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Abstract

This paper explorers two unique possible applications for CNNs: surface defect de-

tection and improved feature selection. Both topics will be explored in this project.

The aircraft owned and maintained by the US Department of Defense continue to

age and resources required to catalog and maintain air frame integrity continually

increase. Visual inspection of aircraft skin for surface defects is an area of mainte-

nance that is particularly intensive for time and manpower. One novel way to combat

this problem is through the use of autonomous scanning of the aircraft with cameras

and processing the imagery with ANNs, or more specifically, semantic segmentation

via Convolutional Neural Networks (CNN). Semantic segmentation has the ability

to localize and classify individual pixels in an image, making it an ideal tool for de-

tecting surface defects in aircraft skin. The research in this thesis evaluates the use

of classical and CNN-based tools for semantic segmentation. A classical approach is

provided through the statistical measure of Histogram of Orientated Gradients as an

image descriptor and Support Vector Machines for image classification. These classi-

fication results are then compared to the modern CNN approach utilizing a custom

U-Net model for pixel-wise image classification. Due to Covid-19, the data for aircraft

skin defects was unavailable, therefore all tests were conducted on a similar applica-

tion: surface defect detection in steel plates. Given that state-of-the-art segmentation

models are highly tailored to the task at hand, the results presented will serve as a

baseline for future work. The custom U-net model developed was then shifted to an-

other project and aligned with real world data. Given the world’s heavily reliance on

global positioning systems (GPS) for navigation there is a large push for alternative

methods. One of these methods is through computer-aided visual navigation. The

iv



main hurdle up to this point has been to establish meaningful and robust features for

consistent and accurate feature matching between aerial and satellite imagery. The

research in the paper explores the use of semantic segmentation of aerial imagery as

a way to force feature selection onto key areas of an image that might be more likely

to correspond under seasonal variations. Utilizing feature selection and matching on

the masked aerial image and the satellite image produces a set of reliable key points

that can be used for camera pose estimation and visual navigation.

v
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Surface Defect Detection in Aircraft Skin

&

Visual Navigation based on Forced Feature Selection through Segmentation

I. Introduction

1.1 Overview

This thesis will cover two topics to include steel surface defect detection using

semantic segmentation (Problem A) and visual navigation through forced feature

matching semantic segmented aerial imagery with satellite imagery (Problem B).

The original project was to develop a semantic segmentation model to detect and

classify surface defects in the skin of an aircraft. However, due to the spread of

COVID-19, collection of any real-world imagery was delayed indefinitely. In the end

the decision was made to switch topics to a similar project with readily available data.

All work completed, up until the topic switch, was tested and compared against a

similar research problem, surface defect detection in steel plates. The second prob-

lem presented in this paper involves using semantic segmented images as a way to

force feature selection onto unique, easily distinguishable features of an image. Both

projects involved semantic segmentation models, so the work on the segmentation

model from Problem A was altered slightly and carried over onto the second project.

The methodologies and work completed on Problem A will be provided in Chapter 3

along with the preliminary results in Chapter 4. The work and results presented for

Problem A do not represent a completed work, but merely serve as documentation

and a reference for future work in this area.
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1.2 Problem A: Steel surface defect detection

The existence of stealth technology was first announced at a Pentagon news con-

ference on Aug. 22, 1980. Stealth technology was designed in order to reduce an

aircraft’s signature over a wide spectrum of signals to include: electromagnetic, in-

frared, visual, acoustic, and radar. The stealth technology today can be broken into

two parts. The first part is the shape of the aircraft, stealth aircraft are designed with

sharp edges in order to reflect any signals back and away from the source preventing

any return signal to the radar. The second key to stealth is through the utilization

of “Radar Absorbent Material” (RAM) or ”Low Observable” (LO) Material. RAM

works by absorbing incoming signals and dispersing the energy as heat, rather than

reflecting the signal back to the source. It is the combination of these two key elements

that establishes the stealth technology seen on aircraft in the military today.

Over the last few decades stealth has become the predominate strong arm of the

Air Force. The Air Force relies heavily on its stealth technology to keep its Airmen safe

while simultaneously providing a tactical advantage over its adversaries. However, in

order to maintain this advantage the Air Force has had to wage an even greater battle

with a far more relentless adversary, time. As stealth coatings are becoming more

predominate on today’s aircraft the demands for daily upkeep and maintenance have

skyrocketed. With today’s methods, each aircraft requires 3-4 skilled inspectors to

put eyes on every inch of the aircraft, looking for surface defects. This inspection can

sometimes take up to 4 hours per aircraft to properly inspect and catalog the defects

found on the aircraft. This issue has created a drain on human resources and has

opened an opportunity for faster and more accurate inspection techniques.
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1.2.1 Research Objectives

The goal of this research is to test the viability of utilizing computer vision to

reduce the number of man-hours required to complete a single aircraft inspection.

The initial solution is through the utilization of an automated aerial vehicle and an

on-board camera. Images will be collected and analyzed, in real-time, to provide an

accurate identification and localization of surface defects. The goal of this research

will be to develop a set of procedures that will provide proper instructions for image

production and segmentation of surface defects. Segmentation involves the selection

or creation of an Artificial Neural Network (ANN) to detect and classify surface de-

fects faster than a group of skilled inspectors. This research will focus on comparing

results from statistical computer vision methods, such as Histogram of Orientated

Gradients (HOG), against more state-of the-art image segmentation techniques uti-

lizing ANNs and various algorithms to detect different type of defects.

1.2.2 Methodology

While the objective of this project was to develop a LO material surface defect

detection model, real world data was not available at the time of submitting the

project. Therefore, a similar related project, steel surface defect, was substituted in

as a replacement database due to the similarities in defect types. The first method

tested was based on a traditional statistical approach using Histogram of Orientated

Gradients (HOG) and a Support Vector Machine(SVM). The second method focuses

on a more modern approach using an ANN model for semantic segmentation.

1.2.3 Assumptions

The selection of the steel surface defect database was based on the characteristics

of defects and the availability of data. Given both aircraft skin and steel plates are
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primarily homogeneous surfaces and contain similar defects the results obtained on

steel plates should provide a good baseline for skin aircraft defect detection.

1.3 Problem B: Forced Feature Selection for Visual Navigation

In 1983 Korean Air Lines flight 007 was tragically shot down, by a Soviet fighter,

due to a navigational error. Ever since the flight 007 incident the use of global navi-

gation satellite systems has been a staple for navigation in the civilian and military

world. Currently GPS is the primary source for all navigation solutions in the military

as it is cheap and easy to implement and readily available worldwide. However, the

heavy reliance and investment in GPS creates several vulnerabilities in our military.

GPS is widely available to the public and, as such, is easily jammed and manipulated

by intentional and accidental means, thus creating a need for other alternative nav-

igation methods. In 2015 the Air Force published the Air Force Future Operating

Concept for 2035, one of their primary desires was to develop “New concepts and

capabilities to counter the increasing technology and proliferation of anti-access and

area denial threats, to include multi-domain approaches and systems that can be

rapidly modified when adversaries adapt their defenses. [5]” The area denial capabil-

ities is referring to the DoD’s heavy reliance on GPS as the sole source of navigation.

While GPS has reigned supreme for many years, it is very susceptible to area-denial

attacks such as jamming and spoofing. One of the alternative in development that

has shown promise as a GPS alternative is through vision-aided navigation.

1.3.1 Research objectives

The primary objective of this research is to test the effectiveness of using semantic

segmentation as a way to create and force robust features onto desired areas of an

image for the purpose of visual navigation. This involves testing several segmenta-
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tion algorithms to achieve state-of-the-art segmentation results, and evaluating the

effectiveness of feature matching on segmented imagery.

1.3.2 Research focus

The focus of this research will be on the development of a near state-of-the-art

semantic segmentation model for aerial imagery that can extract desired buildings and

roads from an image. The research will then focus on various feature selection and

feature matching algorithms in order to compare the segmented aerial key features

with a known database of features from satellite imagery.

1.3.3 Methodology

The methodologies for this project are broken down into 3 parts: semantic seg-

mentation of roads and buildings, feature selection, and feature matching algorithms.

The semantic segmentation was conducted using a custom U-net trained on the In-

ria Aerial dataset for buildings and the Massachusetts dataset for Roads. Using the

trained model, locally collected flight test data was fed in as a series of images as the

input. The output of the model was a masked version of the collected flight data.

These masked images were then reduced down to feature key points using the Scale

Invariant Feature Transform (SIFT) algorithm. These key points were then compared

against a known database of key points from the satellite imagery to locate matches.

1.3.4 Assumptions

A large-scale PnP algorithm has already been conducted in previous research in

order determine a rough location of the aircraft. Working on the assumption that a

rough location could be determined, satellite imagery was hand selected from areas

along the flight path of the test aircraft. This was done in order to test best case

5



scenario, or proof of concept, when it came to feature matching aerial imagery with

satellite imagery.

Due to data currently available and time constraints, the data and imagery used

for model training and visual navigation tests were selected for the presence of seasonal

invariant features, which in this case are confined to buildings and roads. Buildings

and roads were selected based on the assumption, excluding heavy snow, that these

features would be seasonally invariant.

1.3.5 Limitations

The developed algorithm would most likely not work as well in a rural environment

due to the sparsity of buildings and roads. However, this initial research is not

intended to be the end all result, but a proof of concept. Once successful results are

demonstrated, we will expand to other categories in the semantic segmentation.

1.4 Hardware and Software

Both projects contained in this thesis were written in Python. The project’s

design and initial small scale testing was accomplished on an ASUS ROG laptop

equipped with an RTX 2070. Once a project achieved acceptable performance, it was

transferred to a server located at the Air Force Institute of Technology. The server

consisted of four NVIDIA Titan RTXs with 24 Gb RAM and was used for the full

scale training and testing of the models.

1.5 Thesis Contributions

• Surface Defect Detection

– Developed groundwork for statistical and machine-learning approach for

surface defect detection applications
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– Researched and procured required hardware for future deployment to drone

vehicle for remote scanning of aircraft skin

• Forced Feature Selection

– Developed baseline building and road semantic segmentation model for

aerial imagery

– Established procedures for post-processing model output for improved fea-

ture selection performance

– Laid groundwork for future work in feature matching between aerial and

satellite imagery

1.6 Document Overview

The research objectives and goals will be discussed in more detail in the following

chapters. Chapter 2 will cover the literature review for both projects as a majority

of the literature can be applied to both applications. Chapter 3 is broken into two

sections, each section dedicated to providing a detailed description of the experiments

and processes used for both projects. Chapter 4 will also follow the same structure,

the first half will cover the preliminary results from the surface defect detection al-

gorithms. The second half of chapter 4 covers the results obtained from the forced

feature selection for visual navigation. Finally Chapter 5 will provide the conclusions

gathered as well as suggestions for further iterations and continued research.
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II. Background and Literature Review

This chapter will provide background and relevant literature for the two problems

introduced in Chapter 1. The literature review for surface defect detection will focus

on various semantic segmentation algorithms to include model architecture, various

loss functions, evaluation metrics, and pre-trained models. Chapter 2 will also cover

the basis for various statistical methods that were used as a baseline to evaluate

model performance. The second half of the chapter will cover pertinent background

for forced feature selection via segmentation models. The segmentation models and

various architectures are already well-covered in the first half of the chapter, so the

second half will only cover the nuances specific to the second problem and various

feature-detection algorithms.

2.1 LO Surface Defect Inspection

The literature surrounding defects in stealth coatings to include defect types,

images, and vision-based inspection techniques are almost non-existent or open to

the public. Therefore, the scope of the literature review in this area will focus on

other various aircraft skin defects and common techniques used for surface defect

detection on various homogeneous surfaces.

The following figures show examples of common defects found in aircraft skin

and the methods for marking the defects for tracking growth. These marking guides

represent the desired goal for the segmentation model and its ability to identify defect

boundaries in a precise manner to facilitate accurate tracking over time. Figure 1

shows the proper method for marking missing or damaged material.
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Figure 1: Area Defect marking guide. The grey represents the aircraft skin and blue

indicates where the skin may have broken off showing the material underneath. The

first Column shows 2 initial defects with the third image being viewed from the side to

show that the aircraft skin is missing. The second column demonstrates the correct

way to mark a defect and the desired goal of the segmentation model. Column 3

demonstrates the incorrect marking style with a loosely defined boundary.

Figure 2 shows another type of “area” defect, but where the material is neither

missing or damaged. This type of defect is referred to as a disbonded area or a

“bubble”. This particular defect will be the hardest defect to detect as a bubble can

be very hard to see with a monocular camera. This issue can be mitigated with harsh

lighting conditions and proper placement of the camera. However, the placement of

the camera will be dependant on the location of the drone and harsh lighting will

require additional equipment.
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Figure 2: Dis-bonded Defect Marking Guide. This image follows the same formatting

for columns as the previous image. However, this image represents a dis-bonded, or

bubble, defect

Another defect type found in aircraft material are the defects that are along the

edge of a panel. Due to the extreme conditions and speeds of an aircraft, the edge

of a panel takes the brunt of the force, often resulting in chips and cracks along the

panel edge as seen in Figure 3.

Figure 3: Edge Defect Marking Guide. This image shows common defects that form

along the edge or tips or a panel cover.

Another subcategory of surface defects, a byproduct of construction, revolves
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around the fasteners used to hold the panels together. There are 2 types of fas-

teners, permanent and removable. Removable fasteners are intended to be removed

throughout the course of routine maintenance to allow access to certain panels and

doors. Whereas permanent fasteners are not expected to be removed, outside of depot

or major unscheduled repair activity, and intended to remain intact for the life of the

aircraft. Figures 4 and 5 show the marking guide and several common defects com-

mon to fasteners. The main difference between permanent and removable fasteners

is the circle around the bolt itself. Permanent fasteners, if covered correctly, should

not be visible from the surface. Removable fasteners will have an unavoidable circle

around the fastener head. A common defect with removable fasteners is a missing

plug that covers the bolt drive. Removable fasteners also create an additional edge in

the panel, which results in additional cracks and chips around this edge. It is worth

noting that edge defects, including those around fasteners, make up the majority of

the defects seen in aircraft skin.
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Figure 4: Permanent Fastener Marking Guide. The grey represents the aircraft skin

and blue indicates where the skin may have broken off showing the material under-

neath. The first Column shows initial defects common with permanent fasteners.

Permanent fasteners are designed to never be removed, as such, are covered over with

aircraft skin. The bottom half of the image shows the fasteners when viewed from

the side. The second column demonstrates the correct way to mark a defect and

the desired goal of the segmentation model. Column 3 demonstrates the incorrect

marking style with a loosely defined boundary.

12



Figure 5: Removable Fastener Marking Guide. The grey represents the aircraft skin

and blue indicates where the skin may have broken off showing the material under-

neath. The first Column shows initial defects common with removable fasteners.

Removable fasteners are designed to be taken out, this feature results in an edge

along the border of the plug. The bottom half of the image shows the fasteners when

viewed from the side. The second column demonstrates the correct way to mark a

defect and the desired goal of the segmentation model. Column 3 demonstrates the

incorrect marking style with a loosely defined boundary.

2.2 Image Classification

When it comes to image classification there are four different classifications/meth-

ods used, each varying in levels of fidelity. As shown in Figure 6 the first method is

simply named image classification and focuses on the general question, “What is in

the picture?”. Image classification aims to apply a single label to the image in its

entirety, essentially capturing the general sense of an image. The next step further is

referred to as object detection, focusing on the objects in the image and where they

are located. Object detection is capable of detecting multiple objects and applying
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multiple labels to a single image. These object labels are often associated with bound-

ing boxes that aim to locate where an object resides in the image. The third method,

and the focus of this research, is semantic segmentation; semantic segmentation is the

process of categorizing each pixel into a particular label. Then there is instance seg-

mentation, which works similarly to the previous method except that it tries to apply

unique labels to every instance of similar categories. Where semantic segmentation

would label all people into a single category, instance segmentation would attempt

to identify every unique individual. As each of the four methods expands on their

fidelity, so does the difficulty associated with applying each method. The research

presented in this paper will primarily focus on semantic segmentation. While instance

segmentation can provide a higher fidelity in defect tracking of individual defects, the

data set used for training was labeled for semantic segmentation. Semantic segmen-

tation should also be more than sufficient to track defect growth, as two overlapping

defects would be considered as a single larger defect.

Figure 6: Image classification methods [6]
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2.2.1 Histogram of Orientated Gradients

HOG is a feature descriptor that is utilized primarily for object detection in im-

agery and was first introduced in 2005 by Dalal and Triggs[7]. HOG works by com-

piling a set of gradient orientations into a histogram that can describe the image.

Gradients of an image are useful because the magnitude of a gradient is the great-

est around edges and corners, making HOG well suited for surface defect detection.

These gradients are calculated by sliding a small window, called a cell, across the

image and calculating a local histogram of gradients. The gradients are calculated

utilizing the following kernel or discrete derivative mask in both the horizontal and

vertical direction.

• Horizontal

[
−1 0 1

]

• Vertical


−1

0

1


Given the gradient vector

∆f =

∆fx

∆fy

 =

 δfδx
δf
δy

 (1)

the gradient’s magnitude and orientation are calculated using the following equations.

• Magnitude =
√

∆fx2 + ∆fy2

• Orientation:θ = arctan

∆fy

∆fx


The gradients can then sorted by orientation and placed into a set number of bins.

The greater the magnitude of a gradient, the greater effect it will have on its respective

bin [1]. The HOG descriptor is the concatenation of all these histograms. As shown
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in Figure 7, the cells make up the size of the window that will be shifted over the

image creating multiple HOG features, which are then converted into cell histograms.

These cells are then combined into a cell block to normalize the magnitude of adjacent

cells and reduce the influence of local lighting and noise conditions.

Figure 7: Histogram of Oriented Gradients. This image shows how the information

captured in a cell window is transformed into a histogram and then compared against

other histograms in a block size. The histograms in a block are then normalized

across the board to suppress any external local illumination. [8]

2.2.1.1 Classification

One of the most straightforward ways to classify data into two classes, termed

positive and negative, is through the use of a Support Vector Machine (SVM). An

SVM determines the optimal hyper plane that separates the positive from the negative

data, allowing any new data that falls above or below the hyper plane to easily be

classified into one of the two categories, an example of a hyper plane is shown in
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Figure 8.

Figure 8: MMC Hyperplane [1].

SVM’s are typically binary classifiers, however, there are several methods than can

expand the capabilities from binary to multi-class classifications, the most popular

methods being “one-vs-one” and “one-vs-all.” One-vs-all involves training a single

classification against the null combined with the other classifications. One-vs-one

involves training a separate classifier for every pair of labels. The superior method

comes down to the data class distribution. One-vs-all is more prone to error in

imbalanced data sets as it can introduces additional imbalances by combining multiple

classifications to create the negative. One-vs-one on the other hand does not introduce

any additional imbalances, but requires N(N−1)
2

classifiers per N classes, meaning it

can be computationally more expensive [9].

2.2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are the primary tools used in machine learn-

ing. ANNs, as the name suggests, work and are named after the way the human brain

operates. ANNs operate off a series of inputs that are connected through a network

of hidden layers and weights to connect a certain input to a desired output. This

works in the same way that humans take in sights and sounds to identify an object.

The architecture of the model determines the layout and design of these hidden layers
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and can be carefully crafted to suit a specific task, much like eyes are used for iden-

tifying visual objects, and ears for sounds. For vision applications ANNs are mostly

comprised of Convolution Neural Networks (CNN).

2.2.2.1 Convolutional Neural Network

A CNN consists of an input layer (the image) and an output layer(label), with

several hidden layers that typically consist of convolutions, pooling, fully connected,

and normalization layers. CNNs are a small subset of ANNs that primarily deal with

imagery and computer vision tasks. A CNN is designed to take in an image as an

input, determine the categories and classifications found in the image, and finally

output these classifications [?, 10]. The CNN’s namesake and its ability to segment

an image and determine its parts comes through the use of a convolution layer. A

convolutional layer differs from the basic dense layer as the neurons in convolutinal

layers are not connected to every single pixel in the input image, but rather only the

neurons in their receptive fields, as shown in Figure 9. This feature allows CNNs to

concentrate on small low-level features and assembling them into high-level features

in subsequent hidden layers.

Figure 9: CNN layers with rectangular local receptive fields [?]
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The mathematical definition for a convolution is defined as

s(t) =

∫
x(a)w(t− a)da (2)

where x(a) is the input, w(a) is the weighting function or kernel, and s(t) is the feature

map or output. The size of the receptive field used in the convolution operation is

one of the key parameters for defining a convolution. The second defining feature is

the number of filters created to encode various aspects of the input data, this feature

is also referred to as the depth [?].

2.2.3 Strides

Stride is a parameter of the convolution operation that determines how far the

receptive field will shift between strides. Figure 10 shows how the kernel operates with

a stride value of 1 and 2 and also demonstrates the effect on the output dimension.

This reduction in dimension is referred to as down sampling and is what helps the

CNN perform semantic segmentation [?].
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Figure 10: Stride representation [?]

2.2.4 Padding

The padding operation makes it possible for a layer to have the same dimensions

as previous layers. There are many type of padding, but the most common is referred

to as zero-padding. Zero-padding involves adding zeros around the inputs in order to

apply the proper number of strides to take place. SAME padding is the parameter

used that ensures the dimensions of the output will be the same as the input; whereas

Valid padding focuses on sticking with the kernel size and stride value given [?, 10].
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Figure 11: Padding representation [?]

2.2.4.1 Loss Function

The model’s capability to learn is determined by its ability to minimize errors

between the model output and the truth label. This error is calculated through what

is known as a loss function [11]. Simply put, for a model that performs poorly, the

loss function will output a higher number. If the model performs well, the output

of the loss function will be a smaller number. In order to achieve the best possible

performance from a model, it is important that the loss function be designed to
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optimize the network to the task at hand.

2.2.5 Binary Cross Entropy

When it comes to image segmentation tasks, Binary Cross Entropy is considered

one of the primary baseline loss functions for cases where only two labels exist. [12,

13, 11, 14]. The loss function for Binary Cross Entropy is given as

LossBCE = − 1

N

N∑
i=1

yi ∗ log(p(yi)) + (1− yi) ∗ log(1− p(yi))), (3)

where y is the truth label (0 for negative or 1 for positive), and p(y) is the predicted

probability of the point being a 1 or positive for all N points. Binary Cross Entropy

is defined as the difference between two probability distributions for a given random

variable or set of events [13]

2.2.5.1 Data Augmentation

Data augmentation is the art of artificially increasing the size of a training set

by generating new realizations of a training image. Data augmentation is most often

accomplished by applying simple transforms to an image, such as: Horizontal and

Vertical Flips, rotations, scale changes, crops, and translations. Each augmentation

technique can train a model to be scale, position, and rotation invariant, allowing a

model to detect an object in any setting. Additional methods, such as the addition

of noise or adjusting the contrast, can help visual models learn to account for various

lightning or environmental effects often found in outdoor imagery [15]. Exact Data

Augmentation methods utilized will be discussed in Chapter 3.
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2.2.5.2 Morphological Transforms

Unlike data augmentation, Morphological transforms are intended to change the

information in the image. While this method is generally not used on images for

training, it can be used to great effect on the output of the model. Dilation, in Figure

12, assigns each pixel with the maximum value of all the pixels in the neighborhood.

This operation is effective for making objects more visible and filling in small holes in

objects. Erosion, pictured in Figure 13, sets the pixel value to the minimum value of

all the pixels in the neighborhood which is effective at removing small anomalies leav-

ing behind only significant objects. In surface defect detection, dilation is primarily

utilized to enhance the results and bring out smaller features [16]. For this project

dilation will primarily be used to fill in holes left in the mask where the model failed

to detect a continuity in objects.

Figure 12: Dilation [17]

23



Figure 13: Erosion [17]

2.2.6 U-Net

One of the most popular models for semantic segmentation is a model called a U-

net. The U-net was first introduced by Ronneberger as a biomedical image processing

algorithm to provide labels for every cell in medical imagery [12]. U-Nets are aptly

named for the shape the model creates as shown in Figure 14.

Figure 14: Ronneberger’s U-net [12]

The U-net model is made up of two parts, the contracting and the expanding side.
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Ronneberger’s encoder or contraction (left) side of the U-Net consisted of four encod-

ing blocks, each block made of two back-to-back 3x3 convolutional layers with a ReLu

activation function, followed by a single 2x2 max pooling layer. The corresponding de-

coder or expanding (right) side of the U-Net utilizes transposed convolutional layers.

The final output comes from a 1x1 convolutional layer in order to map the feature’s

vector to the corresponding class. The output of a U-net is an image in the form of a

classification mask. The U-net model is also considered to be a Fully-Convolutional

Network (FCN) meaning that it can take in images of any size, making it a popular

choice for many segmentation applications. The genius behind the U-net architecture

is that a U-net can be created with any convolutional model followed by correspond-

ing transposed convolutional layers. This discovery has led many researchers to test

the capabilities of placing pre-trained models in the contracting path of the U-Net

and then developing the expanding right half of the U-net architecture.

2.2.7 Surface Defect Detection Datasets

As mentioned previously, real world data were unable to be collected for surface

defect detection on aircraft skin due to extenuating circumstances. Should data have

been collected, a large part of the work and arguably, the most important, would

have been in data set labeling. Dataset labeling involves attaching a set label to an

image, or even to every pixel of an image. These labels are used to show ANNs,

during training, what the output of the model should be and are used to compute a

loss value for the model. A model’s performance is highly correlated to the quality of

the dataset being used [18, 19]. For this reason it is important to use the best tools

and techniques available when attempting to develop a new dataset. The following

section will cover current state-of-the-art image segmentation labeling techniques.
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2.2.7.1 Dataset Creation

With the advent of the internet and the collaboration of mega-corporations, Big

Data has been readily available for years [20]. Big Data refers to the field of study

that revolves around way to process and gather knowledge from datasets that are to

large for traditional data processing software applications. The issue with Big Data

is that it only solves half the problem, ANN’s not only need data to train on, but

require labeled data to calculate the loss in the model. Labeling data can be very

time, money, and manpower intensive to create [18, 10]. There are two objectives for

image segmentation algorithms: localization and classification. Localization focuses

on where the defect lies in the image and is accomplished through a process called

segmentation. The goal of image segmentation is to make it easier to analyze the

contents of an image by finding edges, lines, gradients. The main hurdle with image

segmentation comes when there is a lack of data available for training. Labeling

data for an image segmentation task can be very time consuming as the labels are

applied at the pixel level. In order to label images for segmentation there are two

main approaches, supervised and unsupervised labeling.

2.2.7.2 Supervised labeling

Supervised labeling, also referred to as human-aided segmentation is the process

of using individuals to label every piece of data for a given task. In the earlier

days of working with Big Data, in order to reduce the work load of data labeling,

several tools were created to help expedite and increase the performance of supervised

labeling, Pauplin, Caleb-Solly, and Smith [21], a group from the Bristol Institute

of Technology created an Interactive Parameter Adaptation Tool (IPAT) for image

segmentation. Pauplin and his team recognized that the creation of customized image

segmentation algorithms was both time consuming and tended to be specialized to
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a specific task. IPAT was designed as a tool to extract a user’s tacit knowledge in

order to determine the requirements for the desired segmentation, without any need

for specialized knowledge of the underlying machine vision system. IPAT works by

presenting the user with several images of a defect that have been pre-segmented, the

user then selects the image that they determine is the most accurate. Through several

iterations IPAT begins to learn and tweak its parameters to develop an accurate

segmentation model built on a trained operators knowledge. This allows models to

be tweaked by professionals in the field, without any need to understand the inner-

workings of the model. The main drawback to this method is that IPAT requires a

working baseline model to iterate through, and results can vary based on the initial

model. While IPAT is an excellent tool, given the amount of data needed to train a

good model [22, 23, 10], IPAT can be very time intensive for a given project. Within

recent years several companies and business have emerged offering image labeling and

annotation services. Hasty.ai, Labelbox, Superannotate, and Diffgram are just a few

notable business that offer free and paid services.

2.2.7.3 Unsupervised labeling

The second approach is accomplished by allowing the computer to determine the

boundaries of the segmentation through a method called computer aided image seg-

mentation. One of the earlier attempts at this was conducted by Elbehiery, Hefnawy,

and Elewa, using a statistical approach [16]. Elbehiery worked on creating such a

program to handle quality control operations in ceramic tile manufacturing. The

quality control operations for tile manufacturing is broken down into three segments,

color analysis, dimension verification and surface defect detection. The first two seg-

ments are already handled by other computer vision techniques, but surface defect

detection was being handled by a human inspector. Elbehiery’s goal, therefore, was
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quality control enhancement through visual image processing [16]. Elbehiery and his

team break the edge-finding algorithm into two categories. The first is finding pixels

in the image where an edge is likely to occur through discontinuities in gradients. The

second is then linking these edge points together to create a description of the edge

with lines and curves. This method is best suited for projects without any labeled

data as it utilizes statistical methods to determine the presence of defects. While

Elbehiery used a statistical approach to map out defect edges, more recently Abhihek

Thakur and Rajeec Ranjan used deep learning to label imagery. The process utilized

by Thakur and Ranjan is divided into two parts. The first is a machine learning

algorithim to detect super pixels. These super pixels are categorized and grouped on

the basis of color. The second model was then trained on these color categories, clas-

sifying each image into semantic labels [24]. Due to data requirements and the fact

that labeled data is not always readily available, in recent years there has been a large

push for unsupervised models that can work with unlabeled data using unsupervised

labeling [25, 26, 27] .

2.3 Pre-trained Model

2.3.1 VGG16

VGG16 first introduced in 2015 was designed as a method for testing the effects

of convolutional network depth and its accuracy on large-scale image recognition [28].

The VGG16 model pushed the depth of traditional models to 16-19 weighted layers

winning first and second place in the 2014 ImageNet Challenge. The original VGG16

model is shown below in Figure 15. VGG16 was a breakthrough in image classification

tasks in that it showed that model depth can add significant improvements to model

performance.
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Figure 15: VGG-16 Model [29]

2.3.2 ResNet50

One of the issues with creating larger networks is a problem referred to as explod-

ing/vanishing gradients [30]. However in 2015 a group from Microsoft found a way to

incorporate residual learning layers to reference the inputs, instead of unreferenced

functions [31]. The original model presented was a 34-layer ResNet model shown

in Figure 16; however, in that paper the team also explores models of size 34, 50,

101, 152, and an incredible 1202-layer network. For the project in this paper, surface

defect detection, a 50-layer version of ResNet was utilized. ResNet50 and the reason

for this model will be discussed further in Chapter 3.
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Figure 50: Defect U-net based on ResNet18 - Part 2
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Figure 51: Defect U-net based on ResNet18 - Part 3
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Figure 52: Custom U-net model built for semantic segmentation of Buildings and
Roads - Part 1
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Figure 53: Custom U-net model built for semantic segmentation of Buildings and
Roads - Part 2
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