
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2021

Characterizing Security Monitor and Embedded System Characterizing Security Monitor and Embedded System

Performance across Distinct RISC-V IP-Cores Performance across Distinct RISC-V IP-Cores

Justin C. Tullos

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Tullos, Justin C., "Characterizing Security Monitor and Embedded System Performance across Distinct
RISC-V IP-Cores" (2021). Theses and Dissertations. 5046.
https://scholar.afit.edu/etd/5046

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholar.afit.edu%2Fetd%2F5046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5046?utm_source=scholar.afit.edu%2Fetd%2F5046&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

CHARACTERIZING SECURITY MONITOR
AND EMBEDDED SYSTEM PERFORMANCE

ACROSS DISTINCT RISC-V IP-CORES

THESIS

Justin C. Tullos, Captain, USAF

AFIT-ENG-MS-21-M-087

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-21-M-087

CHARACTERIZING SECURITY MONITOR AND EMBEDDED SYSTEM

PERFORMANCE ACROSS DISTINCT RISC-V IP-CORES

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Justin C. Tullos, B.S.

Captain, USAF

March 2021

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-21-M-087

CHARACTERIZING SECURITY MONITOR AND EMBEDDED SYSTEM

PERFORMANCE ACROSS DISTINCT RISC-V IP-CORES

THESIS

Justin C. Tullos, B.S.
Captain, USAF

Committee Membership:

Scott R. Graham, Ph.D.
Chair

Pranav R. Patel, Ph.D.
Member

Lt Col Jeremy D. Jordan, Ph.D.
Member

AFIT-ENG-MS-21-M-087

Abstract

Embedded systems have seen a rapid integration into all forms of industry as

they continue to shrink in size and cost. The increased demand has highlighted a

need for secure systems that are robust to attacks and demonstrate reliable

performance, especially if the system operation is time-critical. Efforts to

characterize the performance of secure systems have been obstructed either by

proprietary restrictions or ineffective analysis.

Proprietary technology limits a comprehensive validation of a system’s security

and the implications it might have on performance. Performance analysis that is

disclosed often lacks sufficient statistical rigor needed for a complex system. An

open-source processor standard, called RISC-V, may allow sufficient transparency to

thoroughly model performance trade-offs.

This research shows that a security platform and embedded system performance

can be characterized through non-parametric statistics methodology, and provides a

substantive foundation to scrutinize system design considerations that impact

performance. This work proposes a new framework, the Statistical Performance

Analysis with Relevance Conclusions (SPARC), that pioneers a synthesis of

difference and equivalence hypothesis testing to provide relevant conclusions.

SPARC is used to characterize performance of three RISC-V embedded systems

with and without a security platform, Keystone, instantiated on an field

programmable gate array (FPGA).

iv

AFIT-ENG-MS-21-M-087

This work is dedicated to God, sobriety, and my loving wife.

v

Acknowledgements

I would like to thank my advisor Dr. Scott Graham for helping me grow both

academically and personally throughout my time at AFIT. I could always count on his

support and feedback to guide me through the various roadblocks during my research.

I would also like to thank Dr. Pranav Patel, and Lt Col Jeremy Jordan for their

feedback and advice for my research. Dr. Patel dedicated countless hours to helping

me succeed and he was always available for advice. Lt Col Jordan opened my eyes to

statistics and my research was meaningless without him.

Finally, there are not enough pages to express my gratitude to my wife for her

support through the long days, late nights, and weekends spent researching at AFIT.

You are the sunshine in my life and this would not have been possible without you.

Thank you.

Justin C. Tullos

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgements . vi

List of Figures . x

List of Tables . xiii

List of Acronyms . xv

I. Introduction . 1

1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Research Goals . 2
1.4 Hypothesis . 3
1.5 Approach . 4
1.6 Contributions . 4
1.7 Organization . 6

II. Background and Related Work . 7

2.1 Overview . 7
2.2 RISC-V instruction set architecture (ISA) . 7

2.2.1 Keystone Security Monitor for RISC-V
Architectures . 8

2.2.2 Benchmarks . 9
2.2.3 Field Programmable Gate Arrays . 10
2.2.4 Broad Analytical Model of a Reference Monitor 11
2.2.5 HPT Framework . 14

2.3 Related Work . 16
2.4 Summary . 18

III. Characterizing the Performance of Embedded Systems 20

3.1 Overview . 20
3.2 Modular Framework Design . 20
3.3 The Statistical Performance Analysis with Relevance

Conclusions Framework . 24
3.3.1 Statistical Significance Versus Practical Relevance 25
3.3.2 Elements of Relevant Statistical Performance

Evaluations . 28

vii

Page

3.3.3 Equivalence Testing . 32
3.3.4 Combining Difference and Equivalence

Hypotheses . 34
3.4 Modeling Keystone-specific Security Features . 40

3.4.1 Keystone Reference Monitor Concept . 40
3.4.2 Proposed Keystone Closed Queuing Network

Model . 41
3.4.3 Reference Monitor Job Request Generation 42

3.5 Summary . 44

IV. Experimental Design and Methodology . 45

4.1 Objective . 45
4.2 System Under Test . 46
4.3 Assumptions . 46
4.4 Control Variables . 48
4.5 Independent Variables . 49
4.6 Response Variables . 49
4.7 Uncontrolled Variables . 49
4.8 Experimental Design . 51

4.8.1 Experimental Hardware Setup . 51
4.8.2 Experiment Methodology . 52
4.8.3 Tools . 53

4.9 Methodology: SPARC Framework Specifics . 53
4.9.1 Characterizing Three RISC-V Embedded

Systems with Keystone Disabled . 54
4.9.2 Evaluating Hypothetical Margins of Equivalence 55
4.9.3 Characterizing Individual RISC-V Embedded

Systems with Keystone Enabled . 56
4.9.4 Performance Metric Measurements . 56

4.10 Methodology: Keystone-specific Security Features 57
4.10.1 Keystone Enabled Performance Metric

Measurement . 60
4.11 Methodology Summary . 61

V. Observations and Analysis . 62

5.1 Overview . 62
5.2 RISC-V Performance Evaluations with the SPARC

Framework . 62
5.2.1 Hypothetical Equivalence Margin Efficacy 69

5.3 Individual RISC-V Performance Impact of Keystone
with the SPARC Framework . 73

viii

Page

5.4 Efficacy of the SPARC Framework in Comparison to
HPT. 83

5.5 Performance Impact of Keystone-specific Security
Features . 86
5.5.1 Evaluation of Keystone Closed-queuing Model 86
5.5.2 Keystone Initialization Time: Analysis of Binary

Size Performance Impact . 90
5.6 Results Summary . 97

VI. Conclusion . 100

6.1 Overview . 100
6.2 Research Contributions . 100
6.3 Summary . 101
6.4 Future Work . 103

Appendix A. RV8 Benchmark and Experiment Start Script 106

Appendix B. R Wilcoxon Signed Rank Equivalence TOST
Custom Code . 108

Bibliography . 113

ix

List of Figures

Figure Page

1 Reference monitor concept model. ©2019 IEEE.
Reprinted, with permission, from Gorbachov et al. 12

2 Reference monitor functional model derived from
Gorbachov et al. 13

3 Architectural layers of a RISC-V embedded system with
Keystone disabled. 21

4 Architectural layers of a RISC-V embedded system with
Keystone enabled. 23

5 Comparing two distributions of execution time with
Keystone enabled and disabled. 26

6 Comparing two distributions of execution time with the
effects of differing decimal precision. 27

7 Relevant statistical performance evaluation framework. 39

8 Redefined concept model for Keystone reference
monitor derived from Figure 1. 42

9 Functional closed queuing network model from
Gorbachov et al. (2019) modified for Keystone reference
monitor. 43

10 System under test and component under test diagram. 46

11 Functional closed queuing network model for Keystone
reference monitor. 57

12 Rocket with Ariane quantile-quantile plots for each
benchmark. Data points are a difference, Rocket −
Ariane, compared to a theoretical normal distribution
line. 63

13 Median Rocket and median Ariane bar graph for each
benchmark. 64

x

Figure Page

14 Rocket with Shakti quantile-quantile plots for each
benchmark. Data points are a difference, Rocket −
Shakti, compared to a theoretical normal distribution
line. 65

15 Median Rocket and median Shakti bar graph for each
benchmark. 67

16 Keystone performance impact on Rocket,
quantile-quantile plots for each benchmark. Data points
are a difference, Rocket Keystone enabled − Rocket
Keystone disabled, compared to a theoretical normal
distribution line. 74

17 Keystone performance impact on Ariane,
quantile-quantile plots for each benchmark. Data points
are a difference, Ariane Keystone enabled − Ariane
Keystone disabled, compared to a theoretical normal
distribution line. 76

18 Keystone performance impact on Shakti,
quantile-quantile plots for each benchmark. Data points
are a difference, Shakti Keystone enabled − Shakti
Keystone disabled, compared to a theoretical normal
distribution line. 76

19 Rocket median Keystone enabled and median Keystone
disabled bar graph for each benchmark. 81

20 Ariane median Keystone enabled and median Keystone
disabled bar graph for each benchmark. 82

21 Shakti median Keystone enabled and median Keystone
disabled bar graph for each benchmark. 82

22 cap . 87

23 Exploratory data analysis of Bigint execution times. 90

24 Scatter plots of Keystone Initialization Time for each
experiment run, separated by the benchmark binary
sizes. 94

xi

Figure Page

25 Linear regression model for Keystone Initialization
Time only. Data points are binary size by Keystone
Initialization Time, line is linear method regression. 95

xii

List of Tables

Table Page

1 Benchmark descriptions. 10

2 Relevance Conclusions . 38

3 Subset of Keystone API functions [1] . 42

4 Control Variables . 48

5 Independent Variables . 49

6 Response Variables . 50

7 Data Gathering and Analysis Tools. 53

8 R software packages used and their description. 54

9 Shapiro-Wilk Tests for normality . 63

10 SPARC framework results for difference and equivalence
at [0.95, 1.05] in Rocket to Ariane comparison tests 64

11 Rocket to Shakti comparison tests for difference and
equivalence at [0.95, 1.05] . 66

12 SPARC general performance results for both
comparisons. 68

13 SPARC framework results for difference and equivalence
at [0.75, 1.25] in Rocket to Ariane comparison tests 69

14 SPARC framework results for difference and equivalence
at [0.50, 1.50] in Rocket to Ariane comparison tests 70

15 Rocket to Ariane SPARC general performance results
with hypothetical equivalence margins [0.75, 1.25] and
[0.50, 1.50]. 71

16 SPARC framework results for difference and equivalence
at [0.75, 1.25] in Rocket to Shakti comparison tests 72

17 SPARC framework results for difference and equivalence
at [0.50, 1.50] in Rocket to Shakti comparison tests 72

xiii

Table Page

18 Rocket to Shakti SPARC general performance results
with hypothetical equivalence margins [0.75, 1.25] and
[0.50, 1.50]. 73

19 Shapiro-Wilk Tests for normality on Keystone enabled
versus disabled performance impact. 75

20 SPARC framework results for difference and equivalence
at [0.95, 1.05] in Rocket with Keystone disabled to
Keystone enabled comparison tests . 77

21 SPARC framework results for difference and equivalence
at [0.95, 1.05] in Ariane with Keystone disabled to
Keystone enabled comparison tests . 78

22 SPARC framework results for difference and equivalence
at [0.95, 1.05] in Shakti with Keystone disabled to
Keystone enabled comparison tests . 78

23 SPARC overall relevant difference in performance test
results of Keystone enabled to Keystone disabled for all
3 RISC-V systems. 80

24 HPT framework results for Wilcoxon Rank-Sum Test in
Rocket to Ariane comparison. 84

25 HPT framework results for Wilcoxon Rank-Sum Test in
Rocket to Shakti comparison. 84

26 HPT general performance results for both comparisons. 85

27 Results for equivalence tests on means between two
benchmarks. 89

28 Binary sizes of benchmarks. 91

29 Compiled Qsort size targets for experiment. 91

30 Binary size experiment benchmark data output and run
configurations. 93

31 Linear regression model coefficient t-test results. 96

32 Linear regression model F-test results. 96

xiv

List of Acronyms

API application programming interface

ASIC application-specific integrated circuit

CLT Central Limit Theorem

CUT component under test

EM Entity Monitor

FPGA field programmable gate array

FWER family-wise error rate

HDL hardware descriptive languages

HPT Hierarchical Performance Testing

ISA instruction set architecture

ORM object reference monitor

OS operating system

PMP physical memory protection

RM Resource Monitor

SGX Software Guard Extensions

SPARC Statistical Performance Analysis with Relevance Conclusions

SPEC System Performance Evaluation Corporation

SRM subject reference monitor

SUT system under test

TOST Two One-Sided Tests

UART universal asynchronous receiver-transmitter

xv

CHARACTERIZING SECURITY MONITOR AND EMBEDDED SYSTEM

PERFORMANCE ACROSS DISTINCT RISC-V IP-CORES

I. Introduction

1.1 Motivation

By 2025, the global military embedded systems market will reach $18.4

billion [2]. Military and civilian applications are seeing a surge of integration with

embedded systems as they continue to shrink in size and cost. The increased

demand has highlighted a need for secure systems that are both robust to attacks

and demonstrate reliable performance, especially if the system operation is

time-critical. But securing an embedded system is often a trade-off between costs for

the level of security needed, complexity of the solution, and the performance impact.

Performance characterization of a secure system is often obfuscated, depending on

the architecture of the processor. Closed-source architectures, like Intel or ARM

processors, offer security platforms without sufficient insight into implementation

details, thus inhibiting system developers in understanding the interactions and

implications of using it [3]. The advent of an open-source processor standard, called

RISC-V, may enable sufficient transparency of the interactions between system

components and a security platform to thoroughly model performance trade-offs.

1.2 Problem Statement

The 2011 release of RISC-V, an open-source instruction set architecture, paved

the way for a new era of processor technology evolution built around the open

1

exchange of embedded security, validation, and implementation. An open-source

software security monitor developed for RISC-V processors, Keystone provides

primitives to secure embedded systems. Integrating Keystone, or any other security

platform, will inevitably impact the performance of an embedded system, and that

impact on performance must be properly accounted for by system developers.

To assess the impact, a baseline performance characterization of the system is

necessary. This is achieved through benchmarking, where a standard set of

representative programs are executed to capture performance metrics. But, the

resulting metrics often lack sufficient statistical rigor needed for an extensive

analysis of a complex system. A number of frameworks have been proposed, notably

the Hierarchical Performance Testing (HPT) framework [1], however they have

limitations with respect to hypothesis testing and are insufficient in assessing

conditions of similar performance that could arise in embedded systems.

The challenge in characterizing performance of Keystone and the impacts it has

on a RISC-V embedded system is the lack of methodology available that relies on

fundamental statistical inference common across fields of research. This thesis

addresses the complexities surrounding traditional performance analysis and

suggests a new framework capable of robust analysis which provides results relevant

to the system. This research establishes the baseline performance of three RISC-V

embedded systems with the new framework and builds upon it with an assessment

of Keystone. It also identifies a modeling technique that can determine performance

overhead caused by Keystone-specific security features.

1.3 Research Goals

This work attempts to characterize security monitor and embedded system

performance across distinct RISC-V processor designs with a focus on statistical

2

methodology. A new framework is developed, called SPARC, to baseline embedded

system performance and evaluate a trio of RISC-V open-source processors.

Additionally, a modeling framework is used to determine the performance impact

that Keystone has on the three RISC-V systems. The research goals of this work

are outlined below:

• Develop a statistical methodology, SPARC, for performance evaluations of

computers and embedded systems.

• Assess the efficacy of SPARC in relation to a similar framework, HPT.

• Evaluate margins of equivalence in performance evaluations for improved

statistical inference.

• Measure the raw application performance impact of Keystone on a RISC-V IP

core.

• Model Keystone-specific security features on a RISC-V embedded system and

characterize the performance.

1.4 Hypothesis

This research hypothesizes that security monitor and embedded system

performance can be characterized through non-parametric statistics methodology,

and provides a substantive foundation from which to scrutinize architectural design

considerations that impact performance. In addition, it theorizes that the

performance impact of Keystone’s secure execution environments can be modeled to

determine an average system response time for embedded systems with Keystone

enabled.

3

1.5 Approach

The approach consists of establishing a baseline of benchmark performance of

three RISC-V softcore processors, implemented on an FPGA, without Keystone

enabled. The RISC-V systems Rocket, Ariane, and Shakti, are open-source and

supported the necessary hardware configurations required for Keystone evaluation

after the baseline performance characterizations. The performance baseline

compares the RISC-V systems (Rocket to Ariane and Rocket to Shakti) for

statistical significance, to determine if relevant differences of performance exist. A

secondary analysis evaluates the per-core benchmark performance of the embedded

system with Keystone enabled and disabled, to assess Keystone’s performance

impact. Further, margins of equivalence are implemented within a statistical

methodology to assess conditions of similarly performing systems. Finally,

Keystone-specific security features are adapted and functionally attributed to a

simple closed queue network model [4], permitting an average system response time

analysis. Other findings revealed during the process are documented and

adjudicated.

1.6 Contributions

This thesis contributes to the field of computer modeling and embedded system

performance analysis through the following:

• Proposed an improved statistical framework called SPARC. It appears to be

the first computer performance analysis approach to combine difference and

equivalence hypotheses tests and use the results to form four conclusions [5], [6]

relevant to a computer performance evaluation under study.

4

• Implemented non-parametric methodology within the SPARC framework,

permitting analysis under distribution-free statistics tests, and developed with

a straightforward procedure for implementation. Difference tests are

conducted with a Wilcoxon Signed-Rank Test for paired computer

performance observations for detecting statistically significant distributions.

• Assessed equivalence within a median tolerance for distributions statistically

significant but practically irrelevant.

• Developed SPARC with inspiration from HPT [1]. Minimized the false

positive error rate using a multiple hypotheses error correction. SPARC

provides scalability based on the number of benchmark programs executed

without inflating the error rate.

• Implemented SPARC framework enhances analysis with a conditional

feedback loop that discriminates between overpowered or underpowered

performance evaluations.

• Evaluated the new methodology with a performance evaluation consisting of a

trio of RISC-V softcore processors instantiated on a FPGA.

• Applied a theoretical modeling framework to assess the performance impact of

Keystone and Keystone-specific security features. Attributed Keystone’s

application programming interface (API) through its use of secure enclaves

and trusted/untrusted operating system configurations to the model. It allows

the overhead cost of using Keystone to be determined as the average system

response time.

• Identified an equation that predicts time added to Keystone’s initialization code

based on the binary size of an application.

5

1.7 Organization

This thesis is organized into 6 Chapters. Chapter 2 provides a brief summary

on the embedded system architecture, the security monitor Keystone, introduces

the motivating HPT framework, and discusses related work. Chapter 3 provides

key fundamentals of statistical analysis with respect to difference and equivalence

hypothesis testing. It introduces the SPARC framework, with in-depth procedures

to conduct analysis. It also addresses limitations of non-parametric statistics in error

correction and sample size estimation. In Chapter 4, the experimental design and

methodology is discussed. Chapter 5 presents an extensive analysis characterizing

the performance of a trio of RISC-V open-source processors with SPARC and the

performance impacts of Keystone. Chapter 6 concludes with a summary of the work

presented and future work.

6

II. Background and Related Work

2.1 Overview

This chapter provides background information about the RISC-V ISA, the

Keystone reference monitor, and the HPT framework. It begins by describing how

using an open-source ISA provides primitives to secure embedded systems. Next, it

illustrates how Keystone operates and provides secure isolation between

components. It follows with an outline of the HPT framework and the significance

of incorporating a confidence-based analysis model for processor metrics. Finally, a

review of current literature explores the complexity of characterizing the

performance impact on a system, specifically the impact resulting from the use of

secure-execution environments.

2.2 RISC-V ISA

The RISC-V ISA was released as a free and open-source specification to promote

innovation in processor design [7]. An ISA provides the technical specification of

interfacing a RISC-V processor to low-level software [8]. It provides the language

and interface requirements necessary to communicate with the combined hardware

that constitutes a RISC-V processor including: the machine registers, memory access,

input/output, and other functionality [8].

There are two variants of the RISC-V ISA specification: Base User-Level ISA [7],

and a Privilege-Level ISA [9]. The Base User-Level ISA was the original

specification which defined the RISC-V architecture minus privilege levels and did

not include additional hardware security implementations. However, the

Privilege-Level ISA specification was released afterwards [9] and defined an

architecture through privilege hierarchy for embedded system security; security was

7

an original consideration of the ISA, not merely an afterthought.

As part of the Privilege-Level architecture, an optional hardware unit defined

as physical memory protection (PMP) was developed to allow configurable registers

that prevent unauthorized access to memory [9]. PMP is central to the function and

operation of the Keystone security monitor on RISC-V embedded systems.

2.2.1 Keystone Security Monitor for RISC-V Architectures

Keystone is a modular software security monitor and open-source framework for

RISC-V based processors [10]. It builds upon the Sanctum RISC-V processor design

by MIT research in [3], but with some distinctions. The primary design improvement,

a similar implementation of PMP, that was used by [3] to create a secure, isolated

execution environment was incorporated into the RISC-V Privilege-Level specification

[10]. With both PMP configuration and privilege levels, Keystone enables secure

execution enclaves to prevent unauthorized access.

In Keystone, a secure execution environment is defined as an enclave [10]. It is an

area within memory that is isolated from untrusted processes (e.g. operating system)

and secured through memory encryption. Hardware isolation of the enclave occurs

through the PMP configuration registers, which is configured by Keystone at enclave

creation to prevent unauthorized access.

Similar to Keystone, Intel’s Software Guard Extensions (SGX) [11] is an

alternative implementation of enclaves released for the x86 ISA. The primary

difference between Keystone and SGX, not withstanding the different computer

architectures, is that Keystone is open-source software and SGX is closed-source

proprietary.

8

2.2.1.1 Security Monitor and Reference Monitor Nomenclature

The nomenclatures security monitor and reference monitor, with respect to

embedded systems, are often used inconsistently within computer literature. In

embedded system security there are two types of monitors: active and passive [12].

Active security monitors are software modules that monitor behaviors of executable

code and can manage computer resources. Passive security monitors are akin to a

security policy found in internet router firewalls, either allowing or preventing

access [13]. That is to say, passive security monitors do not manage computer

resources, they merely enforce usage criteria.

In [4], the authors define a reference monitor as a security mechanism to observe

and perhaps control the information flows between two objects. In the context of

this research, Keystone is defined as a reference monitor, which is similar to a passive

security monitor based on the definitions provided. In the literature for Keystone [10]

both security monitor and reference monitor are used interchangeably, but hereafter

this research uses reference monitor as the preferred nomenclature.

2.2.2 Benchmarks

While individual benchmark programs may be specifically developed to evaluate

a computer system’s performance, several are often bundled together as a suite of

applications. Hereinafter, these individual benchmarks are simply denoted as

benchmarks. The System Performance Evaluation Corporation (SPEC) [14] is a

popular example of a benchmark suite that can be compiled and executed on a

variety of computer architectures. To compare two systems, one merely needs to

execute a given benchmark suite on each system, after which the execution times

can then be appropriately compared.

In some cases, benchmark programs may be very specialized in order to test

9

specific functionality of a system under test (SUT); examples include testing

floating-point operations or integer multiplication. After the SUT completes a

benchmark, performance metrics are reported as time-based or throughput. Often,

they are developed as separate software applications rather than originating from a

sole benchmark suite such as SPEC. Over time, users consolidate the applications

into a suite that is suitable for their requirements. An example is the benchmark

suite, RV8, compiled for the RISC-V ISA used later in the text and listed in Table 1.

Table 1. Benchmark descriptions.

Benchmark Description

AES
Encrypt, decrypt and compare 30 MiB of data
with 256-bit AES encryption

Bigint Compute 23111121 and count base 10 digits
Dhrystone Synthetic integer workload
Miniz Compress, decompress and compare 8 MiB of data
Norx Encrypt, decrypt and compare 30 MiB of data
Primes Calculate largest prime number below 33333333
Qsort Sort array containing 50 million items
SHA512 Calculate SHA-512 hash of 64 MiB of data

2.2.3 Field Programmable Gate Arrays

An FPGA is a hardware platform combination of built-in digital circuitry and

reconfigurable-logic components [15]. The reconfigurable-logic components of an

FPGA are what distinguish it from an application-specific integrated circuit (ASIC).

There are several advantages that FPGAs provide over ASICs, often associated

with costs and reconfiguration. After an ASIC is manufactured, any design changes

that alter the circuit often require it to be manufactured again [15]. This process

can lead to higher manufacturing and sustainment costs over the product’s release,

but it also can affect development costs. Prototyping is an early development process

in which a design undergoes multiple changes until a final design is established [15].

10

Frequently, a determination is made to use an FPGA as the prototyping hardware

platform for an ASIC if the costs for manufacturing prototype ASIC designs exceed

a threshold. The reconfigurable-logic components on an FPGA can be configured

with software such that their behavior emulates the behavior of an ASIC design [15],

reducing the time it takes to make and test design changes.

The configuration of logic and behavior on an FPGA occurs through software

code defined as hardware descriptive languages (HDL). HDL is a software-compiled

language that defines how to simulate the behavior of a circuit component [15].

Further information regarding FPGAs and HDL can be found in [15].

2.2.4 Broad Analytical Model of a Reference Monitor

A reference monitor was previously defined as a passive security mechanism,

observing interactions and enforcing information flows between two objects [4]. In

the proposed framework in [4], the authors use a subject-object model; objects are

components acted upon by subjects. In terms of an embedded system: objects are

resources like memory or processors; subjects are active processes within an

operating system (OS) or other executable. Depending on the system configuration,

any number of subjects can act upon any number of objects. To assure security, a

reference monitor enforces a security policy to allow authorized accesses and prevent

unauthorized accesses to resources. The reference monitor is also considered a

subject, but one that is activated anytime a flow of information occurs between a

subject and an object.

The original concept, depicted in Figure 1, defined the reference monitor with

two major purposes: an object reference monitor (ORM), and an subject reference

monitor (SRM) [4]. The SRM ensures that subjects (i.e. processes) instantiated

are authorized as per the security policy; an external third-party trying to execute

11

malicious code with an elevated privilege level is one example. The second function,

ORM, enforces any security policies that govern usage of resources in an embedded

system. Both functions are needed based on the defined properties that encompass a

reference monitor and the security policy it implements.

Sk

Sd

Sk {Ot}

SORM{Oe}

SSRM{Or}

RM

ORM

SRM

Set of objects

Stream(Sk, Oi, P”) -> Oj

Create(Sk, Oz, P’) -> Sd

Oi

Oz Oj

Figure 1. Reference monitor concept model. ©2019 IEEE. Reprinted, with permission,
from Gorbachov et al.

Analyzing the concept of authorized and unauthorized accesses by a reference

monitor, the authors concluded that this concept could be represented by the closed

queuing network modified with system descriptions in Figure 2. Including a

reference monitor in a system’s design is expected to incur a performance impact on

its operation. The model includes both the SRM and ORM, in addition to an access

controller that operates as the entry point for reference monitor control.

12

Node O

X1

X2

X3

q21

q31

q13

q12

q10

λ1

λN

∑2

∑3

∑1

S1

SN

Object Reference Monitor

Access Controller

Subject Reference Monitor

Subjects
(processes)

XO

External environment Node O

IN OUT

Figure 2. Reference monitor functional model derived from Gorbachov et al.

Tracing the information flow from Subjects S1, S2, . . . , SN begins when the

information request is first received by a limited-queue access controller Σ1; based

on the security policy and type of request, and either sent to the ORM Σ2 for access

to a system resource or sent to the SRM Σ3 for a process activation. The response is

then delivered back to the access controller Σ1 for further adjudication; it could be

sent back to the subject as a denial of service or processed dependent on the policy.

X1, X2, . . . , XN are throughputs into each queue; qij is the routing frequency from

one node to another; λ1, λ2, . . . , λN are the rates of request sent by subjects [4].

The performance impact of a reference monitor is then defined by [4], through a

system of flow balance equations, leading to Equation (1):

R =
N

X0

− 1

λ
, (1)

13

where R is the average response (processing) time of the reference monitor, X0 is

the throughput of the reference monitor to Subjects S1, S2, . . . , SN , λ is the rate of

requests for access, and N is the number of Subjects.

2.2.5 HPT Framework

In [1], the authors developed the non-parametric HPT framework to promote

statistically sound computer performance evaluations. The framework is a

methodology using difference hypothesis tests to compare benchmark suite results

between two computers to determine superiority. The authors reveal common errors

made with respect to parametric and non-parametric statistics while conducting

performance evaluations.

Chen et al. illustrates the improper use of parametric statistical tests, such as the

t-test, on non-normally distributed computer performance data. If the data collected

from a computer benchmark is not properly characterized prior to statistical analysis,

it could be incorrectly assumed to be parametric instead of non-parametric. Without

appropriate verification tests, an assumption of the underlying distribution of the data

may contribute to a faulty analysis and misled conclusion of the comparison. They

evaluate a SPEC benchmark suite comparison that displayed a skewed non-normal

distribution using the t-test which resulted in transforming the data to normality.

The t-test concluded the under performing computer was superior, demonstrating

the deficiency in assuming a distribution.

The Central Limit Theorem (CLT) is often used to characterize distributions as

approximately normal given a large sample size [16]. Frequently, a minimum sample

size of 30 or more is referenced in statistics to employ the CLT. Although, this was

disputed for computer performance distributions in [1] with an experiment consisting

of 32, 000 benchmark performance scores. The analysis reveals that a sample size of

14

approximately 500 observations still deviated from normality, but could be sufficient

to utilize the CLT. Executing a number of benchmarks within a suite, 500 times each,

appears inefficient based on the inconsistency of the data.

Many sources of variability and non-determinism exist within a computer system

and the complex layers of interactions they are comprised of, discussed in [1]. Further,

published performance evaluations routinely omit confidence intervals (CI), which

provide a measure of the randomness of a variable and accuracy estimate of observed

data [17]. A 100(1− α)% confidence interval on the variable θ and the probability of

the numeric values it can represent between [L1, L2] is defined as:

P = [L1 ≤ θ ≤ L2], (2)

where L1 and L2 represents the lower and upper bound on θ values.

Performance evaluations often report a collection of mean completion times or

relative speedups and declare one to be superior, with little, if any, documentation

of statistical methods used in the comparison. While the mean completion time or

speedup serves a purpose as a visual exploration of data, incorporating additional

statistics provides insight into the origination, or population, of the sampled data.

Such insight is fundamental in determining the accuracy of observations and

conclusion. Excluding statistical analysis undermines the original intent behind the

performance comparison.

Thus, the authors in [1] developed the non-parametric framework to promote

statistically sound computer performance evaluations. The HPT framework is a

methodology using hypothesis testing to compare benchmark suite results between

two computers to determine superiority. The significance level, α, is chosen prior to

conducting the hypothesis test; standard suggestion is 0.05 for a one-tailed or 0.10

for a two-tailed hypothesis test.

15

In order to analyze the performance between two computers on a suite of

benchmarks, a series of steps, which comprise the HPT framework were outlined

by [1]. This research presents the following abridged procedure for reference, and

builds upon it later in the text. Suppose a benchmark suite is used that contains n

benchmarks and each benchmark is repeated m times. Matrices CA = [ai,j]n×m and

CB = [bi,j]n×m must be constructed for both computers; rows represent the nth

benchmark and columns represent the mth benchmark repeat of performance

scores [1].

For each benchmark, a null (H0) and alternative (H1) hypothesis are tested for

significance using a Wilcoxon Rank-Sum Test. If the results show statistical

significance, reject H0 that both computers are equivalent; else fail to reject H0.

After the Wilcoxon Rank-Sum Test is complete for all n benchmarks, assign to a

new column the score representing difference in medians on significant results for

each benchmark or assign a 0 for insignificant results.

Concluding HPT is a comprehensive hypotheses test consisting of H0 of general

equivalent performance or H1 general superior performance [1]. A Wilcoxon Signed-

Rank Test is completed on the difference in median performance scores to either reject

H0 or fail to reject H0 at the significance level.

2.3 Related Work

The choice between an open-source ISA such as RISC-V, or a closed-source ISA

such as Intel x86, has design implications that could affect security. The software

and hardware architecture of an embedded system is dependent on a chosen

processor’s ISA. For example, selecting a RISC-V processor requires software

compiled for the RISC-V ISA and similarly, selecting an Intel x86 processor will

require code to be compiled for x86 platforms. In [18], the authors, who also

16

developed and released the RISC-V ISA, provide attributes of closed-source ISAs

that hinder processor and embedded system technology. A transparent open-source

ISA promotes verification by third-parties; security mechanisms built into the ISA

can be independently corroborated for correctness. Both Intel and Arm ISAs

include security measures, SGX and TrustZone respectively, that lack independent

verification due to their proprietary nature.

Defining the core security properties of a reference monitor and applying a

model that encompasses all threats and vulnerabilities is arduous. The

closed-queuing network model proposed in Section 2.2.4 was simple and theoretical;

testing the operational viability of it is needed in order to refine and improve the

framework over additional iterations. The foundation of the analytical modelling

framework for a reference monitor defined in [4] was an extension of the

mathematical proofs found in [19] regarding reference monitor obfuscation.

A performance loss estimation model viability study was discussed by [20] to

characterize SGX for x86 platforms. Efforts would be focused on algorithms that

balanced mapping specific platform protections to programs based on the security

needs [20]. Correlating protections to performance loss is complex as there are a

variety of factors that overlap between them that can affect performance; there is

not a clearly defined one-to-one relationship [20]. The follow-on research has yet to

be released but could provide an additional framework to test against Keystone on

RISC-V platforms.

Weichbrodt, Aublin and Kapitza [21] released an enclave performance analysis

tool, sgx-perf, to explore SGX-based programs. The primary impacts to enclave

performance are 1), context-switching while a program is executing and 2), paging

events [21]. The same two factors are prevalent in Keystone execution; context-

switching is the most frequent operation during enclave execution and paging events

17

suffer additional overhead due to input/output memory operations [10]. The sgx-perf

software was developed due to the lack of sufficient measurement and analysis tools

surrounding SGX enclaves [21].

In [22], the authors established a clustering method to model distributions of

computer performance metrics. Observed data from benchmark distributions were

non-parametric and density plots indicated bimodal and multimodal distributions.

They surmised that the non-parametric distributions are a Gaussian mixture, a

combination of multiple Gaussian distributions of clustered multivariate data. The

clustering method determines population estimation parameters that could be used

with more powerful parametric statistical tests over non-parametric.

The HPT framework in [1], VarCatcher framework in [23], and methodology in [24]

illustrate the complexity of conducting a robust analysis and the lack of statistical

rigor surrounding traditional computer performance comparisons. While [1] relies on

difference hypothesis testing with non-parametric statistics, [23] and [24] cite the lack

of relevant information at the conclusion of hypothesis testing as motivation for their

respective custom frameworks.

2.4 Summary

This chapter presented a brief summary of the RISC-V architectures and

technologies to secure a RISC-V embedded system. In addition, it discussed

benchmark programs which are used to characterize the performance of computer or

embedded systems. The HPT framework methodology [1] was outlined, which

provides a statistical analysis framework for comparing the performance between

two computers. Further, a theoretical closed-queuing network model was introduced

to evaluate the performance impact of a reference monitor on an embedded system.

Finally, this chapter observed related research in characterizing the performance of

18

embedded systems and the complexities therein if a secure execution environment is

present. There is a lack of research in characterizing the performance impact of

embedded systems with and without a secure execution environment. This thesis

contributes to the field of both computer and embedded system performance

analysis by introducing a new statistical framework that can characterize the

performance of systems with and without secure execution environments.

19

III. Characterizing the Performance of Embedded Systems

3.1 Overview

This research introduces two frameworks for characterizing the performance of

an embedded system and a reference monitor: the SPARC framework, and an

applied analytical model for evaluating a RISC-V reference monitor. Through

decomposition, the RISC-V embedded system of focus in this research is modeled

through abstracted architecture layers into two sub-systems for easier analysis; one

sub-system with the reference monitor Keystone enabled and the other with

Keystone disabled. Subsequently, the SPARC framework methodology is described

in order to provide a statistically rigorous analysis of both sub-systems and their

benchmark performance. To analyze Keystone-specific security features and their

performance impact to an embedded system, the closed-queuing network model

presented in Chapter II is extended. This chapter presents the sub-system layered

models, SPARC, and the closed-queuing network model used in the experimental

analysis.

3.2 Modular Framework Design

A common approach to modeling an embedded system’s architecture is through

stacked layers based on functionality [25]. The layers are depicted as an abstraction

of specific functions that are required for a system to operate within designed

specifications. The layered model is advantageous as the functions are independent

and modular, allowing for functions to be added or removed to a system design as

requirements change. It also provides a deterministic structure of development; the

system is developed at the bottom layer first and proceeding up to the next higher

layer until the final layer is completed.

20

RISC-V Cores Core Hardware (Cache, system
bus, etc) SOC PeripheralsHardware Layer

Hardware Drivers BIOS/Firmware BootloadersHardware
Abstraction Layer

Operating System/KernelsOperating System
Layer

OS Services Layer System CallsTask Scheduler File Systems User Interface
Resource

Management

Application Layer Applications

Figure 3. Architectural layers of a RISC-V embedded system with Keystone disabled.

There are two sub-systems modeled that contribute to the embedded system’s

performance: Keystone enabled and Keystone disabled. The RISC-V embedded

system, with the Keystone reference monitor disabled, is modeled with layers in

Figure 3. Five architectural layers representing the embedded system are described

as follows:

• The Hardware Layer describes the tangible components that the embedded

system is built of. This includes the RISC-V cores that are the primary

functional units that process data or instructions as required by design [25].

Hardware that supports the processor (e.g. the processor cache, system bus,

memory, etc.) is located here along with any peripherals used for internal or

external connection.

• The Hardware Abstraction Layer provides low-level software that is necessary

to interface to the hardware. Bootloaders are often, but not always, the first

software executed upon power-on and contain a minimal set of unique hardware

drivers and firmware needed for the embedded system. It provides a basic level

of operating functionality or as a prerequisite for the OS Layer.

21

• The OS Layer contains the OS or kernel and is a set of software libraries with

additional abstraction, serving as an interface between unique software in the

Hardware Abstraction Layer and OS services [25].

• The OS Services Layer specifies software libraries that manage and automate

system functions as required by the embedded system. For example, resource

management is a required function often automated in software by the OS

Services Layer. The additional software packaged within this layer can also

provide a standardized, stable, and user-friendly interface for running

applications. Software developers can build an application for a specific OS

version that has service drivers commonly distributed with it. This improves

application stability and maintainability, but it can prevent required

automated code from being compiled with an application if it is already

present in the OS version.

• The Application Layer interfaces with the OS Services Layer for any system or

function calls required to execute user-level code.

Each of the architectural layers within the embedded RISC-V system can affect the

performance of a running application, as they are interconnected and rely on the same

resources. Within the OS Services Layer, automated system functions like the Task

Scheduler could interrupt a running application to run another task unrelated to the

application. This could add time to the running application, delaying its completion.

Although there may be benefits to running an OS with an embedded system, such as

ease of use, there may be disadvantages, such as performance impacts, including the

possibility of additional execution time when the OS interrupts to perform unrelated

tasks. These tasks may be necessary, such as automated system functions for periodic

maintenance, perhaps to prevent errors, or even system crashes from occurring.

22

An embedded system often has custom user requirements, and the functions may

be presented at varying levels of abstraction. Accordingly, the performance of an

application will also exhibit variations between embedded systems depending on any

functionality differences in the layers. This research defines the RISC-V embedded

system for further performance evaluation without Keystone as depicted in Figure 3.

Hardware Layer

Hardware
Abstraction Layer

Operating System
Layer

OS Services Layer

Application Layer

RISC-V Cores Core Hardware (Cache,
system bus, etc) SOC Peripherals Root of Trust

Hardware Drivers BIOS/Firmware Bootloaders

Operating System/Kernels

System
Calls

Task
Scheduler

File
Systems

User
Interface

Resource
Manageme

nt

Applications

Reference Monitor (Keystone)

Trusted Runtime/OS

Trusted Applications

Enclaves
(Secure Execution Environment)

Untrusted

Trusted OS Services

Reference Monitor
Layer

Figure 4. Architectural layers of a RISC-V embedded system with Keystone enabled.

Similarly, a RISC-V embedded system with Keystone enabled is modeled

through architectural layers depicted in Figure 4. As discussed in Section II,

Keystone provides two primary functionalities: a secure boot method and the ability

to provide a secure execution environment for applications. Keystone accomplishes

both through security primitives offered by the RISC-V Privileged ISA [9]. This

research is primarily concerned with the performance impact to a system with

respect to Keystone’s secure execution environment and its effect on a running

application, rather than a system’s startup performance affected by secure boot.

The addition of Keystone within the model presents another layer that can affect

performance. The Reference Monitor Layer contains the Keystone software that

23

serves as an intermediary between the OS Layer and Hardware Abstraction Layer.

Temporarily ignoring the addition of a secure execution environment, adding another

layer to the system could impact performance of an application. On the other hand,

the primary distinction of a system with Keystone enabled is the ability of a user to

purposefully run an application within an enclave (i.e. secure execution environment).

As such, applications using the additional security features provided by Keystone are

dependent on the trusted functions as well as untrusted functions within the system

layers.

Based on the two system models, this research characterizes the performance

impact of an application, first by capturing a performance baseline with the RISC-V

embedded system without Keystone, as depicted in Figure 3, and then through the

system with Keystone enabled in Figure 4.

3.3 The Statistical Performance Analysis with Relevance Conclusions

Framework

In this section, a new statistical framework, SPARC, is introduced which was

inspired by HPT [1]. It is a method for establishing a baseline of performance of

an application on a RISC-V embedded system. Similar frameworks were lacking

in the statistical rigor needed to characterize an application, hereafter defined as

a benchmark, on an embedded system. SPARC incorporates equivalence tests and

family-wise error correction associated with multiple hypotheses tests. It reduces

Type I errors and supports various conclusions for relevant and practical results of a

performance evaluation.

24

3.3.1 Statistical Significance Versus Practical Relevance

This research forces a clear distinction between two ideas that are often pooled

incorrectly in hypothesis testing: statistical significance and practical relevance.

Significance is the ability of a statistical test to detect an effect size [16] and is

correlated to the type of test used. In difference hypothesis testing [26], failing to

reject H0 (i.e. lack of significance) does not imply lack of effect. Conversely, a

difference hypothesis test that rejects H0 (i.e. detects significance) expresses nothing

about the practical relevance of the result. A statistical framework that only uses

difference hypothesis testing is limited to identifying changes and does not address

conditions of equivalence, or similarity between population samples within a margin.

To illustrate the limitation of difference tests, consider an exploratory data study

to evaluate the performance of Keystone and its impacts to the Rocket RISC-V

embedded system. Rocket was instantiated on an FPGA and performance metrics

were collected. The experiment was performed with and without Keystone enabled,

30 times each, and execution times were recorded. For statistical analysis, the HPT

framework was used, prior to SPARC development, on the results to assess

suitability towards the extensive performance evaluation conducted later in this

research. Additionally, a sample size of 30 was chosen to assess normality of the

distribution with the CLT. A density plot is provided of two performance score

distributions in Figure 5. Hereinafter, the decimal precision within this document is

limited to three digits with rounding for display purposes only, actual experiment

calculations are conducted without rounding.

The difference hypothesis test resulted in a statistical significance between the

two distributions as shown in the figure. The median execution time of the program

with Keystone enabled as compared to disabled is 263.287 seconds and disabled is

263.677 seconds, or a percentage difference of 0.148% between them. But, the

25

practical relevance of 0.1479% in the application was minuscule. The two execution

times would have been concluded as approximately equivalent. Primarily

conducting a difference hypothesis test excluded a condition in which both

distributions would be considered equivalent.

Median
263.287075

Median
263.676505

0

3

6

9

263.00 263.25 263.50 263.75 264.00

Execution Time

D
en

si
ty

Keystone Enabled

Keystone Disabled

Figure 5. Comparing two distributions of execution time with Keystone enabled and
disabled.

This analysis highlights another key limitation of difference tests: the constructed

null hypothesis is illogical and a difference is always detected with sufficient samples

[27], [28]. In the analysis, the null and alternate hypotheses tested either a 0 difference

between the two continuous response variables, or a difference detected, respectively.

The test is structured given H0 being true and if the probability distribution of the

test statistic is low, then H0 is rejected. But, this structured argument for point

or exact null is a fallacy and has been debated for decades [27], [28], [29], [30], [31],

[32]. The probability that a continuous random variable assumes any specific value

is zero [17]. Likewise, with sufficient population samples the test will always detect a

difference [33].

In embedded system performance evaluation, inadvertent data manipulation

26

often occurs either due to rounding, or with an insufficient context of data output.

Both can lead to incorrectly assuming that two response variables are equal or that

the difference between them is 0 and affect the study. Returning to the example

experiment, observe the original density plot with and without Keystone enabled in

Figure 6. The graph illustrates the response variable density, execution time, which

defaults to a precision of 5 decimal points. The plots are overlaid with a modified

response variable density, generated by deliberately rounding data to a precision of

1 decimal point.

0

5

10

15

20

263.2 263.4 263.6 263.8

Execution Time

D
en

si
ty

Precision = 5 (default), Disabled

Precision = 5 (default), Enabled

Precision = 1, Enabled

Precision = 1, Disabled

Figure 6. Comparing two distributions of execution time with the effects of differing
decimal precision.

As shown in the figure, the characterization of the data distribution has altered

significantly. Notably, the illustration fails to capture how altered data can

proliferate into a difference hypothesis test. The differences to the nth decimal that

once characterized the data are filtered out along with any insightful conclusions

that could be derived. While it might seem obvious, the issue is highlighted after

encountering it in computer performance analysis research within the field. The

27

aforementioned criticisms are not limited solely to computer performance

evaluations, but to the field of null difference hypothesis testing in general.

3.3.2 Elements of Relevant Statistical Performance Evaluations

A key element in any statistical experiment, including benchmarking, is

designing the experiment such that results provide valid statistical information

required for analysis. Design of experiments [34] is a field of study dedicated to this

aim. The SPARC methodology focuses primarily on non-parametric statistical tests

after benchmark data has been collected and assumes the experiment uses an

appropriate design. But this research addresses three essential elements for

consideration prior to conducting any data collection: 1) standardized hypotheses

notation; 2) family-wise error correction; and 3) sample size estimation. Error

correction and sample size estimation are implicitly linked when considering

multiple benchmarks for statistical analysis; the number of samples affects the

significance of a statistical analysis and the significance is affected by the overall

error rate for the evaluation.

3.3.2.1 Standardized Hypotheses Notation

Before formally presenting the rationale behind equivalence tests, a standardized

hypotheses notation is provided for use throughout this thesis. In the last section,

this work discussed limitations of an analysis that uses difference hypotheses and

motivated the addition of equivalence tests to SPARC.

First, the term positivist theory is introduced; it is derived from [35] to describe

difference hypothesis tests. That is, the null hypothesis of a difference test, H0, is

often defined as the lack of an effect or no difference between effects and is tested

against an alternative hypothesis H1 of significant effect or difference [26]. Positivist

28

theory simply denotes H0 and H1 hypotheses of difference tests as H+
0 and H+

1 ,

incorporating the + symbol to reflect testing for a significant effect. Likewise, the

term negativist theory is introduced [35], to describe equivalence hypotheses that

test for a lack of effect (i.e. equivalence). Negativist theory defines the equivalence

hypotheses H0 and H1, as H−
0 and H−

1 . Within this document, the positivist and

negativist theory notations H+
0 , H+

1 , H−
0 , and H−

1 are used to differentiate between

difference and equivalence hypotheses.

3.3.2.2 Multiple Hypothesis Error Correction

In the following, let X = xi,1, xi,2, . . . , xi,m and Y = yi,1, yi,2, . . . , yi,m for i =

1, 2, . . . , n denote independent samples of performance scores from Computer X and

Computer Y on the nth benchmark, respectively. Each hypothesis test performed in

a multiple evaluation experiment increases the probability of rejecting H0 when H0 is

true (Type I error) defined as the family-wise error rate (FWER) [36]. In other words,

in a family of comparisons that are related, the false positive error rate increases [36].

The worst-case FWER for n total benchmarks tested at an αn is:

FWER ≤ 1− (1− αn)β+1, (3)

where β is the number of benchmark tests plus an additional overall hypothesis of

general performance.

Using an appropriate error correction method, the family-wise error correction

can be controlled in the performance evaluation while still providing statistically

significant results [36]. Each hypothesis test used to analyze a benchmark increases

the FWER and requires correction. There are two methods introduced here, the

Bonferroni Correction [37] and Holm-Bonferroni Correction [38]. Each α correction

method has its advantages and disadvantages that should be considered depending

29

on a study’s requirements. In the RISC-V performance characterizations later in the

document, the Bonferroni Correction is used.

There are two benefits for using the Bonferroni Correction. First, it is a simple

correction applied to every test in a performance study and, second, it allows

calculating confidence intervals across benchmark comparisons [38]. It is widely

used but has also been criticized as overcorrecting α to reduce Type I errors and

subsequently reducing the probability of detecting any significance [36]. The

method to calculate an error corrected αNew is as follows:

αNew =
αOld

(n+ 1)
, (4)

where n is the total number of benchmarks planned plus the overall hypothesis test

and αOld is the overall requested alpha (0.05 for one-tailed, 0.10 for two-tailed tests).

After αNew is calculated, the p-value of each benchmark hypothesis test is

compared with αNew to either reject H0 or fail to reject H0:

pn ≤ αNew, (5)

where pn represents the p-value of the nth benchmark.

An alternative method that does not overcorrect α is the Holm-Bonferroni

Correction [38]. The method corrects sequentially, calculating αNew for each p-value

comparison. While it provides stronger statistical power compared to Bonferroni,

there is added complexity to determine confidence intervals based on a changing

αNew. The procedure is presented here as it pertains to the SPARC framework as

an option if confidence intervals are not required. Let pn be denoted as the p-value

calculated after conducting the Wilcoxon Signed-Rank Test, for the nth benchmark.

Sort in ascending order such that {p1 < p2 < · · · < pi for i = 1, 2, . . . , n. Assign

30

αNew based on ranks of the test until the first non-significant result is found (failed

to reject H0) and the correction is complete. Any further benchmark hypothesis

tests are non-significant. The equation for this procedure is as follows:

pn <
αnew

i+ 1− n
, (6)

3.3.2.3 Sample Size

In computer performance evaluations, determining the proper sample size is a fine

balance between under or over sampling for a proper test. The significance (p-value)

of each benchmark analysis is correlated with the sample size [39]. If an insufficient

number of samples are collected from a benchmark, there is risk of an underpowered

test (i.e. not providing a significant result due to a low p-value). If an over abundance

of samples are collected, then the risk is an overpowered study that inefficiently used

resources.

There are multiple ways to calculate sample sizes for the parametric t-test

statistic based on an effect size estimate, such as Cohen’s D [40], if the underlying

distribution is known or assumed. However, for non-parametric statistics tests this

research makes no assumptions on the underlying distribution. The methods

in [41], [42], however, illustrate how an estimated sample size can be determined for

the Wilcoxon Signed-Rank Test if assumptions are made on the effect size and an

unbiased estimator through a resampling process. Suffice it to say, there is merit in

applying the techniques to a computer performance evaluation to reduce the

number of benchmark repeats or increase power of the tests. At the same time,

execution times are often non-deterministic which suggests resampling observations

with prior data could affect the outcome or provide inaccurate sample size

estimations. While there are no clear methods available for sample size estimation

31

suitable for the SPARC framework, two of the resulting outcomes will report if a

benchmark test was underpowered or overpowered.

3.3.3 Equivalence Testing

Instead of testing the significance that performance scores from two computers

are different, another approach is introduced, called equivalence testing [43], [44]. In

difference testing, one attempts to prove the alternative hypothesis H+
1 of a significant

statistical difference. If the test fails to reject the null H+
0 of no difference, then the

only conclusion is a lack of evidence to reject H+
0 . A conclusion of equivalence cannot

be valid because it was not tested. By adding equivalence hypotheses tests to the

framework, it presents additional information to make inferences of a performance

evaluation.

Equivalence testing is often found in clinical settings to assess whether the effect

of two treatments or medications are within a predefined equivalence margin [43].

The burden of proof for equivalence resides in the alternative hypothesis H−
1 . An

equivalence margin [−δ, δ] establishes the range in which two variables contained

within are considered practically equivalent at δ. In context of the SPARC framework,

the equivalence margin renders two statistically significant but practically irrelevant

performance score distributions as equivalent if the response variable is within the

predefined [−δ, δ] interval.

One widely used method for equivalence testing is the Two One-Sided Tests

(TOST) procedure in [45]. Choosing an appropriate equivalence margin δ for the

TOST is paramount to a performance evaluation [43]; selecting a δ which is too

stringent risks excluding practically equivalent performance scores, and selecting a δ

which is too broad risks false equivalence. [43] proposed either using past studies or

pilot studies to establish a δ, but this research considers it unsuitable for computer

32

performance evaluations as preexisting data is either lacking or includes components

specific to an embedded system. Instead, this work suggests to tailor it to the

evaluation depending on the motivation and context of the study.

Alternatively, a performance ratio between two systems, commonly referred to as

the speedup ratio, can be selected as the δ. Suppose two computers, Computer X

and Computer Y, execute a benchmark and the resulting times are compared. Let

SY/X (Speedup ratio of Y compared against X) denote the execution time relation of

Computer X to Computer Y, defined in Equation 7.

SY/X =
Execution T imeX
Execution T imeY

(7)

Therefore, SY/X denotes the increase or decrease of Computer X’s benchmark time

to Computer Y’s benchmark time. In this text, performance increase (i.e. better

performance) means minimizing the execution time of a benchmark. For example, an

SY/X = 1 would indicate that the execution time of Computer X is equal to Computer

Y. Whereas, an SY/X greater than 1 would indicate the execution time of Computer X

was higher than the execution time of Computer Y; another valid statement would be

Computer Y’s performance was better than Computer X’s. As a note, consideration

for the numerator and denominator is important. SY/X is not equal to SX/Y ; they

are two different relations.

In this document, a speedup ratio of 0.05 is typically used for δ resulting in the

margin, [0.95, 1.05]. To put it in terms of SY/X , if the ratio of Computer X’s execution

time to Computer Y’s execution time is within 0.05 of each other then the two times

are within the margin and considered equivalent.

33

3.3.4 Combining Difference and Equivalence Hypotheses

Combining hypotheses tests for difference and equivalence leads to practical and

relevant conclusions not possible individually. Hypothesis testing for difference

supports conclusions for statistical significance but lacks conditions for practical

irrelevance or equivalence. Conversely, equivalence testing supports conclusions on

equivalent distributions but lacks conditions for substantial performance differences

that are of interest. Therefore, the prevailing solution is a combination of difference

and equivalence testing for practical relevance [5], [6].

The following text outlines the procedures in the SPARC framework for

combining the two types of tests for a relevant performance characterization. The

method changes the Mann-Whitney (Wilcoxon Rank-Sum) Test in [1] to a Wilcoxon

Signed-Rank Test for paired observations. Although, with minor alterations, these

procedures can still be applied to the Mann-Whitney Test. The RISC-V systems

evaluated in a later chapter necessitated a paired non-parametric test.

Suppose a study is evaluating two computer’s performance on a benchmark suite

consisting of n benchmarks, each repeated m-times. Let (xi, yi) be the ith pair for

i = 1, 2, . . . ,m for Computer X and Computer Y of m observations on the nth

benchmark. Construct matrices Bn = [xi,1, yi,2, ri,3]m×3 for n = 1, 2, . . . , n for n

benchmarks. Let ri denote the pairwise ratio xi/yi for i = 1, 2, . . . ,m and MX/Y

denote the median pairwise ratio of performance. A Wilcoxon Signed-Rank Test is

used under the assumption that the ratios ri are continuous and symmetric around

a common median θ = 1 [1]. Difference hypotheses for the two-tailed Wilcoxon

Signed-Rank Test are defined as:

• H+
0 : the median performance score ratio MX/Y of Computer X, Computer Y on

the nth benchmark is symmetric around θ = 1 (corresponding with no location

shift from the benchmarks)

34

• H+
1 : the median performance score ratio MX/Y of Computer X, Computer Y

on the nth benchmark is not symmetric around θ = 1

Conduct a Wilcoxon Signed-Rank Test with an α corrected for family-wise error

to either reject H+
0 or fail to reject H+

0 . For brevity, the procedure is omitted as

it is readily available online or in statistics textbooks. However, the procedure is

illustrated in detail for equivalence within a margin.

The non-parametric TOST Wilcoxon Signed-Rank Test is utilized for equivalence

procedure in [46] with a median ratio [47] δ chosen a priori. Two one-sided tests

are conducted to determine if the performance score distributions within the margin

[−δ, δ] are equivalent. Since the procedures use a ratio performance, the equivalence

margin becomes [1 − δ, 1 + δ]. Both tests must reject the null for equivalence to be

established [6]. The upper bound equivalence 1+δ and lower bound equivalence 1−δ

signed ranks are computed and tested separately.

The upper bound equivalence, δ, null (H−
01) and alternative (H−

11) hypotheses are

defined as follows:

• H−
01: the performance score ratio distribution xi/yi on the nth benchmark is

greater than or equal to the upper bound equivalence 1 + δ

• H−
11: the performance score ratio distribution xi/yi on the nth benchmark is less

than the upper bound equivalence 1 + δ

The lower bound equivalence, 1− δ, null (H−
02) and alternative (H−

12) hypotheses

are defined as follows:

• H−
02: the performance score ratio MX/Y on the nth benchmark is less than or

equal to the lower bound equivalence 1− δ

• H−
12: the performance score ratio MX/Y on the nth benchmark is greater than

the lower bound equivalence 1− δ

35

Let fi = (xi/yi) − (1 + δ) for i = 1, 2, . . . ,m denote the pairwise ratio for the

mth observation minus upper bound 1 + δ for Computer X, Computer Y on the nth

benchmark. Let ψi denote the sign indicator of fi as:

ψi =


0, fi > 1

−1, fi < 1,

(8)

Rank Ri for i = 1, 2, . . . ,m the absolute values |f1|, . . . , |fi| in ascending order.

The product Riφi denotes the signed rank of fi. The test statistic, W−, for 1 + δ is

the sum of absolute values of negative ranks defined as:

W− =
m∑
i=1

Riφi, i = 1, 2, . . . ,m, (9)

where m denotes the number of m benchmark observations

Similarly, let gi = (xi/yi) − (1 − δ) for i = 1, 2, . . . ,m denote the pairwise ratio

for the mth observation minus lower bound 1 − δ for Computer X, Computer Y on

the nth benchmark. Let ψi denote the sign indicator of gi as:

ψi =


1, gi > 1

0, gi < 1,

(10)

Rank Ri for i = 1, 2, . . . ,m the absolute values |g1|, . . . , |gi| in ascending order.

The product Riφi denotes the signed rank of gi. The test statistic, W+, for 1 − δ is

the sum of absolute values of positive ranks defined as:

W+ =
m∑
i=1

Riφi, i = 1, 2, . . . ,m (11)

where m denotes the number of m benchmark observations

If (m < 6), determine the exact p-value from Wilcoxon Signed-Rank Test tables

36

for a one-sided test with α separately for both W− and W+.

If (m ≥ 6), the rank distribution is approximately normal [48]. Therefore,

calculate the z-score as follows:

z1 =
W− − M(M+1)

4√
M(M+1)(2M+1)

24

, (12)

z2 =
W+ − M(M+1)

4√
M(M+1)(2M+1)

24

, (13)

Reject H−
01 if z1 ≥ z1−α indicating MX/Y is within δ. If the test fails to reject H−

01,

then a z2 calculation would not occur because equivalence does not hold. Conversely,

if H−
01 is rejected, then proceed with calculating z2. Finally, reject H−

02 if z2 ≥ z1−α,

indicating MX/Y is within −δ.

The outcomes from the non-parametric TOST of equivalence test and difference

test are utilized together to determine a conclusion on the performance comparison

between Computer X and Computer Y on the nth benchmark. In Table 2 and below,

a list of the four conclusions are defined: trivial difference, indeterminant, relevant

difference, and equivalence [5], [6]:

• Indeterminant: fail to reject H+
0 and (H−

01 or H−
02). Indicating additional

benchmark samples are needed for the evaluation.

• Trivial difference: reject H+
0 and (H−

01 and H−
02). Performance distributions

were statistically significant but practically irrelevant.

• Relevant difference: reject H+
0 but fail to reject (H−

01 or H−
02). Performance

difference on a benchmark that was outside the equivalence margin specified.

• Equivalence: fail to reject H+
0 but reject (H−

01 and H−
02). Performance scores

come from the same distribution.

37

Table 2. Relevance Conclusions

Difference Test Equivalence Tests

Conclusion H+
0 H−

01 H−
02

Indeterminant Fail to reject Fail to reject Fail to reject

Trivial Difference Reject Reject Reject

Relevant Difference Reject Fail to reject Fail to reject

Equivalence Fail to reject Reject Reject

After all n benchmarks have one of the four relevance testing outcomes presented

above, an optional Wilcoxon Signed-Rank Test for a relevant difference in overall

performance can be conducted depending on the results. In the case that all test’s

outcomes are equivalence, trivial difference, or a mixture of both, then the relevance

testing is completed. This research provides recommendations further in the text for

publishing the results following the optional test procedure.

An optional Wilcoxon Signed-Rank Test for difference can be employed to

determine an overall general performance comparison on the benchmark suite. Let

Ri = MX/Y for i = 1, 2, . . . , n denote the median ratio on the nth benchmark. For

benchmarks not concluded as relevant difference, assign Ri = 0; exclude it from the

tests and reduce n, the number of benchmarks in the sample size, to n = n− 1 [17].

The test is excluded because the assumption of continuous variables under the null

in a Wilcoxon Signed-Rank Test does not hold. The original family-wise error

corrected α calculated prior to the evaluation remains unchanged to account for

multiple hypotheses tests. Using the same procedures in the text above, the

difference hypotheses for general performance comparison for a one-tailed Wilcoxon

Signed-Rank Test are defined as:

• H+
0 : the benchmark suite performance score ratios of Computer X, Computer

Y are symmetric around θ = 1 (corresponding with no location shift from the

38

benchmark suite)

• H+
1 : the benchmark suite performance score ratios of Computer X, Computer

Y are symmetric around theta θ > 1 (or θ < 1)

Error Corrected
𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁

Equivalence
Margin [−𝛿𝛿, 𝛿𝛿]

Embedded Systems
to be Evaluated

Optional Global
Difference

Hypothesis Test

Relevant
Performance

Evaluation

Relevance Outcome 1

benchmark 1

Difference Hypothesis
Test

Equivalence/TOST
Hypotheses

Tests

benchmark 𝑛𝑛

Difference Hypothesis
Test

Equivalence/TOST
Hypotheses

Tests

Relevance Outcome 𝑛𝑛

Figure 7. Relevant statistical performance evaluation framework.

The SPARC framework provides outcomes that are practical and relevant to the

39

study or performance comparison under consideration. To clarify, this research

outlines the aforementioned procedures with respect to multiple benchmarks in

Figure 7. As a final suggestion, it is recommended to write a conclusion that

includes the number of tests, outcomes (indeterminant, trivial difference, relevant

difference, or equivalence), p-values, effect size in terms of location shift, α or

confidence level, equivalence margin [−δ, δ], and justification for the equivalence

margin for performance evaluations.

3.4 Modeling Keystone-specific Security Features

In this section, a model to analyze Keystone-specific security features is discussed

as a technique for performance characterization. In order to provide a secure execution

environment for an embedded system, Keystone has initialization code for setup and

other processing requirements that have performance considerations separate from

the application performance. This research extends the closed queuing network model

listed in Section 2.2.4 by [4] through Keystone-specific functionality to determine the

performance impact while executing a benchmark suite. The proposed model was

purposely scoped as simple, so that the information gathered provides a foundation

to increase complexity by adding additional Keystone-specific security features on

successive iterations.

3.4.1 Keystone Reference Monitor Concept

A theoretical modeling framework to assess the performance impact of a reference

monitor was proposed in [4] and functionally attributed to a simple closed-queue

network model. The model is illustrated by referencing Keystone’s API through its

use of secure enclaves and trusted/untrusted OS configuration. The overhead cost of

using Keystone is mapped to a network queue response time; the time it takes for

40

a program to begin execution while Keystone is enforcing the security policy versus

the time to execute without Keystone. Additionally, processing delays commonly

identified in queuing theory models are defined as delays encountered due to Keystone

context switching (i.e. switch between other processes) while a program is executing.

The original reference monitor concept in Figure 1 listed two primary functions:

an ORM, and a SRM [4]. This research models Keystone in a similar concept in

Figure 8, but with clearer definitions based on its operation. The figure depicts an

untrusted OS, Linux, that is currently activating an enclave trusted OS for a secure

execution environment. Not shown in the figure are the steps to initialize Keystone,

the untrusted OS, and the allocation of resources; those are executed during system

bootup hence the allocated resources.

The ORMr was redefined as the Resource Monitor (RM). The RM ensures that

the system resources accessed by Untrusted and Trusted Entities are secure per their

privilege level and PMP configurations.

The SRM was redefined as the Entity Monitor (EM). The EM is tasked with

initializing and securing the Trusted Entities that are activated within the system and

monitoring any unauthorized usage of them. Activation of any Trusted or Untrusted

entity is also monitored by the EM.

3.4.2 Proposed Keystone Closed Queuing Network Model

The analysis used in [4], and the operational approach for closed queuing models

from [49], is also used here. The concept was transposed to a functionally equivalent

closed queuing network in Figure 9. The primary difference in this model from [4] is

the activation of the Trusted Entity ERT ; this is the enclave created by Keystone for

a secure execution environment and has its own trusted OS (also called a runtime).

41

Untrusted Entity
(Linux Operating System)

System
Resources

Memory

Processor

RM Allocated
Resources

Keystone Reference Monitor

Resource Monitor

Entity Monitor

EM Allocated
Resources

Untrusted Entity
Allocated Resources

Trusted Entity
(Custom Keystone-

specific Operating System)

Figure 8. Redefined concept model for Keystone reference monitor derived from Figure
1.

3.4.3 Reference Monitor Job Request Generation

Access requests by EOS to create an enclave (and securely execute a program)

generate job requests to the RM or EM. The Keystone API lists functions that are

available to EOS and ERT , a subset of those applicable to this framework is listed in

Table 3.

In order to simplify the model analysis, a job is loosely defined in this framework

as a process needed to complete a general objective. Jobs could be further broken

down into specific function calls or mapped to source code, but this is left to future

work.

Table 3. Subset of Keystone API functions [1]

Caller Function Description

EOS

create enclave Allocate and hash enclave

run enclave Start enclave and ERT
resume enclave Continue ERT operation

destroy enclave Destroy ERT and free enclave resources

ERT
stop enclave Pause ERT
exit enclave Terminate ERT

42

X1

X2

X3

X0

External environment Node ONode O

q21

q31

q13

q12

q10

λOS

λRT

∑2

∑3

∑1

EOS

ERT

XOS

XRT

qOS

qRT

OUTIN

Resource Monitor

Keystone Access
Controller

Entity Control

Entities (Untrusted OS
and Trusted Runtime)

Figure 9. Functional closed queuing network model from Gorbachov et al. (2019)
modified for Keystone reference monitor.

To start an application in an enclave, the EOS sends a create enclave request

to the Keystone access controller, Σ1. Assuming valid, the create enclave request

generates two requests: an allocate request to Σ2 and an initialize request to Σ3.

After the two requests complete, Σ1 generates two additional requests: set initial

PMP configuration to Σ2 and validate/hash enclave to Σ3. At this point the secure

enclave is validated; the program and ERT has been loaded and initialized. Σ1 then

sends the notification to EOS that the enclave is ready for secure execution.

Next, EOS sends a run enclave job to Σ1 which generates two requests: set PMP

memory isolation to Σ2 and transfer processor control to ERT to Σ3. Upon request

completion, Σ1 notifies ERT that it has processor control and to start executing the

program. After the program has completed, ERT will request to exit enclave and EOS

will request to destroy enclave to free up resources.

43

3.5 Summary

This chapter described two models for characterizing the performance of an

application on a RISC-V embedded system with Keystone enabled versus disabled.

It presented architectural layer models to visualize both sub-systems and depicted

multiple functions that can influence or impact performance. A new framework,

SPARC, was introduced to characterize the performance of an embedded system

through benchmarks. Finally, for systems with Keystone enabled, a method for

modeling the Keystone-specific security functions was illustrated.

44

IV. Experimental Design and Methodology

4.1 Objective

This research aims to characterize the performance of three RISC-V embedded

systems and determine the performance impact to a system with a reference monitor,

Keystone, enabled. It also seeks to establish the efficacy of the SPARC framework as

a statistically rigorous performance evaluation in relation the HPT framework. The

experiment design and methodology presented in this section is a demonstration of

the SPARC framework procedures with an evaluation of three RISC-V processors.

After a baseline performance characterization is performed consisting of all three

RISC-V embedded systems with Keystone disabled, SPARC is further utilized to

evaluate the performance impact of Keystone enabled on a per-core basis. In other

words, on one RISC-V system the performance evaluation is between the benchmark

performance with Keystone disabled versus enabled. Furthermore, the performance

impact of Keystone-specific security features are evaluated through a closed-queuing

network model. Specifically, the experimentation seeks to accomplish four objectives:

1. Assess the efficacy of the SPARC framework for performance evaluations of

embedded systems.

2. Evaluate margins of equivalence in performance evaluations for improved

statistical inference.

3. Measure the per-core performance impact of Keystone.

4. Model Keystone-specific security features on a RISC-V embedded system.

Results of the experimentation provide a performance characterization of the three

RISC-V embedded systems with and without Keystone, as well as an assessment of

the SPARC framework.

45

4.2 System Under Test

Figure 10 presents the SUT and component under test (CUT) diagram. The test

assumptions, hardware configuration, experimental design, and performance metric

measurements are discussed prior to the specifics of each evaluation.

Metrics
Uncontrolled Variables

System Under Test
(FPGA RISC-V Embedded System)

Component Under Test

RISC-V Softcore System on a
Chip

• Keystone Enabled
• Keystone Disabled

Target RISC-V FPGA Design
and Synthesis Machine

Vivado Design &
Synthesis Algorithms

Benchmark
Execution Time

Keystone
Initialization Time

Keystone Benchmark
Execution Time

Experiment Parameters

Processor Design
Decisions

Embedded OS
Configurations

Figure 10. System under test and component under test diagram.

4.3 Assumptions

The assumptions made in the experiment are related to the instantiated embedded

system on the FPGA. There are additional assumptions with respect to statistical

analyses that are provided in the following chapter. The following assumptions are

declared with respect to the experimental design and factors affecting it:

• The performance of the softcore RISC-V embedded systems are representative

of their ASIC counterparts.

46

• The FPGA bitstream generation by Vivado is accomplished through a multiple

stage process that uses algorithms to instantiate the components. The impacts

to performance by Vivado processes are not evaluated in this research.

• Each RISC-V embedded system has a different HDL code compiler prior to

bitstream generation that will not affect performance of the final system.

• The RISC-V processors, Rocket and Ariane, had existing FPGA build

configurations available for use on the experiment FPGA hardware. Shakti

was customized by adding peripherals present on Rocket or Ariane, but absent

from the Shakti build and did not affect the datapath of the processor.

• The Linux OS configurations and hardware drivers are common across the three

embedded systems except for required build-specific drivers and do not affect

performance.

• Differences in how each embedded system loaded the Linux OS and benchmarks

have no noticeable effect on performance. Rocket and Ariane loaded software

into memory from a secure digital memory card, whereas Shakti required a

debugging application to load directly into memory.

• For experiment runs with Keystone enabled, a run consists of one secure enclave

created and one benchmark execution. Performance of multiple enclaves are not

modeled.

• The security of Keystone or its security mechanisms are not assessed. In other

words, the security of Keystone’s enclave encryption is not relevant, but its

performance is.

• The Keystone software code and module is built into the system bootloader

and therefore persistent, but not active, across runs that test the performance

47

of a benchmark with Keystone disabled. Keystone-specific features are enabled

and disabled by activating a software driver within the Linux OS. The software

code and modules do not affect benchmark performance in experiment runs

with Keystone disabled.

• All planned runs of a benchmark for a given system are executed successively

and deemed independent.

4.4 Control Variables

The control variables are those held constant over the execution of benchmarks

on the RISC-V systems. They primarily exist within the RISC-V embedded system

configuration and FPGA hardware, and are listed in Table 4.

Table 4. Control Variables

Variable Value Description

FPGA Hardware Xilinx Virtex-
7
XC7VX485T

FPGA model loaded with the RISC-V
embedded system

Processor
Instruction
Execution

In-order Instructions are fetched and executed
in order (versus out-of-order)

Width (bits) 64 Address width of the processors
Clock Rate (MHz) 50 Clock speed of processors instantiated

on the FPGA
L1 Inst Cache (KB) 16 Size of instruction cache memory
L1 Data Cache
(KB)

32 Size of data cache memory

DDR3 Size (GB) 1 DDR3 synchronous dynamic random-
access memory size (physical
component located on FPGA
development board)

48

4.5 Independent Variables

Independent variables are specific to the two experiments: embedded system with

Keystone enabled, and with Keystone disabled. These are listed and described in

Table 5.

Table 5. Independent Variables

Variable Value Description

Keystone Enabled/Disable Software switch that enables or
disables Keystone functionality

Benchmark Type 1, 2, . . . , 8 Selection between 8 benchmarks
RISC-V
Processor

Rocket/Ariane/Shakti Selection of three RISC-V processor
types

TBD - TBD

4.6 Response Variables

The experiment response variables are listed in Table 6. These are dependent

variables measured while varying the independent variables between runs. The

Benchmark Execution Time, Median Benchmark Execution Time, Speedup Ratio,

and Median Speedup Ratio are key attributes for analysis with the SPARC

framework. The Keystone Initialization Time and Total Keystone Time provide

insight into the performance impact of Keystone-specific security mechanisms.

4.7 Uncontrolled Variables

This research employs an FPGA to conduct the experiment with three RISC-V

embedded system designs and reduces the risk of bias that could occur if ASICs were

used. While the FPGA excels in this regard, there are uncontrolled variables that

could impact performance, but their magnitude remains unknown.

49

Table 6. Response Variables

Variable Units Description

Benchmark
Execution Time

seconds Time for benchmark to complete one run
execution

Keystone
Benchmark
Execution Time

seconds Time for benchmark to execute and
complete within a Keystone secure enclave

Keystone
Initialization Time

seconds Time for Keystone-specific features to
initialize prior to benchmark execution

Median
Benchmark
Execution Time

seconds Median Benchmark Execution Time

Speedup Ratio - Ratio of two RISC-V processor’s
Benchmark Execution Time

Median Speedup Ratio - Median Ratio of two RISC-V processor’s
Benchmark Execution Time

Total Keystone Time seconds Sum of Benchmark Execution Time and
Keystone Initialization Time if Keystone is
enabled

As stated in Section. 4.3, the FPGA software (i.e. Vivado) generates the

bitstream file from HDL code that constitutes each RISC-V embedded system and

subsequently loads the bitstream onto the FPGA for configuration. Vivado

accomplishes this process through stages of algorithms, after which the embedded

system behavior is verified for timing constraints. The algorithms can be

customized to ensure verification is successful; they can be executed over successive

iterations to improve timing, or continuously executed for extended periods of time.

The Vivado settings that accompany each RISC-V embedded system, chosen by the

system designers, were not altered for this experiment and therefore an uncontrolled

variable.

Similarly, the decisions made by the RISC-V system designers for implementing

their respective processor design are left as-is. The purpose of this research is not to

analyze why a particular memory design in one processor is better than another,

50

although it is a possible avenue for follow-on research. Rather, it provides the

foundation of performance characterization from which design analysis can occur.

Nevertheless, these decisions do affect performance, either positively or negatively,

but are purposefully uncontrolled in this experiment.

Finally, the Linux OS configuration is an uncontrolled variable. Each system has

subtle differences in the drivers loaded through the configuration file. OS

configurations and drivers are often specific to an embedded system; replicating a

default configuration to use across systems can lead to errors or undesirable

operation.

4.8 Experimental Design

There are four objectives that the experiment must satisfy, previously listed in

Section 4.1. The following section documents the experimental design and suitability

towards meeting research objectives.

4.8.1 Experimental Hardware Setup

The experiment consists of three RISC-V softcore processors, Rocket [50], Shakti

[51], and Ariane [52], instantiated on an FPGA and the benchmark suite, RV8. RV8

contains eight benchmarks that are executed from which the output is measured, their

descriptions were previously listed in Section 2.2.2 in Table 1. Each processor has

its own system-on-a-chip design integrated within the build that includes, but is not

limited to: L1 and L2 cache, DDR3 memory controller, and universal asynchronous

receiver-transmitter (UART). The processors operate at 50 MHZ clock rate and the

system configurations (i.e. control variables) were previously listed in Table 4.

51

4.8.2 Experiment Methodology

The procedure for experiment execution consisted of the following steps:

1. Download the Vivado-generated bitstream for one of the three RISC-V

embedded systems onto the FPGA.

2. Compile the software: the Linux OS, version 5.3, and 8 benchmarks.

3. Load the software onto either a secure disk memory card (Rocket, Ariane), or

prepare to load software directly to the FPGA DDR3 memory (Shakti).

4. Power-on the FPGA.

5. Software is automatically (Rocket, Ariane) or manually (Shakti) loaded into

DDR3 memory and will begin the Linux OS boot sequence.

6. The Keystone driver is manually loaded, but Keystone is not enabled.

7. For each benchmark, a script within the Linux OS batch executes the

benchmark 30 times with Keystone disabled to capture performance metrics

(see Appendix A). Afterwards, the script enables Keystone and batch executes

the benchmark an additional 30 times.

8. The procedure is complete for one RISC-V embedded system after the script

has executed all 8 benchmarks and performance metrics are captured.

9. The experiment loops back to the first step and continues with the next system

until all three are complete.

In the experiment, a sample size of 30 for each benchmark was chosen to examine

suitability of its distribution for applying the CLT in the analysis next chapter.

52

4.8.3 Tools

The tools in Table 7 were used to synthesize FPGA designs, load the FPGA

bitstream, conduct statistical tests, analyze performance metrics, and plot graphs.

Table 7. Data Gathering and Analysis Tools.

Name Version Description

R v4.0.3 Programming language and free
extensible software environment used
for statistical analysis.

JMP v15 Commercial statistical analysis
software.

Vivado v2018.3 Software used to generate bitstream for
the FPGA design.

After the performance metrics are captured, the statistical software R [53] was used

to conduct hypothesis tests related to SPARC. R provides a software environment

that can be customized by installing user-created packages for a variety of statistical

tests or graphing functions. Specifically, a statistical package called ”stats” contains

functions to perform Wilcoxon Signed-Rank difference tests used in the analyses next

chapter. The package did not have a function to perform an equivalence test with a

Wilcoxon Signed-Rank Test, therefore this research modified the code from difference

to equivalence (see Appendix B). Two script files were used within R: a script file to

perform statistical analyses and a script file to plot graphs. The R packages used in

this research and their descriptions are listed in Table 8.

4.9 Methodology: SPARC Framework Specifics

The data collected in the experiment are used with SPARC for two analyses:

characterizing the performance through a comparison of three RISC-V systems with

Keystone disabled, and characterizing the individual RISC-V system performance

impact with Keystone enabled. The SPARC specifics to each analysis are discussed

53

Table 8. R software packages used and their description.

R Package Name Description

stats [53] Statistics package with hypothesis tests.
ggplot2 [54] Graphical plotting software for data analysis.
svglite [55] Tool for producing scalable-vector graphics.
reshape2 [56] Tool for reshaping data columns and rows.
tidyverse [57] Collection of analysis packages.
dplyr [58] Tool that standardizes data manipulation within R.
tidyr [59] Tool for cleaning up and organizing data within R.
shades [60] Color manipulation for plots.
rcolorbrewer [61] Collection of color palettes used in plots.
ggthemes [62] Collection of themes for ggplot2 package.
scales [63] Adds functions to scale data for plots.

in the following text. The methodology used to measure performance metrics specific

here is discussed at the conclusion of this section.

4.9.1 Characterizing Three RISC-V Embedded Systems with

Keystone Disabled

There are two pairwise comparisons conducted in this analysis, Rocket to Ariane

and Rocket to Shakti. A third comparison of Ariane to Shakti could have been

performed, but it would have required further FWER correction to α. As discussed

in Section 3.3.2.2, in a hypothesis test α is compared to the test’s p-value to reject

or fail to reject the null hypothesis. Prior to the analysis, α is corrected based on the

FWER which depends on the number of planned hypothesis tests.

In parametric statistics, there are sample size estimates that can be calculated to

ensure an error-corrected α test has the range to show statistically significant

results. But, as mentioned in Section 3.3.2.3, sample-size estimation for

non-parametric statistics is often not possible. Therefore, it is frequently not

possible to verify an error-corrected α and the statistical strategy is to limit the

number of planned hypothesis tests in analysis. Planning an abundance of

54

hypothesis tests without this consideration risks forfeiting the experiment and

starting it over.

For the two primary RISC-V evaluations of Rocket to Ariane and Rocket to

Shakti, there are a total of 34 hypotheses tests 2(8 + 8 + 1) conducted. For the

pairwise comparison Rocket to Ariane, 8 difference hypotheses tests are conducted

for location shifts plus 8 equivalence hypotheses tests and an additional test for the

overall analysis. The tests are repeated for the second pairwise comparison of

Rocket to Shakti. Therefore, the overall evaluation error correction is set at

α = 0.05 which translates to a FWER ≤ 0.82518 using (3). This research uses the

Bonferroni Correction method (4) to control the FWER but still allow (1 − α/m)

confidence intervals calculated. The error corrected αNew = 0.0014706, which is

compared to each benchmark test pi, to reject H0 or fail to reject H0.

To show correct application of the SPARC framework equivalence tests and

conclusions, this research defines three [1− δ, 1 + δ] equivalence margins for analysis.

Specifically, the primary equivalence margin is denoted as δ = 0.05 and [0.95, 1.05]

for the RISC-V system performance comparison. The bounds are small enough to

highlight a minimal difference in speedup between two system’s benchmark

performance, while providing margin for equivalence due to high precision. The

other two equivalence margins are hypothetical and discussed in the next section.

4.9.2 Evaluating Hypothetical Margins of Equivalence

To evaluate margins of equivalency with SPARC, this work also considers

δHyp1 = 0.25 and δHyp2 = 0.50 as the hypothetical extreme evaluations with

equivalence margins [0.75, 1.25], [0.50, 1.50] to demonstrate the framework in

conditions of similarly performing systems.

For the evaluations [0.75, 1.25] and [0.50, 1.50], this work considers them as post-

55

hoc tests after the primary comparison to prevent inflating the error corrected αNew.

αNew is adjusted by summing the additional 16 equivalence plus 2 overall analysis tests

for both pairwise comparisons. This amounts to a total of 34 + 2 · (8 + 8 + 2) = 70

hypotheses tests and a Bonferroni Corrected αNew = 0.0007143 for the hypothetical

evaluations.

4.9.3 Characterizing Individual RISC-V Embedded Systems with

Keystone Enabled

Evaluating the performance impact of Keystone on individual RISC-V systems

Rocket, Ariane, and Shakti, is similar in methodology to Section 4.9.1. Instead of

comparing different RISC-V systems to another, this assessment compares the same

system with Keystone enabled and disabled. For example, the benchmark’s output

of the Rocket system with Keystone enabled is evaluated against the benchmark’s

output with Keystone disabled.

The δ remains at 0.05 speedup with an equivalence margin of [0.95, 1.05]. One

primary difference from the baseline characterization is the FWER and αNew. In this

evaluation, the comparison tests are considered in separate families of data which

reduces the number of hypotheses tests affecting the error rate. There are a total of

17 hypotheses tests (8 + 8 + 1) conducted, which sets the FWER ≤ 0.00294 using

Equation 3, and will determine whether to reject H0 or fail to reject H0.

4.9.4 Performance Metric Measurements

Within each benchmark, code was inserted to capture the clock cycles with

inline assembly through a RISC-V specific pseudo-instruction, rdcycle [9]. The code

executes at program start and program completion to calculate the number of clock

cycles consumed. That result it then divided by the clock rate to derive the

56

execution time L as follows:

L =
CyclesEnd − CyclesStart

ClockRate
, (14)

L is used to calculate the Speedup Ratio S between pairwise comparisons defined

as:

S =
LA
LB

, (15)

The Speedup Ratio and Median Speedup Ratio are used to abstract out units of

time and identify performance shifts that occur between the embedded systems.

4.10 Methodology: Keystone-specific Security Features

An additional experiment was conducted to model Keystone-specific security

features on the Rocket RISC-V embedded system. The experiment used the Rocket

system with the configuration listed in Table 4, except for operating at a clock rate

of 100 MHz rather than 50 MHz.

X1

X2

X3

X0

External environment Node ONode O

q21

q31

q13

q12

q10

λOS

λRT

∑2

∑3

∑1

EOS

ERT

Entity Control

Resource Monitor

OUTIN

Measuring X3: time to complete
Enclave creation job

Create
enclave
request

Create
enclave job

Figure 11. Functional closed queuing network model for Keystone reference monitor.

57

The proposed functional closed queuing network model is illustrated in Figure 11.

This research is only concerned with calculating the average system response time for

Keystone to initialize and prepare to run a benchmark in a secure enclave.

The analysis methodology is to measure the steps required to instantiate ERT ,

which is defined in Table 6 as the Keystone Initialization Time. By measuring the

time for Σ3 to complete one enclave creation job, the initialization impact to the

overall average service time of the system can be determined.

58

The operational analysis of a closed queuing network by [49] provides a simple

model to measure the average system response time R based on the system output

rate, X0. In [4], the flow balance equations for the system are:

X0 = (q10) · (X1)

X1 = X0 +X2 +X3

X2 = (q12) · (X1)

X3 = (q13) · (X1)

The throughput, X3, of Σ3 is the output rate in jobs per second which complete at

the device. This alters the system of flow balance equation to find throughput of X1:

X1 = (q13) · (X3) (16)

59

The throughput X1 is calculated to solve for the remaining unknown variables

and determine the average system response time. The average system response time

R is calculated using the Interactive Response Time Formula [4]:

R =
N

X0

− 1

λ
(17)

The calculation above for R is the performance impact to the system that occurs

if Keystone is enabled, excluding the execution time for the benchmark.

4.10.1 Keystone Enabled Performance Metric Measurement

The metrics captured are based on the time to initialize an enclave and execute a

benchmark with ERT . From the previous section, a measurement of any Xi is required

to solve the system of equations.

To run the benchmarks with Keystone enabled, the batch scripted discussed in

Section 4.8.2, executes a specific line of code that enables Keystone (see

Appendix A). There are three binary executable inputs to the line of code required

to run a benchmark (or application) within a secure enclave. The three are the host,

trusted OS, and the application. The host executable initializes the enclave using

parameters, such as the size of the enclave, and launches the enclave [10]. The

trusted OS handles any system-level functionality that is required between the

enclave benchmark and the untrusted Linux OS. Finally, the benchmark is the

user-level application that the trusted OS executes inside the secure enclave.

Within the host executable file, additional code was added to collect the number

of clock cycles with inline assembly similar to Section 4.9.4. The number of clock

cycles were collected prior to and after a sequence of Keystone initialization code, to

determine the number of clock cycles required.

In this scenario, the code collecting the clock cycles is represented by throughput

60

variable X3 illustrated in Fig 11. Collection starts with EOS sending a create enclave

job, which occurs within the host executable code, and arrives at Σ3. The cycles are

collected again after the job completes, in this case after the Keystone initialization

sequence has completed. The Keystone Initialization Time metric is derived from the

number of clock cycles elapsed and the speed of the processor using Equation 14.

4.11 Methodology Summary

This chapter described the experimental methodology used for measuring the

performance metrics, establish a sound experimental design, and illustrate the

procedures supporting the embedded system evaluations. It presented methodology

specific to the SPARC framework to establish a baseline performance

characterization of three RISC-V embedded systems along with the individual

RISC-V system performance impact of Keystone. Further, it described the approach

for modeling Keystone-specific security features in a closed-queue network and the

procedure for calculating the average system response time for a system with

Keystone enabled.

61

V. Observations and Analysis

5.1 Overview

This chapter presents the observations, results, and analysis from the

experimental design described in Chapter IV. Discussions are separated into the

four following evaluations: (i) using SPARC to analyze three RISC-V embedded

systems with Keystone disabled, (ii) assessing SPARC with hypothetical margins of

equivalence, (iii) using SPARC to analyze individual RISC-V systems with

Keystone enabled, and (iv) modeling Keystone-specific security features. Issues

found while modeling Keystone-specific security features are discussed and the

follow-on experimentation with additional analysis is described. Significant findings,

performance metrics, and statistical analyses are presented; specific to each

evaluation.

5.2 RISC-V Performance Evaluations with the SPARC Framework

The results presented within this section characterize three RISC-V embedded

systems with Keystone disabled using the new SPARC methodology, beginning with

evaluation of Rocket to Ariane. Figure 12 presents quantile-quantile plots for each

benchmark with data points as paired-observation differences against a theoretical

normal distribution line. Visually, the plots for AES, Bigint, Norx, and Primes

indicate non-normal distributions not suitable for parametric tests. The sharp

curved data points around the normal line on AES and Norx are due to heavy tails

and the large gap in data points on Bigint and Primes suggest bimodal

distributions.

Shapiro-Wilk Tests were conducted for normality to affirm the visual analysis [64].

The result of these tests are listed in Table 9. Each benchmark distribution was tested

62

Norx Primes Qsort SHA512

AES Bigint Dhrystone Miniz

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2
1.2975

1.3000

1.3025

1.3050

1.3075

0.5960

0.5965

0.5970

0.5975

0.5980

0.28425

0.28450

0.28475

0.28500

0.572

0.573

0.574

0.575

0.5188

0.5192

0.5196

0.5200

0.5204

1.061

1.062

1.063

1.064

0.491

0.492

0.564

0.565

0.566

0.567

0.568

Theoretical

R
at

io
 o

f E
xe

cu
tio

n
T

im
e

Figure 12. Rocket with Ariane quantile-quantile plots for each benchmark. Data points
are a difference, Rocket − Ariane, compared to a theoretical normal distribution line.

against the Shapiro-Wilk H0 that the distribution is normal; rejecting H0 signifies

the distribution is not normal. Dhrystone and SHA512 are the only two normal

distributions of the Rocket to Ariane evaluation and therefore the CLT cannot be

relied on, despite a larger sample size.

Table 9. Shapiro-Wilk Tests for normality

Rocket to Ariane Rocket to Shakti
Sub-

benchmark W p Rej H+
0 ? W p Rej H+

0 ?

AES 0.84612 5.148e-4 Yes 0.90514 1.124e-2 Yes

Bigint 0.81796 1.418e-4 Yes 0.93125 5.302e-2 No

Dhrystone 0.94087 9.603e-2 No 0.26703 3.76e-11 Yes

Miniz 0.86087 1.056e-3 Yes 0.69106 1.16e-6 Yes

Norx 0.8703 1.701e-3 Yes 0.50051 5.425e-9 Yes

Primes 0.79085 4.486e-5 Yes 0.77818 2.69e-5 Yes

Qsort 0.92954 4.774e-2 Yes 0.73149 4.637e-6 Yes

SHA512 0.96135 0.3353 No 0.93825 8.163e-2 No

63

Table 10. SPARC framework results for difference and equivalence at [0.95, 1.05] in
Rocket to Ariane comparison tests

H+
0 H−

01 H−
02

Benchmark MX (sec) MY (sec) MX/Y z p z1 p1 z2 p2
Rej

H+
0 ?

Rej

H−
0 ?

Relevance

AES 129.5164 263.6765 0.4912 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Bigint 203.4705 391.8052 0.5193 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Dhrystone 75.6602 265.8570 0.2846 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Miniz 505.5659 388.3212 1.3019 -4.772 1.825e-6 4.772 9.127e-7 -4.792 0.992 Yes No Rel diff

Norx 73.6444 130.0691 0.5662 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Primes 257.0185 242.0116 1.0622 -4.772 1.825e-6 4.772 9.127e-7 -4.792 0.992 Yes No Rel diff

Qsort 129.927 242.0116 0.5732 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

SHA512 81.0285 135.7358 0.5968 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Proceeding with the new relevance framework, difference and equivalence

hypotheses tests were conducted on the speedup ratio of medians and the results are

listed in Table 10. The ratio of median execution time MX/MY for Rocket (MX) to

Ariane (MY) indicates that Ariane is the faster processor if the ratio is greater than

1. Ideally, if the processors were equal in median execution time, the ratio would be

exactly 1. Figure 13 presents a bar graph plotting the median execution times listed

in Table 10 of Rocket and Ariane within each benchmark.

0

50

100

150

200

250

300

350

400

450

500

AES Bigint Dhrystone Miniz Norx Primes Qsort SHA512

Benchmarks

B
en

ch
m

ar
k

E
xe

cu
tio

n
T

im
e

(s
ec

)

Rocket Ariane

Figure 13. Median Rocket and median Ariane bar graph for each benchmark.

64

Each benchmark difference test rejected H+
0 , indicating that the performance

score distributions are symmetric around θ = 1. In other words, there was a speedup

or slowdown distribution location shift of the median time. Further, the tests of

equivalence at δ = 0.05 also rejected H−
0 in all benchmarks. The hypothesis test

results, together with the four possible relevance choices from Section 3.3.4, allow us

to conclude that there is a relevant difference in median performance between the

Rocket and Ariane RISC-V processors in all 8 benchmarks. It was recommended

previously in the text that the effect sizes should be listed, either in the evaluation

conclusion, or as they are listed in Table 10. Rocket had a relevant difference of faster

median execution times over Ariane in 6 of the 8 benchmarks.

Norx Primes Qsort SHA512

AES Bigint Dhrystone Miniz

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

1.02

1.04

1.06

1.08

1.048

1.049

1.050

1.051

0.54

0.55

0.56

0.57

0.58

0.59

0.73

0.74

0.75

0.76

0.77

1.195

1.196

1.197

1.198

1.199

0.570

0.575

0.580

0.430

0.434

0.438

0.442

0.78

0.80

0.82

0.84

0.86

Theoretical

R
at

io
 o

f E
xe

cu
tio

n
T

im
e

Figure 14. Rocket with Shakti quantile-quantile plots for each benchmark. Data points
are a difference, Rocket − Shakti, compared to a theoretical normal distribution line.

In the performance evaluation of Rocket to Shakti, quantile-quantile plots are

presented in Figure 14. The plots show non-normal distributions in all benchmarks

except for Bigint and SHA512. In contrast to quantile-quantile plots in Figure 12, the

distributions of Dhrystone, Norx, Miniz, and Qsort are highly skewed left and include

65

heavy tails. The heavy tail in Dhrystone is caused by an outlier data point at −65

seconds. Similarly, outlier data points in Norx result in a heavy tail distribution and

signify parametric tests could be adversely affected. Results from Shapiro-Wilk Tests

for normality listed in Table 9 confirm that all benchmarks are non-normal except for

Bigint and SHA512.

Alternatively, a different statistical analysis could be employed by examining the

outlying data points to determine if they can be removed and then testing for

normality again. This would require altering the α correction again, accounting for

the additional hypotheses tests, and also adding justification for outlier data point

removal. But if the process was successful and produced normal distributions, then

parametric statistical tests could have been performed. This research refrained from

employing this technique because of the extensive time and experience required to

distinguish between data points that are outliers versus data points that indicate a

problem with the experimental design. Instead, SPARC was designed to test

population medians under the assumption that outlier data points are not removed.

Instead of removing any outlier data points, this research presents the results from

the difference and equivalence hypotheses tests performed on the median speedup

ratio of execution times for Rocket (MX) and Shakti (MY) in Table 11. The bar

graph in Figure 15 plots median execution times for Rocket and Shakti within each

benchmark comparison.

Table 11. Rocket to Shakti comparison tests for difference and equivalence at [0.95, 1.05]

H+
0 H−

01 H−
02

Benchmark MX (sec) MY (sec) MX/Y z p z1 p1 z2 p2
Rej

H+
0 ?

Rej

H−
0 ?

Relevance

AES 129.5164 299.9041 0.4324 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Bigint 203.4705 170.0411 1.1966 -4.772 1.825e-6 4.772 9.127e-7 -4.792 0.992 Yes No Rel diff

Dhrystone 75.6602 129.9888 0.5821 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Miniz 505.5659 473.9084 1.0665 -4.772 1.825e-6 4.772 9.127e-7 -3.682 0.998842 Yes No Rel diff

Norx 73.6444 87.8986 0.8381 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Primes 257.0185 448.9452 0.5729 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Qsort 129.927 170.825 0.7606 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

SHA512 81.0285 77.2075 1.0493 -4.772 1.825e-6 4.772 9.127e-7 3.599 1.594e-4 Yes Yes Triv diff

66

0

50

100

150

200

250

300

350

400

450

500

AES Bigint Dhrystone Miniz Norx Primes Qsort SHA512

Benchmarks

B
en

ch
m

ar
k

E
xe

cu
tio

n
T

im
e

(s
ec

)

Rocket Shakti

Figure 15. Median Rocket and median Shakti bar graph for each benchmark.

Again, the difference tests rejected H+
0 , indicating a distribution location shift of

median execution time. Alternatively, the tests of equivalence at δ = 0.05 rejected

H−
0 in all benchmarks except for SHA512. Here, the conclusion is a relevant difference

in median performance between Rocket and Shakti on 7 out of 8 benchmarks and a

trivial difference in SHA512. Another possible conclusion is from the effect sizes in

Table 11 as the ratio of median performance, Rocket had a relevant difference of

faster median execution times over Shakti in 6 of the 8 benchmarks.

In addition to the benchmark tests, a final Wilcoxon Signed-Rank Test was

conducted to determine if evidence supports an overall relevant difference in

performance between Rocket to Ariane, and Rocket to Shakti, in Table 12. Each

test previously found relevant differences between Rocket and Ariane on all

benchmarks, therefore the sample size was set at 8. In the Rocket to Ariane general

performance comparison, H+
0 was rejected, indicating there is a relevant difference

in performance between the two systems. A similar test was conducted for the

67

Table 12. SPARC general performance results for both comparisons.

MX/Y

Benchmark Ariane Shakti

AES 0.4912 0.4324

Bigint 0.5193 1.1966

Dhrystone 0.2846 0.5821

Miniz 1.3019 1.0665

Norx 0.5662 0.8381

Primes 1.0622 0.5729

Qsort 0.5732 0.7606

SHA512 0.5968 Triv diff

Results H+
0 p

Rej
at α = 0.10?

Ariane 0.0391 Yes

Shakti 0.1094 No

Rocket to Shakti general performance comparison, with a different outcome. In the

previous tests, one resulted in a trivial difference between Rocket and Shakti for

SHA512. Therefore, it was removed from consideration as stated in Section 3.3.4

and the sample size reduced to 7.

Out of 7 benchmarks, Rocket outperformed Shakti on 7 of them, but not enough

to reject H+
0 . The results are not unexpected. It is reasonable to assume that two

embedded systems with varying levels of superior performance would require more

than 8 benchmarks to reach a conclusion. The insight gained from the test of

general performance between Rocket to Shakti is that the test failed to reject H+
0 of

equal performance and a follow-on experiment with additional benchmarks would be

required for further determination.

68

5.2.1 Hypothetical Equivalence Margin Efficacy

Hypothetical equivalence margins were used to assess the efficacy of SPARC in

scenarios where the performance of the systems with Keystone disabled are similar.

The scenario considers δHyp1 = 0.25 and δHyp2 = 0.50 as the hypothetical extreme

evaluations with equivalence margins [0.75, 1.25], [0.50, 1.50] to demonstrate the

framework. As a note, the results from difference tests are unchanged because this

scenario only affects equivalence tests but are listed again for reference.

The hypothetical equivalence results for Rocket to Ariane at [0.75, 1.25] and

[0.50, 1.50] are listed in Table 13 and Table 14, respectively. The final Rocket to

Ariane overall relevant difference in performance hypothesis test results for both

hypothetical margins are listed in Table 15.

Remarkably, the effect of using a [0.75, 1.25] margin had minimal impact to the

overall relevant difference in performance test. From the experiment, Rocket had

relevant differencess of speedup (i.e. better performance) over Ariane on 6 of the

8 benchmarks. Primes was the only benchmark impacted in the evaluation because

both H+
0 and H−

0 were rejected, indicating a trivial difference. This reduced the

hypothesis test by one sample, but there was still a sufficient sample size to reject

Table 13. SPARC framework results for difference and equivalence at [0.75, 1.25] in
Rocket to Ariane comparison tests

H+
0 H−

01 H−
02

Benchmark MX/Y z p z1 p1 z2 p2
Rej

H+
0 ?

Rej

H−
0 ?

Relevance

AES 0.4912 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Bigint 0.5193 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Dhrystone 0.2846 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Miniz 1.3019 -4.772 1.825e-6 4.772 9.127e-7 -4.792 0.992 Yes No Rel diff

Norx 0.5662 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Primes 1.0622 -4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Qsort 0.5732 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

SHA512 0.5968 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

69

Table 14. SPARC framework results for difference and equivalence at [0.50, 1.50] in
Rocket to Ariane comparison tests

H+
0 H−

01 H−
02

Benchmark MX/Y z p z1 p1 z2 p2
Rej

H+
0 ?

Rej

H−
0 ?

Relevance

AES 0.4912 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Bigint 0.5193 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Dhrystone 0.2846 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Miniz 1.3019 -4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Norx 0.5662 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Primes 1.0622 -4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Qsort 0.5732 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

SHA512 0.5968 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

the overall performance null hypothesis, and conclude Rocket has better performance

over Ariane.

Alternatively, at the [0.50, 1.50] equivalence margin, the equivalence tests

resulted in 6 of the 8 benchmarks as a trivial difference. In the overall relevant

difference in performance hypothesis test for [0.50, 1.50], H+
0 was not rejected. The

result is significant because it illustrates the capability of SPARC. If the equivalence

margin [0.50, 1.50] was a factual statement, rather than hypothetical, the results

clearly demonstrate that a conclusion cannot be established given only two

benchmark samples that show a relevant difference. In other words, there was not

enough evidence to conclude that Rocket has better performance compared to

Ariane.

70

Table 15. Rocket to Ariane SPARC general performance results with hypothetical
equivalence margins [0.75, 1.25] and [0.50, 1.50].

Ariane MX/Y

Benchmark At [0.75,1.25] At [0.50,1.50]

AES 0.4912 0.4912

Bigint 0.5193 Triv Diff

Dhrystone 0.2846 0.2846

Miniz 1.3019 Triv Diff

Norx 0.5662 Triv Diff

Primes Triv Diff Triv Diff

Qsort 0.5732 Triv Diff

SHA512 0.5968 Triv Diff

Results H+
0 p

Rej
at α = 0.10?

At [0.75, 1.25] 0.03125 Yes

At [0.50, 1.50] 0.5 No

The results show a similar conclusion found in the Rocket to Shakti comparison.

The hypothetical equivalence results for Rocket to Shakti at [0.75, 1.25] and

[0.50, 1.50] are listed in Table 16 and Table 17, respectively. The final Rocket to

Shakti overall relevant difference in performance hypothesis test results for both

hypothetical margins are listed in Table 18. Both hypothesis tests for overall

relevant difference in performance failed to reject the null, which indicates there is

not enough evidence to support a conclusion that Rocket has better performance

than Shakti.

Suffice it to say, the SPARC framework excels in conditions of similar performance

or equivalence. A valid conclusion for both system comparisons that failed to reject

H+
0 would indicate the need for additional benchmarks if further evaluation is pursued.

71

Table 16. SPARC framework results for difference and equivalence at [0.75, 1.25] in
Rocket to Shakti comparison tests

H+
0 H−

01 H−
02

Benchmark MX/Y z p z1 p1 z2 p2
Rej

H+
0 ?

Rej

H−
0 ?

Relevance

AES 0.4324 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Bigint 1.1966 -4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Dhrystone 0.5821 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Miniz 1.0665 -4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Norx 0.8381 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Primes 0.5729 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Qsort 0.7606 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

SHA512 1.0493 -4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Table 17. SPARC framework results for difference and equivalence at [0.50, 1.50] in
Rocket to Shakti comparison tests

H+
0 H−

01 H−
02

Benchmark MX/Y z p z1 p1 z2 p2
Rej

H+
0 ?

Rej

H−
0 ?

Relevance

AES 0.4324 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Bigint 1.1966 -4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Dhrystone 0.5821 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Miniz 1.0665 -4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Norx 0.8381 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Primes 0.5729 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Qsort 0.7606 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

SHA512 1.0493 -4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

72

Table 18. Rocket to Shakti SPARC general performance results with hypothetical
equivalence margins [0.75, 1.25] and [0.50, 1.50].

Shakti MX/Y

Benchmark At [0.75,1.25] At [0.50,1.50]

AES 0.4324 0.4324

Bigint Triv Diff Triv Diff

Dhrystone 0.5821 Triv Diff

Miniz Triv Diff Triv Diff

Norx Triv Diff Triv Diff

Primes 0.5729 Triv Diff

Qsort Triv Diff Triv Diff

SHA512 Triv Diff Triv Diff

Results H+
0 p

Rej
at α = 0.10?

At [0.75, 1.25] 0.25 No

At [0.50, 1.50] 1.0 No

5.3 Individual RISC-V Performance Impact of Keystone with the

SPARC Framework

In this section, results are presented to evaluate the performance impact of

Keystone enabled on individual RISC-V embedded systems using SPARC. This

section is only concerned with comparing the response variables, Benchmark

Execution Time and Keystone Benchmark Execution Time, listed in Table 6. The

Keystone Benchmark Execution Time is the raw benchmark performance within a

secure enclave. The analysis excludes the Keystone Initialization Time response

variable in the comparison, which is discussed in a separate section. Hypothetical

equivalence margins are also not considered in this evaluation; their purpose was to

demonstrate the SPARC framework and were presented in Section 5.2.

Figure 16 illustrates quantile-quantile plots for Rocket, with Keystone enabled

versus disabled, on each benchmark with data points as paired-observation differences

against a theoretical normal distribution line. The plots for AES, Bigint, Miniz, and

Norx display non-normal distributions which would not be suitable for parametric

73

statistics tests. AES has a large gap between observations indicating a bimodal

distribution. Whereas the data points in Bigint tend to flatten out towards the

middle representing a heavy-tailed distribution. The left-curved data points of Miniz

and Norx are characteristic of left-skewed distributions.

Norx Primes Qsort SHA512

AES Bigint Dhrystone Miniz

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

1.0825

1.0850

1.0875

1.0900

1.054

1.056

1.058

1.057

1.058

1.059

1.024

1.026

1.028

1.030

1.081

1.082

1.083

1.084

1.074

1.075

1.076

1.077

1.078

1.024

1.026

1.028

0.997

0.998

0.999

1.000

1.001

Theoretical

R
at

io
 o

f E
xe

cu
tio

n
T

im
e

Figure 16. Keystone performance impact on Rocket, quantile-quantile plots for each
benchmark. Data points are a difference, Rocket Keystone enabled − Rocket Keystone
disabled, compared to a theoretical normal distribution line.

To assess normality of the Rocket Keystone data, Shapiro-Wilk Tests were

conducted [64], with results listed in Table 19. Similar to Section 5.2, if H0 is

rejected then the distribution is not normal. Interestingly, Bigint failed to reject H0

and is assumed normal. The likely explanation is that the heavy-tails affected the

distribution, but not enough for the Shapiro-Wilk Test to reject H0. As evident by

the resulting p-value, 0.115, it is still above the rejection point α = 0.05. If

parametric tests were planned, the Bigint data would likely require a transformation

to reduce the impact of the heavy-tail on the test. The other surprising result from

the normality tests is that 5 of the 8 benchmarks failed to reject H0 (i.e. assumed

74

Table 19. Shapiro-Wilk Tests for normality on Keystone enabled versus disabled
performance impact.

Rocket Ariane Shakti
Sub-

benchmark W p Rej H+
0 ? W p Rej H+

0 ? W p Rej H+
0 ?

AES 0.9014 9.10e-3 Yes 0.8840 3.50e-3 Yes 0.9325 5.72e-2 No

Bigint 0.9438 1.15e-1 No 0.8971 7.14e-3 Yes 0.9564 2.50e-1 No

Dhrystone 0.9758 7.05e-1 No 0.9615 3.37e-1 No 0.2869 5.48e-11 Yes

Miniz 0.9073 1.27e-2 Yes 0.6100 9.68e-8 Yes 0.6463 2.82e-7 Yes

Norx 0.9050 1.12e-2 Yes 0.5669 2.95e-8 Yes 0.4797 3.29e-9 Yes

Primes 0.9728 6.17e-1 No 0.9412 9.80e-2 No 0.8294 2.36e-4 Yes

Qsort 0.9613 3.35e-1 No 0.9485 1.54e-1 No 0.7050 1.84e-6 Yes

SHA512 0.9712 5.73e-1 No 0.6820 8.62e-7 Yes 0.9038 1.04e-2 Yes

normal). In terms of significance, the paired observations likely removed non-normal

characteristics shared between the samples on the Rocket system. This is an

expected result of dependent samples in statistics. But, there were 3 tests that

nevertheless resulted in non-normality and the methodology in SPARC still applies.

Similarly, quantile-quantile plots are displayed in Figure 17 and Figure 18 for

Ariane and Shakti, respectively. Results from Shapiro-Wilk Tests are also listed in

Table 19. In contrast to the Rocket results, the majority of plots and tests for both

Ariane and Shakti indicated the benchmark distributions are non-normal.

One possible conspicuous explanation is possible correlation between the

distribution of performance data and the RISC-V system that Keystone was

originally developed on, Rocket. The Keystone development team uses Rocket cores

instantiated either on an ASIC or an FPGA, therefore performance inefficiencies

specific to the Rocket system are noticeable and can be analyzed. Additionally,

while all three systems are open-source, the Rocket core has had a longer

development timeline which could have resulted in a system that is more mature

with less problems (i.e. bugs). This explanation is purely speculative; the

experiment in this research did not test for such evidence. It is left as an avenue for

75

Norx Primes Qsort SHA512

AES Bigint Dhrystone Miniz

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

1.046

1.048

1.050

1.0265

1.0270

1.0275

1.0280

1.0285

1.0290

1.0304

1.0306

1.0308

1.0310

1.0312

1.0314

0.9715

0.9720

0.9725

0.9730

1.0435

1.0440

1.0445

1.0450

1.03325

1.03350

1.03375

0.9975

0.9980

0.9985

0.9990

0.961

0.962

0.963

0.964

0.965

Theoretical

R
at

io
 o

f E
xe

cu
tio

n
T

im
e

Figure 17. Keystone performance impact on Ariane, quantile-quantile plots for each
benchmark. Data points are a difference, Ariane Keystone enabled − Ariane Keystone
disabled, compared to a theoretical normal distribution line.

Norx Primes Qsort SHA512

AES Bigint Dhrystone Miniz

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

0.90

0.92

0.94

1.0510

1.0512

1.0514

1.0516

1.150

1.175

1.200

1.225

1.250

0.88

0.90

0.92

0.94

1.027

1.028

1.029

0.95

0.96

0.97

0.99

1.00

1.01

1.02

0.925

0.950

0.975

1.000

Theoretical

R
at

io
 o

f E
xe

cu
tio

n
T

im
e

Figure 18. Keystone performance impact on Shakti, quantile-quantile plots for each
benchmark. Data points are a difference, Shakti Keystone enabled − Shakti Keystone
disabled, compared to a theoretical normal distribution line.

76

Table 20. SPARC framework results for difference and equivalence at [0.95, 1.05] in
Rocket with Keystone disabled to Keystone enabled comparison tests

H+
0 H−

01 H−
02

Benchmark MKD (sec) MKE (sec) MKD/KE z p z1 p1 z2 p2
Rej

H+
0 ?

Rej

H−
0 ?

Relevance

AES 129.5164 132.8724 0.9747 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Bigint 203.4705 220.2293 0.9239 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Dhrystone 75.6602 80.0820 0.9448 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Miniz 505.5659 550.4717 0.9184 3.414 6.394e-4 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Norx 73.6444 73.6298 1.0002 -4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Primes 257.0185 276.6503 0.9290 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

Qsort 129.927 133.5821 0.9726 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

SHA512 81.0285 85.5810 0.9468 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes No Rel diff

future work.

The non-normal data for each RISC-V system was assessed with SPARC to

characterize the performance impact of Keystone enabled to Keystone disabled.

Similar to Section 5.2, difference and equivalence hypotheses tests were conducted

with the ratio of medians. The results for Rocket, Ariane, and Shakti, are listed in

Table 20, Table 21, and Table 22 respectively. Bar graphs for the three systems are

illustrated at the end of this section in Figure 19, Figure 20, and Figure 21. The

median execution time of a benchmark with Keystone disabled MKD and with

Keystone enabled MKE are listed along with the median speedup ratio of execution

time MKD/MKE. The median speedup ratio reference value is 1, which would

indicate equal performance. Values greater than 1 indicate the performance with

Keystone enabled was better (i.e. faster time to execute the benchmark), whereas

values less than 1 denote a loss in performance (i.e. slower time to execute the

benchmark).

Difference tests for the Rocket system rejected H+
0 in all benchmarks and

therefore found a statistically significant difference in performance between enabling

and disabling Keystone. Tests for equivalence were conducted at δ = 0.05, which

resulted in rejecting H−
0 for benchmarks AES, Norx, and Qsort but failing to reject

for the other 5. The tests found the performance impact in benchmarks AES, Norx,

77

Table 21. SPARC framework results for difference and equivalence at [0.95, 1.05] in
Ariane with Keystone disabled to Keystone enabled comparison tests

H+
0 H−

01 H−
02

Benchmark MKD (sec) MKE (sec) MKD/KE z p z1 p1 z2 p2
Rej

H+
0 ?

Rej

H−
0 ?

Relevance

AES 263.6765 263.2871 1.0015 -4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Bigint 391.8052 409.1114 0.9577 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Dhrystone 265.857 274.0711 0.9700 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Miniz 388.3211 407.1603 0.9537 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Norx 130.0691 125.369 1.0375 -4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Primes 242.0116 250.1258 0.9676 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Qsort 226.6757 220.3829 1.0286 -4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

SHA512 135.7358 139.6111 0.9722 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Table 22. SPARC framework results for difference and equivalence at [0.95, 1.05] in
Shakti with Keystone disabled to Keystone enabled comparison tests

H+
0 H−

01 H−
02

Benchmark MKD (sec) MKE (sec) MKD/KE z p z1 p1 z2 p2
Rej

H+
0 ?

Rej

H−
0 ?

Relevance

AES 299.9041 299.1829 1.0024 -0.576 0.5647 4.772 9.127e-7 4.772 9.127e-7 No Yes Equivalence

Bigint 170.0411 174.7781 0.9729 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

Dhrystone 129.9888 159.7625 0.8136 4.772 1.825e-6 -4.792 0.992 4.772 9.127e-7 Yes Yes Rel diff

Miniz 473.9085 443.6228 1.0683 -4.772 1.825e-6 4.772 9.127e-7 -4.792 0.992 Yes No Rel diff

Norx 87.8986 86.1459 1.0203 -4.772 1.825e-6 4.772 9.127e-7 2.962 1.529e-3 Yes Yes Triv diff

Primes 448.9452 428.4520 1.0478 -4.772 1.825e-6 4.772 9.127e-7 3.456 2.747e-4 Yes Yes Triv diff

Qsort 170.8250 158.2771 1.0793 -4.772 1.825e-6 4.772 9.127e-7 -4.792 0.992 Yes No Rel diff

SHA512 77.2075 81.1778 0.9511 4.772 1.825e-6 4.772 9.127e-7 4.772 9.127e-7 Yes Yes Triv diff

78

and Qsort was within the equivalence margin and therefore similar in performance.

Thus, the relevance conclusions for 3 out of the 8 benchmarks are designated as

trivial differences. In other words, the impact that Keystone has on performance on

the 3 benchmarks on the Rocket system was less than what this research

determined relevant.

Likewise, tests for the Ariane system also rejected H+
0 in all benchmarks. On

the other hand, the tests for equivalence all rejected H−
0 indicating the performance

impact of Keystone enabled was equivalent to Keystone disabled. Most surprisingly,

this resulted in all the benchmarks denoted as trivial difference for Ariane. To be

specific, the performance of Keystone enabled compared to Keystone disabled was a

trivial difference for all 8 benchmarks that were tested on Ariane. This surprising

result will factor in the overall relevant difference in performance test conducted

further in the text.

Another substantial result was found by SPARC in difference and equivalence

tests on the Shakti system. In contrast to the other systems, the difference tests for

Shakti rejected H+
0 in all but one benchmark, AES. The speedup ratio MKD/MKE on

AES is bordering on the reference value of 1, signifying similar performance whether

Keystone is enabled or disabled. If the data observations of Keystone enabled and

Keystone disabled were distributed with low variance (i.e. tightly distributed in a

small area) then the difference test would have rejected H+
0 . Likely, the variance of

the data is resulting in the test failing to find enough evidence to support a difference

from the reference value. The result could change if more samples were provided in

additional experiments.

In the tests for equivalence of the Shakti system, 6 of the 8 benchmarks rejected

H−
0 finding enough evidence to conclude the performance between Keystone enabled

and Keystone disabled was equivalent. Pertaining to the relevance conclusions, the

79

result of rejecting both H+
0 and H−

0 on AES led to a determination of equivalence for

that particular benchmark. Out of the 7 benchmarks left, 4 are considered as trivial

difference and 3 have a relevant difference in performance.

Finally, an overall relevant difference in performance test was conducted for each

system and the results listed in Table 23. The test is a Wilcoxon Signed-Rank Test

on the median speedup ratio MKD/MKE for benchmarks denoted as a relevant

difference in performance. The total sample size starts at the number of

benchmarks, 8, and any trivial difference or equivalence benchmarks reduce the size

by 1. For the Rocket system, there were 5 benchmarks of relevant difference with an

Table 23. SPARC overall relevant difference in performance test results of Keystone
enabled to Keystone disabled for all 3 RISC-V systems.

MKD/KE

Benchmark Rocket Ariane Shakti

AES Triv diff Triv diff Equivalence

Bigint 0.9239 Triv diff Triv diff

Dhrystone 0.9448 Triv diff 0.8136

Miniz 0.9184 Triv diff 1.068

Norx Triv diff Triv diff Triv diff

Primes 0.9290 Triv diff Triv diff

Qsort Triv diff Triv diff 1.079

SHA512 0.9468 Triv diff Triv diff

Results H+
0 p

Rej at
α = 0.10?

Effect
Size (%)

Rocket 0.0625 Yes 6.74

Ariane - - -

Shakti 0.5 No -

effect size towards slower performance with Keystone enabled. The difference test

rejected H+
0 with a p-value of 0.0625. This research concludes the test found a

statistically significant difference of performance occurs with Keystone enabled on

the Rocket RISC-V embedded system on 5 benchmarks, with an effect magnitude

80

and direction of 6.74% decrease in speedup.

For Ariane, an overall relevant difference in performance test was not conducted

considering all the benchmarks were denoted as a trivial difference. Therefore, this

research concludes SPARC found a statistically significant, trivial difference of

performance between Ariane with Keystone enabled to Keystone disabled on 8

benchmarks. Another valid conclusion could state SPARC found no difference of

performance occurs since this research determines trivial differences as insignificant.

0

50

100

150

200

250

300

350

400

450

500

550

AES Bigint Dhrystone Miniz Norx Primes Qsort SHA512

Benchmarks

B
en

ch
m

ar
k

E
xe

cu
tio

n
T

im
e

(s
ec

)

Keystone:

Disabled Enabled

Figure 19. Rocket median Keystone enabled and median Keystone disabled bar graph
for each benchmark.

81

0

50

100

150

200

250

300

350

400

AES Bigint Dhrystone Miniz Norx Primes Qsort SHA512

Benchmark

B
en

ch
m

ar
k

E
xe

cu
tio

n
T

im
e

(s
ec

)

Keystone:

Disabled Enabled

Figure 20. Ariane median Keystone enabled and median Keystone disabled bar graph
for each benchmark.

0

50

100

150

200

250

300

350

400

450

AES Bigint Dhrystone Miniz Norx Primes Qsort SHA512

Benchmarks

B
en

ch
m

ar
k

E
xe

cu
tio

n
T

im
e

(s
ec

)

Keystone:

Disabled Enabled

Figure 21. Shakti median Keystone enabled and median Keystone disabled bar graph
for each benchmark.

82

5.4 Efficacy of the SPARC Framework in Comparison to HPT

In order to compare the efficacy of SPARC to the HPT [1] framework, this

research considers some differences with respect to the benchmark statistics tests.

As noted in Section 4.9, the observations are pairwise between processors and more

appropriate for the Wilcoxon Signed-Rank Test used in SPARC. In HPT, the

Wilcoxon Rank-Sum Test is usable on pairwise comparisons, but some information

common to both populations is lost. Tests suitable for a difference of observations

likely remove variability shared between the two observations. In contrast to the

Wilcoxon Rank-Sum Test, which compares two independent observations.

The test statistic is another key difference between SPARC and HPT. In SPARC,

the methodology specifically identifies the speedup ratio between processors as the test

statistic, whereas HPT designates an unspecified performance score. Again, the key

disparity derives from using Wilcoxon Signed-Rank Test or Wilcoxon Rank-Sum Test

and how each framework classifies response variables as paired or unpaired. Therefore,

the HPT tests are performed according to the procedures in [1] and designate the

median execution time as the test statistic.

For HPT, two-tailed Wilcoxon Rank-Sum Tests were performed for each

benchmark to determine whether Rocket or Ariane has a difference in median

performance, listed in Table 24. The median execution times are unchanged from

Table 10, therefore the 90% confidence intervals are listed instead. For each test,

H+
0 was rejected at α = 0.10 indicating a difference in benchmark performance

between the two processors. Similarly, the same tests are performed for Rocket to

Shakti with results listed in Table 25. For each benchmark, H+
0 was rejected

indicating a difference in performance between Rocket and Shakti.

Finally, a two-tailed Wilcoxon Signed-Rank Test is performed as the HPT

general performance comparison across all benchmarks. The test was conducted

83

Table 24. HPT framework results for Wilcoxon Rank-Sum Test in Rocket to Ariane
comparison.

CI H+
0

Sub-
benchmark

LB UB p
Rej H+

0

at α?

AES -134.1845 -134.0082 3.02e-11 Yes

Bigint -188.3599 -188.3112 3.02e-11 Yes

Dhrystone -190.207 -190.1609 3.02e-11 Yes

Miniz 117.0206 117.4667 3.02e-11 Yes

Norx -56.4443 -56.3996 3.02e-11 Yes

Primes 14.9968 15.2686 3.02e-11 Yes

Qsort -96.7828 -96.5662 3.02e-11 Yes

SHA512 -54.7757 -54.6912 3.02e-11 Yes

Table 25. HPT framework results for Wilcoxon Rank-Sum Test in Rocket to Shakti
comparison.

CI H+
0

Benchmark LB UB p
Rej H+

0

at α?

AES -170.6220 -168.0001 3.02e-11 Yes

Bigint 33.3835 33.4687 3.02e-11 Yes

Dhrystone -54.3497 -54.2725 3.02e-11 Yes

Miniz 30.8791 31.8176 3.02e-11 Yes

Norx -14.2729 -14.1803 3.02e-11 Yes

Primes -192.1151 -191.4319 3.02e-11 Yes

Qsort -41.0566 -40.6661 3.02e-11 Yes

SHA512 3.7647 3.8380 3.02e-11 Yes

84

Table 26. HPT general performance results for both comparisons.

MX −MY

Benchmark Ariane Shakti

AES -134.1601 -170.3877

Bigint -188.3348 33.4293

Dhrystone -190.1969 -54.3286

Miniz 117.2447 31.6575

Norx -56.4247 -14.2542

Primes 15.0069 -191.9267

Qsort -96.7487 -40.8980

SHA512 -54.7073 3.820

Results H+
0 p

Rej
at α = 0.10?

Ariane 0.1094 No

Shakti 0.1953 No

twice, on Rocket to Ariane and Rocket to Shakti, listed in Table 26. On both

general performance tests, HPT failed to reject H+
0 .

In Section 3.3.2.2, family-wise error was discussed, in addition to possible risks

to a study if α is not corrected. Determining if the data tested is within a family,

and therefore affected by FWER, can be subjective. But, the HPT framework lacks

discussion on multiple hypothesis testing, nor does it discuss methods to correct α.

This research considers the omission as accidental and purposefully discussed FWER

in the SPARC procedures to remove ambiguity.

In comparison to SPARC, the Rocket to Ariane benchmark results by HPT

illustrate the difference between each framework’s concluding information. Initially,

there is no substantial information provided by SPARC different from HPT. Both

frameworks found differences that resulted in rejecting H+
0 . But in SPARC, a

second test was conducted for equivalence and concluded there was a relevant

difference on each benchmark.

85

On the other hand, the HPT Rocket to Shakti benchmark results compared to

SPARC are noticeable. Specifically, in the HPT test on SHA512, H+
0 was rejected

compared to a trivial difference result in SPARC. As indicated by the follow-on

equivalence test, the difference in performance was within the [0.95, 1.05] margin

and subsequently removed from the general performance comparison. While both

SPARC and HPT failed to reject H+
0 in the general performance test, this research

is able to use the additional insights from SPARC to influence follow-on

experimental design.

5.5 Performance Impact of Keystone-specific Security Features

This section presents the Keystone Initialization Time analysis for the

framework model discussed in Section 4.10, which was conducted with the Rocket

RISC-V embedded system. It also discusses outliers discovered by Bigint during

analysis and a follow-on experiment conducted to discover the underlying cause.

5.5.1 Evaluation of Keystone Closed-queuing Model

In order to evaluate the closed-queuing model, it was necessary to first determine

the distribution of execution times (clock cycles consumed by Keystone) required to

initialize an enclave and prepare ERT for all eight benchmarks.

Each benchmark was executed 30 times in order to apply the CLT for modeling

the normal distribution of execution times. While graphing the distributions, data

from the Bigint benchmark displayed execution times of approximately seven

seconds longer compared to the other benchmarks. The findings led to an additional

experiment which factored a variable for binary size and its impact on the overhead

costs, which is discussed in a following section. The remainder of this analysis does

not include data from the Bigint benchmark.

86

51.43

51.45

51.47

51.49

AES Dhrystone Miniz Norx Primes Qsort SHA512

Benchmark

B
en

ch
m

ar
k

E
xe

cu
tio

n
T

im
e

(a) Benchmark boxplots of mean execution
time. Seven benchmark boxplots excluding
Bigint.

0

10

20

30

51.425 51.450 51.475 51.500

Pooled Benchark Execution Time

D
en

si
ty

Count

Normal−fitted Line

(b) Testing normal distribution through
exploratory data analysis. Distribution for pooled
mean execution times for benchmarks excluding
Bigint.

Figure 22. cap

Boxplots of the benchmark results, excluding Bigint, are provided in Figure ??.

Normal distribution fit line plots are displayed in Figure 22b.

5.5.1.1 Equivalence Test of Means

Graphical exploratory data analysis of the pooled execution times in Figure 22b

indicates the distribution is normal and sufficient to conduct an equivalence test with

parametric statistics. The parametric equivalence test for paired samples is the TOST

procedure with the t-test. The test was conducted within the statistical analysis

program, JMP, to specify a range for mean execution time that includes a 50 ms

margin of error for the non-deterministic properties of a processor. The equivalence

margin is an arbitrary value; it can be increased or decreased based on the system

design and operational time requirements.

There is a notable difference in the equivalence margin selected for this scenario

compared to the equivalence margin procedures outlined by SPARC. This research

chose to use execution time rather than a speedup ratio here because analysis was

87

completed prior to the SPARC framework development and insights gained therein.

Ultimately, either can be used in the analysis but the speedup ratio had the benefit

of abstracting out units of measurement. But, the model evaluated in this section

considers determining the average system response time in Equation 17 and therefore

suitable to use the execution time.

Results from the tests listed in Table 27 indicated there is no statistically

significant difference to a mean execution time of 51.458s, which will then be used

for finding the average system response time in the closed queuing network. The

results in the table list each equivalence test on the null hypothesis that the mean

difference is greater than or less than 50 ms.

5.5.1.2 Throughput Calculation of Keystone Reference Monitor

A subset of the values used in [4] to calculate the average service time are used in

this calculation. The obvious changes include the throughput calculation to X3 based

on the mean execution time of 51.458 seconds, observed in the experiments. The other

variables are only theoretical as they were not measured in the data collection. The

routing frequency, q13, was altered from 0.4 to 0.005; in this example, only a small

fraction of all jobs will require an enclave creation request.

Returning to the model, the throughput calculation of X3 is as follows:

X3 =
1

51.458
= 0.0194 accesses/second (18)

Equation 18 alters the throughputs of X1 and X0 as follows:

X1 =
0.0194 accesses/second

0.005
= 3.88 accesses/second (19)

88

Table 27. Results for equivalence tests on means between two benchmarks.

t-Ratios for
Mean Diff

Benchmarks
Tested

≥ 0.05 ≤ −0.05
Deg. of
Freedom

p
Rej H−

0

at α = 0.10?

Dhrystone to AES -22.29 16.03 203 < .0001 Yes

Miniz to AES -21.05 17.27 203 < .0001 Yes

Miniz to Dhrystone -17.92 20.39 203 < .0001 Yes

Norx to AES -16.18 22.13 203 < .0001 Yes

Norx to Dhrystone -13.05 25.26 203 < .0001 Yes

Norx to Miniz -14.29 24.02 203 < .0001 Yes

Primes to AES -25.82 12.49 203 < .0001 Yes

Primes to Dhrystone -22.69 15.62 203 < .0001 Yes

Primes to Miniz -23.93 14.38 203 < .0001 Yes

Primes to Norx -28.80 9.51 203 < .0001 Yes

Qsort to AES -22.86 15.45 203 < .0001 Yes

Qsort to Dhrystone -19.73 18.58 203 < .0001 Yes

Qsort to Miniz -20.97 17.34 203 < .0001 Yes

Qsort to Norx -25.84 12.48 203 < .0001 Yes

Qsort to Primes -16.19 22.12 203 < .0001 Yes

SHA512 to AES -21.83 16.49 203 < .0001 Yes

SHA512 to Dhrystone -18.70 19.62 203 < .0001 Yes

SHA512 to Miniz -19.93 18.38 203 < .0001 Yes

SHA512 to Norx -24.80 13.51 203 < .0001 Yes

SHA512 to Primes -15.16 23.15 203 < .0001 Yes

SHA512 to Qsort -18.12 20.19 203 < .0001 Yes

89

X0 = (0.05) · (3.88 accesses/second) = 0.194 accesses/second (20)

Assuming the system has 18 subjects; λOS = 0.05 accesses/second; the resulting

average system response time and impact overhead of Keystone initialization is R =

72.8 seconds.

5.5.2 Keystone Initialization Time: Analysis of Binary Size

Performance Impact

In Section 5.5.1, larger (i.e. slower) Keystone Initialization Times were discovered

with respect to Bigint while conducting exploratory data analysis of the benchmark

results. Additionally, the slower times were not observed in any of the remaining 7

benchmarks. A boxplot of the data collected from Bigint is displayed in Figure 23b

0

10

20

30

40

58.700 58.725 58.750 58.775 58.800

Benchmark Execution Time

D
en

si
ty

Normal−fitted Line

Bigint Count

(a) Testing normal distribution of execution times.

58.71

58.74

58.77

58.80

Bigint

Benchmark

B
en

ch
m

ar
k

E
xe

cu
tio

n
T

im
e

(b) Boxplot of mean
execution time,
indicating higher
execution times.

Figure 23. Exploratory data analysis of Bigint execution times.

90

and the distribution is graphed in Figure 23a.

An initial investigation was conducted and found some of the processes in

Keystone’s enclave initialization code are impacted by the size of the binary, which

is supported and briefly mentioned in the Keystone research paper [10]. The sizes of

the benchmark binaries used in Section 5.5.1 are listed in Table 28.

In the enclave initialization sequence, the untrusted Linux OS allocates physical

and virtual memory for the benchmark, trusted OS, and enclave. The untrusted

Linux OS passes the virtual page table (i.e. a mapping from virtual memory to

physical memory) to Keystone which will verify each location is correct and then

secure the enclave with encryption. The processes of location verification and enclave

encryption are the security features assumed to factor in the Keystone Initialization

Time discovered with Bigint. Furthermore, there is another factor assumed as a

minimum Keystone Initialization Time regardless of the benchmark or application.

Table 28. Binary sizes of benchmarks.

Benchmark Binary Size (KB)

AES 165.8
Bigint 738.4
Dhrystone 138.4
Miniz 524.1
Norx 169.2
Primes 129.4
Qsort 138.9
SHA512 143.4

Table 29. Compiled Qsort size
targets for experiment.

Final Qsort Size (KB)

250
500
750
1000
5000
10000
50000

To determine if supporting evidence exists, another experiment was conducted

on the FPGA using the Rocket RISC-V embedded system configuration listed in

Table 4. The experimental design was adding code to a benchmark’s file in order

to increase its size to specific targets after it was compiled. Qsort was chosen as

the benchmark due to its relatively faster execution time and its 7 size targets were

selected arbitrarily to cover a wide margin and listed in Table 29. The additional code

91

simply declared a large array of alphabetical letters in the file that was never executed

by the program, thus it artificially inflated the binary size and did not impact the

benchmark’s execution time.

The statistical software, JMP, was used to expedite a fractional factorial

experiment design. Fractional factorial experiments are commonly used with linear

regression analysis [16] to explore linear relationships between factor variables and

response variables. The factor variables in the experiment were the binary size and

whether Keystone was enabled or disabled. The response variable was the Keystone

Initialization Time. After entering the variables into JMP, it provided a fractional

factorial design that listed the number of runs required to test if a linear

relationship exists for the experiment along with a factor variable configuration

randomly selected for each run. Although 7 binary sizes were input, only the

following 3 were listed as needed in the run configurations: 250 KB, 10000 KB, and

50000 KB. The experiment design required a total of 25 experiment runs and each

run alternated between Keystone enabled and Keystone disabled. A script was

written to batch execute the experiment runs successively with the configurations

provided by the design.

The experiment run configurations and results are provided in Table 30. Runs

with Keystone disabled do not have a Keystone Initialization Time and thus display

0. The Benchmark Execution Time is the time it takes for Qsort to execute and does

not include the Keystone Initialization Time. The Total Execution Time is the total

time to execute Qsort plus the Keystone Initialization Time, if Keystone was enabled.

The results are consistent with the initial investigation; as the binary size increases,

the Keystone Initialization Time also increases. It also confirms the assumption that

only the Keystone Initialization Time is affected, as the Benchmark Execution Time

stayed relatively consistent regardless of the binary size.

92

Table 30. Binary size experiment benchmark data output and run configurations.

Run
Binary

Size
Keystone

Status

Keystone
Init. Time

(sec)

Benchmark
Exec. Time

(sec)

Total
Exec. Time

(sec)

1 10000 Disabled 0 129.1859 129.1859

2 10000 Enabled 349.9144 132.9273 482.8418

3 10000 Enabled 326.7494 132.9506 459.6999

4 250 Disabled 0 128.9667 128.9667

5 250 Enabled 111.1440 132.8586 244.0026

6 10000 Disabled 0 128.7949 128.7949

7 250 Enabled 111.1425 132.8389 243.9814

8 250 Disabled 0 128.7927 128.7927

9 250 Enabled 111.1347 132.8613 243.9960

10 50000 Disabled 0 129.1704 129.1704

11 50000 Enabled 1341.7015 132.8444 1474.5459

12 50000 Disabled 0 128.9374 128.9374

13 10000 Enabled 326.8537 132.8574 459.7111

14 50000 Disabled 0 128.9938 128.9938

15 250 Enabled 111.1723 132.8454 244.0177

16 10000 Disabled 0 128.9362 128.9362

17 50000 Enabled 1216.5840 132.8419 1349.4259

18 50000 Disabled 0 129.0063 129.0063

19 50000 Enabled 1216.0778 132.8241 1348.9018

20 250 Disabled 0 128.9197 128.9197

21 10000 Enabled 326.8305 132.8568 459.6872

22 10000 Disabled 0 128.9783 128.9783

23 50000 Enabled 1216.4369 132.8558 1349.2927

24 250 Disabled 0 128.9135 128.9135

25 50000 Enabled 1216.3544 132.8535 1349.2079

The Keystone Initialization Times for runs with Keystone enabled are illustrated

on three scatter plots, separated by the binary sizes, in Figure 24. Additionally,

a linear method regression line was fit to the same data points, scaled to base-10

logarithmic, and displayed in Figure 25. The linear method regression model attempts

to fit a linear line that best fits the data collected [16] in the form of:

93

Y = β0 + (β1) ·X, (21)

where β0 and β1 are the regression coefficients that the model attempts to predict,

Y is the response variable Keystone Initialization Time, and X represents the binary

size.

250 KB 10000 KB 50000 KB

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

Run Number

K
ey

st
on

e
In

iti
al

iz
at

io
n

T
im

e
(s

ec
)

Keystone Enabled

Figure 24. Scatter plots of Keystone Initialization Time for each experiment run,
separated by the benchmark binary sizes.

In the model, the regression coefficients β0 and β1 are tested with a t-test to

determine if they are statistically significant as predictor variables for the model. If a

linear relationship did not exist between the predictor variables and response variable,

then β0 and β1 would be 0. In other words, if changing the binary size did not affect

the Keystone Initialization Time, both predictor variables would be 0. The t-test is

performed separately for both predictor variables. The null hypothesis H−
0 is that

the predictor variables are 0 against the alternative H−
1 that the predictor variables

are not 0 [16]. The resulting p− value is compared to the study α to either reject or

94

fail to reject H−
0 .

125

250

500

1000

1500

250 1000 5000 10000 20000 50000

Binary Size (Log10 scaled)

K
ey

st
on

e
In

iti
al

iz
at

io
n

T
im

e
(L

og
10

 s
ca

le
d)

Keystone Enabled

Figure 25. Linear regression model for Keystone Initialization Time only. Data points
are binary size by Keystone Initialization Time, line is linear method regression.

In Figure 25, the shaded area around the best-fit line represents the confidence

band, or list of values the variable can assume. The regression coefficient β0 is the

y-axis intercept, which in this case is the Keystone Initialization Time and β1 is the

gradient, or line slope, of the best-fit line. The results of the t-tests for each predictor

variable are listed in Table 31. An f-test is also conducted to assess the overall model

significance, taking into account both regression coefficients. The null hypothesis is

that the fit of the linear model using only the intercept β0 is equal to the model with

both β0 and β1. The f-test result is listed in Table 32.

The tests reveal a statistically significant, positive correlation between the size of

the benchmark binary and the Keystone Initialization time. Both t-tests on the

predictor coefficients rejected H−
0 with a low p-value which indicated the linear

95

Table 31. Linear regression model coefficient t-test results.

Predictor
Coefficients

Estimate
(sec)

Std. Error t-Value p
Rej H−

0

at α = 0.05?

β0 (Intercept) 105.4329 13.5346 7.79 8.41e-6 Yes

β1 (Binary Size) 0.0227 0.0004 52.88 1.36e-14 Yes

Table 32. Linear regression model F-test results.

F-Test Results F-ratio p
Rej

at α = 0.05?

Predicted Model 2796 1.362e-14 Yes

relationship with the response variable. Additionally, the f-test of the predicted

model also rejected H−
0 and the predicted model fit the collected data better with

both coefficients compared to a model solely using the intercept β0. Furthermore,

the tests highlighted a minimum Keystone Initialization Time of 105.4329 seconds,

regardless of the binary size of the benchmark. The resulting best-fit line equation

for predicting the performance impact that a binary size will have on Keystone is as

follows:

Keystone Initialization T ime = 105.4329s+ (0.0227s) ·X, (22)

where X is the binary size of the benchmark.

Interestingly, the data observations from the experiment also displayed variation

that will necessitate further investigation in future work, but briefly mentioned here.

Returning to the scatter plots organized by binary sizes in Figure 24, the first

experiment runs for sizes 10000 KB and 50000 KB exhibited higher times than

successive runs. While purely speculative, this research believes the slower first-run

times are a result of the virtual memory page table passed to Keystone requiring

additional time for processing. But, Keystone requires less time on successive runs

96

of the same benchmark size due to a memory expansion plugin included that helps

with development and testing.

5.6 Results Summary

This section summarizes the analysis results of all RISC-V embedded system

performance characterizations, efficacy of the SPARC framework, and performance

impacts of Keystone-specific security features.

• Baseline Performance Characterization Without Keystone: The Rocket to

Ariane test found a relevant difference in general performance between the

systems. Rocket performed better than Ariane on 6 of the 8 benchmarks.

Whereas, the Rocket to Shakti test failed to find a relevant difference in

general performance between the systems. There was a trivial difference on 1

benchmark and Rocket performed better than Shakti on 5, but the

performance was not enough to reject H+
0 .

• SPARC Assessment with Hypothetical Equivalency Margins: The baseline

performance characterization tests without Keystone were conducted again,

but with hypothetical equivalency margins [0.75, 1.25] and [0.50, 1.50]. At

[0.75, 1.25], the Rocket to Ariane test found a relevant difference in general

performance, but one of the benchmarks was found as a trivial difference. At

the same margin, the Rocket to Shakti test failed to find a relevant difference

in general performance and a total 6 of 8 benchmarks resulted in a trivial

difference in performance. At [0.50, 1.50], both Rocket comparisons failed to

find a relevant difference in general performance. In the comparison to Ariane,

there were 6 of 8 benchmarks that resulted in trivial differences. Additionally,

7 of 8 benchmarks emerged as trivial differences in the Rocket to Shakti

comparison.

97

• Performance Impact of Keystone on Individual RISC-V Systems: On the

Rocket RISC-V system, the analysis revealed Keystone impacted system

performance by 6.74%, as evidenced by the lower speedup ratio. For Ariane,

the test concludes that the impact of Keystone on the system was trivial. In

contrast, the Shakti test failed to find evidence that Keystone impacted

performance.

• SPARC Framework Efficacy Compared to the HPT Framework: The data

from the baseline performance characterization without Keystone was also

analyzed with HPT and compared to SPARC. Tests from the HPT

methodology failed to find a difference in general performance for both Rocket

to Ariane and Rocket to Shakti comparisons. In contrast, SPARC found a

difference in general performance for Rocket to Ariane but similar results for

Rocket to Shakti. The HPT framework lacks a method to determine

equivalency; this resulted in a different Rocket to Ariane outcome with respect

to SPARC. Thus, the insights added by SPARC are more effective in

statistical inference compared to HPT.

• Performance Evaluation of Keystone-specific Security Features: The Keystone

Initialization Time was modeled through a closed queuing network to determine

the performance impact Keystone-specific security features had on the Rocket

system. Equivalence tests revealed 51.458 seconds as the average Keystone

Initialization Time and is equivalent for all benchmarks, except Bigint. The

output was used to solve the system of equations in the closed-queuing network

model and resulted in an average system response time of 72.8 seconds. This

is also the performance impact of the Keystone initialization sequence on the

Rocket RISC-V system.

98

• Performance Impact of Binary Size on the Keystone Initialization Sequence:

An additional experiment was performed using the benchmark Qsort with

varying binary sizes. Linear regression analysis showed a statistically

significant positive correlation between the binary size and the Keystone

Initialization Time. The linear regression model produced a best-fit line

equation for predicting the Keystone Initialization Time based on the binary

size as: 105.4329s + (0.0227s)X = Keystone Initialization T ime, where X

denotes the binary size.

99

VI. Conclusion

6.1 Overview

This chapter summarizes the research and results found during the experimental

analysis. It reiterates contributions of the statistical framework SPARC and

summarizes the observations and analysis of the embedded system

characterizations. It closes by listing areas of future work, which include

characterizing the performance of FPGAs to ASICs, expanding the SPARC

framework with parametric statistics tests, and assessing the impact of all

Keystone-specific security features that were not discussed in this research.

6.2 Research Contributions

This research was successful in characterizing the performance of a RISC-V

embedded system with and without Keystone through the following contributions:

1. Developing the Statistical Performance Analysis with Relevance Conclusions

(SPARC) framework.

2. Assessing SPARC’s efficacy for establishing a baseline performance

characterization of three RISC-V embedded systems.

3. Characterizing the performance impact of the security platform, Keystone.

4. Evaluating hypothetical equivalence margins with SPARC for improved

statistical inference.

5. Modeling Keystone-specific security features with a closed-queuing network to

determine the average time impact to a system.

100

6. Predicting the latency added to Keystone’s initialization sequence based on an

application’s binary size.

6.3 Summary

The statistical framework SPARC is proposed for a scalable and distribution-free

performance evaluation of computers. SPARC identifies superiority or equivalence

with hypotheses tests for each benchmark that conditionally result in four relevance

conclusions. Through the application of an error correction method in SPARC, Type

I error inflation is reduced in multiple benchmark scenarios.

The performance characterization of three RISC-V embedded systems on an

FPGA without Keystone indicated that Rocket had better performance than

Ariane, but there was no evidence found to support Rocket and Shakti had different

performance. Likewise, SPARC revealed Keystone impacts performance on the

Rocket system at 6.75% slower speedup ratio. However, Keystone only trivially

impacted performance on the Ariane system after all 8 benchmarks tested within

the predefined equivalency threshold. On the Shakti embedded system, there was no

evidence found that Keystone impacted performance. This does not mean that

Keystone had no effect on Shakti, but that the evidence of the benchmarks tested

was not enough to reject the null hypothesis.

An assessment of hypothetical equivalency margins was performed with SPARC to

determine if the framework can distinguish between systems with similar performance.

The analysis highlighted that the SPARC methodology excels in this area. Both of

the wider equivalency margins of [0.75, 1.25] and [0.50, 1.50] significantly altered the

final performance comparisons in 3 out of 4 tests which failed to find a difference in

performance between the systems.

In comparison to the HPT framework, the additional insight from SPARC

101

provided by relevance conclusions enhances the study results and refines discussion

for further experimentation if required. Tests from the HPT methodology failed to

find a difference in performance, that was otherwise found using SPARC. The HPT

framework lacks a method to determine equivalency between similar performing

systems and limits statistical inference.

A high-level model was evaluated for a reference monitor closed-queuing network

applied to Keystone on RISC-V architectures. The findings indicated there is an

average Keystone Initialization Time overhead to an embedded system, excluding the

application binary size, that can be modeled for a single RISC-V system. While this

research only evaluated the initialization overhead for creating an enclave, the model

provides a foundation to explore the time constraints added when secure execution

environments are needed in an operational system.

The binary size of an application was determined to impact performance within

the Keystone initialization sequence. Crucially, linear regression analysis identified

a positive correlation between binary size and Keystone Initialization Time. The

results offer a method for predicting the time added based on the binary size which

would provide an additional key attribute for exploring time constraints. Embedded

system developers considering to include Keystone in a code update can therefore

determine the average system response time, assess if the binary size will increase it,

and determine if there is a critical timing path that would be affected by the new

code.

In conclusion, the results presented substantiate the original hypothesis: the

performance of a RISC-V embedded system with and without a reference (security)

monitor can be characterized through statistically rigorous methods. Although the

research presented in this thesis relies on the use of an FPGA, the methodologies

and framework presented can be extended to other architectures or to ASICs. The

102

performance characterization data regarding the three RISC-V systems is limited

because 1) the processors were instantiated on an FPGA, and 2) the low maturity

level of the RISC-V system designs. There is minimal, if any, research that exists

comparing the performance of a system on an FPGA to the performance of an

ASIC that is an exact replica. Additionally, all three RISC-V systems are

continually maturing, with code updates, and performance optimizations. While the

performance data observed in this research is months old, there could have been

significant updates to either Ariane or Shakti that would result in better

performance over Rocket. The performance characterizations presented in this

research establish a foundation of statistical analysis to scrutinize system or

architectural design changes that affect performance.

6.4 Future Work

There are multiple areas that could be further explored, not only in

characterizing the performance of RISC-V, but in maturing both the framework and

model presented. Listed below are topics of interest that would expand the scope of

this research:

1. There is little research that explores a comparison between the performance of

a system instantiated on an FPGA, with a replica ASIC. FPGAs have seen an

increased amount of use in the past decade, but there were only a few open-

source processors that could be used in an FPGA design. The release of the

RISC-V ISA has resulted in numerous open-source RISC-V processor designs,

knowing which performance attributes carry over to an ASIC would fill the

research gap.

2. The performance impacts that Vivado or HDLs have on a system instantiated on

an FPGA. An HDL could possibly be translated through a compiler to another

103

HDL to determine if there is a performance difference between them.

3. Expanding the SPARC framework with parametric statistics tests. The

methodology presented non-parametric tests due to the non-normal

distributions from the embedded systems. Adding the capability to use

parametric tests with the framework would strengthen and expand its

availability to a wider audience.

4. Characterizing all Keystone-specific security features on a RISC-V embedded

system. Only a fraction of Keystone was tested within this research, there are a

number of features that impact performance which will need to be determined

for an accurate assessment.

5. Identifying the Linux OS configuration changes that affect the performance

data distributions. SPARC was developed for non-parametric statistical

analysis, based on the non-normal performance data distributions. While a

cluster method was discussed in the related research, more investigation is

needed into the factors affecting the embedded system and result in a

non-normal distribution.

6. Characterizing the performance of out-of-order instruction execution RISC-V

processors. This research only analyzed in-order execution processors to limit

variability in performance data. Carrying the characterization to out-of-order

instruction execution could identify weak areas within this research and the

SPARC framework or provide avenues to explore.

7. Expanding the closed queuing framework to include context-switching between

the untrusted operating system and enclave. Context-switching is the most

frequent operation during enclave execution; identifying the number of

operations and execution time penalty will provide more accurate picture of

104

the overhead impacting a system. While collecting data for the analysis in

Chapter V, code was inserted to capture the operations and clock cycles for a

preliminary analysis of context-switching. While the number of

context-switches and clock cycles varied between the benchmarks, the impact

to execution time was less than 1 ms. Exploring the operation count

variability between benchmarks could provide a relationship for additional

analysis.

105

Appendix A. RV8 Benchmark and Experiment Start Script

runrv8bench.sh

1 #!/bin/bash
2
3 # Output logs
4 #Source test configuration script: TEST_CONFIG.sh
5 source $TEST_CONFIG
6
7 set -e
8 #Loop through benchmarks in folder
9 for tst in riscv64 /*; do

10 tst=$(basename $tst)
11
12 echo "Running $tst"
13 for RUN_N in $(seq $REPS); do
14
15 #Setup log files and locations
16 BASE_LOG_FILE=${TEST_LOG_DIR }/ base_${tst}_${RUN_N}.log
17 KEYSTONE_LOG_FILE=${TEST_LOG_DIR }/ keystone_${tst}_${

RUN_N}.log
18
19 #Run the benchmark based on the test config
20 #The system without Keystone needs to run a benchmark
21 if [[$RUN_BASELINE == 1]]; then
22 { time ./ riscv64/${tst}; } &> ${BASE_LOG_FILE}
23 fi
24 #The system with Keystone needs to run a benchmark
25 #The three inputs to run a benchmark in a Keystone
26 #enclave are below
27 if [[$RUN_KEYSTONE == 1]]; then
28 { time ${TEST_RUNNER} ./ riscv64/${tst} ${

EYRIE_FULL_SUPPORT} --utm -size ${DEFAULT_USZ}
--freemem -size ${XLARGE_FSZ} --time ; } &> ${
KEYSTONE_LOG_FILE}

29 fi
30 done
31 done

TEST CONFIG.sh

1 # Test directory names
2 TEST_FRAMEWORKS="rv8 -bench"
3 #torch beebs iozone"
4
5 # Which things to run
6 RUN_KEYSTONE =1
7 RUN_BASELINE =1
8
9 # Where to stage our binaries/scripts

10 STAGING_OUTPUT_DIR=$(pwd)/staging
11

106

12 # Number of runs of each thing , short is for torch/iozone
13 REPS =30
14 SHORT_REPS =3
15
16 # Where to store logs
17 LOG_DIR_NAME=logs
18
19 # What is the name of the host bin we use?
20 TEST_RUNNER_NAME=bench -runner.riscv
21
22 # Config untrusted buffer size (K)
23 DEFAULT_USZ =4096
24
25 # Config starting freemem sizes (K)
26 DEFAULT_FSZ =32768
27 LARGE_FSZ =49152
28 XLARGE_FSZ =262144
29
30 # Various eyrie configs
31 EYRIE_FULL_SUPPORT_NAME=eyrie -rt

107

Appendix B. R Wilcoxon Signed Rank Equivalence TOST
Custom Code

1 wilcoxequivalence <- function (x, y = NULL , alternative = c("
two.sided"), mu = 0, low_eqbound , up_eqbound , paired = TRUE
, exact = NULL , correct = TRUE ,

2 conf.int = FALSE , speedup = FALSE , conf.level = 0.95, tol.
root = 0.0001 , digits.rank = Inf , alpha = 0.05,

3 ...)
4 {
5 alternative <- match.arg(alternative)
6 if (!missing(mu) && ((length(mu) > 1L) || !is.finite(mu)))
7 stop("’mu ’ must be a single number")
8 if (conf.int) {
9 if (!((length(conf.level) == 1L) && is.finite(conf.

level) &&
10 (conf.level > 0) && (conf.level < 1)))
11 stop("’conf.level ’ must be a single number between

0 and 1")
12 }
13 if (!is.numeric(x))
14 stop("’x’ must be numeric")
15 if (!is.null(y)) {
16 if (!is.numeric(y))
17 stop("’y’ must be numeric")
18 DNAME <- paste(deparse1(substitute(x)), "and",
19 deparse1(substitute(y)))
20 if (paired) {
21 diffmedian <- (median(x) - median(y))
22 if (length(x) != length(y))
23 stop("’x’ and ’y’ must have the same length")
24 OK <- complete.cases(x, y)
25 if (speedup) {
26 x <- x[OK]/y[OK]
27 x <- 1 - x
28 y <- NULL
29 }
30 else {
31 x <- x[OK] - y[OK]
32 y <- NULL
33 }
34 }
35 else {
36 y <- y[!is.na(y)]
37 }
38 }
39 if (missing(low_eqbound) && missing(up_eqbound)) {
40 stop("missing equivalence bounds")
41 }
42 else {
43 #DNAME <- deparse1(substitute(x))
44 #if (paired)
45 #stop("’y’ is missing for paired test")
46 }
47 x <- x[!is.na(x)]
48 if (length(x) < 1L)
49 stop("not enough (non -missing) ’x’ observations")

108

50 CORRECTION <- 0
51 if (is.null(y)) {
52 METHOD <- "Wilcoxon signed rank test for Equivalence"
53 x1_up_eqbound <- x - up_eqbound
54 x2_low_eqbound <- x - low_eqbound
55
56 ZEROES <- (any(x1_up_eqbound == 0) || any(x2_low_

eqbound == 0))
57 if (ZEROES) {
58 x1_up_eqbound <- x1_up_eqbound[x1_up_eqbound != 0]
59 x2_low_eqbound <- x2_low_eqbound[x2_low_

eqbound != 0]
60 }
61 n <- as.double(length(x1_up_eqbound))
62 if (is.null(exact))
63 exact <- (n < 50)
64 r1 <- rank(abs(if (is.finite(digits.rank)) signif(x1_

up_eqbound , digits.rank) else x1_up_eqbound))
65 r2 <- rank(abs(if (is.finite(digits.rank)) signif(x2

_low_eqbound , digits.rank) else x2_low_eqbound))
66 SR1 <- setNames(sum(r1[x1_up_eqbound < 0]), "V")
67 SR2 <- setNames(sum(r2[x2_low_eqbound > 0]), "V")
68 TIES1 <- length(r1) != length(unique(r1))
69 TIES2 <- length(r2) != length(unique(r2))
70 if (exact && !TIES1 && !TIES2 && !ZEROES) {
71 METHOD <- sub("test", "exact test", METHOD ,
72 fixed = TRUE)
73 PVAL1 <- {
74 p <- psignrank(SR1 - 1, n, lower.tail

= FALSE)
75 min(2*p, 1)
76 }
77 PVAL2 <- {
78 p2 <- psignrank(SR2 - 1, n, lower.tail =

FALSE)
79 min(2*p2 , 1)
80 }
81 if (conf.int) {
82 x <- x + mu
83 alpha <- 1 - conf.level
84 diffs <- outer(x, x, "+")
85 diffs <- sort(diffs[!lower.tri(diffs)])/2
86 cint <- switch(alternative , two.sided = {
87 qu <- qsignrank(alpha/2, n)
88 if (qu == 0) qu <- 1
89 ql <- n * (n + 1)/2 - qu
90 achieved.alpha <- 2 * psignrank(trunc(qu) -
91 1, n)
92 c(diffs[qu], diffs[ql + 1])
93 })
94 if (achieved.alpha - alpha > alpha/2) {
95 warning("requested conf.level not achievable

")
96 conf.level <- 1 - signif(achieved.alpha , 2)
97 }
98 attr(cint , "conf.level") <- conf.level
99 ESTIMATE <- c(‘(pseudo)median ‘ = median(diffs)

)

109

100 }
101 }
102 else {
103 NTIES1 <- table(r1)
104 NTIES2 <- table(r2)
105 z1 <- SR1 - ((n * (n + 1))/4)
106 z2 <- SR2 - ((n * (n + 1))/4)
107 SIGMA1 <- sqrt (((n * (n + 1) * (2 * n + 1))/24) -

sum(NTIES1 ^3 -
108 NTIES1)/48)
109 SIGMA2 <- sqrt (((n * (n + 1) * (2 * n + 1))/

24) - sum(NTIES2 ^3 -
110 NTIES2)/48)
111 if (correct) {
112 CORRECTION1 <- 0.5
113 METHOD <- paste(METHOD , "with continuity

correction")
114 }
115 z1 <- (z1 - CORRECTION1)/SIGMA1
116 z2 <- (z2 - CORRECTION1)/SIGMA2
117 PVAL1 <- pnorm(z1, lower.tail = FALSE)
118 PVAL2 <- pnorm(z2, lower.tail = FALSE)
119 if (conf.int) {
120 x <- x + mu
121 alpha <- 1 - conf.level
122 if (n > 0) {
123 mumin <- min(x)
124 mumax <- max(x)
125 W <- function(d) {
126 xd <- x - d
127 xd <- xd[xd != 0]
128 nx <- length(xd)
129 dr <- rank(abs(if (is.finite(digits.rank))

signif(xd,
130 digits.rank) else xd))
131 zd <- sum(dr[xd > 0]) - nx * (nx + 1)/4
132 NTIES.CI <- table(dr)
133 SIGMA.CI <- sqrt(nx * (nx + 1) * (2 * nx +
134 1)/24 - sum(NTIES.CI^3 - NTIES.CI)/48)
135 if (SIGMA.CI == 0)
136 warning("cannot compute confidence

interval when all observations are
zero or tied",

137 call. = FALSE)
138 CORRECTION.CI <- if (correct) {
139 sign(zd) * 0.5
140 }
141 else 0
142 (zd - CORRECTION.CI)/SIGMA.CI
143 }
144 Wmumin <- W(mumin)
145 Wmumax <- if (!is.finite(Wmumin))
146 NA
147 else W(mumax)
148 }
149 if (n == 0 || !is.finite(Wmumax)) {
150 cint <- structure(c(NaN , NaN),
151 conf.level = 0)

110

152 ESTIMATE <- if (n > 0)
153 c(midrange = (mumin + mumax)/2)
154 else NaN
155 }
156 else {
157 wdiff <- function(d, zq) W(d) - zq
158 root <- function(zq) {
159 uniroot(wdiff , lower = mumin , upper =

mumax ,
160 f.lower = Wmumin - zq, f.upper = Wmumax

-
161 zq, tol = tol.root , zq = zq)$root
162 }
163 cint <- switch(alternative , two.sided = {
164 repeat {
165 mindiff <- Wmumin - qnorm(alpha/2, lower

.tail = FALSE)
166 maxdiff <- Wmumax - qnorm(alpha/2)
167 if (mindiff < 0 || maxdiff > 0) alpha <-

alpha *
168 2 else break
169 }
170 if (alpha >= 1 || 1 - conf.level < alpha *
171 0.75) {
172 conf.level <- 1 - pmin(1, alpha)
173 warning("requested conf.level not

achievable")
174 }
175 if (alpha < 1) {
176 l <- root(zq = qnorm(alpha/2, lower.tail

= FALSE))
177 u <- root(zq = qnorm(alpha/2))
178 c(l, u)
179 } else {
180 rep(median(x), 2)
181 }
182 })
183 attr(cint , "conf.level") <- conf.level
184 correct <- FALSE
185 ESTIMATE <- c(‘(pseudo)median ‘ = uniroot(W,
186 lower = mumin , upper = mumax , tol = tol.

root)$root)
187 }
188 }
189 if (exact && TIES) {
190 warning("cannot compute exact p-value with

ties")
191 if (conf.int)
192 warning("cannot compute exact confidence

interval with ties")
193 }
194 if (exact && ZEROES) {
195 warning("cannot compute exact p-value with

zeroes")
196 if (conf.int)
197 warning("cannot compute exact confidence

interval with zeroes")
198 }

111

199 }
200 }
201 else {
202 stop("Wilcoxon Rank Sum not implemented for

equivalence")
203 }
204 names(mu) <- if (paired || !is.null(y))
205 "location shift"
206 else "location"
207 if (exact) {
208 z1 <- 0
209 z2 <- 0
210 }
211 if ((PVAL1 <= 0.05) && (PVAL2 <= 0.05)) {
212 CONCLUSION = "H01 and H02: (M1 - M2) outside (-Delta ,

Delta) (nonequivalence) is rejected!"
213 message(paste(’H01 and H02: (M1 - M2) outside (-Delta ,

Delta) (nonequivalence) is rejected!’))
214 message(paste(’p-value1 =’, PVAL1))
215 message(paste(’p-value2 =’, PVAL2))
216 }
217 if (PVAL1 > 0.05) {
218 CONCLUSION = "Failed to reject H01: (M1 - M2) outside

Delta (nonequivalence), Therefore , H02 test
automatically fail to reject ’"

219 message(paste(’Failed to reject H01: (M1 - M2) outside
Delta (nonequivalence)’))

220 message(paste(’Therefore , H02 test automatically fail to
reject ’))

221 message(paste(’p-value1 =’, PVAL1))
222 }
223 if ((PVAL1 <= 0.05) && (PVAL2 > 0.05)) {
224 CONCLUSION = "H01: outside Delta (nonequivalence) is

rejected but failed to reject H02: outside -Delta (
nonequivalence)"

225 message(paste(’H01: outside Delta (nonequivalence) is
rejected but’))

226 message(paste(’failed to reject H02: outside -Delta (
nonequivalence)’))

227 message(paste(’p-value1 =’, PVAL1))
228 message(paste(’p-value2 =’, PVAL2))
229 }
230 RVAL <- list("SR1" = SR1 , "SR2" = SR2 , "z1" = z1 , "z2" =

z2,
231 "p-value_1" = as.numeric(PVAL1), "p-value_2" = as.

numeric(PVAL2), "null" = mu ,
232 "alternative" = alternative , "method" = METHOD ,
233 "data" = DNAME , "conclusion" = CONCLUSION)
234 if (conf.int)
235 RVAL <- c(RVAL , list(conf.int = cint , estimate =

ESTIMATE))
236 #class(RVAL) <- "htest"
237 RVAL
238 }

112

Bibliography

1. T. Chen, Y. Chen, Q. Guo, O. Temam, Y. Wu, and W. Hu, “Statistical

performance comparisons of computers,” Proceedings - International Symposium

on High-Performance Computer Architecture, pp. 399–410, 2012.

2. MarketsandMarkets, Inc., “Military embedded systems market by component,

product type, platform, technology, application, architecture, services and region

- global forecast to 2025,” may 2020.

3. V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware

extensions for strong software isolation,” in 25th {USENIX} Security Symposium

({USENIX} Security 16), 2016, pp. 857–874.

4. V. Gorbachov, A. K. Batiaa, O. Ponomarenko, and O. Kotkova, “Impact

evaluation of embedded security mechanisms on system performance,”

in 2019 IEEE International Scientific-Practical Conference Problems of

Infocommunications, Science and Technology (PIC S&T). IEEE, 2019, pp. 407–

410.

5. A. Dinno, “Comment on ”The effect of same-sex marriage laws on different-sex

marriage: evidence from the Netherlands”.” Demography, vol. 51, no. 6, pp. 2343–

7, dec 2014.

6. W. W. Tryon and C. Lewis, “An inferential confidence interval method of

establishing statistical equivalence that corrects Tryon’s (2001) reduction factor,”

Psychological Methods, vol. 13, no. 3, pp. 272–277, 2008.

7. A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi, “The risc-v instruction

set manual. volume 1: User-level isa, version 2.0,” CALIFORNIA UNIV

BERKELEY DEPT OF ELECTRICAL ENGINEERING AND COMPUTER

SCIENCES, Tech. Rep., 2014.

8. D. A. Patterson and J. L. Hennessy, “Computer organization and design risc-v

edition: The hardware software interface,” 2017.

9. A. Waterman and K. Asanovic, “The risc-v instruction set manual, volume ii:

Privileged architecture, v1. 12,” 2019.

10. D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Keystone: An

open framework for architecting trusted execution environments,” in Proceedings

of the Fifteenth European Conference on Computer Systems, 2020, pp. 1–16.

113

11. V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol. ePrint Arch.,

vol. 2016, no. 86, pp. 1–118, 2016.

12. M. T. Khan, D. Serpanos, and H. Shrobe, “A rigorous and efficient run-time

security monitor for real-time critical embedded system applications,” in 2016

IEEE 3rd World Forum on Internet of Things (WF-IoT). IEEE, 2016, pp.

100–105.

13. G. S. Graham and P. J. Denning, “Protection: principles and practice,” in

Proceedings of the May 16-18, 1972, spring joint computer conference, 1971, pp.

417–429.

14. J. Bucek, K.-D. Lange, and J. v. Kistowski, “SPEC CPU2017: Next-Generation

Compute Benchmark,” in Companion of the 2018 ACM/SPEC International

Conference on Performance Engineering, ser. ICPE ’18. New York, NY, USA:

Association for Computing Machinery, 2018, pp. 41–42.

15. R. Dubey, Introduction to embedded system design using field programmable gate

arrays. Springer Science & Business Media, 2008.

16. A. Field, J. Miles, and Z. Field, Discovering Statistics Using R. Sage

publications, 2012.

17. M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical methods.

John Wiley & Sons, 2013, vol. 751.

18. K. Asanović and D. A. Patterson, “Instruction sets should be free: The case

for risc-v,” EECS Department, University of California, Berkeley, Tech. Rep.

UCB/EECS-2014-146, 2014.

19. V. Gorbachov, A. K. Batiaa, O. Ponomarenko, and E. Kulak, “Securing computer

hardware on the base of reference monitor obfuscation,” in 2018 International

Scientific-Practical Conference Problems of Infocommunications. Science and

Technology (PIC S&T). IEEE, 2018, pp. 406–410.

20. W. Zheng, S. Cao, Z. Gao, X. Wu, and Q. Ding, “The performance evaluation

model of intel sgx-based data protection,” in 2018 IEEE SmartWorld, Ubiquitous

Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing

& Communications, Cloud & Big Data Computing, Internet of People and Smart

City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).

IEEE, 2018, pp. 1289–1292.

114

21. N. Weichbrodt, P.-L. Aublin, and R. Kapitza, “sgx-perf: A performance analysis

tool for intel sgx enclaves,” in Proceedings of the 19th International Middleware

Conference, 2018, pp. 201–213.

22. J. Worms and S. Touati, “Parametric and Non-Parametric Statistics for Program

Performance Analysis and Comparison,” INRIA Sophia Antipolis - I3S ;

Université Nice Sophia Antipolis ; Université Versailles Saint Quentin en Yvelines

; Laboratoire de mathématiques de Versailles, Research Report RR-8875, Mar.

2016.

23. W. Zhang, X. Ji, B. Song, S. Yu, H. Chen, T. Li, P.-C. Yew, and W. Zhao,

“Varcatcher: A framework for tackling performance variability of parallel

workloads on multi-core,” IEEE Transactions on Parallel and Distributed

Systems, vol. 28, no. 4, pp. 1215–1228, 2016.

24. T. Kalibera and R. Jones, “Rigorous benchmarking in reasonable time,” in

Proceedings of the 2013 international symposium on memory management, 2013,

pp. 63–74.

25. T. Noergaard, Embedded systems architecture: a comprehensive guide for

engineers and programmers. Newnes, 2012.

26. R. A. Fisher, Statistical methods, experimental design, and scientific inference.

Oxford Univ. Press, 1990.

27. F. J. Boster, “On making progress in communication science,” Human

Communication Research, vol. 28, no. 4, pp. 473–490, 2002.

28. T. R. Levine, R. Weber, C. Hullett, H. S. Park, and L. L. M. Lindsey, “A critical

assessment of null hypothesis significance testing in quantitative communication

research,” Human Communication Research, vol. 34, no. 2, pp. 171–187, 2008.

29. J. Cohen, “Things i have learned (so far).” in Annual Convention of the American

Psychological Association, 98th, Aug, 1990, Boston, MA, US; Presented at the

aforementioned conference. American Psychological Association, 1992.

30. ——, “The earth is round (p < .05).” American psychologist, vol. 49, no. 12, p.

997, 1994.

31. D. H. Johnson, “The insignificance of statistical significance testing,” The journal

of wildlife management, pp. 763–772, 1999.

32. P. E. Meehl, “Theoretical risks and tabular asterisks: Sir karl, sir ronald, and the

slow progress of soft psychology.” Journal of consulting and clinical Psychology,

vol. 46, no. 4, p. 806, 1978.

115

33. P. Meehl, “14 what social scientists don’t understand,” Metatheory in social

science: Pluralisms and subjectivities, p. 315, 1986.

34. R. A. Fisher, The Design of Experiments. Oliver & Boyd, 1960.

35. D. P. Reagle and H. Vinod, “Inference for negativist theory using numerically

computed rejection regions,” Computational statistics & data analysis, vol. 42,

no. 3, pp. 491–512, 2003.

36. D. Szucs and J. Ioannidis, “When null hypothesis significance testing is unsuitable

for research: a reassessment,” Frontiers in human neuroscience, vol. 11, p. 390,

2017.

37. C. Bonferroni, “Teoria statistica delle classi e calcolo delle probabilita,”

Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di

Firenze, vol. 8, pp. 3–62, 1936.

38. N. J. Salkind, “Holm’s sequential Bonferroni procedure,” in Encyclopedia of

Research Design. SAGE Publications, Inc., 2018, pp. 1–8.

39. S. Chakraborti, B. Hong, and M. A. Van De Wlel, “A note on sample size

determination for a nonparametric test of location,” Technometrics, vol. 48, no. 1,

pp. 88–94, 2006.

40. J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Routledge,

may 2013.

41. G. Shieh, S.-L. Jan, and R. H. Randles, “Power and sample size determinations

for the wilcoxon signed-rank test,” Journal of Statistical Computation and

Simulation, vol. 77, no. 8, pp. 717–724, 2007.

42. G. E. Noether, “Sample size determination for some common nonparametric

tests,” Journal of the American Statistical Association, vol. 82, no. 398, pp. 645–

647, 1987.

43. E. Walker and A. S. Nowacki, “Understanding equivalence and noninferiority

testing.” Journal of general internal medicine, vol. 26, no. 2, pp. 192–6, feb 2011.

44. S. Wellek, Testing Statistical Hypotheses of Equivalence. Chapman & Hall/CRC

Press, 2003.

45. D. J. Schuirmann, “A comparison of the two one-sided tests procedure and the

power approach for assessing the equivalence of average bioavailability,” Journal

of Pharmacokinetics and Biopharmaceutics, vol. 15, no. 6, pp. 657–680, 1987.

116

46. C. A. Mara and R. A. Cribbie, “Paired-samples tests of equivalence,”

Communications in Statistics-Simulation and Computation, vol. 41, no. 10, pp.

1928–1943, 2012.

47. S. Feng, Q. Liang, R. D. Kinser, K. Newland, and R. Guilbaud, “Testing

equivalence between two laboratories or two methods using paired-sample analysis

and interval hypothesis testing,” Analytical and bioanalytical chemistry, vol. 385,

no. 5, pp. 975–981, 2006.

48. C. A. Bellera, M. Julien, and J. A. Hanley, “Normal approximations to the

distributions of the wilcoxon statistics: accurate to what n? graphical insights,”

Journal of Statistics Education, vol. 18, no. 2, 2010.

49. P. J. Denning and J. P. Buzen, “The operational analysis of queueing network

models,” ACM Computing Surveys (CSUR), vol. 10, no. 3, pp. 225–261, 1978.

50. K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio,

H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The rocket chip generator,”

EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-

2016-17, 2016.

51. A. Menon, S. Murugan, C. Rebeiro, N. Gala, and K. Veezhinathan, “Shakti-t:

A risc-v processor with light weight security extensions,” in Proceedings of the

Hardware and Architectural Support for Security and Privacy, ser. HASP ’17.

New York, NY, USA: Association for Computing Machinery, 2017.

52. F. Zaruba and L. Benini, “The cost of application-class processing: Energy and

performance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi

technology,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 27, no. 11, pp. 2629–2640, Nov 2019.

53. R Core Team, R: A Language and Environment for Statistical Computing, R

Foundation for Statistical Computing, Vienna, Austria, 2020. [Online]. Available:

https://www.R-project.org/

54. H. Wickham, ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New

York, 2016. [Online]. Available: https://ggplot2.tidyverse.org

55. H. Wickham, L. Henry, T. L. Pedersen, T. J. Luciani, M. Decorde, and V. Lise,

svglite: An ’SVG’ Graphics Device, 2020, r package version 1.2.3.2. [Online].

Available: https://CRAN.R-project.org/package=svglite

117

https://www.R-project.org/
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=svglite

56. H. Wickham, “Reshaping data with the reshape package,” Journal of

Statistical Software, vol. 21, no. 12, pp. 1–20, 2007. [Online]. Available:

http://www.jstatsoft.org/v21/i12/

57. H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François,

G. Grolemund, A. Hayes, L. Henry, J. Hester, M. Kuhn, T. L. Pedersen,

E. Miller, S. M. Bache, K. Müller, J. Ooms, D. Robinson, D. P. Seidel, V. Spinu,

K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani, “Welcome to the

tidyverse,” Journal of Open Source Software, vol. 4, no. 43, p. 1686, 2019.

58. H. Wickham, R. François, L. Henry, and K. Müller, dplyr: A Grammar

of Data Manipulation, 2020, r package version 1.0.2. [Online]. Available:

https://CRAN.R-project.org/package=dplyr

59. H. Wickham, tidyr: Tidy Messy Data, 2020, r package version 1.1.2. [Online].

Available: https://CRAN.R-project.org/package=tidyr

60. J. Clayden, shades: Simple Colour Manipulation, 2019, r package version 1.4.0.

[Online]. Available: https://CRAN.R-project.org/package=shades

61. E. Neuwirth, RColorBrewer: ColorBrewer Palettes, 2014, r package version

1.1-2. [Online]. Available: https://CRAN.R-project.org/package=RColorBrewer

62. J. B. Arnold, ggthemes: Extra Themes, Scales and Geoms for ’ggplot2’, 2019,

r package version 4.2.0. [Online]. Available: https://CRAN.R-project.org/

package=ggthemes

63. H. Wickham and D. Seidel, scales: Scale Functions for Visualization, 2020,

r package version 1.1.1. [Online]. Available: https://CRAN.R-project.org/

package=scales

64. S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality

(complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

118

http://www.jstatsoft.org/v21/i12/
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=shades
https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=ggthemes
https://CRAN.R-project.org/package=ggthemes
https://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=scales

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

25–03–2021 Master’s Thesis Sept 2019 — Mar 2021

Characterizing Security Monitor and Embedded System Performance
across Distinct RISC-V IP-Cores

21G171

Tullos, Justin C., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering an Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-21-M-087

Air Force Research Laboratory
2241 Avionics Circle
WPAFB OH 45433-7765
Attn: Pranav Patel
COMM 937-656-9045
Email: pranav.patel.2@us.af.mil

AFRL/RYDA

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Embedded systems have seen a rapid integration into all forms of industry as they continue to shrink in
size and cost.The increased demand has highlighted a need for secure systems that are robust to attacks and demonstrate
reliable performance, especially if the system operation is time-critical. Efforts to characterize the performance of secure
systems have been obstructed either by proprietary restrictions or ineffective analysis. Proprietary technology limits a
comprehensive validation of a system’s security and the implications it might have on performance. Performance analysis
that is disclosed often lacks sufficient statistical rigor needed for a complex system. A non-proprietary processor
standard, called RISC-V, may allow sufficient transparency to thoroughly model performance trade-offs. This research
shows that a security platform and embedded system performance can be characterized through non-parametric statistics
methodology, and provides a substantive foundation to scrutinize system design considerations that impact performance.
This work proposes a new framework, the SPARC, that pioneers a synthesis of difference and equivalence hypothesis
testing to provide relevant conclusions. SPARC is used to characterize performance of three RISC-V embedded systems
with and without a security platform, Keystone, instantiated on an FPGA.

Statistical Performance Analysis with Relevance Conclusions, Field Programmable Gate Array, RISC-V

U U U UU 135

Dr. Scott Graham, AFIT/ENG

(937) 255-6565 x4581; scott.graham@afit.edu

	Characterizing Security Monitor and Embedded System Performance across Distinct RISC-V IP-Cores
	Recommended Citation

	Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Problem Statement
	Research Goals
	Hypothesis
	Approach
	Contributions
	Organization

	Background and Related Work
	Overview
	RISC-V isa
	Keystone Security Monitor for RISC-V Architectures
	Benchmarks
	Field Programmable Gate Arrays
	Broad Analytical Model of a Reference Monitor
	HPT Framework

	Related Work
	Summary

	Characterizing the Performance of Embedded Systems
	Overview
	Modular Framework Design
	The Statistical Performance Analysis with Relevance Conclusions Framework
	Statistical Significance Versus Practical Relevance
	Elements of Relevant Statistical Performance Evaluations
	Equivalence Testing
	Combining Difference and Equivalence Hypotheses

	Modeling Keystone-specific Security Features
	Keystone Reference Monitor Concept
	Proposed Keystone Closed Queuing Network Model
	Reference Monitor Job Request Generation

	Summary

	Experimental Design and Methodology
	Objective
	System Under Test
	Assumptions
	Control Variables
	Independent Variables
	Response Variables
	Uncontrolled Variables
	Experimental Design
	Experimental Hardware Setup
	Experiment Methodology
	Tools

	Methodology: SPARC Framework Specifics
	Characterizing Three RISC-V Embedded Systems with Keystone Disabled
	Evaluating Hypothetical Margins of Equivalence
	Characterizing Individual RISC-V Embedded Systems with Keystone Enabled
	Performance Metric Measurements

	Methodology: Keystone-specific Security Features
	Keystone Enabled Performance Metric Measurement

	Methodology Summary

	Observations and Analysis
	Overview
	RISC-V Performance Evaluations with the SPARC Framework
	Hypothetical Equivalence Margin Efficacy

	Individual RISC-V Performance Impact of Keystone with the SPARC Framework
	Efficacy of the SPARC Framework in Comparison to HPT
	Performance Impact of Keystone-specific Security Features
	Evaluation of Keystone Closed-queuing Model
	Keystone Initialization Time: Analysis of Binary Size Performance Impact

	Results Summary

	Conclusion
	Overview
	Research Contributions
	Summary
	Future Work

	RV8 Benchmark and Experiment Start Script
	R Wilcoxon Signed Rank Equivalence TOST Custom Code
	Bibliography

