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Abstract 

      Supply chains are facing numerous changes contributing to their increase in 

complexity and vulnerability to disruptions. Subsequently, decision-makers lack a 

transparent, generalizable tool to quantify supply chain resilience and assess additional 

resilience investments. This research facilitates a more profound understanding of the 

intricacies and interrelation of supply chain nodes and constructs. It integrates the Area 

under the Curve (AUC) metric to quantify performance or any organizational measure of 

competitive advantage amid a disruption. Due to its structural resemblance to various 

organizational platforms, the subset United States Air Force (USAF) F-16 engine repair 

and supply network is modeled employing discrete-event simulation. The purpose of this 

study is to evaluate investments in inventory and capacity resilience levers to understand 

how mitigation strategies affect supply chain entity performance. Results indicate that 

simultaneous investments in these levers yield the most significant effects on resilience. 

The presented analysis asserts recovery capacity and response time as the most 

significant recovery influencers following a disruption. Additionally, two design 

scenarios are further examined to understand how flexibility influences resilience.      
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RESILIENT MAINTENANCE INFRASTRUCTURE: DYNAMIC REPAIR 

NETWORK DESIGNS TO EFFECTIVELY MANAGE SUPPLY CHAIN 

DISRUPTIONS 

 

I.  Introduction 

Background 

 A key dynamic within present-day businesses and corporations is that supply chains 

compete, not the companies themselves. Getting the right product, at the right place, at the 

right time to the consumer is pivotal to competitive success and survival (Christopher & 

Towill, 2001). Global-spanning operations, coupled with complexity, have driven 

organizational supply chains to grow and expand (Christopher & Peck, 2004). 

Subsequently, as supply chains have lengthened, reliance on strategic partners has risen, 

creating increased vulnerability to failure through and between critical nodes (Amin, 2002). 

The business environment is becoming more turbulent as the globalization of procurement 

and distribution yields more complex supply chains. Increased emphasis on outsourcing 

and a greater focus on supplier nodes deteriorate flexibility within supply bases (Pettit, 

Croxton, & Fiksel, 2019). Moreover, as companies employ lean or efficiency-driven 

concepts, they also introduce limitations that subject their respective supply chains to 

heightened, volatile conditions (Pettit et al., 2019). 

 Concurrently, crises of various magnitudes and proportions affect an organization’s 

supply chain. Crises, interchangeable with ‘environmental jolts,’ are defined as “transient 

perturbations whose occurrences are difficult to foresee and whose impacts on 

organizations are disruptive and potentially inimical” (Meyer, 1982). Thus, jolts can be 

delineated into external events affecting an organization, such as opportunities, threats, 
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crises, or catastrophes (Billings, Milburn, & Schaalman, 1980). Moreover, amid various 

unknown environmental jolts, organizations recognize the need to shift to a robust posture 

but fail to understand the mechanics to do so as robustness is inadequately defined (Pettit, 

Fiksel, & Croxton, 2010).  

  As a result, during a crisis, the rapid and unexpected organizational change that 

must occur often renders existing strategies obsolete (Wan & Yiu, 2009). In 2008, a global 

financial crisis triggered a global market cap loss of 19.4 trillion dollars, a 46 percent 

decline compared to 2007. The lingering effects surged 208 thousand businesses filing 

bankruptcy between 2008 to 2010 (Garelli, 2009).  In 2020, the coronavirus (COVID-19), 

originating in Wuhan, China, burdened the world economy. Global outputs dropped by 1%, 

translating to a per month loss of approximately 40 billion dollars in China and 65 billion 

dollars globally, indicating the decline of the hub of supply chains inside and outside of 

China by 40% (Luo, Kwok, & Tsang, 2020). Inherently, several manufacturers such as Fiat 

Chrysler Automobiles, Hyundai, and Apple decided to adjust or halt production due to the 

inability to facilitate parts’ supply for sustained performance (Haren, P. & Simchi-Levi, D. 

2020). 

 Inherently, there is an evidentiary tradeoff between vulnerabilities and capabilities 

in pursuit of supply chain efficiency and organizational success.  Such resolve and desire 

for competitive advantage demand a fully integrated and efficient supply chain, usually 

compromising risk mitigation capabilities elsewhere (Christopher & Peck, 2004; 

Ponomarov, 2012).  
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Motivation 

 Supply chain uncertainty and risks have dramatically increased based on several 

interrelated growing trends in consumer expectation, global competition, and more 

complex and longer supply chains. Additionally, decision-makers must manage supply 

variability and capacity constraints within an environment susceptible to environmental 

jolts (Masteika & Čepinskis, 2015; Sheffi & Rice, 2005).  Supply chains must not only be 

capable of withstanding the stressors of this tumultuous environment but within acceptable 

degradation parameters and to recover within an acceptable timeframe and reasonable costs 

(Zobel & Khansa, 2012).   

 The ability for an organization to withstand the impact of disruption has been 

traversed comprehensively in the literature. Approaches to conceptualize an organization’s 

disruption resilience and resistance have been predominately qualitative. Furthermore, the 

proper organizational actions warranted to facilitate resilience remains unclear throughout 

the research (Falasca, Zobel, & Cook, 2008). The remaining limited quantitative research 

generally leverages survey-based strategies rather than encompassing rigorous 

mathematical analysis of resilience. Finally, research tends to focus on disruption 

mitigation or response measures without assessing a conjoined phase perspective (Falasca 

et al., 2008; Munoz & Dunbar, 2015). 

 This study progresses resilience-based research through a militaristic lens, 

particularly the USAF’s F-16 engine repair network. Holistically, the organizational supply 

construct and design are with little variation to those found with public and private sectors. 

It serves as a viable comparison, imposed with various environmental vulnerabilities and 

peer-nation capabilities, driven by the aspiration of competitive advantage and 



4 

organizational success. Like many infrastructures, the USAF F-16 engine repair network 

features integration between supply and repair capabilities, mainly referred to as Repair 

Network Integration (RNI). This construct leverages supply and repair networks throughout 

various supply nodes to maximize overall Aircraft Availability (AA), a comparative metric 

to public and private sector competitive advantage-based metric (Bihansky, 2018; deSouza 

& Haddud, 2017). The RNI philosophy establishes three tiers of aviation maintenance, 

repair, and overhaul (MRO), entailing Organizational-Level (O-level), Intermediate-Level 

(I-level), and Depot-Level (D-Level) repair capabilities. This construct is equivalent to the 

airline industry’s maintenance echelons, wherein airports and fixed-base operators offer 

maintenance shops. These certified entities perform rudimentary and routine maintenance 

functions, similarly to I-Level and O-Level repair. Within the airline industry, overhaul or 

D-Level repair is conducted by a manufacturer such as Boeing or Lockheed Martin.  

     By design, the majority of repair within the chain occurs at O-level. This high 

concentration of capability reflects many public and private sector supply chains, wherein 

centralization sparks fragility to failure, perturbation, and disruption. When affected by 

such, the jolt rapidly propagates through the network, heavily compromising the system’s 

function (Piccardi & Tajoli, 2018). Hence, if a centralized node experiences a disruption, 

the capability to sustain competitive advantage is significantly decremented.  

Problem Statement  

 Organizational decision-makers and leaders alike must strike a balance between 

supply chain vulnerabilities and capabilities (Pettit et al., 2010). The inherent complexity of 

supply chain networks and associated effects of risks make environmental jolts or 
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disruptions challenging to forecast and manage; therefore, organizations must adequately 

assure a supply chain capable of resisting unanticipated disruptions and quickly recovering 

from them (Li & Zobel, 2020). Hence, decision-makers must be afforded a malleable tool 

and metric to quantify, assess, and anticipate the influence of inventory capacity and 

production on disruption susceptibility and recovery performance (Femano et al., 2019; 

Shannon, 2020). 

Purpose Statement 

The purpose of this research is to stimulate further clarity of the interrelatedness of 

organizational supply chains utilizing the USAF’s F-16 engine repair network. This 

research further empowers a generalizable tool and methodology to measure network 

resilience quantifiably. Subsequently, it assesses the incremental and cumulative changes in 

resilience based on the range of investment in specified resilience capability factors. 

Moreover, this research postulates the use of the Area Under the Curve (AUC) metric as a 

suitable measure of AA rate by which the network can support over time (Femano et al., 

2019).    

Research Questions 

This research further explores the following question to more adequately gauge how 

investments in resilience affect organizational ability to perform before and following a 

disruption. Notably, this research assesses: 

How do the investments in inventory and production capacity influence the USAF’s F-16 

aircraft engine repair network (Operational, Intermediate, and Depot-level repair) level of 

resilience when affected by an unexpected disruption? 
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Investigative Questions 

 Subsequently, there are several investigative questions necessary to answer the 

posed research question further. 

1. What is the current layout of the F16 aircraft engine repair network in the USAF? 

2. In its current state, how resistant is the repair network to a disruption? 

3. What design or investments permit the greatest range of resilience within the repair 

infrastructure?  

Research Focus 

The research question and investigative questions are answered through discrete-

event simulation (DES) modeling and subsequent mathematical analysis, quantifying 

resilience levels based on varying investment levels. A thorough, exhaustive literature 

review recognizes the following literature streams: (1) General Resilience Strategies, (2) 

Investment in Resilience, (3) Production, Capacity, and Inventory, (4) Long-chain 

Flexibility, and (5) Dynamic Capabilities and Agility. Subsequently, the engine network is 

modeled to reflect the real system dynamics, yielding an accurate depiction of the supply 

and repair network. Sequentially, various investment scenarios are applied to the model to 

quantify resilience and identify means of maximizing overall supply chain resilience.   

II. Literature Review 

Chapter Overview 

Through the further review of existing literature, an evident gap emerges as there is 

no specific, generalizable tool and methodology for decision-makers to gauge resilience 

and its response to incremental changes in investments. Generally, relevant research 
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qualitatively addresses supply chain resilience with little support of quantitative measures. 

This research closes the gap between qualitative and quantitative research by developing a 

DES framework for assessing resilience from a quantifiable perspective. Further emphasis 

on the gap is visible as literature streams encircle (1) General Resilience Strategies, (2) 

Investment in Resilience, (3) Production, Capacity, and Inventory, (4) Long-chain 

Flexibility, and (5) Dynamic Capabilities and Agility.  

General Resilience Strategies 

Definitions of resilience are seen within an array of segments to include physical, 

ecological, economy, disaster management, engineering, and organizational research 

(Kochan & Nowicki, 2018). Christopher and Peck (2004) were the first to apply the 

ecosystem definition of resilience to the realm of supply chain management and devise the 

notion of supply chain resilience (SCR). Subsequently, SCR is defined as “the ability of a 

system to return to its original state or move to a new, more desirable state after being 

disturbed” (Christopher & Peck, 2004). SCR has increasingly gained attention and 

popularity within the last fifteen years, spanning various researchers and experts who 

attempt to conceptualize the definition further and develop a mechanism to comprehend, 

measure, and bolster resilience within an organization’s supply infrastructure (Macdonald, 

Zobel, Melnyk, & Griffis, 2018a; Min, Zacharia, & Smith, 2019; Portillo Bollat, 2009). 

The concept has also been redefined in several instances. Sheffi and Rice (2005) define 

SCR as “An organization’s ability to recover from a disruption quickly can be improved by 

building redundancy and flexibility into its supply chain.” Based on the varying definitions 

throughout the literature and lack of clarity in relationships between supply chain resilience 
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and its constraints, there are divergent concepts in theory building (Kochan & Nowicki, 

2018). Following a thorough meta-analysis of the literature, Ponomarov (2012) 

consolidated and derived resilience as “The adaptive capability of the supply chain to 

prepare for unexpected events, respond to disruptions, and recover from them by 

maintaining continuity of operations at the desired level of connectedness and control over 

structure and function.” Thus, this research recognizes Ponomarov (2012) as the 

foundational and prevailing designation of supply chain resilience.  

 Initial measures towards decreasing vulnerability within a supply infrastructure can 

be dated to the late 1990s, when market power shifted from manufacturers to retailers. 

Customers required significant degrees of customization to fit desired needs. Moreover, 

competitive globalization increased as the distances between product source and market 

consumption expanded geographically, seeking higher quality or lower costs (Min et al., 

2019; Zubair, Khan, Farooq, & Rasheed, 2019). 

As organizations lengthen their supply chains by outsourcing their functions, 

resources, and information, they inherently become larger and more complex. 

Consequently, they face increased vulnerability and potential inability to effectively 

recover from an environmental jolt or disruption (Christopher & Peck, 2004). The 

heightened vulnerability can further proliferate to other firms or nodes within the chain 

based on supply chains' complexity and various nodes' interconnectedness.  Many 

organizations are unaware of their susceptibility to a disruption or what it entails.  

Disruptions, categorized as natural or human-made, combined with supply chain 

complexity and global competition have further exacerbated networks to becoming more 

vulnerable (Kochan & Nowicki, 2018). Innately, a supply chain does have general 
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fluctuations. Steady-state system performance is expected to change gradually, where 

normal fluctuations generate minor performance fluctuations. Disruptions maintain a 

distinct effect on overall performance, abruptly altering performance metrics.  Such metrics 

(profits, customer service, sales, production levels, etcetera) are organization-specific but 

commonly support an organization’s desire for competitive advantage.  The dynamic 

integration of logistical capabilities enables SCR, resulting in a sustainable competitive 

advantage as depicted in Figure 1.  

 

Figure 1.  Relationship between Logistical Capabilities, SCR, and Competitive Advantage 

(S. Ponomarov & Holcomb, 2009) 

Subsequently, the greater the SCR, the greater the competitive advantage (S. 

Ponomarov & Holcomb, 2009; S. Y. Ponomarov, 2012)    

     There are several organizational stages in conjunction with a disruption (Falasca 

et al., 2008). Sheffi & Rice (2005) outlined the impact a disruption can have on an entity or 

supply chain can be assessed within the following series of numbered stages:  (1) 

Preparation, (2) Disruptive Event, (3) First Response, (4) Initial Impact, (5) Full Impact, (6) 

Preparation for Recovery, (7) Recovery, and (8) Recovery. As illustrated in Figure 2, the 
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most critical stage is the preparation stage, when the network is at a steady state of 

operations. The starting preparation performance value influences the level at which 

performance drops and remains when entering stage six (Shannon, 2020). Upon realization 

of the disruption, decision nodes are levied to determine how recovery will be achieved. 

Moreover, the recovery stage is essential as it garners organizational investments to reach a 

new steady state. 

 

Figure 2.  Stages of Disruption (Sheffi & Rice, 2005) 

Craighead, Blackhurst, Rungtusanatham, and Handfield (2007) assert disruptions are 

unavoidable, yet organizations tend to be reactive rather than proactive.  Additionally, 

organizations' unawareness of how to implement and quantify resilience has further 

perpetuated organizational vulnerabilities and susceptibility. Furthermore, although disaster 

recovery planning and crisis management do occur, it is often accomplished in isolation 

rather than a cohesive nature or industry-wide approach required to reduce vulnerability 

(Christopher & Peck, 2004).   
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     Resilience is pivotal to withstanding such disruptions, yet the actions needed to facilitate 

resilience to the crisis remain unclear throughout the literature (Kunc & Bandahari, 2011).  

Research suggests that supply chain resilience is a concept that is not fully comprehended, 

whereby many organizations lack the awareness or necessity to consider resilience within 

their supply chains as an approach to risk management (Christopher & Peck, 2004). Sheffi 

and Rice (2005) assert resilience as achievable when assessed as a function of an 

organization’s competitive position and responsiveness to its supply chain. Companies that 

incorporate flexibility and redundancy within their supply chain essentially bolster their 

resilience.  When disruptions occur, the system experiences a triangular response, declining 

system performance, and gradually recovers to a new steady state. Zobel and Khansa 

(2012) then provided an extension to Sheffi and Rice’s (2005) work utilizing a triangular 

model to quantify resilience, as demonstrated in Figure 3. 

 

Figure 3. Predicted Resilience  (Zobel & Khansa, 2012) 

 This design permitted the measurement of the Area Above the Curve. Melnyk, Zobel, 

MacDonald, and Griffis (2014) expound on this design by modifying Sheffi and Rice’s 

disaster stages and incorporating Zobel and Khansa’s (2012) resilience triangle as 
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illustrated in Figure 4. This model assesses the transient states of the system response when 

affected by a disruption to serve as a measurement of the network’s collective resilience. 

Within the figure, transient states serve as stages or critical periods upon the onset of a 

disruption. Notably, the organization remains within a steady-state until the period at which 

the triggering event is enacted (TD). Next, the system is studied based on its decline (TO), 

marking the visible onset of the disruptions affects until the point at which the disruption 

reaches its climax (TC) and time to system recovery (TP).  

 

Figure 4. Time Series Critical Points (Melnyk et al., 2014) 

The larger the integral, the less resistant the system is against a disruption (Melnyk et al., 

2014).  

     This research assesses resilience via the employment of AUC, a more accurate 

measurement of network performance over the disruption timeframe and parallel parameter 

as researchers Zobel and Khansa (2012) and Macdonald, Zobel, Melnyk, and Griffis 

(2018b). The utilization of AUC to assess resilience is continuously growing. Macdonald et 

al. (2018) and those within various academic disciplines, including inventory control, 
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psychology, physiology, and information security, validate this form measurement as the 

relative decline sustained from the disruption. Melnyk et al. (2014) validate this approach, 

claiming AUC successfully considers and characterizes the tradeoffs between the total 

amount of system-loss and the total recovery curve. Furthermore, it enables demand 

forecasting capability utilizing predetermined assets within the midst of the disruption 

(Shannon, 2020). 

Investments in Resilience 

Christopher & Peck (2004) identified four fundamental principles to bolster 

resilience in the event of a disruption: “(1) resilience can be built into a system in advance 

of a disruption, (2) a high level of collaboration is required to identify and manage risks, 

(3) agility is essential to react quickly to unforeseen events, and (4) the culture of risk 

management is a necessity.” Based on these aspects, fourteen capability factors were 

devised as depicted in Table 1. These capability factors serve as a framework for measuring 

resilience and determining a resilience score (Chowdhury & Quaddus, 2017). Kochan and 

Nowicki (2018) suggest investments in these capability factors promote flexibility and 

redundancy. Flexibility relates to infrastructure and resources before they are needed and 

restructuring previously existing capacity, whereas redundancy pertains to maintaining the 

capacity to respond to disruptions and adequately sustain operations (Kochan & Nowicki, 

2018).  Inclusion and application of flexibility and redundancy serve to improve 

organizational capabilities and reduce vulnerabilities.   

     Pettit et al. (2010) introduced the concept of ‘Zone of Resilience,’ advancing three 

propositions to achieve balance. (1) Excessive vulnerabilities relative to capabilities will 
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cause excessive risk, (2) Excess capabilities relative to vulnerabilities will degrade 

organizational profitability, and (3) a balanced approach improves supply chain 

performance and resilience. Moreover, agencies abiding by the first two unbalanced 

propositions are unsustainable for long-term operations and naturally will become 

uncompetitive (Pettit et al., 2010).       

     SCR was adopted to bolster supply chain infrastructures in order to sustain competitive 

capability. However, it is imperative for corporations, businesses, publicly and privately 

owned, to strike a balance between supply chain capabilities and vulnerabilities (Pettit et 

al., 2010). 

    Primarily, two categories of mitigation capabilities moderate the severity of a disruption 

to the supply chain:  recovery and warning. Mitigation capabilities are defined as agency-

based routines, patterns, and actions that, when bundled with resources, enhance the supply 

chain’s abilities to recover expeditiously from disruption or create awareness of a pending 

or realized disruption (Craighead et al., 2007). Recovery capabilities foster coordination of 

resources to return the network to its pre-disruption steady state, whereas warning 

capabilities disseminate information about an impeding disruption through nodes within the 

network (Craighead et al., 2007). Collectively, mitigation techniques contribute to reducing 

loss, speed of recovery response, and exposure to disruption.  
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 Table 1. Capability Factors (Pettit et al., 2010)  
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Moreover, simultaneous deployment and investment in mitigation techniques can enhance 

supply chain performance and competitiveness (Carvalho, Azevedo, & Cruz-Machado, 

2012). Investment in isolation leads to inefficiencies in improving resilience within the 

system (Femano et al., 2019). Subsequently, this research employs this rationale, 

simultaneously balancing investments in production, capacity, and inventory. 

     Ivanov (2017) expounded upon the mitigation strategies utilizing discrete-event 

simulation (DES) to explore the effects of inventory buffer and backup sourcing on supply 

chain performance. Utilizing a three-stage supply chain comprised of a supplier, 

distribution centers, and customer, varying capacity levels were modeled to assess the 

range of mitigation to a disruption. Models with elevated capacity were more sufficiently 

prepared and equipped to withstand the disruption. Moreover, while capacity affords 

mitigation capability, responsiveness or speed of response is crucial. The speed by which 

the system can recover quickly influences resilience with the chain (Gligor, Gligor, 

Holcomb, & Bozkurt, 2019; Pires Ribeiro & Barbosa-Povoa, 2018). Ultimately, 

responsiveness or speed can be more influential than capacity (Femano et al., 2019). 

Production Capacity versus Inventory 

     Supply chain resilience is multifaceted, comprising of several internal and external 

processes and environmental interactions. Intrinsically, tradeoffs plague and prevent 

organizations from achieving the highest ranges of resilience. Specifically, resilience is 

closely related to efficiency and redundancy’s tradeoff, which is also analogous to the 

tradeoff of Cost and Service Level (Ivanov & Rozhkov, 2017). Investments in resilience 

further emphasize the tradeoffs of maximizing system capability. Particularly, decision-

makers must choose between enabling faster repairs (referred to as production capacity) 
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and allocating more inventory on a tactical level (Basten & van Houtum, 2014; Rappold & 

Van Roo, 2009).  

    Ivanov & Rozhkov (2017) employed simulation to understand how disruption can affect 

a firm’s production capacity. These researchers incorporated real data from a fast-moving 

consumer goods company to derive practical recommendations on inventory, on-time 

delivery, and service level control metrics. Modeling a disruption, production capacity 

immediately experienced a 50% decrease. Investments in capacity buffers and a backup 

facility as additional capacity reservations partially mitigated the reduction in overall 

production and capacity and performance level (Ivanov & Rozhkov, 2017).    Assessing its 

effect on inventory, Ivanov & Rozhkov (2017) found increases in inventory tempered the 

effects of multiple short-term disruptions and singular extended duration disruptions. Thus, 

if capacity or inventory mitigation techniques are increased without supplementing the 

other respectively, the full resilience potential will not be realized (Femano et al., 2019). 

Long-Chain Flexibility 

    Literature attests flexibility as a prime determinant of supply chain resilience, indicating 

an organization’s propensity to respond to a disruption adequately. Flexibility is pivotal as 

it serves as firms’ ability and enterprising to adapt themselves to the dynamically changing 

environment within minimal effort (Hosseini, Ivanov, & Dolgui, 2019). Grigore (2007) 

defines flexibility as the ability to adapt, remaining operational in changing conditions, and 

completely different or not from the conditions known in advance. Flexibility may increase 

organizational service level, cost, and applied practices such as flexible transportation and 

sourcing can contribute to resiliency within supply chains (Hosseini et al., 2019; Ivanov, 

Sokolov, & Dolgui, 2014).   
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    Collectively, a flexible supply chain infrastructure is essential to mitigating 

vulnerabilities. Saghafian & Van Oyen (2016) posit that a critical strategy for achieving 

robustness is increasing the supply base’s flexibility. Firms can institute backup capacity, 

thus flexibility, by having a dedicated backup supplier for products or extra inventories. 

More economically friendly, flexibility is achievable by having a single pooled flexible 

backup supplier capable of assuring supply continuity at a given capacity level (Saghafian 

& Van Oyen, 2016). Supply chains can also become more flexible by adapting production 

and delivery quantities to respond in shifts or changes in supply (Shekarian, Reza Nooraie, 

& Parast, 2020).  

    Total flexibility can be financially draining for an organization; therefore, limited 

flexibility remains a viable option and can yield most of the total flexibility benefits. Jordan 

& Graves (1995) introduced the “long-chain” flexibility concept conjoining production 

plants and products. Within this construct, two capabilities are afforded:  each plant can 

produce various products, and multiple plants can produce more than one product (Deng & 

Shen, 2013). Total flexibility, wherein each plant (depicted as a square in Figures 5 and 6) 

can produce every product (depicted as a circle in Figures 5 and 6), is inadvisable. 

However, rather limited flexibility is achievable by each plant producing an additional 

product. The design differences between full and limited flexibility are significant, yet from 

a capability perspective, the limited flexibility yields results similar to the total flexibility 

illustrated in Figure 5. Furthermore, Jordan and Graves (1995) employ one and three chain 

(interchangeable with “long-chain”), limited flexibility approaches with ten links to meet 

demand.   
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Figure 5. Flexibility Configurations with Equal Flexibility Benefits (Jordan & Graves, 1995) 

The limited flexibility approaches yield a capacity utilization of 86.6%, whereas total 

flexibility increases capacity utilization to 94.7%. The differences between limited and total 

flexibility are negligible when factoring in the astronomical costs associated with closing 

the utilization gap between limited and total flexibility (Jordan & Graves, 1995).  

      Deng & Shen (2013) builds on the essential intuition from limited flexibility research, 

representing the chain as a circle and further refining the following chaining guidelines: 

(a) equalizing the number of plants to which each product is directly connected. 

(b) equalizing the number of products to which each plant is directly connected. 

(c) creating a circuit that encompasses as many plants as possible (Deng & Shen, 

2013). 

Chaining guidelines are graphically depicted in Figure 6 as a circular representation of the 

long-chain. 
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Figure 6. Three Chain Configuration and Its Circular Representation (Deng & Shen, 2013) 

The limited flexibility strategy will be employed throughout this research and referred to as 

a “long-chain” design. 

Dynamic Capability 

    Teece, Pisano, and Shuen (1997) address how firms could develop and sustain a resilient 

posture introducing the Theory of Dynamic Capabilities (DC), facilitating a competitive 

advantage guideline. Dynamic capabilities are defined as “the ability of an organization and 

its management to integrate, build, and reconfigure internal and external competencies to 

address rapidly changing environments (Teece et al., 1997). Others have added to the 

definition to include strategic decision making wherein managers pool various business, 

functional, and personal expertise to shape the significant strategic moves (Eisenhardt & 

Martin, 2000). Firms must leverage the levers of sensing, seizing, and transforming or 
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reconfiguring. Sensing is the organization determining or gauging the timing or opportunity 

to invest and determining how potential competitors may respond. Seizing entails 

mobilizing resources to address and exploit such opportunities (Teece et al., 1997).  

Transforming is continued renewal through guiding policy or coherent action. 

    Multiple firms have adopted this theory within respective supply chains, furthering 

extending its conceptions throughout numerous facets. SCR and DC are recently 

interweaving, providing a platform for more resilient, secure supply chain networks 

(Masteika & Čepinskis, 2015). Supply chain resilience and DC depict similar 

characteristics to withstand the dynamics of an environment, particularly in the presence of 

a disruption. Figure 7 depicts relatability amongst the two concepts, under the premise of 

absorption, or ability to absorb the shock of a disruption, ability to adapt or response 

capability, and an organization’s propensity to capitalize or innovate capacity, offsetting or 

effectively recovering from turbulence or a disruption (Brusset & Teller, 2017; Yao, Y. & 

Meurier, 2012). 

    Where DC and flexibility are simultaneously aligned, they contribute significantly to 

competitive advantage and overall resilience (Wetering, Mikalef, & Pateli, 2017). 

Application of DC, interchangeable with flexibility, can be achieved by an array of forms. 
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Figure 7. DC & Supply Chain Resilience Traits (Yao, Y. & Meurier, 2012) 

Saghafian and Van Oyen (2016) indicate dynamism as incorporating backup suppliers, 

reinforcing production capacity and inventory before the disruption. However, Djelic and 

Ainamo (1999) suggest dynamic capability to shift structurally into a flexible embedded 

network during environmental turbulence. Alternatively, Helfat and Winter (2011) affirm 

that dynamic capability is a systematic, repeated capacity to extend the firm’s assets. This 

capability is inherently causing changes to the organizational resource-base and how assets 

are combined and deployed. These adjustments directly represent a dynamic capability and 

align with previous research, especially as firms must management complex bundles of 

resources and inventory pools (Helfat & Winter, 2011; Teece et al., 1997). 

     Subsequently, this research distinguishes long-chain flexibility and dynamic capabilities 

as adjoined concepts to enhancing supply chain resilience.    

Conclusion 

     This research extends supply chain resilience literature, assessing the various impact of 

resilience strategies. Explicitly, this research narrows identified gaps in the literature. 

Leveraging general resilience strategies, this research provides a distinct, generalizable tool 
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and methodology for decision-makers to quantifiably gauge resilience and response to 

incremental investment changes in production capacity and inventory. Moreover, it 

explores the infrastructure’s dynamic flexibility and long-chain potential. Lastly, it 

advances supply chain resilience literature and hones a foundation for a more profound 

understanding of network performance to a disruption. 

III. Methodology 

Chapter Overview 

    Simulation modeling was chosen as the methodology for assessing the system under 

study. In recent years, supply chain resilience has been extensively studied via the 

modeling approach. It provides the most flexibility and fluidity in understanding a realistic 

environment of achieving system performance in the presence of disruptions (Carvalho, 

Barroso, MacHado, Azevedo, & Cruz-Machado, 2012; Ivanov & Rozhkov, 2017; Melnyk 

et al., 2014). Simulation permits supply chain behavior to be observable under various 

conditions and design strategies to assess and improve resilience (Carvalho, Barroso, et al., 

2012). This research considers production capacity (repair capability and test cells), spare 

inventory, and disruption responsiveness as key resilience investment levers. Subsequent 

manipulation of these levers will yield the maximum pre-disruption and post-disruption 

performance levels and overall resilience metric. Moreover, this research expounds on 

previous research, particularly conducted by Femano et al. (2019) and Shannon (2020), 

encompassing a more holistic F-16 engine repair network, 13 various nodes within the 

network, and three tiers of repair.  

    The methodology is approached in the following manner: 
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Figure 8. Methodology Flowchart 

Conceptual Design 

     A simulation model was developed to replicate the holistic behavior of the F-16 engine 

repair supply chain.  It features 13 predominant repair network nodes (hereafter referred to 

as bases), wherein each base maintains a respective individual production capacity, 

inventory, repair capability, and test bench functionality. The distribution of resources 

(spares) necessary for each location is equalized for each repair node. Table 2 illustrates 

production capacity and resource allocation for the baseline network.     

Simulation Model Development 

     The simulation was developed using SIMIO 11.0 simulation software and MATLAB. 

SIMIO interacts with a myriad of secondary applications, affording access to a vast array of 

methods and routines. Each simulation cycle generates an Excel workbook output for 

analysis within MATLAB, as illustrated in Figure 9. This approach was applied by several 

researchers, particularly Abar, Theodoropoulos, Lemarinier, & O’Hare (2017) and 

Dehghanimohammadabadi & Keyser (2017). 
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Table 2. Baseline System Allocation 

 

Within the realm of resilience, authors Iriondo, Estévez, Orive, & Marcos (2014) and 

Vijayan, Harikrishnakumar, Krishnan, Cheraghi, & Motavalli (2020) implemented a 

combined simulation and MATLAB approach.   

Data Collection 

 The Air Force’s maintenance data repository Logistics, Installation, and Mission 

Support-Enterprise View (LIMS-EV) was the model’s predominant data source.   

LIMS-EV served as the prime mechanism for obtaining information about the USAF 

supply chain’s F-16 engine posture. Specifically, subsystems within LIMS-EV such as 

Weapon Systems, Supply Chain Management, and Engines Views were used to obtain the 

necessary data for the model and data analysis. Like previous authors, namely Kontokosta 

and Malik (2018) and Sarker, Yang, Lv, Huq, and Kamruzzaman (2020), this research 

scopes the LIMS-EV data to model the Air Force F-16 engine network appropriately.  

Production Capacity Inventory/Capacity

Base Test Benches Spares

1 2 1

2 2 1

3 2 1

4 2 1

5 2 1

6 2 1

7 2 1

8 2 1

9 2 1

10 2 1

11 2 1

12 2 1

13 2 1

Total 26 13



26 

 

Figure 9. SIMIO and MATLAB: Generalized Framework (Dehghanimohammadabadi & Keyser, 

2017) 

Additional data were obtained from the USAF:  Life Cycle Management Center and 635th 

Supply Chain Operations Wing to ensure realistic data assessment and modeling.  

     Table 3 illustrates the composite 2019 system parameters gathered and instituted in the 

Baseline System model. 

Table 3. 2019 System Parameters 

 
*Data masked for confidentiality* 

Base Available N Depot N Depot_Pert TAI N Breaks N Breaks_Pert Breaks_Rate Hours Flown H Sorties Flown N Hours_Sorties Sorties_260

1 9.00 2.20 9.43% 19.00 191.00 12.00% 14.00 2,779.00 1,659.00 1.68 6.38

2 9.00 2.20 9.43% 19.00 191.00 12.00% 14.00 2,779.00 1,659.00 1.68 6.38

3 9.00 2.20 9.43% 19.00 191.00 12.00% 14.00 2,779.00 1,659.00 1.68 6.38

4 9.00 2.20 9.43% 19.00 191.00 12.00% 14.00 2,779.00 1,659.00 1.68 6.38

5 9.00 2.20 9.43% 19.00 191.00 12.00% 14.00 2,779.00 1,659.00 1.68 6.38

6 9.00 2.20 9.43% 19.00 191.00 12.00% 14.00 2,779.00 1,659.00 1.68 6.38

7 9.00 2.20 9.43% 19.00 191.00 12.00% 14.00 2,779.00 1,659.00 1.68 6.38

8 9.00 2.20 9.43% 19.00 191.00 12.00% 14.00 2,779.00 1,659.00 1.68 6.38

9 9.00 2.20 9.43% 19.00 191.00 12.00% 14.00 2,779.00 1,659.00 1.68 6.38

10 9.00 2.20 9.43% 19.00 191.00 12.00% 14.00 2,779.00 1,659.00 1.68 6.38

11 9.00 2.20 9.43% 19.00 191.00 12.00% 14.00 2,779.00 1,659.00 1.68 6.38

12 9.00 2.20 9.43% 19.00 191.00 12.00% 14.00 2,779.00 1,659.00 1.68 6.38

13 9.00 2.20 9.43% 19.00 191.00 12.00% 14.00 2,779.00 1,659.00 1.68 6.38
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Baseline System Description 

    The baseline model incorporates 13 base nodes of the overall system and three echelons 

of the repair network: Organizational (O-level), Intermediate (I-level), and Depot (D-level). 

The model served as a fully integrated network in which system operations are codified, 

replicating holistic broken engines. O-level repair is accomplished locally by back-shop 

maintenance personnel. I-level repair requires outsourcing entity repair to a centralized 

repair facility (CRF) for repair. CRF’s generally possesses additional repair capability not 

present at the local level. In certain instances, the base may have both I-level and O-level 

repair capability if the node also functions as a CRF. This model features two distinct 

CRF’s, one for supporting CONUS nodes and another for OCONUS node support. D-level 

requires overhaul repair of the engine, wherein bases will pack, wrap, and ship it to a 

singular, centralized repair node. 

    Each engine (also referred to as ‘entity’) is assigned to an aircraft facilitating flying 

operations based on 2019 flying data illustrated in Table 3.  As engine breaks occur, the 

entity is routed through the respective base repair chain, dependent on severity. Breaks 

serve as the system interarrival entity, distributed about the number of aircraft allocated to 

each base, the sortie quantity, flying hours, and respective break rate. Interarrival time of 

entities is given by: 

 
(Femano et al., 2019; Shannon, 2020) 

where, 

𝐹𝑖 =  𝑡𝑜𝑡𝑎𝑙 𝑓𝑙𝑦𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 𝑓𝑜𝑟 𝑏𝑎𝑠𝑒 𝑖 

𝐼𝑛𝑡𝑒𝑟𝑎𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 = (
𝐹𝑖

𝐵𝑟𝑒𝑎𝑘𝑟𝑎𝑡𝑒
)/(𝐴𝑖 ∗ 𝑆𝑖 ∗ 𝐻𝑖) (1) 
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𝐴𝑖 =  𝑡𝑜𝑡𝑎𝑙 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑎𝑡 𝑎𝑛𝑦 𝑔𝑖𝑣𝑒𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑏𝑎𝑠𝑒 𝑖 

𝑆𝑖 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑎𝑖𝑙𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑟𝑡𝑖𝑒𝑠, 𝑢𝑠𝑖𝑛𝑔 𝑎 260 − 𝑑𝑎𝑦 𝑓𝑙𝑦𝑖𝑛𝑔 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑓𝑜𝑟 𝑏𝑎𝑠𝑒 𝑖 

𝐻𝑖 =  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑜𝑟𝑡𝑖𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑓𝑜𝑟 𝑏𝑎𝑠𝑒 𝑖  

 

Interarrival time also inherently considers the human element of sortie generation. As 𝐴𝑖 

decreases, the model will fly fewer sorties. This acts as a natural balancer for system 

performance and allows the model to reach steady-state flying operations. 

     At entity generation (break occurrence) following flying operations, the entity is sent to 

flight-line maintenance to determine the break’s severity. The model designates four types 

of severities, sequenced from one to four, stochastic in nature. Type one breaks are 

considered repairable at the O-level whereas, type two and three breaks are deemed I-level 

repair, and type four breaks are reserved for D-level overhaul.  Table 4 visualizes the types 

of severities, probability of severity, and respective repair echelon. Of note, each node 

maintains a separate value for type three and four breaks, providing a more accurate 

representation of probabilistic system engine severity. Following O-level engine repairs, 

the simulation models the time for maintenance personnel to conduct a function test 

utilizing a test bench, then reattach the engine into an available aircraft. Subsequent O-level 

and D-level repairs will not transport the engine back to the originating node but transport 

the entity to the base with the lowest relative percentage of available aircraft.  
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Table 4. Severity and Repair Level 

 
*Derived by (1 – all other severities) 

** Specific to base i Depot Percent (See Table 3) 

 

     This model approaches Aircraft Availability (AA) as a variable or metric comparable to 

a commercial company’s competitive metric. This metric is calculated as: 

 

  

 (Ingram, 2020) 

 

Concerning the Air Force, AA provides the most noteworthy system-level measurement, 

assessing the impact of aligning inventory in a service parts environment (Boone, 

Craighead, Hanna, & Nair, 2013). 

     During an entity’s generation (i.e., engine break), one unit of OR is decremented from 

the originating base, affecting AA as an aircraft is no longer capable of conducting a 

mission. Following the engine break's repair, one unit of OR is incremented at the base 

receiving the repaired engine. For example, if a Type 2 severity occurs at node four, it is 

transported to a CRF for repair, and node four OR is decremented by one. After repair, the 

CRF scans the system for the lowest relative node AA and determines node seven as 

requiring the repaired engine. Subsequently, node seven is incremented by one OR.   

Finally, each base is initially allocated one spare engine. Therefore, when an engine failure 

occurs, maintenance immediately replaces the entity with a spare, if available, without any 

Severity Severity Mix Repair Level

1 0.85 O-Level

2 0.03 I-Level

3 * I-Level

4 ** D-Level

𝐴𝐴 =  
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡  𝑂𝑅 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑖𝑣𝑒 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦
 ∗ 100 (2) 
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OR loss.  When routing repaired entities, if a node chain receives an engine increasing OR 

greater than the respective Total Active Inventory, the local spare inventory is increased, 

and OR remains unchanged.  

Model Verification and Validation 

   Simulation models are heavily reliant on their validity; therefore, objective methods are 

essential to verify and validate simulation models. For verification, we are confronted with 

a critical question:  Does the system behave the way it is intended? Verification is achieved 

by exhaustive execution of SIMO model trace functionality. Tracing allows for the critical 

analysis of process logic, ensuring entities flow from node to node as intended. Validation 

evaluates the relationship between the model and the real system. It questions:  Does the 

simulation produce performance measures or metrics comparable to the real system? 

Validation of model frameworks was achieved by coordination with the primary experts 

and conduits of F-16 engine repairs, Air Force Life Cycle Management Center. 

Furthermore, output metrics such as AA and the number of breaks produced by the system 

were compared with historical LIMS-EV data.  

Scenario Design 

    The baseline model corresponds to the representation of the existing network system. 

Other scenarios and designs were compared to the baseline in performance over a 

predetermined timeframe to analyze the supply chain’s performance behavior. Collectively, 

all scenarios were simulated through a 5,000-day time frame, encompassing an initial 

3,500-day warm-up period. Due to the model's complexity, a substantial warm-up period 

was necessary to eliminate significant performance fluctuations and assure steady-state 

operations within the model. Following the warm-up, day 3500 serves as “new day 0” of 
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steady-state network performance and disruption analysis, permitting a concentration on 

transient states amid a disruption. Therefore, from day 0 to day 1100, steady-state is 

assessed, followed by a randomized disruption occurring at day 1100. By day 1500, each 

scenario has fully recovered, facilitating transient state progression and AUC's utilization 

from day 1100 to 1500. Based on this approach, three transient periods are identified: (1) 

Pre-Disruption, (2) Post-Disruption – Decline, and (3) Post Disruption – Recovery. The 

Pre-Disruption stage is assessed from day 1000 to day 1100. Post-Disruption – Decline is 

categorized as the time at which the disruption occurs until a specified response has been 

enacted. Finally, Post Disruption – Recovery is when the response occurs until the system 

performance has recovered (Femano et al., 2019; Shannon, 2020). Existing within the post-

disruption period, the AUC metric quantifies the level of demand the network can meet 

during the Post Disruption - Decline and Recovery periods. The AUC isolates three 

segments to formulate resilience: (1) AUC – Decline, (2) AUC – Recovery, and (3) AUC – 

Total. AUC – Decline is the total network performance under the Post Disruption – Decline 

curve, AUC- Recovery is the total network performance under the Post Disruption – 

Recovery curve, and AUC – Total is the cumulative network performance during all 

disruption stages (Femano et al., 2019; Shannon, 2020). Figure 12 further illustrates the 

transient states and applicable AUC periods. 

     The primary resilience levers within this research are production capacity, inventory, 

and response time. As previously described in the literature review, these levers will be 

utilized in unison to achieve the most significant resilience potential. Thus, scenarios will 

vary in allocations of production capacity, inventory, and response time. Baseline structure 

capacity is assessed up to a 30% increase, whereas production capacity is varied up to 50% 
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of initial allocations. Such variations in resilience levers are organizational-specific and 

require variations inherent to the network being assessed. These variations are most 

appropriately aligned to analyzing investments with AA impact within the engine repair 

and supply network. Finally, responsiveness to the disruption is analyzed at 10- and 60-day 

values. Responsiveness values were selected based on Macdonald and Corsi (2013), who 

outlined average expected discovery and recovery time, their responsiveness, and 

disruption.  Based on the substantial warm-up period, scenarios underwent 20 replications 

to secure consistent overall data and ensure data outputs are centered within a 95% 

confidence interval. Likewise, scenarios are measured based on the AUC metric and 

respective AA. The AUC is utilized as the primary metric of resilience and representation 

of system behavior over time, while AA provides how investments affect overall 

competitive advantage. Table 5 outlines the developed scenarios. 

   Following each replication, SIMIO generates a comma-separated value (CSV) file, 

wherein 500 CSVs are produced for one response, translating to 25 files for each design. 

CSVs are then imported into MATLAB, which batches, fits, and executes the area under 

the respective scenario curve. Following, MATLAB generates a table featuring pertinent 

timeframe metrics associated with each scenario. Complete MATLAB coding is detailed in 

Appendices B, C, and D.  
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Table 5. Scenario Framework 

 

**Scenario 0 - System Initial Capacity and Recovery Production Capacity = 1.00** 

(Femano et al., 2019; Shannon, 2020) 

Dynamic Long-Chain Flexibility Design 

     The design of the system is also pivotal to assessing resilience within the system. In 

conjunction with adjustments to investments, this research considers a dynamic long-chain 

flexibility design. This construct emulates the same design and process logic built of 

baseline model with a singular exception in the repair routing of severity 2, 3, and 4 

engines. Inherently, I-level and D-level nodes create a centralization or bottleneck of repair 

capability.  

Scenario

System 

Initial 

Capacity

Recovery 

Production 

Capacity

Scenario

System 

Initial 

Capacity

Recovery 

Production 

Capacity

1 1.1 13 1.1

2 1.1 14 1.1

3 1.2 15 1.2

4 1.3 16 1.3

5 1.4 17 1.4

6 1.5 18 1.5

7 1.1 19 1.1

8 1.1 20 1.1

9 1.2 21 1.2

10 1.3 22 1.3

11 1.4 23 1.4

12 1.5 24 1.5

1.00

1.10

1.20

1.30
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Figure 10. Baseline Network Design 

 

Therefore, the long-chain model is dynamic as it will assess whether a CRF or D-level 

repair queue is significantly backlogged. If so, it will redirect the entity to another CRF if a 

repair can be achieved quicker. A D-Level perspective will scan the network of CRFs and 

determine whether a repair can be accomplished quicker and route accordingly. The long-

chain flexibility design is recognized as a dynamic capability, capable of absorption system 

functions and adapting appropriately. Figures 10 and 11 exemplify the structural difference 

between the two system designs. Within each scenario, the disruption occurs at day 1100, 

where repair capabilities at a specific base (node) are eliminated.  
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Figure 11. Dynamic Long-chain (Flexibility) Network Design 

 

     After a predetermined delay, it is assumed all available aircraft at the location impacted 

are equally dispersed to three separate bases within the nearest geographic proximity. The 

model also assumes production capacity and inventory are irrecoverable and spent for the 

simulation’s remaining duration. Moreover, process logic impedes I-level and D-Level 

repaired engines from routing back to the impaired location as it is no longer operational 

due to the disruption. Finally, supporting bases receive OR and Total Active Inventory 

increases relative to the number of dispersed aircraft received.    

Disruption Implementation 

     Assessing system performance, level of resilience, and transient states, each scenario 

incorporates a disruption. This research applies the framework from previous literature to 

quantify the effects of resilience levels or investments through three distinct timeframes. 
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Figure 12 depicts the system’s resistance amid a disruption, decline of performance, 

recovery measures, and new steady-state realization. 

 

Figure 12. Performance Metrics & Disruption Time Periods (Femano et al., 2019; Shannon, 2020) 

The system’s resilience to disruption is translatable to the Pre-Disruption state. Upon 

initiating a disruption, the system performance level begins to decline, entering the Post-

Disruption Decline state. A Minimum Performance Level (MPL) is reached when 

investments or allocations are inserted into the system, launching the Post-Disruption 

Recovery state until a new Recovery Performance Level (RPL) is reached. 

     To assess the transient state and quantifiably analyze the drop and recovery in 

performance, thus resilience, the AUC metric is utilized. The area above the curve indicates 

lost performance in the event of a disruption, whereas AUC emphasizes collective 

performance throughout the transient states (Femano et al., 2019). Therefore, to quantify 
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system resilience, the achieved AUC is considered in proportion to the realized demand 

over the disruption timeframe. 

 

   

 

(Femano et al., 2019; Shannon, 2020) 

     AUC is implemented within the provided designs through further analysis and results, 

and the validity of transient system states is achieved.    

IV. Analysis and Results 

Chapter Overview 

 This research analyzes two network designs:  baseline structure and dynamic long-

chain flexibility structure, wherein each initialized design tests transient states, disruption 

response, recovery, and investments. Each design validates the requirement of 

simultaneous investments in inventory and production capacity and subsequent effects on 

AA, this research’s measure of competitive advantage. Designated disruption responses 

(10- and 60 days) for each design activate predetermined recovery capacity allocations. 

Thus, this research confirms the significance of predetermined asset allocation, 

reactiveness, and recovery allocations as pivotal to post-disruption performance.  

     In conjunction with previous research, Figure 12, and “Scenario Design” section, three 

distinct performance metrics are analyzed: (1)Pre-Disruption AA, (2) Minimum 

Performance Level (MPL), and (3) Recovery Performance Level (RPL).   Pre-Disruption 

AA is assessed as the average daily AA rate from 1000 to day 1100. MPL is the network's 

minimum level of performance as a result of the disruption. RPL is the average daily 

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 =  
𝐴𝑈𝐶𝑡
𝐷𝑡

 
(3) 
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performance after the network has recovered. The interaction of these three metrics 

provides a more profound understanding of overall system resilience. Emphasis is placed 

upon maintaining performance following a disruption and meeting required demand or 

maintaining competitiveness. Specifically, this emphasis is directed where Pre-Disruption 

AA ends, when disruption impact is realized. Moreover, starting performance is pivotal in 

overall performance throughout the transient states. 

Baseline Design 

     Generally, a baseline model captures the current operational environment of its real-

world structure. This model depicts the USAF F-16 engine repair network and limited 

supply chain, affording awareness of the system's current environment and how it resists 

and recovers from a disruption.  

 

Figure 13. Baseline Design with Disruption 

Figure 13 illustrates the system's steady-state and disruption at day 1100 before 

investments in resilience levers. The figure shows the average AA Rate (Black line), the 

50th percentile (Green lines), and the minimum and maximum AA Rates (Blue lines) 

across all replications. Table 6 depicts the 10-day response output derived from the 

scenarios established in Table 5. Each scenario symbolizes established investment levers of 
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initial inventory capacity and recovery (production) capacity. Moreover, scenarios assigned 

a value of 1.00 in either investment lever indicate respective current capability without 

additional resilience investment.    

     Table 6 reinforces the importance of the network’s ability to maximize its Pre-

Disruption AA rate in the event of a disruption. The transient states of the scenario are 

quickly visible as the larger the starting AA, the more significant the AUC Decline. Thus, 

as initial capacity investments occur, Pre-Disruption AA, AUC – Decline, and MPL also 

increase. Naturally, a higher MPL indicates a more remarkable ability for the system to 

support demand or maintain a competitive advantage within the Post-Disruption – 

Recovery period following a disruption. Furthermore, RPL improves respective to the Pre-

Disruption AA and directly reflects the simultaneous inventory and production capacity 

investments. Thus, the network’s ability to withstand and recover from disruption is sub-

optimal when no investments or investments in singular resilience levers are made and 

when a singular lever is manipulated (Femano et al., 2019; Shannon, 2020). Investments in 

inventory initially realize a lesser impact than leveraging production capacity following a 

disruption. Collectively, investments in recovery capacity realize the most significant 

benefit to RPL within the baseline structure.  
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Table 6. Baseline 10-Day Output 

 

     An organization’s ability to rapidly identify, adapt, and respond is crucial to the system's 

performance before and following a disruption. From a competitive-advantage perspective, 

responsiveness is a predominant factor in assuring an organization maintains capability and 

competitiveness. Responsiveness is directly associated with the ability to activate 

specifically designated asset allocations of recovery capacity. Table 7. Baseline Response 

PreDisruption

Scenario
Initial 

Cap

Recovery 

Cap
Average AA MPL AUC-D RPL AUC-R

Total 

AUC

0 1.00 79.21% 67.47% 86.62 N/A N/A 86.620

1 1.05 79.21% 67.47% 7.49 73.83% 80.23 87.72

2 1.10 79.21% 67.47% 7.51 73.95% 80.68 88.20

3 1.20 79.21% 67.47% 7.51 74.69% 81.61 89.12

4 1.30 79.21% 67.47% 7.51 74.63% 81.54 89.06

5 1.40 79.21% 67.47% 7.63 76.94% 93.12 100.74

6 1.50 79.21% 67.47% 7.68 79.16% 93.39 101.07

7 1.00 80.22% 68.48% 7.56 74.46% 81.33 88.89

8 1.10 80.22% 68.48% 7.58 74.71% 81.32 88.90

9 1.20 80.22% 68.48% 7.58 75.16% 82.44 90.02

10 1.30 80.22% 68.48% 7.58 75.65% 82.55 90.13

11 1.40 80.22% 68.48% 7.70 77.63% 93.46 101.16

12 1.50 80.22% 68.48% 7.75 79.54% 93.92 101.67

13 1.00 80.95% 69.49% 7.67 75.16% 81.88 89.55

14 1.10 80.95% 69.49% 7.69 75.91% 82.48 90.16

15 1.20 80.95% 69.49% 7.68 76.34% 83.90 91.58

16 1.30 80.95% 69.49% 7.69 76.53% 83.87 91.56

17 1.40 80.95% 69.49% 7.84 79.45% 94.60 102.43

18 1.50 80.95% 69.49% 7.87 82.23% 94.88 102.75

19 1.00 82.16% 70.50% 7.75 76.74% 82.75 90.49

20 1.10 82.16% 70.50% 7.75 76.48% 82.27 90.02

21 1.20 82.16% 70.50% 7.75 77.14% 84.21 91.96

22 1.30 82.16% 70.50% 7.75 76.92% 83.85 91.61

23 1.40 82.16% 70.50% 7.88 79.58% 94.16 102.04

24 1.50 82.16% 70.50% 7.95 81.85% 94.40 102.35

1.00

1.10

Investments
Post Disrup. - 

Decline

Post Disrup. - 

Recovery

1.20

1.30
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(10 v 60-Days)and Figure 14 depict the consequences of prolonged disruption response on 

overall system performance.  

Table 7. Baseline Response (10 v 60-Days) 

 

Accelerated responsiveness is beneficial to the network resulting in a higher MPL and RPL. 

Moreover, Total AUC or cumulative network performance during all disruption stages is 

higher between the 10- and 60-day response times. It is assumed that the same recovery 

allocations are provided at the response, but realistically, a lengthy response can be 

substantially more costly and detrimental to competitiveness.  

PreDisruption

Response 

Time

Initial 

Cap

Recovery 

Cap
Average AA MPL AUC-D RPL AUC-R Total AUC

1.10 79.21% 67.47% 7.51 73.95% 80.68 88.20

1.20 79.21% 67.47% 7.51 74.69% 81.61 89.12

1.30 79.21% 67.47% 7.51 74.63% 81.54 89.06

1.10 79.21% 66.46% 11.24 70.13% 76.65 87.89

1.20 79.21% 66.46% 11.25 72.68% 77.26 88.51

1.30 79.21% 66.46% 11.24 72.79% 77.30 88.54

60-Day

10-Day

Investments
Post Disrup. - 

Decline

Post Disrup. - 

Recovery

1.00
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Figure 14. AA: 10 v. 60-Day Response 

Dynamic Long-Chain Flexibility Design 

     The second design capitalizes upon the concept of dynamic long-chain flexibility as 

identified within the literature, allocating inventory and production capacity while 

subsequently dispersing capability amid a disruption. Understandably, the baseline 

construct is fundamentally dynamic and flexible, wherein specific nodes can perform O-

Level and I-Level repair capabilities. Within this research, flexibility and dynamism are 

further heightened, permitting certain CRFs to perform limited D-level repair during 

periods of heightened demand. Conjoining the works of Jordan and Graves (1995) and 

Saghafian and Van Oyen (2016), this research fuses dynamic capability and long-chain 

flexibility to bolster resilience.  
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Figure 15.  Dynamic Long-Chain Construct 

Within this construct, the CRF and respective Depot system can dynamically absorb the 

shock of a disruption. As with the baseline design, the system will still assess the severity 

of the break and route accordingly but will first analyze the network's state. The system 

will assess which has the greatest queue of repairs with travel time and route to the quickest 

CRF server for repair. Moreover, severity four breaks are still routed to the depot for repair 

wherein the system will probabilistically assess whether the CRF can support the D-Level 

repair. If the respective CRF queue, repair time, and transportation time are greater than 

that of the depot, the entity is allocated to the CRF. Otherwise, the depot will assign the 

entity to its queue for repair. Furthermore, this design is present before the disruption and 

assessed throughout the transient states. Figure 15 visualizes this construct utilized within 

this research and simulation.         
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Table 8. Dynamic Long-chain 10-Day Output 

 

     Similar to the baseline model, the dynamic long-chain flexibility design is analyzed 

based on inventory and production capacity. Additionally, recovery responsiveness is 

assessed and gauged based on overall network AA and AUC – Total. Table 8 further 

outlines the output generated based on resilience lever allocations and 10-day recovery 

response. Based on the output, simultaneous investments in inventory and recovery 

capacity are also pivotal in achieving optimal resilience within the dynamic long-chain 

PreDisruption AA

Scenario
Initial 

Cap

Recovery 

Cap
Average AA MPL AUC-D RPL AUC-R

AUC - 

Total

0 1.00 79.21% 68.48% 154.08 N/A N/A 154.077

1 1.05 79.21% 68.48% 47.99 74.30% 111.58 159.58

2 1.10 79.21% 68.48% 48.14 75.17% 112.52 160.66

3 1.20 79.21% 68.48% 48.53 76.21% 114.42 162.95

4 1.30 79.21% 68.48% 48.49 76.07% 114.46 162.94

5 1.40 79.21% 68.48% 51.49 81.88% 125.39 176.88

6 1.50 79.21% 68.48% 51.49 81.45% 125.61 177.10

7 1.00 80.39% 69.48% 48.68 75.95% 113.58 162.26

8 1.10 80.39% 69.48% 48.73 75.91% 113.75 162.48

9 1.20 80.39% 69.48% 49.11 76.87% 116.14 165.25

10 1.30 80.39% 69.48% 49.23 77.20% 115.73 164.96

11 1.40 80.39% 69.48% 52.25 82.36% 125.50 177.76

12 1.50 80.39% 69.48% 52.25 82.65% 125.54 177.79

13 1.00 80.94% 69.30% 48.99 76.03% 114.30 163.29

14 1.10 80.94% 69.30% 49.31 76.68% 114.13 163.44

15 1.20 80.94% 69.50% 49.77 78.12% 118.02 167.79

16 1.30 80.94% 69.50% 49.79 77.92% 117.86 167.65

17 1.40 80.94% 69.50% 52.61 83.63% 127.11 179.72

18 1.50 80.94% 69.50% 52.61 83.32% 127.19 179.80

19 1.00 82.20% 71.30% 49.73 77.09% 114.70 164.43

20 1.10 82.20% 71.30% 49.42 76.26% 113.79 163.20

21 1.20 82.20% 71.30% 49.97 78.15% 118.16 168.13

22 1.30 82.20% 71.30% 49.88 78.14% 117.21 167.09

23 1.40 82.20% 71.30% 53.43 83.23% 126.30 179.72

24 1.50 82.20% 71.30% 53.43 82.73% 126.12 179.55

1.30

Investments
Post Disrup - 

Decline

Post Disrup - 

Recovery

1.00

1.10

1.20
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design. Investments in these resilience levers in union not only maximizes the cumulative 

AA but increases Total AUC. Thus, throughout all stages, scenarios which increase 

inventory and recovery capacity holistically outperformed scenarios activating a singular 

lever. Moreover, higher investments in inventory generated higher Pre-Disruption AA and 

MPL, leading to higher RPL values.  

    Responsiveness within the dynamic long-chain design also proved vital to influencing 

cumulative AA. In every scenario, collectively responding within 10-days versus 60-days 

yields higher MPL, RPL, and Total AUC.  

Table 9. Dynamic Long-chain Response (10- v 60-Days) 

 

 

Table 9 and Figure 16 further validates responsiveness literature as an organization’s 

ability to respond to a disruption affects its recovery trajectory and overall performance.    

PreDisruption

Response 

Time

Initial 

Cap

Recovery 

Cap
Average AA MPL AUC-D RPL AUC-R

Total 

AUC

1.10 79.21% 68.48% 48.14 75.17% 112.52 160.66

1.20 79.21% 68.48% 48.53 76.21% 114.42 162.95

1.30 79.21% 68.48% 48.49 76.07% 114.46 162.94

1.10 79.21% 67.47% 48.08 72.32% 110.68 158.76

1.20 79.21% 67.47% 48.18 74.68% 113.22 161.41

1.30 79.21% 67.47% 48.24 74.79% 113.31 161.55

Investments
Post Disrup. - 

Decline

Post Disrup. - 

Recovery

10-Day

1.00

60-Day
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Figure 16. Long-Chain 10- v. 60-day RPL (Total AUC and AA) 

Baseline vs. Long-chain / 10- vs. 60-Day Response 

     Figure 17 outlines the baseline and long-chain structures for AA. As investments in 

resilience increase, overall AA increases linearly. Furthermore, there are distinct 

differences between: (1) 10- and 60-day recovery responses and (2) baseline and long-

chain structures. This research further employed the Paired T-Test to statistically test for 

the difference to assess and validate differences within these two categories. A Paired T-

Test was selected to test for the difference between two dependent samples. Collectively, 

four relationships were individually assessed at a 99.9% confidence level or alpha of 0.001. 

Table 10 outlines these four tests, indicating significance throughout all scenarios and 

designs as every derived T-statistic exceeds the critical two-tailed T-value. 
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Figure 17. Baseline/Long-chain AA Comparison 

Herein there are significant differences between the 10- and 60-day responses respective to 

each design. As anticipated, this validates the differences in an organization’s 

responsiveness to a disruption. The difference between designs is most notably astounding, 

particularly between Baseline 60- and Long-chain 60-days.  

Table 10. Baseline and Long-chain Paired T-Test 

 

These outputs further emphasize the importance of expedited response to disruption and the 

impact the dynamic long-chain design has on network performance. Further validating the 

Baseline 10 -and Baseline 60-days Baseline 10- and Long Chain 10-days

T-Stat 9.621 -6.375

P(T<=t) two-tail <.001 <.001

t Critical two-tail 3.768 3.768

Long Chain 10- and Long Chain 60-days Baseline 60- and Long Chain 60-days

T-Stat 14.535 -41.016

P(T<=t) two-tail <.001 <.001

t Critical two-tail 3.768 3.768
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data, this research then considers each design and varying response as independent groups, 

facilitating a test to determine statistical significance between means, also referred to as 

analysis of variance (ANOVA). A one-way ANOVA performed and illustrated in Table 11 

reveals a p-value of 4.349E-06, substantially more significant than the null hypothesis 

rejection value of 0.001. Thus, we can reject the null hypothesis that the means are similar. 

Moreover, with great probability, the ANOVA indicates a significant difference between 

the various designs and response scenarios.   

Table 11. One-Way ANOVA 

 

  

Source of Variation SS df MS F P-value F crit

Between Groups 0.024 3 0.008 10.676 4.349E-06 5.897

Within Groups 0.068 92 0.001

Total 0.092 95
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V.  Conclusion and Future Research 

    This research facilitates a generalizable tool to quantify network resilience from defined 

inventory and production capacity allocations and various structural designs amid a 

disruption. Simultaneous investments within both resilience levers yield the most optimal 

range of resilience wherein the inability to enact such levers within a timely manner 

appropriately can be substantially detrimental to recovery.  

     This research has public, private, militaristic applicability as all environments 

experience susceptibility to supply chain disturbances. This research employs discrete-

event simulation to assess the USAF engine repair network's various structures. Moreover, 

it assesses how investments in the resilience levers of inventory and production capacity 

affect resilience based on AA's predefined metric. Simultaneous investment in these levers 

provides increased resilience and improving recovery, achieving the same performance 

before disruption and, in certain instances, improving performance following a disruption.  

   The develops a model reflective of the current F-16 aircraft engine repair network. This 

design is reflective of similar designs across various airframes, platforms, and networks. A 

baseline model is established with 1.00 inventory and recovery capacity, outlining the 

network's current state with no investments. Resilience levers must be tailored to the 

organization's needs but should be gauged based on which factors directly affect 

organizational competitive advantage. Thus, appropriately selecting impactful resilience 

levers is pivotal in understanding firms’ resilience to disruption.  Two independent designs 

were established: Baseline and Dynamic Long-Chain Flexibility, leveraging various 

investments in resilience. 
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     Moreover, the designs were assessed based on organizational responsiveness to a 

disruption. Organizations that employ similar methodology should vary investments based 

upon the structure of the respective system. Maintaining a baseline approach with 

simultaneous investment remains acceptable as a disruption mitigation strategy, yet optimal 

resilience is reached when employing a dynamic long-chain approach. 

     This research adequately facilitates a means of metrically measuring system 

performance and analyzing investments. Therefore, organizations across various domains, 

environments, and industries are afforded a benchmark to understand and assess variables 

that enhance competitive advantage, particularly concerning the supply chain.  By 

establishing a predetermined inventory range and simultaneously allocating resources, 

firms can achieve the desired performance range. The AUC metric serves as a 

generalizable tool or metric to appropriately evaluate network resilience through various 

transient states of disruption. Additionally, firms are provided a more profound 

understanding of how to employ necessary resilience levers to achieve the desired 

performance. 

     As supply chain disturbances increase in number and frequency, affecting normal 

operations, resilience is critical. Optimal resilience is achieved via simultaneous investment 

in inventory and production capacity. Increasing inventory alone fails to promote recovery. 

Allocating production capacity upon recovery is essential to achieve pre-disruption steady-

state performance or a higher range of performance. However, suppose a firm lacks the 

resources for recovery. In that case, inventory affords a suitable means of gradually 

declining performance, permitting the firm to maintain the highest possible performance 

level for a prolonged period of time (Shannon, 2020). Furthermore, shifting to a dynamic 
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long-chain flexibility design is optimal for overall resilience. Permeating this flexibility 

construct decentralizes operations and further bolsters resilience throughout the system.    

Finally, organizational responsiveness cannot be overemphasized. While specific resources 

may not become available until well into the recovery phases, immediate action with 

available resources significantly impacts recovery.               

Managerial Implications 

     As stated by Pettit et al. (2010) and various researchers aforementioned with the 

literature, organizational decision-makers and leaders alike must strike a balance between 

supply chain vulnerabilities and capabilities. This study extends the existing literature by 

addressing how managers can systematically invest in resilience levers to bolster resilience. 

More so, based on resource availability, managers can strategically adjust investments and 

production capacity to achieve the desired performance range. For example, if there are 

limited test benches that influence production capacity, managers can circumvent this by 

increasing the spares' inventory to achieve approximately the same performance range. 

Additionally, managers must consider the overall effects of investments on AA. A 10% 

increase in either inventory or production capacity, specific to this network, generally 

equates to a 1% increase in AA. Thus, managers must appropriately weigh the monetary 

implications for subsequent AA improvements.  

Assumptions / Limitations 

     A central assumption and limitation of this study is that all engine discrepancies feature 

a singular break wherein it is feasible for an engine to experience multiple breaks. Therein, 

all breaks, regardless of severity, result in a decrease in overall AA. From a realistic 
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approach, specific severity breaks, particularly those within severity one tiers, may not 

necessarily prevent an aircraft from being available, thus not affecting AA.  

Opportunities for Future Research 

    This study's results permit a comparison of supply chain behavior before and following a 

disruption under two resilience constructs. Both strategies effectively assess resilience and 

determine the necessary course of action to withstand and recover from disruption, yet 

there is an additional opportunity for further research. When a particular node is affected by 

a disruption, it loses all repair capability, which may not fully be possible. Therefore, future 

research can implement similar based analysis to assess how the system responds to a node 

becoming reactivated following a disruption. Subsequently, salvageable resources have not 

been examined to be dispersed to the remaining nodes. Dispersal of these assets could 

further empower recovery rather than remain idle or nonmeaningful.  

     Moreover, costs have not been explored within this design. Understanding the costs 

associated with implemented resilience further affords decision-makers in understanding 

where to affordably placed their next resource investment. Finally, future research gains to 

employ AUC within another context to validate its transferability and applicability across 

multiple realms.  

Conclusion 

     AUC is a powerful metric for decision-makers to suitably balance vulnerabilities and 

capabilities. It yields a quantifiable resilience measurement when coupled with investments 

in resilience levers, time, and system performance.  Although an understanding of 

investments is essential, synchronized investments in resilience levers are optimal. 
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Organizations that align with a baseline construct still achieve performance benefits and 

adequately resist disturbances, but further optimization is feasible when implementing a 

decentralized dynamic long-chain flexibility strategy.  Finally, speed of response validates 

existing literature, as agility in intentional investments attains better performance recovery 

and overall competitive advantage. 

 . 
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Appendix A:  Simulation Baseline Framework 
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Appendix B:  Output Batch Analysis Code (Femano, et al., 2019; Shannon, 2020) 

agg_TS = []; 
is_filename = 1; 
for i=1:numel(spares)  %spares 
    for j =1:numel(servers) %added servers 
        for k = 1:numel(ddays) %date of disruptionKeep  
            is_filename = 1; 
            for r = 1:reps 
                s = num2str(spares(i)); 
                c = num2str(servers(j)); 
                d = num2str(ddays(k)); 
                 try 
                    filename = [Exp_name, 

'_',s,'Spares','_',c,'Cap','_','DDay',d,'_Rep',num2str(r),'.csv'] 
                    [T, SL] = AggregateStateData(filename,time_unit); 
                    size(T) 
                    agg_TS = [agg_TS;repmat(spares(i), numel(T),1), repmat(servers(j), 

numel(T),1),repmat(ddays(k), numel(T),1), repmat(r, numel(T),1), T,SL]; 
                catch 
                    warning('No such scenario. Going to next scenario'); 
                    is_filename = 0; 
                    r = reps; 
                end 
            end 
%            TS = agg_TS(agg_TS(:,1)==spares(i) & agg_TS(:,2)==servers(j), :); 
%             T = TS(:,4); 
%             SL = TS(:,5); 
%             T = reshape(T, numel(T)/reps, reps); 
%             SL = reshape(SL, numel(SL)/reps, reps); 
%             %figure; 
%             %plot(T(:,1), max(SL,[], 2)); 
%             hold on; 
%             %plot(T(:,1), min(SL,[], 2)); 
%             SL_mean = mean(SL,2); 
%             plot(T(:,1), movmean(SL_mean,12), 'LineWidth', 4); 
%             axis([0 500 100 226]); 
            end 
        end 
end 
    save(['agg_TS_' Exp_name], 'agg_TS'); 
    parameters = [spares, servers, ddays reps, time_unit]; 
    save(['parameters_',Exp_name], 'parameters' ); 
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Appendix C:  Area Under the Curve Code (Femano et al., 2019; Shannon, 2020) 

TS = agg_TS(agg_TS(:,1)==spares(1) & 

agg_TS(:,2)==servers(1)&agg_TS(:,3)==ddays(1)&agg_TS(:,4)==1, :); 

T = TS(:,5); 

maxT = T(end); 

time_unit = T(2)-T(1); 

endT = (maxT-5*time_unit)/time_unit; 

  

figure; 

z =1; 

key_measures = []; 

  

%Fit Baseline disruption case first 

for i=1:numel(spares)  %spares 

    s = num2str(spares(i)) 

    c = num2str(servers(1)) 

    d = num2str(ddays(1)) 

    [Exp_name,' ',s,' Spares',' ',c,' Servers',' ','Dday on ',d] 

    T=[]; 

    SL = []; 

    for r = 1:reps 

        TS = agg_TS(agg_TS(:,1)==spares(i) & 

agg_TS(:,2)==servers(1)&agg_TS(:,3)==ddays(1)&agg_TS(:,4)==r, :); 

        T = [T,TS(1:endT,5)]; 

        SL = [SL, TS(1:endT,6)]; 

    end 

    km = analyze_ts(T(:,1),mean(SL,2), T_dis, T_rec,0,1,0) 

    %area under disruption 

     

     

    fun_pre = @(x,Tpre)x(1)+Tpre*0; 

    %fun_dis = @(x,Tdis)(x(1)-x(3))*exp(-x(2)*(Tdis - x(4)))+x(3); 

    %fun_dis=@(x,Tdis)(x(1)-x(3))*(1-(1./(1+(exp(-x(2)*(Tdis-x(4)))))) )+x(3); 

    %fun_dis = @(x,Tdis)(x(1)-x(3))*(1+x(5)*(Tdis - x(4))).^x(6)+x(3); 

    fun_dis = @(x,Tdis)(x(3)-x(4))*exp(-((Tdis - x(5))./x(1)).^x(2))+x(4); 

    A_pre = km(1); 

    x_dis = km(2:end-1); 

    A_All_Min = km(end); 

     

    au_dis = integral(@(T)fun_dis(x_dis,T), T_dis, T_end); 

    au_rec = 0; 

    %spares(i),0,T_dis, T_rec, A_pre, k_dis, c_dis, A_max, A_dis, T_dis_begin 
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    key_measures = [key_measures;spares(i),0,T_dis, T_rec, km(1:end-1), au_dis, au_rec, 

au_dis+au_rec, A_All_Min]; 

    %subplot(numel(spares), numel(servers), z); 

     

    plot(T, fun_pre(A_pre, T), 'LineWidth', 2) 

    hold on 

    plot(T, fun_dis(x_dis,T), 'LineWidth', 2) 

     

    plot (T(:,1),mean(SL,2), 'LineWidth', .5) 

     

    axis([400 990 .3 1]); 

     

    title([s,' Spares',', ',c,' Servers']); 

    xlabel('Day'); 

    ylabel('Available Aircraft'); 

end 

figure;     

A_dis = mean(key_measures(:,9)); 

for i=1:numel(spares)  %spares 

    z=1; 

    for j =2:numel(servers) %added servers 

        for k = 1:numel(ddays) %date of disruption 

            s = num2str(spares(i)) 

            c = num2str(servers(j)) 

            d = num2str(ddays(k)) 

            [Exp_name,' ',s,' Spares',' ',c,' Servers',' ','Dday on ',d] 

            %try 

            %                 for r = 1:reps 

            %                     TS = agg_TS(agg_TS(:,1)==spares(i) & 

agg_TS(:,2)==servers(j)&agg_TS(:,3)==ddays(k)&agg_TS(:,4)==r, :); 

            %                     if(numel(TS) > 0) 

            %                         T = TS(:,5); 

            %                         SL = TS(:,6); 

            %                         km = analyze_ts(T,SL, 500, 564,0); 

            %                         key_measures = [key_measures;spares(i),servers(j),k, km]; 

            %                     end 

            %                 end 

            T=[]; 

            SL = []; 

             for r = 1:reps 

                 TS = agg_TS(agg_TS(:,1)==spares(i) & 

agg_TS(:,2)==servers(j)&agg_TS(:,3)==ddays(k)&agg_TS(:,4)==r, :); 

                    T = [T,TS(1:endT,5)]; 

                    SL = [SL, TS(1:endT,6)]; 

%                     T = [T,TS(:,5)]; 
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%                     SL = [SL, TS(:,6)]; 

             end 

            T = T(:,1); 

            km = analyze_ts(T,mean(SL,2), T_dis, T_rec, A_dis, 1,1); 

              

%            km = key_measures(key_measures(:,1)== spares(i) & 

key_measures(:,2)==servers(j),:); 

            fun_pre = @(x,Tpre)x(1)+Tpre*0; 

            fun_dis = @(x,Tdis)(x(3)-x(4))*exp(-((Tdis - x(5))./x(1)).^x(2))+x(4); 

            fun_rec = @(x,Trec)(x(3)-x(4))*(1-exp(-((Trec - x(5))./x(1)).^x(2)))+x(4); 

             

            A_pre = km(1); 

            x_dis = km(2:6); 

            x_rec = km(7:end-1); 

            A_All_Min = km(end); 

             

            au_dis = integral(@(T)fun_dis(x_dis,T), T_dis, T_rec); 

            au_rec = integral(@(T)fun_rec(x_rec,T), T_rec, T_end); 

            key_measures = [key_measures;spares(i),servers(j),T_dis, T_rec, km(1:end-1), 

au_dis, au_rec, au_dis+au_rec, A_All_Min]; 

            subplot(1, numel(servers)-1, z); 

            %subplot(numel(spares), numel(servers)-1, z); 

             

            Tpre = T(T<=T_dis); 

    SLpre = SL(T<=T_dis); 

    Tdis = T(T>=T_dis&T<=T_rec); 

    SLdis = SL(T>=T_dis&T<=T_rec); 

    Trec = T(T>=T_rec); 

    SLrec = SL(T>=T_rec); 

            subplot(6,4, z) 

            plot(Tpre, fun_pre(A_pre, Tpre), 'LineWidth', 2) 

            hold on 

            plot(Tdis, fun_dis(x_dis,Tdis), 'LineWidth', 2) 

            plot(Trec, fun_rec(x_rec,Trec), 'LineWidth', 2) 

             

            plot (T(:,1),mean(SL,2), 'LineWidth', .5) 

             

            axis([400 990 .3 1]); 

             

            title([s,' Spares',', ',c,' Servers']); 

            xlabel('Day'); 

            ylabel('Available Aircraft'); 

            %z= z+1; 

             

            %catch 
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            %    warning('No such scenario. Going to next scenario'); 

            % end 

             

        end 

         z= z+1; 

    end 

end 

key_measures = real(key_measures); 

save(['key_measures_', Exp_name],'key_measures'); 
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Appendix D:  Time Series Plot Code (Femano et al., 2019; Shannon, 2020) 

figure; 

  

z =1; 

  

%Get number of days in time series and time unit 

TS = agg_TS(agg_TS(:,1)==spares(1) & 

agg_TS(:,2)==servers(1)&agg_TS(:,3)==ddays(1)&agg_TS(:,4)==1, :); 

T = TS(:,5); 

maxT = T(end); 

time_unit = T(2)-T(1); 

endT = (maxT-5*time_unit)/time_unit; 

  

for i=1:numel(spares)  %spares 

   for j =1:numel(servers) %added servers 

        for k = 1:numel(ddays) %date of disruption 

            s = num2str(spares(i)) 

            c = num2str(servers(j)) 

            d = num2str(ddays(k)) 

            [Exp_name,' ',s,' Spares',' ',c,' Servers',' ','Dday on ',d] 

            try 

            T=[]; 

            SL = []; 

                for r = 1:reps 

                    TS = agg_TS(agg_TS(:,1)==spares(i) & 

agg_TS(:,2)==servers(j)&agg_TS(:,3)==ddays(k)&agg_TS(:,4)==r, :); 

                    T = [T,TS(1:endT,5)]; 

                    SL = [SL, TS(1:endT,6)]; 

                end 

                    subplot(2,1, z) 

                   %subplot(numel(spares), numel(servers), z); 

                    plot(T(:,1), max(SL,[], 2), '-b', 'LineWidth', .5 ); 

                    hold on; 

                   plot(T(:,1), min(SL,[], 2), '-b', 'LineWidth', .5); 

                    %             SL_mean = mean(SL,2); 

                    plot(T(:,1), prctile(SL,25, 2), '-g', 'LineWidth', .5); 

                    plot(T(:,1), prctile(SL,75, 2), '-g', 'LineWidth', .5); 

                    plot(T(:,1), mean(SL,2),'-k', 'LineWidth', 1.00); 

                    %              plot(T(:,1), movmean(SL_mean,12), 'LineWidth', 4); 

                    axis([1000 1500 .6 1.0]); 

                     

                    title([s,' Spares',', ',c,' Servers']); 

                    xlabel('Day'); 

                    ylabel('Available Aircraft'); 
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                    z= z+1; 

                 

            catch 

                warning('No such scenario. Going to next scenario'); 

            end 

        end 

    end 

end 
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