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Abstract

Software-Defined Networking (SDN) has advantages over traditional networks.

SDN can perform monitoring, management, load balancing, network virtualization

and orchestration, and policy enforcement across a variety of networks. However, SDN

has seen low adoption, for various reasons, including difficulty in evaluation. In 2018,

the Internet Engineering Task Force (IETF) released a benchmarking methodology

for SDN controllers in Request for Comments (RFC) 8456. Aside from throughput

and latency measures, there is little methodology validation for metrics defined in the

RFC. Furthermore, the RFC’s guidance provides no standardized analysis techniques

and thus misses an opportunity to foster comparable results among researchers.

To validate that the RFC methodology is capable of detecting and evaluating

SDN controller Network Re-provisioning Time (NRT), a small, three switch Local

Area Network (LAN) is emulated on a single physical server. All hosts and devices

within are virtualized with open-source tools. Five SDN controllers are evaluated

with 30 tests runs of network traffic in the test environment. Network traffic captures

and reports are inspected to identify possible errors and analyze NRT with related

packet loss differences between controllers.

The RFC NRT methodology did not always detect the NRT, and was not able to

detect the NRT in any OpenDaylight (ODL) controller test run. The methodology

was able to detect NRTs for the remaining controllers under test. The two of the

remaining controllers are proactive and consistently produced NRTs near one second

or lower, but the test environment was not sensitive enough to detect NRTs under

20 milliseconds. The remaining two reactive controllers had NRTs of 12 seconds or

longer, with greater variability.

iv



RFC 8456 is a step in the right direction, with detailed specifications for required

evaluation parameters. There are a few edge cases where the methodology struggles,

and adding a network re-convergence time metric may account for those cases. The

experiment showed how different the NRTs are based on controller implementation

and configuration. During testing, the environment exhibited errors that require

further investigation.
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EVALUATING TESTING PROCEDURES FOR OPENFLOW CONTROLLER

NETWORK RE-PROVISIONING TIME

I. Introduction

1.1 Problem Background

The United States Air Force (USAF) uses traditional networking concepts, with

long life cycles for hardware, and various mechanisms for managing heterogeneous net-

work devices. Network defenses and traffic control are independently spread out across

those devices with limited coordination. Independence is a short-term resiliency ad-

vantage, as networks can operate in a degraded state when certain components are

non-functional. However, the lack of fully synchronized management, defenses, and

traffic control, put traditional networks at a long-term disadvantage.

Software-Defined Networking (SDN) has the potential to extend network hard-

ware’s useful life and improve management by relying on general purpose servers and

network devices. A key component of SDN is a centralized view of the entire network.

This holistic view of the network enables better traffic control, and application of se-

curity across the entire network instead of at a few key points. This centralization

does create a potential single point of failure, which warrants risk assessment.

Despite the advantages, SDN has seen neither wide adoption nor robust stan-

dardization, making it difficult to assess as an option for implementation. To identify

situations where SDN deployment is advantageous, clear evaluation procedures are

needed. These procedures should increase the opportunities to implement SDN and

identify which SDN frameworks are most appropriate.

1



1.1.1 Problem Statement

Tools specifically designed to assess SDN controller throughput and latency met-

rics, namely Cbench [1] and its variants, have existed since 2010. However, these

are not the only metrics that are relevant to network design. In 2018, the Inter-

net Engineering Task Force (IETF) published Request for Comments (RFC) 8456,

Benchmarking Methodology for SDN Controller Performance. The RFC expanded

the metrics to assess SDN controllers, but there is little validation of the methodology.

Any discussion of deploying SDN technology on military networks is predicated on

a robust evaluation framework. The RFC needs further validation before it becomes

that framework.

1.2 Research Objectives and Hypothesis

The primary research goal is to validate a portion of the RFC 8456 methodol-

ogy, namely Network Re-provisioning Time (NRT), while the secondary goal is to

determine if the controllers under test are significantly different in NRT metrics. A

supporting goal is reliable NRT testing environment development, to provide valid

results for analysis. The research hypothesis is that the RFC 8456 NRT methodology

framework is able to reliably reveal meaningful differences in the observed metrics

between the SDN controllers under test.

1.2.1 Approach

There are three approaches for SDN testing: simulation, physical, and emulation.

Simulation is fast and tightly controlled but lacks real world factors. Physical equip-

ment testing can provide real world results for small networks, but the cost to mirror

large networks is prohibitive. Emulation of physical devices in software scales with

larger networks and provides results closer to physical networks with less upfront cost.

2



This research adopts the emulation approach, with a single physical server con-

taining the entire experiment, with all hosts and devices virtualized. The virtualized

systems form a three-switch ring topology with a traffic generating host on each end.

A script generates test traffic flows between the hosts, and disables the link over

which it flows at a set point, forcing the network to reroute the traffic. Examina-

tion of packet captures determines time between events, and traffic reports measure

packet losses. The choice of network controller is the single factor, and each controller

is tested thirty times in random order.

1.2.1.1 Assumptions and Limitations

RFC 8456 covers many possible tests, this work is focused on the NRT methodol-

ogy. NRT is one of several RFC 8456 metrics, and arguably one of the least evaluated.

Meaningful evaluation of the NRT is critical to the methodology’s maturity. The de-

veloped test environment only emulates a small three-switch mesh topology Local

Area Network (LAN) and does not produce generalized results for other network

topologies. At present, the test environment does not have traditional network em-

ulation for a baseline comparison. It can only compare SDN controllers with other

SDN controllers.

1.2.1.2 Contributions

This thesis extends SDN controller evaluation research. Specifically, it provides

validation of and refinements to RFC 8456. It also provides a statistical comparison

of NRT metrics in a small test network.

3



1.3 Document Overview

Six chapters cover the performed research. Chapter II defines SDN and SDN

architecture with its applications. Then, it covers SDN controller performance eval-

uation, common tools to perform those evaluations, and earlier research in this area.

Chapter III details the experiment test bed design and development tools. Chapter

Chapter IV covers RFC 8456’s methodology, its implementation in the experiment,

and result analysis methods. Chapter V supplies the analysis of the methodology and

the produced controller metrics. Finally, Chapter VI summarizes the research and

findings with details of future work.

4



II. Background and Literature Review

2.1 Overview

This chapter discusses the information needed to understand general SDN con-

cepts and SDN controller performance evaluation. Section 2.2 outlines traditional

networks and devices. Next, Section 2.3 defines the characteristics of SDN in com-

parison to traditional networking. Section 2.3.1 defines the modern SDN architecture.

Finally, Sections 2.3.4 and 2.4 cover SDN tools and related research for controller per-

formance evaluation.

2.2 Traditional Networking Concepts

Network devices perform one to many network packet manipulation and forward-

ing operations. Such devices include routers, switches, firewalls, load balancers, Intru-

sion Detection Systems (IDSs), and other network security systems. The aggregated

packet forwarding and manipulation resources across a group of network devices are

known as the forwarding plane. Similarly, the collective functions instructing the

devices to manipulate and forward packets are called the control plane. Last, the

application plane is all applications and services used to control network behavior

orchestrated by the control plane [2].

In traditional networks, each network device has a fragment of the entire forward-

ing, control, and application planes. The control plane logic on each device depends

on limited information, and makes forwarding decisions based on their functional-

ity and information it learns directly from neighboring devices, without a picture of

the network as a complete system. The control plane logic also integrates tightly

with the forwarding and application fragments on the devices, often with proprietary

management interfaces. All these factors increase complexity, cause unpredictable
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behavior, and make rapid change implementation difficult. Traditional networking

has reasonable resiliency, with each networking device able to work independently if

needed.

2.3 Software Defined Networking

The simplest definition of Software Defined Networking, according to the Open

Networking Foundation, is the “physical separation of the network control plane from

the forwarding plane, and where a control plane controls several device” [3]. IETF

RFC 7426 defines it as a “programmable networks approach that supports the sep-

aration of control and forwarding planes via standardized interfaces” [2]. A more

complete definition identifies the following characteristics [4]:

• Plane separation: The forwarding plane uses logic and data tables to forward,

drop, consume, or replicate incoming packets. The control plane has logic that

programs and/or configures the forwarding plane. In traditional networking,

individual network devices hold portions of the control plane and forwarding

plane. In SDN, the control plane does not reside on network devices. It is

logically centralized on a control device or controller, which gives it a global

view of the network to programming forwarding devices.

• Simplified devices and centralized control: Building off plane separation, the

network devices are simpler. The controller takes the load of converting high-

level policy into simple, lower-level instructions, which are then sent to the

forwarding devices for quick execution.

• Network automation and virtualization: SDN provides three abstractions for

programmatic control of the network. Distributed state abstraction provides a

whole network view instead of dealing with the state of each individual device.
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Forwarding abstraction handles vendor specific device hardware, and configu-

ration abstraction allows programming an overall goal without specifying how

it will be implemented. Application Programming Interfaces (APIs) enable

communication between and within the planes. They abstract the underlying

topology and network protocols. Additionally, they supply a path for program-

ming forwarding devices. Then, applications can rapidly automate network

changes without direct access to those devices. This is like modern computer

operating systems, which provide an abstraction of the physical hardware to

applications. In combination, these abstractions present a virtual network as a

service to host devices, separate from the actual physical topology.

• Openness: Having open, well documented standards for SDN APIs should pro-

mote a larger number of individuals and organizations to develop the technology.

2.3.1 Software Defined Networking Architecture

The SDN architecture has four major components: network devices, controllers,

applications, and interfaces. This section details their sub-components and intercon-

nections as shown in Fig. 1.

2.3.1.1 Interfaces

The first piece of architecture is the various interfaces within and between each

plane that enable communications. The primary interfaces are APIs, aided by net-

work service interfaces when located on separate devices. RFC 7426, SDN: Layers and

Architecture Terminology, classifies the interfaces between planes as North, South,

East, and West bound[5]. North Bound Interfaces (NBIs) connect the application

plane to the control/management planes. There is no standardization across NBI

implementations, as network applications can utilize many different APIs, but Rep-
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Figure 1. SDN Layered Architecture [5][2]

resentational State Transfer (REST)ful APIs are common due Hypertext Transfer

Protocol (HTTP) integration and their simplicity. Distributed controllers use East

Bound Interface (EBI)s to coordinate and synchronize between their physical sys-

tems. Like NBIs, there is no standardization in EBIs. West Bound Interface (WBI)s

communicate with traditional devices using compatible protocols and give controllers

access to information where they SDN interface with legacy networks.

The South Bound Interfaces (SBIs) are the communication path from controllers

to network devices. There are two classes of SBIs associated with their respective

planes. The first is Control Plane Southbound Interface (CPSI) which connects

the control plane to the forwarding plane in the network devices. CPSIs have high
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Control Plane Interface
Protocols

Management Plane
Interface Protocols

OpenFlow
Dependent
Protocols

POF, OpenState, ROFL,
HAL, PAD, DevoFlow

OvSDB, OF-Config

OpenFlow
Independent
Protocols

ForCES, OpFlex, BGP, P4,
XMPP

SNMP, NetConf

Table 1. Southbound Interface Protocols

throughput, low latency, and redundancy to ensure prompt updates to flow tables.

The other class is Management Plane Southbound Interface (MPSI), which passes

configuration, fault, and monitoring data between the management plane and the op-

erational plane in the network devices. The information is less time sensitive and does

not require a high-performance connection. Some SBI protocols incorporate elements

of both, but just enough to support their primary role [2].

The most common and standardized CPSI is OpenFlow, and it is the primary

driver of SDN development, sponsored by the Open Networking Foundation. It is

so prolific that researchers can classify other SBIs by their dependence on it [5].

Table 1 shows a cross section of SBI protocols based on primary plane and OpenFlow

dependency.

OpenFlow switches use match action tables to make forwarding decisions. The

switch compares the packet against these tables when the packet enters and can

match on multiple defined characteristics. The switch performs the assigned action

or actions when it finds a match. The actions include dropping the packet for security

or other concerns, modifying it to implement a service or policy, queuing it for later

transmission, and forwarding out a designated port [6].

If the switch does not find a match for the packet in the flow table, it sends it

to an OpenFlow controller via a PACKET IN message. The controller determines

the actions relevant network devices should take based on its algorithms and policies
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set by its applications. The matches and actions required of each device create a

traffic flow. The controller then sends the flow instructions to each network device

which changes its match action flow table accordingly. There are several message

options from the controller to the devices to conduct the flow table modifications.

The first packet of a traffic stream without a match received by the forwarding device

is queued or dropped until the device receives the modification message. This causes

an initial delay in the delivery of the flow’s traffic while the forwarding device waits

for instructions. Afterwards, all matching packets will have the proper action taken as

long as the flow remains in the device’s flow table. If there are multiple matches, the

forwarding devices apply actions based on highest flow priority set by the controller.

The controller can also make modifications to traffic flows based on other events, such

as a change in the physical network topology [6].

2.3.1.2 Network Devices

Networking devices oversee packet manipulation and forwarding from one device

to the next. They have a forwarding plane with resources to process the rules they

receive from the controller. Implementing those rules on traditional devices with

highly specialized hardware can be difficult, as they lack flexibility. General-purpose

hardware has increased in performance, making SDN workable, and can run alongside

the specialized hardware as hybrid switches. SDN rules can be complex and large,

increasing memory requirements [7]. Another component within networking devices

is the operational plane, which manages all other aspects of the network device not

related to forwarding, i.e., configuration, resources, and state. Applications can exist

on the devices, which may depend on the forwarding and/or operational plane, but

do not connect to external services. Both the forwarding and operational planes

communicate with the controller through a Device and resource Abstraction Layer
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(DAL) via Southbound Interface protocols [2].

2.3.1.3 Network Controller

The controller provides APIs connecting all components in the architecture. Its

primary components are a control and/or management plane. The control plane takes

topology information and forwarding requests from the networking devices through

the Southbound interface protocol and Control Abstraction layer. It also receives

external service requests through a Northbound interface protocol and Network Ser-

vices Abstraction Layer (NSAL) [2]. The applications with the control plane use this

information to generate data flow instructions, pushed through the SBI to the net-

work devices’ Forwarding Planes for installation. The Management plane monitors,

configures, and maintains networking devices. It interacts with the operational plane

through a Management Abstraction Layer (MAL) to control networking device state

[2]. Examples include the state of network ports, the size, and number of forwarding

tables, and remote access.

Controller scalability and flow processing performance are key factors influencing

overall SDN performance. Physical controller placement also links to network scal-

ability. As the physical distance between the controller and network increases, the

time required for communication between them increases. This propagation delay

influences the controller’s ability to respond to requests, negatively affecting overall

network performance [7].

Though the controller is logically centralized, its physical hardware is either cen-

tralized or distributed across multiple locations. If physically centralized, any failure

in the controller has a large, negative impact on network operation. Network engi-

neers must consider this single point of failure when implementing SDN. Increasing

the size of the network necessitates physically distributing the controller to overcome
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the latency issues described previously, but also increases reliability. Distributed

controllers organize in flat relationships as peer-to-peer systems, or a hierarchical

structure depending on the application [7].

Control granularity also affects controller performance. Control granularity is how

many requests the controller chooses to process, and how much information it uses to

find a solution [7]. Finer control induces more overhead traffic between the controller

and forwarding devices. In consideration of this, controllers can make reactive or

proactive decisions. With reactive, the controller must make decisions for every new

flow, incurring a slight delay for the first data packets waiting at the forwarding

device. However, a high volume of requests, or a physical greater distance from the

forwarding devices amplifies the delay. The proactive method pre-populates entries

the forwarding device tables or leaves basic level policy decisions to the forwarding

devices.

2.3.1.4 Application Plane

The last major component is the Application plane. Applications and services

within the plane communicate with the controller through the NBI to refine network

behavior [2]. These can range from topology discovery, authentication, policy, secu-

rity, and Quality of Service (QoS) to virtual machine orchestration. It can be on the

controller or distributed across interconnected systems.

2.3.2 SDN Applications

SDN controllers provide a platform for improvements in four broad categories of

applications beyond management: monitoring, load balancing, virtualization/orches-

tration, and policy enforcement [8].

• Monitoring and Management: the centralized nature of controllers provides a
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global view of the topology and other aspects of network activity. Host tracking

also supplies a record as devices join, leave, or move to different locations in

the network. They serve as an oracle for activity on the network, although

the more active and granular the monitoring, the greater the overhead on the

controller(s).

• Load balancing: the global view also provides the means to optimize low-level

resource allocation, latency, and throughput across the network.

• Network Virtualization and Orchestration – SDN enables virtualization or slic-

ing of physical network resources, acting as a network hypervisor. This also

makes it suited for coordinating with cloud orchestrations systems, such as

OpenStack. These systems constantly create, destroy, and move Virtual Ma-

chine (VM)s within them. In combination, SDN and orchestration systems

guarantee network availability to VMs without manual re-configuration or com-

plicated topologies.

• Policy enforcement – The global view of a controller is also effective for enforcing

policy. The controller can apply authentication and access controls across the

entire network. Applying firewall and intrusion detection policies implements

network wide security. Finally, a controller can dictate many forms of traffic

engineering/shaping for QoS or policy-based routing.

Researchers initially applied these capabilities to networks of limited geographical

size, such as LANs, Campus Area Networks (CANs), and data center networks. It has

expanded to carrier and service providers in the form of optical networks, Software

Defined Wide Area Networks (SD-WANs), and network slicing for small consumers.

The latest developments have been in cloud, fog, and edge computing, including

Internet of Things (IoT), wireless infrastructure, Wireless Sensor Networks (WSNs),
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unmanned aerial vehicles (UAVs)s, and Vehicle Area Networks (VANs) [8].

2.3.3 Controller Performance Evaluation

Comparing the performance between software-defined networks is difficult, as the

applications are varied as well as optimization objectives. Many combinations of con-

trol and data plane performance including different combinations of hardware and

software make the problem hard [9]. The one required SDN component is the con-

troller, so most evaluations center on its characteristics. However, comparisons tend

to evaluate qualitative over quantitative metrics. The broad categories of quantitative

performance benchmarks/metrics for controllers include the following [8]:

• Throughput – These tests measure the number of flow requests the controller

can process over time.

• Latency – Measures the delay or duration of time required for the controller to

service a request from network devices.

• Flow – Flow metrics measure the efficiency of installing flows across multiple

devices and characteristics of the traffic between the data source and destina-

tion.

• Topology – These benchmarks measure the time to discover the topology, in-

cluding network devices, network hosts, and the links between them. They also

include change detection time and maximum detection size.

• Threading – Threading tests evaluate the controller’s usage of operating system

and hardware resources.

• Other – The tests that do not fit into the above categories include the controller’s

flow table capacity, ping delay, electrical energy use, network re-provisioning
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time, and controller fail-over time.

There are few pre-built tools for evaluating controller performance. The original

open-source tool for evaluating OpenFlow controllers is Cbench [1]. It performs only

throughput and latency tests with OpenFlow 1.0, which limits its usefulness. Many

recent open-source extensions and tools expand the test types, but only expand to

version 1.3 and are limited to specific controller implementations. One of these,

OFCProbe, attempts to reduce virtualization overhead by simulating the environment

in Java. Proprietary tools such as OFCbenchmark, OFBench, OFnet, and Pkt Blaster

also have situational constraints [8]. Most have not seen development in the past five

years. In addition, variation in tool implementations produces different results with

the same controllers, making it difficult to evaluate them. Manual packet capture

and custom analysis gives an equal playing field for comparison.

2.3.4 Software Defined Networking Tools

SDN emulators create networks running real switch and application code within a

single system environment. They use various forms of virtualization to provide SDN

controllers, switches, and host systems networked together within the host operating

system. The virtualization methods are sufficiently lightweight, enabling scalable

emulation of network devices without significant investment in physical hardware.

Mininet is an emulator developed in 2010 to rapidly develop and test SDN net-

works on a single laptop [10] and the most common emulator used by the SDN research

community. It uses Linux container virtualization and therefore limited to that Op-

erating System (OS) platform. More recent SDN emulation development has focused

on transitioning to Docker container virtualization. These implementations have the

emulated hosts in Docker, and some are extensions of Mininet. Examples include

ContainerNet [11], vSDNemul [12], NestedNet [13], and ComNetsEMU [14]. Docker
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has increased scalability and thus makes these tools suitable for large wireless and

sensor network emulation. Docker solutions are also dependent on the host operating

system. In contrast, Network EMulatOr (NEMO) [15] emulates the network entirely

within a Java virtual machine. This frees the operating system constraint, as Java is

portable to many operating systems.

2.4 Related Research

The IETF has codified SDN controller evaluation in RFC 8456, Benchmarking

Methodology for SDN Controller Performance [16]. It proposes four test categories

that are protocol and controller independent, though there are OpenFlow specific

references in its examples and figures.

The first category is performance and includes the following tests:

1. Network Topology Discovery Time – The time taken by the controller to com-

pletely discover the topology.

2. Asynchronous Message Processing Time – How long the controller takes to

respond to an unsolicited message from a network device.

3. Asynchronous Message Processing Rate – Measures the number of non-trivial

requests the controller responds to over a period.

4. Reactive Path Provisioning Time – The time to set up a path measured from

the first flow provision request to controller to the last provision response sent

from it.

5. Proactive Path Provisioning Time – The path set up time measured from the

first northbound interface (application layer) request to the last path provision-

ing response sent to the network devices.
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6. Reactive Path Provisioning Rate – The number of paths a controller can estab-

lish per second from southbound interface requests.

7. Proactive Path Provisioning Rate – The number of paths a controller can es-

tablish per second from northbound interface requests.

8. Network Topology Change Detection Time – The time delta from a controller

receiving a topology change notification and sending a topology rediscovery

request to the network devices.

The scalability category tests include:

1. Control Sessions Capacity – The number of sessions a controller can accept and

maintain with network devices.

2. Network Discovery Size – The maximum discoverable number of nodes, links,

and hosts.

3. Forwarding Table Discovery Size – The maximum number of flow table entries

stored in the controllers forwarding table.

The two security tests are:

1. Exception Handling – Captures the effects of error handing and notifications

during the Path Provisioning Rate, Path Provisioning Time, and Network

Topology Change Detection Time tests.

2. Handling Denial of Service Attacks – Captures the effects of Denial-of-Service

(DoS) attacks during the Path Provisioning Rate, Path Provisioning Time, Net-

work Topology Change Detection Time, and Network Discovery Size tests.

The final category, reliability tests are:

17



1. Controller Failover Time – Used for distributed controllers and measures the

time between active controller failure and the backup controller receiving the

first rediscovery message.

2. NRT – Time taken by the controller to reroute flows due to traffic path failure

measured from the first failure notification received to the last path-provisioning

message sent to the network devices.

Most earlier controller performance evaluations performed throughput and latency

tests [8]. An exception is Tello and Abohasan [17], who performed six of the RFC

8456 tests when it was still in draft status. They selected POX [18], a basic controller,

OpenDaylight (ODL) [19], Open Network Operating System (ONOS) [20], Ryu [21],

and Floodlight [22] for evaluation. Their performance portion included Asynchronous

Message Processing Time and Rate, Network Topology Change Detection Time, and

Reactive Path Provisioning Time. Scalability evaluations included Network Topology

Discovery Time and Discovery Size. They used Cbench, Mininet, Docker, custom

Python script, and WireShark packet capture. The parameters for the experiment are

not well defined, such as controller, application, and protocol versions and settings.

The results are presented in bar graphs, but the number of runs per test are not

stated, nor statistically analyzed or compared.

Bah et al. compared ONOS and ODL without referencing RFC 8456, but per-

formed tests equivalent to throughput or Asynchronous Message Processing Rate,

Network Topology Discovery Time, and NRT [23]. Mininet emulated network topolo-

gies, Cbench generated control traffic, and iPerf [24] generated Transmission Control

Protocol (TCP) test traffic. The NRT measurement tool was iPerf bandwidth reports,

but the RFC implies using User Datagram Protocol (UDP) or other connectionless

traffic to measure packet loss and performing packet analysis for NRT. Again, the spe-

cific parameters for experiment software components, number of runs, and statistical
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analysis are not well defined.

Silva et al. performed throughput and network discovery tests for Floodlight,

ONOS, and Ryu working with home consumer grade switches [25]. They used RFC

8456 as a baseline and Mininet and iPerf3 for their test environment. Their reporting

included many of the parameters required by the RFC. All tests were run at least

10 times as required by the RFC but the results did not state the exact number.

The only test results were arithmetic means, with no further statistical analysis or

comparison.

Using a single run, not specifying the number of runs, or not creating a model

gives little statistical power to and confidence in the results. The arithmetic means

may be numerically different but does not prove they are from different controller

groupings or show how much variance a controller exhibits. Statistical analysis of

larger samples creates higher confidence with predicted values and comparisons.

2.5 Background Summary

SDN technology offers advantages over traditional networks. Controllers are the

heart of SDNs, and their interfaces to other components define their operation. The

capabilities of SDNs of monitoring, management, load-balancing, network virtual-

ization and orchestration, and policy enforcement were developed in smaller scale

networks, but now apply to a wider range of network types including data center,

Wide Area Network (WAN)s, and IoT. Platforms for emulation of SDN are preva-

lent, but the variation in interfaces and applications makes controller performance

evaluation difficult. The IETF has created an RFC in an effort to standardize con-

troller testing. Some, but not all, of the tests have been tried, and opportunities to

validate statistical results appear promising.
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III. Network Re-Provisioning Test Environment Design

3.1 Overview

This chapter provides a detailed description of the test environment developed to

support OpenFlow SDN controller NRT evaluation thesis research. A major com-

ponent is a virtualization server containing the entire test environment for all other

components. Second, Mininet VM has the tested network topology, providing the

network devices and interfaces as defined in Fig. 1. The Mininet VM also contains

the experiment scripts. The final components are selected OpenFlow controller VMs,

providing the controller and application plane roles as shown in Fig. 1. Finally, the

chapter describes tools used in script development.

3.2 System Summary

The experimental system purpose is evaluating open source OpenFlow network

controller network re-provisioning time methodology under RFC 8456 specifications.

A single server using Linux container and Kernel-based Virtual Machine (KVM) vir-

tual services contains the entire experiment. A web browser equipped computer

connects to the server and provides VM management access. A Mininet virtual ma-

chine hosts the test network topology including three interconnected virtual switches.

It also hosts two network traffic generating VMs, each connected to a virtual switch

in the test topology. The topology, as illustrated in Fig. 2 creates two alternate

paths for traffic between the generators. One is the primary, and the other is the

alternate target for re-provisioning. It provides a separate control network between

the switches and OpenFlow controllers as shown in Fig. 2 for control communication.

Packet capture software on the Mininet VM allows capture of both the control and

data traffic as needed. Individual Linux containers host and isolate each controller.
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21



3.3 Detailed Description

The following describes major system components in detail. They are the Prox-

Mox Virtual Environment (VE) server, Mininet virtual network environment, and the

evaluated OpenFlow controllers.

3.3.1 ProxMox Server

ProxMox VE 6.3 is a Debian Linux based platform with two different operating

system virtualization methods. The first is Linux Container (LXC), which is very

lightweight, and allows for rapid re-initialization of the controllers. It also has a tra-

ditional hyper-visor, KVM. The Mininet system subsystem is run in a KVM VM and

has internal Linux containers for devices in the virtual topology. Nesting containers

is a possibility, but not implemented at this time. A Hewlett Packard Z840 worksta-

tion with an Intel Xeon E5-2687W Central Processing Unit (CPU) at 3.10GHz with

twenty cores and 64 GB of Error Correction Code (ECC) RAM is the host system.

This supplies enough resources to prevent system starvation, which could affect the

results.

3.3.2 Network Virtual Machine

The network VM uses Ubuntu Linux 20.04.2 Server Long Term Support (LTS) for

the operating system. The server version has fewer default packages installed than

the desktop version, consuming fewer resources. Ubuntu LTS versions are the most

stable versus non-LTS releases with new features that may have unknown bugs. The

network VM has eight virtual CPU cores, 32GiB of RAM, and 1TiB of hard drive

storage assigned. This provides enough computing resources to perform the test, store

large packet captures, and capture analysis.

The virtual machine hosts the Mininet application, test script, virtual switches,
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hosts, and links between them. Appendix A provides the test script and configura-

tion information. It also connects the virtual switches to the controllers under test.

The Mininet application is a Command Line Interface (CLI) Python script and is a

standard in the SDN community. It is used for rapid prototyping of software-defined

networks by emulation on a single system. The latest stable version, 2.3.0, is used for

compatibility with Python 3.8.5 installed on the system.

3.3.2.1 Switches

Open vSwitch is an open-source virtual switch that is OpenFlow compatible, cut-

ting the need for hardware, and can work with the test controllers. It also allows

for rapid stand up and teardown of virtual network topologies. The switches use the

latest stable version released for Ubuntu, 2.13.1.

3.3.2.2 Traffic Generating Hosts

As traffic generating hosts are containers within the Mininet VM, they use the

same Ubuntu 20.04.2 Server LTS operating system. The iPerf3 bandwidth testing

CLI utility generates the test traffic. It provides UDP traffic with sequence numbers

for measuring and reporting packet loss. The configured IPerf3 reporting also shows

traffic bandwidth at 0.1-second intervals, the smallest capable for the tool, to see

fluctuations and help detect re-provisioning.

3.3.2.3 Topology

RFC 8456 Section 4.1 strongly suggests using spine and leaf topology for testing,

which has multiple, equal cost redundant paths between network switches in a partial

mesh. The controller under test can select any path for the initial traffic flow in

either direction. This requires either automatically detecting the primary path the
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controller selected or selecting a different topology with unequal cost paths to force

path selection. Custom interfaces for each controller are needed to implement the first

option, due to nonstandard NBIs. This experiment uses OpenFlow enabled switches

in a small mesh topology option as shown in Fig. 2. It should force the link between

switches 1 and 2 as the primary traffic path with fewer network hops between the

traffic generators. Links interconnecting the switches to each other and from the

switches to hosts have typical 1 Gbps LAN backbone speeds.

3.3.2.4 Experiment Scripts

The main experiment script written in Python 3, test.py, relies on Mininet

Python 3 classes and methods. It requires the Internet Protocol (IP) address of the

controller under test and run number as arguments, for logging the test start including

the date and time. Then it generates the virtual network topology and connects it to

the controller. Next, it calls a host location advertisement script, gratuitousARP.py.

Normal Address Resolution Protocol (ARP) operation has a host requesting the ad-

dress of a destination, to which it receives a reply from the destination with it’s

address. A gratuitous ARP broadcasts an unsolicited reply with the host’s address,

which advertises the traffic generators’ presence to the OpenFlow controller. The

Python 2 host advertisement script comes from the ONOS controller tutorial VM

and was not refactored in Python 3. The current version of the test and host adver-

tisement scripts are in Appendix A and B. After verifying connectivity between the

traffic generators, the experiment script initiates packet capture and starts test traffic

on the traffic generators, and triggers network re-provisioning. Finally, it stops traffic

generation, packet captures, Mininet topology, logs the end of the test, and cleans up

any leftover topology.
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3.3.3 Controllers

Running all controllers in separate containers avoids resource competition. The

containers also allow for fast re-initialization from virtual snapshot backups, quickly

re-initializing controllers without topology data from earlier test runs. This forces a

reset to the primary traffic path, after the controller re-provisioned to the alternate

in the previous run. The containers are built off a ProxMox Ubuntu 20.04.2 Server

LTS template. Each is given four virtual CPUs, 8GiB of Random Access Memory

(RAM), and 16GiB of storage for mid-range capability. The only differences are the

controller software and supporting language packages.

ONOS 2.5.1, ODL 8 (Oxygen), Floodlight 1.2, Ryu 4.34 and Faucet 1.9.53 [26]

are the test controllers. All are open source and freely available for testing. Ad-

ditionally, they are capable of OpenFlow protocol version 1.3 or higher, as 1.3 is a

de-facto standard for OpenFlow switches and have wide market availability. Most

have commercial backing, updates within the past three years, and maintain fair to

good documentation [8]. These characteristics are desirable for a SDN controller in

operational status for many years.

The test requires Open Systems Interconnection (OSI) model layer 2 switching

capabilities, and SDN controller ability to address switching loops. Also, the con-

trollers must be capable of ARP, and Internet Control Message Protocol (ICMP)

ping requests, verifying controller flow creation between the traffic generating hosts.

Last, they need a topology tracking method for re-provision event detection. Each

controller has additional applications enabled to support these features, if not enabled

by default. ODL Oxygen is two years older than the current Aluminum release during

testing but is the newest with the required layer 2 switching application available.
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3.4 Development Tools

The test script was developed in Visual Studio Code 1.5.3, and Microsoft Python

and Pylance extensions for Studio Code ensured proper syntax and aided debugging.

3.5 Design Summary

This chapter presents the overall design of the network re-provisioning test bed in

line with RFC 8456. Individual components are detailed with justifications for selec-

tion and configuration. It also presents the software tools used for script development.
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IV. Methodology

4.1 Objective

The primary purpose of this methodology is evaluating RFC 8456’s published

protocol for measuring for measuring and reporting SDN controller NRT and network

re-provisioning packet loss. The secondary objective is identifying and comparing

those metrics between the tested controllers. The first supporting objective involves

setting up and verifying a virtual SDN test topology. The second is to capture 60

seconds of UDP test traffic before, during, and after a SDN re-provision event on that

topology and measure total UDP packet loss for the duration. The third objective is

to parse the capture files, and identify the metrics needed to determine the network re-

provisioning times. The fourth is to determine the expected NRT, Forward Direction

Packet Loss (FDPL), and Reverse Direction Packet Loss (RDPL) for the controllers

in the test and determine if significant differences exist between them.

4.2 System and Component Under Test

The network re-provisioning methodology is the system under test as shown in

Fig. 3. The component and single factor under test is the OpenFlow SDN controller.

The parameter categories are divided into system and iPerf3 traffic workload. Con-

troller and test environment parameters fall under the system category. Finally, the

controller NRT and packet loss are the desired metrics produced by the test.

4.2.1 Assumptions

The experiment design has two important assumptions. First, every controller

under test selects the link between Open VSwitch 1 and 2 as the primary path.

The test topology makes that link desirable as the primary but does not guarantee
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Figure 3. System Under Test

selection as required by the RFC. The second assumption is that the default topology

timeouts, for controllers that have them, are acceptable. The test topology is small

enough for quick discovery. The rediscovery timeout becomes relevant in larger and

complex topologies.

4.3 Metrics

As specified in RFC 8456 NRT objective, the experiment measures “the time taken

by the controller to reroute traffic when there is a failure in existing traffic paths, de-

fined as the interval starting with the first failure notification message received by the

controller and ending with the last flow re-provisioning message sent by the controller

at its southbound interface” [16]. However, NRT measurement in the methodology

is through test traffic response, and not control messaging traffic. The time between
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the last frame successfully received by Traffic Generator 2 from Traffic Generator 1

before path loss and the first successfully received frame after path restoration is the

Forward Direction Path Re-Provisioning Time (FDRT). The Reverse Direction Path

Re-Provisioning Time (RDRT) is the opposite: the time between the last successful

frame received by Traffic Generator (TG)1 from TG2 before path loss, and the first

successful frame after path loss. Averaging the FDRT and RDRT calculates the NRT.

NRT = (FDRT/RDRT )/2 This accounts for asymmetrical or equally practical for-

ward and reverse paths. Missing frame sequence number counts between received

UDP packets determines the RFC required FDPL and RDPL

4.4 Factors

The key factor in this experiment is the specific controllers under test, including

their underlying programming languages as shown in Table 2. Each controller is a

treatment for the experiment.

Controller Language
ONOS Open JDK 11

ODL (Oxygen) Open JDK 8
Floodlight Open JDK 8

Ryu Python 3.8
Faucet Python 3.8

Table 2. Experiment Factors

4.5 Uncontrolled Variables

The primary uncontrolled variables include the resource load of the operating

systems of the virtual environment, console system, virtual machines, and containers.

Unrelated system tasks may interfere with controller processing. To mitigate those

potential effects, the environment is given abundant physical resources to take care
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of such tasks, and not starve the experiment processes.

4.6 Experiment Parameters

The mandatory experiment parameters required by RFC 8456 separate into test

environment and controller configuration categories. Table 3 lists the test environ-

ment parameters. All the controllers selected use REST as NBI protocol, and Open-

Flow 1.3 (the de facto standard) for SBI protocols. The connections between the

controllers and switches are un-encrypted to simplify the experiment, and not in-

terfere with the capture of traffic. Virtual switches allow for fast setup and tear

down of the virtual topology between multiple runs. The small switch mesh topology

creates two traffic paths for the re-provisioning test, and one less link for one path,

encouraging its selection as the primary.

The generated iPerf3 traffic defines the workload parameters. IPerf’s UDP band-

width test provides packets with sequence number increments in the payload, and

missing sequence number counts for packet loss measurement. Link speeds are con-

strained to one Gbps to keep the virtual switches and hosts from consuming the

entire internal host bandwidth, preventing fluctuations that can affect the test. The

iPerf3 UDP bandwidth test is set for one Gbps for 100% link saturation. This should

increase packet loss detection during the re-provisioning event.

Table 4 lists the common parameters shared by all the controllers. The system

configuration gives each controller an average amount of computing power. To mini-

mize the time required for start up and shutdown of controllers between experiments,

controller implementation is non-distributed. This means there is no controller redun-

dancy. Controller state persistence is disabled to prevent information from previous

experiments carrying over to subsequent experiments. The controllers re-detect the

topology for every run without prior knowledge.
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Environment Parameter Setting
Northbound Protocol REST
Southbound Protocol/Version OpenFlow 1.3
Connection Setup un-encrypted
Network Device Type Virtual Switch
Number of Nodes 5
Number of Links 5
Number of Links in Primary Path 3
Number of Links in Alternate Path 4
Link Speeds 1 Gbps
Forwarding Plane Test Traffic Type 1 Gbps iPerf UDP bandwidth test
Topology 3 switch mesh

Table 3. Environment Parameters

Controller
Parameter

Setting

System
Configuration

Ubuntu Linux 20.4.2 container with 4 CPU, 8G RAM, 16 GB
hard drive, virtual network interface

Redundancy
Mode

None

State
Persistence

Disabled

Table 4. Common Controller Parameters

Table 5 lists parameters specific to each controller and applications activated in

addition to those installed by default to enable required capabilities. The controllers’

documentation does not always specify the rediscovery timeout value. ONOS has a

Logical Link Discovery Protocol (LLDP) probe interval of 3 seconds. ODL’s built-

in topology discovery and layer 2 switch application documentation indicate LLDP

used for loop removal, but not active probing. The ODL lldp-topology-discovery

application defaults to a 5-second default timeout but was not active during testing.

Floodlight’s link discovery code [27] and status messages indicate a 15 second LLDP

probe rate. The Ryu simple switch application uses Spanning Tree Protocol (STP),

which is purely reactive, and STP can take 30 to 50 seconds to converge on a solution.

Faucet documentation states it has LLDP but does not use it for topology detection.
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It does claim to use another unspecified method. Faucet requires the topology defined

in its configuration files. It is based on the Ryu framework, likely uses the Ryu STP

library to handle changes in a similar manner. Open vSwitch 1 was set as the primary

switch to avoid Open vSwitch 3 becoming the root and defining the alternate path

as primary.

Controller Version Rediscovery
Timeout

Applications

ONOS 2.5.1 3 s Default Apps, Host Location
Provider, LLDP Link Provider,
OpenFlow Base Provider,
OpenFlow Provider Suite, Proxy
ARP/NDP, Reactive Forwarding

ODL 8 Not Specified (5 s
when LLDP
enabled)

Default Apps, ODL Layer 2 Switch,
DLUX

Floodlight 1.2 15 s Default Apps
Ryu 4.34 Not Specified Default Apps, Simple Switch STP

1.3, Web Socket Topology
Faucet 1.9.53 Not Specified Default Apps

Table 5. Specific Controller Parameters
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4.7 Experiment Design

This section outlines RFC 8456’s general methodology requirements, and how the

implemented experiment design in Fig. 4 and methodology meet those requirements.

The RFC has no requirements on data analysis.

4.7.1 RFC 8456 Network Re-provisioning Time Methodology

RFC 8456 specifies three prerequisites for measuring NRT. The first is that a

network with specified number of nodes and redundant paths must be deployed. The

second is that the controller must know the location of the traffic generating hosts.

Last, the controller must not pre-provision the alternate-path as the primary.

The required steps are:

1. Send bidirectional traffic continuously with unique sequence numbers from test

traffic generators TP1 and TP2.

2. Disable a switch or link in the primary traffic path.

3. Stop the trial after receiving the first frame after re-convergence.

4. Record the time of the last received frame prior to the frame loss at test traffic

generator TP2 (TP2-Tlfr) and the time of the first frame received after the

frame loss at test traffic generator TP2 (TP2-Tffr). According to the RFC,

there must be a gap in sequence numbers between these frames.

5. Record the time of the last received frame prior to the frame loss at test traffic

generator TP1 (TP1-Tlfr) and the time of the first frame received after the

frame loss at test traffic generator TP1 (TP1-Tffr).
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4.7.2 Implemented Design

JMP 15 Pro [28] statistical software generates a random run order with 30 repli-

cates for each controller. The random run order helps mitigate random unknown

variables, and 30 replicates increases the accuracy by the central limit theorem over

the 10-minimum specified in the RFC.

4.7.2.1 Test Runs

Before each test run, the selected controller manually boots from a container

snapshot backup via the ProxMox web console. The test holds until ProxMox server

indicates the container is online. If the controller is not set up as a service on boot,

recalled commands from the CLI history start it. This ensures the same launch

commands start the controllers during their runs.

The experiment script, test.py, is invoked in Python 3 on the Mininet VM within

the mininet directory, as shown in Fig. 5 with the static controller IP address and run

number as arguments. The script runs under root privileges to ensure permissions

to necessary resources. Before executing, the controller and run number are verified

against the run list in JMP. The script logs the run number, controller IP address,

and start date/time for verification during analysis. Next, it constructs the Mininet

VM virtual topology as shown in Fig. 4. Mininet waits until all switches connect

to the controller, then pauses for 30 seconds to allow for topology detection, and

switch configuration. Initial testing showed the controllers using STP algorithm took

approximately 30 seconds to detect the switching loop and determine the spanning

tree. The topology meets the first RFC prerequisite of a set number of nodes with

redundant paths.

Figure 5. Test.py Launch
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The experiment script then invokes,gratuitousARP.py, the host advertisement

script, on both TG hosts, to make the switches and controller host tracker aware of

their presence for flow building. The script then invokes the Mininet pingAllFull

method, causing every pair of hosts to ping each other three times. This verifies

the controller successfully set up flows between the hosts, before test traffic begins,

and serves as a backup the host advertisement script. This satisfies the second RFC

prerequisite. If the pings are not successful by the third attempt, something has gone

wrong with the topology or controller, and the run is manually aborted. The setup

does not fully meet the third RFC prerequisite, as one path is more desirable, but

does not guarantee its selection as primary.

Otherwise, the script terminates any hung iPerf processes from the previous run.

Sixty-five second TShark packet captures are initiated on the traffic generators with a

capture filter for UDP port 5001 on TG1 and port 5002 on TG2. The filter minimizes

the capture file sizes and focuses on the stream of packets received by the iPerf3

servers. The 65 second capture period encapsulates the entire 60 second UDP streams.

Packet capture file names contain run number and TG host names for verification

during analysis.

An iPerf3 server is started on UDP port 5001 for TG1, as well as on port 5002 for

TG2 to differentiate the traffic streams in the packet captures. The iPerf3 servers log

the bandwidth for the connections at the shortest interval available in the tool, 0.1-

seconds. The bandwidth logs aid in identifying the re-provision event and recording

the connection packet loss. The script saves the output to filenames with the run and

port numbers. This satisfies the required traffic generation step.

The switches communicate with the controller to determine the best path for the

traffic. The path between OpenFlow switches 1 and 2 is more desirable for the con-

troller to select, due to fewer hops, and becomes the primary path. A 3-second pause
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allows for flow installation and the connections to reach a steady state across the

network before triggering re-provision. It triggers when the script administratively

disables the link between OpenFlow Switches 1 and 2 after the 3-second pause, meet-

ing the second required step. This forces both switches to notify the controller of

the topology change. The controller determines the best alternate path and pushes

new flow table entries to the switches to restore traffic flow. Previous testing with

TCP traffic in the test topology identified 3 seconds as the approximate time for

the slow start process to finish and reach link saturation. UDP traffic reaches link

saturation faster than TCP; maintaining the pause allows for both types of traffic in

future testing.

The script pauses for 60 seconds, allowing the iPerf3 traffic to end and TShark

to complete packet capture. This does not fully satisfy the requirement of ending

the run upon the first frame received after re-provision. If re-provisioning happens

after the packet capture stops, or not at all, then the test does not detect the NRT.

The script then tears down the topology and runs a cleaning process to remove any

lingering traces before the next run. Finally, the script logs the controller IP address,

run number, and test stop date/time. The controller container under test is rolled

back to the previous clean snapshot. The rollback procedure also shuts down the

container, which keeps only one controller active on the network at a time. Only one

controller is online during each run to prevent other controllers’ interference.

Manual inspection of the packet capture file sizes after each run help detect errors.

If the capture is 384 bytes, then it is empty, invalidating the run. The capture file size

from both TGs should be similar. Large file size differences indicate possible errors

and are noted for further analysis. Checking the run log against the JMP list verifies

correct controller usage. The packets in the capture are date/timestamped which

verifies they fall between the start and end times in the log. Performing a virtual
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snapshot of the Mininet VM every five runs, provides data backup.

IPerf3 report file sizes are inspected after each run. The sizes for the forward and

reverse directions should be similar in size. If not, something went wrong with iPerf3

or the re-provision. Inspection of the report content after the runs complete, also

helps find any execution errors.

4.7.2.2 Metric Extraction

Locate relative time of last
packet captured from the

first

Yes

NoIs the time
 <= 6 seconds?

Traffic flow did not recover
during capture

Sort packets by delta time
between packets and

highlight packet with the
largest delta

Re-sort packets by capture
time.

No

Yes

Is the capture time of
 the packet before the highlighted

packet under 6 seconds?

Resort by delta.  Select
packet with the next largest

delta

Yes

No
Is there gap

in sequence numbers between
the two packets? 

Recovery Time = delta of
highlighted packet

Traffic flow recovered fast enough
to prevent packet loss

End

Start

Recovery Time not detected

Figure 6. Manual Recovery Time Extraction Process

The FDRT and RDRT are extracted for steps 4 and 5 through manual inspection

of packet captures in WireShark. The process flow is shown in Fig. 6 and performed
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for both directions of traffic flow for each run. Adding a column displaying the delta

in capture time between packets is key to the process. First, the time difference

between the first and last packet is checked. If under 6 seconds, the traffic flow did

not recover before the end of the 60-second packet stream or did not recover at all.

An example of the last packet captured in WireShark for a run is highlighted in Fig.

7. The packet’s capture time relative to the first packet captured, is approximately

2 seconds. The re-provision event should normalize around 3 seconds in the packet

capture, as the script waits to trigger it 3 seconds after traffic starts.

Figure 7. Re-provision Failure in Capture

If the difference is near 60 seconds, the flow recovered. Fig. 8 shows an example

run with the final packet capture around 59 seconds. The capture is then sorted on

the Delta column. The packet with the highest delta is highlighted in Fig. 9. In

the example, the difference between time of capture and the delta from the previous

packet is approximately 3 seconds.

Figure 8. Re-provision Success in Capture

Figure 9. Delta Selection

The capture is then re-sorted by time. The hexadecimal sequence number in the
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data field is noted as shown in Fig. 10. The capture time of the previous packet is

checked against the 6 second threshold. In Fig. 11, the capture time is around 3

seconds as expected. If not under the threshold, the capture is resorted by delta, and

the next highest delta packet selected. The process is repeated until previous packet

capture time falls under the threshold. The hex sequence number in the data field of

both packets is compared for a difference greater than zero, indicating a sequence gap.

In Fig. 10 and 11 the gap is 0x256c15− 0x31229 = 0x2259 = 2, 251, 244 packets. If a

gap is found, the delta is recorded as the re-provision time. If there is no gap, either

the re-provision happened fast enough there was no sequence gap, or the alternate

route might have been chosen as the primary, requiring no re-provision for that traffic

flow direction. In these cases the NRT is not detected.

Figure 10. First Packet After Re-provision

Figure 11. Last Packet Before Re-provision
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4.7.2.3 Statistical Analysis

The metrics are assessed with JMP 15 Pro statistical software. The mean, stan-

dard deviation, and upper and lower 95% confidence limits for each controller are

calculated and displayed with box plots and tables. Parametric comparison of the

metrics has more statistical power than non-parametric, but the data must pass as-

sumption of normality checks. The JMP Fit Model tool generates a predicted value for

each metric, and then saves the difference between the metric value from each run and

the predicted value called the residual. The residuals must be normally distributed

to pass assumption of normality. The residuals are displayed in a normal quantile

plot for a visual check of normality and followed up with the distribution fit tool and

goodness-of-fit tests for statistical verification. If the data does not pass assumption

of normality, non-parametric tests are used instead of parametric for comparison and

controller rankings. Tables, box plots, and test results are displayed accordingly.

4.8 Methodology Summary

This chapter covered the objective to evaluate RFC 8456 NRT methodology with

four OpenFlow SDN controllers. The metrics, factors, uncontrolled variables, pa-

rameters, and design were defined with assumptions, deviations, and additions. The

metric extraction and analysis processes were outlined.
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V. Results and Analysis

5.1 Overview

This chapter evaluates the implemented methodology and the statistical analysis

of the controller metrics. Section 5.2 reviews the initial screening of iPerf reports,

which eliminated one controller from further analysis. Section 5.3 details findings

from packet capture metric extraction. Finally, Section 5.4 and 5.5 analyze the NRT,

and associated packet loss for the four remaining controllers.

5.2 IPerf Reports

During the experiment, iPerf collected metrics and produced a summary report

for each run as shown in Figure 12. From Figure 12a, observe that controllers with

fast re-provisioning times tended to have lower packet loss within the 60-second test

period. Lower packet loss also correlated with larger packet capture file sizes. As iPerf

transmitted more packets successfully, TShark captured more packets. Controllers

with slower re-provisioning times tended to have more packet loss with less data,

as seen in Fig. 12b, and smaller packet capture file sizes. ODL did not follow these

trends. During test runs, ODL’s packet capture file sizes were on the smaller end of the

spectrum. This initially suggested long re-provisioning times. However, ODL’s iPerf

reports revealed lower packet loss, suggesting shorter re-provisioning times. Further

investigation of the iperf3 reports, showed the other controllers exhibited 400-500

Mbps bitrate for their test runs. For ODL, the bitrate started at similar levels to

the other controllers, but dropped to 200-300 Mbps within 3 seconds, suggesting a

re-provision event occurred. However, the bandwidth did not recover to the prior

bitrate, and remained at that lower level throughout each run. Inspection of the

packet captures showed no sequence number gaps between the last packet received
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before re-provision and the first packet after. Sequence gaps did start appearing near

the end of the runs. These conditions did not meet the NRT definition, therefore the

NRT remained undetected for all ODL runs.

The iperf3 client reported fewer packets sent, as shown on the sending side of

Fig. 12c, indicating possible traffic shaping. Because these indicators were found in

every test run, with the NRT not detected, ODL was excluded from further analysis.

Bah et al. noted ODLs bandwidth limitations [23], and Tello et al. stated the

L2Switch application does not install flows to the switches [17], in contrast to the

flow installation process described in Section 2.3.1.1. The ODL controller receives,

processes, and instructs the switch how to forward each packet, instead of installing

flow instructions so the switch knows how to forward subsequent packets.

Before re-provision, a packet travels to the first switch, to ODL, back to the first

switch, to the second switch, back to ODL, back to the second switch, and on to the

destination. After re-provision, the third switch is added to the loop, increasing the

delay, and cutting the bitrate. ODL buffers the packets, ensuring there is no packet

loss, until the buffer is full, and it begins dropping incoming packets. This explains

the sequence gap absence in the beginning, then appearing later in the capture. The

sequence gaps were tied to the buffering effect and not the re-provision time.

(a) Floodlight: High Bit Rate/Low Packet Loss

(b) Ryu: Low Bit Rate/High Packet Loss

(c) ODL: Low Bit Rate/Low Packet Loss

Figure 12. IPerf Report Summary Examples

43



5.3 Network Re-provisioning Time Metric Extraction

Seven NRTs were not detected in 120 runs of the remaining controllers, with a

detection rate of 113
120

= 94.16%. The manual inspection of captures and recording

metrics increased the risk of human error. In two instances, once with Floodlight and

once with Faucet, the traffic flow did not recover in one direction within packet capture

duration. In the remaining five instances, the NRT sequence gap was undetected for

Floodlight in the forward, reverse, or both directions. Floodlight either performed

fast enough to prevent packet loss, or pre-provisioned the alternate route as primary,

making the NRTs undetectable. The small size of the test topology may not have

induced enough delay in combination with the controller to induce packet loss. The

quickest NRT recorded from Floodlight was 0.22 seconds and is a probable detection

floor for the tested topology.

5.4 Controller Re-provisioning Time

The controllers’ NRT means, as calculated by JMP, are shown in Table 6. The

data did not pass distribution normality checks, and statistical comparison was ac-

complished with non-parametric tests. The tests concluded all controllers are signifi-

cantly different from each other. The JMP normality checks and non-parametric test

outputs are shown in Appendix C.

Both Java controllers, Floodlight and ONOS, had the fastest NRTs with high

consistency as shown in Table 6, and Fig. 13. T Bah et al. noted that ONOS

pre-calculates all alternative paths [23], and might explain how well it performed.

Floodlight is a fork of the Beacon controller, which was designed with high perfor-

mance in mind [29]. Floodlight is lightweight and might pre-calculate paths too, and

may have given an edge over ONOS.

Both Python controllers had significantly longer NRTs than the Java controllers
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did. They also had greater variability, with large whiskers for their box plots in Fig.

13. Faucet is based on Ryu, and both relied on Ryu’s STP libraries in testing. STP

is a loop prevention method used in traditional networking, and likely contributed to

longer NRTs over the Java controllers. Faucet might have multi-threading support

enabled by default, giving it an advantage over the simpler Ryu switching application.
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Figure 13. NRT Box Plots

Controller Mean NRT Std Dev Upper 95% Lower 95%
Floodlight 0.45 s 0.13 s 0.51 s 0.40 s
ONOS 1.09 s 0.35 s 1.22 s 0.96 s
Faucet 12.98 s 2.69 s 14.00 s 11.95 s
Ryu 32.92 s 2.96 s 34.03 s 31.82 s

Table 6. Controller NRT Statistics

45



5.5 Controller Packet Loss

The controllers’ FDPL and RDPL followed similar patterns to their NRT sug-

gesting a correlation. Again, the data did not pass normality checks and comparisons

were made non-parametrically, showing all were significantly different. The JMP nor-

mality check and non-parametric test outputs are shown in Appendix C. The FDPL

and RDPL box plots are similar, as shown in Fig. 14 and 15. The controllers ranked

the same, as show in Table 7 and 8.
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Figure 14. FDPL Box Plots
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Figure 15. RDPL Box Plots

Controller Mean FDPL Std Dev Upper 95% Lower 95%
Floodlight 85,242 pkts 33,426 pkts 97,723 pkts 72,760 pkts
ONOS 135,525 pkts 24,653 pkts 144,731 pkts 126,320 pkts
Faucet 1,137,896 pkts 186,346 pkts 1,208,778 pkts 1,067,014 pkts
Ryu 2,688,923 pkts 424,531 pkts 2,847,445 pkts 2,530,401 pkts

Table 7. Controller FDPL Statistics

Controller Mean RDPL Std Dev Upper 95% Lower 95%
Floodlight 95,072 pkts 24,619 pkts 104,436 pkts 85,708 pkts
ONOS 127,551 pkts 34,273 pkts 140,348 pkts 114,753 pkts
Faucet 1,150,611 pkts 196,449 pkts 1,228,323 pkts 1,072,898 pkts
Ryu 2,583,586 pkts 424,171 pkts 2,741,974 pkts 2,425,199 pkts

Table 8. Controller RDPL Statistics
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5.6 Discussion

When selecting controllers to test, Tello et al. selected Ryu over Faucet, as Faucet

is based on Ryu [17]. However, in this limited experiment, the NRT results show

Faucet was much faster than Ryu. However, both used reactive re-provisioning tech-

niques, placing them behind the proactive controllers, Floodlight and ONOS. Both

Floodlight and ONOS are written in Java, but Floodlight edged slightly ahead in test-

ing. Implementation seems to be an important factor and specifying the controller

version and enabled applications is vital for repeatability. Stating that one controller

is better than the other without the software implementation parameters is not a fair

comparison, and the RFC does well in requiring parameter specifications.

However, there are issues with the methodology. First, the RFC NRT methodology

objective specifies it evaluates controllers which install flows to network devices [16].

ODL with L2Switch application does not install flows, and the triggering event does

not directly produce the RFC required packet loss with an associated gap in sequence

numbers. Second, the significant re-provisioning delay from the reactive controllers

stood apart from the normal network delay, made packet identification for metric

calculation easier. However, the proactive controllers had re-provisioning delays closer

to normal network delay, making identification harder. Floodlight also had instances

of delay short enough to prevent associated packet loss and sequence gaps. Third, the

methodology specifies terminating the test after the first successful packet received

after re-convergence, but this does not account for complete recovery failure, as the

sequence gap would be infinite. To correct these issues, the following changes are

recommended.

First, network re-convergence time could be added as a metric. It measures the

time a network takes to re-converge on a traffic path solution, without limiting it

to a single SDN convergence implementation. Network re-convergence could then

48



compare ODL and similar controllers to those that install flows. Also, network re-

convergence is a metric used in traditional networks, and allows direct comparison

for SDN transition viability.

Second, correlating the switches’ messages to a drop in bandwidth and a return

to previous bandwidth levels may be an effective method for detecting NRT with

fast proactive controllers. The packet loss and sequence gap requirements work well

for detecting NRT with reactive, flow installing controllers, but might have issues

with proactive controllers, depending on the network configuration. Regardless of

re-convergence method, the switches send messages to the controller in the event of a

link failure. Capturing the traffic between the controller and switches in addition to

test traffic would attach a timestamp to the messages. The timestamp is an alternate

marker for packet identification in the test traffic capture, but all clocks must be in

sync.

Finally, other metrics in the RFC use trial duration in their methodology. To

account for unacceptable re-convergence time and failure, a maximum trial duration

should be specified as well.

The statistical metric analysis produced useful information beyond simple means.

Faucet and Ryu showed greater NRT and packet loss variability over Floodlight and

ONOS, which is a consideration for network design and optimization. The controllers

under test were not found to be part of the same sample distribution, but the analysis

gives more confidence than single runs or listing the arithmetic means.

5.7 Results Summary

ODL was removed from analysis, due to non-detection of the key NRT metric.

Normality of the metric distributions could not be assumed, so all metrics were

assessed with non-parametric tests. Technical issues and methodology gaps were
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identified with possible solutions. Despite the issues, the NRT, FDPL, and RDPL

estimates were found for all controllers. In all tests, Floodlight ranked first, ONOS

second, Faucet third, and Ryu last. All controllers were found to be significantly

different from each other, concerning the tested metrics.
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VI. Conclusions

6.1 Introduction

The current state of SDN controller evaluation relies on throughput and latency

metrics. The IETF has published a methodology expanding the number of metrics

but has little validation from the research community. Section 6.2 details the research

conclusions towards this validation, and Section 6.3 its significance. Section 6.4 de-

scribes the limitations of the research and Section 6.5 lists future efforts. Finally,

Section 6.6 summarizes the conducted research.

6.2 Research Conclusions

The research was partially successful in achieving its research objectives. RFC

8456 does not pass validation, due to the conflicting NRT definition and how it is

measured. Additionally, the requirement for a sequence number gap and complete

re-provisioning failure makes NRTs detection problematic and in this experiment,

eliminated one controller from comparative analysis.

The objective to determine if the tested controllers are significantly different in

NRT metrics is partially successful. Even though ODL is ineligible for comparative

analysis, the other controllers provided sufficient data for comparison. In their test

configuration, the qualifying controllers are significantly different in their metrics for

the test topology. Floodlight provides the fastest and most consistent NRT, with

the least packet loss. Implementation matters with the controllers. Faucet performs

better than Ryu, despite the common lineage. Floodlight and ONOS are both built

on Java, but Floodlight performs better in testing.

The test environment build objective to produce reliable results was partially

successful. The environment does not guarantee the initial provisioning of the primary
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path, and iperf3 reporting has errors invalidating some runs. There was sufficient data

for non-parametric comparative analysis.

Due to the partial success of the research objectives, the research hypothesis that

the RFC 8456 NRT methodology framework is able to reliably reveal meaningful

differences in the observed metrics between the SDN controllers under test is not

proven true.

6.3 Research Contributions

The research found limitations in RFC 8456 NRT methodology, which make com-

parison of OpenFlow SDN controllers problematic. To overcome these limitations,

the research suggests adding the NRT metric to permit comparison of controllers

with different traffic pathing implementations. Adding bandwidth based NRT may

improve NRT detection for proactive SDN controllers, and specifying a maximum

trial duration should identify intolerable times for user implementations.

The research also created a process for identifying NRT from packet captures.

It is a manual and inefficient process but provides a baseline for refinement and

automation in further research. In addition, measuring the bandwidth during the

tests verified ODL’s L2Switch application bandwidth limitations and identified the

probable source.

The metric extraction processes, proposed changes to the NRT methodology, and

statistical analysis method should provide a stronger framework for OpenFlow SDN

comparison. With the improved framework, the research community, USAF, and

Department of Defense (DoD) can evaluate SDN controllers for implementation in

networks to provide management and/or defensive benefits.
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6.4 Research Limitations

The first limitation of the research stem from iPerf3 errors. Definite errors were

identified in the reports, casting some doubt on the rest of the results. Investigation

and correction of the errors or building custom traffic generation is required.

The second set of limitations comes from the test environment. It only evaluates

OpenFlow protocol version 1.3 capable controllers. The OpenFlow protocol is the

most prominent SBI, but there are other versions and protocols available. The ex-

periment script only builds one test topology and needs additional coding to emulate

traditional networks for comparison and handle topologies of various types and sizes.

The final set comes from the metric extraction and analysis processes. The manual

nature of extraction may increase error and requires a script or real time analysis.

The non-parametric analysis shows the tested controllers are significantly different

but are less statistically powerful than parametric tests. The source of non-normality

needs identification and mitigation to perform parametric comparisons.

6.5 Future Work

Opportunities to refine and expand the research are:

• Matching the control traffic messages to the test traffic may eliminate the need

for sequence gaps to identify NRT. This requires capture and inspection of the

control traffic in addition to the test traffic.

• Reducing errors requires automating the metric extraction process through pars-

ing scripts or real time analysis. Another avenue to reduce packet loss metric

errors requires eliminating iperf3 errors or creating custom method of packet

generation.
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• Performing manual pre-provisioning or automatic path detection should guar-

antee the primary path disruption across multiple network topologies.

• The contributing factors to NRT need analysis. Controller asynchronous mes-

sage and path provisioning times should influence NRT. The degree of influence

is of interest, as well as which controller methods effectively minimize these

times and their trade-offs.

• Investigating how effectively SDN controllers re-provision with links or devices

frequently cycling up and down is useful for network design considerations.

6.6 Summary

To evaluate an SDN controller, a solid methodology framework is required. The

IETF RFC 8456 could benefit from refinement with regard to NRT. The limitations

of the RFC make the NRT undetectable in certain cases. The test environment

needs refinement as well, to compensate for errors in experiment setup, utilized tools,

and metric extraction. As configured, the Floodlight controller had the best NRTs

and lowest packet losses, in comparison to the other controllers in the experimental

topology. Identifying the specific factors with the greatest the greatest influence on

NRT are a future area of research.
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Appendix A. Test Script

#!/usr/bin/python3

from mininet.link import TCLink

from mininet.node import Controller , Node , OVSSwitch ,

RemoteController

from mininet.net import Mininet

from mininet.cli import CLI

from mininet.topo import Topo

from mininet.log import setLogLevel

from datetime import datetime

from time import sleep

import os

import sys

"""

Test topology with two alternate paths

"""

class nRTopo(Topo):

# Make OpenFlow 1.3 the default protocol for virtual

switches

def addSwitch( self , name , **opts ):

kwargs = { ’protocols ’ : ’OpenFlow13 ’ }

kwargs.update( opts )

return super(nRTopo , self).addSwitch( name , **
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kwargs )

# Create testing topology

def build( self ):

# Create and link switches

switches = []

for i in range (1,4):

switches.append(self.addSwitch(’s%s’ % i))

self.addLink( switches [0], switches [1], bw =1000)

self.addLink( switches [1], switches [2], bw =1000)

self.addLink( switches [2], switches [0], bw =1000)

# Add and link traffic generators

for i in range (1,3):

host = self.addHost(’h%s’ % i)

self.addLink(host , switches[i-1], bw =1000)

"""

Run network re-provisioning test

"""

def run(ctrlIP=None , runNum =0):
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# Create network topology"

topo = nRTopo ()

net = Mininet(topo=topo ,

controller=RemoteController(’c0’, ip=

ctrlIP),

link=TCLink ,

autoSetMacs=True ,

waitConnected=True )

net.start ()

# wait for controller to set up switches

print("+++ Waiting 30 seconds for switch configuration

")

sleep (30)

# gratuitous ARP from every host to make the

controller aware

print("+++ Sending gratuitous ARPs from hosts")

for h in net.hosts:

h.cmd(’./ gratuitousArp.py’)

# Ping all hosts 3 times to test reachability.

print("+++ Starting host reachability tests")

net.pingAllFull ()

net.pingAllFull ()

net.pingAllFull ()
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# enter mininet command line

#cli = CLI

#cli(net)

# get refenences to traffic generators

h1 = net.getNodeByName(’h1’)

h2 = net.getNodeByName(’h2’)

# clear any iperf running on traffic generators

print("+++ Killing any running iperf traffic processes

")

h1.cmd( ’killall -9 iperf’ )

h2.cmd( ’killall -9 iperf’ )

# start iperf services

print("+++ Starting iperf servers on traffic 

generators")

h1.cmd(’iperf3 -s -p 5001 -D’)

h2.cmd(’iperf3 -s -p 5002 -D’)

# wait for iperf server init

sleep (3)

# begin 60s packet capture on traffic generators , run#

_hostname
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print("+++ Starting tshark packet captures on traffic 

generators")

h1.cmd(f’tshark -f "udp port 5001" -w /root/pcap/{

runNum}_h1.pcapng -a duration :65 &’)

h2.cmd(f’tshark -f "udp port 5002" -w /root/pcap/{

runNum}_h2.pcapng -a duration :65 &’)

# start 60s iperf3 1 Gbps UDP traffic , save output for

bw at 0.1s intervals

# and packet loss metric: run#_port.iperf

print("+++ Generating iperf UDP traffic")

h1.cmd(f’iperf3 -u -b 1G -c {h2.IP()} -p 5002 -t 60 -i

 0.1 --logfile /root/iperf /{ runNum}_5002.iperf &’)

h2.cmd(f’iperf3 -u -b 1G -c {h1.IP()} -p 5001 -t 60 -i

 0.1 --logfile /root/iperf /{ runNum}_5001.iperf &’)

# wait 3 seconds for traffic stabilization

sleep (3)

# down link in primary path to trigger re-provision

print("+++ Removing link in primary path")

net.configLinkStatus(’s1’, ’s2’, "down")

# wait 60 seconds for reprovision

print("+++ Waiting for re-provision and packet capture

")
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sleep (60)

# enter mininet command line

#cli = CLI

#cli(net)

# stop mininet

print("+++ Stopping Mininet")

net.stop

# clean up any lingering Mininet topology

os.system("mn -c")

if __name__ == ’__main__ ’:

setLogLevel(’info’)

# Get controller IP and run number

IP = sys.argv [1]

runNum = sys.argv [2]

# Log start of test run

f = open( "/root/runlog.csv", "a")

now = datetime.now().strftime("%m/%d/%Y, %H:%M:%S")

f.write(f"{runNum}, {IP}, {now}, started\n")

# run test
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run(IP , runNum)

# Log end of test run

now = datetime.now().strftime("%m/%d/%Y, %H:%M:%S")

f.write(f"{runNum}, {IP}, {now}, finished\n")

f.close()
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Appendix B. Host Location Advertisement Script

#!/usr/bin/python2

"""

Sends a gratuitous ARP from every network interface on a

host

From ONOS Tutorial VM

"""

import sys

import os

import fcntl

import socket

from struct import pack

def getIPAddress(intf):

#Borrowed from:

#http://stackoverflow.com/questions /24196932/how-can-i

-get-the-ip-address -of-eth0 -in-python

s = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

return socket.inet_ntoa(fcntl.ioctl(

s.fileno (),

0x8915 , # SIOCGIFADDR

pack(’256s’, intf [:15])

)[20:24])

def gratuitousArp(intf , ip=None , mac=None):
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#Adapted from:

#https://github.com/krig/send_arp.py/blob/master/

send_arp.py

sock = socket.socket(socket.AF_PACKET , socket.SOCK_RAW

)

try:

sock.bind((intf , socket.SOCK_RAW))

except:

print (’Device does not exist: %s’ % intf )

return

if not ip:

try:

ip = getIPAddress(intf)

except IOError:

print (’No IP for %s’ % intf)

return

packed_ip = pack(’!4B’, *[int(x) for x in ip.split(’.’

)])

if mac:

packed_mac = pack(’!6B’, *[int(x,16) for x in mac.

split(’:’)])

else:

packed_mac = sock.getsockname ()[4]
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bcast_mac = pack(’!6B’, *(0xFF ,)*6)

zero_mac = pack(’!6B’, *(0x00 ,)*6)

eth_arp = pack(’!H’, 0x0806)

arp_proto = pack(’!HHBBH’, 0x0001 , 0x0800 , 0x0006 , 0

x0004 , 0x0001)

arpframe = [

## ETHERNET

# destination MAC addr

bcast_mac ,

# source MAC addr

packed_mac ,

# eth proto

eth_arp ,

## ARP

arp_proto ,

# sender MAC addr

packed_mac ,

# sender IP addr

packed_ip ,

# target hardware addr

bcast_mac ,

# target IP addr

packed_ip

]
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# send the ARP packet

sock.send(’’.join(arpframe))

if __name__ == "__main__":

if len(sys.argv) > 1:

intfs = sys.argv [1:]

else:

intfs = os.listdir(’/sys/class/net/’)

for intf in intfs:

gratuitousArp(intf)
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Appendix C. Normality Checks and Non-parametric Tests

3.1 Network Re-provisioning Time

-5

0

5

10

Re
si

du
al

 N
RT

 (s
ec

on
ds

)

-1.64-1.28 -0.67 0.0 0.67 1.28 1.64 2.33

5.0% 20.0% 50.0% 80.0% 95.0% 99.0%

Cumulative Distribution

Quantiles

Figure 16. NRT Normal Quantile Plot
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Distributions

Residual NRT
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Figure 17. NRT Residual Distribution
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Wilcoxon / Kruskal-Wallis Tests (Rank Sums)
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Figure 18. NRT Non-parametric Tests
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3.2 Packet Loss
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Figure 19. FDPL Residual Normal Quantile Plot
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Distributions

Residual FDPL
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Figure 20. FDPL Residual Distribution
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Wilcoxon / Kruskal-Wallis Tests (Rank Sums)
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Figure 21. FDPL Non-parametric Tests
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Figure 22. RDPL Residual Normal Quantile Plot
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Residual RDPL
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Figure 23. RDPL Residual Distribution
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Wilcoxon / Kruskal-Wallis Tests (Rank Sums)
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Figure 24. RDPL Non-parametric Tests
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Glossary

application plane The collection of applications and services that program network

behavior [2]. 5

control plane The collection of functions responsible for controlling one or more

network devices. CP instructs network devices with respect to how to process

and forward packets. The control plane interacts primarily with the forwarding

plane and, to a lesser extent, with the operational plan [2]. 5, 6

forwarding plane The collection of resources across all network devices responsible

for forwarding traffic [2]. 5, 6

management plane The collection of functions responsible for monitoring, config-

uring, and maintaining one or more network devices or parts of network devices.

The management plane is mostly related to the operational plane (it is related

less to the forwarding plane) [2]. 11

operational plane The collection of resources responsible for managing the overall

operation of individual network devices [2]. 11
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Acronyms

APIs Application Programming Interfaces. 7, 8, 11

ARP Address Resolution Protocol. 24, 25, 32

CAN Campus Area Network. 13

CLI Command Line Interface. 23, 35

CPSI Control Plane Southbound Interface. 8, 9

CPU Central Processing Unit. 22, 25

DAL Device and resource Abstraction Layer. 10

DoD Department of Defense. 52

DoS Denial-of-Service. 17

EBI East Bound Interface. 8

ECC Error Correction Code. 22

FDPL Forward Direction Packet Loss. viii, x, 27, 29, 46, 47, 50, 69, 70, 71

FDRT Forward Direction Path Re-Provisioning Time. 29, 38

HTTP Hypertext Transfer Protocol. 8

ICMP Internet Control Message Protocol. 25

IDS Intrusion Detection System. 5

IETF Internet Engineering Task Force. iv, 2, 6, 16, 19, 51, 54
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IoT Internet of Things. 13, 19

IP Internet Protocol. 24, 35, 37

KVM Kernel-based Virtual Machine. 20, 22

LAN Local Area Network. iv, 3, 13, 24

LLDP Logical Link Discovery Protocol. 31, 32

LTS Long Term Support. 22, 23, 25

LXC Linux Container. 22

MAL Management Abstraction Layer. 11

MPSI Management Plane Southbound Interface. 9

NBI North Bound Interface. 7, 8, 12, 24, 30

NDP Network Discovery Protocol. 32

NEMO Network EMulatOr. 16

NRT Network Re-provisioning Time. iv, v, viii, x, 2, 3, 18, 20, 27, 28, 29, 33, 37,

40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 66, 67, 68

NSAL Network Services Abstraction Layer. 11

ODL OpenDaylight. iv, 18, 25, 29, 31, 32, 42, 43, 48, 49, 51, 52

ONOS Open Network Operating System. 18, 19, 24, 25, 29, 31, 32, 44, 48, 49, 50,

51

OS Operating System. 15
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OSI Open Systems Interconnection. 25

QoS Quality of Service. 12, 13

RAM Random Access Memory. 25

RDPL Reverse Direction Packet Loss. viii, ix, x, 27, 29, 46, 47, 50, 72, 73, 74

RDRT Reverse Direction Path Re-Provisioning Time. 29, 38

REST Representational State Transfer. 7, 30

RFC Request for Comments. iv, v, 2, 3, 4, 6, 7, 16, 18, 19, 20, 23, 26, 27, 28, 29,

30, 33, 35, 36, 41, 48, 49, 51, 52, 54

SBI South Bound Interface. 8, 9, 11, 30, 53

SD-WAN Software Defined Wide Area Network. 13

SDN Software-Defined Networking. iv, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 19, 20, 23, 25, 27, 41, 48, 49, 51, 52, 54

STP Spanning Tree Protocol. 31, 32, 35, 45

TCP Transmission Control Protocol. 18, 37

TG Traffic Generator. 29, 36, 37

UAV unmanned aerial vehicle. 14

UDP User Datagram Protocol. 18, 23, 27, 29, 30, 31, 36, 37

USAF United States Air Force. 1, 52

VAN Vehicle Area Network. 14

82



VE Virtual Environment. 22

VM Virtual Machine. 13, 20, 22, 23, 24, 35, 38

WAN Wide Area Network. 19

WBI West Bound Interface. 8

WSN Wireless Sensor Network. 13
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