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Abstract

The evolving space environment has created a demand for autonomous spacecraft

that can maneuver in complex and sometimes contentious environments. Constraint

enforcement, such as an avoidance zone to prevent collision with a target, is a key

component of autonomous control to ensure safety and performance requirements are

met. Finite-horizon Model Predictive Control (MPC) is a popular control method

due to its improved computation time while optimizing performance. Two areas of

MPC in need of expansion are time-varying constraints and phase transitions in multi-

phase applications. In this work, MPC is employed to track the reference trajectory

of a multi-phase satellite inspection mission. During certain phases, conical and

spherical constraints are activated to represent a sun vector keep-in-zone (KIZ) and a

collision avoidance keep-out-zone (KOZ), respectively. The equations of motion follow

the linearized Hill-Clohessey-Wiltshire (HCW) equations. The problem is solved to

minimize control effort and tracking error using MPCTools, a control and estimation

tool for dynamic models. Results are compared to the validated results from literature

and found to be comparable in costs while lending flexibility to phase design.

iv
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ẑ Cross-Track Unit Vector

Symbols and Greek Letters

∆v Delta-v

θ Cone Half-Angle

µ Earth’s Gravitational Parameter

~ρ Relative Position Vector

~̇ρ Relative Velocity Vector

~̈ρ Relative Acceleration Vector

Φ State Transition Matrix

Ω Right Ascension of the Ascending Node

xv



~ω Angular Velocity Vector

ω Argument of Periapsis

xvi



MULTI-PHASE SPACECRAFT PROXIMITY OPERATIONS USING MODEL

PREDICTIVE CONTROL

I. Introduction

Control methods for spacecraft operations have been heavily studied and refined

throughout the years. As reliance on space continues to grow for government and com-

mercial applications, so does the need for more versatile, efficient, and cost-effective

satellites. Innovations in control have enabled sophisticated space missions such as

servicing, inspecting, docking, collecting debris, and more. Autonomous control meth-

ods are especially desirable in Rendezvous and Proximity Operations (RPO) where

satellites operate at close relative distances. In time-sensitive situations, such as col-

lision avoidance, instantaneous control feedback is often advantageous over external,

operator-driven inputs [1]. Of the many autonomous control algorithms that have

been developed, Model Predictive Control (MPC) shows great promise for its robust-

ness to constraint enforcement and optimization. Moreover, certain MPC methods

are easily adaptable to on-board systems due to their computational efficiency.

1.1 Motivation and Background

The space environment is becoming increasingly crowded and contested due to

worldwide competing scientific, commercial, and military interests. The European

Space Agency (ESA) Space Debris Office [2] predicts that orbiting Earth are more

than 34,000 objects greater than 10 cm, and 900,000 objects from 1 mm to 1 cm. The

office also estimates that over 560 significant fragmentation events are estimated to

have occurred since 1957. These include break-ups, explosions, collisions, and more.
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The United States has long emphasized the importance of maintaining dominance

and security in space [3, 4]. On December 20, 2019, the National Defense Autho-

rization Act for Fiscal Year 2020 was signed into law, creating the United States

Space Force (USSF) [5]. The new military branch has re-energized the space race

and accelerated the need to innovate solutions that are cheaper and more versatile

than before. USSF doctrine cites Space Mobility as one of five core competencies of

the new service [6]. This is just one of many areas that benefit from innovations in

satellite design.

As RPO missions become more sophisticated, satellites require control systems

that are capable of obstacle avoidance and complex navigation in real time. Several

missions such as the Defense Advanced Research Projects Agency (DARPA) Phoenix

Spacecraft servicing program have utilized autonomy to varying degrees [7]. Some

missions have failed, such as NASA’s infamous Demonstrations for Autonomous Ren-

dezvous Technology (DART). DART collided with its target on approach, underscor-

ing the need for built-in safety. Application and study of nonlinear control techniques

could prevent such incidents in the future, as well as build confidence - especially in

autonomous control - throughout the industry[8].

Autonomy requires increased on-board computing power, which has limitations

based upon the satellite’s size, cost, redundancy level, and more. Model Predictive

Control (MPC) is a constrained optimization, closed-loop control approach with the

advantage of increased robustness and decreased computational complexity [9]. MPC

is desirable in aerospace applications for its ability to enforce constraints while opti-

mizing performance [10]. While infinite-horizon MPC methods exist, the focus of this

work will be on finite-horizon MPC, as limiting the prediction horizon is considered

to be a great contributor to improved computational efficiency [11].
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1.2 Problem Statement

This thesis examines a multi-phase RPO mission requiring an efficient control

algorithm that is robust to time-varying path constraints while maintaining stability

and minimizing control effort. Previous MPC literature has examined constraint

enforcement and multi-phase scenarios [1, 12, 13, 14]. However, there have been few

studies on time-varying constraints and different phase transition methods. Prior

multi-phase missions have relied primarily on hard entry and exit criteria between

phases, leading to sudden changes in control and costly state transitions. MPC’s use

of a finite prediction horizon saves on computation costs. However, that finite horizon

can also limit the ability to predict boundary and path constraints. This work aims

to fill this gap by presenting a phase transition strategy within the MPC framework.

1.3 Research Questions

This thesis is driven by three primary research questions:

1. How can an autonomous guidance scheme be applied to a time-varying conical

constraint?

2. How can MPC be used to minimize control effort when constraints are activated

in multi-phase maneuvers?

3. How does MPC compare to the infinite horizon Optimal Control Problem

(OCP)?

Question one will be investigated through the process of defining constraints and

implementing them into the MPC framework. The time-varying characteristic of the

constraints adds computational complexity, especially when combined with multi-

phase missions. Additionally, linearity and convexity of the constraints are important

considerations for on-board implementation.
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Question two will be answered by designing and refining a phase transition that

can address constraint activation or deactivation. To visualize this concept, consider a

car approaching a traffic light. The changing light represents the concept of constraint

activation, as it creates a change to the car’s options for its future trajectory. If the

light is green, the car can continue. For a yellow light, the car must slow down and

prepare to stop. If the light is red, the car must stop in order to avoid colliding with

traffic or pedestrians. But what if there were no yellow light? A driver might have

to slam on the brakes if the light changed suddenly from green to red. Alternately,

the driver could speed up when approaching every green light in the hopes it can get

through before the light turns. Sudden stopping or accelerating costs a driver fuel and

risks a collision. Applying this analogy to satellite guidance, is there an equivalent

of a yellow light that enables safer, more efficient transition between phases? The

particular challenge here is minimizing the control effort.

Question three will be explored by comparing the simulated experimental MPC

model with a validated optimal control model from literature. The two will be com-

pared in terms of computational cost, control effort, accuracy, and constraint enforce-

ment. Additionally, the MPC model will be evaluated for stability. It is expected

that MPC will be more computationally efficient while preserving optimality, making

it an excellent candidate for use as an on-board controller.

1.4 Organization of the Thesis

Chapter two of this thesis reviews prior work done in RPO, MPC, and phase

transitions. Chapter three discusses the methodology used to design a controller

with time varying-constraints that implements a proposed phase transition method.

Chapter four will present test cases, results, and analysis. Additionally, the MPC

solution will be compared to a validated optimal control solution. Finally, chapter
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five will summarize the thesis and give recommendations for future work.
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II. Literature Review

This chapter reviews the literature and provides the governing principles for the

primary topics in this thesis: rendezvous and proximity operations to include relative

motion dynamics; model predictive control with formulation and solution methods;

and, phase transition methods for multi-phase controllers. Governing equations and

relevant derivations are provided as needed.

2.1 Rendezvous and Proximity Operations

RPO encompasses the maneuvers required of spacecraft to perform missions within

the vicinity of other spacecraft. These operations cover a broad range of spacecraft

missions including target tracking, rendezvous and docking, debris removal, imagery,

communications, and more [15]. While satellites of many sizes can be involved in

RPO, the concept of smaller, lighter satellites working in concert is becoming a cost-

efficient alternative to large satellite operations [16].

RPO is also sometimes referred to as Formation Flying (FF) in literature. The

name can imply a cooperative target, although a survey of Guidance, Navigation, and

Control (GNC) applications by Di Mauro et al. [16] discusses autonomous missions

involving both cooperative and non-cooperative targets. Cooperative simply means

that all controllers share a common objective, whereas non-cooperative controllers

each have their own objectives [1]. The focus of this thesis will be a proximity op-

eration utilizing different satellite maneuvers, referred to as formations. The target’s

cooperation is outside the scope of this work. More information about the topic can

be found in studies on differential gaming such as Prince et al.’s [17] 2019 paper.
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2.1.1 Reference Frame

It is helpful in RPO to refer to the motion of satellites with respect to one another.

The satellite performing the maneuver is designated the chaser, or “deputy.” The

motion of the deputy can be described relative to its target, or “chief.” Rather than

defining the motion of both objects with respect to an inertial reference frame, the

motion of objects can be formulated in a more convenient local frame, called the

Local-Vertical, Local-Horizontal (LVLH) frame, illustrated in Figure 1. This is a

rotating reference frame centered at the chief. The fundamental plane is located on

the orbital plane with the x̂ direction pointing radially outward, aligned with the

vector from the Earth to the chief. The ẑ direction is normal to the orbital plane,

and the in-track ŷ direction is orthogonal to x̂ and ẑ [18, 19].

Figure 1. LVLH Reference Frame

Using the LVLH frame, the deputy’s position can then be described in terms of

its relative position vector to the chief, ~ρ. The equations of motion for the deputy

will be derived in the next section.
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2.1.2 Hill-Clohessey Wiltshire Equations

Dynamic models for relative spacecraft motion are derived in texts such as Al-

friend’s Spacecraft Formation Flying [18] and Schaub’s and Junkins’ Analytical Me-

chanics of Space Systems [20]. Alfriend’s derivation is summarized here, starting with

the relative position vector between a deputy and chief spacecraft in the inertial frame,

I,

I~ρ = (~rd − ~rc), (1)

where ~rd and ~rc are the position vectors of the deputy and chief in the inertial

frame, respectively. This is then converted to the LVLH or Hill frame, L, using a

Direction Cosine Matrix (DCM), RLI such that,

L~ρ = RLI(~rd − ~rc), (2)

where RLI is given by,

RLI = [ôTr ; ôTθ ; ôTh ]. (3)

The vectors ôTr , ô
T
θ , ô

T
h are the basis vectors of the Hill frame. They depend upon ~rc

and the chief’s orbital angular momentum vector. The relative velocity vector ~̇ρ can

then be found by taking the time derivative of ~ρ and applying the transport theorem.

The result is,

L~̇ρ = I ~̇ρ− LI~ω × I~ρ, (4)

where ~ω is the angular velocity vector given by,

LI~ω = [0, 0, θ̇c]
T . (5)

θ̇c is the chief’s time rate of change of the argument of true latitude. It is the sum
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of the rate of argument of periapsis - which is zero for unperturbed motion - and rate

of true anomaly. The subscript is used here for clarity, as a different meaning of θ

will be used later.

Taking the derivative of the velocity vector, ~̇ρ, then yields the relative acceleration

between the two bodies,

~̈ρ =
d2L~ρ

dt2
+ 2LI~ω × dL~ρ

dt
+
dLI~ω

dt
× ~ρ+ LI~ω × (LI~ω × ~ρ). (6)

Breaking the relative velocity into its vector components and simplifying alge-

braically gives the Nonlinear Equations of Relative Motion (NERMs), [18],

ẍ− 2θ̇cẏ − θ̈cy − θ̇2cx = − µ(rc + x)

[(rc + x)2 + y2 + z2]
3/2

+
µ

r2c
(7)

ÿ + 2θ̇cẋ+ θ̈cx− θ̇2cy = − µy

[(rc + x)2 + y2 + z2]
3/2

(8)

z̈ = − µz

[(rc + x)2 + y2 + z2]
3/2

(9)

This is a ten-dimensional system of nonlinear Ordinary Differential Equations

(ODEs) whose states are: x,y,z,ẋ,ẏ, ż,rc,ṙc,θ̇c,θ̈c. x, y, z, are the components of rela-

tive position, ~ρ; ẋ, ẏ, ż are the components of relative velocity, ~̇ρ; and, ẍ, ÿ, and z̈ are

the components of the relative acceleration, ~̈ρ, in the LVLH frame.

If the chief is assumed to be in a circular orbit, then θ̇c = nc = constant, where

nc is the mean motion of the chief. Additionally, θ̈c = 0. The chief’s relative position

can be written in the LVLH frame as [rc, 0, 0]T , where rc is scalar and equal to the

chief’s constant semimajor axis, a. The equations above then become,

ẍ− 2nẏ − n2x = − µ(a+ x)

[(a+ x)2 + y2 + z2]
3/2

+
µ

a2
(10)
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ÿ + 2nẋ− n2y = − µy

[(a+ x)2 + y2 + z2]
3/2

(11)

z̈ = − µz

[(a+ x)2 + y2 + z2]
3/2
. (12)

The subscript is omitted from the mean motion, n, after this point for clarity. Lin-

earizing the system above and neglecting higher order terms yields the linearized

Hill-Clohessey-Wiltshire (HCW) or Clohessey-Wiltshire (CW) equations [18]:

ẍ− 2nẏ − 3n2x = ux (13)

ÿ + 2nẋ = uy (14)

z̈ + n2z = uz. (15)

ux,uy, uz are the control accelerations for each axis. The control can also be rep-

resented in vector form by ~u, and will be utilized in the controller cost function to

minimize control effort. This is now a 6-dimensional, linear system of ODE’s whose

out-of-plane motion is decoupled from the radial and in-track motion.

The use of HCW dynamics, though useful in simplifying problems in order to

demonstrate control concepts, has some limitations. For one, HCW is only valid

for circular or near circular orbits. Elliptical orbits require other models of relative

motion, many of which are outlined in Sullivan et al.’s [21] survey on the subject.

Also, the concept of stability for HCW is local to the chief within small relative

distances. As such, this dynamic model is only valid for close proximity applications

[22].

It is important to note that this thesis chiefly considers translational motion of the

spacecraft. However, an expanding area of research has utilized the full Six Degree of

Freedom (6-DoF) model of spacecraft motion [9]. In the 6-DoF model, components

of rotation and translation become state variables. The vectors can be decoupled if
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the translational motion does not depend on the satellite’s torque input, and if the

rotational motion is independent of thrust. Becker’s [9] work utilized Decoupled MPC

(DMPC), in which he treated rotation and translation as two separate controllers.

Some of his results are compared to this work in Chapter IV.

Whether the dynamics can feasibly be decoupled depends upon the spacecraft’s

design. For example, a spacecraft whose thrusters are used for both translational

and rotational control could not use DMPC [13]. Zagaris [23], derived models for the

fully coupled model as well as decoupled translation and rotation. His work analyzed

reachability for rendezvous with a tumbling object using a full 6-DoF MPC controller.

Other work in 6-DoF control has been done by Zhou et al. [24] for MPC, Li et al.

[25] for sliding mode control, and Dong [26] and Buckner [27] for tube-based MPC.

2.1.3 RPO Formations

Two types of formations have been well-studied for RPO scenarios involving a

non-maneuvering target: the Natural Motion Circumnavigation (NMC) orbit, and

the pogo or teardrop maneuver. Lovell and Tollefson [28] detailed a method for an

impulsive hover using the HCW closed-form solution and Relative Orbital Elements

(ROE). Prince [29] revisited this work when implementing both an NMC orbit and

teardrop maneuver in his work on optimal finite thrust guidance for constraint in-

spection maneuvers.

Both maneuvers rely on the natural motion of the deputy satellite, in this case

the HCW dynamics. Propagating the spacecraft’s motion requires the closed-form

solution to the HCW equations. This solution is derived in texts such as Alfriend’s

[18]. One solution method is via Laplace transforms of the first-and second-order

terms for each differential equation. Another method uses the exponential of the

plant matrix to find the State Transition Matrix (STM) Φ(t, t0), as a function of
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current time, t, and initial time, t0. This is used to calculate the state according to

the equation,

x(t) = Φ(t, t0)x(t0). (16)

To find the STM, the unforced HCW equations are first written in state space

form,

ẋ = Ax, (17)

where x is the state vector and ẋ is its derivative. The n-by-n matrix A is the

plant matrix of the HCW equations given by,

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0


. (18)

Φ(t, t0) can be found through the solution to Equation 16 and by using the ex-

ponential of the matrix. Since the problem is time-invariant, the exponential can be

found using the Laplace transform L ,

Φ(t, t0) = eA(t−t0) = L −1{(sI − A)−1}. (19)
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The STM is found to be,

Φ =



4− 3 cosnt 0 0 sinnt
n

−(2(cosnt−1))
n 0

6 sinnt− 6nt 1 0 (2(cosnt−1))
n

(4 sinnt−3nt)
n 0

0 0 cosnt 0 0 sinnt
n

3n sinnt 0 0 cosnt 2 sinnt 0

6n(cosnt− 1) 0 0 −2 sinnt 4 cosnt− 3 0

0 0 −n sinnt 0 0 cosnt


. (20)

The closed-form solution of the HCW equations can be used to propagate the natural

motion of the trajectory given the desired beginning and end states. It is important to note

that the in-track equation has a secular term, indicating drift in that direction. A stable

subspace can be found for the state space with the initial condition,

ẏ(0) = −2nx(0). (21)

Equation 21 is referred to as the energy-matching condition. By satisfying this initial

condition, the deputy matches the energy of the chief’s orbit and is able to remain in a closed

relative orbit [18]. The projection of the deputy’s relative orbit onto the chief’s orbital plane

is a two-by-one ellipse. The solution above was used by Lovell [28] to formulate Relative

Orbital Elements. For this work it is sufficient to use Cartesian coordinates when defining

the deputy’s position relative to the chief. A simple maneuver which transfers the deputy

from one NMC orbit to another is illustrated in Figure 2.
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Figure 2. Relative Orbit Transfer Using Natural Motion Circumnavigation

By utilizing the closed-form HCW solution, the transfer in Figure 2 is a matter of

specifying the desired initial and final states of the deputy’s transfer. If the positions are

defined using Cartesian coordinates, the relative velocities can be calculated to satisfy the

energy matching conditions for a stable orbit. Such a maneuver can be accomplished using

either impulsive or continuous thrust. Further considerations can be made for thruster

configuration and direction of thrust [16], but are outside the scope of this work.

A pogo or teardrop formation is a type of “quasi-hovering” orbit that can be achieved

for non-zero radial displacements. In this case, the satellite will drift in the negative in-track

direction, tracing the outline of a teardrop. This maneuver is useful for inspection scenarios,

as the maneuver can be repeated as many times as necessary necessary by applying the

required ∆v. The trajectory was formulated in the aforementioned work by Lovell [28], as

seen in Figure 3.
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Figure 3. Lovell’s Teardrop Formulation

The trajectory in Figure 3 can be calculated using the CW Targeting problem. As its

name suggests, a desired state is targeted, and then the value of ∆v can be calculated using

the STM. First, the state vector can be re-written in terms of the relative position, r and

velocity, v,

x = [r,v]T . (22)

Then, the STM is partitioned as follows,

Φ =

Φrr Φrv

Φvr Φvv

 . (23)

From this, the required impulsive ∆v to reach the final position rf in a given time is

found by,

∆v = Φ−1rv (rf −Φrrr0)− v0. (24)

Here, r0 is the initial position, and v0 is the initial velocity. This initial velocity is

applied to the initial state vector, and the motion is propagated using the HCW STM. By

setting the initial state equal to the final state and t − t0 ≥ 0, a reference trajectory can

be created in the shape of the desired teardrop. The natural teardrop trajectory can then

be tracked by a controller, while optionally enforcing safety constraints. Zagaris et al. [12]
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created a teardrop tracking problem which brought a satellite within close proximity of a

Keep-Out-Zone (KOZ) constraint. The proposed MPC controller was designed to avoid

the KOZ while tracking the teardrop trajectory as closely as possible. The CW targeting

problem can occasionally become problematic, as Φrv is sometimes singular due to the

periodic terms in the STM [18].

2.2 Model Predictive Control

MPC has steadily gained popularity in the field of autonomous control as a robust,

computationally efficient control framework. While classical optimal control methods are

useful for mission planning and validation, they tend to be too computationally costly for

on-board implementation [30]. MPC, on the other hand, offers reduced computational

complexity due to its finite receding horizon framework.

2.2.1 Background

MPC was first developed in the 1960’s, but not applied to aerospace until 1984. Since

then, the field has expanded to applications in many areas of aerospace. Eren et al.’s [10]

survey paper is an excellent summary of developments through 2017. They expound on the

importance of autonomy in spaceflight, saying, “...it is standard that current flight control

systems have to provide a priori guarantees of constraint satisfaction, safety, optimized per-

formance, robustness, and/or adaptability with respect to the changes in employed models

and operating conditions [10].”

In its earlier development, MPC was relegated to slow industrial processes with near-

steady-state conditions. Its progress was initially hindered by hardware capabilities and a

lack of appropriate numerical solvers. As advances in hardware and optimal control solution

methods grew, these problems began to fade and MPC’s potential became realizable. Since

2004 alone, it has been utilized in chemical process control, automotive engine control,

and multi-agent control in transportation networks [31]. Improved solution methods and

advancements in stability conditions enabled the application of MPC to linear or nonlinear
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systems with hard state and control constraints [1]. Since then, extensive research into

RPO using MPC has been developed. Di Cairano et al. [32], for example, demonstrated

rendezvous with a tumbling object using MPC.

One advantage of MPC over the OCP is that it can be used to force both linear and

nonlinear constraints. While there are OCP methods that can handle some constraints,

algorithms can quickly become intractable [33]. Weiss et al. [34, 35] have provided substan-

tial overviews of strategies for constraint handling using MPC. Malyuta describes a process

of lossless convexification which relies on Second-Order Cone Programming (SOCP) [36].

Other constraint considerations such as collision avoidance, approach direction, and slow

impact are examined by Tevfik [37]. While methods have been developed for MPC to handle

nonlinear constraints, and even nonconvex constraints in some cases, there has also been

research into constraint linearization specifically for MPC. Zagaris et al. [38] compared

three methods for obtaining linear approximations of ellipsoidal KOZ constraints: rotating-

hyperplane, dual-hyperplane, and direct-linearization. Keyanpour’s paper also discusses

constraint linearization in order to apply quadratic programming [39].

Although outside the scope of this work, noise and perturbations are significant factors in

real-world RPO missions. Several studies have been done in this area with respect to MPC

that are worth mentioning for further reading. Weiss [34] explored a multi-phase maneuver

using a controller augmented with an Extended Kalman Filter (EKF). Sanchez et al. [40]

developed robust MPC for the restricted three-body problem (R3BP) for applications to

cislunar space. Larsen’s [41] 2019 study examines a fuel-efficient rendezvous maneuver

with an uncontrolled object . Jin’s papers examine the robustness of MPC for elliptical,

perturbed orbits [42, 43].

2.2.2 Formulation

MPC uses a discretized dynamics model to predict the optimal trajectory out to a finite

prediction horizon, N . The future state is a function of the state and control input at the

current time. The optimal control problem is recursively solved for each horizon. The
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final state of the segment is the initial condition for the next prediction horizon [11]. A

natural benefit of this is that MPC is not as sensitive to an initial guess as the OCP. A

larger advantage is the decreased computation time as the infinite optimal control problem

is effectively broken into smaller segments. The disadvantage is that the model’s foresight

is limited to the length of the prediction horizon [9].

The book by Rawlings and Mayne [11], Model Predictive Control: Theory, Computation,

and Design, is a comprehensive overview of MPC theory and development. The problem is

briefly summarized here. In general, the MPC optimization problem minimizes the cost, J ,

according to

J = Vf +
1

2

N−1∑
k=1

l. (25)

The stage cost, l, is defined as a standard quadratic regulator,

l = [(xk − xd)TQ(xk − xd) + uTkRuk], (26)

where (xk − xd) is the state tracking error to the desired state, xd. xk is the discretized

state vector at each time step, k, for the prediction horizon of length N . Q and R are the

weighting matrices for the state and control, respectively.

The terminal cost, Vf is given by,

Vf = (xN − xd)TQf (xN − xd), (27)

where Qf is the weighting for the terminal cost. It is found from the solution to the discrete

algebraic Ricatti equation for the unconstrained infinite horizon LQR [44]. In his work,

Zagaris [23] explains that including the terminal cost provides a guarantee in stability.

Eren et al. presented a general flow for the MPC solution algorithm, which can be seen

in Figure 4 [10].
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Figure 4. MPC Algorithm Flow

For each prediction horizon, the OCP returns the open-loop optimal control solution in

the form,

Uk = [u1|k, u2|k, u3|k, ..., uN |k]. (28)

uN |k is the control effort for each time step, k, of each prediction horizon, N . So, the overall

solution Uk is a vector, each entry of which is an individual vector for the prediction horizon.

Each uNh|k can then be applied to return the feedback control law for each horizon,

K = [u1|k, u1|k+1, u1|k+2, ..., u1|k+Nsim
]. (29)

The feedback loop applies the first control input from Equation 28 to the system, which

propagates the plant forward in time. The initial values of the control and states at the

beginning of each prediction horizon serve as predicted end states for the preceding horizon.

Nsim is the number of desired simulation steps. In many cases it is helpful to define
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this value as the total scenario time divided by a desired time step. A default time step

of one second can be helpful in some cases, but may be too computationally expensive

in others, such as a long, uncomplicated maneuver at high orbit altitudes. Emara-Shabaik

demonstrated that the solution to the MPC usually performs similarly to the infinite horizon

OCP [9].

2.2.3 Solution Methods

Both linear and nonlinear solution methods have been developed throughout the years.

One solution to a MPC problem is found through standard quadratic programming (LQ-

MPC). In his 2012 paper, Weiss analyzed spacecraft relative motion control using appli-

cation of LQ-MPC and dynamically reconfigurable constraints [34]. The computational

advantages of quadratic programming were demonstrated by another study done by Jung

et al. [45]. In their 2018 paper, Zagaris et al. discussed how the use of LQ-MPC is advan-

tageous for on-board implementation [38]. Additional studies in quadratic programming

were found by Laiu [46], Keyanpour [39], and Di Cairano [32]. More generally, Di Cairano’s

paper examines MPC suitability for embedment in aerospace platforms.

Nonlinear MPC (NMPC) is another possibility using Non-Linear Programming (NLP)

solvers such as MPCTools, which is used in this work [11]. The advantage of NMPC is

that performance can be optimized without conservative approximations to nonlinear con-

straints. For example, approximating a conical constraint as a series of planes necessitates

consideration for performance versus computation cost trade-off. The disadvantage is that

NLP is not as computationally efficient, making it less useful for on-board implementation.

A list of available MPC solution tools is given in Eren et al.’s survey [10].

2.3 Multi-Phase Operations

This work builds upon prior work by exploring how phase transitions occur between

mission phases that utilize MPC. This research explores both hard and soft constraints in

the MPC framework for both nonlinear constraints. Overall, there is not much literature
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surrounding the topic of phase transitions for MPC, especially for 6-DoF problems [9].

Possible methods to implement phase transitions include hard entry and exit criteria, mixed-

integer programming, logistic functions, and soft constraints.

Most of the MPC literature appears to rely on hard constraints for phase transition.

Weiss et al. [35] applied MPC to a rendezvous and docking scenario with different con-

straints for each phase. In his thesis, Becker [9] designed an MPC controller for a 6-phase

satellite inspection mission. His phase transitions consisted of hard exit criteria which

ensured constraint satisfaction allowing entry into the next phase. The drawback of his tra-

jectory was that there were often sharp turns near his phase transitions. Similarly, Jewison

et al [47] designed a multi-phase mission. Their phase entry and exit criteria were rela-

tively simple, relying on relative distance to their target in order to trigger the next phase,

leading to abrupt transitions. An application of mixed integer programming to MPC was

not found in the research. This method shows potential, as it offers a way to solve finite

horizon optimal control problems using mixed integer and linear programming [48].

Saunders [49] took his work with phase transitions a step further by deriving a logistic

function. He applied MPC to a cooperative formation flying inspection using an artificial

potential function. His phase transition utilized a statistical curve to provide a variable

measure of closeness to satisfying constraints. This method is again based on range to the

target, but provided for smooth phase transitions by utilizing statistical analysis [49]. The

last phase-transition method proposed, softening the constraints, was not found in literature

for use as a phase transition method. It is investigated in this work for its potential in multi-

phase RPO.

2.4 Summary

This chapter provided an overview of the guiding principles and reviewed the literature

in RPO, MPC, and multi-phase missions. As noted, the largest gaps found in the literature

regarded time-varying constraints and phase transitions. These concepts are linked to one

another by the fact that each phase requires constraint definition. Chapters III and IV will
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discuss how constraint definition can be used to streamline phase transitions and optimize

a satellite maneuver overall.
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III. Methodology

This chapter defines a multi-phase satellite inspection scenario and explores the methods

used to solve for the optimal trajectory. The controller components such as the plant,

constraints, cost functions, and bounds are formulated specifically for use with MPC. Then,

slack variables are incorporated into the constraint and cost functions as the mechanism for

phase transitions. Chosen software and solution methods are described.

3.1 Dynamics and Relative Motion

The satellite inspection mission specifies a chief assumed to be in near-circular orbit

about the earth. The chief’s initial position and velocity in the inertial frame are calculated

from its Classical Orbital Elements (COE) [19], which are specified for each test instance

in the next chapter. This information is used later to calculate the sun vector for one of

the path constraints. The chief’s semimajor axis, a, is used to calculate the chief’s mean

motion, n, and orbital period, T ,

n =

√
µ

a3
(30)

T =
2π

n
(31)

Since the deputy is orbiting the chief in relatively close proximity, it shares the value

of the chief’s mean motion. Thus, the only information needed to propagate the deputy’s

orbit using the HCW equations is the chief’s semimajor axis and its relative position in

the LVLH frame. This is done using Cartesian coordinates with the chief at the center of

the frame. The relative velocity is initially defined using the energy matching condition

from Equation 21 to place it on an NMC about the chief. The deputy is assumed to have

constant mass and be capable of continuous thrust. As such, the deputy’s initial and final
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conditions for the overall maneuver are given by,

x =



x

y

z

ẋ
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.

The HCW equations of relative motion are selected for the inspection scenario because

because literature has shown them to be sufficiently accurate for near-circular orbits over

short periods of time [21]. The ODEs will form the plant of the controller. The Linear

Time-Invariant (LTI) system can be written in state space as,

ẋ = Ax +Bu (33)

where A is the plant or system matrix in Equation 18, and B is the input matrix corre-

sponding to the control, u,

B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


(34)

The inspection mission consists of the three phases summarized in Table 3.
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Table 3. Inspecton Phases

Phase Maneuver Entry Criteria Exit Criteria

1) Appproach Transfer from NMC N/A KIZ Entry

2) Observe Teardrop, CW Targeting Sun Vector Alignment Desired Time

3) Depart Transfer to NMC Natural Motion N/A

In the approach phase, the deputy will transfer from its current NMC to an insertion

point closer to the chief. Using the NMC transfer concept discussed in Chapter II is still

applicable here, except that the deputy will navigate to a stationary point at a certain

relative distance from the chief. Once the deputy is within a conical Keep-in-Zone (KIZ)

representing illumination of the sun on the chief, it will begin its quasi-hovering teardrop

maneuver. After a specified amount of time, the deputy will exit the teardrop and return

to natural motion about the chief.

It should be noted that this problem assumes perfect knowledge of the deputy’s state

vector. Noise is not taken into account, and as such no filtering is discussed in this work.

Previous literature has explored filtering using MPC, see Weiss [34], Wen and Gurfil [50],

Mammarella [51], Larsen [41], and Sanchez [40].

3.2 Constraints and Bounds

The scenario is subject to two path constraints, a KOZ and KIZ, as well as bounds on

the states and controls. The path constraints are defined mathematically. The bounds are

discussed here in terms of selection and considerations, but final values will be given with

each test case in Chapter IV.

3.2.1 Path Constraints

The KOZ is a spheroid of radius r with the chief at its center. The constraint is formed

with respect to the norm of the deputy’s relative position vector, ~va, at any given time. The
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formula is,

r − ‖~va‖ ≤ 0. (35)

During the observation and hover phases, it is desired that the deputy maintain the sun

vector constraint such that the chief is constantly illuminated. This is defined by a cone

whose point originates at the chief. The cone is formed by a unit vector, v̂s, which points

from the chief to the sun, and a half-angle, θ. Within the KIZ, the angle between the deputy

relative to the chief and the sun vector must be less than or equal to the half-angle of the

cone. This gives the constraint,

cos θ − v̂Ta v̂s ≤ 0. (36)

An illustration of both the spherical KOZ and the conical KIZ are given in Figure 5 below.

Figure 5. Illustration of Constraint Definitions

The unit sun vector, v̂s, changes with every time step, although the distance from the

Earth to the Sun makes it a relatively slow change, especially at higher orbital regimes.

Nevertheless, it is possible to re-compute the vector using a for loop based upon the Julian

Day. For this process, the code developed by David Vallado [19] was used.

Vallado’s code calculates the vector from the Sun to the Earth, not to the chief, so

additional computation is required. The chief’s COEs are converted to its initial position

and velocity relative to the Earth in the inertial frame. Then, its motion is propagated by
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integrating the two-body problem in MATLAB. The resulting position vector is added to

the vector from Sun to Earth at each time step. The resulting vector must be converted to

the LVLH frame and normalized, yielding the final v̂s required to enforce the constraint.

Conical path constraints have been implemented in literature [9, 49] either as KIZs or

KOZs. The KOZ can be formulated by simply flipping the inequality. There are many

instances in which such a constraint might be applied. In this work, it is used to enable

illumination of the chief for observation purposes. It could be used as a KOZ to keep delicate

sensors from pointing directly into the sun. It could also be implemented as a Line-of-Sight

(LOS) attitude requirement for observing the chief.

Although the KIZ is inherently non-convex, convexification is outside the scope of this

work. In general, non-convex constraints render an optimization NP-hard [52]. However,

nonlinear optimizers such as MPCTools can be used at the cost of computational efficiency.

There are two other potential complications with using non-convex constraints. One is

that, the problem loses its guaranteed convergence. The other is that the optimality of the

solution is not guaranteed [9, 12].

3.2.2 Bounds

State and control bounds allow the solver to narrow the search for the solution’s starting

point. As mentioned earlier, the recursive MPC framework makes it less sensitive to an

initial guess than an open-loop OCP solver such as GPOPS-II. As such, the bounds can be

relatively generous as long as they encompass the initial state.

Mathematically, the maximum control output is bounded using the infinity norm of the

control, ~u,

‖~u‖∞ ≤ umax. (37)

In this work, the state was assigned a minimum value for position in kilometers and

velocity in kilometers per second. The maximums are the negatives of those bounds.
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3.3 Optimal Control Problem

The optimal control problem minimizes the continuous running cost given by the func-

tion,

J =

∫ tf

t0

1

2
uT (t)Ru(t) dt. (38)

subject to the constraints described above. The R in Equation 38 is a weighting matrix

for the controls. In Chapter IV, the methods in this work are compared to methods from

literature which have been validated. The previous work solved the OCP problem using the

Interior Point Optimizer (IPOPT) [53] in the General Purpose OPtimal Control (GPOPS-

II) software [54]. In order to validate the solution, the control output from GPOPS-II

was applied to the HCW equations, which were then integrated using MATLAB’s ode45

function. The solution was propagated and the final state of the validation was compared to

the final state of the GPOPS-II output. The validated model can be used as a comparison

for the MPC model.

3.4 MPC Solution

As discussed in Chapter II, MPC works by applying optimal control at discrete time

steps. The HCW ODEs can be represented in discretized form in state space by,

xk+1 = Adxk +Bduk. (39)

where k = 1, 2, ..., N − 1 is the prediction horizon and N is the number of steps being

predicted forward. Note that Ad and Bd are discrete versions of the continuous state-space

matrices seen in Equations 18 and 34. From Equations 25, 26, and 27, the cost function is

written as,

J = (xN − xd)TQf (xN − xd) +
1

2

N−1∑
k=1

[(xk − xd)TQ(xk − xd) + uTkRuk]. (40)

Two programs were used to implement the MPC solution. The first is the MPCTools,
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developed by James Rawlings [44]. The package is an open-source control and estimation

tool for both linear and nonlinear dynamic modeling. The program was designed for Oc-

tave but also supports MATLAB. It provides an interface for creating the MPC variables

and structure required for the solution. The user assigns the bounds, state variables, ini-

tial conditions, linear or nonlinear dynamics, slack variables, and prediction horizons using

the pre-defined structures in MPCTools. Additionally, the path constraint, stage cost, and

terminal costs are all defined. MPCTools discretizes the state matrices and can linearize

nonlinar dynamics. It then “packages” the information into symbolic variables and func-

tions which are passed into the Computer Algebra System + Algorithmic Differentiation

(CasADi) program.

CasADi is a symbolic algebraic and differentiation solver. CasADi takes the variables

and functions from MPCTools and constructs algebraic expressions. It can even do some

simplification. Once it formulates the constrained optimization problem, it can pass the

model into IPOPT to generate a solution. So, CasADi serves as an interface between MPC-

Tools and IPOPT or other solvers. While CasADi is a powerful tool, it is very difficult to

formulate an MPC problem in it directly, which is why Rawlings Group created MPCTools

[44]. MPCTools and CasADi have been demonstrated in literature to be powerful nonlinear

optimization tools. Malladi’s [14] 2019 paper used them to simulate a 6-DoF manuever

using MPC.

3.5 Phase Transition

Phase transition methods from literature were discussed in Section 2.3. The purpose of

this work is to show that phase transitions can be accomplished by modifying the constraints

of the optimal control problem. This allows the deputy to move between constraint zones

while still adhering to performance requirements.

Constraints in an optimization problem often take the form of an inequality, requiring

the constraint equation to be less than or equal to some value. When that value is zero,

the constraint is considered to be “hard”. However, it is possible that the equality can be
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within some margin, causing the constraint to be “soft.” The margin, or slack, is given by

the variable s. This value can be some pre-defined number, or it can be optimized using

the cost function. MPCTools automatically optimizes the value of s when slack variables

are implemented. This softens the constraints and allow them to become violable.

The slackened KOZ constraint can be written as,

r − ‖va‖ ≤ s. (41)

Collision of the deputy with a chief would mean unacceptable mission failure. Therefore,

it is rare that this constraint could be relaxed. In fact, making the KOZ a hard constraint

adds a passive safety quality to the controller that makes it desirable for on-board imple-

mentation. MPC’s constraint enforcement is one of the qualities that make it so popular in

aerospace. Of course, hardware failures or an insufficient prediction horizon on the MPC

controller could still cause constraint violations. Nevertheless, it is important to note that

even a soft constraint is still a constraint, and sufficient radius around the chief is another

safety factor.

With the slack variable in the KIZ, the zero is replaced with s to give,

cos θ − v̂Ta v̂s ≤ s (42)

Unlike with the spherical KOZ, there are many instances in which it could be useful to

soften this constraint. If the deputy needs to navigate in or outside of a an area bounded

by a constraint, softening the constraint is one way to allow this. Another instance is one

in which a satellite may wish to avoid a certain area, but control costs or time are a larger

concern. This could occur when a satellite does not wish to obstruct imaging equipment of

another satellite, but skirting the edge of the viewing area would not adversely impact the

mission.

When the slack variables are used, they are implemented into the cost functions. So the
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stage cost becomes,

l = kQ+R[xTe Qxe + uTRu] + ks[s
T s], (43)

and the terminal cost is,

Vf = kQ[xTe Qfxe] + ks[s
T s]. (44)

The variables kQ+R, ks, and kQ are weighting parameters introduced into the cost func-

tions. This allows the optimal control costs to be weighed against the slack variables.

Violating the slack variables comes at a cost to the state and control. Therefore, it must

be determined whether the driving factor of each phase is constraint enforcement or perfor-

mance. As with most engineering problems, the answer is not one or the other but a matter

of cost-versus-benefit. In Chapter IV, the slack will be weighted for a range of values to

observe the impact to the trajectory, costs, and control effort.

3.6 Summary

This chapter formulated the dynamics, constraints, and MPC problem necessary to an-

alyze time-varying constraints and the use of slack variables as a means for phase transition.

Having a ready-made framework in which to implement MPC significantly aids in applying

the concepts above to an RPO scenario. While MPCTools and CasADi are unique in this

regard and perhaps not easily adapted to mission planning tools, they are excellent pro-

grams for testing various trajectory optimization methods. The next chapter will discuss

specific test instances and their results.
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IV. Results and Analysis

This chapter consists of three main sections. First, the mutli-phase inspection mission

described in Chapter III is defined for Low Earth Orbit (LEO) and Geostationary Orbit

(GEO) scenarios. Then, simulation results are compared for the trajectories, constraint

enforcement, controls, and computation times. Lastly, the slack variable methodology is

implemented for a 6-DoF multi-phase, MPC problem from literature and compared with

the original result.

All coding and simulations for this work were completed using a Lenovo Yoga C930

laptop. The processor is an Intel(R) Core(TM) i7-8550U (8th gen) CPU at 1.80 GHz. The

operating system is 64-bit with 16 GB of RAM. No additional hardware was required. All

software is either free-use or provided via AFIT’s student license. The most recent versions

of MPCTools and CasaDi are open-source, available online [44, 55]. MATLAB 2019b and

GPOPS-II are licensed through the school. GPOPS-II contains IPOPT.

4.1 Test Instances

The inspection scenario in Chapter III was created in MATLAB for both LEO and

GEO examples. Additionally, a single-phase “toy” instance was simulated for the purposes

of validating the constraint enforcement using slack variables. This instance uses the GEO

parameters.

4.1.1 Chief and Deputy Parameters

Each test instance is defined below in terms of the chief and deputy orbits, initial and

final conditions of each phase, constraint settings, and controller settings. The chief’s orbital

elements are given in Table 4. The elements are notional values but were motivated by the

orbits of the International Space Station (ISS) for LEO and EchoStar 23 for GEO [56],

[57]. Although the orbits are assumed to be circular in theory, a very small eccentricity was
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added to each orbit in order to avoid singularities when calculating the chief’s position and

velocity vectors from the COEs using Vallado’s code [19].

Table 4. Chief Orbital Elements

Variable Element (units) LEO GEO
a Semimajor Axis (km) 6,800 42,000
T Period (hours) 1.5501 23.7948
e Eccentricity 0.001 0.001
i Inclination (deg) 45 0.01
Ω Ascending Node (deg) 145 300
ω Argument of Periapsis (deg) 3.8 112
f True anomaly at t0 (deg) 90.1 7

As discussed in Section 3.1, the deputy’s position relative to the chief is defined using the

Cartesian coordinate system in the LVLH reference frame. Then, the velocity components

of the state vectors follow according to the closed-form solution to the unforced HCW

equations, making the state vector,

x =
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. (45)

The selection of the states required some tuning for each individual orbital regime. The

states and times are defined in Table 5 for the LEO case and Table 6 for the GEO case.

The overall initial and final states were selected to ensure the maneuver started outside

the KIZ. Since the KIZ is already well-defined by its time-varying unit sun vector, it was

decided that the final state of the first phase would be chosen to align with v̂s at a specified

distance in kilometers from the chief. By constraining the final position to the vector, the

goal was for the deputy to rotate with the vector and stay inside the KIZ. This position

becomes the starting point for the teardrop maneuver in phase two. The teardrop forma-
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tion using CW-targeting specifies that the initial and final positions be the same. It was

hypothesized that the deputy would try to adhere to this constraint, but with the added

path constraint of the KIZ it would adjust course in order to avoid constraint violation.

For the third and final phase, it was desired that the deputy exit the KIZ and return

to natural motion about the chief to await its next instructions. This was accomplished by

defining the NMC and using the tracking problem from phase two.

Table 5. Initial and Final Conditions for Each Phase, LEO

Phase Initial (x, y, z) Final (x, y, z) Time
1) Approach x = [−1,−2, 0.25]T 0.4 ∗ v̂s 0.5 ∗ T
2) Observe Phase 1 Xd Phase 2 X0 0.6 ∗ T
3) Depart Phase 2 Xd [1, 2, 0] 0.3 ∗ T

The observation phase for the LEO case was more difficult to define using MPC, as

the chief’s shorter period meant a more dynamic KIZ. Additionally, the teardrop maneuver

was very sensitive to the time and states, and required significant manipulation to provide

a trajectory sufficient for observation. Providing a small inclination to the deputy’s initial

orbit helped it to better align with the sun vector.

Table 6. Initial and Final Conditions for Each Phase, GEO

Phase Initial (x, y, z) Final (x, y, z) Time
1) Approach x = [10,−20, 0]T 3 ∗ v̂s 0.5 ∗ T
2) Observe Phase 1 Xd Phase 2 X0 0.3 ∗ T
3) Depart Phase 2 Xd [-6, 6, 5] 0.4 ∗ T

Some care had to be taken in assigning times to each phase. The phases in GEO were

much longer than those in LEO due to the longer period. While this proved to be beneficial

for remaining inside of the constraint cone, it was also challenging to select the appropriate

amount of time for each maneuver. After too much time the shifting constraint zone will

increase computation cost and control effort. Additionally, the time and weights of Q and

R had to be balanced against one another to avoid either over-shooting the final state or

simply never reaching it.
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4.1.2 Constraints

The KIZ and KOZ constraints are defined in the same way for each mission phase. Their

activation is phase-dependent. The KOZ is defined by a sphere of radius r centered on the

chief. The KIZ is defined by the sun vector, calculated using the methods in Chapter III,

and a cone half-angle, θ. The constraints are summarized for each orbital regime in Table

7.

Table 7. Constraints

Constraint Name LEO GEO

KOZ Radius, r (km) 0.25 1

KIZ Half-angle, θ (deg) 40 40

Constraint definition using MPCTools was relatively straightforward. The initial path

constraint is assigned as a variable in CasaDi, and then the solver setting updates the

constraint at each time step. Therefore, a time-varying constraint can be treated as a

constant at each time step. No special modifications were required for the KIZ depending

upon the orbit. The code is generic enough that it will propagate the chief’s trajectory and

then, given a starting Julian Day, calculate the sun vector at each point of the simulation.

The KOZ was chosen to have a 0.25 km radius for LEO and a one-kilometer radius for

GEO.

No assumptions are made about the reflectance of the chief. It is possible that aligning

the deputy directly with the sun vector could result in glare that limits visibility of the

chief. Defining another vector at a slight offset is one way to address this. Defining a KOZ

within the KIZ is another possibility, albeit a more complicated one. However, the focus

here is enforcing the constraint. The concept can be expanded later once it is more proven.

4.1.3 Controller

The controller settings were selected according to the MPCTools framework, beginning

with the prediction horizon and time step. The Q and R matrices were selected in order
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to ensure a balance of constraint enforcement and, in the cases of phases two and three,

tracking regulation. The Q matrix was chosen to be a function of the maximum position

and velocity values, as well as a scaling value for each phase, Qi, such that,

Q = Qi ∗

 .42

xmax
2 I3x3 03x3

03x3
.42

vmax
2

 . (46)

Similarly, R was chosen to be a function of the maximum control and a scaling value,

Ri,

R =
Ri

umax2
∗ I3x3. (47)

The terminal cost weighting matrix, Qf , was calculated using MATLAB’s dlqr function,

which is the solution to the discrete algebraic Riccati equation. The solution depends upon

the discretized plant matrices as well as the Q and R matrices.

The final cost scalars for each instance and phase are in Table 8. Q and R selection was

a significant factor in ensuring the solution’s convergence and had to be balanced against

the simulation time.

Table 8. MPC Controller Settings

Variable Name LEO GEO
Nt Prediction Horizon 10 25
Delta Sampling Time 20 60
Q1 State Cost Scalar, 1 1e3 1e2
R1 Control Cost Scalar, 1 1e1 1.5e0
Q2 State Cost Scalar, 1 1e1 1e2
R2 Control Cost Scalar, 1 1.5e1 1e2
Q3 State Cost Scalar, 1 1e3 1e3
R3 Control Cost Scalar, 1 1e2 1e4

Tuning each parameter by hand for each phase was time-intensive. Automatic tuning

methods do exist in literature for other applications, and could be of use in this area [49].
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4.1.4 Demonstration of Slack Variables

In order to test the use of slack variables in MPCTools, a single-phase scenario using the

GEO configuration was simulated. Notional initial and final states were chosen for testing

purposes only. In the first instance, both path constraints were made soft. The result is in

Figure 6 below.

Figure 6. Single-Phase Maneuver with Two Slack Variables

The deputy clearly violates both constraint zones in order to arrive at its destination

inside the KIZ. In the second instance, only the KIZ constraint was slackened. The spherical

KOZ about the chief was hardened. This was accomplished in the code by changing the

number of slack variables from two to one.

Figure 7. Single-Phase Maneuver with One Slack Variable
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It can be seen in Figure 7 that the deputy was unable to complete the maneuver because

it violated the KOZ constraint. The operation was terminated after 14 time steps. Thus,

recursive feasibility was lost.

For both the LEO and GEO test instances, the constraints are softened in individual

phases by assigning them a slack variable, s. Table 9 reiterates the phases with their

respective slack variables.

Table 9. Constraint Definition for Each Phase

Phase KIZ KOZ Number of Slacks

1 Soft Hard 1

2 Hard Hard 0

3 Soft Hard 1

The value of s is optimized by MPCTools. Most importantly, it allows for violation of

the constraint zone, allowing the deputy to pass in and out of it without requiring additional

phase definitions. This will be examined more in Section 4.3. In these cases, the KOZ was

kept as a hard constraint. As the results will show, doing so creates a de facto built-in

safety feature of the controller.

MPC should generally be robust to constraint enforcement while still ensuring optimal-

ity. However, several factors can still render the controller unable to solve, as seen in the

previous instance. Available control effort, Q and R tuning, horizon length, and more can

all impact the feasibility of the problem. For example, a high R matrix will prioritize reduc-

ing control effort at the cost of meeting the state or trajectory requirements. Alternately, a

large Q will increase the control effort in order to meet the final state. However, the avail-

able control effort is often limited physically, meaning that some cost values will require

unobtainable controls. Another danger to this is placing the spacecraft on a trajectory that

cannot recover if it encounters constraints, especially if these constraints are outside of the

current prediction horizon. Time step is also important, as the open-loop control solution

is found for each step. If a step is too large, important information could be overlooked.
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In general, it is best to have a time step much smaller than the prediction horizon, with

enough steps to meet constraint requirements without becoming prohibitively costly.

4.2 Results

This section provides the resulting trajectories, control effort, and computation times

for the LEO and GEO test instances. Additionally, an analysis is performed of various

weightings of the slack variables.

4.2.1 Trajectories

The resulting trajectories were plotted along with the constraint zones, any reference

trajectories in the case of tracking, and the deputy’s starting and ending points for clarity.

Additionally, each phase was analyzed to ensure that the constraints were enforced.

For the constraint enforcement plots in Figures 9, 11, 14, 18, 20, and 23, the value of the

KIZ and KOZ constraints were calculated and determined to be either less than zero in the

case of hard constraints, or less than the computer-optimized value of s in the case of soft

constraints. The value of zero or s is shown as a solid line, while the calculated constraint

value is shown by the dashed line, where,

KIZ = cos θ − v̂Ta v̂s, (48)

and,

KOZ = r − ‖~va‖ . (49)

Recall that the KIZ constraint requires the angle between the relative distance vector of

the chief and the sun vector to be less than the half-angle of the cone. The KOZ constraint

states that the magnitude of the distance of the deputy from the chief must be outside of

the designated KOZ radius. The following pages give the plots of the trajectory in the LEO

instance. Each phase is presented with the plot of its constraint enforcement. In the case

of phase two, a planar plot of the teardrop is also provided for clarity.
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Figure 8. Trajectory (LEO,Phase 1)

Figure 9. Constraint Enforcement (LEO,Phase 1)
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Figure 10. Trajectory (LEO,Phase 2)

Figure 11. Constraint Enforcement (LEO,Phase 2)
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Figure 12. Planar View (LEO, Phase 2)

Phase two of this maneuver appears to be less than optimal. Significant tuning and

manipulation was required to produce a teardrop orbit that did not violate the constraints.

It still needed to allow some meaningful time for observation. Clearly this phase was the

most challenging on constraint enforcement, due to trying to keep the deputy stationary

above the chief, maintain illumination, and manage control costs. It does not appear that

a teardrop maneuver was ideal in this case, and another formation could be considered in

future work, such as leader-follower [18].
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Figure 13. Trajectory (LEO,Phase 3)

Figure 14. Constraint Enforcement (LEO,Phase 3)

43



Figures 8 through 13 show that the deputy behaved as expected with respect to the

constraints. In all phases, the deputy enforced the KOZ constraint with no violations.

The violations of the KIZ in phases one and three were intentional as a result of the slack

variables. Phase one begins in violation of the KIZ constraint and ends inside the KIZ.

Once inside the KIZ, the constraint is hardened for phase two. The violation in phase one

is seen in Figure 9 as the constraint value crosses the line marked by s, which although

close to zero was a small positive number. In phase three, the deputy begins in compliance

with the KIZ constraint and ends in violation of it.

The overall trajectory for the LEO case is plotted in Figure 15.

Figure 15. Trajectory (LEO,Overall)

The movement of the sun vector cone is quite prominent in the LEO case. This was

expected, as the chief’s period is less than two hours compared to the GEO scenario’s

period of almost a day. This makes constraint enforcement more challenging, but here MPC

demonstrates some inherent robustness in being able to adjust to the changing environment

while still meeting its desired final state. None of the constraints were violated.
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The overall trajectory in the GEO case, seen in Figure 16, is similar to the LEO case.

However, the relative distances are larger and the cone does not move as significantly

throughout the maneuver. Additionally, the teardrop formation appears to be better de-

fined.

Figure 16. Trajectory (GEO,Overall)

The trajectories and constraint enforcement for each phase of the GEO case are shown

below. The teardrop in phase two is again plotted in-plane for clarity.
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Figure 17. Trajectory (GEO, Phase 1)

Figure 18. Constraint Enforcement (GEO,Phase 1)
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Figure 19. Trajectory (GEO,Phase 2)

Figure 20. Constraint Enforcement (GEO,Phase 2)
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Figure 21. Planar View (GEO, Phase 2)

Unlike with the LEO example, the slower movement of the KIZ cone at GEO enables

ample room for the teardrop maneuver. It appears to have good alignment with the sun

vector, ensuring that the chief will be illuminated. In Figure 19, it appears as though the

trajectory makes contact with the boundary of the KOZ. To better see whether a constraint

violation has occurred, it is easier to look at the planar plot in Figure 21. Clearly, even

though the reference trajectory violates the KOZ, the controller does not, and adjusts

the trajectory accordingly. This is also corroborated in 20, where the difference between

the KOZ radius and the deputy’s relative distance approaches zero, but does not become

positive.
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Figure 22. Trajectory (GEO,Phase 3)

Figure 23. Constraint Enforcement (GEO,Phase 3)
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MPC again shows in the GEO instance that, while MPC is not adaptive, it does have

some built-in robustness to constraint enforcement. It successfully avoided the KOZ, demon-

strating passive safety qualities. The trajectory for GEO was easier to define and tune.

4.2.2 Control Effort

Overall control effort was found by calculating the magnitude of the control vector for

each phase of each test instance. The control input in this problem is given in terms of

acceleration, with units of m/s2. Newtons are not used as the mass of the deputy is not

considered in this work. The control effort for each phase of the LEO instance is in Figure

24 below.

(a) Phase 1 (b) Phase 2

(c) Phase 3

Figure 24. LEO Control Effort
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The magnitude of the control effort is very small, which speaks to the benefits of using

unforced natural motion where possible. Unfortunately, phase 3 does not meet its final

goal of a return to natural motion. The control efforts do not converge to zero, implying

some instability in the final maneuver. This could be impacted by tuning, final state, and

prediction time. However, the control bound remains unsaturated, which means corrected

station-keeping would be an option in a real-life scenario.

Likewise, the control effort for each phase of the GEO instance is in Figures 25 below.

(a) Phase 1 (b) Phase 2

(c) Phase 3

Figure 25. GEO Control Effort

The magnitudes of the control efforts at GEO are much larger in phases one and two.

This makes sense, as the plant matrix is dependent upon time and the chief’s mean motion.

The longer times and larger distances will natural require more control. There is some
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saturation of the control in the first two phases, but eventually the effort in all three phases

converges to zero. This means that the deputy successfully returned to natural motion in

each case.

Table 10. Control Effort Comparisons

Phase LEO (m/s2) GEO (m/s2)

1 0.01824 2.8298

2 2.03713e-05 0.0028

3 0.0022 0.0049

Table 10 compares the magnitude of the control effort for each test instance. This

confirms what the control plots indicated, which is that the overall control effort tends to

be larger at higher orbital regimes. However, the magnitude of the effort is still quite small.

Another metric considered was the impact of the weighting of the slack variable on the

control effort and final state. To do this, the simulations for LEO and GEO were performed

for various values of s, and the magnitude of the control effort and errors in the final state

were calculated. Results are in Table 11. It was expected that the control effort should

increase as the weighting of s increases. As the controller creates more distance between

the constraint boundary and the deputy, it will also fight harder to meet the final state

requirements. Eventually, it is expected that the weighting of s will be too high for the

deputy to reach its final state.
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Table 11. Control Effort, Computation Time Comparisons for Slack Weights

LEO Control Magnitude (m/s2) Computation Time (s/step)

Weight of s Phase 1 Phase 3 Phase 1 Phase 3

0.1 0.01263 0.0022 0.03137 0.02898

1 0.01824 0.0026 0.02809 0.06014

10 0.3882 0.0118 0.025889 0.02824

100 2.4794 0.0090 0.02811 0.02829

1000 5.1509 0.0071 0.02703 0.02803

10000 7.5980 0.0067 0.02520 0.04254

GEO Control Magnitude (m/s2) Computation Time (s/step)

s Phase 1 Phase 3 Phase 1 Phase 3

0.1 2.1057 0.0049 0.0450 0.04785

1 2.8298 0.0049 0.0536 0.05767

10 6.2810 0.0046 0.1231 0.1353

100 15.5438 0.0047 0.1015 0.1311

1000 23.3842 0.0046 0.1162 0.1296

10000 29.0037 0.004533 0.04796 0.05693

Computation times did not appear to be significantly impacted by changing the weight-

ing of the slack variable. These times are very fast, and much smaller than the time between

steps. This is more evidence that MPC is a good candidate for on-board applications.

In phase one of each instance, the expected increase in the control effort occurred. It

is apparent that, as the weighting of the slack variable increased, the deputy had to exert

more effort to enter the KIZ and meet its final constraint. An analogy of this concept is a

pillow on a hard surface. The thicker the pillow, the farther the user is from a firm floor.

If they were to try to push through the pillow’s stuffing to the floor beneath, the force

required would depend in part upon the pillow’s thickness.
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However, in the case of phase three, the control effort actually began to decrease. To see

why the effort increased in phase one and decreased in phase 3, the plots of the trajectories

are compared below for the LEO instance. First is phase one in Figure 26.

Figure 26. LEO Orbit with Slack Weighted 10,000x More than Costs

It is apparent that the buffer between the trajectory and the constraints becomes larger

and larger as the control effort is put into maintaining the constraints. Eventually, however,

the controller still forces the deputy to its final state, but with a significant increase in the

control magnitude as shown above.

The opposite effect occurs when the deputy tries to escape the KIZ in phase three with

a very high slack weighting. Eventually, it becomes too difficult and the deputy remains

trapped inside the cone, close to the surface. The controller is driving it to the final state,

but the high slack value prevents it from getting there. A figure of the LEO Phase 3

trajectory for 10, 000 ∗ s is in Figure 27 below.
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Figure 27. LEO Orbit with Slack Weighted 10,000x More than Costs

It is clear that such a high weighting of the slack reduced the available control and state

costs until neither tracking nor terminal constraints were achievable. In a similar vein, the

figures below show the results of low and high slack variable weighting of the GEO example

for phases one and three.

The cases are shown for a weight, ks = 0.1 and for ks = 10, 000. As with the LEO

example, the high weighting made a dramatic impact on the trajectories. The impact was

dependent upon whether the deputy was trying to enter or exit the constraint zone. With

a low slack weighting, the trajectory performed very similarly to how it normally would,

simply putting less emphasis on constraint enforcement.
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(a) GEO, Phase 1, Slack 0.1x

(b) GEO, Phase 3, Slack 0.1x

(c) GEO, Phase 1, Slack 10000x
(d) GEO, Phase 3, Slack 10000x

Figure 28. GEO Case Slack Weighting Comparison

A more detailed study of weighting and tuning for slack variables would be helpful. The

figures for low slack weightings raise the question of whether a very low slack cost could

still enable phase transitions with a lower cost, but maintain constraint enforcement. This

will be a recommendation for further study.

4.2.3 Computation Costs

Even though this is a standard NLP with non-convex constraints, the computation

time of MPC is very fast. This is again attributed to the finite prediction horizon. The
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computation costs for each test are given in Table 12 below.

Table 12. Computation Times

Phase MPCTools (s) Std Deviation

LEO

1 0.02809 0.0030

2 0.0180 0.0014

3 0.02771 0.0087

GEO

1 0.0536 0.0058

2 0.0547 0.0089

3 0.05767 0.0037

The low standard deviation is assurance that the solution performance is consistent

throughout each phase, in spite of the time varying constraint. As an added precaution, the

controller did have logic built in to skip the current computation step if it was taking too

long. However, because the size of the control vector was one larger than the state vector,

with no empty cells, it is clear that this logic was never used.

4.3 Comparison with Literature

This section compares the methodology of this thesis to the work of Becker [9], who

performed a 6-phase, 6-DoF maneuver using MPCTools. For a one-on-one comparison,

slack variables were implemented into his code and the results were compared. Unlike

the test instances in Section 2.3, the focus here is more on the phase transition than the

time-varying constraint.

4.3.1 Original Problem

Becker’s scenario was a satellite inspection mission with twelve constraints. Ten of these

were path constraints and two were boundary constraints. The path constraints were fur-

ther categorized into rotational and translational requirements. The rotational constraints
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exist to satisfy Field-of-View (FOV) and Line-of-Sight (LOS) operating requirements. His

constraints are shown in Figure 29.

Figure 29. Becker Constraint Definitions

Becker implemented DMPC, which solved side-by-side in MPCTools. His mission took

place in six phases: approach, positioning, inspection of one side, re-position, inspection of

another side, and depart. The constraints for each phase are summarized in Figure 30

Figure 30. Becker Phase Definitions

The exit criteria for the phases are crucial to ensuring that the next phase can begin
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within the constrained area. There is no feasible solution for a problem that begins in

violation of a constraint. With hard constraints, this is straightforward. However, as

previously discussed, keeping the constraints hard necessitates additional phase-building.

This is discussed more in the next section.

4.3.2 Phase Transition Implementation

Slack variables were implemented into this scenario for comparison of the original results,

which were also validated using GPOPS-II. Thus, this method can be compared to the open-

loop OCP. In order to implement slack variables, each constraint had to be evaluated for

its function. The boundary constraints, 11 and 12, were not modified, as they are upper

bounds for the velocity and angular velocity. These are necessary for safety and constraint

enforcement.

There are two main priorities during the inspection phase: keep the deputy’s camera

from pointing into the sun, and avoiding interruption of the chief’s mission. These are

manifested in two pointing constraints, labeled in Table 13 as the FOV KOZ and the Chief

KOZ, respectively. They are kept as hard constraints for the entire mission.

In his constraint definitions, Becker states that the overlap between constraints in phases

two and three allow for the phases to transition. The next phase cannot begin if the current

phase is already in violation of that constraint. Softening the constraint allows the next

phase to begin even if the constraints are violated. Section 4.3.3 will analyze whether this

incurs additional computational or control cost.

Additionally, softening some of the constraints actually renders the overlaps redundant.

Using slack variables, these phases could be modified further to eliminate extraneous con-

straints, and even consolidate phases. For example, had the scenario in Section 4.2 been

designed using hard constraints, it would have required at least one additional phase for

entry into the KIZ. Using the slack variables, the hard constraints were activated while

the deputy was within a certain distance of its final desired state, allowing a smoother

transition.
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Table 13 gives the final assignments of the constraints for each phase, including their

hardness or softness.

Table 13. Soft Constraint Assignments by Phase

Range

KOZ

(1,2,4)

Range

KIZ

(3,5)

FOV

KOZ

(6)

Solar

KIZ

(7)

Chief

KOZ

(8)

FOV

KIZ

(9)

LOS

KIZ

(10)

1 H (2) – H H – – –

2 H (4) S (5) H – H S S

3 H (4) H (5) H – H H H

4 H (4) S (5) H – H S S

5 H (4) H (5) H – H H H

6 H (1) H (3) H – H – –

The primary change was softening KIZ constraint five and adding it to the second and

fourth phases. This drives the controller in the direction of meeting this constraint without

being held to it absolutely. Ideally, this process should set the controller up in a way that it

is within the constrained area when the constraints become hard in phases three and five.

The same concept was applied to the FOV KIZ constraint and the LOS KIZ, which are

necessary in phases three and five for maintaining a line of sight on the chief and adhering

to the NADIR-pointing field of view.

The largest problem with this process, however, is a potential feasibility issue when

hardening the constraint in the subsequent phase. The process worked without issue when

softening the constraints in phase two, allowing the model to transition into phase three.

However, from phases four to five, the controller initially would not solve. It was found

that the final state in phase four met the constraints. However, this did not ensure that the

deputy was inside of the constraint zones for phase five. In order to overcome this, a hard

terminal constraint had to be enforced in phase four, that the deputy had to meet the final
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state before moving to the next phase.

This proved to be a limitation of transitioning into hard constraints using slack variables.

With slack in the prior phase, there is no guarantee of being in a feasible space for the

following phase. Adjusting the weights could also address this, but still doesn’t provide the

guarantee.

4.3.3 Comparison Results

The results of the simulation with the softened constraints are compared here to the

original results, as well as results obtained from the validated GPOPS-II solution. Since

the DMPC controller is effectively two controllers, albeit with some coupling between the

constraint and exit criteria functions, the control efforts and computation costs are given

for each controller, referred to as the Attitude and Trajectory controller, respectively.

Figure 31. Trajectory Comparison
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The resulting trajectories in Figure 31 show the original results with hard constraints

only, updated results with softened constraints, and the GPOPS-II results. Phase one is

omitted for scaling purposes, and because it is not as relevant to constraint enforcement. The

KOZ pictured is the 80-meter KOZ enforced in phases three and five during the inspection

of the +z and -z sides of the chief, respectively. All three methods demonstrate that the

constraints were enforced during inspection. The updated trajectory, shown in yellow, does

appear to depart from the other two results on approach and during the transition between

inspections. This is most likely an issue with tuning. However, it is also likely that the slack

variables from phase two incurred additional cost and produced less emphasis on state and

control optimization, leading to a less streamlined trajectory. The rest of the results seem

to align very well, however.

Table 14. Control Effort for Hard vs Soft Constraints

Phase Controller Original Updated GPOPS-II

1
Torque (Nm) 8.8553e+03 4.2006e+03 6.5198e-05

Thrust (kN) 0.0321 0.0321 8.7073e-05

2
Torque (Nm) 1.0266e-09 172.2132 4.9895e-05

Thrust (kN) 0.0106 0.0262 4.7992e-05

3
Torque (Nm) 1.2260e-09 153.0475 7.1214e-05

Thrust (kN) 0.0012 4.4809e-05 7.7284e-05

4
Torque (Nm) 1.4031e+04 2.5708e+04 3.9153e-05

Thrust (kN) 6.5232e-04 0.0021 5.2555e-05

5
Torque (Nm) 3.0372e-05 2.6713e+04 8.8189e-05

Thrust (kN) 6.8572e-05 0.0202 9.1120e-05

6
Torque (Nm) 3.0267e+03 3.0256e+03 4.7272e-05

Thrust (kN) 0.0189 0.0187 5.4850e-05

Table 14 shows the computed magnitudes of the control effort for the old and new
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methods. The magnitudes were found by integrating the squared components of each control

vector using MATLAB’s trapz function. Unfortunately, the updated method with slack

variables shows a significant increase in the control effort for phases two, three, and five.

Certainly, this work has already shown that the introduction of slack variables can cause

an increase to the control effort. Tuning is likely a large factor in the difference between

results. Phases three and five required a large scaling of the Q matrix in order to obtain

results for the terminal cost, Qf , via the algebraic Riccati equation. This is likely due to

nonlinearities in the attitude dynamics. By comparison, the magnitudes of control from

GPOPS-II are very small. This is understandable, as the infinite-horizon solver can see the

solution in its entirety and apply the absolute minimal control. An increase to the control

effort for soft constraints is not unexpected, but the magnitude of the increase indicates

that slack variables may have limitations as a means of phase transition.

Table 15. Computation Times for Hard vs Soft Constraints

Phase Controller Original (s/step) Updated (s/step) GPOPS-II (S)

1
Attitude 0.1953 0.1328 2.5964e+03

Trajectory 0.1757 0.1771 ”

2
Attitude 0.1706 0.2746 5.5931e+03

Trajectory 0.2381 0.6222 ”

3
Attitude 0.3846 0.2808 6.3408e+03

Trajectory 0.2891 0.4774 ”

4
Attitude 0.2187 0.3065 8.3717e+03

Trajectory 0.3238 0.4175 ”

5
Attitude 0.1927 0.2300 1.0373e+04

Trajectory 0.2701 0.3598 ”

6
Attitude 0.1950 0.1330 1.1645e+04

Trajectory 0.1810 0.1428 ”

63



The comparison of computations times in Table 15 gives better news. There is a slight

increase in the average computation time per step, mostly in phases two and four. Again,

this is to be expected as the cost function must now calculate the slack variable at each

horizon and apply it to the path constraint function. However, the time difference is not

prohibitively large. This indicates that the use of slack variables in MPC would not be

limited by computation cost. The comparison to the cost of GPOPS-II shows the greatest

benefit of the MPC controller. GPOPS-II takes significantly longer to solve because it is

not broken into finite horizons and discrete steps. This shows that the OCP may pro-

duce more optimal results, but finite-horizon methods are much more feasible for on-board

computation.

4.4 Summary

In reviewing the costs and potential feasibility issues of this comparison, it seems that

there are ways in which slack variables should and should not be used. Manipulating single

constraints does not seem to be the best use of this method. Rather, it should be seen as a

way to avoid the necessity of transitioning altogether. For example, Becker’s scenario could

be reformulated to maneuver in and out of constraint zones, only activating the necessary

constraints during active inspection phases. If done correctly, phases two and four could

perhaps be eliminated altogether, saving significantly on computation costs. If entire paths

or phases can be avoided, this also helps save on control which correlates to fuel savings.

The results of this chapter demonstrate the robustness of MPC to time-varying con-

straints and phase transitions. A scenario involving both concepts was designed and im-

plemented in MATLAB, using MPCTools and CasaDi for the MPC solution. Then, the

method was applied to a previous multi-phase study and was shown to improve control ef-

fort during phase transitions. Some limitations of the method exist, especially feasibility of

the next phase when constraints are hardened. It appears that this method, while showing

potential for many applications, is probably best not to be used very close to the boundaries

of constraints.
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V. Conclusions and Recommendations

The first section of this chapter summarizes the research, results, and significant insights.

The section also revisits the research questions. The second part of this chapter will discuss

recommendations for future work.

5.1 Conclusions

This work was motivated by the increasing demand for autonomy in space. In the

currently congested environment, satellite controls require optimal performance while re-

maining robust to changing environments. This thesis address the gap in literature that

considers time-varying constraint enforcement during multi-phase missions using MPC.

The three primary research questions from Chapter I were:

1. How can an autonomous guidance scheme be applied to a time-varying conical con-

straint?

2. How can MPC be used to minimize control effort when constraints are activated in

multi-phase maneuvers?

3. How does MPC compare to the infinite horizon Optimal Control Problem (OCP)?

Question one was explored by implementing the time-varying KIZ for the RPO mis-

sion. Propagating the chief’s orbit to calculate the sun vector did incur some additional

computation cost, however this is data that would already be needed on-board. It was

easier and more efficient in this case to compute ahead of time and store for later use.

This did not significantly impact the computation cost. The results showed that MPC was

robust to constraint enforcement, obeying the path constraints even when the reference

trajectory violated it. Overall, it appears that MPC multi-phase scenarios are well-suited

to time-varying constraints, even if they are non-convex.

Question two was the primary focus of the phase transition methodology. Modifying

the constraint definitions with slack variables enabled smooth phase transitions between
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zones. The phase transitions did still initiate an increase in control effort. The nature

of the method means that “predicting” the path using the prediction horizon is still only

limited to the current phase. There is no way for the controller to predict the next phase

until the current phase is complete. However, the activation or deactivation of constraints

without use of additional phases is certainly an advantage of this method.

Question three was answered by comparing the method with validated data from liter-

ature. The OCP provided a baseline against which hard phase transitions and slackened

phase transitions could be measured. Although still dealing with convex constraints, so the

comparison is imperfect, the OCP still provides a picture of the entire trajectory versus the

finite-horizon of MPC. The most significant observation from this aspect was that using

slack variables solely as a method of phase transition may not always be optimal. Instead,

phase planning and constraints should be considered in concert to mutually benefit one

another. It is very likely that re-defining the original mission phases in the same way as the

controller from Section 4.2 could have provided an even more streamlined, computationally

efficient trajectory.

5.2 Recommendations

This work creates a framework for phase transitions using MPC. However, there are

many avenues for further study in this area with regard to the dynamics, safety, solution

methods, and more.

First, nonlinear dynamic models for more robust modeling and more complicated orbits

could be done. Limitations of HCW were discussed in Chapter II, and were made apparent

while building the controller. Only nearly-circular orbits could be considered. Singularities

appear at periodic intervals in the closed-form solution. Several relative motion models

exist which would provide insightful comparison to this problem. A further addition to the

dynamic aspect of this study would be perturbations. It would be useful to see how MPC

responds to nonlinearities in the controller plant. Lastly, noise is a crucial element to any

control system. While some work has been done on filtering with MPC, it would be helpful
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to see how it could be combined with phase transitions.

As discussed in Chapter II, there is not much literature on multi-phase MPC for the

full 6-DoF scenario. An investigation of phase transitions on attitude constraints is recom-

mended in future work. This leads naturally into considerations for thruster configurations.

Additionally, studies on tuning, especially potential auto-tuning methods, would greatly

benefit all aspects of this area.

One of the more important aspects of autonomous spaceflight is safety. It has been

shown that MPC provides a measure of passive safety. However, there is more than could

be done here. How does MPC’s built-in constraint enforcement guarantee safety, and by

what metrics would it be measured? Is passive safety adequate in most applications, and

what redundancies might be required?

Lastly, it is recommended that this work be applied to different solution methods for

comparison. In particular, adapting this work to LQ-MPC would open doors for on-board

implementation. Doing so would require constraint linearization as discussed previously. A

comparison of the linearized constraints to the nonlinear ones in this work would also be

helpful in determining the impact of linearization on cost and performance. Further work

into solution methods could also have ties to machine learning and more adaptive methods

for tuning and trajectory planning.

Overall, the work done in this thesis demonstrates the immense computational cost sav-

ings afforded by MPC. This makes it a highly feasible option for on-board implementation.

Additionally, its robustness to constraint enforcement gives it a passive safety feature that is

highly desirable in the costly, complex, and often unpredictable space environment. Lastly,

as methods for phase transitions continue to improve, it is likely that MPC controller design

and solution methods will evolve to enable increasingly sophisticated missions, achieving

optimality while minimizing costs. Continued work in this field will benefit spaceflight in

the future.
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