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Abstract 

 The goal of this work was to analyze 24-hour back trajectory performance from a 

global, low-resolution weather model compared to a high-resolution limited area weather 

model in particular meteorological regimes, or flow patterns using K-means clustering, 

an unsupervised machine learning technique.  The global model tested was the National 

Centers for Environmental Prediction’s (NCEP) Climate Forecast System version 2 

(CFS), and the high-resolution model was NCEP’s Rapid Refresh (RAP) numerical 

weather model.  The duration of this study was from 2015-2019 for the contiguous 

United States (CONUS).   

Three different machine learning algorithms were tested to study the utility of 

these methods improving the performance of the CFS relative to the performance of the 

RAP.  The aforementioned machine learning techniques are linear regression, Bayesian 

ridge regression, and random forest regression.  There was no statistical significance in 

the CFS improvement values between the three different algorithms test nor in the sum of 

the results comparing unclustered and clustered trajectories indicating the simpler 

machine learning methods could be used and using k-means clustering was not necessary.  

These results mean reducing computational time for the user.  Additionally, the greatest 

improvement of CFS values occurred in July, August, and September when back 

trajectories did not travel as far in 24-hours compared to other seasonal atmospheric 

regimes. 
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CORRECTION OF BACK TRAJECTORIES UTILIZING MACHINE 

LEARNING 

 

I. Introduction 

 

 Having accurate weather data to calculate the origin of atmospheric pollutants or 

other materials is critical across many disciplines from the agricultural sector, 

environmental and public health impacts to national defense applications.  An example of 

a national defense application is being able to detect and enhance situational awareness if 

there is an intentional or accidental release of chemical, biological, radiological and 

nuclear (CBRN) materials (Bieringer et al. 2017, 103).  “The interpretation of dispersion 

model plumes, their interaction with the local environment, and the appropriateness of 

regional model guidance are starting to become part of the routine duties of the local 

meteorological forecaster” (Draxler 2006, 384).  The method for calculating these plume 

trajectories is called source term estimation (STE) and it requires three variables: (1) the 

time of the pollutant release, (2) the location of the pollutant release, and (3) the amount 

of pollutant released (Zoellick 2019, 1).   

STE calculation methods can be categorized into three groups: (1) direct forward 

simulations, (2) direct inverse modeling, and (3) nonlinear optimization based methods 

(Bieringer et al. 2017, 103).  The method this study focuses on falls under the direct 

inverse modeling category.  Specifically back trajectories in which the calculation starts 

at the observation location and uses backward parcel trajectories to determine the air 

parcel source (Bieringer et al. 2017, 105).  However, STE calculations can be very 

difficult to accurately calculate because observations of material concentration and wind 
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data are usually sparse, and the chaotic turbulent wind field makes it difficult to recreate 

in models (Bieringer et al. 2017, 102).   

Another factor that affects the accuracy of STE calculations is the access to 

computation resources to run mesoscale meteorological models (Draxler 2006, 384).  The 

higher resolution, or mesoscale, meteorological models are required to resolve the local 

environment and terrain features.  Dispersion models used to calculate the STE 

algorithms are highly dependent on the method used to feed in the meteorological data, 

whether it is derived from observations or model data (Draxler 2006, 384).  The most 

common dispersion model used to calculate back trajectories is the Hybrid Single-

Particle Lagrangian Integrated Trajectory model (HYSPLIT) (Stein et al. 2015, 2059). 

The inspiration and scientific foundation for HYSPLIT started back in 1949 when 

United States Weather Bureau forecasters were charged with finding the source from 

radioactive debris originating from the first Soviet atomic test (Stein et al. 2015, 2061).  

At the time, back trajectories could only be calculated by hand using wind data from 

twice-daily radiosonde balloon measurements (Stein et al. 2015, 2061).  The first version 

of HYSPLIT debuted in the 1980s and since then four more versions have been released 

with the latest HYSPLIT version going operational in 2020 (Stein et al. 2015, 2062; 

NOAA-ARL n.d.).  This study used trajectory code adapted from HYSPLIT into Python.  

The objective of this research was to analyze 24-hour back trajectory performance 

from a global (low-resolution) weather model compared to a regional (high-resolution) 

weather model in particular meteorological regimes, or flow patterns using K-means 

clustering, an unsupervised machine learning technique.  The next step was to test three 

different supervised machine learning algorithms on the global weather model to study 
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the utility these algorithms have on improving the global model’s performance relative to 

the regional model.  Chapter II provides brief background descriptions on atmospheric 

transport and dispersion modeling, atmospheric regimes, the global and regional weather 

models, clustering and K-means, and the supervised machine learning correction 

methods.  Chapter III explains the methodology and Chapter IV presents the results and 

analyses.  Lastly Chapter V concludes the research by discussing the potential impacts of 

this research, limitations, and future research ideas. 
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II. Background 

 

2.1 Atmospheric Transport and Dispersion Modeling 

Having an accurate understanding a pollutant plume’s dispersion is critical to 

identifying its source location and concentration.  The method of obtaining this 

information is called source term estimation (STE) and it depends on three factors: (1) the 

time of the pollutant release, (2) the location of the pollutant release, and (3) the amount 

of pollutant released (Zoellick 2019, 1).  “The applications for which this need arises 

span a broad set of technical disciplines and can range from agricultural, industrial, 

environmental, public health, transportation, to defense applications” (Bieringer et al. 

2017, 103).  When it comes to defense applications, STE is used for determining 

compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), which bans 

nuclear explosions and tests conducted in any environment (atmosphere, under water, and 

underground) (Bieringer et al. 2017, 104).  To ensure compliance with this treaty with 

participating countries, atmospheric modeling and STE methods are used to identify 

sources and the characteristics of specific gases that are a by-product to nuclear fission 

(Bieringer et al. 2017, 104).  These methods were applied to detect nuclear testing done 

by non-signing countries such as Democratic People’s Republic of Korea (Bieringer et al. 

2017, 104).   

Bieringer et al. (2017) reviewed several different STE methods to address the 

difficulties surrounding picking an STE method, highlight commonalities in these 

different methods, and share lessons learned in order to help those pick an appropriate 

STE method when facing a new STE problem (Bieringer et al. 2017, 102).  Bieringer and 
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his team point out “…existing surveys focus on the differences between the methods, but 

do not examine them in the context of their similarities and how this relates to their 

utilization for the end application” (Bieringer et al. 2017, 103).  The paper divides the 

STE methods into three categories: (1) direct forward simulation methods, (2) inverse 

and back-tracking methods, and (3) nonlinear optimization methods (Bieringer et al. 

2017, 102).   

The first category is used when both the source and receptor (i.e. the observation) 

locations are known (Bieringer et al. 2017, 104).  This STE method is used to determine 

the release amount or rate (Bieringer et al. 2017, 104).  Strengths for using the direct 

forward simulation method includes its simplicity, relatively low computational 

requirements, and ease of implementation (Bieringer et al. 2017, 104).  Additionally, this 

method is most effective in scenarios where the meteorological conditions are very well 

known (Bieringer et al. 2017, 104).   

The second category, inverse and backtracking, is split into two subcategories.  

The first subcategory is back trajectories “…used in the meteorological community to 

study long-range pollution transport and determine likely source locations” (Bieringer et 

al. 2017, 105) (see Figure 1).  Similar to the first category, the strengths of this method 

include its simplicity, low computational requirements, and ease of implementation 

(Bieringer et al. 2017, 105).  However this back trajectory method is highly sensitive to 

the accuracy of the wind and “…not appropriate for estimation of release rates or precise 

source locations since this approach typically does not model atmospheric effects beyond 

parcel transport” (Bieringer et al. 2017, 105).   
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Figure 1.  A visualization of the back trajectory subcategory.  Receptors (R) that did not 

detect a contaminant are in black, light blue R’s detected a contaminant, the trajectories 

of the contaminant are the orange lines, and the orange S is the source of the contaminant 

(Bieringer et al., 2017). 

 

The second subcategory uses STE methods that give information on the evolution 

of the contaminant through transport and dispersion, as shown in Figure 2 (Bieringer et 

al. 2017, 105).  “If the source location is known, this method can also be used to 

determine the release mass, timing, and/or release rate for that location” (Bieringer et al. 

2017, 105).  This method is adapted into many United States modeling applications such 

as Second order Closure Integrated Puff and HYSPLIT atmospheric transport and 

dispersion modeling systems (Bieringer et al. 2017, 106).  These applications are used by 

the Department of Defense (DoD) and the National Oceanic and Atmospheric 

Administration. (NOAA) (Bieringer et al. 2017, 106).  Even though this method is more 

capable than a simple back trajectory, it is still sensitive to meteorological inaccuracies 

and requires a high computational cost when there are a large number of concentrations 

observations (Bieringer et al. 2017, 106). 

The third and final category is the nonlinear optimization, which uses a forward 

model of transport and dispersion (Bieringer et al. 2017, 111).  “These iterative methods 
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implement a common set of steps: specify an initial population of trial solutions, compute 

the skill metric for each trial solution, modify the high-skill trial solutions, repeat until 

convergence” (Bieringer et al. 2017, 111).  This method works by running the model 

forward in time repeatedly in order to maximize the skill of the model and minimizing 

the error (Bieringer et al. 2017, 107).   

 
Figure 2.  A visualization of the second STE subcategory.  (A) a chemical is released in 

which a plume crosses a network of sensors; (B) shows the first step of the STE process 

where the winds are reversed and contaminant releases are made from the triggered 

sensor locations; (C) shows the STE process where again the winds are reversed and 

contaminant releases are made from the null sensor locations; and (D) illustrates the final 

step in the process where the inverse contaminant release information from the triggered 

and null sensors are combined to triangulate the source parameters (Bieringer et al., 

2017). 

 

 One of the most effective and extensively used tools for modeling atmospheric 

transport and dispersion is HYSPLIT (Stein et al. 2015, 2059).  The inspiration and 

foundation to create a trajectory program such as HYSPLIT started 1949 when the 
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Special Project Section of the U.S. Weather Bureau (now NOAA’s National Weather 

Service) “…was charged with trying to find the source of radioactive debris originating 

from the first Soviet atomic test and detected by a reconnaissance aircraft near the 

Kamchatka Peninsula” (Stein et al. 2015, 2061).  Over the last several decades, the 

HYSPLIT model has expanded from a simple single trajectory based on radiosonde 

observations to a model that can calculate how a parcel can be transport, dispersed, and 

deposited from local to global scales for several pollutants (Stein et al. 2015, 2059–61).   

The HYSPLIT computation is made up of three elements: (1) particle transport by 

the mean wind, (2) a turbulent transport component, and (3) the computation of air 

concentration (Draxler 2006, 385).  When calculating trajectories, the model uses a 

hybrid between the Lagrangian method, where your frame of reference (or grid) for 

calculating advection and diffusion moves with the fluid (or air parcel), and the Eulerian 

method, where your frame of reference (or grid) is stationary while the fluid (or air 

parcel) moves through it (Stein et al. 2015, 2059).  Examples of how the HYSPLIT 

model is used are tracking and forecasting the release of radioactive material, wildfire 

smoke, wind-blown dust, pollutants from various stationary and mobile emission sources, 

allergens, and volcanic ash (Stein et al. 2015, 2059). 

 

2.2 Atmospheric Regimes 

 Atmospheric regimes are generally defined as periodic large-scale spatial 

atmospheric structure and are a simple way to characterize atmospheric variability over a 

given region (Vrac and Yiou 2010, 1).  A regime can persist over an area from one to 

several weeks (Michel and Rivière 2011, 1730).  There are subjective and objective ways 
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to identifying different atmospheric regimes.  Using a subjective method requires a 

significant understanding of meteorological knowledge over the area of interest, whereas 

an objective method can rely on “clustering methods to automatically group together 

large‐scale atmospheric fields that are close to each other, and to create different clusters 

for fields that are very different from each other” (Vrac and Yiou 2010, 1).   

 

2.3 Model Data  

 Since the purpose of this study was to the compare the output of trajectories from 

a global numerical weather prediction (NWP) model and a high-resolution, limited area 

NWP model, this section will give background on the two NWP models being used.  The 

global model that will be tested is the National Centers for Environmental Prediction’s 

(NCEP) Climate Forecast System version 2 (CFS).  The archived datasets were retrieved 

from NOAA’s National Centers for Environmental Information (formerly the National 

Climatic Data Center).   

CFS went operational in March 2011 replacing the first version of CFS upgrading 

“nearly all aspects of the data assimilation and forecast model components of the system” 

(Saha et al. 2014, 2185).  CFS operates at one-degree grid spacing, roughly the equivalent 

of 100-km grid resolution, and has 64 sigma-pressure vertical levels (Saha et al. 2014, 

2186).  For retrospective forecasts, CFS is able to run on four different time scales (Saha 

et al. 2014, 2186).  The first time scale is a sub-seasonal time scale mainly used for the 

prediction of Madden–Julian oscillation and forecasts for the United States 2-6 weeks out 

(Saha et al. 2014, 2186).  The second time scale forecasts nine months out and is referred 

to as the “long lead” seasonal prediction (Saha et al. 2014, 2186).  The final two time 
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scales are decadal and centennial where the emphasis is less on forecast skill but more on 

climatology (Saha et al. 2014, 2186).   

The high-resolution model is NCEP’s Rapid Refresh (RAP) numerical weather 

model.  The RAP, “an hourly updated assimilation and model forecast system, replaced 

the Rapid Update Cycle (RUC)” in 2012 and version 2 of the RAP went operational in 

2014 (Benjamin et al. 2016, 1669–71).  The need for frequently updated, short-range 

NWP forecast products came from forecasters needing NWP models updating at or 

around the same time-scale they use to make decisions on issuing weather watches and 

warnings for rapidly changing weather events (Benjamin et al. 2016, 1669–70).  RAP 

operates at a 13-km grid spacing and 51 sigma vertical levels (Benjamin et al. 2016, 

1671).  Its horizontal domain is about 3.5 times larger than the RUC covering virtually all 

of North America, including Alaska and the Caribbean Sea (Benjamin et al. 2016, 1671). 

 

2.4 Clustering and K-Means 

 Clustering, a prevalent technique in any discipline that involves analysis of 

multivariate data, is used to objectively organize and group data into categories with 

measured or perceived inherent characteristics (Anil Jain 2010, 1).  It is a type of 

unsupervised machine learning, which finds structure in a grouping of unlabeled data 

(Anwiti Jain, Rajavat, and Bhartiya 2012, 627).  Jain (2010) explains clustering is used 

for three main purposes: (1) gain insight on the data to determine its underlying structure, 

(2) identify the degree of similarity through natural classification, and (3) a method to 

organize data and summarize it through cluster prototypes known as compression (Anil 

Jain 2010, 3).  Clustering algorithms can be divided into two groups: hierarchical and 
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partitional (Anil Jain 2010, 3).  The first category clusters data either bottom-up, where 

each data point is in its own cluster and similar data points/clusters are merged together, 

or top-down, where all data points start as one cluster and data is recursively divided into 

smaller, similar clusters (Celebi, Kingravi, and Vela 2013, 1).  The partitional method 

“finds all the clusters simultaneously as a partition of the data" and is favored when 

looking for pattern recognition in data (Anil Jain 2010, 3). 

One of the most popular and simple partitional clustering methods is the K-means 

method shown in Figure 3 (Anil Jain 2010, 1,3).  The algorithm starts with k number of 

centroids, randomly chosen within the data points (Celebi, Kingravi, and Vela 2013, 2).  

Next each data point is assigned to the nearest centroid by calculating the distance 

between the data point and centroid (Figure 3b).  The third step is to average the vector 

distance for all the data points in their respective clusters to find the new centroids by 

calculating the distance between the data point and centroid (Figure 3c).  The last two 

steps are repeated until all the points converge and cluster centers stop moving (Figure 

4e) (Celebi, Kingravi, and Vela 2013, 2).  The goal of K-means clustering is to minimize 

the squared error sum over all k clusters (Anil Jain 2010, 4).  In order to run the K-means 

algorithm, the user must define (1) number of k clusters, (2) cluster initialization, and (3) 

distance metric (Anil Jain 2010, 4).   

 Determining the number of clusters is not only the most important parameter, but 

also the most difficult one to define (Anil Jain 2010, 4,6).  The method used in this study 

to determine the appropriate number of clusters is called the silhouette score.  It evaluates 

the validity of the clustering to help determine the correct number of clusters (Rousseeuw 

1987, 53).  Two items are required to build silhouettes, (1) the partition obtained by some 
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clustering technique and (2) the collection of proximities (Rousseeuw 1987, 55).  This 

will calculate how well an object matches the clustering it is assigned to (Rousseeuw 

1987, 56).  A silhouette score will have a range from -1 to 1 where the object is 

mismatched if the score is -1, unsure what cluster the object belongs to if its 0, and the 

object is well-clustered the closer the score is to 1 (Rousseeuw 1987, 56).  This study 

used the “silhouette samples” and “silhouette score” functions from the Scikit-Learn 

library for Python. 

 

Figure 3.  Illustration of the K-means method (Anil Jain, 2010). 

 

2.5 Correction Methods 

 Once the trajectories for the RAP and CFS data were run, a series of post-

processing techniques were run to study the usefulness of these methods in improving the 
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performance of the low resolution CFS relative to the performance of the RAP.  This 

section provides background on the post-processing methods used in this study.  Each 

method described below is a type of supervised machine learning method and can be 

imported as functions in Python using the Scikit-Learn library (Pedregosa et al. 2011).   

The first post-processing correction method applied was linear regression.  It is a 

simple regression that finds the relationship between one independent variable (x) and 

one dependent variable (y) (Gang Su and Yan 2009, 9). “The dependent variable is called 

the response variable, and the independent variable is called the explanatory or predictor 

variable” (Gang Su and Yan 2009, 10).  The least squares estimation within the linear 

regression model finds the regression line that is “closest” to all the data points, known as 

a line of best fit (Gang Su and Yan 2009, 10–11).   

 The second post-processing technique utilized was Bayesian ridge regression.  

Since linear regression can have the tendency to overfit the model, ridge regression can 

be used to solve that problem (Bishop 2006, 9–10).  Overfitting a model means it is too 

well trained on the training data and therefore has a high variance so the model is likely 

not to perform well on the testing data (Bishop 2006, 6).  Ridge regression adds a bias 

constant which reduces variance estimates (Efendi and Effrihan 2017, 2).  Bayesian ridge 

regression is when the parameter estimate for the ridge regression model is estimated 

using the Bayesian method (Efendi and Effrihan 2017, 2–3).  “The method combines 

prior information about parameter (prior distribution of parameter) with the observed data 

(likelihood function) to obtain the information or distribution of parameter given data, 

posterior distribution” (Efendi and Effrihan 2017, 3). 
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 The final post-processing technique applied was random forest regression.  This 

method uses a training data set to build each decision tree and together those decision 

trees make the random forest (Boehmke and Greenwell 2019, 5).  A decision tree is a 

series of vectored decisions or branches that lead to a classification; each branch of the 

tree represents a decision, occurrence, or reaction as in shown Figure 4 (Livingston 2005, 

2; Boehmke and Greenwell 2019, 5).  The random forest takes all the outputs from each 

decision tree and the classification with the most votes is the final solution (Livingston 

2005, 1).  Once the random forest has been built using a training dataset, the remaining 

data (or out-of-bag data) is used to test the performance of the individual trees as well as 

the entire forest (Livingston 2005, 1–2).  “The average misclassification over all trees is 

known as the out-of-bag error estimate. This error estimate is useful for predicting the 

performance of the machine learner without involving the test set example” (Livingston 

2005, 2). 

 

Figure 4.  Visualization of how a decision tree works.  Image courtesy of Simplilearn. 
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2.6 Previous Research 

 Draxler (2006) reexamined a previous analysis from 1984 to compare trajectory 

outputs of a global and mesoscale model data to predict the transport and dispersion of 

tracer plumes over Washington D.C. (Draxler 2006, 383–84).  “The goal of this analysis 

is to use some historical experimental dispersion data appropriate over an urban area to 

evaluate how well routine meteorological model products in conjunction with a 

dispersion model could simulate pollutant releases” (Draxler 2006, 383).  The historical 

experimental data used was from the Metropolitan Tracer Experiment (METREX); it was 

“conducted for more than [one year] in 1984 around Washington, D.C., and its suburbs 

and consisted of hundreds of tracer releases with air samples collected from a few 

kilometers to about 75 km from the tracer source locations” (Draxler 2006, 384).   

The coarse-grid global meteorological data sets used in this study were the 

National Centers for Environmental Prediction (NCEP) reanalysis data and European 

Centre for Medium-Range Weather Forecasts 40-year (ERA-40) reanalysis data (Draxler 

2006, 386).  The high-resolution reanalysis data came from Pennsylvania State 

University–NCAR, fifth generation Mesoscale Model (MM5) (Draxler 2006, 386).  

These reanalysis data sets were then inputted into HYSPLIT and compared to 

measurements from the METREX experiment.  Results showed that for shorter distances, 

dispersion calculated using MM5 data performed better.  If only global data was available 

and needed to be used, ERA-40 out-performed NCEP-NCAR when it came to an 8-hour 

dispersion plume, but results were comparable for the 30-day sampling (Draxler 2006, 

392).  Draxler also found “that small changes in the wind direction with respect to the 
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tracer release location provided dramatic improvements in dispersion model 

performance” (Draxler 2006, 392). 

Ivatt and Evans (2020) researched improving the prediction of tropospheric ozone 

transport using gradient-boosted regression trees (Ivatt and Evans 2020, 8063).  They 

developed a predictor bias using GEOS-Chem, an atmospheric chemistry transport 

model, using outputs from the model and observations from both surface ozone 

measurements and ozone-sondes (Ivatt and Evans 2020, 8063).  Surface ozone 

measurements came from European Monitoring and Evaluation Programme, the United 

States Environmental Protection Agency (EPA), and the Global Atmospheric Watch, and 

were compiled between 2010 and 2018 (Ivatt and Evans 2020, 8064).  Ivatt and Evans 

developed the bias predictor by using hourly ozone observations from surface and ozone-

sondes measurements for the training period of 1 January 2010 to 31 December 2015 

(Ivatt and Evans 2020, 8065).   

The machine learning technique they used to develop a function to predict the 

model bias was the gradient-boosting regression, which is a type of decision tree 

regression.  “[G]radient-boosting regression relies on building a tree with a relatively 

shallow depth and then fitting a subsequent tree to the residuals” (Ivatt and Evans 2020, 

8066).  This process was repeated until the model was able to generalize the dataset 

without overfitting it (Ivatt and Evans 2020, 8066).  The technique was selected because 

of its ability to identify non-linear relationships found in atmospheric chemistry, its 

relatively quick training time, and finally it is highly scalable (Ivatt and Evans 2020, 

8066).  Their results showed the bias-corrected models performed considerable better 

than the uncorrected models (Ivatt and Evans 2020, 8076–77).  The methodology used in 
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this study could provide the starting point for a large-scale PM 2.5 and ozone case study 

described in section 5.3. 

 Cervone et al. (2008) studied the risk assessment of atmospheric emissions using 

machine learning.  They referenced current atmospheric transport and dispersion models 

are only able to provide emergency responders the general risk of contamination over the 

entire time period (Cervone et al. 2008, 991).  This paper focused on developing a 

methodology that would specify areas of risk under specific meteorological conditions 

using machine learning (Cervone et al. 2008, 991).  The information required for their 

methodology was data on the source characteristics, an extensive database of 

concentration measurements at several sampling points, and ensuring atmospheric 

releases occurred under different meteorological conditions (Cervone et al. 2008, 991).  

This information was run through several transport and dispersion simulations and a 

clustering algorithm was used to group those results according to specific cloud 

characteristics (Cervone et al. 2008, 991–92).  The results from the clustering algorithm 

were then inputted into a symbolic classification algorithm, which is a type of supervised 

machine learning “where the answer can be directly inspected and hence accepted or 

rejected” (Cervone et al. 2008, 995).  To test their methodology, Cervone et al. did a case 

study over the Istanbul channel using data from 2004 and running weekly transport and 

dispersion simulations resulting in 53 runs (Cervone et al. 2008, 996–97).  While they 

were able to identify areas that are at risk from a potential accident, they noted the paper 

focused on methodology rather than application and concluded that larger simulations 

would need to be run in order to increase statistical meaningfulness (Cervone et al. 2008, 

998–99). 
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 Yerramilli et al. (2009) examined three different atmospheric transport and 

dispersion simulations of air-borne releases from point elevated sources in the 

Mississippi Gulf coastal region (Yerramilli et al. 2009, 1055).  The simulation took place 

from 1-3 June 2006 during a typical summer synoptic set-up where there was easterly 

synoptic flow associated with a high pressure center over the subtropical North Atlantic 

Ocean (Yerramilli et al. 2009, 1058).  Each simulation used three different 

meteorological data sets that were then inputted into HYSPLIT (Yerramilli et al. 2009, 

1055,1060).  “The first two data [sets were] the NCEP global and regional analyses 

(NCEP’s Final Analysis and Eta Data Assimilation System) while the third [was] a meso-

scale simulation generated using the Weather Research and Forecasting [WRF] model 

with nested domains at a fine resolution of 4 km” (see their Figure 1) (Yerramilli et al. 

2009, 1055).  The emissions dataset was from the Mississippi Department of 

Environmental Quality (MDEQ) and the four major sources of pollution in the region that 

were considered were (1) Mississippi Power Company-Plant Jack Watson, (2) Chevron 

Products Company-Pascagoula Oil Refinery, (3) Mississippi Power Company-Plant 

Victor Daniels, and (4) Dupont Delisle Facility (Yerramilli et al. 2009, 1060).  Their 

results showed that the WRF was more successful at capturing the diurnal patterns along 

the coastline, such as land/sea breezes, whereas the other two datasets showed a relatively 

uniform plume dispersion (Yerramilli et al. 2009, 1067–68).  Additionally, “[m]odel 

concentrations with WRF data are closer to [MDEQ] observations up to 40 h and 

deteriorate thereafter” (Yerramilli et al. 2009, 1070). 

 Finally, Feng et al. (2019) investigated methods for improving tropospheric ozone 

forecasts in Hangzhou, China since it has become the primary atmospheric pollution for 
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that region in recent years (Feng et al. 2019, 366).  They first used a traditional 

atmospheric model, the WRF coupled with Community Multi-scale Air Quality (WRF-

CMAQ) and compared those results to results from machine learning models (Feng et al. 

2019, 366–67).  The four machine learning models Feng et al. tested were extreme 

learning machine (ELM), multi-layer perceptron (MLP), random forest (RF) and 

recurrent neural networks (RNN) (Feng et al. 2019, 367).  The hourly surface 

observations were measured at the Westbrook National Park, representing urban weather 

conditions and at Zhejiang Agriculture & Forestry University, representing rural weather 

conditions (Feng et al. 2019, 368).  Additionally, hourly atmospheric pollutants were 

measured at Westbrook National Park (Feng et al. 2019, 368).  Since Hangzhou 

experiences four distinct climates, Feng et al. made sure to run the WRF-CMAQ and 

machine learning models through daily simulations in January, April, July and October 

representing winter, spring, summer and autumn, respectively (Feng et al. 2019, 372).   

According to their results, the WRF-CMAQ simulations captured the tropospheric 

ozone episodes in late July and early October, but only got the minimum value on April 

7th and completely missed the episode from January 22nd to 26th (Feng et al. 2019, 372).  

Three out of the four machine learning methods out-performed the WRF-CMAQ, the 

exception being ELM (Feng et al. 2019, 372).  Additionally, they were able to deduce 

that the formation of tropospheric ozone tends to be non-linear and non-smooth because 

RF performed better than ELM (Feng et al. 2019, 375).  Feng et al. concluded that RNN, 

a method known for performing well at time series forecasting and characterization, 

performed the best out of all four of the machine learning models (Feng et al. 2019, 372). 
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III. Methodology 

 

 The purpose of this project is to compare performance of short-term (24-hour, 

from 18Z to 18Z) back trajectories using CFS model data (global, low-resolution) and 

RAP model data (regional, high-resolution).  These regimes will be learned from the data 

using the unsupervised K-means clustering technique.  Several methods will then be used 

to correct the CFS trajectory results to the RAP trajectory results.  It is assumed that, due 

to the higher horizontal and vertical resolution, the RAP trajectory results are more 

accurate in the light of recent studies comparing global model performance to regional, 

high-resolution model performance with modern verification techniques (Mittermaier 

2014, 202).  Additionally, this study only focused on the trajectories’ changes in latitude 

and longitude, and did not include changes in the vertical direction in the K-means 

clustering nor post-processing CFS correction techniques.  For back trajectories, the RAP 

analysis was utilized and the CFS analyses was used for back trajectory analysis.  The 

area of interest for this study was eastern CONUS covering the years 2015-2019.  The 

trajectory code was adapted from HYSPLIT for Python.   

 This study plotted daily back trajectories using CFS and RAP only on days when 

both CFS and RAP had data archived during 2015-2019 to ensure each model had the 

same number of days analyzed.  Similar to Zoellick (2019), a trajectory release grid was 

utilized, but for this study trajectories were released at half degree intervals over the 

CONUS from 34 to 42 degrees latitude and -100 to -85 degrees longitude leading to a 

release grid of size 17 by 31 points (Figure 5).  To capture the uncertainty of the method, 

50 trajectories were released from each grid point with random location error of +/- 5 km 
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and +/- 5 hPa resulting in over 1.5 million trajectory clouds released per model for this 

study.   

 
Figure 5.  The trajectory release grid utilized in this study.  Trajectories were released at 

half degree intervals over the CONUS from 34 to 42 degrees latitude and -100 to -85 

degrees longitude leading to a release grid of size 17 by 31 points.  The case study points 

were chosen to compare CFS and RAP performance. 

 

 After the trajectory data was compiled, the performance of the CFS relative to the 

RAP was analyzed by splitting up the 5 years of trajectory data into four groups, three 

months per group.  A simple two-dimensional Euclidean distance metric was 

implemented to examine the performance between the RAP and CFS to compare the 

relative spread in the 50 back trajectories release from each grid point (Figure 5).  Next 

the study utilized the K-means clustering technique, a type of unsupervised machine 

learning, to perform clustering of back trajectories across the entire domain.  In order to 

determine the best number of k clusters, the silhouette scores for different k values were 

calculated.   
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 With knowledge of the performance of the CFS relative to the RAP across 

different clusters in hand, the next step was to improve the performance of the low 

resolution CFS relative to the RAP using three different supervised machine learning 

techniques.  These techniques were only applied to the endpoints of the CFS back 

trajectories to primarily focus on the origin of the trajectories and lowers computation 

time.  Before each technique was tested, the five years of CFS back trajectory endpoint 

data was split into a training data set (three-fourths of the data) and a testing data set 

(one-fourth of the data).  Both data sets were statistically similar and incorporated days 

from all four seasons for the midlatitudes.  Additionally, the three correction methods 

were used on all data at once and the clustered data using the K-means clustering.  The 

motivation behind breaking the data up by unclustered and clustered was to investigate if 

the CFS back trajectory would perform better or not post-correction methods since 

clustering the data before applying a correction method requires a longer run time for the 

Python script. 

First simple methods were used, such as linear and Bayesian ridge regression then 

a more complex statistical technique, random forest regression was carried out.  To 

determine the best values for the random forest regression parameters, Scikit-Learn’s 

RandomizedSearchCV method, also referred to as hyperparameter tuning, was used 

(Bergstra and Bengio 2012).  By defining a matrix of hyperparameter ranges, the function 

randomly samples from the grid to perform several iterations of random forest regression 

until all the values in the matrix have been used.  Once complete, the method will return 

the best parameters to be used in random forest regression for the CFS back trajectory 

data.  
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IV. Results and Analysis 

 

4.1 Overview 

 HYSPLIT-based back trajectory Python code was run to calculate 24-hour back 

trajectories (18Z-18Z) for RAP and CFS data from 2015-2019 using a starting point grid 

that was 17 by 31 points (see Figure 5).  A total of 1,553 days were plotted during that 

five year window.  Each starting point had 50 trajectories released from the surface with 

random location error of +/- 5 km and +/- 5 hPa.  This chapter executes the methodology 

described in Chapter 3.  Section 4.2 compares model performances for CFS and RAP 

back trajectories and section 4.3 compares the results from the three different correction 

methods tested on the CFS back trajectories.  Section 4.4 analyzes a correction method 

results by cluster from K-means clustering and finally, section 4.5 investigates where in 

the CONUS domain a correction method was successful and unsuccessful. 

 

4.2 Comparing CFS and RAP Back Trajectories 

 Figures 6 and 7 shows an example of the output of one day’s worth of back 

trajectories for CFS and RAP, respectively.  For the figures to be more readable, only 144 

out of the 527 starting points were plotted overlaid with 50 released trajectories for each 

starting point.  Overall both Figures 6 and 7 are showing anticyclonic flow which a result 

of a high-pressure system center over Maryland (Figure 8).  The CFS back trajectories in 

Figure 6 show the highest amount of spread between trajectories originating at the same 

starting points in northern Mississippi and Alabama.  



 24 

 
Figure 6.  Example of a 24-hour back trajectory release for just one day of CFS data.  

Only 144 out of the 527 starting points are shown in this image and each starting point 

released 50 trajectories.  A point is plotted every 30 mins in each trajectory. 

 
Figure 7.  Example of a 24-hour back trajectory release for just one day of RAP data.  

Only 144 out of the 527 starting points are shown in this image and each starting point 

released 50 trajectories.  A point is plotted every 30 mins in each trajectory.  
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Figure 8.  06Z, 10 Feb 2019 surface analysis courtesy of NOAA. 

 

Figure 6 also show significantly less spread in back trajectories over Virginia, 

North Carolina and South Carolina closer to the center of the high-pressure compared to 

those same RAP trajectories in Figure 7.  While conclusions on CFS and RAP 

performance cannot be drawn from just one day’s worth of back trajectories, it is still 

important to note differences in daily CFS and RAP plots before looking at seasonal 

trends for each model over all 5 years’ worth of data. 

 To get a better understanding of how each model performed throughout different 

times of the year, all five years of the trajectory data were split up into four parts: (1) 

January, February, and March (JFM), (2) April, May, and June (AMJ), (3) July, August, 
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and September (JAS), and (4) October, November, and December (OND).  The majority 

of the figures to follow in this section will be showing the trajectory data analyzed in 

these quarterly segmented months. 

 Figures 9-12 compare the CFS (red) and RAP (cyan) trajectory mean and spread.  

Capturing the expected value of winds is problematic as the mean is subject to 

cancellation of winds from different directions.  Other methods (median and mode) over 

capturing the average are even more problematic due to even more severe lack of 

representativeness of the distribution.  All 50 trajectories were averaged for each starting 

point and the size of each point in the averaged trajectory is how much spread (or 

distance) there was between those 50 trajectories from that starting point.  Overall, the 

RAP trajectories show more spread than the CFS trajectories, especially over areas with 

higher terrain such as the Appalachians and the Ozarks.  This is likely due to the RAP 

trajectories experiencing more change in the vertical direction as a result of the terrain 

and getting above the planetary boundary layer and the RAP was more sensitive to the 

random location error applied to every trajectory released.   

 In Figure 9, both RAP and CFS trajectories overall are coming from the 

west/northwest, especially grid points located in the Midwest, which is consistent with 

the flow of mid-latitude cyclones moving west to east over CONUS.  Winter months are 

known for having more mid-latitude cyclones pushing through this region as the polar 

front jet (PFJ) moves equatorward.  Additionally, these northern tier RAP and CFS 

trajectory points exhibit the same about of spread based on trajectory point size, whereas 

RAP trajectories in Arkansas and Appalachian states show significantly more spread than 

the CFS trajectories as a result of complex topography in these regions. 
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Figure 9.  CFS (red) and RAP (cyan) trajectory mean and spread comparison plot for the 

months of January, February, and March.  All 50 trajectories were averaged for each 

starting point and the size of each point in the averaged trajectory is how much spread 

there was between those 50 trajectories from that starting point.  A point is plotted every 

30 mins in the trajectory. 

 

 There is a shift in direction for back trajectories in Figure 10 compared to 9; the 

majority of back trajectories are now originating from the south/southwest as a result of 

seasonal weather patterns starting to shift during these months as the PFJ moves back 

poleward.  The land heats faster than the water in the Gulf of Mexico causing a difference 

in air density and southern winds reflected in the back trajectories in the southern half of 

the grid points.  Some of the most southern grid points through Alabama and Georgia 

show the RAP back trajectories with larger spread and not traveling as far as the CFS 

trajectories.  In Iowa, however, there appears to be very little change in the trajectories’ 

direction during these months.  This is a consequence of averaging the trajectories and it 

indicates there is no dominant flow in this region in AMJ.   
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Figure 10.  Same information as Figure 9 except this plot is months April, May, and June. 

 

 In Figure 11, the back trajectories are overall showing an anticyclonic flow 

suggesting high pressure dominates this region during JAS.  Additionally, as the PFJ 

retreats poleward, it causes wind speeds to decrease, which explains why the back 

trajectories did not travel as far compared to Figures 9 and 10, specifically in Illinois, 

Indiana, and eastern Kentucky.  This is also an effect of averaging the back trajectories 

when there is no dominant flow.  In Arkansas, there is a significant disagreement between 

the RAP back trajectories and CFS.  The directionality for CFS back trajectories is 

directly from the southeast whereas RAP back trajectories tend to curve clockwise from 

the southeast back to the starting grid point.  Finally, over the Appalachians, the CFS 

back trajectories traveled further in 24 hours than the RAP trajectories, but RAP 

exhibited more spread. 
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Figure 11.  Same information as Figure 9 except this plot is months July, August, and 

September. 

 

 Back trajectories from both models in Figure 12 exhibit a very similar pattern 

shown in Figure 9 as seasonally the PFJ begins to move equatorward once again.  The 

CFS back trajectories for the northern half of the grid points performed generally the 

same as the RAP back trajectories with the exception of the trajectories that traveled 

further than RAP in Iowa and Missouri.  Once again, the areas with the largest difference 

in model performances was the Ozarks and the Appalachians where the RAP trajectory 

spread was the most significant.  These differences, and previously mentioned ones, in 

the CFS model’s performance compared to the RAP is what this study is striving to 

correct using the methods described in section 2.5.  
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Figure 12.  Same information as Figure 9 except this plot is months October, November 

December. 

 

 Figure 13-16 shows the analysis of all trajectories from every release grid point.  

The scatter plots on the left represent the distance between the first point and end point of 

the averaged 50 trajectories for each release grid point to compare the RAP results to the 

CFS.  The black line is plotted where RAP equals CFS.  The closer the points are to that 

line show when the models performed roughly the same.  In other words, the RAP and 

CFS trajectories traveled roughly the same distance.  The scatter plot on the right plots 

the average distance (or spread) between the end points for all 50 trajectories for every 

point on the release grid comparing the RAP to the CFS; and the black line represents the 

same information as the left scatter plots.  The larger the value, the higher the spread, or 

uncertainty inherent in the trajectories. 
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 Overall, there is much better agreement between the two models’ performances 

for distances between the first point and end point of the trajectories (left side scatter 

plots) than there is for the scatter plots on the right.  This indicates the CFS performed 

more closely to the RAP when it came to distances the back trajectories traveled, but was 

not as successful in displaying the same amount of endpoint spread as compared to the 

RAP.  Points that are further away from the black line, especially in Figures 13 and 14, is 

where this study seeks to improve the CFS’s performance using the correction methods 

described in section 2.5.  Also Figure 13 right-side scatter plot shows there are no points 

on the black line indicating that zero CFS back trajectories had the same averaged 

endpoint spread as the RAP; meaning the CFS performed very poorly compared to the 

RAP.   

Figure 15 is where the two scatter plot points are closest to the black, slope=1 line 

indicating JAS is when the CFS performed most closely to the RAP.  Comparing the 

endpoint distance scatter plot points in Figure 15 to Figures 13, 14, and 16, back 

trajectories traveling the least amount of distance for both models.  Additionally Figure 

15 endpoint mean spread displays the lowest for both models, which indicates trajectory 

spread relates to the distance a trajectory travels.   
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Figure 13.  The scatter plot on the left is plotting the distance between the first point and 

end point of the averaged 50 trajectories for each release grid point to compare the RAP 

results to the CFS.  The scatter plot on the right is plotting the average distance between 

the end points for all 50 trajectories for every point on the release grid comparing the 

RAP to the CFS.  The black line plotted represents when the RAP equals the CFS or 

when the models performed the same.  These plots are for January, February, and March. 

 

Figure 14.  Same information as Figure 13 except this plot is months April, May, and 

June. 
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Figure 15.  Same information as Figure 13 except this plot is months July, August, and 

September. 

 
Figure 16.  Same information as Figure 13 except this plot is months October, November, 

and December. 

 

 To analyze the RAP and CFS performance based on different atmospheric flow 

regimes, the back trajectories were inputted into a K-means clustering Python function.  

Based on the results of silhouette scores, the number of k clusters used were 4 and 8.  The 

results of the K-means clustering is shown in Figure 17.  Before the K-means clustering 

was calculated, all RAP and CFS trajectories’ starting latitudes and longitudes were 
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adjusted so they all had the same origin in order for the K-means clustering to be run 

more effectively.  This adjustment did not affect the relative distance from origin point of 

the rest of the points in the trajectories.  For example, if the back trajectory starting point 

was 32 degrees north latitude and -85 degrees west longitude and the end point in the 

back trajectory was 33.3 north and -85 west, 32 and -85 were subtracted from all 

trajectory points, giving a starting point of (0,0) and an end point of (1.3, -1).  The closer 

the CFS clustering is to the RAP clustering, the closer the CFS back trajectories 

performed to the RAP back trajectories.  Additionally, the size of the X’s and circles 

plotted in Figure 17 are a pictorial depiction of the spread in the clustered back 

trajectories for CFS and RAP, respectively.  It highlights the RAP back trajectories had 

more spread than the CFS trajectories because the change in the size of the X’s are more 

difficult to distinguish compared to the circles, representing the RAP’s spread.   

 When comparing the four cluster results (left) to the eight cluster results (right) in 

Figure 17, the spread per cluster for both models is larger when there are 8 clusters.  This 

figure also shows the further the clustered back trajectories traveled, the more spread 

there is for both CFS and RAP.  Additionally, clustered back trajectories traveled furthest 

when originating from the northwest to the southeast of the origin.  The quarterly 

segmented months for both cluster results generally show the clustered back trajectories 

originating from the same direction, but k = 8, the clustering shows trajectories that 

traveled two different distances from the same direction whereas the four clusters seemed 

to average those two distances. 
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Figure 17.  Results from the K-means clustering for the CFS and RAP back trajectories 

when k = 4 (right) and k = 8 (left).  The starting latitude and longitudes for the 

trajectories were modified to have the same origin for the clustering could be done more 

effectively; it did not affect the rest of the points in the trajectories.  The RAP back 

trajectories are the circle-shaped markers with size of the circle determined by mean 

spread per cluster.  The CFS trajectories are the X-shaped markers with size of the circle 

determined by mean spread per cluster. 

 

 Figure 18 shows similar results as Figure 17 except it is just focused on k = 4 and 

each of the quarterly segmented months are their own figure for easier analysis on CFS 

and RAP performances.  During JFM (cyan), CFS back trajectories in all four clusters 

travel further than the RAP trajectories but have very similar directionality except for 

back trajectories originating from the north-northeast relative to the origin.  CFS 

trajectories originate more northeast relative to RAP trajectories which did not travel as 

far as CFS trajectories and originated more from the north relative to the origin.   
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Figure 18.  Results from the K-means clustering just for k = 4 where each of the quarterly 

segmented months are their own plot.  The starting latitude and longitudes for the 

trajectories were modified to have the same origin for the clustering could be done more 

effectively; it did not affect the rest of the points in the trajectories.  The RAP back 

trajectories are the circle-shaped markers with size of the circle determined by mean 

spread per cluster.  The CFS trajectories are the X-shaped markers with size of the circle 

determined by mean spread per cluster. 

 

 AMJ (green) clusters show RAP back trajectories from the west having the 

biggest spread out of the four clusters whereas the CFS back trajectories showed very 
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little spread from this direction, but both models’ clusters travel the same distance in 24 

hours.  The remaining three clusters’ results for these months reveal the CFS back 

trajectories’ directionality did not line up with the RAP’s.  Additionally, clustered CFS 

back trajectories originating to the northwest of the origin exhibited the most spread 

compared to the other three clustered back trajectories for AMJ. 

 For JAS (red), clustered back trajectories had the smallest change in latitude and 

longitude, in other words traveled the shortest distance in 24 hours, compared to the other 

plots in Figure 18.  Additionally, all clustered CFS back trajectories had trajectories 

traveling further in 24 hours than the clustered RAP back trajectories.  The clustered RAP 

back trajectories also showed the smallest amount of spread compared to the other plots 

in Figure 18 which again indicates that trajectory spread might be related to distance 

trajectories travel as discussed with Figure 15. 

 Finally, the OND (gold) clustered back trajectories showed similar results to the 

JFM plot where trajectories from the northwest to the origin traveled the furthest in 24 

hours.  Additionally, CFS back trajectories originating from the northeast had the most 

difficulty performing like the clustered RAP back trajectories for that same cluster, 

similar to the JFM plot.  The clustered CFS back trajectories from the southwest and 

southeast traveled roughly half a degree further than the RAP trajectories. 

 

4.3 Correction Methods Applied to CFS trajectories 

 After the clustered CFS back trajectory results were analyzed and compared to the 

clustered RAP back trajectories, the correction methods were applied to the CFS 

clustered and unclustered data.  Three different correction methods that were tested and 
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described in section 2.5 were (1) linear regression, (2) Bayesian ridge regression, and (3) 

random forest regression.  The goal was to determine which correction method improved 

the low resolution CFS performance the best relative to the RAP.   

 The first metric used to measure how much the CFS improved was a two-

dimensional Euclidean distance approach where the distance between the CFS and RAP 

endpoints were calculated and compared to the distance between the corrected CFS and 

RAP endpoints.  If the distance decreased after a correction method was applied, that 

meant that correction method improved the CFS’s performance relative to RAP for that 

trajectory.   

The second metric used was a percentage metric created using the results from the 

first metric.  It calculated out of all the CFS trajectories inputted into the correction 

method, how much did the CFS endpoint distance change (or improve) relative to the 

RAP endpoint.  If the percentage was 0%, then the CFS trajectory endpoint stayed the 

same after a correction method was applied and therefore unsuccessful.  If the percentage 

was 100%, then the CFS trajectory endpoint was successful corrected to the exact 

location of the RAP trajectory endpoint.  The numbers presented in the following figures 

for all three correction methods are the total metric results for all the test trajectories 

combined. 

 

Correction Method: Linear Regression 

 Figures 19-21 shows the metric results from the linear regression correction 

method for each of the quarterly segmented months for unclustered and clustered CFS 

test trajectory data.  The first metric described previously is plotted as the bar graphs and 
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the second metric described is plotted as the black line graph.  Additionally, the CFS 

trajectory percentage improvement values can be found in Table 1. 

 
Figure 19.  The results for unclustered CFS test trajectories from the linear regression 

correction method.  The improvement metric for the endpoint distance comparison is 

plotted using bar graphs and its y-axis is on the left.  The improvement metric for how 

much the CFS trajectories improved by is plotted in the black line graph and its y-axis is 

on the right. 
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Figure 20.  Same information as Figure 19 except the CFS test trajectories are clustered 

using K-means clustering when k = 4. 

 
Figure 21.  Same information as Figure 19 except the CFS test trajectories are clustered 

using K-means clustering when k = 8. 
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Table 1. 

% Improved After Correction Method JFM AMJ JAS OND AVG % 

Unclustered CFS test trajectories 15% 19% 31% 22% 21.75% 

Clustered CFS test trajectories, k = 4 14% 19% 31% 23% 21.75% 

Clustered CFS test trajectories, k = 8 14% 20% 31% 23% 22% 

 

 Overall, based on results shown in Figures 19-21, linear regression demonstrated 

it can improve the low-resolution CFS back trajectory performance relative to high-

resolution RAP back trajectories.  As shown in all three plots and Table 1, the greatest 

improvement occurs in JAS and the smallest improvement in JFM.  Looking back at 

Figures 13, 15, and 18, JAS is where the mean (or spread) for CFS and RAP endpoints 

were smallest, and the trajectories traveled the shortest distance.  JFM is where the mean 

(or spread) for the endpoints were largest and trajectories traveled the furthest.  Which 

suggests how effective a correction method might be at improving the CFS is related to 

how far the back trajectories travel and how much spread there is endpoints for the CFS 

and RAP back trajectories.  While the percentages in Table 1 showed no statistically 

significant difference, the most improvement for CFS data was observed when it was 

clustered in eight groups shown in Figure 21.  However, computational time could be 

reduced since clustering the data beforehand did not produce results that were statistically 

significant. 
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Correction Method: Bayesian Ridge Regression 

Figures 22-24 shows the metric results from the Bayesian ridge regression 

correction method for each of the quarterly segmented months for unclustered and 

clustered CFS test trajectory data.  Same improvement metrics were used and calculated 

as described in the previous method and shown in Figures 19-21; and CFS trajectory 

percentage improvement values can be found in Table 2. 

 
Figure 22.  The results for unclustered CFS test trajectories from the Bayesian ridge 

regression correction method.  The improvement metric for the endpoint distance 

comparison is plotted using bar graphs and its y-axis is on the left.  The improvement 

metric for how much the CFS trajectories improved by is plotted in the black line graph 

and its y-axis is on the right. 
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Figure 23.  Same information as Figure 22 except the CFS test trajectories are clustered 

using K-means clustering when k = 4. 

 
Figure 24.  Same information as Figure 22 except the CFS test trajectories are clustered 

using K-means clustering when k = 8. 
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Table 2. 

% Improved After Correction Method JFM AMJ JAS OND AVG % 

Unclustered CFS test trajectories 15% 19% 31% 22% 21.75% 

Clustered CFS test trajectories, k = 4 15% 20% 31% 23% 22.25% 

Clustered CFS test trajectories, k = 8 16% 20% 32% 23% 22.75% 

 

Comparing Figures 22-24 results to Figures 19-21, Bayesian ridge correction 

method outperformed linear regression just slightly, although not statistically significant.  

Once again the biggest improvement in CFS back trajectories occurred in JAS and the 

smallest in JFM.  Furthermore, Bayesian ridge resulted in the highest CFS improvement 

when the data was clustered into eight groups shown in Figure 24, but percentages results 

in Table 2 were close enough in value where clustering data before applying the 

correction method did not greatly impact the results.  

 

Correction Method: Random Forest Regression 

Figures 25-27 shows the metric results from the random forest regression 

correction method for each of the quarterly segmented months for unclustered and 

clustered CFS test trajectory data.  Same improvement metrics were used and calculated 

as described in the previous linear regression method and shown in Figures 19-21; and 

CFS trajectory percentage improvement values can be found in Table 3. 
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Figure 25.  The results for unclustered CFS test trajectories from the random forest 

regression correction method.  The improvement metric for the endpoint distance 

comparison is plotted using bar graphs and its y-axis is on the left.  The improvement 

metric for how much the CFS trajectories improved by is plotted in the black line graph 

and its y-axis is on the right. 

 
Figure 26.  Same information as Figure 25 except the CFS test trajectories are clustered 

using K-means clustering when k = 4. 
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Figure 27.  Same information as Figure 25 except the CFS test trajectories are clustered 

using K-means clustering when k = 8. 

 

Table 3. 

% Improved After Correction Method JFM AMJ JAS OND AVG % 

Unclustered CFS test trajectories 14% 21% 30% 22% 21.75% 

Clustered CFS test trajectories, k = 4 12% 19% 30% 21% 20.5% 

Clustered CFS test trajectories, k = 8 12% 18% 30% 20% 20% 

 

 Comparing Figures 25-27 results to Figures 19-21 and 22-24, random forest 

regression correction was the least effective compared to linear and Bayesian ridge 

regression, which was interesting considering it is the most complicated machine learning 

technique out of the three this study used.  However, this is good news for the user 

because linear and Bayesian ridge regression requires less computational time to produce 

results than random forest regression.  JAS was once again the biggest improvement for 
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CFS trajectories and the smallest improvement in JFM.  Another difference between this 

correction method and linear and Bayesian ridge regression is that random forest was the 

most effective on improving the CFS trajectory performance when it was unclustered 

shown in Figure 25. 

 

4.4 Correction Method Improvement of Each Cluster 

 This section covers the improvement of each cluster for Bayesian ridge regression 

when k=4 during JAS.  The results shown in Figure 28 used the same metrics that were 

discussed in section 4.3, but now the x-axis is for each cluster rather than the different 

quarterly segmented months.  Figure 29 is the K-means clustering results for JAS from 

Figure 18 and each cluster is labeled to match the x-axis in Figure 28.  CFS trajectory 

percentage improvement values by cluster can be found in Table 4.   

 

Figure 28.  The results for clustered CFS test trajectories (k=4) from the Bayesian ridge 

regression correction method for each cluster.  The improvement metric for the endpoint 

distance comparison is plotted using bar graphs and its y-axis is on the left.  The 

improvement metric for how much the CFS trajectories improved by is plotted in the 

black line graph and its y-axis is on the right. 
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Table 4. 

% Improved After 

Correction Method 

Cluster 1 - 

West 

Cluster 2 - 

East 

Cluster 3 - 

North 

Cluster 4 - 

South 

JAS 24% 38% 28% 31% 

 

 
Figure 29.  Results from the K-means clustering just for k = 4 in JAS, same data as 

shown in Figure 18.  The clusters are numbered to correspond with the x-axis in Figure 

28. 

 

Clustered back trajectories that originated east of the origin had the highest 

percentage improvement.  Whereas the worst CFS improvement are clustered back 

trajectories that originated from the west and traveled the furthest out of the four different 

clusters, as shown in Figure 29.  These results suggest that CFS improvement percentages 
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are linked with how far the back trajectories traveled before the correction method, in this 

case Bayesian ridge regression, was applied, reaffirming what previous sections in this 

chapter indicated.  Section 4.3 showed the highest improvement in CFS back trajectories 

occurred in JAS where trajectories traveled the least amount of distance and displayed the 

least amount of spread as discussed in section 4.2.   

 

4.5 Correction Method Improvement by Spatial View 

 The data plotted in Figure 30 took the results from Figure 22 and put them on a 

map to show there the Bayesian ridge correction method was successful and where it was 

not for JAS.  Areas that are red means the correction method successfully corrected the 

CFS endpoint to closer to the RAP endpoint and areas that are blue are where the 

correction method was unsuccessful in correcting the CFS endpoint closer to the RAP.   

Overall, the correction method showed positive results over areas of flatter terrain 

and struggled over regions with changing terrain, such as the Appalachians and the 

Ozarks, which was expected considering the differences in model performances between 

the CFS and the RAP in these regions in Figure 11.  However, the correction method was 

surprisingly successful in West Virginia which is still part of the Appalachians.  This 

might be due to the averaged RAP back trajectories exhibiting less spread than the other 

trajectory points over the Appalachians shown in Figure 11, but this hypothesis will need 

to be studied further in future work.   
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Figure 30.  A map of where the Bayesian ridge regression correction method was 

successful (red) and unsuccessful (blue) averaged for all the testing days in JAS.  Positive 

values mean the corrected CFS endpoints is closer to the RAP endpoints compared to the 

original CFS endpoint locations.  Negative values mean the corrected CFS endpoints 

stayed in the same location as the original CFS endpoints or moved further from the RAP 

endpoints. 

 

 Areas where the correction method struggled that were unexpected were northern 

Ohio and southwest Iowa since these regions are relatively little change in terrain 

compared to the Appalachians and RAP spread in these regions compared to Arkansas or 

the Appalachians appears to be smaller in Figure 11.  The current hypothesis is southwest 

Iowa and northern Ohio are impacted by more frontal systems increasing the RAP 

trajectory distance making it harder for the CFS to correct to, but this will need to be 

investigated more in a future study. 
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 The next few images will compare the results from the case study points, 

referenced in Figure 5, to gain some insight as to possibly why the correction method was 

unsuccessful in southwest Iowa compared to northwest Alabama.  It is important to note 

that these case study results are intended to be a proof of concept for this methodology 

and a more robust case study needs to be done in a future study. 

 The data plotted in Figure 31 shows the distance between the first point and end 

point of the averaged 50 trajectories for each day in JAS in the testing data set.  The 

original distance between CFS starting and endpoints compared to the RAP are shown in 

orange, and distance between the CFS starting point and corrected CFS endpoint 

compared to the RAP is shown in blue.  The black line is plotted where RAP equals 

CFS/corrected CFS.  The closer the points are to that line show when the models 

performed roughly the same.  Results for the northwest Alabama point is on the left and 

southwest Iowa on the right. 

 

Figure 31.  The scatter plots are plotting the distance between the first point and end point 

of the averaged 50 trajectories for each day in JAS in the testing data set.  The black line 

plotted represents when the RAP equals the CFS/corrected CFS or when the models 

performed the same. 
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 When comparing the two scatter plots, they reveal the Iowa point back trajectories 

traveled further than the Alabama trajectories.  This suggests that earlier hypothesis of 

more frontal systems impacting Iowa causing the back trajectories to travel further might 

be the reason as to why the Bayesian ridge correction method was not as successful for 

this region.  In the Iowa scatter plot on the right, there appears to be a mirror-like flip 

between the orange and the blue points where the blue corrected CFS points are not any 

closer to the black line than the orange points.  Meaning that after the correction method 

was applied, the RAP trajectories traveled than the corrected CFS endpoint resulting in 

worse results post-correction.   

 The Alabama scatter plot on the left on Figure 31, on the other hand, shows most 

of the orange points above the black line indicating before the correction method was 

tested, CFS back trajectories traveled further than the RAP.  Post-correction method, the 

scatter plot shows a tighter clustering of blue points near and on the black line illustrating 

the corrected CFS endpoint performed more closely to the RAP.  When comparing the 

blue points for the Alabama point back trajectories to Iowa’s, it reaffirms the results 

plotted on Figure 30 where Bayesian ridge regression correction method was more 

successful in northwest Alabama than southwest Iowa. 

 The next figure shows an example of how this methodology might look 

operationally to the user trying to correct the low-resolution CFS back trajectories to the 

high-resolution RAP’s output.  These two plots again compare the results from northwest 

Alabama on the left, a successful example, to southwest Iowa on the right, an 

unsuccessful example.  Shown in the plots are the 50 back trajectories released for each 
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model, just like Figures 6 and 7, except for just one starting point.  RAP back trajectories 

are plotted in cyan and CFS in red, and CFS corrected endpoint, calculated based on the 

averaged CFS and RAP endpoint locations, is the black star.  In the Alabama example, 

the plot shows the corrected CFS endpoint is closer to the RAP endpoints than the 

uncorrected CFS, whereas in the Iowa example, the corrected CFS endpoint is actually a 

worse solution than the uncorrected CFS back trajectories compared to the RAP. 

 

Figure 32.  Example of how this methodology would be implemented operationally.  

Plotted are 24-hour back trajectories for northwest Alabama (left) and southwest Iowa 

(right).  Each starting point shows 50 trajectories released for each model, RAP (cyan) 

and CFS (red); and CFS corrected endpoint, calculated based on the averaged CFS and 

RAP endpoint locations, is the black star. 
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V. Discussion and Conclusions 

 

5.1 Summary of Results 

 Five years of short-term (24-hour) back trajectory data from 18Z to 18Z for CFS 

(global, low-resolution model) and RAP (regional, high-resolution model) were analyzed 

using K-means clustering, an unsupervised machine learning technique.  The back-

trajectories were released from a starting grid of 17 by 31 points (see Figure 5) from 34 to 

42 degrees latitude and -100 to -85 degrees longitude.  Each starting point had 50 

trajectories released from the surface with random location error of +/- 5 km and +/- 5 

hPa.  It was assumed that, due to the higher horizontal and vertical resolution, the RAP 

trajectory results were more accurate based on recent studies such as Mittermaier (2014).  

To get a better understanding of how each model performed throughout different times of 

the year, all five years of the trajectory data were split up into four parts, three months 

each: (1) JFM, (2) AMJ, (3) JAS, and (4) OND. 

Clustering was used to evaluate the performance for different meteorological 

regimes, or flow patterns.  The number of k clusters used was 4 and 8, which was 

determined by calculating the data’s silhouette score.  The results from both clustering 

sets showed that the further the trajectories traveled in 24 hours, the larger the spread (or 

uncertainty) for those clusters (see Figure 11).  Additionally, the RAP clustered 

trajectories displayed more spread than the CFS.  This is likely due to the RAP model 

being more sensitive to terrain and the random location error applied since it is a higher 

resolution model than the CFS.  Figures 9, 10, and 12 all confirmed RAP trajectories had 

the highest spread occurred in JFM and OND, whereas JAS exhibited the smallest spread. 
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Three different supervised correction methods were tested on the unclustered and 

clustered CFS data with the goal to see how effective the CFS model could be trained to 

perform similar to the RAP.  These methods were linear regression, Bayesian ridge 

regression, and random forest regression.  Overall all three methods resulted in the CFS’s 

performance improving relative to the RAP and while not statistically significant, the 

Bayesian ridge regression just outperformed linear regression and random forest 

regression.  Additionally, all three correction methods were most effective during JAS 

when the RAP and CFS trajectory spread was lowest and back trajectories traveled the 

shortest distance in 24-hours.  The correction methods performed the worst during JFM 

when the RAP and CFS trajectory spread was higher due to back trajectories traveling 

further in 24-hours.  Finally, when considering all the clusters together, the improvement 

percentages for unclustered vs clustered data were not statistically significant either, 

meaning these correction methods can be applied to data without needing to use K-means 

clustering.  Meaning that, when considering all flow regimes together, CFS improvement 

results can be achieved by using unclustered data and simpler machine learning 

algorithms, such as linear and Bayesian ridge regression, which decreases computational 

time for the user.   

Next the study analyzed Bayesian ridge regression improvements results for 

clustered back trajectories (k=4) in JAS by each individual cluster (Figure 28).  The 

results showed the highest improvement in CFS clustered back trajectories were when 

they originated east of the origin, which meant they traveled the shortest distance and 

exhibited the smallest amount of spread.  Whereas the worst improvement results 
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occurred in clustered CFS back trajectories originating to the west, and those traveled the 

furthest in 24 hours and had the largest spread.   

Finally, the JAS results shown in Figure 22 were plotted on a map to examine 

what areas the Bayesian ridge correction was successful at improving the CFS endpoints 

locations relative to the RAP and where it was unsuccessful (Figure 30).  Overall, the 

correction method was successful over areas of flatter terrain and less so over regions 

with changing terrain, which was not surprising considering how much spread the RAP 

back trajectories exhibited in those regions in Figure 11.  An unexpected area where the 

correction was unsuccessful was southwest Iowa where RAP back trajectory spread was 

smaller compared to the Appalachians.  When endpoint data from this region to a 

successful point in northwest Alabama, the Iowa back trajectories traveled further which 

suggests that might be the reason as to why the correction was not as successful.  

However, this last section of the results was meant to serve as a proof of concept for the 

methodology tested; a larger case study needs to be completed in a future study.   

 

5.2 Limitations 

 One limitation of this research was during the process of retrieving the archived 

RAP data, more than one version of the model was downloaded in order to obtain five 

years’ worth of data.  This meant that the CFS version 2 model data was being compared 

to many versions of the RAP model data, rather than just one version of RAP.  This could 

have impacted the percentage numbers in Tables 1-3.  Another limitation with the CFS 

and RAP data was that each model did not have data archived for every day from 2015-
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2019, and in order to accurately analyze both model’s performances, back trajectories 

were only plotted on days when both RAP and CFS had data archived.   

 

5.3 Future Work 

This study just focused on correcting the mean endpoint latitude and longitude.  

The next step would be to investigate correcting the difference in the amount of spread 

between the CFS and RAP as well.  Another area of future work would be to examine 

advanced machine learning techniques using neural networks, such as long-short term 

memory (LSTM) and convolutional LSTM neural networks to examine how those 

machine learning techniques would improve the CFS relative to the RAP.  Additionally, 

incorporating the back trajectories change in vertical direction into the clustering and 

machine learning algorithms to provide insight if this variable improves how well the 

CFS data can be improved when running machine learning algorithms.  Another focus for 

future work is to re-run the RAP back trajectories at one-degree grid spacing rather than 

13 km horizontal grid spacing, which is the same grid spacing as CFS, to examine a 

change grid spacing as it relates to back trajectory performance. 

Finally, this study focused mostly on testing different methodologies rather than 

application in an expansive case study such as testing the results on a STE case study 

using daily EPA PM 2.5 and ozone station data from the western plains area.  This is 

being proposed for two reasons: to have a clear distinction between “clean” and polluted 

areas that is more difficult to make to the east but also to bring the terrain of the Rocky 

Mountains to the west into the examination.   
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5.4 Conclusion  

 Overall the results from this study demonstrated that the CFS’s back trajectory 

performance can be improved using machine learning.  This study displayed that, in 

certain situations, computational costs can be reduced for operational forecasters by 

utilizing global weather model data for trajectory calculations versus running a custom, 

high resolution limited area model.  This method worked especially well during the 

summer months, when winds are weaker and trajectories travel a shorter distance.  The 

research accomplished in this study provides the framework methodology to apply to 

different machine learning algorithms or broader case studies to better understand 

relationships between different atmospheric regimes and implementing post-processing 

techniques to global models. 
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