
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

6-2021

Six Degree-of-Freedom Mission Planning for Reentry Trajectories Six Degree-of-Freedom Mission Planning for Reentry Trajectories

Peter Davis

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Aerospace Engineering Commons

Recommended Citation Recommended Citation
Davis, Peter, "Six Degree-of-Freedom Mission Planning for Reentry Trajectories" (2021). Theses and
Dissertations. 5066.
https://scholar.afit.edu/etd/5066

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5066&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=scholar.afit.edu%2Fetd%2F5066&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5066?utm_source=scholar.afit.edu%2Fetd%2F5066&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

OPTIMAL CONTROL BASED SIX
DEGREE-OF-FREEDOM

MISSION-PLANNING FOR REENTRY
TRAJECTORIES

THESIS

Peter Davis

AFIT-ENY-MS-21-J-097

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENY-MS-21-J-097

OPTIMAL CONTROL BASED SIX DEGREE-OF-FREEDOM

MISSION-PLANNING FOR REENTRY TRAJECTORIES

THESIS

Presented to the Faculty

Department of Aeronautical and Astronautical Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Aeronautical Engineering

Peter Davis, BS, BA

May 17, 2021

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENY-MS-21-J-097

OPTIMAL CONTROL BASED SIX DEGREE-OF-FREEDOM

MISSION-PLANNING FOR REENTRY TRAJECTORIES

THESIS

Peter Davis, BS, BA

Committee Membership:

Major Robert A. Bettinger, Ph.D
Chair

Major Joshuah A. Hess, Ph.D
Member

Dr. Richard G. Cobb
Member

AFIT-ENY-MS-21-J-097

Abstract

Traditional reentry dynamics and planning has typically explored 3 Degrees-of-

Freedom (3 DOF) or pseudo 6-DoF problem formulations. This research expands

upon previous work and presents a path-constrained optimal control formulation of

a fully 6 Degrees-of-Freedom (3 DOF) dynamic system for an unpowered Reentry

Vehicle (RV).

In a full 6-DoF dynamic system, the translation, rotation and rotational rates

are continually tracked. A system of equations of motion are developed to express

the dynamics of the RV in terms of defined states and the RV’s physical control

deflections. A neural-network is used to approximate the aerodynamic database of

an exemplary RV. The resulting highly non-linear dynamic system is generalized such

that it could be directly adapted to a given reentry body such as Maneuvering Reentry

Vehicle (MaRVs) or a Hypersonic Glide Vehicles (HGV) with appropriate inputs.

This research lays the foundation for the integration of the real control param-

eters into mission planning. The newly developed equations of motion are verified

against existing work. The system of highly non-linear equations and constraints are

used to express an optimal control problem that investigates the minimum time and

minimum control trajectories that impact a mission specified terminal conditions. Us-

ing GPOPS-II, an optimal control profile for each case is found within the specified

conditions. It is also demonstrated that the multi-dimensional aerodynamic database

can be approximated by a series of Artificial Neural Networks (ANN) with acceptable

error bounds.

iv

Soli Deo Gloria.

Acknowledgements

Firstly, I would like to thank Major Robert Bettinger for his persistent support

throughout this research process. Your mentorship has helped me immensely, from

the beginning of this research three years ago to the final document. I am grateful to

Major Joshuah Hess and Dr. Richard Cobb for your scholarly advice and invaluable

feedback.

To my team at work: Mark Bellott, Jeremy Suel and Ray Baxter. Your boundless

support and patience over the last four years made this possible. You decided to

risk hiring and accepted the cost of me taking time-off to work on thesis. I hope

I’ve met your expectations and I will forever be thankful for your help, guidance and

inspiration. Alex Freeman: thank you for being a great listener, good friend and an

astute, witty proofreader. Also, Jared Augsburger for shining light to the nebulous

world of artificial intelligence and machine learning. And to all other members of the

Impulse Team: the inspiration I’ve took from all of you has had a meaningful impact

on this research.

My family: Pappa, Amma, Johnu, Kochumol, Ammama, Ammachi and Kun-

jamma. For their support, guidance, prayers and love towards all these years. Thank

you all and this would not have been possible without you all. And to Anu, for your

care and words of motivation that kept me from plunging to bowels of lethargy.

-Peter Valiyaveettil Davis

Why is it called atmospheric reentry when the vehicle in its whole enters the

atmosphere only once?

Table of Contents

Page

Abstract . iv

List of Figures . x

List of Tables . xii

I. Introduction . 1

1.1 Motivation . 1
1.2 Research Objectives . 2
1.3 Assumptions and Limitations . 3
1.4 Thesis Overview. 4

II. Background and Literature Review . 5

2.1 Reentry Equations of Motion . 5
2.2 6-DoF Equations of Motion . 6
2.3 Optimal Control Problem . 6
2.4 Planetary Model . 7

2.4.1 Gravity Model . 7
2.4.2 Atmospheric Model . 7

2.5 Vehicle Mass and Physical Properties . 12
2.6 6-DoF Aerodynamic Database . 13
2.7 Artificial Neural Networks (ANN) . 17
2.8 Reentry Heat Flux . 18
2.9 Chapter Conclusion . 19

III. Research Methodology . 20

3.1 Chapter Overview . 20
3.2 Reference Frames . 20

3.2.1 Earth Centered Inertial Reference Frame (ECI) 21
3.2.2 Earth Centered Earth Fixed Reference Frame

(ECEF) . 21
3.2.3 Vehicle Pointing Frame (VPF) . 22
3.2.4 Flight-Path Frame (FPF) . 25
3.2.5 Aerodynamic Reference Frame (ARF) . 29
3.2.6 Body Reference Frame (BRF) . 31

3.3 Equations of Motion . 37
3.3.1 Kinematic Equations . 37
3.3.2 Force Equations . 40
3.3.3 Attitude Rates . 44
3.3.4 Determination of Lift-Roll Angle . 46

viii

Page

3.3.5 Rates of Aerodynamic Angles . 48
3.4 High Fidelity Simulation Environment . 51

3.4.1 States . 52
3.4.2 Controls . 52
3.4.3 System Dynamics . 53

3.5 Optimal Control Problem . 55
3.5.1 Cost Functions . 55
3.5.2 Path Constraints . 55
3.5.3 State and Control Bounds . 56

3.6 Notional Spaceplane . 57
3.6.1 Neural Network Approximation for Aerodynamic

Database . 61
3.7 Test Scenario - The Pullup Maneuver . 62

3.7.1 Initial State . 62
3.7.2 Final State . 63
3.7.3 Final State Error Tolerances . 64
3.7.4 Optimal Control Solver Settings . 65

IV. Results and Analysis . 67

4.1 Preamble . 67
4.2 Approximation of Aerodynamic Data Using Neural

Networks . 67
4.3 Simulation Results with Sub-Optimal Control . 70
4.4 Verification of Derived Equations of Motion . 75

4.4.1 Bollino’s Equation of Motion for Aerodynamic
Angle Rates . 75

4.5 Optimal Control Results for Minimum Time Trajectory 80
4.6 Optimal Control Results With Final State Stabilization 84
4.7 Optimal Control For Minimum Control Trajectory 89
4.8 Sensitivity Study on GPOPS Parameters . 93

4.8.1 Solver: snopt vs. ipopt . 93
4.8.2 Mesh Error Tolerance . 93

V. Conclusions and Recommendations . 96

5.1 Limitations and Caveats . 97
5.2 Future Work . 98

Appendix A. Transformation Matrix From BRF to FPF . 100

Appendix B. MATLAB Scripts . 101

Bibliography . 133

ix

List of Figures

Figure Page

2.4.1. Atmospheric Model . 10

2.4.2. Speed of Sound Comparisons . 12

3.2.1. ECI Reference Frame. Vectors xI and yI span the
equatorial plane. 21

3.2.2. Illustration of ECEF Reference Frame. 23

3.2.3. The Vehicle Pointing Frame (VPF). 24

3.2.4. The intermediate frame. 26

3.2.5. The path from intermediate frame to FPF. 27

3.2.6. The Flight-Path Frame. xF points towards the relative
velocity vector. 28

3.2.7. Aerodynamic Reference Frame. LT is the total lift vector. 30

3.2.8. The Body Reference Frame. 31

3.2.9. Velocity vector projected to the body x-z plane . 32

3.2.10. Rotation of the body x-axis by Angle of attack. 33

3.2.11. Rotation by sideslip angle. 34

3.2.12. Rotation by −η . 35

3.3.1. Depiction of Lift-Roll angle. 46

3.4.1. Full 6-DoF Equations of Motion . 54

4.2.1. Error Analysis of Neural Net Approximations . 69

4.3.1. Sub-optimal Control Profile . 71

4.3.2. Simulation Results with sub-optimal Control Input 72

4.3.3. Path Constraints for sub-optimal Control Input . 74

4.4.1. Output Trajectory using Bollino’s 6-DoF Equations of
Motion . 78

x

Figure Page

4.4.2. Error in States between 6-DoF Equations of Motion 79

4.5.1. Computed Optimal Control for Base Scenario . 81

4.5.2. Simulation Results with Optimal Control - Base Scenario 82

4.5.3. Path Constraint Monitor - Base Scenario . 83

4.6.1. Computed Optimal Control: Base Scenario for
Stabilized Final State . 85

4.6.2. Simulation Results: Base Scenario for Stabilized Final
State . 87

4.6.3. Path Constraint Monitor: Base Scenario for Stabilized
Final State . 88

4.7.1. Computed Optimal Control: Minimum Control Case 90

4.7.2. Simulation Results: Minimum Control . 91

4.7.3. Path Constraint Monitor: Minimum Control . 92

4.8.1. Mesh Tolerance Analysis: Control Profile . 94

4.8.2. Mesh Tolerance Analysis: Trajectory . 95

xi

List of Tables

Table Page

2.6.1. Base Aerodynamic Coefficients . 16

2.6.2. Stability Increments . 16

2.6.3. Control Increments . 17

3.6.1. Physical Properties of Notional Spaceplane . 58

3.6.2. State Limits - Notional Spaceplane . 59

3.6.3. Control Bounds for Notional Spaceplane . 59

3.7.1. Initial State for Test Case . 63

3.7.2. Desired Final State for Test Case . 64

3.7.3. Error Bounds for Final State . 65

3.7.4. Default GPOPS Solver Settings for Test Problem 66

4.2.1. Median Error From ANN Approximation of Aero
Database . 70

4.6.1. Desired State Conditions for Final State Stabilization 84

xii

OPTIMAL CONTROL BASED SIX DEGREE-OF-FREEDOM

MISSION-PLANNING FOR REENTRY TRAJECTORIES

I. Introduction

1.1 Motivation

Atmospheric reentry is a fascinating problem. It presents complex engineering

challenges for manned spaceflight, interplanetary exploration, end-of-life space system

disposal, and strategic defense. For any reentry mission, trajectory planning is crucial.

In case of manned reentry vehicles such as the Space Shuttle or Apollo capsules, the

path of the vehicle to the landing site has to be pre-computed and must ensure the

survivability of passengers. Similarly for a missile system, it is critical that a planned

path is taken to hit the target at the right conditions.

Conventionally, reentry mission planning is done by commanding an angle-of-

attack and bank profile for a desired trajectory. It is assumed that the physical control

deflections can easily achieve the guidance commands. In essence, the angle of attack,

bank angle or their derivatives are treated as control inputs for mission planning. And

very often, the angle of side-slip is neglected. Additionally, the aerodynamic model

used in most existing body of research is often simplistic. Most aerodynamic models

assume that the coefficients of lift and drag are solely the functions of Mach number

and angle of attack. Such a model does not factor in the actual control deflections

needed to achieve the said angle of attack and Mach number. [1] [2] [3] [4].

The bulk of the existing studies do not model or track attitude rates. Most studies

assume that the Reentry Vehicle (RV) is at trim state during the flight. To be at

1

“trim” implies that the inertial roll rate, pitch rate and yaw rate are close to zero [5].

In fact the roll, pitch and yaw rates directly influence the moment and often the force

coefficients [6] [7].

The following questions were the motivation for the research: How do actual

control deflections of an aerodynamic reentry vehicle effect the trajectory of a reentry

mission? Is it possible to develop a high-fidelity simulation environment that tracks

the attitude and attitude rates of an RV, where the control inputs are the actual

control deflections of the system? If so, can the control profile for a given mission be

optimized?

1.2 Research Objectives

The goals of this research are two-fold:

1. Build a high-fidelity simulation environment that characterizes translational

and rotational trajectory of the RV over the course of reentry.

• Define state variables and control inputs. The control inputs must be the

deflections from the aerodynamic control surfaces of the RV.

• Incorporate a full six degrees-of-freedom (6-DoF) aerodynamic database

is employed to characterize the force and moment coefficients due to said

control deflections. An Artificial Neural Network (ANN) will be used to

approximate multi-dimensional lookup tables that define aerodynamic co-

efficients.

• Develop the model of a highly non-linear and coupled dynamic system that

represents the reentry dynamics of a non-thrusting RV.

• Create a modular simulation environment which can be adapted to emulate

any aerodynamically controlled reentry vehicle with a properly defined

2

aerodynamic database.

2. Use the developed simulation environment to investigate the optimal control

profile for a given scenario. GPOPS-II [8] is used to find the control profile that

minimizes the flight time from an initial state to a final state.

The Apollo reentry capsules and most early InterContinental Ballistic Missiles had

limited aerodynamic control [5]. This is not true in case for most current reentry vehi-

cles. The ability to aerodynamically control the vehicle mid-flight enhances precision,

extends range capabilities and helps radar evasion. As we move into the age of high-

performance Maneuvering Reentry Vehicles (MaRV) and Hypersonic Glide Vehicles

(HGVs), the impact of aerodynamic control surfaces becomes increasingly important

in trajectory planning. This research lays the foundation for the integration of the

real control parameters into mission planning.

1.3 Assumptions and Limitations

The following assumptions are made to aid the analysis:

• A spherical Earth that rotates at a constant rate.

• Gravity is always directed towards Earth’s geometric center. See 2.4.1.

• A model based on Standard Atmosphere 1976 is used to emulate atmospheric

effects. Ideal gas assumption is made to compute speed of sound at different

altitudes. This is detailed in Section 2.4.2.

• Variations in atmosphere due to wind effects are assumed to be negligible and

hence not modeled.

• Controller response dynamics are ignored. In the model, the control demands

are achieved instantaneously.

3

• Guidance and navigation errors are not modeled. It is assumed, for the scope

of this study, that the vehicle has accurate knowledge of its state.

• Mass and geometry changes in the RV which occur during reentry due to heating

and ablation effects are ignored. See Section 2.5.

• It is also assumed any change in moments or products of inertia due to control

deflections is negligible.

1.4 Thesis Overview

Chapter II outlines existing body of relevant research and current work that were

leveraged in this study. Chapter III documents the derivation of equations of motion,

formulation of the dynamic system, mission constraints and the presentation of the

optimal control problem. Chapter IV introduce the vehicle model used for the study,

as well as detail the performed analysis and simulation-based results. In Chapter V,

results of the study and its significance will be discussed. Finally, the ideas for future

research based on this study are laid out.

4

II. Background and Literature Review

This chapter examines the current body of research and analyze different ap-

proaches to solve the problem at hand.

2.1 Reentry Equations of Motion

The equations of motion are the basis to the simulation environment. They can

be broadly categorized into two groups. 3 Degrees of Freedom (3-DoF) which only

tracks the translation, i.e, position, velocity and acceleration of the reentering body.

Such an environment assumes a point-mass, which typically is the center-of-mass for

rigid reentry bodies. In a 6 Degrees of Freedom (6-DoF) freedom simulation, the

rotational motion of the body is also tracked along with translation. In contrast to

the point-mass model, the orientation of the body with respect to the center-of-mass

is also tracked.

Early pioneers like Chapman, Loh, and Vinh developed non-dimensional equations

of motion that better suited the computational capabilities and limitations of that era

[2] [9]. With the growth of computing power and resources available to researchers,

there is no longer the need to compromise dimensionality to solve the equations of

motion for atmospheric reentry [10]. Novel methods such as dynamic programming,

artificial intelligence, and high performance computing are being used to study reentry

trajectories subject to design a variety of boundary and path constraints [11] [3].

The early papers from the 1960s formulate the reentry equations of motion in

non-dimensional form [9] [2]. The non-dimensional analysis was advantageous as

the computing power of that age was limited. Today, with advanced computing

capabilities, one could easily afford to model the system with dimensional equations

of motion. Dimensional equations are intuitive and easier to troubleshoot. Moreover,

5

the purpose of this study is mission planning and not on-board guidance. Therefore,

the time required for the computation of on-board control is not a limiting factor.

2.2 6-DoF Equations of Motion

Most existing research on reentry dynamics use a 3-DoF model [2] [10] . The

attitude of the body is not captured with that approach unlike a truly 6-DoF simu-

lation. A 6-DoF model needs much more a-priori information such as a full suite of

aerodynamics. Angle of attack, bank angle or side-slip angle are used as the control

inputs for their dynamic system [2] [11] [12] [13]. These parameters will be defined

in Chapter III. In this study, it will be shown that angle of attack, bank angle and

side-slip angle are functions of the vehicle’s state and control deflections. Bollino [5]

has derived the rate of change of the three parameters as a function of state values

and control inputs for a highly simplified scenario, as described in Section 4.4.1. This

study will derive a more rigorous and generalized form of those equations within the

assumptions stated in Section 1.3.

2.3 Optimal Control Problem

GPOPS-II, a MATLAB based software, translates the given problem into a Non-

Linear Problem that is passed on to a solver such snopt or ipopt to compute the

optimal control profile for the specified cost function and path and state constraints

[8]. Other programs such as DIDO are also commonly used to solve optimal control

problem [5]. Section 3.5 details how the reentry dynamics for the studies cost functions

are fed into GPOPS-II.

Novel methods including artificial intelligence and machine learning techniques

have been employed to solve optimal control problem. Lee has used a reinforcement

learning method to compute minimum time trajectories for a notional hypersonic

6

glide vehicle in a 3-DoF simulation environment [11].

2.4 Planetary Model

This study assumes a spherical rotating Earth with a radius of 6378.14 kilometers

[14]. The axis of rotation is along the planet’s North Pole. It is assumed that Earth

rotates at a constant rate of 7.292115× 10−5 radians per second. Any effects due to

precession and nutation are negligible in the timespan of a typical reentry [5].

2.4.1 Gravity Model

For a spherical Earth, the gravity always pulls the body towards Earth’s geometric

center.

g = −µ⊕
r2

xP (2.4.1)

were µ⊕ is Earth’s gravitational parameter equal to 3.986004418 × 1014m3

s2
[14], r is

the radial distance between the vehicle’s center of mass and Earth’s center, in meters

and xp is the direction of the instantaneous position vector measured from Earth’s

geometric center.

2.4.2 Atmospheric Model

There are several different models used in literature to estimate Earth’s atmo-

sphere. The simplest class of models assume exponentially decaying atmospheric

density; such models have are used by Hicks [2] and Buseman et al. [10]. This model

is good for preliminary simulations as it is computationally efficient [14]. The 1976

NASA Standard Atmosphere [15] is used to model atmospheric effects in this study.

Crassidis and Markeley [14] have described more complex and recent atmospheric

models, such as Harris-Priester Model wich attempts to model density in terms of

7

atmospheric temperature, and the purely empirical GOST atmosphere constructed

using data from the Cosmos spacecraft.

Normally in simulations, the 1976 Standard Atmosphere is employed as a lookup

table [16]. But for the ease of the optimal control solver to take derivatives, the atmo-

spheric data is approximated as continuous functions of altitude [17]. It is shown that

the only relevant data from the 1976 Standard Atmosphere is the atmospheric density

and ambient temperature for calculating speed of sound. The adapted atmospheric

models and their comparisons to standard models are detailed in subsections 2.4.2.1

and 2.4.2.2.

2.4.2.1 Atmospheric Density

Atmospheric density is typically estimated as a function of geocentric altitude

alone. It is common to approximate density with a simple atmospheric model such

as Hicks [2]. However, the error of that model relative to Standard Atmosphere can

exceed 50% as depicted in Figure 2.4.1. A continuously differentiable atmospheric

model was created by adding four Gaussian correction terms to estimate the residual

of a basic exponential atmospheric density model. This model predicts density with a

maximum error of 10% compared to Standard Atmosphere 1976 (Figure 2.4.1). The

adapted atmospheric density ρ is expressed as :

8

ρ(h) = ρ0(h) + ∆ρ1(h) + ∆ρ2(h) + ∆ρ3(h) + ∆ρ4(h)

ρ0(h) = 1.23 exp(− h

7.25
)

∆ρ1(h) = 0.05 exp

(
−
(
h− 4.2

3

)2
)

+ 0.11 exp

(
−
(
h− 8.7

6.4

)2
)

∆ρ2(h) = 0.7× 10−2 exp

(
−
(
h− 19

2.8

)2
)

+ 0.2× 10−2 exp

(
−
(
h− 23

1.8

)2
)

∆ρ3(h) = −1.4× 10−3 exp

(
−
(
h− 37.2

11.4

)2
)
− 0.27× 10−3 exp

(
−
(
h− 48.7

10.3

)2
)

∆ρ4(h) = −1.2× 10−4 exp

(
−
(
h− 53.8

6.4

)2
)
− 0.14× 10−4 exp

(
−
(
h− 60.2

6.4

)2
)

(2.4.2)

where h is the geocentric altitude in kilometers and ρ is atmospheric density in kg/m3.

The curve fit was derived for geocentric altitudes from 0 to 80 kilometers. The

comparison of the proposed model to Standard Atmosphere 1976 is illustrated in

Figure 2.4.1.

9

Figure 2.4.1: Atmospheric Model

2.4.2.2 Speed of Sound

The speed of sound is key to compute the Mach number, which dictates the

ambient aerodynamics of the vehicle. Speed of sound can be approximated as a

function of atmospheric temperature T as :

vS =

√
γ̃R̂T

where γ̃ is the ratio of specific heats, R̂ is the ideal gas constant and T is the ambient

temperature. Using the Standard Atmosphere 1976 tables for atmospheric temper-

10

ature, the speed of sound is approximated as a fifth-order polynomial function of

geocentric altitude.

vs = (3.791× 10−7)h5− (5.8× 10−5)h4 + (1.11× 10−3)h3 + (0.144)h2− (5.4)h+ 341.9

(2.4.3)

where vs is the speed of sound in m/s and h is the geocentric altitude in kilometers.

When compared with the speed of sound computed from Standard Atmosphere 1976,

the absolute value of relative error does not exceed 3% as shown in Figure 2.4.2.

11

Figure 2.4.2: Speed of Sound Comparisons

2.5 Vehicle Mass and Physical Properties

As the RV descends into Earth at high speed, its mass and geometry change

slightly due to heating and ablation. This change is considered negligible for the

purpose of this study. Hence, the following physical properties of the vehicle are

considered to be non-varying throughout the simulation.

12

• m, Mass: Change in mass due to heating and ablative effects are assumed to

be negligible. Hence the mass is treated to be a constant throughout reentry.

Expressed in kilograms.

• Center of Mass: The center of mass is also assumed to be constant throughout

reentry.

• I, Inertia Tensor : As stated earlier, the mass properties of the reentering body

is assumed to be constant. Plus, small control deflections do not affect the

products and moments of inertia in any significant way. Hence, the inertia

tensor is assumed to be constant. Inertia tensor is a positive definite, symmetric

3-by-3 matrix that contains the moments and products of inertia.

I =


Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz


The diagonal terms represent moments of inertia and non-diagonal terms are

products of inertia. Each element of the tensor is expressed in kilograms-times-

square-meters in SI units. For an axisymmetric vehicle, the products of inertia

are zero when expressed in reference to its principal axes [18]. Most aerodynamic

vehicles have one plane of symmetry, leading to two of the products being zero.

This is explored in Section 3.3.3.

2.6 6-DoF Aerodynamic Database

The aerodynamic database tabulates the force and moment coefficients of an aero-

dynamic body with respect to Mach number, angle of attack, angle of sideslip and

control deflections. The coefficients are computed from wind tunnel measurements or

13

predicted from numerical simulation software such as MISSILE DATCOM [5]. For

the mission planner, it is assumed that a full 6-DoF aerodynamic database for the

reentry vehicle is available a priori. There are two ways the force coefficients are

represented:

• with Respect to the Body Axes: axial, normal and side coefficients are repre-

sented along the directions illustrated in Figure 3.2.8. This is the most direct

measurement from wind-tunnel data [19].

• with Respect to the Wind Direction: The coefficients are represented as com-

ponents opposite to the instantaneous velocity vector, along the lift vector, and

normal to the lift-drag plane. This system is commonly used for airplanes and

cruise missiles [6].

The moment coefficients are almost always measured with respect to the vehicle’s

center of gravity along the body axes [18] [20]. The aerodynamic coefficients are

measured by varying one independent variable while keeping the others constant. Due

to the discrete nature of the data, the values of the coefficients within the tabulated

points have to be interpolated from the tabulated points in a multi-dimensional sense.

The multi-dimensional interpolation is complex and computationally intensive. To

alleviate the computational burden, the coefficients can be decomposed into individual

increments based on specific independent variables. It is assumed that each increment

is independent of the others at all times [6]. An example of such an aerodynamic model

is given in Equations 2.6.1 and 2.6.2. The subscript 0 refers to base coefficients. They

can be estimated as a function of Mach number and angle of attack. Stability and

control increments with respect to the independent variables are added to the base

coefficients.

14

Cx = Cx0 + ∆Cxq + ∆Cxδa + ∆Cxδe

Cy = Cy0 + ∆Cyp + ∆Cyr + ∆Cyδe + ∆Cyδr

Cz = Cz0 + ∆Czq + ∆Czδa + ∆Czδe

(2.6.1)

Similarly, the moment coefficients from the aerodynamic database can be summed as:

Cl = Cl0 + ∆Clp + ∆Clr + ∆Clδa + ∆Clδr

Cm = Cm0 + ∆Cmq + ∆Cmδe

Cn = Cn0 + ∆Cnp + ∆Cnr + ∆Cnδa + ∆Cnδr

(2.6.2)

The subscripts p, q, r for stability coefficients refer to roll rate, pitch rate and yaw

rate respectively. The control increments, which describe how each increment changes

with respect to control deflection are given in terms of effective roll, pitch and yaw

deflections (δa, δe, δr). A full list of base stability and control increments used in the

model and their dependencies is shown in Tables 2.6.1, 2.6.2 and 2.6.3.

The aerodynamic database contains the full suite of stability and control deriva-

tives from which the force and moment coefficients are computed. The full contents

of aerodynamic coefficients in the database is detailed in the following tables:

15

Table 2.6.1: Base Aerodynamic Coefficients

Coefficient Description Notation Function of:

Base Axial Force Coefficient Cx0 α, β,M

Base Side Force Coefficient Cy0 β

Base Normal Force Coefficient Cz0 α, β,M

Base Roll Moment Coefficient Cl0 M

Base Pitch Moment Coefficient Cm0 M

Base Yaw Moment Coefficient Cn0 M

Table 2.6.2: Stability Increments

Increment Description Notation Function of:

Change in Axial Force due to Pitch Rate ∆Cxq α,M, q

Change in Side Force due to Roll Rate ∆Cyp α,M, p

Change in Side Force due to Yaw Rate ∆Cyr α,M, r

Change in Normal Force due to Pitch Rate ∆Czq α,M, q

Change in Roll Moment due to Roll Rate ∆Clp M, p

Change in Roll Moment due to Yaw Rate ∆Clr M, r

Change in Pitch Moment due to Pitch Rate ∆Cmq M, q

Change in Yaw Moment due to Roll Rate ∆Cnp M, p

Change in Yaw Moment due to Yaw Rate ∆Cnr M, r

16

Table 2.6.3: Control Increments

Increment Description Notation Function of:

Change in Axial Force due to Roll Deflection ∆Cxδa α,M, δa

Change in Axial Force due to Pitch Deflection ∆Cxδe α,M, δe

Change in Side Force due to Pitch Deflection ∆Cyδe α,M, δe

Change in Side Force due to Yaw Deflection ∆Cyδr α,M, δr

Change in Normal Force due to Roll Deflection ∆Czδa α,M, δa

Change in Normal Force due to Pitch Deflection ∆Czδe α,M, δe

Change in Roll Moment due to Roll Deflection ∆Clδa M, δa

Change in Roll Moment due to Yaw Deflection ∆Clδr M, δr

Change in Pitch Moment due to Pitch Deflection ∆Cmδe M, δe

Change in Yaw Moment due to Roll Deflection ∆Cnδa M, δa

Change in Yaw Moment due to Yaw Deflection ∆Cnδr M, δr

Equations 2.6.1 and 2.6.2 is one example of a typical aerodynamic model. Based

on the mission requirements and vehicle properties, the aerodynamic model can be

expanded or simplified. Examples of aerodynamic models with varying complexities

can be found in [6]. The aerodynamic model used for this study is described in

Equation 3.6.1.

2.7 Artificial Neural Networks (ANN)

Section 2.6 illustrates that a high-fidelity aerodynamic database involves summing

coefficient contributions from multiple table look-ups and cumulating each increments

to find respective coefficients. This is a tedious process for a human, as well as a com-

puter. In the early days of this research, GPOPS failed to converge to a solution when

look-up tables were used for computing aerodynamic data. Moreover, Masternak has

17

reported the inefficiency of using look-up tables for problems that use Optimization

problems. It is not guaranteed that the derivative of the discrete lookup table data is

continuous. Most gradient based solvers are incompatible with discontinuous deriva-

tives [17].

Approximating the speed of sound and atmospheric density as a continuous func-

tion of their inputs in Section 2.4.2 was simple as each of them only involved one

independent variable. However, for a 6-DoF aerodynamic database that involves al-

most a dozen independent variables for each coefficient, more advanced methods are

to be used for function-approximation.

An Artificial Neural Network (ANN), in its basic form, is an aggregate of functions

that emulates the mapping of inputs to outputs in a ”truth” data set. A neural

network can be divided into an input layer, an output layer and a number of hidden

layers specified by the user. Each layer contains a number of nodes. Each input and

output of the problem represents the node in their respective layers. The number of

nodes in each of the hidden layers is typically specified by the user informed from

problem specifications. Each node has an activation function associated with it. The

activation function defines the how the node is interconnected to the other nodes

based on weights and biased applied to it. A learning algorithm is used to compute

the values of weights and biased at each node that approximates the training data

within specified uncertainty levels [21] [22].

2.8 Reentry Heat Flux

During the course of reentry, a large amount of energy is dissipated as heat. The

shock wave created by a RV moving at hypersonic speeds causes extremely high

temperatures that dissociate air molecules into ions [23]. This has a direct effect on

the design considerations for the survivability of the airframe. Hence, it is preferable

18

to keep the heat flux below a desired limit determined by the structural engineers. For

the purpose of mission planning, it is desirable to express the heat flux as a function

of ambient conditions, the vehicle’s speed and its geometry. For a blunt body, the

maximum heat transfer occurs at the stagnation point [13]. Hence, an estimation of

heat flux at stagnation point is a conservative measure of the heat experienced by the

airframe.

It can be safely assumed that the heat transfer is solely due to convective effects.

For most vehicles the heat flux due to radiative effects is considered negligible [24].

Finke [25] has formulated an empirical relationship between the vehicle’s geometry,

free stream conditions and convective heat rate. The relationship, converted to SI

units, can be stated as follows:

Q =
5.75× 10−5√

Rn

√
ρ

ρ0
v3.15 (2.8.1)

where ρ0 is the atmospheric density at sea level, ρ is the instantaneous atmospheric

density, Rn is radius of the curvature at the stagnation point (nose radius) specified

in meters and v is the air relative speed in m/s; the heat flux is given in W/m2.

2.9 Chapter Conclusion

Based on the works mentioned in Sections 2.1 and 2.2, the equations of motion that

characterize an unpowered reentry trajectory are developed in Chapter III. Models

described in Section 2.4 is used to characterize gravity and atmospheric effects. Sub-

sequently, a high-fidelity aerodynamic model of an RV is defined using the concepts

from Section 2.6 in Section 3.6. A series of ANNs are used to estimate the aero-

dynamic database. The final dynamic system is translated into an optimal control

problem with define states and path constraints including Equations 2.8.1.

19

III. Research Methodology

3.1 Chapter Overview

In this chapter, the high-fidelity dynamic model of the non-thrusting reentry vehi-

cle (RV) is defined. The chapter begins with establishing different reference frames of

interest. The relationships between the reference frames is used to derive the 6-DoF

equations of motion. The dynamic model is expressed as highly non-linear functions

of states and the control deflections. Later in the chapter, the optimal control problem

is stated based on the dynamic model and defined constraints. Finally, the settings

used for the optimal control solver are outlined.

3.2 Reference Frames

The dynamics of the reentry problem is described using the following reference

frames.

• Earth Centered Inertial (ECI)

• Earth Centered Earth Fixed (ECEF)

• Vehicle Pointing Reference Frame (VPF)

• Flight Path Reference Frame (FPF)

• Aerodynamic Reference Frame (ARF)

• Body Reference Frame (BRF)

This section defines each of the named frames and describes their relationship with

each other.

20

3.2.1 Earth Centered Inertial Reference Frame (ECI)

This is an inertial frame fixed at the center of the Earth. The x-axis, represented

by unit vector xI, points to the intersection of the equator and prime meridian (0◦

latitude, 0◦ longitude) at epoch. Epoch for this study is defined at the start of the

simulation. Unit vector zI is aligned with the axis of Earth’s rotation [12]. The y-

axis completes a right-handed coordinate system : yI = zI × xI, and is illustrated in

Figure 3.2.1.

Figure 3.2.1: ECI Reference Frame. Vectors xI and yI span the equatorial plane.

3.2.2 Earth Centered Earth Fixed Reference Frame (ECEF)

ECEF is a non-inertial frame that rotates with the planet. The frame originates at

Earth’s center with zE pointing along the direction of Earth’s rotation. The frame’s

x-axis passes through 0◦ latitude 0◦ longitude at all times. As before, the y-axis

completes a right handed coordinate system : yE = zE × xE. Let Earth’s rotation

21

rate be ω⊕. A vector in ECI frame is related to ECEF frame by a rotation along

the common z-axis by ω⊕∆t where ∆t is the time that has passed since epoch. The

transformation of a vector uI in ECI frame to uE, its expression in ECEF frame, can

be formulated as follows:

uE = TE
I uI =


cos(ω⊕∆t) sin(ω⊕∆t) 0

− sin(ω⊕∆t) cos(ω⊕∆t) 0

0 0 1

uI (3.2.1)

The angular velocity of frame ECEF with respect to ECI frame can be expressed in

ECI frame as

ω
E/I
I = ω⊕zI = ω⊕


0

0

1

 (3.2.2)

Figure 3.2.2 depicts the relationship between frames ECI and ECEF. In the image,

Vectors xI,yI,xE and yE spans the equatorial plane. Axes zI and zE are collinear.

3.2.3 Vehicle Pointing Frame (VPF)

The Vehicle Pointing Reference Frame, as defined by Hicks [2], is a non-inertial

frame centered at Earth’s geometric center. The x-axis xP points toward the current

position of the RV. The y-axis is constructed such that it is parallel to the equatorial

plane and z-axis forms a right-handed coordinate system

xP =
rE
||rE||

yP = zE × xP

zP = xP × yP

(3.2.3)

22

Figure 3.2.2: Illustration of ECEF Reference Frame.

where rE is the position vector expressed in terms of ECEF frame. The frame can

also be described as a rotation along zE by the longitude µ followed by a rotation of

λ about −yP. Thus, the transformation of a vector uE in ECI frame to uP in Vehicle

Pointing Frame can be expressed as:

uP = T PE uE = Ry(−λ)Rz(µ)uE

=


cos(λ) 0 sin(λ)

0 1 0

−sin(λ) 0 cos(λ)



cos(µ) sin(µ) 0

−sin(µ) cos(µ) 0

0 0 1

uE

=


cos(λ)cos(µ) cos(λ)sin(µ) sin(λ)

−sin(µ) cos(µ) 0

−sin(λ)cos(µ) −sin(λ)sin(µ) cos(λ)

uE

(3.2.4)

In Figure 3.2.3, vectors xE, yE and yP are contained in the equatorial plane. xP

points towards the vehicle position and zP completes the right-handed triad. The

23

Figure 3.2.3: The Vehicle Pointing Frame (VPF).

angular velocity of the vehicle pointing frame with respect to ECEF expressed in

ECEF is:

ωP/E = −λ̇yP + µ̇zE

ω
P/E
E = −λ̇TEP


0

1

0

+ µ̇


0

0

1



= −λ̇


−sin(µ)

cos(µ)

0

+ µ̇


0

0

1



ω
P/E
E =


λ̇sin(µ)

−λ̇cos(µ)

µ̇



(3.2.5)

24

yP is parallel to the equatorial plane so that it points east and zP points North at

every instant in time. The plane formed by yP and zP can be interpreted as the local

horizontal plane. Similarly, the plane formed by xP and zP defines the local vertical

plane, parallel to the vehicle position at each time.

3.2.4 Flight-Path Frame (FPF)

Flight-Path Frame is a non-inertial frame originating from the center of mass of

the vehicle. The x-axis points along the earth-relative velocity vector vR. The y-axis

is defined to be normal to the plane that contains the ECEF position and velocity

vectors. The z-axis completes the right-handed coordinate system. Note that both

the position and velocity vectors lie in the x-z plane formed by the Flight Path Frame.

xF =
vR

||vR||

yF = xP × xF

zF = xF × yF

(3.2.6)

To transform a given vector uP from VPF to FPF, it is preferable to first re-align

the axes {xP,yP, zP} such that the new axis z′P points against the gravity vector,

x′P points downrange and y′P points to the crossrange direction [12]. This can be

accomplished by a rotation about axis yP by an angle of π
2

radians followed by a

rotation about z′P by the same angle [12].

uP′ = T P
′

P uP = Rz

(π
2

)
Ry

(π
2

)
uP

=


0 1 0

0 0 1

1 0 0

uP

(3.2.7)

25

The intermediate frame is depicted in Figure 3.2.4. Here, z′P is the radial position

vector. Axes x′P and y′P are contained in the local horizontal plane. The vector x′P

is the intersection of the equatorial and local horizontal planes.

Figure 3.2.4: The intermediate frame.

In the intermediate frame, the local-horizontal plane is spanned by the vectors xP′

and yP′ . The heading angle ψ describes the orientation of the velocity vector with

respect to the equatorial plane. Vector vh is the projection of the velocity vector into

the local horizontal plane. Recall that the vector yP is contained in the same plane,

which by definition is parallel to the equatorial plane. From Equation 3.2.7, it can

be deduced that yP and xP′ are parallel. Therefore, the angle between vh and xP′

is the heading angle. First, rotate xP′ by ψ so that the new xP” axis aligns with

vh. At this point the velocity vector is entirely contained in the plane defined by

xP′′ and zP” . Now rotate about yP” so that the new x-axis xF is aligned with the

velocity vector by an angle of γ. γ, known as the flight-path angle [20], measures

26

the difference between velocity vector and the local-horizontal plane. Note that the

aforementioned is a negative rotation about axis yP” by angle γ. The series of Euler

rotations from the intermediate frame to flight-path frame is illustrated in Figure

3.2.5. In this figure, the shaded region represents the local horizontal plane. Axis zP”

protrudes outwards in the left image. In the right, axis yF goes into the page and is

contained in the local horizontal plane.

Figure 3.2.5: The path from intermediate frame to FPF.

Using the definitions of γ and ψ, the transformation of vector uP in VPF to its

equivalent uF in FPF can be expressed as:

uF = T FP ′uP′ = Ry(−γ)Rz(ψ)uP′

=


cos(γ) 0 sin(γ)

0 1 0

−sin(γ) 0 cos(γ)



cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

uP′

27

uF = T FP uP = TF
P′TP′

P uP

=


cos(γ) 0 sin(γ)

0 1 0

−sin(γ) 0 cos(γ)



cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1




0 1 0

0 0 1

1 0 0

uP

=


sin(γ) cos(γ)cos(ψ) cos(γ)sin(ψ)

0 −sin(ψ) cos(ψ)

cos(γ) −sin(γ)cos(ψ) −sin(γ)sin(ψ)

uP

(3.2.8)

Figure 3.2.6: The Flight-Path Frame. xF points towards the relative velocity vector.

The angular velocity of Flight-Path Frame with respect to VFP can be expressed

28

as:

ωF/P = −γ̇yF + ψ̇zP′

ω
F/P
P = −γ̇T PF


0

1

0

+ ψ̇T PP ′


0

0

1



ω
F/P
P =


ψ̇

γ̇sin(ψ)

−γ̇cos(ψ)



(3.2.9)

3.2.5 Aerodynamic Reference Frame (ARF)

In the previous section, the flight-path frame was established where the x-axis xF

is aligned to the vehicle’s velocity vector, yF is normal to the plane that contains

both position and velocity vector. It is known that the total lift vector acts normal

to the direction of the vehicle’s velocity [20]. Hence, the total lift vector is completely

contained in the plane spanned by yF and zF. The Aerodynamic Reference Frame

(ARF) is constructed by rotating yF and zF around xF by the bank angle so that the

the z-axis of the new frame is aligned with the total lift vector, as shown in Figure

3.2.7.

The bank angle defines the orientation of the lift vector with respect to the r-v

plane: the plane spanned by the instantaneous position and velocity vectors. The

bank angle, denoted by σ, is measured from axis +zF to the total lift vector. A

positive σ is a counter-clockwise rotation in yF-zF plane. Hence a negative rotation

around axis xF will align the z-axis of the new frame with the lift vector. The

29

Figure 3.2.7: Aerodynamic Reference Frame. LT is the total lift vector.

transformation from FPF to ARF can be expressed as follows:

uA = TAF uF = Rx(−σ)uF

=


1 0 0

0 cos(σ) −sin(σ)

0 sin(σ) cos(σ)

uF

(3.2.10)

The expression for angular velocity of ARF in Flight-Path Reference Frame is:

ωA/F = −σ̇xF

ω
A/F
F =


−σ̇

0

0


(3.2.11)

During a planar reentry, it is assumed that there are no external accelerations acting

30

out of the r − v plane. In that case, the bank angle σ is either 0 or 180 degrees.

3.2.6 Body Reference Frame (BRF)

BRF is a non-inertial reference frame positioned at the vehicle’s center of mass.

The x-axis points towards the vehicle’s nose. The x-z axis of the Body Reference

Frame forms the vehicle’s plane of symmetry. The positive z-axis points to the nadir

of the body. Finally, the y-axis completes a right-handed triad, as illustrated in Figure

3.2.8. Let the velocity vector in expressed in body frame be v.

v = axB + syB + u zB (3.2.12)

where a, s, u are the components of relative velocity that acts along axial, side and

up directions respectively.

Figure 3.2.8: The Body Reference Frame.

31

The Sideslip angle β is defined as the angle between the velocity vector and its

projection in the body’s x-z plane.

β = sin−1
(

s

||v||

)
(3.2.13)

A positive value of β is a counter-clockwise rotation measured from the velocity vector.

The angle-of-attack, α, is the angle between velocity projection into x-z plane and

the body x-axis. Hence,

α = tan−1
(u
a

)
(3.2.14)

A positive value of α is measured counterclockwise from the velocity vector in the

xB-zB plane. To align the Body Reference Frame with the Aerodynamic Reference

Frame, the following steps are taken.

1. Let vb be the projection of the velocity vector into the body x-z plane as shown

in Figure 3.2.9. Rotate xB around yB such that xB is concurrent with the

projection of the velocity vector in the x-z plane. From Figure 3.2.10., it is clear

that this is a rotation by an angle of −α around axis yB. Let the intermediate

frame be labeled {xB
′ − yB

′ − zB
′}. Note that yB

′ coincides with yB.

Figure 3.2.9: Velocity vector projected to the body x-z plane

2. Now, the velocity vector is completely contained in the plane spanned by yB
′

32

Figure 3.2.10: Rotation of the body x-axis by Angle of attack.

and xB
′. In other words, the velocity vector and axes {xB

′−yB
′} are normal to

axis zB
′. By design, rotating xB

′ by an angle of +β around zB
′ aligns it to the

velocity vector. Figure 3.2.11 illustrates this rotation. The new intermediate

axis system is labelled as {xB”− yB”− zB”}. The shaded region represents

the plane that contains xB
′,yB

′,xB and yB.

3. At the end of the previous rotation, the body x-axis is concurrent with the

velocity vector. Recall that the aerodynamic frame is defined such that xA

coincides with the velocity vector and zA points along the lift vector. The

planes spanned by axes { yA-zA} and axes { yB”-zB”} are normal to the velocity

vector. Given that there can only be one plane normal to the velocity vector,

axes { yA-zA} and axes { yB”-zB”} must be contained in the same plane. A

rotation of the intermediate body axes along the x axis will completely align it

with the ARF as shown in Figure 3.2.12.

Figure 3.2.12 shows that the total lift vector L̂ makes an angle of η with axis

yB”. A positive η is measured counter-clockwise from zB”. Therefore, a rotation

along xB” by an angle of −η is performed to align the zB” with the L̂. At the

33

Figure 3.2.11: Rotation by sideslip angle.

end of this rotation, BRF is aligned with ARF.

Angle η is called the lift-roll angle. It describes the orientation of the Lift with

respect to the projection of the axis zb into the plane normal to the velocity

vector. In Section 3.3.4, the calculation of η and its heavy dependence on the

vehicle’s aerodynamics will be explained.

To sum up, the transformation of a vector uB from Body Reference Frame to Aero-

dynamic Reference Frame can be expressed as follows :

uA = TABuB = Rx(−η)Rz(β)Ry(−α)uB

=


1 0 0

0 cos(η) −sin(η)

0 sin(η) cos(η)



cos(β) sin(β) 0

−sin(β) cos(β) 0

0 0 1




cos(α) 0 sin(α)

0 1 0

− sin(α) 0 cos(α)

uB

(3.2.15)

34

Figure 3.2.12: Rotation by −η

Simplifying the above expression for the transformation matrix TAB yields the

following:

TAB =


c(β)c(α) s(β) c(β)s(α)

s(η)s(α)− c(η)s(β)c(α) c(η)c(β) −s(η)c(α)− c(η)s(β)s(α)

−c(η)s(α)− s(η)s(β)c(α) s(η)c(β) c(η)c(α)− s(η)s(β)s(α)


where c() and s() are shorthand for cosine and sine functions respectively. The inverse

transformation from ARF to BRF can be written as:

uB = TB
AuA =

(
TA

B

)T
uA (3.2.16)

A direct transformation from Body Frame to Flight Path Frame can be made if the

angles σ, η, β and α are known. The BRF to FRF transformation matrix can be

written as:

TF
B = TF

ATA
B =

(
TA

F

)T
TA

B (3.2.17)

35

The angular velocity of the body frame with respect to the flight-path frame can be

formulated as follows:

ωB/A = −ωA/B = −
(
−α̇yB + β̇zB′ − η̇xA

)
= α̇yB − β̇zB′ + η̇xA

= α̇TAB


0

1

0

− β̇TAB”


0

0

1

+ η̇


1

0

0



ω
B/A
A = α̇TAB


0

1

0

− β̇


1 0 0

0 cos(η) −sin(η)

0 sin(η) cos(η)




0

0

1

+ η̇


1

0

0



= α̇


sin(β)

cos(η)cos(β)

sin(η)cos(β)

− β̇


0

−sin(η)

cos(η)

+ η̇


1

0

0



ω
B/A
A =


sin(β) 0 1

cos(η)cos(β) sin(η) 0

sin(η)cos(β) −cos(η) 0



α̇

β̇

η̇



(3.2.18)

ω
B/A
A is the angular velocity of BRF with respect to ARF expressed in Aerodynamic

Reference Frame. The same quantity can be expressed in BRF as:

ω
B/A
B = TBA ω

B/A
A =

(
TA

B

)T
ω
B/A
A

=


0 sin(α) cos(α)cos(β)

1 0 sin(β)

0 −cos(α) sin(α)cos(β)



α̇

β̇

η̇


(3.2.19)

In body reference frame, ω
B/A
A is only a function on α, β and the angular rates.

36

3.3 Equations of Motion

In this section, the evolution of the state variables in time as function of the state

and control inputs is formulated. The equations of motion, aerodynamic relationships

and inertial properties of the system are used to define the state dynamics of the

reentry problem.

3.3.1 Kinematic Equations

From Section 3.2.4, recall that the velocity vector is parallel to axis xF. Using

Equation 3.2.8 a velocity vector of magnitude v acting along xF can be expressed in

Vehicle Pointing frame as:

vP = TP
FvF = v

(
TF

P

)T


1

0

0



= v


sin(γ) 0 cos(γ)

cos(γ)cos(ψ) −sin(ψ) −sin(γ)cos(ψ)

cos(γ)sin(ψ) cos(ψ) −sin(γ)sin(ψ)




1

0

0



= v


sin(γ)

cos(γ)cos(ψ)

cos(γ)sin(ψ)



(3.3.1)

vP as expressed above is the relative velocity with respect to moving Earth, and is

the velocity measured by an observer on the rotating planet-fixed system. The vector

vP can also be expressed in relation to frame ECEF. Consider position vector r in

ECEF frame. vP is the rate of change of r expressed in Vehicle Pointing Frame, the

37

derivative of r in VPF can be written as:

vP = [˙rE]P

= ˙rP + ω
P/E
P × rP

= ˙rP + T PE ω
P/E
E × rP

(3.3.2)

A position vector of magnitude r is easily expressed in VPF as

rP =


r

0

0


Drawing in the results from Equations 3.2.4 and 3.2.5 to Equation 3.3.2:

vP =


ṙ

0

0

+ T PE ω
P/E
E ×


r

0

0



=


ṙ

0

0



+


cos(λ)cos(µ) cos(λ)sin(µ) sin(λ)

−sin(µ) cos(µ) 0

−sin(λ)cos(µ) −sin(λ)sin(µ) cos(λ)



λ̇sin(µ)

−λ̇cos(µ)

µ̇

×

r

0

0



vP =


ṙ

0

0

+


µ̇ (sin(λ))

−λ̇

µ̇cos(λ)

×

r

0

0



38

The above equation can be simplified to:

vP =


ṙ

rµ̇cos(λ)

rλ̇

 (3.3.3)

Equating Equations 3.3.1 and 3.3.3, the kinematic equations of motion are derived:

ṙ = v sin(γ)

µ̇ =
v cos(γ) cos(ψ)

r cos(λ)

λ̇ =
v cos(γ) sin(ψ)

r

(3.3.4)

v is the magnitude of the Earth-relative velocity vector.

39

3.3.2 Force Equations

Abrahamson [12] derives the force equations of motion relative to VPF, is ex-

pressed in the Flight-Path frame as follows:


v̇

vψ̇cos(γ)

vγ̇

 =
F

m

− 2vω⊕


0

sin(λ)cos(γ)− cos(λ)sin(γ)sin(ψ)

−cos(λ)cos(ψ)



− v2cos2(γ)

r


0

cos(ψ)tan(λ)

−1



− rω2
⊕cos(λ)


−cos(λ)sin(γ) + sin(λ)cos(γ)sin(ψ)

sin(λ)cos(ψ)

−cos(λ)cos(γ)− sin(λ)sin(γ)sin(ψ)



(3.3.5)

The first term in Equation 3.3.5 represents the inertial acceleration acting on the body.

Because the RV is assumed to be non-thrusting, the only external forces acting on

the body considered in this study are gravity and aerodynamic forces. Furthermore,

the change in mass of the body over the course of reentry is assumed to be negligible

in this study. Hence the mass m is treated as a constant value.

• Gravitational Force: As mentioned in Section 2.4.1 gravity always acts opposite

to the position vector. Therefore, gravity can be expressed in Flight Path Frame

40

as:

gF =
µ⊕
r2

(−xP) =
µ⊕
r2
T FP


−1

0

0



gF = −µ⊕
r2


sin(γ)

0

cos(γ)


(3.3.6)

• Aerodynamic Forces: The aerodynamic forces acting on the body are functions

of vehicle state and control inputs. The accelerations expressed in BRF can be

written as follows:

aF =


ax

ay

az



aF =

(
ρv2

2

S

m

)
TF

B


Cx

Cy

Cz


(3.3.7)

T F
B is the transformation matrix from body to Flight-Path Frame. ρ is the at-

mospheric density. It is primarily a function of the geodetic altitude h = r− r⊕

and can be obtained from the atmospheric model. v is the magnitude of the

Earth relative velocity. S is the aerodynamic reference area, specified in the ve-

hicle’s aerodynamic database. And m is the vehicle mass. Cx, Cy, Cz are the ax-

ial,lateral and normal aerodynamic coefficients. They are tabulated in the aero-

dynamic database as a function of Mach number, angle of attack (α), sideslip

41

Angle (β), inertial attitude rates (p, q, r) and control deflections(δa,δe,δr).

To summarize, the inertial accelerations in the Flight-Path Frame are given by

F

m
= −µ⊕

r2


sin(γ)

0

cos(γ)

+

(
ρv2

2

S

m

)
TF

B


Cx

Cy

Cz

 (3.3.8)

An expansion of the elements of Matrix T F
B in the above equation can be found

in Appendix A.

After collecting all the terms, the force equations of motion is summarized below:


v̇

vψ̇ cos(γ)

vγ̇

 =

(
ρv2

2

S

m

)
TF

B


Cx

Cy

Cz

− µ⊕
r2


sin(γ)

0

cos(γ)



− 2vω⊕


0

sin(λ) cos(γ)− cos(λ) sin(γ) sin(ψ)

− cos(λ) cos(ψ)



− v2 cos2(γ)

r


0

cos(ψ) tan(λ)

−1



− rω2
⊕ cos(λ)


− cos(λ) sin(γ) + sin(λ) cos(γ) sin(ψ)

sin(λ) cos(ψ)

− cos(λ) cos(γ)− sin(λ) sin(γ) sin(ψ)



(3.3.9)

The third term in Equation 3.3.9 represents Coriolis acceleration due to Earth’s ro-

tation. The fourth term in Equation 3.3.10 is due to the Coriolis acceleration of the

Flight-Path frame due to the rotation of Vehicle-Pointing Reference Frame. The fi-

42

nal term arises due to centripetal acceleration. Equation 3.3.9 can be simplified to

calculate the rates of change of speed, heading and flight-path angle using Equation

1.0.1.

v̇ =
ρv2

2

S

m
{Cy sin(β) + Cx cos(α) cos(β) + Cz cos(β) sin(α)}

− µ⊕
r2

sin(γ)

− rω2
⊕ cos(λ) (− cos(λ) sin(γ) + sin(λ) cos(γ) sin(ψ))

ψ̇ =
(ρv2

2

S

m
{(Cy(cos(σ) cos(β) cos(η) + cos(β) sin(σ) sin(η))

+ Cx(cos(σ)(sin(α) sin(η)− cos(α) cos(η) sin(β))− sin(σ)(cos(η) sin(α) + cos(α) sin(β) sin(η)))

− Cz(cos(σ)(cos(α) sin(η) + cos(η) sin(α) sin(β))− sin(σ)(cos(α) cos(η)− sin(α) sin(β) sin(η)))}

− 2vω⊕{sin(λ) cos(γ)− cos(λ) sin(γ) sin(ψ)}

− v2 cos2(γ)

r
cos(ψ) tan(λ)− rω2

⊕ cos(λ) sin(λ) cos(ψ)
) 1

v cos(γ)

γ̇ =
(ρv2

2

S

m
{(Cy(cos(σ) cos(β) sin(η)− cos(β) sin(σ) cos(η))

− Cx(cos(σ)(sin(α) cos(η) + cos(α) sin(η) sin(β)) + sin(σ)(sin(η) sin(α)− cos(α) sin(β) sin(η)))

+ Cz(cos(σ)(cos(α) cos(η)− sin(η) sin(α) sin(β)) + sin(σ)(cos(α) sin(η) + sin(α) sin(β) cos(η)))}

− µ⊕
r2

cos(γ) + 2vω⊕{cos(λ) cos(ψ)}

+
v2 cos2(γ)

r
+ rω2

⊕{cos(λ) cos(γ) + sin(λ) sin(γ) sin(ψ)}
)1

v

(3.3.10)

43

3.3.3 Attitude Rates

The inertial angular velocities with respect to axes xB,yB, zB are denoted by p, q

and r respectively. Etkin [18] derives the angular acceleration rates as:

ṗ =
1

Ixx

{
L+ Izx(ṙ + pq) + (Iyy − Izz)qr + Iyz(q

2 − r2) + Ixy(q̇ − rp)
}

q̇ =
1

Iyy

{
M + Izx(r

2 − p2) + (Izz − Ixx)rp+ Iyz(ṙ − pq) + Ixy(ṗ+ qr)
}

ṙ =
1

Izz

{
N + Izx(ṗ− qr) + (Ixx − Iyy)pq + Iyz(q̇ + rp) + Ixy(p

2 − q2)
}

Ixx, Iyy, Izz are the vehicle’s moments of inertia, and they are the diagonal terms of the

inertia tensor. Izx, Ixy, Iyz are the vehicle’s products of inertia. They are expressed

with respect to the vehicle center of mass in the Body Reference Frame. For the scope

of this research, they are assumed to be constant throughout reentry. Most aerospace

vehicles have a plane of symmetry. As mentioned in Section 3.2.6, the plane spanned

by x-z defines the plane of symmetry. Thus, Ixy = Iyz = 0 and the previous equation

can be simplified to:

ṗ =
1

Ixx
{L+ Izx(ṙ + pq) + (Iyy − Izz)qr}

q̇ =
1

Iyy

{
M + Izx(r

2 − p2) + (Izz − Ixx)rp
}

ṙ =
1

Izz
{N + Izx(ṗ− qr) + (Ixx − Iyy)pq}

(3.3.11)

where L,M,N are the torques in the body axial, lateral and normal directions respec-

tively. The coupling between pitch and yaw rates is visible. A minor modification

can be made to how ṗ is formulated to express the attitude rates in terms of known

44

quantities.

Ixxṗ = L+ Izx(ṙ + pq) + (Iyy − Izz)qr

Ixxṗ = L+ Izx

{
1

Izz
{N + Izx(ṗ− qr) + (Ixx − Iyy)pq}

}
+ Izxpq + (Iyy − Izz)qr

Ixxṗ = L+
Izx
Izz

N +
Izx
Izz

Izx(ṗ− qr) +
Izx
Izz

(Ixx − Iyy)pq

+ Izxpq + (Iyy − Izz)qr

The above equation is solved for ṗ to obtain:

ṗ =
Izz

IxxIzz − I2zx

{
L+

Izx
Izz

N + (Iyy − Izz −
I2zx
Izz

)qr +

(
1 +

Ixx − Iyy
Izz

)
Izxpq

}
q̇ =

1

Iyy

{
M + Izx(r

2 − p2) + (Izz − Ixx)rp
}

ṙ =
1

Izz
{N + Izx(ṗ− qr) + (Ixx − Iyy)pq}

(3.3.12)

L,M,N in the equation above denote the Roll Moment, Pitch Moment and Yaw

Moment respectively in the BRF. They can be expressed as:


L

M

N

 =

(
ρv2S

2

)
bCl

cCm

bCn

 (3.3.13)

ρ, S, v are the atmospheric density, aerodynamic reference area and magnitude of

the instantaneous Earth relative velocity respectively. b and c are respectively the

wingspan and the reference chord length. Cl, Cm and Cn are obtained from the

aerodynamic database using Equation 2.6.2. Hence the attitude rates are also a

function of the state and control inputs.

45

3.3.4 Determination of Lift-Roll Angle

The lift-roll angle η was introduced in Section 3.2.6. It describes the orientation

of the lift vector with respect to the projection of the axis yB into the lift plane

(Figure 3.3.1). The force coefficients { Cx, Cy, Cz } obtained from the aerodynamic

database describe the relative magnitudes of aerodynamic acceleration along the body

axial, lateral and normal directions respectively. The following series of rotations are

performed to transform the coefficients into frame { xB”, yB”, zB” }:


Cx”

Cy”

Cz”

 = Rz(β)Ry(−α)


Cx

Cy

Cz

 (3.3.14)

Figure 3.3.1: Depiction of Lift-Roll angle.

In Figure 3.3.1, the shaded region indicates the lift plane. Vectors v,CX and xB”

are normal to the lift-plane. As illustrated in Section 3.2.6, the above rotation casts

the coefficients along the lift and drag planes. Cx” describes the magnitude of the

total aerodynamic acceleration experienced by the vehicle along the direction of the

velocity vector. The vectors Cy” and Cz” span the lift plane. The total lift coefficient

46

CL can be derived as:

CL =
√

(Cy”)2 + (Cz”)2 (3.3.15)

The direction of the total lift in the intermediate frame can be expressed as:

L̂ =
Cy”

CL
yB” +

Cz”

CL
zB” (3.3.16)

The body y-axis projected to the lift plane in the intermediate frame { xB”, yB”, zB”}

is simply [0 1 0]’. Therefore, the lift-roll angle η as defined to be:

η = tan−1
(
Cy”

Cz”

)
(3.3.17)

3.3.4.1 Estimating η̇

Since the lift roll angle η is part of the defined state, its rate of change has to be

formulated to describe the system dynamics. Equation 3.3.17 can be re-written as:

tan(η) =
Cy”

Cz”

Differentiating both sides with respect to time, we get :

η̇
1

cos2(η)
=

˙Cy”Cz”− ˙Cz”Cy”

Cz”2

where Ċx, Ċy, Ċz are the instantaneous rate of change of the force coefficients in the

body axes. Using Equation 3.3.14 to expand the above:

η̇ = cos2(η)

{
ã

d̃
α̇ +

b̃

d̃
β̇ +

c̃

d̃

}
(3.3.18)

47

where ã,b̃ and c̃ are shorthand for :

ã = cos(β) {Cxcos(α) + Czsin(α)}Cy − sin(β) (C2
x + C2

z) (3.3.19)

b̃ = cos(β)
{

(C2
x − C2

z)cos(α)sin(α) + CxCz
(
sin2(α)− cos2(α)

)}
+Cysin(β) {Cxsin(α)− Czcos(α)}

(3.3.20)

c̃ = Ċx {Cysin(α)cos(β)− Czsin(β)}

+Ċy {Czcos(α)− Cxsin(α)} cos(β)

+ Ċz {Cxsin(β)− Cycos(α)cos(β)}

(3.3.21)

d̃ = (Cz”)2 = {Cz cos(α)− Cx sin(α)}2 (3.3.22)

For simplicity, it is assumed that the values for Ċx, Ċy, Ċz are approximately zero. In

effect, η̇ can be approximated by:

η̇ ≈ cos2(η)

{
ã

d̃
α̇ +

b̃

d̃
β̇

}
(3.3.23)

Expressions for α̇ and β̇ will be derived in Section 3.3.5.

3.3.5 Rates of Aerodynamic Angles

The last three entries in the state formulation defined in Section 3.4.1 are bank

angle σ, angle of attack α and sideslip angle β. To completely define the state space,

the time rate of change of these three parameters must be defined as a function of

state quantities and control inputs. Recall that the inertial angular velocities p, q, r

are expressed in the body frame. The angular velocities can be written as an elaborate

function of the angular rates defined in Section 3.2 in terms of Body Reference frame

48

as: 
p

q

r


B

= ω
E/I
B + ω

P/E
B + ω

F/P
B + ω

A/F
B + ω

B/A
B

= TB
ATA

FTF
PTP

ETE
I ω

E/I
I + TB

ATA
FTF

PTP
E ω

P/E
E

+ TB
ATA

FTF
P ω

F/P
P + TB

ATA
F ω

A/F
F + ω

B/A
B

(3.3.24)

Define the inertial rates of roll, pitch and yaw of the Flight-Path Frame as:


pF

qF

rF


B

= ω
E/I
B + ω

P/E
B + ω

F/P
B

= TB
ATA

FTF
PTP

ETE
I ω

E/I
I + TB

ATA
FTF

PTP
E ω

P/E
E + TB

ATA
FTF

Pω
F/P
P

(3.3.25)

Further expansion of Equation 3.3.25 is omitted for brevity. The angular rates in the

above expression are expressed relative to BRF. Equation 3.3.24 can then be written

as: 
p

q

r


B

=


pF

qF

rF


B

+ TBA T
A
F ω

A/F
F + ω

B/A
B

The above expression is simplified using equations derived in Section 3.2 to obtain:


p− pF

q − qF

r − rF


B

=


−cos(α)cos(β)

−sin(β)

−sin(α)cos(β)

 σ̇ +


0

1

0

 α̇ +


sin(α)

0

−cos(α)

 β̇ +


cos(α)cos(β)

sin(β)

sin(α)cos(β)

 η̇
(3.3.26)

49

In Section 3.3.4.1, an expression for η̇ was derived as a function of α̇ and β̇. Substi-

tuting Equation 3.3.23 into 3.3.26 yields:


p− pF

q − qF

r − rF


B

=


−cos(α)cos(β)

−sin(β)

−sin(α)cos(β)

 σ̇ +


0

1

0

 α̇ +


sin(α)

0

−cos(α)

 β̇

+


cos(α)cos(β)

sin(β)

sin(α)cos(β)

 cos2(η)

{
ã

d̃
α̇ +

b̃

d̃
β̇

}


p− pF

q − qF

r − rF


B

= G


σ̇

α̇

β̇



(3.3.27)

where G is a 3-by-3 matrix defined as:

G =


−cos(α)cos(β) cos2(η)cos(α)cos(β) ã

d̃
sin(α) + cos2(η)cos(α)cos(β) b̃

d̃

−sin(β) 1 + cos2(η)sin(β) ã
d̃

cos2(η)sin(β) b̃
d̃

−sin(α)cos(β) cos2(η)sin(α)cos(β) ã
d̃
−cos(α) + cos2(η)sin(α)cos(β) b̃

d̃


(3.3.28)

ã, b̃, d̃ are obtained from Equations 3.3.19, 3.3.20 and 3.3.22 respectively. Finally, the

rates of change of aerodynamic angles can be written in terms of states and controls

as follows: 
σ̇

α̇

β̇

 = G−1


p− pF

q − qF

r − rF


B

(3.3.29)

50

3.3.5.1 Invertibility of Matrix G

To ensure that a solution is plausible, it is necessary to establish that G is invert-

ible. The determinant of matrix G is found to be:

det (G) = cos(β) cos2(α) + cos(β) sin2(α)

det (G) = cos(β)

(3.3.30)

For G−1 to exist [26],

det (G) 6= 0

For Equation 3.3.30, this means:

β 6= π

2
(2j + 1), j ∈ Z (3.3.31)

where Z is the set of all integers.

For almost all practical applications of flight dynamics [18] [20] :

|β| ≤ π

4
= 45◦

Therefore, G is invertible and Equation 3.3.29 always has a solution for values of β

under the assumptions maintained in this study.

3.4 High Fidelity Simulation Environment

The equations of motion derived in the previous section are used to define a

dynamic system. The states and control elements of the system are identified in the

following sections.

51

3.4.1 States

The 12 state variables of the system are defined as follows:

X = [r µ λ v ψ γ p q r σ α β]T (3.4.1)

3.4.2 Controls

The control vector consists of the deflections from each individual control surface

on the RV. The aerodynamic database maps the control deflections in the respective

ambient conditions to the incremental force and moment contributions. The number

of control elements vary from system to system. For the Space Shuttle, there were

six control surfaces [27]. The control deflections can be written as:

u =

[
δ1 δ2, δn

]T
(3.4.2)

where n is the number of control surfaces. In some cases, the aerodynamic database

may be expressed in terms of effective roll, pitch and yaw:

u =

[
δa δe δr

]T
(3.4.3)

where δa, δe, δr are effective roll, pitch, and yaw, respectively. A control mixing al-

gorithm that maps individual deflections to effective values are usually pre-computed

[28]. As shown in Section 3.6, this study will focus on a control vector similar to

Equation 3.4.2.

52

3.4.3 System Dynamics

The state update function describes how the state variables are dynamically chang-

ing in terms of state and control variables.

Ẋ = F(X,u, , t)

Consolidating the equations of motion from Section 3.3, a full 6-DoF high fidelity

dynamic system can be expressed in Figure 3.4.1. It can seen that the equations are

time-invariant and hence are functions of state and control variables alone.

53

ṙ = v sin(γ)

µ̇ =
v cos(γ) cos(ψ)

r cos(λ)

λ̇ =
v cos(γ) sin(ψ)

r

v̇ =
ρv2

2

S

m
{Cy sin(β) + Cx cos(α) cos(β) + Cz cos(β) sin(α)} − µ⊕

r2
sin(γ)

− rω2
⊕ cos(λ) (− cos(λ) sin(γ) + sin(λ) cos(γ) sin(ψ))

ψ̇ =
(ρv2

2

S

m
{(Cy(cos(σ) cos(β) cos(η) + cos(β) sin(σ) sin(η))

+ Cx(cos(σ)(sin(α) sin(η)− cos(α) cos(η) sin(β))

− sin(σ)(cos(η) sin(α) + cos(α) sin(β) sin(η)))

− Cz(cos(σ)(cos(α) sin(η) + cos(η) sin(α) sin(β))

− sin(σ)(cos(α) cos(η)− sin(α) sin(β) sin(η)))}
− 2vω⊕{sin(λ) cos(γ)− cos(λ) sin(γ) sin(ψ)}

− v2 cos2(γ)

r
cos(ψ) tan(λ)− rω2

⊕ cos(λ) sin(λ) cos(ψ)
) 1

v cos(γ)

γ̇ =
(ρv2

2

S

m
{(Cy(cos(σ) cos(β) sin(η)− cos(β) sin(σ) cos(η))

− Cx(cos(σ)(sin(α) cos(η) + cos(α) sin(η) sin(β))

+ sin(σ)(sin(η) sin(α)− cos(α) sin(β) sin(η)))

+ Cz(cos(σ)(cos(α) cos(η)− sin(η) sin(α) sin(β))

− sin(σ)(cos(α) sin(η) + sin(α) sin(β) cos(η)))}

− µ⊕
r2

cos(γ) + 2vω⊕{cos(λ) cos(ψ)}

+
v2 cos2(γ)

r
+ rω2

⊕{cos(λ) cos(γ) + sin(λ) sin(γ) sin(ψ)}
)1

v

ṗ =
1

Ixx

{
L+ Izx(ṙ + pq) + (Iyy − Izz)qr + Iyz(q

2 − r2) + Ixy(q̇ − rp)
}

q̇ =
1

Iyy

{
M + Izx(r

2 − p2) + (Izz − Ixx)rp+ Iyz(ṙ − pq) + Ixy(ṗ+ qr)
}

ṙ =
1

Izz

{
N + Izx(ṗ− qr) + (Ixx − Iyy)pq + Iyz(q̇ + rp) + Ixy(p

2 − q2)
}

σ̇
α̇

β̇
= G−1

p− pFq − qF
r − rF


B

*This font color indicates terms that are functions of control deflections.

Figure 3.4.1: Full 6-DoF Equations of Motion

54

3.5 Optimal Control Problem

3.5.1 Cost Functions

Two different cost functionals are investigated for this research. First, the control

profile for minimum time solution from initial condition to final condition is investi-

gated. Therefore the cost function is formulated as:

J1 =

∫ t

t0

dt (3.5.1)

Secondly, a profile that minimizes the control cost at each time will be studied. The

cost functional in this case would be:

J2 =

∫ t

t0

uTu dt (3.5.2)

where u is the control vector at each timestep. Such a cost function is intended to

reward lesser deflection of each of the n control surfaces.

3.5.2 Path Constraints

The optimal control problem is subjected to the following constraints.

• The instantaneous heat rate at any point in the trajectory must be less than

Qmax. The estimation of instantaneous heat rate based on state values is de-

tailed in Section 2.8.

Q(t) ≤ Qmax (3.5.3)

where Q(t) is given by Equation 2.8.1 in W
m2 .

• Maximum Dynamic Pressure: Dynamic pressure is required to be under the

55

prescribed maximum at all times.

q∞(t) ≤ q∞,max (3.5.4)

The instantaneous dynamic pressure is computed as follows

q∞ =
1

2
ρ v2

where ρ is the atmospheric density.

• Load Factor: The load factor aLF is the total magnitude normal and lateral

acceleration, with respect to BRF, that the airframe is subjected to and should

not exceed the limits specified by the airframe designer.

aLF (t) =
√
a2y + a2z (3.5.5)

aLF (t) ≤ aLF,max (3.5.6)

where the lateral and normal loads respectively are computed as

ay = Cy q∞
S

m

az = Cz q∞
S

m

3.5.3 State and Control Bounds

The limits in state and control values are often imposed by mission specific con-

sideration or physical limits.

• The inertial angular velocity about the body axes should be within the design

56

bounds

|p(t)| ≤ |pmax|

|q(t)| ≤ |qmax|

|r(t)| ≤ |rmax|

(3.5.7)

• There are limits imposed on the angle-of-attack and side-slip angle from aero-

dynamic and heating considerations.

αmin ≤ α(t) ≤ αmax (3.5.8)

βmin ≤ β(t) ≤ βmax (3.5.9)

• The control deflections must be contained within their prescribed bounds.

δnmin ≤ δn(t) ≤ δnmax (3.5.10)

3.6 Notional Spaceplane

This study uses a notional spaceplane with a blunt nose and physical properties

described in Table 3.6.1.

57

Table 3.6.1: Physical Properties of Notional Spaceplane

Notional Spaceplane Physical Properties [29] [5]

Mass 3200 kg

Aerodynamic Ref. Area 7.29 m2

Mean Chord Length 1.78 m

Wingspan 4.57 m

Nose Radius 1.2 m

Ixx 0.59× 106 kg.m2

Iyy 1.3× 106 kg.m2

Izz 1.53× 106 kg.m2

Ixz 0.024× 106 kg.m2

Ixy 0 kg.m2

Iyz 0 kg.m2

The vehicle-specific limits on state parameters are shown in Table 3.6.2. The

angle-of-attack and sideslip angle limits are determined by the data available from

the aerodynamic database. From the angular rate limits, it can be inferred that the

system is more “sporty” in the pitch plane than in the yaw or roll plane.

58

Table 3.6.2: State Limits - Notional Spaceplane

Notional Spaceplane State Limits [29]

Minimum Angle of Attack (αmin) 55◦

Maximum Angle of Attack (αmax) -25◦

Minimum Angle of Sideslip (βmin) 18◦

Maximum Angle of Sideslip (βmin) -18◦

Maximum Roll Rate Magnitude 10 deg/s

Maximum Pitch Rate Magnitude 50 deg/s

Maximum Yaw Rate Magnitude 5 deg/s

Maximum Dynamic Pressure 14.4 kPa

Maximum Load Factor 10 g

Maximum Heat Flux 7.95× 105 W/m2

There are six control surfaces for the notional spaceplane. They are listed along-

side their bounds as follows:

Table 3.6.3: Control Bounds for Notional Spaceplane

Control Bounds for Notional Spaceplane [29]

Control Surface Symbol Lower Limit (◦) Upper Limit (◦)

Right Flap δ1 -30 30

Left Flap δ2 -30 30

Right Tail δ3 -30 30

Left Tail δ4 -20 30

Body Flap δ5 -25 20

Speedbrake δ6 35 70

The aerodynamic database for the vehicle is a function of Mach(M), α, β, p, q, r,

59

δ1, δ2, δ3, δ4.δ5 and δ6. The aerodynamic model used for this system is described in

Equation 3.6.1. It was generated using Missile DATCOM by AFRL/RQQA [29].

Cx = Cx0(M,α) + ∆Cxq(M,α, q)

+ ∆Cxδ1(M,α, δ1) + ∆Cxδ2(M,α, δ2) + ∆Cxδ3(M,α, δ3)

+ ∆Cxδ4(M,α, δ4) + ∆Cxδ5(M,α, δ5) + ∆Cxδ6(M,α, δ6)

Cy = Cy0(M,α) + ∆Cyr(M,α, r) + ∆Cyp(M,α, p) + ∆Cyβ(M,α, β)

+ ∆Cyδ1(M,α, δ1) + ∆Cyδ2(M,α, δ2) + ∆Cyδ3(M,α, δ3)

+ ∆Cyδ4(M,α, δ4) + ∆Cyδ5(M,α, δ5)

Cz = Cz0(M,α) + ∆Czq(M,α, q)

+ ∆Czδ1(M,α, δ1) + ∆Czδ2(M,α, δ2) + ∆Czδ3(M,α, δ3)

+ ∆Czδ4(M,α, δ4) + ∆Czδ5(M,α, δ5) + ∆Czδ6(M,α, δ6)

Cl = Cl0(M,α) + ∆Clr(M,α, r) + ∆Clp(M,α, p) + ∆Clβ(M,α, β)

+ ∆Clδ1(M,α, δ1) + ∆Clδ2(M,α, δ2) + ∆Clδ3(M,α, δ3)

+ ∆Clδ4(M,α, δ4) + ∆Clδ5(M,α, δ5)

Cm = Cm0(M,α) + ∆Cmq(M,α, q) + ∆Cmβ(M,α, β)

+ ∆Cmδ1(M,α, δ1) + ∆Cmδ2(M,α, δ2) + ∆Cmδ3(M,α, δ3)

+ ∆Cmδ4(M,α, δ4) + ∆Cmδ5(M,α, δ5) + ∆Cmδ6(M,α, δ6)

Cn = Cn0(M,α) + ∆Cnr(M,α, r) + ∆Cnp(M,α, p) + ∆Cnβ(M,α, β)

+ ∆Cnδ1(M,α, δ1) + ∆Cnδ2(M,α, δ2) + ∆Cnδ3(M,α, δ3)

+ ∆Cnδ4(M,α, δ4) + ∆Cnδ5(M,α, δ5)

(3.6.1)

60

3.6.1 Neural Network Approximation for Aerodynamic Database

As mentioned in Section 2.7, a series of neural networks is used to approximate

each increment in Tables 2.6.1, 2.6.2 and 2.6.3. Table lookups are numerically expen-

sive and does not guarantee a continuous derivative [17]. MATLAB’s Deep Learning

Toolbox is used to develop a Neural Network for each increments as a function of their

independent variable. The neural network is then extracted as a function using the

genFunction command and applied to Equation 3.6.1 to compute the coefficients. In

effect, each coefficient is expressed as a function evaluation of the respective inputs

instead of a tedious set of table-lookups.

Two hidden layers were chosen to approximate each increment. There were 6 nodes

in each hidden layer. These choices were made based on trial and error by evaluating

the fit quality and the time elapsed to build a neural network. The activation functions

used at each layer is specified by the user. If the activation functions are chosen to

be continuous and differentiable, the neural networks will be too [22]. Hence, the

hyperbolic tangent sigmoid (tansig) function and radial basis (radbas) function are

chosen to be the activation function for each of the hidden layers. Each of them are

defined as follows:

tansig(n) =
2

(1 + e−2n)
− 1 (3.6.2)

radbas(n) = e−n
2

(3.6.3)

The Deep Learning Toolbox uses the aerodynamic database to train the neural

network based on a training algorithm also provided by the user. The training algo-

rithm iterates on the values for weights and biases at nodes until the ANN is able

to approximate the data to a specified certainty. MATLAB has availed a host of

training algorithms. The Bayesian Regularization algorithm (trainbr) was chosen

to estimate all the increments.

61

Comparison between the truth data and the estimated data using neural nets are

shown in Section 4.2.

3.7 Test Scenario - The Pullup Maneuver

For this study, a pullup maneuver is considered. The maneuver is characterized

by a gradual uplift of the flight path angle (γ) close to zero degrees from an initially

negative angle, at a desired altitude. There is no out-of-plane motion desired at this

phase.

3.7.1 Initial State

The initial conditions are defined as follows:

62

Table 3.7.1: Initial State for Test Case

Initial State for Test Case

Value Units

Initial Altitude (h0) 65 km

Initial Longitude (φ0) 0 deg

Initial Latitude (λ0) 0 deg

Initial Speed (v0) 4.8 km/s

Initial Heading (ψ0) 0 deg

Initial Flight-path Angle (γ0) -7 deg

Initial Roll-Rate (p0) 0 deg/s

Initial Pitch-Rate (q0) 0.5 deg/s

Initial Yaw-Rate (r0) 0 deg/s

Initial Bank Angle (σ0) 0 deg

Initial Angle of Attack(α0) 2 deg

Initial Angle of Sideslip (β0) 0 deg

3.7.2 Final State

The desired final state is tabulated in Table 3.7.2.

63

Table 3.7.2: Desired Final State for Test Case

Desired Final State for Test Case

Nominal Value Units

Final Altitude (hf) 45 km

Final Longitude (φf) 2 deg

Final Latitude (λf) 0 deg

Final Speed (vf) 3.8 km/s

Final Heading (ψf) free deg

Final Flight-path Angle (γf) 0 deg

Final Roll-Rate (pf) free deg/s

Final Pitch-Rate (qf) free deg/s

Final Yaw-Rate (rf) free deg/s

Final Bank Angle (σf) free deg

Final Angle of Attack (αf) free deg

Final Angle of Sideslip (βf) free deg

There are no mission-specific requirements imposed at the final value of states

described “free” in Table 3.7.2. However, they are subject to the vehicle-specific

state limits listed in Table 3.6.2.

3.7.3 Final State Error Tolerances

For the optimal control solver, targeting to the precise final state may be imprac-

tical. Therefore, an error criterion is established for each state’s final value. They are

tabulated as follows:

64

Table 3.7.3: Error Bounds for Final State

Error Bounds for Final State

Error Tolerance Units

Final Altitude (hf) ±0.25 km

Final Longitude (φf) ±4× 10−5 deg

Final Latitude (λf) ±4× 10−5 deg

Final Speed (vf) ± 5 m/s

Final Heading (ψf) ± 2 deg

Final Flight-path Angle (γf) ± 2 deg

The tolerances for latitude and longitude were chosen to correspond to an error

that matches the altitude tolerance in the local horizontal plane. The set tolerances

ensure that the final position will be in a circle centered at the desired coordinates

with radius of approximately 4 meters.

3.7.4 Optimal Control Solver Settings

The settings used for the optimal control solver GPOPS is listed below:

65

Table 3.7.4: Default GPOPS Solver Settings for Test Problem

Relevant Default GPOPS Solver Settings

Mesh Method hp-LiuRao-Legendre

Mesh Error Tolerance 1× 10−4

Non Linear Programming Solver snopt

NLP Solver Tolerance 1× 10−6

Derivative Supplier sparseFD

Derivative Order second

Derivative Dependencies sparseNaN

Scaling Method automatic bounds

GPOPS feeds a multi-dimensional mesh generated from problem parameters into

a non-linear programming solver such as SNOPT or IPOPT. GPOPS iterates on

that mesh until the NLP Solver is able to find the optimal solution within the error

specified. After each iteration, the mesh is refined based on specific methods [8]. The

method “hp-LiuRao-Legendre” was chosen for this study. This method “employs

orthogonal collocation at Legendre-Gauss-Radau points, and adjusts both the mesh

size and the degree of the approximating polynomials in the refinement process [30]”.

The Non-Linear Program (NLP) is based on a mesh generated by placing colloca-

tion points computed from roots of Legendre polynomials. The state derivatives are

approximated using a sparse Forward Difference method. Lagrange polynomials are

used to interpolate between the collocation points and a Gaussian quadrature is used

to compute integrals [30]. The NLP is fed to a solver such as SNOPT or IPOPT (See

Section 4.8.1).

66

IV. Results and Analysis

4.1 Preamble

The comparison between the aerodynamic database and the neural network ap-

proximation is explored in Section 4.2. Subsequently, the equations of motion derived

in Section 3.3 are verified using results from Bollino’s dissertation [5]. Later, a pre-

defined control profile for the notional spaceplane is used to validate the simulation

environment developed in Section 3.4. The stated control profile is used as an initial

guess to seek an optimal control profile for the same initial and final conditions to

evaluate cost functions discussion in Section 3.5.1. In the final section the sensitivity

of the solution to varying solver settings and mesh tolerance is studied.

4.2 Approximation of Aerodynamic Data Using Neural Networks

As mentioned in Section 3.6.1, a collection of Artificial Neural Networks were

developed to estimate the notional spaceplane’s aerodynamic database. This section

outlines the comparison between the interpolated values from the database and the

neural network approximation for each increment with respect to a dozen independent

variables.

An input vector û is defined that contains all the independent variables required

to look-up the base coefficients and increments from the aerodynamic database.

û = [M,α, β, p, q, r, δ1, δ2, δ3, δ4, δ5, δ6] (4.2.1)

The minimum and maximum limits for each elements of the input vector are listed

in Tables 3.6.2 and 3.6.3. The aerodynamic data spans from Mach 0.1 to Mach 20.

Within the defined operating limits, each element of the input vector is randomly

67

populated 250 times. For each draw of the random input vector, each of the force

and moment coefficients are computed from the aerodynamic database. For the same

draw, the ANN approximation for the coefficients is also computed. The error between

the “truth” data and the ANN approximation is compared in (Figure 4.2.1).

68

Figure 4.2.1: Error Analysis of Neural Net Approximations

In Figure 4.2.1, the absolute value of percent error, with respect to the highest

69

possible value for each coefficients is plotted for each 250 draws. The magenta line

indicates the median error for each coefficients, in percent values as tabulated in the

Table 4.2.1.

Table 4.2.1: Median Error From ANN Approximation of Aero Database

Aero Coefficient Median Error (%)

Cx 8.3

Cy 8.0

Cz 1.6

Cl 14.8

Cm 17.0

Cn 5.6

The “truth data”,i.e, the aerodynamic database which is based on numerous wind

tunnel experiments and computational analysis, is subject to large uncertainty. The

error bars are reported to be as high as 43% [5]. The maximum error deviation of the

ANN approximation from the aerodynamic database is 17 %, as reported in Table

4.2.1.

4.3 Simulation Results with Sub-Optimal Control

A sub-optimal control is found by trial and error that accomplishes a pull-up

maneuver described in Section 3.7. The control profile is shown in Figure 4.3.1.

70

Figure 4.3.1: Sub-optimal Control Profile

The simulation output of the 50-second long control input is depicted in Figure

4.3.2.

71

Figure 4.3.2: Simulation Results with sub-optimal Control Input

72

It can be verified from Figure 4.3.2 that the “pull-up” is executed and all the

state constraints described in Section 3.6.2 are met. The maneuver takes exactly 50

seconds. In the following plot, the path constraints described in Section 3.5.2 are

computed and compared against prescribed limits.

73

Figure 4.3.3: Path Constraints for sub-optimal Control Input

74

4.4 Verification of Derived Equations of Motion

The equations of motion that describe the reentry dynamics in a full 6-DoF sense

were derived in Section 3.3. They are recapped in Figure 3.4.1. Equations 3.3.4, 3.3.10

and 3.3.12 can be verified based on Hicks [2], Bollino [5] and Etkin [18]. Although,

equations that describe the rates of change of σ̇, α̇, and β̇ were derived for this work.

The approximations from Bollino [5] were used to verify Equations 3.3.29 in Section

4.4.1.

4.4.1 Bollino’s Equation of Motion for Aerodynamic Angle Rates

The 6-DoF equations derived by Bollino [5] assume a flat-Earth and ignore effects

caused by Earth’s rotation. Moreover, the formulation assumes small roll and bank

angles.

σ̇ ≈ CLρvS

2

sin(σ)

m
tan(γ) + p cos(α) + r sin(α)

α̇ ≈ q − γ̇

β̇ ≈ p sin(α)− r cos(α)

(4.4.1)

The sub-optimal control profile used in Section 4.3 is used to simulate the trajectory.

Equations for σ̇, α̇ and β̇ in Figure 3.4.1 is replaced with Equations 4.4.1. The re-

sulting trajectory is plotted in Figure 4.4.1, overlaid with the trajectory from Figure

4.3.2. The error between the states for each simulation is plotted in Figure 4.4.1.

There is little difference between the two trajectories simulated as evident from Figure

4.4.1. The error between the two suites of reentry dynamics is negligible for altitude,

longitude, latitude, speed, flight path angle and heading. As Figure 4.4.2 illustrates,

the error for the rest of the six states is negligible at the beginning of the simulation

75

and grows with time. The assumptions made by Bollino such as the premise of a

non-rotating flat Earth may explain the difference. When the following assumptions

are made:

ω⊕ = 0

µ̇ = 0

λ̇ = 0

ψ̇ = 0

λ̇ = 0

β = 0

η = 0

η̇ = 0

(4.4.2)

Equation 3.3.29 reduces to:

σ̇ ≈ Cxr − Czp+ (Cx cos(α) + Cz sin(α))γ̇ sin(σ)

Cz cos(α)− Cx sin(α)

α̇ ≈ q − γ̇ cos(σ)

β̇ ≈ p sin(α)− r cos(α)− γ̇ sin(σ)

(4.4.3)

Assuming a negligible bank angle (σ = 0) in Equation 4.4.3, Equation 3.3.29 is

simplified to

σ̇ ≈ Cxr − Czp
Cz cos(α)− Cx sin(α)

α̇ ≈ q − γ̇

β̇ ≈ p sin(α)− r cos(α)

(4.4.4)

76

The expressions for α̇ and β̇ in Bollino’s formulation are identical to reduced in 4.4.4.

The force equations of motion in this study are formulated in terms of coefficients

in the body frame (Cx, Cy, Cz). Bollino’s equations express the coefficients in Flight-

Path Frame (CL, CD).

When formulated in terms of lift and drag coefficients, the terms for σ̇ must be

equivalent. One maay also notice that the errors grow with time as Earth’s rotation

and other assumptions from Equation 4.4.2 takes effect.

77

Figure 4.4.1: Output Trajectory using Bollino’s 6-DoF Equations of Motion

78

Figure 4.4.2: Error in States between 6-DoF Equations of Motion

79

4.5 Optimal Control Results for Minimum Time Trajectory

Using Equation 3.5.1 as the cost function, a minimum time control solution is

investigated. The sub-optimal control profile and the resulting trajectory is ingested

as an initial guess. The optimal control profile for the minimum time trajectory with

specifications for initial state, final state and final state tolerances described in Section

3.7 is sought. GPOPS-specific inputs used are listed in Table 3.7.4. The computed

optimal control profile is shown in Figure 4.5.1: the brute force control input is also

shown for comparison. The optimal time is 49.6 seconds as opposed to 50 seconds in

the sub-optimal simulation.

80

Figure 4.5.1: Computed Optimal Control for Base Scenario

It can be observed from the Figure 4.5.1 that the optimal control for each de-

flection resembles bang-bang behavior. For the most part, each deflection switches

between the maximum value and minimum value. The simulation output for the

computed control profile is depicted in Figure 4.5.2. It could be inferred that there

is no appreciable difference in the state trajectories between the two different con-

trols tested. It is easily verified from Figures 4.5.2 and 4.5.3 that the path and state

constraints are not violated.

81

Figure 4.5.2: Simulation Results with Optimal Control - Base Scenario

82

Figure 4.5.3: Path Constraint Monitor - Base Scenario

83

4.6 Optimal Control Results With Final State Stabilization

The desired final state of the last six state variables were set to free in the sub-

optimal scenario outlined in Table 3.7.2. As shown in Figure 4.5.2 , this lead to high

magnitudes of roll rate, yaw rate, pitch rate and bank angle towards the end of the

simulation time. To stabilize the final state, an optimal control profile is sought with

new final state boundary condition for the following states:

Table 4.6.1: Desired State Conditions for Final State Stabilization

Desired State Conditions for Final State Stabilization

Nominal Value Error Tolerance Units

Final rollrate (p′f) 0 ± 2 deg/s

Final pitchrate (q′f) 0 ± 2 deg/s

Final yawrate (r′f) 0 ± 2 deg/s

Final Bank Angle (σ′f) 0 ± 2 deg

Final Angle of Attack(α′f) 0 ± 2 deg

Final Angle of Sideslip (β′f) 0 ± 2 deg

The control input for minimum time trajectory is sought. Therefore, the cost

function is the same as in Section 4.5. The tolerances on the newly bounded final

state terms are also listed in 4.6.1. The optimal control profile is plotted in Figure

4.6.1. The optimal time computed, in this case, hasn’t changed drastically. The

simulation time is 49.7 seconds. Similar to Section 4.5, the optimal control policy

emulates a bang-bang behavior.

84

Figure 4.6.1: Computed Optimal Control: Base Scenario for Stabilized Final State

The simulation results for the optimal control is illustrated in Figure 4.6.2. It

can be seen that the desired values for states listed in Table 4.6.1 are achieved within

defined error tolerances. From Figure 4.6.3, it can be seen that the resultant trajectory

85

clearly avoided crossing over the path constraints.

It can be seen from Figure 4.6.3 that the optimal control profile drives the dynamic

pressure to its maximum allowable limit while seeking to satisfy the new constraints.

86

Figure 4.6.2: Simulation Results: Base Scenario for Stabilized Final State

87

Figure 4.6.3: Path Constraint Monitor: Base Scenario for Stabilized Final State

88

4.7 Optimal Control For Minimum Control Trajectory

For the minimum control trajectory, the following cost function is evaluated:

J2 =

∫ t

t0

uTu dt

where u is the control vector at each time-step. The optimal control profile computed

in Sections 4.5 and 4.6 can be described as “rugged”. It is unrealistic for a control

surface to toggle between two extremes instantly as prescribed by Figures 4.5.1 and

4.6.1. By imposing a minimum control cost function, the goal is to smoothen out the

control profile. The tolerances on the final state is not varied from Table 3.7.3. The

optimal control profile is plotted in Figure 4.6.1. The control profile computed by

GPOPS for this case is illustrated in Figure 4.7.1.

GPOPS converged to a solution within the specified tolerances. However, the

control profile did not smooth out as expected.

89

Figure 4.7.1: Computed Optimal Control: Minimum Control Case

The history of states and the path constraints compared to the sub-optimal sce-

nario are shown in Figures 4.7.2 and 4.7.3 respectively.

90

Figure 4.7.2: Simulation Results: Minimum Control

91

Figure 4.7.3: Path Constraint Monitor: Minimum Control

92

4.8 Sensitivity Study on GPOPS Parameters

For each problem, GPOPS requires a set of parameters as inputs. The default

values used for each of them in this study are outlined in Table 3.7.4. A sensitivity

study was undertaken to evaluate the sensitivity of the output solution to the choice of

NLP solver and mesh error tolerance. This sensitivity study used the same parameters

from Section 4.5.

4.8.1 Solver: snopt vs. ipopt

GPOPS has two different options for Non-Linear Programming (NLP) solvers:

SNOPT and IPOPT. SNOPT(Sparse Nonlinear OPTimizer) uses a Quasi-Newton

Sequential Quadratic Programming (SQP) method to converge on a solution. It is

developed and licensed by Stanford University. IPOPT (Interior Point Optimizer)

uses an interior point method to optimize a given problem. SNOPT was used to

solve problems in Sections 4.5, 4.6 and 4.7. However, GPOPS did not converge to

a solution when IPOPT was applied to the problem within the given number of

iterations. A possible reason could be that IPOPT does not take advantage of an

initial guess, as opposed to SNOPT which converges quickly with a good initial guess

[31].

4.8.2 Mesh Error Tolerance

The base case in Section 4.5 is solved with a default mesh error tolerance of

1×10−4. A solution was unobtainable with more restrictive tolerance of 1×10−5. The

comparison between the control profiles for a tolerance of 1×10−3 is compared against

the baseline in Figure 4.8.1. The resulting trajectories for each mesh tolerances, are

plotted in Figure 4.8.2.

93

Figure 4.8.1: Mesh Tolerance Analysis: Control Profile

The differences between the state history for these trajectories and computed

control profiles are minor, as plotted in Figures 4.8.1 and 4.8.2.

94

Figure 4.8.2: Mesh Tolerance Analysis: Trajectory

95

V. Conclusions and Recommendations

The results above validates the equations of motion derived in Section 3.3. The

results of the 6-DoF simulation for all three control inputs are realistic and reasonable.

Given a high-fidelity aerodynamic database, requisite vehicle properties and a control

input the simulation could be adapted to emulate the reentry profile of a given RV.

The control deflections of the vehicle is integrated into the reentry equations of the

motion so that their direct effect on the resulting trajectory is easily observed.

A novel method of using neural networks to approximate aerodynamic data proved

to be successful. Neural networks allowed to approximate multi-dimensional lookup

tables for aerodynamic coefficients as continuous analytical functions in terms of in-

dependent variables. The use of ANN approximation has alleviated expensive multi-

dimensional table-lookups and the problems caused by discontinuos derivatives com-

puted from discrete data.

The investigation to seek optimal control policy for a given scenario was less of a

success. Although a solution was found within the defined mesh tolerance, there is no

assurance that GPOPS has found the global minimum. Additionally, the flight time

was not significantly reduced in either Section 4.5 or 4.6. It is found that a strong

initial guess is required for a proper convergence to a solution. So far, the only way to

generate an initial guess is by trial and error. Alternative ways to generate a strong

initial guess is outside the scope of this study and is discussed in Section 5.2. As

demonstrated in Section 4.6, with a strong initial guess, GPOPS could be employed

to make corrections to control profile to achieve the desired end state.

96

5.1 Limitations and Caveats

Among many things that affect the effectiveness of the research, the aerodynamic

database is the most prominent. Even with the current state-of-the-art technology,

the error on predicted aerodynamic coefficients is sizeable [5]. This simulation assumes

perfect knowledge of aerodynamic data, which is impractical. However, with improve-

ments in our understanding of complex aerodynamic effects, more accurate prediction

of aerodynamic data is imminent. The goal of this research is to demonstrate that a

high-fidelity full 6-DoF simulation could be done with appropriate aerodynamic data.

The optimal control solution fails to converge for long flight-times, such as: reentry

to impact/landing. It is also difficult to generate a guess control profile for such a

trajectory. It is common to divide the problem into different phases to establish

waypoints in such a case [4].

The current formulation is also subject to the singularities listed below:

• At the geographic poles: When the latitude is approaches 90 degrees, i.e when

λ ± 900, the denominator in Equation 3.3.3 approaches zero. This will cause

issues for intercontinental missions which may require to fly over the poles. The

remedy to this is to establish a reference frame based on the mission’s launch

and target locations and re-derive the equations of motion with respect to that

frame [12].

• γ ±900: Such a case will cause an singularity in the Force Equations of Motion

(Equation 3.3.10).Fortunately, the cases where flight path angle is close to ninety

degrees is virtually non-existent.

• β ± 900: As discussed in Section 3.3.5.1, Equations 3.3.29 fail when sideslip

angle approaches 90 degrees. Again, the magnitude of β does not exceed 450

for the overwhelming majority of reentry problems.

97

5.2 Future Work

Recommendations for follow-on research to this project are listed as follows:

• GPOPS-II could be used to investigate optimal trajectories subject to mission-

specific cost function. Betts [32] has explored computing a control profile that

optimized the cross range of a 3-DoF trajectory. The system reenters at ”null-

island” with the initial velocity pointing easterwards along the equator. The

cost function was formulated as:

J3 = −λ(tf) (5.2.1)

• More realistic planetary model: Switching from a geocentric to geodetic plan-

etary model with modeling of wind effects. The gravity model could also be

updated to inculcate spherical harmonic effects.

• Design of an autopilot to predict control behavior for a desired trajectory. As

mentioned earlier, the current way to predict a control profile for a desired

trajectory is by trial and error. An autopilot algorithm can be designed to

deterministic ally solve for a non-optimal control history. Such a feat is very

complex and is its own thesis topic. A few studies exist that investigates build-

ing autopilot for less complex points. Ito et al [33] have used the concept of

Dynamic Inversion techniques to build such a system. For a highly complex

suite of equations of motion such as this case, more novel methods may be of

help. Lee [11] has explored the possibility using reinforcement learning algo-

rithms to compute the minimum time control profile for a 3-DoF reentry system.

That problem, which is far less complex than he focus of this study, took days

of computer time to arrive at a solution. Therefore, doing so in a truly 6-

DoF simulation environment could only be accomplished in a high-performance

98

computing environment.

• Dynamic Programming: This methodology reduces large optimization problems

in to a number of smaller discrete sub-problems. The subproblems are then

solved based on Bellman’s Principle of Optimality which states the optimal

policy from to the final state is independent of any states or control decision

that preceded an intermediate state. Grant et al. [3] has used a disrete dynamic

programming to produce accurate initial guesses for a 3-DoF reentry problem.

It was reported that this approach greatly reduced the number of required

computations. Applying their methods to a 6-DoF reentry scenario is a plausible

avenue of future research.

99

Appendix A. Transformation Matrix From BRF to FPF

T F
B is a direction cosine matrix that defines the transformation from Body Refer-

ence Frame (BRF) to Fligh-Path Reference Frame(FPF). From Equation 3.2.17, T F
B

is expanded as:

T FB = T FA T
A
B =

(
TAF
)T
TAB

=


a11 a12 a13

a21 a22 a23

a31 a32 a33


a11 = cos(α) cos(β)

a12 = sin(β)

a13 = cos(β) sin(α)

a21 = cos(σ)(sin(α) sin(η)− cos(α) cos(η) sin(β))

− sin(σ)(cos(η) sin(α) + cos(α) sin(β) sin(η))

a22 = cos(σ) cos(β) cos(η) + cos(β) sin(σ) sin(η)

a23 = sin(σ)(cos(α) cos(η)− sin(α) sin(β) sin(η))

− cos(σ)(cos(α) sin(η) + cos(η) sin(α) sin(β))

a31 = − cos(σ)(cos(η) sin(α) + cos(α) sin(β) sin(η))

− sin(σ)(sin(α) sin(η)− cos(α) cos(η) sin(β))

a32 = cos(σ) cos(β) sin(η)− cos(β) cos(η) sin(σ)

a33 = cos(σ)(cos(α) cos(η)− sin(α) sin(β) sin(η))

+ sin(σ)(cos(α)sin(η) + cos(η) sin(α)sin(β))

(1.0.1)

100

Appendix B. MATLAB Scripts

Most of the MATLAB scripts are omitted for the purposes of brevity. However

the function that embodies equations in Figure 3.4.1 is listed below.

function phaseout = reentryDynamics(input)

earthRate_rad_s = 7.29115e-5;

earthRadius_m = 6371203.92;

refDensity_kg_m3 = 1.225;

gravConstant_m3_s2 = 3.9860064 e14;

vehicle = input.auxdata.vehicleProperties;

vehicleMass_kg = vehicle.vehicleMass_kg;

%% Define Inputs and Controls , Get Time

radius_m = input.phase.state (:,1);

%longitude_rad = input.phase.state (:,2);

latitude_rad = input.phase.state (:,3);

speed_m_s = input.phase.state (:,4);

psi_rad = input.phase.state (:,5);

fpa_rad = input.phase.state (:,6);

rollRate_rad_s = input.phase.state (:,7);

pitchRate_rad_s = input.phase.state (:,8);

yawRate_rad_s = input.phase.state (:,9);

bank_rad = input.phase.state (: ,10);

alpha_rad = input.phase.state (: ,11);

beta_rad = input.phase.state (: ,12);

d1_rad = input.phase.control (:,1);

101

d2_rad = input.phase.control (:,2);

d3_rad = input.phase.control (:,3);

d4_rad = input.phase.control (:,4);

d5_rad = input.phase.control (:,5);

d6_rad = input.phase.control (:,6);

%simTime_s = input.phase.time;

%% Kinematic Equations

rDot_m_s = speed_m_s .*sin(fpa_rad);

lonRate_rad_s = speed_m_s .*cos(fpa_rad).*cos(psi_rad)./

radius_m ./cos(latitude_rad);

latRate_rad_s = speed_m_s .*cos(fpa_rad).*sin(psi_rad)./

radius_m;

%% atmospheric Calculations

alt_m = radius_m - earthRadius_m;

% density estimation

legacyRho_kg_m3 = refDensity_kg_m3*exp(-alt_m /7250);

deltaRho1_kg_m3 = 0.05* exp(-((alt_m -4200) /3000) .^2) ...

+ 0.11* exp(-((alt_m -8700) /6400) .^2);

deltaRho2_kg_m3 = 0.007* exp(-((alt_m -19000) /2800) .^2) ...

+ 0.002* exp(-((alt_m -23000) /1800) .^2);

deltaRho3_kg_m3 = -0.0014* exp(-((alt_m -37200) /11400) .^2)

...

+ 0.00027* exp(-((alt_m -48700) /10300) .^2);

deltaRho4_kg_m3 = -1.2e-4*exp(-((alt_m -53800) /6400) .^2)

...

102

+ -1.4e-05* exp(-((alt_m -60200) /6400) .^2);

%DensityModel

density_kg_m3 = legacyRho_kg_m3 + deltaRho1_kg_m3 +

deltaRho2_kg_m3 ...

+ deltaRho3_kg_m3 +

deltaRho4_kg_m3;

dynamicPressure_Pa = 0.5* density_kg_m3 .* speed_m_s .*

speed_m_s;

dynamicForce_N = (vehicle.aeroRefArea_m2)*

dynamicPressure_Pa ;%q*RefArea

speedOfSound_m_s = 3.791e-22* alt_m .^5 + -5.793e-17* alt_m

.^4 + 1.111e-12* alt_m .^3 ...

+1.435e-07* alt_m .^2 - 0.00536* alt_m + 341.9;

mach_nd = speed_m_s ./ speedOfSound_m_s;

%% Force and Moment Coefficients

[Cx_nd] = computeCx_nd(mach_nd ,alpha_rad ,...

d1_rad ,d2_rad ,d3_rad ,d4_rad ,d5_rad ,

d6_rad ,...

speed_m_s ,pitchRate_rad_s ,vehicle);

[Cy_nd] = computeCy_nd(mach_nd ,alpha_rad ,beta_rad ,...

d1_rad ,d2_rad ,d3_rad ,

d4_rad ,...

speed_m_s ,rollRate_rad_s ,

yawRate_rad_s ,vehicle);

103

[Cz_nd] = computeCz_nd(mach_nd ,alpha_rad ,...

d1_rad ,d2_rad ,d3_rad ,d4_rad ,

d5_rad ,d6_rad ,...

speed_m_s ,pitchRate_rad_s ,

vehicle);

[Cl_nd] = computeCl_nd(mach_nd ,alpha_rad ,beta_rad ,...

d1_rad ,d2_rad ,d3_rad ,d4_rad ,

d5_rad ,...

speed_m_s ,rollRate_rad_s ,

yawRate_rad_s ,vehicle);

[Cm_nd] = computeCm_nd(mach_nd ,alpha_rad ,beta_rad ,...

d1_rad ,d2_rad ,d3_rad ,d4_rad ,

d5_rad ,d6_rad ,...

speed_m_s ,pitchRate_rad_s ,

vehicle);

[Cn_nd] = computeCn_nd(mach_nd ,alpha_rad ,beta_rad ,...

d1_rad ,d2_rad ,d3_rad ,d4_rad

,...

speed_m_s ,rollRate_rad_s ,

yawRate_rad_s ,vehicle);

%% Attitude Rates

torqueL_Nm = (vehicle.wingspan_m)*dynamicForce_N .* Cl_nd;

torqueM_Nm = (vehicle.meanChord_m)*dynamicForce_N .* Cm_nd;

torqueN_Nm = (vehicle.wingspan_m)*dynamicForce_N .* Cn_nd;

Ixx_kg_m2 = vehicle.inertiaTensor_kgm2 (1,1);

104

Iyy_kg_m2 = vehicle.inertiaTensor_kgm2 (2,2);

Izz_kg_m2 = vehicle.inertiaTensor_kgm2 (3,3);

Izx_kg_m2 = vehicle.inertiaTensor_kgm2 (1,3);

pDot_rad_s2 = Izz_kg_m2 *(torqueL_Nm+Izx_kg_m2*torqueN_Nm/

Izz_kg_m2 ...

+ yawRate_rad_s .* pitchRate_rad_s *(Iyy_kg_m2 -

Izz_kg_m2 -(Izx_kg_m2 ^2)/Izz_kg_m2)...

+ rollRate_rad_s .* pitchRate_rad_s*Izx_kg_m2

*...

(1+(Ixx_kg_m2 -Iyy_kg_m2)/Izz_kg_m2))/(

Izz_kg_m2*Ixx_kg_m2 - Izx_kg_m2 ^2);

qDot_rad_s2 = (torqueM_Nm + Izx_kg_m2 *(yawRate_rad_s .^2 -

rollRate_rad_s .^2) + ...

(Izz_kg_m2 -Ixx_kg_m2)*yawRate_rad_s .*

rollRate_rad_s)/Iyy_kg_m2;

rDot_rad_s2 = (torqueN_Nm + Izx_kg_m2 *(pDot_rad_s2 -

pitchRate_rad_s .* yawRate_rad_s) + ...

(Ixx_kg_m2 -Iyy_kg_m2)*pitchRate_rad_s .*

rollRate_rad_s)/Izz_kg_m2;

%% Force Equations

doublePrimeCy_nd = Cy_nd.*cos(beta_rad) - Cx_nd.*cos(

alpha_rad).*sin(beta_rad) ...

- Cz_nd.*sin(alpha_rad).*sin(beta_rad);

doublePrimeCz_nd = Cz_nd .*cos(alpha_rad) - Cx_nd .*sin(

alpha_rad);

105

eta_rad = (doublePrimeCy_nd ./hypot(doublePrimeCy_nd ,1e-12)

)...

.*acos(doublePrimeCz_nd ./ hypot(doublePrimeCz_nd ,

doublePrimeCy_nd));

speedRate_m_s = (dynamicForce_N .*(Cy_nd.*sin(beta_rad) ...

+ Cx_nd.*cos(alpha_rad).*cos(beta_rad) ...

+ Cz_nd.*cos(beta_rad).*sin(alpha_rad)))./

vehicleMass_kg ...

- (gravConstant_m3_s2 .*sin(fpa_rad))./

radius_m .^2 ...

+ earthRate_rad_s .^2.* radius_m .*cos(

latitude_rad).*(cos(latitude_rad).*sin(

fpa_rad) ...

- cos(fpa_rad).*sin(latitude_rad).*sin(

psi_rad));

psiRate_rad_s = -(2.* earthRate_rad_s .* speed_m_s .*(cos(

fpa_rad).*sin(latitude_rad) ...

- cos(latitude_rad).*sin(fpa_rad).*sin(

psi_rad)) ...

- (Cx_nd.* dynamicForce_N .*(cos(bank_rad)

.*(sin(alpha_rad).*sin(eta_rad) ...

- cos(alpha_rad).*cos(eta_rad).*sin(

beta_rad)) ...

106

- sin(bank_rad).*(cos(eta_rad).*sin(

alpha_rad) ...

+ cos(alpha_rad).*sin(beta_rad).*sin(

eta_rad))) ...

- Cz_nd.* dynamicForce_N .*(cos(bank_rad).*(

cos(alpha_rad).*sin(eta_rad) ...

+ cos(eta_rad).*sin(alpha_rad).*sin(

beta_rad)) ...

- sin(bank_rad).*(cos(alpha_rad).*cos(

eta_rad) ...

- sin(alpha_rad).*sin(beta_rad).*sin(

eta_rad))) ...

+ Cy_nd.* dynamicForce_N .*(cos(bank_rad).*

cos(beta_rad).*cos(eta_rad) ...

+ cos(beta_rad).*sin(bank_rad).*sin(

eta_rad)))./ vehicleMass_kg ...

+ earthRate_rad_s .^2.* radius_m .*cos(

latitude_rad).*cos(psi_rad).*sin(

latitude_rad) ...

+ (speed_m_s .^2.* cos(fpa_rad).^2.* cos(

psi_rad).*tan(latitude_rad))./ radius_m)

...

./(speed_m_s .*cos(fpa_rad));

fpaRate_rad_s = ((speed_m_s .^2.* cos(fpa_rad).^2)./

radius_m ...

107

- (Cx_nd.* dynamicForce_N .*(cos(bank_rad)

.*(cos(eta_rad).*sin(alpha_rad) ...

+ cos(alpha_rad).*sin(beta_rad).*sin(

eta_rad)) ...

+ sin(bank_rad).*(sin(alpha_rad).*sin(

eta_rad) ...

- cos(alpha_rad).*cos(eta_rad).*sin(

beta_rad))) ...

- Cz_nd.* dynamicForce_N .*(cos(bank_rad).*(

cos(alpha_rad).*cos(eta_rad) ...

- sin(alpha_rad).*sin(beta_rad).*sin(

eta_rad)) ...

+ sin(bank_rad).*(cos(alpha_rad).*sin(

eta_rad) ...

+ cos(eta_rad).*sin(alpha_rad).*sin(

beta_rad))) ...

+ Cy_nd.* dynamicForce_N .*cos(beta_rad).*

sin(bank_rad - eta_rad))./

vehicleMass_kg ...

- (gravConstant_m3_s2 .*cos(fpa_rad))./

radius_m .^2 ...

+ earthRate_rad_s .^2.* radius_m .*cos(

latitude_rad).*(cos(fpa_rad).*cos(

latitude_rad) ...

+ sin(fpa_rad).*sin(latitude_rad).*sin(

psi_rad)) ...

108

+ 2.* earthRate_rad_s .* speed_m_s .*cos(

latitude_rad).*cos(psi_rad))...

./ speed_m_s;

%% Aerodyn. Angle Rate Equations

bankRate_rad_s = ((Cx_nd .^2.* sin(alpha_rad).^3 + Cz_nd

.^2.*(sin(alpha_rad) ...

- sin(alpha_rad).^3) - 2.* Cx_nd .* Cz_nd

.*(cos(alpha_rad) ...

- cos(alpha_rad).^3) - Cx_nd .^2.* cos(

eta_rad).^2.* sin(alpha_rad).*sin(

beta_rad).^2 ...

- Cz_nd .^2.* cos(eta_rad).^2.* sin(

alpha_rad).*sin(beta_rad).^2 ...

+ Cx_nd .^2.* cos(alpha_rad).^2.* cos(

beta_rad).^2.* cos(eta_rad).^2.* sin(

alpha_rad) ...

- Cz_nd .^2.* cos(alpha_rad).^2.* cos(

beta_rad).^2.* cos(eta_rad).^2.* sin(

alpha_rad) ...

- Cx_nd.*Cz_nd.*cos(alpha_rad).^3.* cos(

beta_rad).^2.* cos(eta_rad).^2 ...

+ Cx_nd.*Cz_nd.*cos(alpha_rad).*cos(

beta_rad).^2.* cos(eta_rad).^2.* sin(

alpha_rad).^2 ...

- Cy_nd.*Cz_nd.*cos(alpha_rad).^2.* cos(

beta_rad).*cos(eta_rad).^2.* sin(

109

beta_rad) ...

+ Cy_nd.*Cz_nd.*cos(beta_rad).*cos(

eta_rad).^2.* sin(alpha_rad).^2.* sin(

beta_rad) ...

+ 2.* Cx_nd .* Cy_nd.*cos(alpha_rad).*cos(

beta_rad).*cos(eta_rad).^2.* sin(

alpha_rad).*sin(beta_rad)).*(

fpaRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*sin(eta_rad) ...

- yawRate_rad_s - fpaRate_rad_s .*cos(

alpha_rad).*cos(eta_rad).*sin(

bank_rad) ...

+ psiRate_rad_s .*cos(beta_rad).*sin(

alpha_rad).*sin(fpa_rad) ...

- latRate_rad_s .*cos(beta_rad).*cos(

fpa_rad).*cos(psi_rad).*sin(alpha_rad

) ...

+ psiRate_rad_s .*cos(alpha_rad).*cos(

fpa_rad).*sin(bank_rad).*sin(eta_rad)

...

- latRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*sin(eta_rad).*sin(psi_rad)

...

+ latRate_rad_s .*cos(alpha_rad).*cos(

eta_rad).*sin(bank_rad).*sin(psi_rad)

...

110

+ earthRate_rad_s .*cos(beta_rad).*sin(

alpha_rad).*sin(fpa_rad).*sin(

latitude_rad) ...

+ fpaRate_rad_s .*sin(alpha_rad).*sin(

bank_rad).*sin(beta_rad).*sin(eta_rad

) ...

+ lonRate_rad_s .*cos(beta_rad).*sin(

alpha_rad).*sin(fpa_rad).*sin(

latitude_rad) ...

+ psiRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(eta_rad).*cos(fpa_rad)

...

+ fpaRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*sin(alpha_rad).*sin(

beta_rad) ...

- latRate_rad_s .*sin(alpha_rad).*sin(

bank_rad).*sin(beta_rad).*sin(eta_rad

).*sin(psi_rad) ...

+ earthRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(eta_rad).*cos(fpa_rad)

.*sin(latitude_rad) ...

+ lonRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(eta_rad).*cos(fpa_rad)

.*sin(latitude_rad) ...

- earthRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(latitude_rad).*cos(

111

psi_rad).*sin(eta_rad) ...

+ earthRate_rad_s .*cos(alpha_rad).*cos(

eta_rad).*cos(latitude_rad).*cos(

psi_rad).*sin(bank_rad) ...

+ latRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(eta_rad).*cos(psi_rad)

.*sin(fpa_rad) ...

- lonRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(latitude_rad).*cos(

psi_rad).*sin(eta_rad) ...

+ lonRate_rad_s .*cos(alpha_rad).*cos(

eta_rad).*cos(latitude_rad).*cos(

psi_rad).*sin(bank_rad) ...

+ earthRate_rad_s .*cos(beta_rad).*cos(

fpa_rad).*cos(latitude_rad).*sin(

alpha_rad).*sin(psi_rad) ...

+ earthRate_rad_s .*cos(alpha_rad).*cos(

fpa_rad).*sin(bank_rad).*sin(eta_rad)

.*sin(latitude_rad) ...

- psiRate_rad_s .*cos(bank_rad).*cos(

fpa_rad).*sin(alpha_rad).*sin(

beta_rad).*sin(eta_rad) ...

+ psiRate_rad_s .*cos(eta_rad).*cos(

fpa_rad).*sin(alpha_rad).*sin(

bank_rad).*sin(beta_rad) ...

112

+ lonRate_rad_s .*cos(beta_rad).*cos(

fpa_rad).*cos(latitude_rad).*sin(

alpha_rad).*sin(psi_rad) ...

- latRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*sin(alpha_rad).*sin(

beta_rad).*sin(psi_rad) ...

+ lonRate_rad_s .*cos(alpha_rad).*cos(

fpa_rad).*sin(bank_rad).*sin(eta_rad)

.*sin(latitude_rad) ...

+ latRate_rad_s .*cos(alpha_rad).*cos(

psi_rad).*sin(bank_rad).*sin(eta_rad)

.*sin(fpa_rad) ...

- earthRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(latitude_rad).*cos(

psi_rad).*sin(alpha_rad).*sin(

beta_rad) ...

- earthRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(eta_rad).*cos(

latitude_rad).*sin(fpa_rad).*sin(

psi_rad) ...

- lonRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(latitude_rad).*cos(

psi_rad).*sin(alpha_rad).*sin(

beta_rad) ...

- lonRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(eta_rad).*cos(

113

latitude_rad).*sin(fpa_rad).*sin(

psi_rad) ...

- earthRate_rad_s .*cos(bank_rad).*cos(

fpa_rad).*sin(alpha_rad).*sin(

beta_rad).*sin(eta_rad).*sin(

latitude_rad) ...

+ earthRate_rad_s .*cos(eta_rad).*cos(

fpa_rad).*sin(alpha_rad).*sin(

bank_rad).*sin(beta_rad).*sin(

latitude_rad) ...

- lonRate_rad_s .*cos(bank_rad).*cos(

fpa_rad).*sin(alpha_rad).*sin(

beta_rad).*sin(eta_rad).*sin(

latitude_rad) ...

+ lonRate_rad_s .*cos(eta_rad).*cos(

fpa_rad).*sin(alpha_rad).*sin(

bank_rad).*sin(beta_rad).*sin(

latitude_rad) ...

- earthRate_rad_s .*cos(latitude_rad).*

cos(psi_rad).*sin(alpha_rad).*sin(

bank_rad).*sin(beta_rad).*sin(eta_rad

) ...

- latRate_rad_s .*cos(bank_rad).*cos(

psi_rad).*sin(alpha_rad).*sin(

beta_rad).*sin(eta_rad).*sin(fpa_rad)

...

114

+ latRate_rad_s .*cos(eta_rad).*cos(

psi_rad).*sin(alpha_rad).*sin(

bank_rad).*sin(beta_rad).*sin(fpa_rad

) ...

- earthRate_rad_s .*cos(alpha_rad).*cos(

latitude_rad).*sin(bank_rad).*sin(

eta_rad).*sin(fpa_rad).*sin(psi_rad)

...

- lonRate_rad_s .*cos(latitude_rad).*cos(

psi_rad).*sin(alpha_rad).*sin(

bank_rad).*sin(beta_rad).*sin(eta_rad

) ...

- lonRate_rad_s .*cos(alpha_rad).*cos(

latitude_rad).*sin(bank_rad).*sin(

eta_rad).*sin(fpa_rad).*sin(psi_rad)

...

+ earthRate_rad_s .*cos(bank_rad).*cos(

latitude_rad).*sin(alpha_rad).*sin(

beta_rad).*sin(eta_rad).*sin(fpa_rad)

.*sin(psi_rad) ...

- earthRate_rad_s .*cos(eta_rad).*cos(

latitude_rad).*sin(alpha_rad).*sin(

bank_rad).*sin(beta_rad).*sin(fpa_rad

).*sin(psi_rad) ...

+ lonRate_rad_s .*cos(bank_rad).*cos(

latitude_rad).*sin(alpha_rad).*sin(

115

beta_rad).*sin(eta_rad).*sin(fpa_rad)

.*sin(psi_rad) ...

- lonRate_rad_s .*cos(eta_rad).*cos(

latitude_rad).*sin(alpha_rad).*sin(

bank_rad).*sin(beta_rad).*sin(fpa_rad

).*sin(psi_rad)))...

./(cos(beta_rad).*(Cz_nd.*cos(alpha_rad)

- Cx_nd.*sin(alpha_rad)).^2) ...

- ((Cz_nd .^2.* cos(alpha_rad).^3 ...

+ Cx_nd .^2.*(cos(alpha_rad) - cos(

alpha_rad).^3) ...

- 2.* Cx_nd .* Cz_nd .*(sin(alpha_rad) - sin

(alpha_rad).^3) ...

- Cx_nd .^2.* cos(alpha_rad).*cos(eta_rad)

.^2.* sin(beta_rad).^2 ...

- Cz_nd .^2.* cos(alpha_rad).*cos(eta_rad)

.^2.* sin(beta_rad).^2 ...

- Cx_nd .^2.* cos(alpha_rad).*cos(beta_rad

).^2.* cos(eta_rad).^2.* sin(alpha_rad)

.^2 ...

+ Cz_nd .^2.* cos(alpha_rad).*cos(beta_rad

).^2.* cos(eta_rad).^2.* sin(alpha_rad)

.^2 ...

- Cx_nd.*Cz_nd.*cos(beta_rad).^2.* cos(

eta_rad).^2.* sin(alpha_rad).^3 ...

116

+ Cx_nd.*Cz_nd.*cos(alpha_rad).^2.* cos(

beta_rad).^2.* cos(eta_rad).^2.* sin(

alpha_rad) ...

+ Cx_nd.*Cy_nd.*cos(alpha_rad).^2.* cos(

beta_rad).*cos(eta_rad).^2.* sin(

beta_rad) ...

- Cx_nd.*Cy_nd.*cos(beta_rad).*cos(

eta_rad).^2.* sin(alpha_rad).^2.* sin(

beta_rad) ...

+ 2.* Cy_nd .* Cz_nd.*cos(alpha_rad).*cos(

beta_rad).*cos(eta_rad).^2.* sin(

alpha_rad).*sin(beta_rad))...

.*(rollRate_rad_s - psiRate_rad_s .*cos(

alpha_rad).*cos(beta_rad).*sin(

fpa_rad) ...

+ fpaRate_rad_s .*cos(bank_rad).*sin(

alpha_rad).*sin(eta_rad) ...

- fpaRate_rad_s .*cos(eta_rad).*sin(

alpha_rad).*sin(bank_rad) ...

- earthRate_rad_s .*cos(alpha_rad).*cos(

beta_rad).*sin(fpa_rad).*sin(

latitude_rad) ...

- fpaRate_rad_s .*cos(alpha_rad).*sin(

bank_rad).*sin(beta_rad).*sin(eta_rad

) ...

117

- lonRate_rad_s .*cos(alpha_rad).*cos(

beta_rad).*sin(fpa_rad).*sin(

latitude_rad) ...

+ psiRate_rad_s .*cos(fpa_rad).*sin(

alpha_rad).*sin(bank_rad).*sin(

eta_rad) ...

- latRate_rad_s .*cos(bank_rad).*sin(

alpha_rad).*sin(eta_rad).*sin(psi_rad

) ...

+ latRate_rad_s .*cos(eta_rad).*sin(

alpha_rad).*sin(bank_rad).*sin(

psi_rad) ...

- fpaRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(eta_rad).*sin(beta_rad

) ...

+ latRate_rad_s .*cos(alpha_rad).*cos(

beta_rad).*cos(fpa_rad).*cos(psi_rad)

...

+ psiRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(fpa_rad).*sin(alpha_rad

) ...

- earthRate_rad_s .*cos(alpha_rad).*cos(

beta_rad).*cos(fpa_rad).*cos(

latitude_rad).*sin(psi_rad) ...

+ earthRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(fpa_rad).*sin(alpha_rad

118

).*sin(latitude_rad) ...

+ psiRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(fpa_rad).*sin(beta_rad

).*sin(eta_rad) ...

- psiRate_rad_s .*cos(alpha_rad).*cos(

eta_rad).*cos(fpa_rad).*sin(bank_rad)

.*sin(beta_rad) ...

- lonRate_rad_s .*cos(alpha_rad).*cos(

beta_rad).*cos(fpa_rad).*cos(

latitude_rad).*sin(psi_rad) ...

+ latRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(eta_rad).*sin(beta_rad

).*sin(psi_rad) ...

+ lonRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(fpa_rad).*sin(alpha_rad

).*sin(latitude_rad) ...

- earthRate_rad_s .*cos(bank_rad).*cos(

latitude_rad).*cos(psi_rad).*sin(

alpha_rad).*sin(eta_rad) ...

+ earthRate_rad_s .*cos(eta_rad).*cos(

latitude_rad).*cos(psi_rad).*sin(

alpha_rad).*sin(bank_rad) ...

+ latRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(psi_rad).*sin(alpha_rad

).*sin(fpa_rad) ...

119

- lonRate_rad_s .*cos(bank_rad).*cos(

latitude_rad).*cos(psi_rad).*sin(

alpha_rad).*sin(eta_rad) ...

+ lonRate_rad_s .*cos(eta_rad).*cos(

latitude_rad).*cos(psi_rad).*sin(

alpha_rad).*sin(bank_rad) ...

+ earthRate_rad_s .*cos(fpa_rad).*sin(

alpha_rad).*sin(bank_rad).*sin(

eta_rad).*sin(latitude_rad) ...

+ latRate_rad_s .*cos(alpha_rad).*sin(

bank_rad).*sin(beta_rad).*sin(eta_rad

).*sin(psi_rad) ...

+ lonRate_rad_s .*cos(fpa_rad).*sin(

alpha_rad).*sin(bank_rad).*sin(

eta_rad).*sin(latitude_rad) ...

+ latRate_rad_s .*cos(psi_rad).*sin(

alpha_rad).*sin(bank_rad).*sin(

eta_rad).*sin(fpa_rad) ...

+ earthRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(eta_rad).*cos(

latitude_rad).*cos(psi_rad).*sin(

beta_rad) ...

+ lonRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(eta_rad).*cos(

latitude_rad).*cos(psi_rad).*sin(

beta_rad) ...

120

+ earthRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(fpa_rad).*sin(beta_rad

).*sin(eta_rad).*sin(latitude_rad)

...

- earthRate_rad_s .*cos(alpha_rad).*cos(

eta_rad).*cos(fpa_rad).*sin(bank_rad)

.*sin(beta_rad).*sin(latitude_rad)

...

+ lonRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(fpa_rad).*sin(beta_rad

).*sin(eta_rad).*sin(latitude_rad)

...

- lonRate_rad_s .*cos(alpha_rad).*cos(

eta_rad).*cos(fpa_rad).*sin(bank_rad)

.*sin(beta_rad).*sin(latitude_rad)

...

+ earthRate_rad_s .*cos(alpha_rad).*cos(

latitude_rad).*cos(psi_rad).*sin(

bank_rad).*sin(beta_rad).*sin(eta_rad

) ...

+ latRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(psi_rad).*sin(beta_rad

).*sin(eta_rad).*sin(fpa_rad) ...

- latRate_rad_s .*cos(alpha_rad).*cos(

eta_rad).*cos(psi_rad).*sin(bank_rad)

.*sin(beta_rad).*sin(fpa_rad) ...

121

- earthRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(latitude_rad).*sin(

alpha_rad).*sin(fpa_rad).*sin(psi_rad

) ...

+ lonRate_rad_s .*cos(alpha_rad).*cos(

latitude_rad).*cos(psi_rad).*sin(

bank_rad).*sin(beta_rad).*sin(eta_rad

) ...

- lonRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(latitude_rad).*sin(

alpha_rad).*sin(fpa_rad).*sin(psi_rad

) ...

- earthRate_rad_s .*cos(latitude_rad).*

sin(alpha_rad).*sin(bank_rad).*sin(

eta_rad).*sin(fpa_rad).*sin(psi_rad)

...

- lonRate_rad_s .*cos(latitude_rad).*sin(

alpha_rad).*sin(bank_rad).*sin(

eta_rad).*sin(fpa_rad).*sin(psi_rad)

...

- earthRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(latitude_rad).*sin(

beta_rad).*sin(eta_rad).*sin(fpa_rad)

.*sin(psi_rad) ...

+ earthRate_rad_s .*cos(alpha_rad).*cos(

eta_rad).*cos(latitude_rad).*sin(

122

bank_rad).*sin(beta_rad).*sin(fpa_rad

).*sin(psi_rad) ...

- lonRate_rad_s .*cos(alpha_rad).*cos(

bank_rad).*cos(latitude_rad).*sin(

beta_rad).*sin(eta_rad).*sin(fpa_rad)

.*sin(psi_rad) ...

+ lonRate_rad_s .*cos(alpha_rad).*cos(

eta_rad).*cos(latitude_rad).*sin(

bank_rad).*sin(beta_rad).*sin(fpa_rad

).*sin(psi_rad)))...

./(cos(beta_rad).*(Cz_nd.*cos(alpha_rad)

- Cx_nd.*sin(alpha_rad)).^2) ...

+ (cos(eta_rad).^2.*(sin(beta_rad).*

Cx_nd .^2 ...

- Cy_nd.*cos(alpha_rad).*cos(beta_rad).*

Cx_nd + sin(beta_rad).*Cz_nd .^2 ...

- Cy_nd.*cos(beta_rad).*sin(alpha_rad).*

Cz_nd).*(psiRate_rad_s .*sin(beta_rad)

.*sin(fpa_rad) ...

- pitchRate_rad_s - fpaRate_rad_s .*cos(

bank_rad).*cos(beta_rad).*cos(eta_rad

) ...

- fpaRate_rad_s .*cos(beta_rad).*sin(

bank_rad).*sin(eta_rad) ...

- latRate_rad_s .*cos(fpa_rad).*cos(

psi_rad).*sin(beta_rad) ...

123

+ earthRate_rad_s .*sin(beta_rad).*sin(

fpa_rad).*sin(latitude_rad) ...

+ lonRate_rad_s .*sin(beta_rad).*sin(

fpa_rad).*sin(latitude_rad) ...

+ latRate_rad_s .*cos(bank_rad).*cos(

beta_rad).*cos(eta_rad).*sin(psi_rad)

...

+ earthRate_rad_s .*cos(fpa_rad).*cos(

latitude_rad).*sin(beta_rad).*sin(

psi_rad) ...

+ lonRate_rad_s .*cos(fpa_rad).*cos(

latitude_rad).*sin(beta_rad).*sin(

psi_rad) ...

+ latRate_rad_s .*cos(beta_rad).*sin(

bank_rad).*sin(eta_rad).*sin(psi_rad)

...

+ psiRate_rad_s .*cos(bank_rad).*cos(

beta_rad).*cos(fpa_rad).*sin(eta_rad)

...

- psiRate_rad_s .*cos(beta_rad).*cos(

eta_rad).*cos(fpa_rad).*sin(bank_rad)

...

+ earthRate_rad_s .*cos(bank_rad).*cos(

beta_rad).*cos(eta_rad).*cos(

latitude_rad).*cos(psi_rad) ...

124

+ lonRate_rad_s .*cos(bank_rad).*cos(

beta_rad).*cos(eta_rad).*cos(

latitude_rad).*cos(psi_rad) ...

+ earthRate_rad_s .*cos(bank_rad).*cos(

beta_rad).*cos(fpa_rad).*sin(eta_rad)

.*sin(latitude_rad) ...

- earthRate_rad_s .*cos(beta_rad).*cos(

eta_rad).*cos(fpa_rad).*sin(bank_rad)

.*sin(latitude_rad) ...

+ lonRate_rad_s .*cos(bank_rad).*cos(

beta_rad).*cos(fpa_rad).*sin(eta_rad)

.*sin(latitude_rad) ...

- lonRate_rad_s .*cos(beta_rad).*cos(

eta_rad).*cos(fpa_rad).*sin(bank_rad)

.*sin(latitude_rad) ...

+ earthRate_rad_s .*cos(beta_rad).*cos(

latitude_rad).*cos(psi_rad).*sin(

bank_rad).*sin(eta_rad) ...

+ latRate_rad_s .*cos(bank_rad).*cos(

beta_rad).*cos(psi_rad).*sin(eta_rad)

.*sin(fpa_rad) ...

- latRate_rad_s .*cos(beta_rad).*cos(

eta_rad).*cos(psi_rad).*sin(bank_rad)

.*sin(fpa_rad) ...

+ lonRate_rad_s .*cos(beta_rad).*cos(

latitude_rad).*cos(psi_rad).*sin(

125

bank_rad).*sin(eta_rad) ...

- earthRate_rad_s .*cos(bank_rad).*cos(

beta_rad).*cos(latitude_rad).*sin(

eta_rad).*sin(fpa_rad).*sin(psi_rad)

...

+ earthRate_rad_s .*cos(beta_rad).*cos(

eta_rad).*cos(latitude_rad).*sin(

bank_rad).*sin(fpa_rad).*sin(psi_rad)

...

- lonRate_rad_s .*cos(bank_rad).*cos(

beta_rad).*cos(latitude_rad).*sin(

eta_rad).*sin(fpa_rad).*sin(psi_rad)

...

+ lonRate_rad_s .*cos(beta_rad).*cos(

eta_rad).*cos(latitude_rad).*sin(

bank_rad).*sin(fpa_rad).*sin(psi_rad)

))...

./(Cz_nd .*cos(alpha_rad) - Cx_nd .*sin(

alpha_rad)).^2;

%bankRate_rad_s = wrapToPi(bankRate_rad_s);

alphaRate_rad_s = -(rollRate_rad_s .*cos(alpha_rad).*sin(

beta_rad) ...

- fpaRate_rad_s .*cos(bank_rad).*cos(

eta_rad) ...

126

- pitchRate_rad_s .*cos(beta_rad) ...

- fpaRate_rad_s .*sin(bank_rad).*sin(

eta_rad) ...

+ yawRate_rad_s .*sin(alpha_rad).*sin(

beta_rad) ...

+ psiRate_rad_s .*cos(bank_rad).*cos(

fpa_rad).*sin(eta_rad) ...

- psiRate_rad_s .*cos(eta_rad).*cos(

fpa_rad).*sin(bank_rad) ...

+ latRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*sin(psi_rad) ...

+ latRate_rad_s .*sin(bank_rad).*sin(

eta_rad).*sin(psi_rad) ...

+ earthRate_rad_s .*cos(bank_rad).*cos(

fpa_rad).*sin(eta_rad).*sin(

latitude_rad) ...

- earthRate_rad_s .*cos(eta_rad).*cos(

fpa_rad).*sin(bank_rad).*sin(

latitude_rad) ...

+ lonRate_rad_s .*cos(bank_rad).*cos(

fpa_rad).*sin(eta_rad).*sin(

latitude_rad) ...

- lonRate_rad_s .*cos(eta_rad).*cos(

fpa_rad).*sin(bank_rad).*sin(

latitude_rad) ...

127

+ earthRate_rad_s .*cos(latitude_rad).*

cos(psi_rad).*sin(bank_rad).*sin(

eta_rad) ...

+ latRate_rad_s .*cos(bank_rad).*cos(

psi_rad).*sin(eta_rad).*sin(fpa_rad

) ...

- latRate_rad_s .*cos(eta_rad).*cos(

psi_rad).*sin(bank_rad).*sin(

fpa_rad) ...

+ lonRate_rad_s .*cos(latitude_rad).*

cos(psi_rad).*sin(bank_rad).*sin(

eta_rad) ...

+ earthRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(latitude_rad).*cos(

psi_rad) ...

+ lonRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(latitude_rad).*cos(

psi_rad) ...

- earthRate_rad_s .*cos(bank_rad).*cos(

latitude_rad).*sin(eta_rad).*sin(

fpa_rad).*sin(psi_rad) ...

+ earthRate_rad_s .*cos(eta_rad).*cos(

latitude_rad).*sin(bank_rad).*sin(

fpa_rad).*sin(psi_rad) ...

- lonRate_rad_s .*cos(bank_rad).*cos(

latitude_rad).*sin(eta_rad).*sin(

128

fpa_rad).*sin(psi_rad) ...

+ lonRate_rad_s .*cos(eta_rad).*cos(

latitude_rad).*sin(bank_rad).*sin(

fpa_rad).*sin(psi_rad))...

./cos(beta_rad);

betaRate_rad_s = rollRate_rad_s .*sin(alpha_rad) -

yawRate_rad_s .*cos(alpha_rad) ...

+ fpaRate_rad_s .*cos(bank_rad).*sin(

eta_rad) ...

- fpaRate_rad_s .*cos(eta_rad).*sin(

bank_rad) ...

+ psiRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(fpa_rad) ...

+ psiRate_rad_s .*cos(fpa_rad).*sin(

bank_rad).*sin(eta_rad) ...

- latRate_rad_s .*cos(bank_rad).*sin(

eta_rad).*sin(psi_rad) ...

+ latRate_rad_s .*cos(eta_rad).*sin(

bank_rad).*sin(psi_rad) ...

+ lonRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(fpa_rad).*sin(

latitude_rad) ...

- earthRate_rad_s .*cos(bank_rad).*cos(

latitude_rad).*cos(psi_rad).*sin(

eta_rad) ...

129

+ earthRate_rad_s .*cos(eta_rad).*cos(

latitude_rad).*cos(psi_rad).*sin(

bank_rad) ...

+ latRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(psi_rad).*sin(fpa_rad)

...

- lonRate_rad_s .*cos(bank_rad).*cos(

latitude_rad).*cos(psi_rad).*sin(

eta_rad) ...

+ lonRate_rad_s .*cos(eta_rad).*cos(

latitude_rad).*cos(psi_rad).*sin(

bank_rad) ...

+ earthRate_rad_s .*cos(fpa_rad).*sin(

bank_rad).*sin(eta_rad).*sin(

latitude_rad) ...

+ lonRate_rad_s .*cos(fpa_rad).*sin(

bank_rad).*sin(eta_rad).*sin(

latitude_rad) ...

+ latRate_rad_s .*cos(psi_rad).*sin(

bank_rad).*sin(eta_rad).*sin(fpa_rad)

...

+ earthRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(fpa_rad).*sin(

latitude_rad) ...

- earthRate_rad_s .*cos(latitude_rad).*sin(

bank_rad).*sin(eta_rad).*sin(fpa_rad).*

130

sin(psi_rad) ...

- lonRate_rad_s .*cos(latitude_rad).*sin(

bank_rad).*sin(eta_rad).*sin(fpa_rad).*

sin(psi_rad) ...

- earthRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(latitude_rad).*sin(

fpa_rad).*sin(psi_rad)

- lonRate_rad_s .*cos(bank_rad).*cos(

eta_rad).*cos(latitude_rad).*sin(

fpa_rad).*sin(psi_rad);

%% Output

phaseout.dynamics = [rDot_m_s , lonRate_rad_s ,

latRate_rad_s , ...

speedRate_m_s , psiRate_rad_s ,

fpaRate_rad_s ,...

pDot_rad_s2 qDot_rad_s2 rDot_rad_s2

,...

bankRate_rad_s ,alphaRate_rad_s ,

betaRate_rad_s];

%% constraints [heatRate ,dynamicPressure ,lateralAccel]

fluxConstant = 5.75e-5;

heatFlux_W_m2 = (fluxConstant*sqrt(density_kg_m3/

refDensity_kg_m3)...

.*(speed_m_s).^(3.15))/sqrt(vehicle.noseRadius_m);

131

lateralAcceleration_m_s2 = hypot(Cz_nd ,Cy_nd).*

dynamicForce_N /(vehicle.vehicleMass_kg);

phaseout.path = [heatFlux_W_m2 dynamicPressure_Pa

lateralAcceleration_m_s2];

%%

end

132

Bibliography

1. Luis Guerreiro. Development of a Guidance and Control Design Tool for Entry

Space Vehicles with Different Lift-over-Drag Ratios. Master’s thesis, Instituto

Superior Técnico, University of Lisbon, Portugal, 2011.

2. Kerry D. Hicks. Introduction to Astrodynamic Re-Entry (Second Edition). Cre-

ateSpace Publishing, Lexington, KY, 2014.

3. Michael Grant, Ian Clark, and Robert Braun. Rapid Entry Corridor Trajectory

Optimization for Conceptual Design. In AIAA Atmospheric Flight Mechanics

Conference, August 2010.

4. Timothy R. Jorris. Common Aero Vehicle Reentry Trajectory Optimization Sat-

isfying Waypoint and No-fly Constraints. PhD thesis, Air Force Institute of

Technology, September 2007.

5. Kevin Bollino. Optimal Guidance Command Generation and Tracking for

Reusable Launch Vehicle Reentry. PhD thesis, Naval Postgraduate School, Mon-

terey, CA, 2006.

6. Claus Weiland. Aerodynamic Data of Space Vehicles. Springer-Verlag, Berlin

Heidelberg, Germany, 2014.

7. Marie Albisser. Identification of aerodynamic coefficients from free flight data.

PhD thesis, École Polytechnique de l’Université de Lorraine, Lorraine, France,

2015.

8. Michael A. Patterson and Anil V. Rao. GPOPS-II: A MATLAB Software

for Solving Multiple-Phase Optimal Control Problems Using Hp-Adaptive Gaus-

133

sian Quadrature Collocation Methods and Sparse Nonlinear Programming. ACM

Trans. Math. Softw., 41(1), October 2014.

9. H.E. Wang and S.T. Chu. Variable-lift re-entry at superorbital and orbital speeds.

AIAA Journal, 1(5):1047–1055, May 1963.

10. Adolf Busemann Robert D. Culp, Nguyen X. Vinh. Optimum Three Dimensional

Atmospheric Entry From the Analytical Solution of Chapman’s Exact Equations.

Technical Report NASA CR-132571, National Air and Space Administration,

1976.

11. Corey J. Lee. Hypersonic Vehicle Control and Trajectory Determination Through

the Application of Artificial Intelligence. Master’s thesis, Air Force Institute of

Technology, 2020.

12. Matthew J. Abrahamson. Boost Through Reentry Trajectory Planning For Ma-

neuvering Reentry Vehicles. Master’s thesis, Massachusetts Institute of Technol-

ogy, 2008.

13. Derrick G. Tetzman. Simulation and Optimization of Spacecraft Re-entry Trajec-

tories. Master’s thesis, University of Minnesota, May 2010.

14. F. Landis Markley and John Crassidis. Fundamentals of Spacecraft Attitude De-

termination and Control. Springer, New York, NY, 2014.

15. Dominick Andrisani. The Standard Atmosphere. Retrieved on 27 September

2020, from

https://engineering.purdue.edu/~andrisan/Courses/AAE490A_S2002/

Atmosphere.pdf.

134

https://engineering.purdue.edu/~andrisan/Courses/AAE490A_S2002/Atmosphere.pdf
https://engineering.purdue.edu/~andrisan/Courses/AAE490A_S2002/Atmosphere.pdf

16. Luisa D Fairfax Luke S Strohm, JD Vasile and Frank E Fresconi. Trajectory

Shaping for Quasi-Equilibrium Glide in Guided Munitions. Technical Report

ARL-TR-8749, Army Research Laboratory, 2019.

17. Tadeusz J. Masternak. Multi-Objective Trajectory Optimization of a Hypersonic

Reconnaissance Vehicle with Temperature Constraints. PhD thesis, Air Force

Institute of Technology, December 2014.

18. Bernard Etkin. Dynamics of Atmospheric Flight. John Wiley & Sons, Inc.,

Toronto, ON, 1972.

19. G.L. Winchenbach. Aerodynamic Testing in a Free Flight Spark Range. Technical

Report WL-TR-1997-7006, Wright Laboratory Armament Directorate, 1997.

20. Angelo Miele. Flight Mechanics : Theory of Flight Paths. Dover Publications,

Mineola, NY, 2015.

21. Sargur Srihari. Lectures on Deep Learning. Tutorial Slides, Spring 2020. Retrieved

on 10 January 2021, from

https://cedar.buffalo.edu/~srihari/CSE676/.

22. Jose Principe. Lecture Notes on Function Approximation With MLPs, Radial

Basis and Support Vector. Course Website. Retrieved on 11 October 2020, from

http://www.cnel.ufl.edu/courses/EEL6814/chapter5.pdf.

23. John D. Anderson. Introduction to Flight (Fifth Edition). McGraw-Hill, New

York, NY, 2005.

24. M.E. Tuaber and K Sutton. Stagnation point radiative heating relations for earth

and mars entries. Journal of Spacecraft and Rockets, pages 40–42, Jan-Feb 1991.

135

https://cedar.buffalo.edu/~srihari/CSE676/
http://www.cnel.ufl.edu/courses/EEL6814/chapter5.pdf

25. Reinald G. Finke. Calculation of Reentry Vehicle Temperature History. Technical

Report IDA PAPER P-2395, Institute for Defense Analyses, 1990.

26. Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press,

Wellesley, MA, 2016.

27. Joseph A. Paradiso. Application of Linear Programming to Coordinated Manage-

ment of Jets and Aerosurfaces For Aerospace Vehicle Control. Technical Report

CSDL-R-2065, The Charles Stark Draper Laboratory, 1988.

28. N.N. Aerodynamic Design Data Book - Orbiter Vehicle STS-1. Technical Report

SD-72-SH-0060-1, Rockwell International, 1980.

29. Michael W. Oppenheimer. email communications, December 2020.

30. Fengjin Liu, William W. Hager, and Anil V. Rao. Adaptive mesh refinement

method for optimal control using nonsmoothness detection and mesh size reduc-

tion. Journal of the Franklin Institute, 352(10):4081–4106, 2015.

31. Anil V. Rao. Introduction to the Optimal Control Software, GPOPS-II. Tutorial

Slides, July 2018. Retrieved on 18 October 2020, from

https://www.siue.edu/~juliu/cbms18/img/Rao2.pdf.

32. J.T. Betts. Practical Methods for Optimal Control and Estimation Using Non-

linear Programming. SIAM Press, Philadelphia, PA, 2009.

33. Daigoro Ito, Jennifer Georgie, John Valasek, and Donald T. Ward. Reentry Ve-

hicles Flight Controls Design Guidelines - Dynamic Inversion. Technical Report

NASA-TP-2002-210771, Flight Simulation Laboratory, Texas A&M University,

1997.

136

https://www.siue.edu/~juliu/cbms18/img/Rao2.pdf

	Six Degree-of-Freedom Mission Planning for Reentry Trajectories
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Objectives
	Assumptions and Limitations
	Thesis Overview

	Background and Literature Review
	Reentry Equations of Motion
	6-DoF Equations of Motion
	Optimal Control Problem
	Planetary Model
	Gravity Model
	Atmospheric Model

	Vehicle Mass and Physical Properties
	6-DoF Aerodynamic Database
	Artificial Neural Networks (ANN)
	Reentry Heat Flux
	Chapter Conclusion

	Research Methodology
	Chapter Overview
	Reference Frames
	Earth Centered Inertial Reference Frame (ECI)
	Earth Centered Earth Fixed Reference Frame (ECEF)
	Vehicle Pointing Frame (VPF)
	Flight-Path Frame (FPF)
	Aerodynamic Reference Frame (ARF)
	Body Reference Frame (BRF)

	Equations of Motion
	Kinematic Equations
	Force Equations
	Attitude Rates
	Determination of Lift-Roll Angle
	Rates of Aerodynamic Angles

	High Fidelity Simulation Environment
	States
	Controls
	System Dynamics

	Optimal Control Problem
	Cost Functions
	Path Constraints
	State and Control Bounds

	Notional Spaceplane
	Neural Network Approximation for Aerodynamic Database

	Test Scenario - The Pullup Maneuver
	Initial State
	Final State
	Final State Error Tolerances
	Optimal Control Solver Settings

	Results and Analysis
	Preamble
	Approximation of Aerodynamic Data Using Neural Networks
	Simulation Results with Sub-Optimal Control
	Verification of Derived Equations of Motion
	Bollino's Equation of Motion for Aerodynamic Angle Rates

	Optimal Control Results for Minimum Time Trajectory
	Optimal Control Results With Final State Stabilization
	Optimal Control For Minimum Control Trajectory
	Sensitivity Study on GPOPS Parameters
	Solver: snopt vs. ipopt
	Mesh Error Tolerance

	Conclusions and Recommendations
	Limitations and Caveats
	Future Work

	Transformation Matrix From BRF to FPF
	MATLAB Scripts
	Bibliography

