, as further discussed in Section

3.3.2. Constraint (26) calculates the cost of the emplaced resources. Constraint (27)

calculates the probability of detection-and-interdiction of an intruder on each path

ψ ∈ P using the stage-specific conditional probabilities of detection-and-interdiction,

assuming independence between stages. Constraint (28) computes the stage-specific

conditional probabilities of detection-and-interdiction for an intruder on each path

ψ ∈ P , likewise assuming independence between these probabilities. To calculate

the in-stage probability of detection for an intruder on each of the paths ψ ∈ P ,

it is assumed that every detection resource and dual-purpose resource emplaced in

the stage contributes to the overall in-stage probability of detection. Constraint (29)

leverages this assumption in calculating each path-and-stage-specific probability of

detection as a function of the detection and dual-purpose resources emplaced in stage

n and the respective probabilities specific to each type of resource. Constraint (30)

limits the number of detection resources that can be emplaced at each location j ∈ J

to at most one. To calculate each path-and-stage-specific probability of interdiction

via Constraint (31), a different assumption is made regarding the interdiction and

dual-purpose assets; at most two interdiction or dual-purpose assets in each stage

can be utilized to attempt to interdict an intruder on each path. This assumption is

motivated by the literature for the BMD scenario, which indicates firing more than
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two interceptor missiles is not effective (Wilkening, 2000). Accordingly, Constraint

(32) enforces that at most two interdiction or dual-purpose assets can be utilized for

interdiction on a given intruder path within a stage. Constraints (33)-(35) ensure the

total number of detection, interdiction, and dual-purpose resources, respectively, do

not exceed the allotted amount. Constraints (36)-(38) enforce binary restrictions on

selected decision variables, and Constraints (39)-(42) bound each of the computed

probabilities to impose a hypercube of constraints on the related decision variables to

support the application of a global optimization (i.e., branch-and-bound) algorithm

via a commercial solver. For similar reasons, Constraints (43)-(45) enforce lower and

upper bounds on the objective function calculations.

Three solution methods are considered and empirically tested in Section 3.3 to

solve instances of the WIPC. The research first uses the Branch-And-Reduce Op-

timization Navigator (BARON) (Sahinidis and Tawarmalani, 2004), a commercial,

global solver designed for the global optimal solution of mixed-integer nonlinear pro-

grams (MINLPs) such as WIPC. The commercial global optimization solver BARON

was selected from among several alternatives (i.e., Bonmin, COUENNE, LindoGlobal,

and SCIP) based on its superlative performance during preliminary empirical test-

ing for instances of the problem. Additionally, testing examines the multi-objective

genetic algorithms RWGA and NSGA-II, as discussed in Section 3.1.1.

3.3 Testing, Results, and Analysis

Before examining the limitations of the commercial solver BARON, Section 3.3.1

describes the method utilized to stochastically generate parameters for test instances,

and Section 3.3.2 validates the WIPC model for a small, illustrative instance. Section

3.3.3 empirically examines the limitations of the commercial solver BARON and mo-

tivates the development and use of a metaheuristic to solve larger instances of WIPC.
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Section 3.3.4 demonstrates the superior effectiveness and efficiency of RWGA and

NSGA-II to BARON. Finally, Section 3.3.5 assesses the effectiveness and efficiency

of RWGA and NSGA-II for larger-sized instances.

3.3.1 Test Instance Generation

To enable a relatively focused testing design, set sizes and selected parameters for

WIPC instances are user-defined and deterministic, with the remainder of parame-

ters stochastically generated based on the aforementioned user-defined values. For a

given test instance, specified are the number of paths P , the number of stages N , and

the respective numbers and types of each defensive resource (i.e., D,J , I,K,B,L).

Although not a direct set or parameter of WIPC, testing also considers a user-

determined size of the defended region; herein, a rectangular region is assumed with

an intruder traversing (w.l.o.g.) from left to right. The rectangular region we consider

has a width of 6400 units and a height of 2300 units, which roughly emulates, from

the perspective of BMD, the aspect ratio and approximate dimensions (in miles) of

a region of interest in the Northern Pacific Ocean. Using this width, the respective

widths of stages are assumed to be uniform (i.e., with each stage width equal to

6400/N ).

For each set of these affixed values, which we hereafter refer to as a scenario, test-

ing considers multiple instances, wherein each instance differs via selected, stochasti-

cally generated parameters. In testing throughout Sections 3.3.2- 3.3.4, this research

generates WIPC instances for a given scenario in the following manner. First, in-

stances are generated using a fixed pseudo-random number generation seed in GAMS

for Sections 3.3.2 and 3.3.3, and in R for Section 3.3.4. The allocation of possible

resource locations to stages (i.e., Jn, Kn, and Ln) are respectively identified with a

discrete uniform distribution with the proviso that at least one location option for
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each category and type of resource exists in each stage. Once the detection, inter-

diction, and dual-purpose resource locations are assigned to stages, their respective

locations within the stages are calculated via a uniform distribution to designate a

two-dimensional Cartesian coordinate. Intruder paths are calculated by assuming

that intruders will traverse the territory in a straight line from an origin (i.e., launch

site) on the left edge of the rectangular region to a destination (i.e., target) on the

right edge of the rectangular region. The vertical coordinate for each of these points

(i.e., on the left or right boundary or the region) for a given path is generated using

a uniform distribution U(0, 2300).

Another parameter generated to create an instance of WIPC are the values of vψ.

These values are sampled randomly from the set of the populations of the 20 most

populated cities on the US West Coast. For example, if P = 7 for an instance of

WIPC, seven numbers are chosen at random (with replacement) from the aforemen-

tioned set to generate the vψ-values. The larger population values are interpreted as

larger values of vψ because an intruder targeting a highly populated city is assumed

to have the ability to cause more damage.

When generating specific parameter values, we assume that higher values of the

indicies d, i, and b correspond to more capable detection, interdiction, and dual-

purpose resource types, respectively, which are also assumed to be more expensive

and available in lesser amounts. We also expect detection resources to be more

abundant than interdiction and dual-purpose resources and we expect that dual-

purpose resources are inherently more expensive than the other two resource types.

We thus generate uDd -, uIi-, and uBb -parameters as a function of the scenario parameters

using a uniform random variable. The lower bound on uDd is induced by an assumption

that at least one detection resource will be emplaced in each stage, and an upper

bound is induced by a combination of the policy that detection resources will not
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be co-located and the number of total detection resource locations. Equation (46)

illustrates for uDd , ∀ d ∈ D, the generation of a value from a uniform distribution and

the allocation allocation of an integer-valued proportion of that value by resource

type. Similarly, for interdiction and dual-purpose resource types, Equations (47) and

(48) illustrate the generation of a value from uniform distributions for uIi, ∀ i ∈ I,

and uBb , ∀ b ∈ B, respectively. The upper bound for the uniform distribution in

Equation (47) differs from that in Equation (46) because we expect the amount of

interdiction resources to be less than that of the detection resources. The upper

bound in Equation (48) is analogous to that in Equation (46) since the assumptions

for the placement of dual-purpose resources mirror that of detection resources in that

each resource improves detection within a stage.

uDd =

⌈(
(D + 1− d) /

∑
d∈D

d

)
U (N ,J )

⌉
, ∀ d ∈ D (46)

uIi =

⌈(
(I + 1− i) /

∑
i∈I

i

)
U (N , 2N )

⌉
, ∀ i ∈ I (47)

uBb =

⌈(
(B + 1− b) /

∑
b∈B

b

)
U (N ,L)

⌉
, ∀ b ∈ B (48)

Cost parameters also vary by resource type (i.e., d, i, and b, respectively), as-

suming that types with higher indices are the more capable and expensive resources.

Accordingly, the costs for each resource type are generated in a manner that assigns

higher costs to resource types with higher-valued indices. For detection assets, a cost

range of [cDLB, c
D
UB] = [1, 10] is partitioned into D intervals having equal width, as-

signing the higher cost intervals to resource types with highest-valued indices, and

so forth. We slightly modify the intervals so they overlap by 10% of the interval

widths; the result is not a completely hierarchical partition. The costs of interdiction
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resources by type are generated in an identical manner with identical lower and upper

bounds for cost, but the costs of dual-purpose resources by type are generated using

a cost range of [cBLB, c
B
UB] = [5, 20]. The reason for the larger bounds of dual-purpose

costs is simply due to the dual-purpose nature of the resources. Equations (49)-(51)

illustrate the specific generation of the costs by resource type of detection, interdic-

tion, and dual-purpose resources, respectively, wherein ∆D =
cDUB−c

D
LB

D , ∆I =
cIUB−c

I
LB

I ,

and ∆B =
cBUB−c

B
LB

B .

cDd = U
(
cDLB + (d− 1) ·∆D, cDLB + d ·∆D) , ∀ d ∈ D (49)

cIi = U
(
cILB + (i− 1) ·∆I, cILB + i ·∆I) , ∀ i ∈ I (50)

cBb = U
(
cBLB + (b− 1) ·∆B, cBLB + b ·∆B) , ∀ b ∈ B (51)

Probability parameters vary by resource type and are calculated as a function

of distance. Specifically, the distance used to calculate probability of detection and

interdiction of an intruder is the shortest distance from the resource’s location to the

intruder path, henceforth referred to as distmin. For example, the minimum distance

from a detection location j to an intruder path ψ reads distDmin(j, ψ). The probability

of detection (which can be accomplished by a detection or dual-purpose resource)

from a resource location for a particular intruder is calculated using a logistic decay

function of distmin, as mentioned previously. The probability of interdiction (which

can be accomplished by an interdiction or a dual-purpose resource) from a resource

location for a particular intruder is calculated using an exponential decay function of

the aforementioned distmin. Equations (53)-(56) depict the probability functions used

to parameterize WIPC instances as functions of distmin with the appropriate indices,
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where pmax = 0.9 is the maximum probability of an emplaced resource successfully

detecting or interdicting the intruder, and dist0.5 indicates the distance at which a

resource’s probability of successfully detecting or interdicting an intruder is equal

to 0.5 and is a function of the resource type index. The dist0.5 calculations for

detection and interdiction resource types are such that the largest index (i.e., the

most effective) resource types have a 0.5 probability of success when the distance to

the intruder is 25% of the stage width, and this percentage is reduced for lower indices

as shown in Equation (52). This distance is adjusted to 15% of the stage width for

dual-purpose resource types, where we assume that dual-purpose resource types will

not accomplish the same level of effectiveness at the same distance as a dedicated

detection or interdiction resource type.

distD0.5(d) =
d

D
· 0.25 · stagewidth (52)

pDdjψ
(
distDmin(j, ψ)

)
=

(
pmax

1−pmax

)
exp

{
distDmin(j,ψ)

distD0.5(d)
ln
(

1−pmax

pmax

)}
1 +

(
pmax

1−pmax

)
exp

{
distDmin(j,ψ)

distD0.5(d)
ln
(

1−pmax

pmax

)} (53)

pIikψ
(
distImin(k, ψ)

)
= pmax exp

{
distImin(k, ψ)

distI0.5(i)
ln

(
0.5

pmax

)}
(54)

pBDblψ
(
distBmin(l, ψ)

)
=

(
pmax

1−pmax

)
exp

{
distBmin(l,ψ)

distB0.5(b)
ln
(

1−pmax

pmax

)}
1 +

(
pmax

1−pmax

)
exp

{
distBmin(l,ψ)

distB0.5(b)
ln
(

1−pmax

pmax

)} (55)

pBIblψ
(
distBmin(l, ψ)

)
= pmax exp

{
distBmin(l, ψ)

distB0.5(b)
ln

(
0.5

pmax

)}
(56)
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3.3.2 Validating the Model with an Illustrative Instance

Figure 4 depicts a small, illustrative instance used to validate WIPC and to il-

lustrate how various objective function weighting combinations affect the optimal

solutions attained. The depicted instance consists of n = 3 stages with P = 3 possi-

ble intruder paths, each having an associated possible damage vp. For the defender,

there are J = 4 possible locations for detection assets, K = 4 possible locations for

interdiction assets, and L = 5 possible locations for dual-purpose assets. The de-

fender also has two types of each type of asset from which to choose when deciding

which assets to use and where to emplace them.

Figure 4. Illustrative Instance of WIPC

As shown in Figure 4, the dual-purpose (and thus, more expensive) assets can only

be placed at locations in relatively close proximity to path p3, which has the highest

value of vψ. That is, an intruder on path p3 can inflict the most damage, and it will

cost more money to properly defend that path. In contrast, the maximum amount

of damage an intruder traversing both paths p1 and p2 can inflict is lower, and those

paths collectively require less money to defend using a combination of detection and

interception assets.

Testing applied the Weighted Sum Method and invoked the commercial solver
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BARON to identify multiple Pareto Optimal (PO) solutions for this WIPC instance,

examining non-zero objective function weight combinations of (wc, we, wmax) in in-

crements of 0.1, such that wc + wmax + we = 1. Of note, the GAMS implementa-

tion of the WIPC formulation minimizes an intermediate decision variable defined as

z = wcfc+wmaxfmax +wefe and additionally imposes the constraint z ≤ fc+fmax +fe

to bound further any solver-generated relaxations. For increasing values of wc, Figure

5 plots the optimal values of fe and fmax identified. For some weight combinations

(e.g., wc = 0.4), Figure 5 depicts only one point; this result indicates that all five of

the optimal solutions attained for the varying values of (we, wmax) yielded the same

objective function values at optimality.

Figure 5. Optimal (fmax, fe)-values via the Weighted Sum Method to the Illustrative
WIPC Instance for Various wc-values

The results depicted in Figure 5 yield two important insights. First, a tradeoff

between system cost and effectiveness is evident for this illustrative instance. As wc

increases and the cost of the defense configuration becomes a higher relative priority,

the optimal values of both fe and fmax increase. Second, the optimal values of fe

and fmax are highly correlated (r = 0.995) over all combinations of objective function

weights examined; there exists redundancy in examining both of these objective func-

tions in the WIPC formulation. Although there is not a guarantee that this result
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is generalizable to all instances of WIPC, we find its existence motivation to reduce

the number of objective functions considered in an effort to improve tractability. Be-

ginning in Section 3.3.3, only one system effectiveness objective will be considered,

rendering WIPC as a bi-objective rather than a tri-objective formulation. Because fe

is a direct calculation via Constraint (29), whereas fmax is determined at optimality

relative to the lower bounding supports imposed via Constraint (39), fmax will be set

aside as an explicit objective function.

To further validate the formulation for this instance, we restrict our attention to

the optimal solutions for (wc, we, wmax) ∈ {(0.1, 0.5, 0.4), (0.4, 0.3, 0.3), (0.7, 0.2, 0.1)},

respectively corresponding to low, medium, and high relative priorities on minimizing

defender costs with roughly similar priorities over the remaining objective functions

(at the 0.1 granularity of objective function weights). Table 16 presents the optimal

solutions for each combination of objective function weights. The second column re-

ports the optimal objective function values, and the subsequent columns respectively

identify the combination of indices and asset type where detection, interdiction, and

dual-purpose assets are emplaced.

Table 16. Optimal solutions for three sample weight combinations

(wc, we, wmax) (f∗c , f
∗
e , f

∗
max) (d, j)|x∗dj = 1 (i, k)|y∗ik = 1 (b, l)|z∗bl = 1

(0.1, 0.5, 0.4) (69.9, 3.0, 1.7) (1, 4), (2, 2), (2, 3) (1, 3), (2, 2), (2, 4) (2, 4)
(0.4, 0.3, 0.3) (25.1, 16.5, 11.3) (2, 2), (2, 3) (1, 3), (2, 2) –
(0.7, 0.2, 0.1) (0, 65, 40) – – –

Within Table 16, as wc increases and the combined weights for effectiveness mea-

sures decrease, fewer dual-purpose resources are used and, eventually, no resources

are emplaced. These results are expected for this instance because the dual-purpose

resources are more expensive and their location sites are clustered around the path

capable of inflicting the most damage. Via the solutions to these different objective

function weights, the tradeoff between cost and effectiveness is further evident, both

between types of resources and whether to emplace resources at all.
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3.3.3 Identifying the Limitations of a Commercial Solver for Global

Optimization

It remains of interest to identify an appropriate solution methodology that effi-

ciently finds high quality solutions. Given the WIPC is a non-convex, mixed-integer

nonlinear math programming (MINLP) formulation, we test a leading commercial

solver (i.e., BARON) designed for global optimization. We considered instances hav-

ing combinations of sets of size P ∈ {20, 40, 60, 80} and, for the sake of simplicity,

common parametric values of J /K/L in the set {5, 10, 15, 20, 25}. BARON was in-

voked to solve 10 stochastically generated instances for each parametric combination,

each with alternative termination criteria of a 0% relative optimality gap and a time

limit of 2700 seconds of computational effort.

Table 17 reports the average relative optimality gap (%) attained for the 10 in-

stances at each parametric combination, as well as the number of instances for which

a suboptimal solution was reported by BARON. Of note, the average relative optimal-

ity gap is strictly increasing for values of J /K/L for a given P-value, and the same

relationship holds for increasing values of P for a given J /K/L-parameter. These

general trends conform to intuition; solver performance degrades with an increasing

size of instances of WIPC. (Roughly similar trends exist for the number of subopti-

mal solutions reported by BARON.) More interesting is that the degradation of the

average relative optimality gap attained is greater with increases to the number of

locations available for defense asset emplacement than the number of intruder paths.

Table 18 reports the average computational effort (seconds) required by BARON

for the 10 instances at each parametric combination, as well as the number of in-

stances for which BARON terminated due to the 2700 second limit on computational

effort. Although there did exist two instances (i.e., at (J /K/L,P) = (15, 20)) for

which BARON identified a global optimal solution upon termination at ∼2700 sec-
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Table 17. Average relative optimality gap (%) attained and number of instances (out
of 10) for which a suboptimal solution was identified using commercial solver BARON
for various instance sizes of WIPC

Number of Intruder Paths (P)
J /K/L 20 40 60 80

5 0.00 (0) 0.00 (0) 0.00 (0) 8.12 (1)
10 0.09 (1) 15.23 (3) 18.08 (3) 44.52 (7)
15 9.73 (2) 36.94 (5) 41.54 (5) 68.88 (8)
20 31.67 (4) 86.89 (10) 80.47 (9) 90.79 (10)
25 49.52 (6) 91.93 (10) 94.15 (10) 91.78 (10)

onds of computational effort, these results were anomalous; every suboptimal solution

reported in Table 17 resulted from a termination of BARON due to the limit on com-

putational effort, as indicated in Table 18. Therefore, it may be possible to improve

the quality of solutions identified by BARON in Table 17, but doing so would be

relatively inefficient.

Table 18. Average computational effort (seconds) required and the number of instances
(out of 10) for which the commercial solver BARON terminated due to a 2700 second
time limitation, for various instance sizes of WIPC

Number of Intruder Paths (P)
J /K/L 20 40 60 80

5 1.9 (0) 8.0 (0) 47.9 (0) 389.1 (1)
10 108.7 (1) 1207.9 (3) 1391.3 (3) 2113.2 (7)
15 1099.0 (4) 2115.0 (5) 2066.3 (5) 2409.9 (8)
20 1378.6 (4) 2702.0 (10) 2484.4 (9) 2700.4 (10)
25 2116.0 (7) 2705.6 (10) 2702.2 (10) 2701.7 (10)

Considering the collective testing results, a commercial solver designed for global

optimization remains capable of identifying high quality solutions when considering

a greater number of intruder paths, but its use to consider instances having a larger

number of options for locating defensive assets is limited when the efficiency of a

solution method is important. Moreover, the general trends observed portend yet

greater challenges to solver efficiency with increased instance size(s). Such a limita-

tion is challenging to accept for practical applications of the WIPC, motivating the

exploration of a metaheuristic capable of efficiently addressing larger instances of the

problem.
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3.3.4 Metaheuristics as an Alternative to a Commercial Solver for

Global Optimization

In this section, we show that GAs are a viable substitute for a commercial global

solver for solving instances of WIPC. As discussed in Section 1.2, we use NSGA-II and

RWGA as GAs for MOO, and BARON as the commercial solver used to solve the same

randomly generated instance with 5-, 20-, and 45-minute run-time limits. For both

GAs, the common parameters are population size (n = 100) and mutation probability

during crossover (p = 0.3). RWGA has a specific parameter called Nelite, which is the

number of previously discovered PO solutions that are reintroduced to the current

population during each iteration. After completing pre-testing tuning, Nelite = 5 was

chosen for this instance. All testing was completed on a 2.5 GHz with 16 GB of RAM

and an Intel(R) Core(TM) i7-6500U processor. GAMS modeling language (Version

30.1.0) was used to invoke the commercial solver BARON (Version 19.12.7). To solve

subproblems, BARON invoked IBM ILOG CPLEX (Version 12.10.0) and/or MINOS

(Version 5.5), as appropriate. RWGA and NSGA-II were coded in RStudio (Version

3.3.2). BARON testing was completed by solving the randomly generated WIPC

instance for nine weight combinations where wc ∈ {0.1, 0.2, . . . , 0.9} and we = 1−wc,

as an attempt to explore a wider range of solutions on the Pareto front. For each

of the weight combinations, BARON was allowed the same run-time provided to

RWGA and NSGA-II, wherein they could complete as many iterations as possible.

That is, BARON solved each of the nine weight combinations with a 5-minute limit

whereas NSGA-II and RWGA compiled and returned entire Pareto fronts within a

single 5-minute limit on computational effort. This time-based termination criterion

was imposed to ensure a more fair comparison for BARON, since it could be used to

simultaneously solve multiple instances via parallel processing.

Figure 6 presents the PO solutions obtained by the three solution methods within
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Figure 6. Pareto fronts generated by BARON, NSGA-II, and RWGA with a 5-minute
run-time limit

Table 19. Comparison of Commercial Solver (BARON), NSGA-II, and RWGA regard-
ing the solutions returned after 5 minutes of run-time

Solution Method
No. of Solutions

Reported
No. of PO Solutions

Reported

No. of PO Solutions
Reported Relative to all

Reported Solutions
BARON 9 6 6
NSGA-II 100 26 9
RWGA 27 27 21
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the 5-minute run-time limit. Readily observable is that each of the three solution

methods produce some non-dominated solutions (with respect to all solutions re-

ported) at various regions along the front. For smaller values of fe, NSGA-II produces

PO solutions. For larger values of fe, BARON produces PO solutions and, for values

of fe between 10 and 20, RWGA produces PO solutions. Table 19 reports the number

of PO solutions identified by each method, both within each method’s final set of solu-

tions and with respect to the collective set of solutions identified by all three methods.

The first column of Table 19 indicates the number of total solutions returned by each

method. Note that NSGA-II returns the entire population upon termination, and

only afterwards are the PO solutions identified; in contrast, RWGA reports the ex-

ternal population where only PO solutions are stored, which explains the differences

(or lack thereof) between reported values in the first and second columns. The third

column of Table 19 identifies the number of solutions identified by a given method

that are non-dominated when compared to the collective set of solutions reported by

all three methods. Clearly, RWGA reports more PO solutions relative to the other

methods when the computational effort was limited to 5 minutes.

Figure 7. Pareto fronts generated by BARON, NSGA-II, and RWGA with a 20-minute
run-time limit

Figure 7 displays the Pareto fronts generated by all three solution methods when
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Table 20. Comparison of Commercial Solver (BARON), NSGA-II, and RWGA regard-
ing the solutions returned after 20 minutes of run-time

Solution Method
No. of Solutions

Reported
No. of PO Solutions

Reported

No. of PO Solutions
Reported Relative to all

Reported Solutions
BARON 9 6 4
NSGA-II 100 38 22
RWGA 29 29 11

they are limited to a 20-minute run-time. The Pareto front generated by NSGA-II

almost completely dominates the fronts generated by RWGA and BARON. Notably,

the solutions reported by BARON are the exact same as those reported after 5 min-

utes, indicating that BARON’s reported solutions did not improve with time, and

they are on an extreme with respect to weights for fe and fc (i.e., the objective func-

tions are not well scaled for the use of the Weighted Sum Method). Table 20 updates

the results from Table 19 for the 20-minute time limit. Relative to the 5-minute

results, NSGA-II improves the most, as evidenced by the number of PO solutions

reported relative to the collective set of solutions identified by all three methods. Of

the 38 solutions that NSGA-II reported after 20 minutes, 22 (57%) of them were still

PO when compared to the solutions reported by RWGA and BARON.

Figure 8. Pareto fronts generated by BARON, NSGA-II, and RWGA with a 45-minute
run-time limit

Figure 8 displays the Pareto fronts generated by all three solutions methods when
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Table 21. Comparison of Commercial Solver (BARON), NSGA-II, and RWGA regard-
ing the solutions returned after 45 minutes of run-time

Solution Method
No. of Solutions

Reported
No. of PO Solutions

Reported

No. of PO Solutions
Reported Relative to all

Reported Solutions
BARON 9 6 4
NSGA-II 100 78 70
RWGA 41 41 4

using a 45-minute time limit. Similar to the results after 20 minutes, NSGA-II exhibits

a strong Pareto front that dominates most of the solutions returned by RWGA as

well as some solutions produced by BARON, but it does not dominate the BARON

solutions produced for high values of we. Table 21 further demonstrates NSGA-II’s

dominance; 70 out of 78 solutions (i.e., 90%) produced by NSGA-II are still PO

when compared to all solutions identified by the other two methods. Again, BARON

produced the exact same nine solutions, of which only six were PO; as before, the

solutions are not improving when allowing more time for solver convergence. Over

all three time limits allowed, RWGA and NSGA-II returned a higher number and

quality of solutions, but NSGA-II solutions dominated more RWGA solutions as the

run-time limit increased.

Table 22. Comparison of convergence over time between BARON, NSGA-II, and
RWGA

Method

No. of PO
Solutions

Reported After
5 min.

No. of PO Solutions
Reported at 5 min.
that are still present

at 20 min.

No. of PO Solutions
Reported at 20 min. that

are still present at 45
min.

BARON 6 6 6
NSGA-II 26 0 0
RWGA 27 4 8

Table 22 compares the convergence of BARON, NSGA-II, and RWGA by examin-

ing the number of PO solutions that are returned with smaller run-time limits and the

degree to which they “survive” to the next largest run-time limit. BARON did not

evolve with time at all, as evidenced by the fact that the six PO solutions it returned
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are identical after 5, 20, and 45 minutes of run-time. NSGA-II on the other hand,

reported 26 PO solutions after 5 minutes of run-time, of which 0 were returned again

after 20 minutes of run-time, indicating improvement in the set of solutions identified

with greater computational effort. Likewise, none of the solutions NSGA-II reported

after 45 minutes of run-time had been identified after 20 minutes. RWGA reported

a similar number of solutions after 5 minutes and, while only four of them were still

present at the 20-minute mark, eight of the solutions reported at 20 minutes were still

present after 45 minutes had passed. This result indicates that NSGA-II exhibited

the superlative convergence of solutions between the 20- and 45-minute time limits.

Figure 9. Pareto fronts generated by NSGA-II with 5-, 20-, and 45-minute run-time
limits

Figure 10. Pareto fronts generated by RWGA with 5-, 20-, and 45-minute run-time
limits

Figures 9 and 10 display the Pareto fronts generated after 5, 20, and 45 minutes
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by NSGA-II and RWGA, respectively. NSGA-II clearly improves with time and,

combined with the results shown in Table 22, NSGA-II produced better Pareto fronts

that dominated previously identified fronts. RWGA also returns better Pareto fronts

as the run-time limit increases, but RWGA’s improvement is not as stark as the

improvement shown by NSGA-II. These results, combined with the data in Table

22, indicate that NSGA-II and RWGA both outperform BARON when solving this

WIPC instance, with NSGA-II exhibiting a better performance than RWGA.

3.3.5 RWGA vs. NSGA-II as a Solution Method for Larger WIPC

Instances

This section compares RWGA and NSGA-II as an extension of the testing reported

in Table 17. Allowing the number of intruder paths to equal 25, 30, and 35, while also

increasing the number of locations for each type of resource to 80, 100, and 120 allows

for an examination of RWGA and NSGA-II for larger, more challenging instances of

WIPC.

Table 23. Mean and Standard Deviation of PO solutions reported relative to all re-
ported solutions for 10 instances of WIPC solved using RWGA and NSGA-II (2700-
second time limitation)

Number of Intruder Paths (P)
J /K/L GA 80 100 120

25
RWGA 9.8± 5.7 11.2± 7.7 11.4± 7.8

NSGA-II 74.7± 9.3 66.1± 13.3 64.6± 9.6

30
RWGA 7.1± 3.8 8.3± 4.1 7.8± 2.5

NSGA-II 69.7± 8.7 63.4± 11.1 49.5± 8.4

35
RWGA 11.9± 7.7 10.1± 6.0 10.4± 3.8

NSGA-II 58± 13.1 46.3± 9.6 38.8± 6.7

Table 23 details the results of the direct comparison between RWGA and NSGA-

II on nine different problem sizes. In each problem size, 10 random instances were

randomly generated and solved by both RWGA and NSGA-II with a 2700-second run-

time limit. Once the PO solutions for each metaheuristic were returned, the solutions

were examined in aggregate for a given instance, and the number of solutions that
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were still PO for each metaheuristic were recorded. The data in each cell is the

mean ± s.d. of the number of solutions reported that are PO relative to all reported

solutions across the 10 random instances. NSGA-II outperforms RWGA at every

instance size. Via paired t-tests with α = 0.01, NSGA-II reported a significantly

larger number of PO solutions than RWGA, leading us to recommend it as a method

for solving instances of the WIPC.

3.4 Conclusions

Given an intruder attempting to traverse a spatially-decomposed region via mul-

tiple possible paths, this research aims to effectively and cost-efficiently identify a

defensive strategy that locates sets of detection resources and interdiction resources,

each of which has different types of resources that vary by cost and capability. This

research formulated and validated a mixed-integer nonlinear programming model for-

mulation to solve the underlying problem using a leading commercial solver and two

different metaheuristics as solution methods.

In comparing the solution methodologies, limitations for identifying a global op-

timal solution via a leading commercial solver (BARON) were identified during com-

putational testing. Given a 2700-second limit for run-time, BARON was able to

identify a feasible solution quickly but failed to identify an optimal solution for most

test instances, especially as scenario parameters increased in size. The relative opti-

mality gap achieved by BARON in these test instances was 91% in the largest-sized

instance tested, which was not a particularly large instance. This result motivated

the consideration of metaheuristics as an alternative solution method.

For the two multi-objective GAs, RWGA and NSGA-II, each of which was selected

based on different conceptual performance characteristics, empirical testing demon-

strated their superior performance in comparison with BARON, with respect to the
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both the quantity of non-dominated solutions identified (individually or relative to all

methods tested) and the required computational effort to do so. Subsequent testing

of the two GAs over a designed set of test instances identified NSGA-II as the recom-

mended technique to solve larger-sized instances of the underlying problem. Even as

instance sizes increased, NSGA-II produced more non-dominated solutions relative

to the solutions returned by RWGA at a statistically significant level.

A sequel to this research will examine this problem within a game theoretic con-

text, wherein a rational intruder can observe the defender’s asset location decisions

prior to commencing an intrusion. The resulting extensive form game motivates the

exploration of a bilevel programming model framework and a corresponding examina-

tion of solution methodologies to not only identify the intruder’s optimal second-stage

response(s) to a defender’s asset location decisions, but to also identify the optimal

first-stage decisions by the defender.
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IV. Intruder Detection and Interdiction Modeling: A
Bilevel Programming Approach for Ballistic Missile Defense

Asset Location

4.1 Introduction

The rapid and recent proliferation of adversary missile threats induces a need for

a similar evolution in missile defense of the United States (US) and it’s North At-

lantic Treaty Organization (NATO) partner, Canada. Potential threats arise from the

Democratic People’s Republic of Korea (DPRK) and Iran, two nation-states develop-

ing and expanding their intercontinental ballistic missile (ICBM) technology (United

States Department of Defense, 2019). The developing capabilities augmented with

the repeated threats to use them against the US (Heinrichs, 2020; Martin, 2021)

has compelled the US to prioritize the development, procurement, and fielding of an

every-increasingly complex missile defense enterprise (United States Department of

Defense, 2019).

In 1944 during World War II (WWII), Germany fired the first long-range, guided

ballistic missile, the V-2 rocket (Missile Defense Agency, 2013). The V-2 had a

range of only 200 miles and was quite inaccurate compared to contemporary missile

technology but, due to the lack of a defense in place for such a threat outside of

bombing the launch sites, it still managed to significantly damage sites in Great

Britain (Missile Defense Agency, 2013). After WWII, the US and the Union of

Soviet Socialist Republics (USSR) engaged in the Cold War, during which the US

and USSR simultaneously expanded their ballistic missile and ballistic missile defense

(BMD) technology over the course of approximately 45 years. Presently, there are at

least eight countries capable of launching ICBMs and are considered adversaries or

potential adversaries of the US (United States Department of Defense, 2019). Among

these countries, and particularly aggressive with missile development and threats to
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use them, the DPRK has successfully tested its ICBM, the Hwasong-15, as recently

as 2017, and it is thought to have the potential to reach the entire US (United States

Department of Defense, 2019).

A ballistic missile’s flight is decomposed into three phases of flight: boost, mid-

course, and terminal. In the boost phase, the missile is being propelled into Earth’s

upper atmosphere by a rocket (National Research Council, 2008). Once there, the

missile is in the midcourse phase and being powered by only gravity as it falls toward

its target on Earth’s surface and re-enters the atmosphere. The missile enters the

terminal phase once it is back in Earth’s atmosphere and makes its final approach to

the target.

The current US BMD enterprise is comprised of detection and interdiction assets

for stopping adversary missiles from reaching the US, and these existing assets are gen-

erally developed to address detection or interdiction of missiles in a particular phase

of flight. Since the advent of radar in WWII, the US has developed radar technology

such as the Sea-Based X-band Radar (SBX), an ocean-going semi-submersible plat-

form equipped with an X-Band radar that can be positioned as needed in the ocean

(Missile Defense Agency, 2018a). Modern missile defense leverages surface-based mis-

siles in order to interdict BMs in flight. Examples of this include the Patriot missile

defense system used in Operation Desert Storm, Iron Dome developed by Israel and

used in the Gaza-Israel Conflict, and Ground-Based Interceptors currently in use by

the US.

The proliferation of adversary missile technology has given rise to the development

of new missile defense assets over time. The Missile Defense Agency (MDA) requested

$9.1 billion for Fiscal Year 2021 to continue the development of new technology to aid

in this defense (Missile Defense Agency, 2020). This budget marks an increase from

$7.6 billion just five years ago (Missile Defense Agency, 2017a). Many assets have yet
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to be fully developed and fielded, but research remains very active. For example, the

Department of Defense has stated that the F-35 is slated to be equipped with tech-

nology that will aid in the attempt to intercept ballistic missiles in the boost phase,

which is currently identified as a very difficult and expensive task (United States De-

partment of Defense, 2019). Moreover, the MDA has allocated approximately $250

million to space-based sensors that will aid in the tracking of ballistic missiles in flight

(Missile Defense Agency, 2019).

With both the current and evolving threats fielded by adversaries, the US BMD

enterprise faces the daunting task of developing and integrating new detection and in-

terdiction resources effectively. With the use of existing resources and the anticipation

of new resources in coming years, an enterprise approach to the BMD problem is nec-

essary and appropriate to ensure a cohesive response to adversary threats. Given this

motivating problem, this research seeks to address the following problem statement:

Effectively defend a set of population centers against attack by a limited number

of ICBMs by locating sets of BMD resources to detect and interdict ICBMs over

a range of launch-to-target missile paths and their respective, spatio-temporally

defined flight stages, assuming an adversary will observe the defensive asset

location decisions and respond with an ICBM targeting strategy that maximizes

the expected damage of an attack.

4.1.1 Literature Review

This research is informed by four threads of research within the literature. The

modeling herein leverages concepts and approaches from general missile defense stud-

ies, intruder detection and interdiction models, game-theoretic frameworks for defense

problems, and defender-attacker models for missile defense from both the defender

and intruder point of view. With respect to its solution methodologies, this research
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applies bilevel program modeling techniques techniques as well as a metaheuristic

approach to explore the solution space.

Given this work seeks to examine a ballistic missile defense problem, a brief ex-

amination of historical missile defense studies is warranted. Garwin and Bethe (1968)

studied the “light” anti-ballistic missile (ABM) defense system that Defense Secretary

McNamara authorized, arguing that it would prove ineffective against the current ad-

versary missile technology. Johnson (1970) subsequently studied the current state of

US radar technology and provided a detailed explanation of how US radar is used in

the larger US BMD system. Following President Reagan’s declaration that a space-

based ballistic missile defense system would be a useful asset, Bethe et al. (1984)

published work suggesting that such a system would prove ineffective and unlikely

to protect the US from an adversarial nuclear attack. This early perspective on

space-based interception of ballistic missiles differs greatly from current studies and

opinions on space-based BMD, such as the most recent Missile Defense Review, which

states that space-based BMD will be a necessary component of the future architec-

ture providing boost-phase defense (United States Department of Defense, 2019). In

a somewhat recent study, Wilkening (2000) provided a more concrete approach to

examining probabilistic models, employing various adversary shooting philosophies

and providing optimal interceptor allocations for each.

The second major thread of research that informs this work is intruder detection

and interdiction. Lessin et al. (2018) developed a bilevel programming model to

optimally allocate sensors to aid in the detection of an intruder. Similarly, Eliş et al.

(2021) modeled the defense of a region of terrain using guards deployed such that each

piece of the terrain is observed by at least one guard. Scheiper et al. (2019) solved an

electric network design problem to support demand by electric vehicles. Although not

an intruder detection and interdiction problem, the authors’ work was its conceptual
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dual; their research seeks to enable travel on a network rather than interdict it.

Haywood et al. (2020) created a model that, once solved with a global solver, provides

the defender with optimal location decisions for detection and interdiction resources in

order to maximize the success of interdicting an intruder on a known path of intrusion.

In an extension of this work, Haywood et al. (2021) solved a similar problem with

multiple intruders on a set of paths with a known probability of use, employing a

genetic algorithm to solve a more complex model. Components of these models are

incorporated within the bilevel programming architecture of the current work.

The third thread of literature that lends insight to this work is game theory, specif-

ically Stackelberg games. This is a game in which the amount won by one player is

exactly equal to the amount lost of the other player (i.e., “zero-sum”), and players

take turns making their moves (i.e., “extensive-form”) (Shoham and Leyton-Brown,

2008). At each turn, a player is aware of what action other players took on the pre-

vious turn as well as the value of their current move in terms of how it affects both

themselves and their opponent (i.e., “complete and perfect information”) (Shoham

and Leyton-Brown, 2008). This type of game-theoretic framework is especially appli-

cable to BMD scenarios because the adversaries in the scenario are making location or

launch decisions in turn, informed by observed adversary decisions. Additionally, the

BMD scenario can be modeled appropriately as a zero-sum game with the assump-

tion that the intruder and defender are maximizing and minimizing, respectively, the

damage inflicted by intruder missiles.

The fourth thread of literature that is relevant to this research includes missile

defense studies that employ a defender-attacker model. These types of studies utilize

a framework in which a defender makes the first decision, usually allocating their

resources in anticipation of an attack, and subsequently an intruder observes this de-

cision and reacts accordingly when deciding their best course of action. An example of
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this can be seen in work by Brown et al. (2006), wherein the authors applied defender-

attacker and defender-attacker-defender modeling techniques to problems related to

terrorists attempting to attack critical infrastructure. Brown et al. (2005) applied

this modeling technique specifically to theater ballistic missile defense, and develop a

decision-support tool for decision-makers to aid with the positioning of defense assets

to prepare for missile attacks. The research presented herein differs from the work

by Brown et al. (2005) in that an enterprise view is adopted; both detection and

interdiction resources hosted on various platforms are considered. Boardman et al.

(2017) present a defender-attacker-defender model for the location of surface-to-air

missile batteries, wherein a defender first locates their batteries and an intruder ob-

serves these decisions and launches their missile attack. The defender then observes

this attack and makes decisions regarding the assignment of interceptor missiles in

batteries to incoming attacker missiles. Han et al. (2016) preceded Boardman et al.

(2017) and studied the problem with homogeneous interceptor missiles. This research

will not explicitly model the latter part of this problem, instead focusing on the ini-

tial defender decision of locating assets to minimize damage done by intruder missile

attacks, assuming the capacity of an interdiction resource is not overwhelmed by the

number of ballistic missiles encountered.

Within the context of the related literature, this research makes three contri-

butions. First, this research sets forth a game theoretic, bilevel program modeling

framework for the problem of allocating missile defense resources to detect and in-

terdict intruder ballistic missiles attempting to destroy valuable targets. Second, it

applies a series of transformations that reformulate the model as a single-level mathe-

matical program that is shown to be convex and, hence, readily solvable to optimality

by any of a number of commercial optimization solvers. Third, the research conducts

testing to both illustrate its efficacy and empirically examine its practical tractabil-
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ity, both of which are sound for application on large-scale instances of the underlying

problem.

The remainder of this paper is organized as follows. Section 2 presents the mathe-

matical programming formulation and solution methodology; Section 3 validates the

model for an illustrative instance and conducts the aforementioned empirical testing;

and Section 4 summarizes the resulting insights and identifies logical extensions to

this research.

4.2 Models and Solution Methodology

First, we develop a bilevel programming model of the problem in which a single

defender locates resources, after which an attacker observes the defender’s actions and

routes its missiles accordingly to inflict the most damage. That is, the defender aims

to minimize the maximum amount of expected damage inflicted by attacker missiles.

We assume the attacker and defender have good intelligence on each others’ capabili-

ties (i.e., complete information), and the attacker can observe defender locations and

reasonably infer their allocation of resources (i.e., perfect information).

4.2.1 Bilevel Mathematical Programming Model

To formulate the mathematical program to address the underlying problem, it is

necessary to define the following sets, parameters, and decision variables.

Sets

• U = {1, 2, ...,U} is the set of launch sites from which the attacker may launch

missiles, indexed by u.

• V = {1, 2, ...,V} is the set of target sites to which the attacker may aim missiles,

indexed by v.
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• P = {(1, 1), (1, 2), . . . , (U ,V)} is the set of paths over which the attacker may

traverse through the defender’s territory, indexed by ψ. The size of this set is

denoted U · V = P .

• S = {1, 2, ...,S} is the set of distinguishable stages over which the attacker

may be detected and interdicted by the defender’s enterprise of sensors and

interdictors, indexed by s. Relative to the set of stages, two assumptions are

made regarding the attacker’s path. First, we assume that each path transits

every stage. Second, the stages are numbered in ascending order, as an attacker

would encounter them when traversing any path. For the research application

herein, S = 3 to represent the boost, midcourse, and terminal stages of adver-

sary missile flight, but we retain the parameter-based representation within the

formulation to support its generalizability for other, related problems pertaining

to attacker detection and interception.

• D = {1, 2, ...,D} is the set of different detection resource types, indexed by d,

each of which pertains to different capabilities (e.g., range, effectiveness).

• J = {1, 2, ...,J } is the set of possible locations at which detection resources can

be located, indexed by j. J is partitioned by stage, where
⋃
s∈S

Js = J .

• I = {1, 2, ..., I} is the set of different interdiction resource types, indexed by

i, each of which has different capabilities (e.g., speed, range, probability of

success).

• K = {1, 2, ...,K} is the set of possible locations at which interdiction resources

can be located, indexed by k. Similar to set J , the set K is likewise partitioned

over S.

• B = {1, 2, ...,B} is the set of dual-purpose resource types (i.e., resources that
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can both detect and interdict an attacker), indexed by b (or b′), each of which

pertains to different capabilities (e.g., speed, range, probability of interdiction,

probability of detection).

• L = {1, 2, ...,L} is the set of possible locations at which dual-purpose resources

can be located, indexed by l (or l′). Similar to sets J and K, the set L is likewise

partitioned over S.

Parameters

• rψ > 0: the expected damage that a missile on path ψ would inflict if not

interdicted.

• uDd , uIi, uBb : the maximum number of detection, interdiction, and dual-purpose

resources that can be emplaced, respectively of types d, i, and b.

• ms : the maximum number of interception engagements that can be attempted

within each stage s.

• mψ: the maximum number of engagements of an intruder path ψ by a given

interceptor.

• λ: an integer value equal to the maximum number of missiles launched by the

attacker.

• rangeDd , rangeBDb , rangeIi, range
BI
b : the detection ranges for detection resources

of type d and dual-purpose resources of type b, and interdiction ranges for inter-

diction resources of type i, and dual-purpose resources of type b, respectively.

• aDdjψs : a binary parameter equal to 1 if the closest point in stage s on path ψ

to location j is less than or equal to rangeDd .
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• aBDblψs : a binary parameter equal to 1 if the closest point in stage s on path ψ to

location l is less than or equal to rangeBDb .

• pIikψs : the probability that an attacker on path ψ is interdicted by an interdiction

resource of type i emplaced at location k during flight stage s.

• pBIblψs : the probability that an attacker on path ψ is interdicted by a dual-purpose

resource of type b emplaced at location l during flight stage s.

• γIikψs : a binary parameter equal to 1 if the closest point in stage s on path ψ

to location k is less than or equal to rangeIi.

• γBIblψs : a binary parameter equal to 1 if the closest point in stage s on path ψ to

location l is less than or equal to rangeBIb .

Decision Variables

• xdj : a binary variable equal to 1 if a detection resource of type d is emplaced

at location j, and 0 otherwise.

• yik : a binary variable equal to 1 if an interdiction resource of type i is emplaced

at location k, and 0 otherwise.

• zbl : a binary variable equal to 1 if a dual-purpose resource of type b is emplaced

at location l, and 0 otherwise.

• δψ : a binary variable equal to 1 if path ψ is used by the attacker and 0 otherwise.

• θIikψs : a non-negative integer variable equal to 1 if an interdiction resource of

type i emplaced at location k is employed to engage an attacker on path ψ

during stage s.
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• θBIblψs : a non-negative integer variable equal to 1 if a dual-purpose resource of

type b emplaced at location l is employed to engage an attacker on path ψ

during stage s.

• πI
ψ : the probability of an attacker on path ψ being detected and subsequently

interdicted.

Leveraging the aforementioned notation, we formulate the model P1 as follows.

min
x,y,z,
θI,θBI,πI

max
δ

∑
ψ∈P

δψrψ(1− πI
ψ) (57)

s.t. (1− πI
ψ) =

∏
s∈S

(∏
i∈I

∏
k∈K

(
1− pIikψs

)θIikψs∏
b∈B

∏
l∈L

(
1− pBIblψs

)θBIblψs) , ∀ ψ ∈ P
(58)

θIikψs ≤ mψγikψs

(∑
d∈D

∑
j∈J

aDdjψsxdj +
∑
b∈B

∑
l∈L

aBDblψszbl

)
, ∀ i ∈ I, k ∈ K,ψ ∈ P, s ∈ S,

(59)

θBIblψs ≤ mψγblψs

(∑
d∈D

∑
j∈J

aDdjψsxdj +
∑
b′∈B

∑
l′∈L

aBDb′l′ψszb′l′

)
, ∀ b ∈ B, l ∈ L, ψ ∈ P, s ∈ S,

(60)

θIikψs ≤ mψyik, ∀ i ∈ I, k ∈ K,ψ ∈ P, s ∈ S, (61)

θBIblψs ≤ mψzbl, ∀ b ∈ B, l ∈ L, ψ ∈ P, s ∈ S, (62)∑
i∈I

∑
k∈K

θIikψs +
∑
b∈B

∑
l∈L

θBIblψs ≤ ms, ∀ ψ ∈ P, ∀ s ∈ S, (63)

∑
s∈S

θIikψs ≤ mψ, ∀ i ∈ I, k ∈ K,ψ ∈ P, (64)

∑
s∈S

θBIblψs ≤ mψ, ∀ b ∈ B, l ∈ L, ψ ∈ P, (65)

∑
j∈J

xdj ≤ uDd , ∀ d ∈ D, (66)
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∑
k∈K

yik ≤ uIi, ∀ i ∈ I, (67)

∑
l∈L

zbl ≤ uBb , ∀ b ∈ B, (68)

∑
ψ∈P

δψ ≤ λ, (69)

0 ≤ πI
ψ ≤ 1, ∀ ψ ∈ P, (70)

xdj ∈ {0, 1}, ∀ d ∈ D, j ∈ J (71)

yik ∈ {0, 1}, ∀ i ∈ I, k ∈ K (72)

zbl ∈ {0, 1}, ∀ b ∈ B, l ∈ L (73)

δψ ∈ {0, 1}, ∀ ψ ∈ P, (74)

θIikψs ∈ Z+, ∀ i ∈ I, k ∈ K,ψ ∈ P, s ∈ S, (75)

θBIblψs ∈ Z+, ∀ b ∈ B, l ∈ L, ψ ∈ P, s ∈ S, (76)

The objective (57) of this formulation reflects the zero-sum nature of the game

being played between attacker and defender. The attacker’s objective is to maximize

the expected damage done by their missiles and the defender’s objective is to minimize

the same expression. The order of operators in Equation (57) indicates the defender

first making the decisions to locate detection and interdiction resources, assigning

them to identified, potential missile paths (i.e., inferred from known missile launch

sites and possible missile targets), after which the attacker observes the defender’s ac-

tions and selects targets to inflict maximal cumulative expected damage. Constraint

(58) calculates the probability an attacker missile is detected and subsequently in-

terdicted by defender assets, with an underlying assumption that the probability of

detection and subsequent interdiction between stages is independent. Additionally,

we assume that, if a detection asset is within range of an attacker missile during a
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given stage, then it is detected with certainty. Constraint (59) ensures interdiction

resources can only be deployed by the defender if the attacker missile can be detected

by an emplaced asset. Similarly, Constraint (60) ensures that dual-purpose interdic-

tion resources can be deployed to intercept an attacker missile only if the attacker

missile is being detected by defender resources. Constraints (61)-(62) are assignment

constraints in which interdiction and dual-purpose assets are only assigned to be

launched from a location if they have been placed at that location by the defender.

That is, the defender may not employ interdiction resources from locations that they

have not been placed. Constraint (63) places an upper bound on the engagements

that can be made against each attacker per stage in intruder paths. For example,

the defender may choose to limit the number of engagements in the ballistic stage of

each attacker path to two. Constraints (64)-(65) place an upper bound on the num-

ber of engagements from each interdiction location to each path utilizing interdiction

and dual-purpose resources, respectively. Constraints (66)-(68) limit the number of

detection, interdiction, and dual-purpose resources that can be emplaced by type, re-

spectively, and Constraint (69) limits the number of missiles that can be launched by

the attacker. Finally, Constraint (70) places 0-1 bounds on the probability of detec-

tion and subsequent interdiction on each path by the defender, Constraints (71)-(74)

detail the binary nature of defender location and attacker path decision variables, and

Constraints (75)-(76) ensure the assignment variables for engagements are positive

integers.

Noting the nonlinearity observed in Constraint (58), a logarithmic transformation

is performed by introducing a new variable φI
ψ = ln

(
1− πI

ψ

)
. Constraint (78) will

replace Constraint (58), and the transformed objective function is represented in

Equation (77).
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min
x,y,z,

θI,θBI,φIψ

max
δ

∑
ψ∈P

δψrψe
φIψ (77)

φI
ψ =

∑
s∈S

∑
i∈I

∑
k∈K(i,ψ,s)

θIikψs ln
(
1− pIikψs

)
+
∑
b∈B

∑
l∈L(b,ψ,s)

θBIblψs ln
(
1− pBIblψs

) , ∀ ψ ∈ P.

(78)

We denote the reformulated model as P2 with the objective function as depicted

in Equation (77), bounded by Constraints (59)-(76) and (78). The main advantage of

P2 over P1 is the reformulated constraints are linear, yielding a polytope as its feasible

region. We observe that P1 consists of bilinear terms (i.e., products of the attacker

and defender decision variables), whereas P2 has defender variables in exponentiation.

Section 4.2.2 further examines P2 and presents a solution method that allows the use

of a commercial solver.

4.2.2 Solution Methodology

The special structure of the lower-level attacker problem can be exploited in a

manner that allows for a reformulation of P2 into a single-level minimization problem.

Within the bilevel structure of Problem P2, note that, for a fixed defender solution,

the attacker is solving a knapsack problem with items having a value of rψe
φψ and

equal costs. Thus, the binary restriction on the δψ-variables may be relaxed and, for

λ ∈ Z+, a binary-valued solution to the relaxed lower-level problem will yield the

optimal objective function value. We denote P3 as the model obtained by relaxing

the binary constraints on δψ (i.e., replacing Constraint (74) in P2 with Constraints

(79) and (80)).
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δψ ≤ 1, ∀ ψ ∈ P (79)

δψ ≥ 0, ∀ ψ ∈ P (80)

Proposition 1. For a fixed upper-level (i.e., defender) solution to P3, a binary-valued

optimal solution to the lower-level (i.e., attacker) problem exists.

Proof. As seen in the objective (77) and Constraints (69), (79) and (80), the lower-

level problem of P3 is a relaxation of a simple knapsack problem in which the value

of each “knapsack” item (i.e., expected damage inflicted by each attacker missile) is

rψe
φIψ , and only λ items can be placed in the knapsack (i.e., fired at target sites).

Therefore, for a cardinality weighted knapsack problem, an optimal solution uses a

strict prioritization of the items based on their value, subject to total capacity.

The optimal solution to P3, (z∗P3), which exists by Proposition 1, is clearly an

upper bound to the P2 solution (z∗P2) since P3 is employing a relaxation on δψ in the

attacker problem. Due to the lower-level attacker problem consisting of a relaxation

to a knapsack problem, the solution to P3 portends a solution to P2 in terms of

δψ consisting of a binary 0-1 vector. By the properties of a knapsack problem with

cardinality weights on items, this binary valued solution is the attacker’s best response

to the defender’s component of the optimal solution to P3.

The bilevel structure of P3 contains the relaxation of the attacker problem, which

is simply a (integer-relaxed) knapsack problem for which the dual is quite useful.

Adopting a technique employed by Wood (1993) for a bilevel program having the

same objective function for both decision-makers (i.e., a zero-sum, extensive form

game with perfect and complete information, in the game theoretic context), we can

take the dual of the lower-level (i.e., inner) problem to yield a single-level optimization
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problem. Noting the linear form of the inner problem in P3, we assign dual variables

α and βψ to Constraints (69) and (79), respectively. For the zero-sum Stackelberg

game represented in P3, we can take the dual of the inner problem (e.g., see Wood

(1993); Lunday et al. (2010); González-Dı́az et al. (2021)) and solve the resulting

single-level optimization problem using a commercial solver.

The resulting formulation, denoted Problem P4, is represented in (81)–(85) and

obtained by replacing the lower-level (attacker) problem in P3 with its dual.

min
x,y,z,θI

θBI,φIψ ,α,βψ

αλ+
∑
ψ∈P

βψ (81)

s.t. α + βψ ≥ rψe
φIψ , ∀ ψ ∈ P, (82)

α ≥ 0, (83)

βψ ≥ 0, ∀ ψ ∈ P, (84)

Constraints (59)-(68), (70)-(76), and (78). (85)

The only nonlinear constraint in P4 is Constraint (82). We propose that Constraint

(82) is, in fact, convex, and therefore P4 is a convex program (i.e., it has a linear

(convex) objective function with a convex feasible region). To recall, Bazaraa et al.

(2013) define a convex program as one in which the goal is to minimize a function g(x)

such that x ∈ S, where g is a convex function and S is a convex set. The structure of

convex programs is enticing because a local minimum of the program is also a global

minimum, so an interior point algorithm will converge to a global optimal solution.

Proposition 2. P4 is a convex program.

Proof. Clearly, the linear objective (81) is a convex function. Constraints (82)-(85)

induce the feasible region of P4, and all but Constraint (82) are linear and, hence,
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convex. A brief analysis identifies that Constraint (82) is also convex.

Considering Constraint (82) in canonical form (e.g., see Bazaraa et al. (2013)),

where g(x) = rψe
φIψ − α− βψ ≤ 0 and x =

[
φI
ψ, α, βψ

]
, it has a Hessian of the form

H(x) =


rψe

φIψ 0 0

0 0 0

0 0 0

 .

The only non-zero-valued eigenvector of H(x) is rψe
φIψ , which is strictly positive

because rψ > 0 by construction and eφ
I
ψ > 0. Thus, H(x) is positive semi-definite,

Constraint (82) is convex, and the feasible region defined by the intersection of convex

sets is also convex (Bazaraa et al., 2013).

Resulting from Proposition (2), one can solve the single-level optimization prob-

lem P4 and find a global optimum utilizing an interior point method common to any

of a number of alternative, readily-available commercial solvers designed for solving

mixed-integer nonlinear programs for which the integer relaxation is a convex pro-

gram. The resulting optimal solution to P4 also solves P3, where z∗P4 = z∗P3, and from

which the attacker’s solution to P3 can be recovered from the optimal solution to P4

via the optimal dual variable values corresponding to Constraint (82).

4.3 Testing, Results, and Analysis

Before examining the limitations of a commercial solver, Section 4.3.1 tests the

solution method detailed in Section 4.2.2 model for a small, illustrative instance.

Section 4.3.2 details the method used to generate random instances for testing in

Sections 4.3.3 and 4.3.4. Section 4.3.3 reports the results for a realistically-sized

instance, and Section 4.3.4 examines the tractability of a commercial solver to address
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larger instances of the underlying problem, under selective parametric increases in

problem size.

4.3.1 Illustrative Test Instance

Figure 11. Small Illustrative Instance

For an illustrative test instance designed to validate the model and accompanying

solution methodology, we employ a scenario of (U ,V ,P , λ) = (1, 3, 4, 2), (S) = (3),

and (D,J , I,K,B,L, ) = (2, 2, 2, 2, 1, 1). Paths 1-3 correspond to terminal points

v = 1, 2, 3 with rψ values equal to 20, 30, and 40, respectfully. We allow uDd = uIi =

uBb = 1 for all asset types, and set ms = mψ = 2. That is, only one type of each

asset can be placed in total, and at most two interception engagements are allowed

per stage and per path, respectively. Within the set of two detection assets, let the

one having the larger index be the asset with the larger range (e.g., detection asset

2 has a larger range than asset 1). This characteristic also holds for the sets of

two interdiction assets. Figure 11 depicts the locations J , K, and B at which these

assets can be placed. Within this figure, dashed circles represent interdiction asset

ranges, and solid circles represent detection asset ranges. Asset locations, ranges,
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and proximity to each path inform the parameters aDdjψs, a
BD
blψs, γ

I
ikψs, and γBIblψs for the

instance depicted in Figure 11. If a detection resource of type d located at position

j is able to detect path ψ in stage s, then aDdjψs = 1, indicating a detection asset of

type d located at j is able to detect an intruder traversing stage s of path ψ with

a probability equal to one. For example, aD2121 = 1 in the instance in Figure 11.

Additionally, the probabilities of interdiction are set to pIi1ψs = 0.5, pIi2ψs = 0.3, and

pBIblψs = 0.2. For this illustrative example, λ = 2 so the attacker is forced to choose a

path on which no missile is deployed.

The optimal objective function value for this small instance is equal to 33.1.

Within the unique optimal solution, the defender chooses to locate respective detec-

tion and interdiction assets of type 2 at locations j = 1 and k = 1 (i.e., x∗21 = y∗21 = 1).

The defender also chooses to locate its only dual-purpose asset at the only possible

location, l = 1 (i.e., z∗11 = 1). Alternative locations for detection assets were not

utilized because they would not detect any path. For similar reasons, it is not ben-

eficial to locate an interdiction asset at alternative locations. Given this optimal

solution, the defender is able to shoot twice at stage 2 of both paths 1 and 2 from

location k = 1 (i.e., θI2112 = θI2122 = 2), and to shoot twice at stage 1 of path 3 (i.e.,

θBI1131 = 2). As a result, the vector of missile interdiction probabilities on paths 1, 2,

and 3 is
(
πI
)∗

= (0.75, 0.75, 0.36). For this problem instance, the attacker’s optimal

solution vector is δ∗ = (0, 1, 1), indicating decisions to deploy a missile along each of

paths 2 and 3, where the rψ values equal 30 and 40, respectively. In doing so, the

attacker’s missile attack decisions maximize the objective function value in Equation

(57). This illustrative instance validates that model P4 operates as expected and

identifies globally minimizing asset location and assignment decisions for instances of

the underlying problem. In a confirmatory experiment, the same instance was solved

for Problem P3 via the commercial solver BARON, attaining the same result, and
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a visual examination of alternative solutions for Problems P1 and P2 confirm the

optimality of the attained solution.

4.3.2 Test Instance Generation

To test an instance of P4, we first define a “scenario” of P4 to pertain to the set

of 3 user-defined tuples of (U ,V ,P , λ), (S), and (D,J , I,K,B,L, ). Once a scenario

“size” has been determined by the aforementioned tuple, an instance is defined by

parameterizing the scenario (i.e., generating and assigning values to rψ, u
D
d , . . . , γ

BI
blψs),

dependent on scenario size as an input for some parameters.

For all instances examined herein, the common region in which the defender can

place assets is a rectangular region 2300 units in width and 6400 units in height,

roughly mimicking the expanse of the northern Pacific Ocean. The attacker’s launch

and target regions are rectangular regions 100 units in width and 6400 units in height,

without loss of generality, appended to the respective western and eastern ends of the

region wherein the defender can place assets. The values of rψ are randomly chosen

from a set of 20 values equal to the populations of the largest 20 cities on the North

American West Coast. For example, in the case where |P| = 8, eight numbers are

randomly chosen with replacement from the set of city populations to be used as

rψ-values.

Haywood et al. (2021) detail a formula for generating values for uDd , uIi, and uBb ,

wherein the values are identified from a random uniform distribution having lower

and upper bounds dependent on the number of stages, locations available for asset

placement, and the index of the asset type. We emulate the authors’ convention,

assuming the larger indices correspond to more effective assets (e.g., uD2 has a larger
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detection range than uD1 ). These range formulas are shown in Equations (86)-(89).

rangeDd = d · U (0, 0.5) · 6400

S
(86)

rangeBDb = b · U (0, 0.4) · 6400

S
(87)

rangeIi = i · U (0, 0.5) · 6400

S
(88)

rangeBIb = b · U (0, 0.5) · 6400

S
(89)

We assume that, if a detection or dual-purpose asset is within range of a stage of a

path, the probability of detecting an intruder missile during that stage of the path

is equal to one. However, if an interdiction or dual-purpose asset is within range

of a particular stage of a path, Equations (90) and (91) display the formula used

to determine the probability of interdiction by those assets on the path during that

stage.

pIikψs =
i

I
· U (0.5, 0.9) (90)

pBIblψs =
b

B
· U (0.5, 0.9) (91)

Finally, ms and mψ are generated as functions of the number of stages and paths,

respectively, as seen in Equations (92) and (93).

ms = dU(0.15, 0.25) · Se (92)

mψ = dU(0.01, 0.1) · Pe (93)

Using this procedure to develop a random instance for any scenario size of P4, Section

4.3.3 examines the solution to a larger-sized instance of P4, and Section 4.3.4 will

examine the effect of scenario features on the ability of a solver to reach a high-
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quality solution within a given run-time limit.

4.3.3 Illustration of Relevant Analysis and Insights

Herein, we demonstrate for a larger-sized instance the resulting insights that can

be garnered when the details of an instance are too numerous and varied to enable a

detailed visualization. The specific scenario size examined has features (U ,V ,P , λ) =

(5, 5, 25, 10), S = 3, and (D,J , I,K,B,L, ) = (5, 10, 5, 10, 5, 10).

Table 24. Solution metrics for a larger-sized instance of P4, sorted in decreasing order
according to expected damage per path

Engagements per stage
ψ Target Value (rψ) s = 1 s = 2 s = 3 1− πIψ Expected Damage δψ
13 4 1 1 1 0.012 0.049 1
3 1.4 1 1 1 0.010 0.015 1
23 1.4 1 1 1 0.008 0.012 1
20 1.4 1 1 1 0.008 0.011 1
24 0.43 1 1 1 0.026 0.011 1
16 0.22 1 1 1 0.045 0.010 1
6 0.88 1 1 1 0.011 0.010 1
9 0.88 1 1 1 0.010 0.009 1
11 1 1 1 1 0.007 0.007 1
25 0.27 1 1 1 0.025 0.007 1
22 0.23 1 0 1 0.030 0.007 0
18 0.29 1 1 1 0.021 0.006 0
15 0.31 1 1 1 0.018 0.006 0
4 0.22 0 1 1 0.025 0.005 0
21 0.27 1 1 1 0.020 0.005 0
8 0.52 1 1 1 0.009 0.005 0
19 0.38 1 0 1 0.012 0.005 0
1 0.23 1 1 1 0.018 0.004 0
14 0.35 1 1 1 0.011 0.004 0
10 0.28 1 1 1 0.013 0.004 0
17 0.5 1 1 1 0.006 0.003 0
2 0.31 1 1 1 0.009 0.003 0
12 0.23 1 1 1 0.012 0.003 0
7 0.47 1 1 1 0.005 0.003 0
5 0.38 1 1 1 0.002 0.001 0

Table 24 depicts selected, relevant solution metrics for a single random instance
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generated with the aforementioned scenario feature levels. The first column contains

the respective indices of 25 paths, the second column displays the randomly generated

target value for each path. The third, fourth, and fifth columns tabulate the number

of defender engagements in each stage due to location decisions regarding detection

and interdiction assets, and the sixth column contains the probability the attacker

successfully navigates each path. The seventh column calculates the expected damage

caused by the intruder by multiplying the values in the second and sixth columns,

and the eighth column reports the attacker’s decision whether to utilize the path.

Table 24 is sorted by the seventh column in decreasing order, and confirms that the

attacker will deploy its 10 missiles along the 10 paths having the highest expected

damage.

4.3.4 Main Testing

The scenario feature levels examined for their effect on the computational effort

required by a leading commercial solver to identify an optimal solution are the number

of each type of asset allowed, the number of locations assets can be placed, the number

of launch and target sites, the total number of stages, and the number of intruder

missiles targeting defender sites. Table 25 depicts the low, medium, and high levels

for each of these scenario features, each of which was identified during preliminary

testing. Due to their similar meaning and to reduce the size of experimental designs

to manageable sizes, testing herein assumes common factor levels for both the number

of possible locations for asset placement (i.e., J = K = L) and the number of asset

types (D = I = B).

Prior to conducting the intended empirical testing, preliminary testing examined

four commercial solvers (i.e., BARON, Bonmin, Couenne, and scip) when solving a set

of 30 randomly generated instances of P4 having medium-sized scenario features, with
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Table 25. Scenario Feature Levels for Instances of P4

Scenario Feature Low Medium High
D = I = B 2 5 8
J = K = L 5 10 15

(U ,V) (3, 5) (5, 5) (5, 7)
S 2 3 4
λ 5 10 15

the goal of identifying the superlative commercial solver for this problem. Testing was

conducted using the NEOS Server (Gropp and Moré, 1997; Czyzyk et al., 1998; Dolan,

2001), and processed on a Dell PowerEdge R430 with an Intel Xeon E5-2698 processor

and 192 GB of RAM. Each solver was terminated for an instance when either a global

optimal solution was identified (i.e., a 0% relative optimal gap) or the computational

time exceeded 300 seconds. Table 26 reports the number of optimal solutions found

by each solver in the first column, the number of instances not solved to optimality

in the second column, the average absolute optimality gap for the instances in which

suboptimal solutions were reached in the third column, the number of instances in

which the solver failed to return a feasible solution in the fourth column, and the

average run-time for the 30 instances in the fifth column.

Table 26. Solver performance for 30 random instances of P4 with medium-sized scenario
features and run-time limit of 300 seconds

Avg. abs. opt. No. instances
Solver No. opt- No. subopt- gap for sub- w/ no feasible Avg. comp.

invoked imal solns. imal solns. optimal solns. soln. found effort (s)

BARON 20 8 0.035 ± 0.084 2 256.627 ± 57.407
Bonmin 0 0 N/A 30 300.000 ± 0.000
Couenne 0 27 1.217 ± 1.667 3 300.000 ± 0.000

scip 27 1 0.001 ± 0.000 2 57.600 ± 68.075

Over the 30 instances solved, scip found a feasible solution in 28 instances, 27 of

which were optimal. In the sole instance that scip failed to find the optimal solution,

an extremely small absolute optimality gap of 0.001 was still achieved. BARON

was the second best performer to scip; however, BARON had a longer run-time on
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average and failed to find a feasible solution for two instances. The other two solvers,

while capable and respected in the literature, failed quite often to either identify a

feasible solution or, if a feasible solution was identified, solve the instance to optimality

within the 300-second time limit. Accordingly, subsequent testing invokes scip as the

commercial solver to solve instances of Problem P4.

To determine which scenario features in Table 25 are most influential to the com-

putational effort required by scip to find an optimal solution, a fractional factorial

experiment is conducted. A full factorial design was not chosen due to the prohibitive

size of the experiment requiring 35 = 243 runs to complete. The fractional factorial

experimental design employed is 35−2
III with 30 trials of each run, with the required

computational effort as the response variable. A fractional factorial design is a rea-

sonable design for this research, because the scenario features are the variables of

interest, not the interactions between these variables. The 30 trials at each level are

randomly generated instances using the methodology described in Section 4.3.2. The

solver scip was terminated for an instance when either a global optimal solution was

identified (i.e., a 0% relative optimal gap) or the computational time exceeded 1800

seconds, allowing for the longer times needed to solve instances at runs having high

feature levels. Table 27 reports the results of this experiment to solve 30 randomly

generated instances of P4 at each of 27 different treatment combinations of scenario

feature levels, tabulating the average required computational effort for each run. For

runs wherein scip terminated due to the 30-minute time limit for at least one of the 30

instances, Table 3 also reports the absolute optimality gap attained upon termination.

In 15 out of 27 (56%) of treatment combinations, scip found an optimal solution

for each instance of P4 within the instance’s allotted 30-minute time limit. In the

other 12 treatment combinations, the average absolute optimality gap achieved by

scip was less than or equal to 0.001, indicating that scip identified very high quality
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Table 27. Solver performance for a 35−2
III fractional factorial design with 30 random

instances of P4 at each setting and 1800-second run-time limit

Factors Req’d Comp. Abs. Optimality
Run D/I/B J /K/L P S λ Effort (sec) Gap Attained*

1 8 15 35 4 15 0.294 ± 0.176 –
2 2 5 15 2 5 5.232 ± 3.527 –
3 2 10 35 2 15 8.685 ± 5.940 –
4 2 15 25 2 10 11.313 ± 7.736 –
5 5 5 35 2 10 27.728 ± 13.788 –
6 5 10 25 2 5 15.015 ± 5.113 –
7 5 15 15 2 15 12.676 ± 5.609 –
8 8 5 25 2 15 28.232 ± 13.096 –
9 8 10 15 2 10 1,238.189 ± 513.792 0.001 ± 0.003
10 8 15 35 2 5 0.814 ± 0.646 –
11 2 5 25 3 5 1.910 ± 1.583 0.000 ± 0.000
12 2 10 15 3 15 87.584 ± 112.629 –
13 2 15 35 3 10 3.149 ± 2.216 0.000 ± 0.000
14 5 5 15 3 10 348.490 ± 437.747 0.000 ± 0.000
15 5 10 35 3 5 819.954 ± 683.335 0.000 ± 0.000
16 5 15 25 3 15 258.860 ± 320.917 0.000 ± 0.000
17 8 5 35 3 15 960.703 ± 646.639 0.000 ± 0.000
18 8 10 25 3 10 838.435 ± 726.696 0.000 ± 0.000
19 8 15 15 3 5 0.526 ± 0.421 –
20 2 5 35 4 5 1.898 ± 2.068 –
21 2 10 25 4 15 2.124 ± 1.703 0.000 ± 0.000
22 2 15 15 4 10 1.130 ± 0.663 –
23 5 5 25 4 10 3.957 ± 3.513 –
24 5 10 15 4 5 276.019 ± 455.152 0.000 ± 0.000
25 5 15 35 4 15 0.822 ± 0.514 0.000 ± 0.000
26 8 5 15 4 15 97.116 ± 142.193 –
27 8 10 35 4 10 192.375 ± 333.794 0.000 ± 0.000

*An entry of ‘–’ indicates scip identified a global optimal solution
for all 30 instances of a factor-level run for problem P4

104



solutions even in the instances wherein a global optimal solution was not positively

identified.

For the required computational effort response, a simple linear regression (SLR)

model is computed to further observe the effects of each scenario feature level on the

response. Table 28 presents the coefficient estimates for SLR model using the data

presented in Table 27.

Table 28. Standard Least Squares Regression Coefficient Estimates for Required Com-
putational Effort (seconds)

Term Estimate Std Error t Ratio Prob> |t|
D/I/B 65.154 5.467 11.920 <.0001
J /K/L 35.431 3.280 10.800 <.0001
P 7.941 1.640 4.840 <.0001
S -42.855 16.402 -2.610 0.0091
λ -13.982 3.280 -4.260 <.0001

For a significance level of α = 0.05, the fifth column in Table 28 indicates that

each of the scenario feature levels is significant for predicting the computational effort

required by scip when solving instances of P4. The second column presents an inter-

esting result: the number of types of assets, locations at which to place assets, and

paths available for the intruder to employ correlate positively with the amount of time

required by scip to obtain optimal solutions. This result comports with conventional

wisdom; having more options for a problem instance requires greater computational

effort to identify an optimal solution. The number of stages over which the attacker

may be detected and interdicted by the defender’s assets and the number of intruder

missiles the intruder uses correlate negatively with the response, indicating that more

stages and/or intruder missiles result in a lesser amount of time required for scip to

obtain optimal solutions for instances of P4. Collectively, these results indicate that

solving instances of P4 having more locations for assets and asset types may induce

computational challenges, but those challenges may be offset with an artificial par-
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titioning of paths into a greater number of stages, should it be acceptable from a

modeling perspective for the application of interest.

4.4 Conclusions

Given three respective sets of detection, interdiction, and dual-purpose resources,

each having different types of resources with heterogenous capabilities, this research

develops a mathematical programming model to effectively defend a set of population

centers against attack by a limited number of ICBMs by locating sets of BMD re-

sources to detect and interdict ICBMs over a range of launch-to-target missile paths.

These paths, and their respective, spatio-temporally defined flight stages, are em-

ployed under the assumption the adversary will observe the asset locations and re-

spond with a ICBM targeting strategy that maximizes the expected damage of an

attack. We set forth a mixed-integer nonlinear program (MINLP) and develop sub-

sequent models to linearize and reformulate the model to a single-objective mixed-

integer linear program (MILP), referred to as P4.

After defining P4, we examine a small, illustrative instance of P4 to ensure that

the model provides the expected optimal solution. We subsequently examine a larger-

sized instance of P4 to demonstrate the readily discernible insights from an optimal

solution for an instance that is too large and complex to analyze by inspection. The

larger-sized instance of P4 confirms that the attacker will attack paths with the high-

est expected damage inflicted upon defender targets, implying that P4 has potential

for use in much larger-sized instances.

After defining scenario features, this work details a method to parameterize in-

stances of P4 in a manner dependent on scenario feature levels. For low, medium,

and high scenario feature levels, testing compares four leading commercial solvers on

their performance in obtaining solutions for 30 instances having medium-level sce-
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nario features. The solver scip prevailed as the most consistent solver at finding high

quality solutions and also in a timely manner, and was used as the solver for testing

afterwards.

A fractional factorial design tested scip’s ability to obtain optimal solutions in

a given time limit for various scenario sizes. Using this data, an SLS regression

model informed an examination of which scenario features are most significant in

predicting the amount of time required by scip to obtain an optimal solution. All five

scenario features examined are significant; three of the features correlate positively

with the computational effort required, and the other two correspond negatively.

Results identify the problem features that will induce computational challenges, even

when solving the MINLP with the superlatively performing commercial solver.

Future research should examine the underlying problem in a similar game-theoretic

context, with the caveat that the defender has incomplete information about the at-

tacker’s capabilities. Such an extension may identify asset location solutions that

are suboptimal to the model formulated herein, but robust to missing or incorrect

information about an adversary. An additional extension of merit would be to con-

sider an attacker having different missile types with heterogenous capabilities and

susceptibilities to interdiction.
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V. Conclusions and Recommendations

This dissertation considers the problem of an intruder attempting to traverse a de-

fender’s territory, divided into distinct stages either spatially, temporally, or both, and

wherein the defender aims to locate and employ disparate sets of resources to lower

the probability of a successful intrusion. Various optimization techniques are used to

model the problem, including mixed-integer nonlinear programming, multi-objective

optimization, bilevel programming, and mixed-integer linear programming. Addition-

ally, multiple solution techniques are examined such as leading commercial solvers for

global optimization and multiple-objective optimization genetic algorithms. In addi-

tion to the models developed, many differently-sized test instances of the underlying

problem are generated and solved to test the efficacy and efficiency of the respective

solution methodologies. The research presented in this dissertation is of interest to

planners in scenarios like the ballistic missile defense enterprise, wherein multiple

resources are located and employed to minimize the expected damage inflicted by

intruder missiles.

5.1 Conclusions

Given two respective sets of detection resources and interdiction resources, each

having different types of resources with heterogeneous capabilities, Chapter II ad-

dresses the problem of locating and allocating them over a sequence of spatially-

defined stages to effectively detect and intercept an intruder. A mixed-integer nonlin-

ear program, and several variants, are constructed to address the underlying problem

using a leading commercial solver for global optimization. Analysis identifies which

factors in the Resource Allocation for Intruder Detection and Interdiction (RAIDI)

scenarios influence the solution quality found by the model variants. Testing results
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identified that the number of types of detection and interdiction resources are the

significant factors in determining the relative optimality gap obtained by the model

variants, and that every feature level is a significant factor in determining the com-

putational effort required to solve an instance of a RAIDI scenario. The superlative

RAIDI model variant identified via two phases of empirical testing is the default-b

model, which augments the default model with simple upper and lower bounds on

each of the probability calculations to enhance the performance of the commercial

solver’s branch-and-bound procedure.

The research presented in Chapter II makes three contributions to the literature.

First, it sets forth a baseline mathematical programming model – and seven alterna-

tive variants – to address the underlying problem of allocating limited resources for

the detection and interdiction of an intruder. Second, it conducts empirical testing

to evaluate and compare the effect of alternative model variants on the efficacy and

efficiency of a leading commercial solver to identify optimal solutions. Third, it rig-

orously examines the impact of selected problem features on the ability of a leading

commercial solver to address larger instances of the underlying problem, portending

its utility for larger applications.

Given an intruder attempting to traverse a spatially-decomposed region via mul-

tiple possible paths, Chapter III aims to effectively and cost-efficiently identify a

defensive strategy that locates sets of detection resources and interdiction resources,

each of which has different types of resources that vary by cost and capability. In com-

paring different solution methodologies, limitations for identifying a global optimal

solution via a leading commercial solver (BARON) were identified during computa-

tional testing, which motivated the exploration of metaheuristics as a valid solution

method. For the two multi-objective GAs chosen, RWGA and NSGA-II, each of

which was selected based on different conceptual performance characteristics, empir-
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ical testing demonstrated their superior performance in comparison with BARON,

with respect to the both the quantity of non-dominated solutions identified (individ-

ually or relative to all methods tested) and the required computational effort to do

so.

Within the context of the related literature, this research presented in Chapter III

makes two contributions. In its first contribution to address the underlying problem,

this research sets forth a mathematical programming model having several collec-

tively complicating aspects that differentiate it from other research in the literature,

as reviewed in Section 3.1.1. The model addresses the location of assets across an en-

terprise comprised of different asset types (i.e., detection and interdiction assets) and

capabilities, including dual-purpose assets representing actual assets for certain mo-

tivating scenarios (e.g., AEGIS class destroyers in a BMD scenario). The enterprise

approach of the model considers the location of these assets in a defender’s territory

organized into multiple stages, better representing the geographic boundaries often

used to organize defenses for related applications (e.g., border patrol). Finally, the

model employs a multi-objective approach to enable the examination of the tradeoffs

between the effectiveness and cost of defensive asset configurations. In its second

contribution, this research identifies and empirically tests alternative, conceptually

sound solution methodologies for instances of the underlying problem. Empirical

testing first identifies the instance size-specific limitations of a leading commercial,

global optimization solver, motivating the examination of metaheuristics. Subsequent

testing compares the relative efficacy of two metaheuristics for solving larger-sized in-

stances, identifying the superlative technique that provides practical utility to the

relevant mathematical programming model presented in the first contribution.

Given three respective sets of detection, interdiction, and dual-purpose resources,

each having different types of resources with heterogenous capabilities, Chapter IV
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develops a mathematical programming model to effectively defend a set of population

centers against attack by a limited number of ICBMs by locating sets of BMD re-

sources to detect and interdict ICBMs over a range of launch-to-target missile paths.

These paths and their respective, spatio-temporally defined flight stages, are employed

under the assumption the adversary will observe the asset locations and respond with

a ICBM targeting strategy that maximizes the expected damage of an attack. We set

forth a mixed-integer nonlinear program (MINLP), and develop subsequent models

to linearize and reformulate the model to a single-objective mixed-integer linear pro-

gram (MILP), referred to as P4. P4 is validated using a small, illustrative instance

and subsequently tested on an instance too large and complex to analyze by inspec-

tion which confirms that the attacker will act as expected by attacking paths with

the highest expected damage inflicted upon defender targets. Subsequent analysis

uses a fractional factorial design, which determined that every scenario feature for in-

stances of P4 are significant in predicting the amount of time the solver (scip) needs

to obtain an optimal solution and that certain scenario features induce significant

computational challenges.

Within the context of the related literature, the research in Chapter IV makes

three contributions. First, IV sets forth a game theoretic, bilevel program modeling

framework for the problem of allocating missile defense resources to detect and in-

terdict intruder ballistic missiles attempting to destroy valuable targets. Second, it

applies a series of transformations that reformulate the model as a single-level mathe-

matical program that is shown to be convex and, hence, readily solvable to optimality

by any of a number of commercial optimization solvers. Third, the research conducts

testing to both illustrate its efficacy and empirically examine its practical tractabil-

ity, both of which are sound for application on large-scale instances of the underlying

problem.
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5.2 Recommendations

Future research may examine a similar problem to those studied in Chapters II-IV,

albeit having certain differences not considered herein due to anticipated tractability

issues. Although these issues could be insurmountable, only a deliberate effort will

identify the challenges in detail and, perhaps, overcome them.

One possible avenue to explore is the removal of the assumed independence be-

tween probability of detection and interdiction within a stage. Although revisiting

this assumption is not helpful to the defender in terms of efficiently identifying a

solution, it may lend more fidelity to the underlying problem. However, removing

this assumption leads to various modeling issues that are not simple to remedy, and

it will almost certainly require the design and use of a metaheuristic to find solutions

in a reasonable amount of time.

Another problem worthy of exploration is the situation wherein an intruder has

incomplete information. For example, if the intruder cannot observe the defender’s

location decisions with 100% accuracy (and the defender is aware of this shortcoming),

how might the resulting solutions change? A similar problem may arise if the defender

is given incomplete information about the intruder’s options regarding an attack (e.g.,

unknown number of paths or attacker target values).

Finally, future research may also examine adding more objectives to a problem

similar to the one observed in Chapter IV. Multi-objective optimization in combi-

nation with a bilevel programming formulation may yield an interesting study, par-

ticularly when examining potential solution methods. Chapter III portends the use

of multi-objective genetic algorithms as a potential solution method for instances

of the underlying problem, and its contributions may prove useful in this research

extension.
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