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Abstract

PeakForce Atomic Force Microscopy (AFM) Quantitative Nanomechanical Measure-

ment (QNM) is utilized to measure the transverse fiber modulus of single strand

carbon fibers to less than 5% error for eleven types of carbon fibers, manufactured by

Mitsubishi, Toray, and HEXCEL, with longitudinal moduli between 924-231 GPA,

including export-controlled fibers. A positive linear correlation between the longi-

tudinal and transverse modulus with an R2=0.76 is found. Statistical and physical

criterion for outlier removal are studied and established to improve the quality of data

to exclude outlier measurement points in an image based on the peak force, adhesion

force, and indentation depth. Statistical and physical criterion are also developed to

exclude outlier images within the sample set.

Three alternative methods for calculating the transverse modulus using the raw

instrument data were studied. The first method approximated the indentation force

curve using the peak force and adhesion force values. This method calculated mod-

uli lower than that reported by the instrument and with no correlation between the

transverse and longitudinal modulus. The second method approximated the inden-

tation force curve using the peak force and net force zero point. This method found

values larger than that reported by the instrument and no correlation between the

transverse and longitudinal modulus. The final method performs a linear fit to the

measured indentation force curves at each indentation point. This method also found

values lower than reported by the instrument.

Pitch-based fibers are found to exhibit lower measurement error than PAN-based

fibers. Additionally, PAN fibers exhibited no apparent modulus correlation when

the Pitch fibers are excluded. Underlying reasons for this lack of correlation are

iv



explored, with the most likely reasons being the difference in long-range order in

the fiber microstructure and aging effects due to the different sourcing and storage

methods used for the PAN fibers. Low uncertainty characterization of the transverse

modulus supports greater understanding of fiber mechanical behavior, and would

allow fiber manufacturers to certify their fibers in both the longitudinal and transverse

axes. Additionally, it would improve the confidence in engineering estimates used by

industry and defense programs for transverse performance of carbon fiber-reinforced

composites.

v
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ERROR REDUCTION FOR THE DETERMINATION OF TRANSVERSE

MODULI OF SINGLE-STRAND CARBON FIBERS VIA ATOMIC FORCE

MICROSCOPY

I. Introduction

1.1 Background

Characterizing material behavior under various types of load is an essential step

in determining the suitability of that material for a specific use, whether it be within

industry or defense applications. Design requirements for future generations of indus-

trial machinery and high performance vehicles will almost certainly demand materials

that are simultaneously lighter and stronger, with greater resilience under thermal or

other environmental conditions, while maintaining low cost relative to other materials

with similar properties.

One of these novel materials, developed between 1960-1980 in Japan, the United

States, and Great Britain, is carbon fiber. Carbon fiber was developed to improve the

mechanical reinforcement in composite materials. Composite materials are engineered

to take advantage of the combination of multiple different material classes, such as

polymers, metal alloys, and ceramics. In the case of carbon fiber, it is utilized as a

reinforcement material within a resin matrix, allowing the production of a material

that possesses both low weight and high specific strength and specific modulus.

Carbon fibers are produced from one of three precursors: Rayon, Polyacrylonitrile

(PAN), or Pitch. Each of these precursors have slightly different production methods

and microstructures leading to a respective increase in the Young modulus. The
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improvement of production processes for these fibers has also led to steady increases

in the Young modulus of carbon fibers over time, as shown in Figure 1. Much of

this improvement has been due to research into the microstructure of the fibers and

its correlation to mechanical properties [1]. Since the mid-1980s, manufacturers have

continued the development of higher modulus fiber, with Pitch-based fibers having

Young moduli as high as 935 GPa [2]. Additionally, manufacturers have pursued

efforts to reduce unit cost and improve production efficiency in order to expand the

market for carbon fibers, to the point where modern fibers are used in products from

bicycle frames to ballistic missiles.

The Young modulus shown in Figure 1 and referenced in the majority of manufac-

turer specifications is the longitudinal fiber modulus, the stiffness parallel to the axis

of the fiber. The figure compares the properties of the WYB and VYB Rayon fibers,

shown by the solid lines, developed in the 1960s with the properties PAN and Pitch-

based fibers, shown by the dotted lines, developed since the 1970s. This behavior

is relatively simple to characterize by traditional methods of applying an increasing

load on the fiber until deformation and fracture. The transverse modulus, that is

the stiffness perpendicular to the fiber axis, is more difficult to characterize due to

the very small fiber diameter, the convolution of fiber and composite load sharing,

and the large relative errors associated with measurement in previous studies. Addi-

tionally, different measurement methods have shown significantly different results for

the transverse modulus, leading to uncertainty in whether a given method is in fact

accurate at all [3, 4, 5]. These factors motivate this research and demonstrate that

there is a continued need for more consistent methods to determine fiber transverse

modulus behavior.
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Figure 1. Evolution of the Young modulus for different carbon fibers during the 1960-
1985 period [1]. Reprinted with permission from John Wiley & Sons Inc.

1.2 Motivation

As the industrial development of carbon fiber has increased its utility in many

industries, and proven to be an efficient and cost-effective way of achieving a combi-

nation of strength, flexibility, and low cost, it has begun to compete with other high

performance materials for defense and nuclear applications. Specifically, its strength

and heat resistance make it an excellent material for use in uranium enrichment cen-

trifuges. While low velocity centrifuges, with low separative work capacity, can be

fabricated from more common metallic alloys, the highest performance centrifuges

require very high rotational velocities, necessitating the use of more exotic materials

like carbon fiber.

In order to prevent the use of high-performance centrifuges by states seeking

to develop nuclear weapons, the International Atomic Energy Agency has added

carbon fibers with specific material properties to its export control regimes. These
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export controlled limits are defined for “carbon ‘fibrous or filamentary materials’,

having all of the following: 1. A ‘specific modulus’ exceeding 12.7 x 106 m; and

2. A ‘specific tensile strength’ exceeding 23.5 x 104 m” [6]. While the centrifuges

themselves are export controlled, it is also possible to fabricate them locally, and so

materials such as carbon fibers must also be controlled. To verify that these export

controls have not failed it is necessary to check compliance via regular inspection,

which include forensics samples that could contain a variety of useful materials, such

as uranium particles or carbon fiber fragments, which would arise from normal wear

on the centrifuges in a facility or due to accidental release. A method of measuring

these small fiber fragments to compare against the export control limits is necessary,

but conventional methods of mechanical testing are limited and likely are infeasible

for such small fiber fragments.

In order to address the need to support forensic verification of carbon fiber prop-

erties, an alternative method of testing must be developed. This study seeks to

continue the development of the method initiated by Veigas, in which an Atomic

Force Microscope is used to perform nanoindentation measurements of carbon fiber

fragments [3].

1.3 Problem Statement

This research addresses the problem of how to reduce the error associated with

the PeakForce Quantitative Nanomechanical Measurement (PF-QNM) procedure for

determining the carbon fiber transverse modulus to demonstrate this method for the

full range of commercially available carbon fibers.
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1.4 Research Objectives

The objective of this work is to develop and demonstrate a method for reducing the

measurement error associated with a previously developed PF-QNM AFM method

for determining the transverse Young modulus for a variety of single-strand carbon

fibers fragments [3]. This work will be accomplished through three research objectives

that expands the applicability of previous work to a broader range of fibers.

1.4.1 Decreasing Uncertainty via Statistical Methods

A data post-processing method will be developed to allow for the direct analysis

of instrument raw data and manipulation using statistical approaches to reduced

measurement error associated with the currently developed technique. This post-

processing method will be demonstrated and compared against the study by Veigas

in which the PF-QNM method of transverse modulus measurement was developed [3].

The method will also be used to produce further modulus characterization for high

and very high modulus fibers.

1.4.2 Measure Fiber Transverse Modulus

The transverse modulus of a variety of carbon fiber samples will be determined

via PF-QNM AFM measurement. These samples will be taken from those used for

previous method development in order to compare results and validate the post-

processing procedure, as well as from a broad range of other carbon fibers to test

the application of the method to high and very high modulus carbon fibers that are

export controlled.
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1.4.3 Determine the Influence of Fiber Microstructure on Fiber Trans-

verse Modulus

PAN and Pitch-based carbon fiber transverse moduli will be measured and com-

pared to the theoretical prediction of longitudinal-transverse modulus behavior. If the

Pitch-based fibers deviate from the predicted behavior, a review of the literature on

fiber microstructure will be presented in order to explain this behavior phenomeno-

logically.
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II. Theory

2.1 Overview

This chapter provides an overview of the relevant background material to under-

stand the state of the fields of science and engineering necessary for this study. It

describes the theory of operation and engineering applications of AFM and the PF-

QNM method. Additionally, this chapter addresses the various sources of error in

AFM measurement and the approaches used in the field for limiting measurement er-

ror. It also develops the mathematical models and simplifying assumption of surface

contact mechanics on which the PF-QNM method relies. Finally, the details of car-

bon fiber production and fiber microstructure are described in order to differentiate

the Pitch and PAN fiber types and demonstrate the underlying physical phenomena

that lead to their different mechanical properties.

2.2 Atomic Force Microscopy and PeakForce Quantitative Nanomechan-

ical Measurement

2.2.1 Theory of Instrument Operation

Atomic Force Microscopy is a relatively young instrumental technique, having

been invented in 1985 to overcome the primary limitation of Scanning Tunnelling

Microscopy, which could only image a conductive sample. The mechanism for imaging

is the interaction between the sample and the AFM tip via near-field forces, such

as interatomic short-range forces, Van der Waals dipole interactions, electrostatic

forces, and capillary forces [7]. The first three of these forces serve as the means of

interaction by either attraction or repulsion between the tip and sample as a function

of distance, while for dry samples capillary forces are a source of error in the true
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tip-sample interaction, and are minimized by operation in a controlled atmosphere

glovebox.

The combination of these forces produces a deflection of the AFM cantilever,

which must be balanced by the cantilever spring force, as shown in Figure 2. For a

known cantilever spring constant kN and a measured z-axis deflection, the tip-sample

interaction force can be measured precisely. Detection of the cantilever deflection

and production of an image is done via laser reflection from the cantilever onto a

photodetector, as shown in Figure 3. The laser is reflected onto a four quadrant

photo detector, allowing for determination of z-axis deflection.

Figure 2. Tip-Sample-Cantilever Force Balance [8]. Reprinted with permission from
Wiley-VCH Verlag GmbH & Co. The external force on the tip Fext is the product
of the cantilever spring constant kN and the change in cantilever height ∆z, while the
internal forces (to the tip-sample interaction) are those of repulsion and attraction,
Frep & Fattr.

PeakForce Quantitative Nanomechanical Measurement is a proprietary instrumen-

tal method developed by the Bruker Corporation as an additional imaging mode for

their suite of AFM instruments. It utilizes the PeakForce Tapping method of imag-

ing, which utilizes a piezoelectric material to oscillate a cantilever in the z-axis at its

resonant frequency and “tap” the sample surface with a very small tip mounted on

the cantilever as it is translated across the x and y axes. The maximum tip-sample

interaction force, or “PeakForce”, is used as a feedback loop parameter to maintain

the oscillation and properly track over any surface roughness features or material

8



Figure 3. Laser Deflection by AFM Cantilever onto Photodetector [8]. Reprinted
with permission from Wiley-VCH Verlag GmbH & Co. The variables t, l, & w are
the dimensions of the cantilever, h is the height from the tip vertex to the top of the
cantilever and A, B, C, & D define the quadrants of the photodetector.

changes, which would result in a deviation from the expected constant PeakForce

value.

Figure 4 shows the typical behavior of the force interaction between the tip and

sample as a function of time at one image pixel. At each imaging point the tip must

be brought into contact with the surface, which is the behavior from 0-200µs. There

is then a small “jump-to-contact” force that occurs when the tip is close enough to

the surface for attractive near-field forces to dominate. Once the tip is in contact with

the surface, beginning at ∼225µs, the applied tip force results in a large increase to

the peak force value at ∼500nN. After reaching this value, the tip is retracted. The

negative force peak at ∼350µs is due to adhesion forces between the tip and sample.

Finally, the tip is drawn sufficiently far from the surface that the interaction force

returns to zero.

A more useful method for displaying the tip-sample interaction is in terms of the

force as a function of separation distance from the sample, as shown in Figure 5. This
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Figure 4. Tip-Sample Force vs. Time [9]. The left of the peak force is the downward
movement to engage the sample, and the right of the peak force is the retraction from
the sample. The peak force is much larger than the adhesion force. Reprinted with
permission from Bruker Corporation.

method describes the interaction in a manner similar to the mechanical stress-strain

curve, where the applied stress and resulting length change strain for a sample is

plotted. For the force curve, the retract curve in red is used for the measurement

of the sample modulus, with the slope of the curve between the absolute maximum

and minimum force being the fit region. The use of the force curve for modulus

measurement is described in more detail in later sections.

2.2.2 Analysis of AFM Force Curves

The force-distance curves produced by the interaction between the tip and sample

is the fundamental measurement produced by the AFM in the PF-QNM method, and

so it is insightful to understand the actual behavior of the force curves underlying

the AFM image. Figures 6 and 7 show this behavior for a 128x128 image consisting

of 16,384 indentations, with each vertical line along the Height Sensor axis showing

the range of tip force, while the force curve line is plotted along the average force at

each value of tip height. At 200nm, the tip has achieved the PeakForce setpoint and
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Figure 5. Separation Distance vs. Tip-Sample Force [9]. This curve is essentially Figure
4 folded across the peak force value and plotted against z-axis height. The blue curve is
the engage curve, while the red curve is the retract curve. Reprinted with permission
from Bruker Corporation.

begins retracting. From 400-0nN, the force curve is characterized by generally linear

behavior, and is analogous to the elastic region of a stress-strain curve. The linear

region also shows discontinuous behavior around the peak force maximum, which is

excluded from the force curve for calculations of the transverse modulus. As the tip

force becomes negative, indicating the tip has begun retracting from the sample, the

force curve is characterized by a near-field adhesion force, with the minimum force

value measured as the adhesion force. Finally, the tip fully separates from the sample

and retracts, where it is no longer of interest.

It can be clearly seen that the region of tip-sample interaction is characterized by

large relative variation in the net tip force. The region of largest absolute variation

is at the maximum force, in addition to showing discontinuous behavior as the tip

retracts from the maximum force. Additionally, the z-axis distance where the adhe-

sion force minimum occurs, and the width of the region, is also seen to vary from

indentation to indentation, though this cannot be demonstrated on Figure 7. This

variation in adhesion may be due to a number of factors, including sample topography
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Figure 6. Average Force Curve.

Figure 7. Average Force Curve, Final 40nm.
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and deviations from the indentation direction from the ideal surface normal.

For the application of the PeakForce Tapping method to the determination of

mechanical properties, the relation between applied force and separation distance,

shown in Figures 6 & 7, becomes useful since it contains information analogous to a

stress-strain curve used in macroscopic materials analysis. In the case of PF-QNM,

the slope of the force-distance curve is combined with the geometric properties of the

AFM tip to determine the sample modulus using an analytical contact mechanics

model, which will be described later. By performing this analysis at all points of a

PF-QNM image, the modulus can be used as a means of generating image contrast

for differentiating materials. This method can also be used to determine the aver-

age modulus of a sample of a known material by performing many nanoindentation

measurements. An advantage of PF-QNM is that it allows for the measurement of

microscopic samples and the performance of many more indentations due to the small

indentor size.

The range of force values at each point in the AFM image, however, indicates

that the method of fitting the slope of the force curve is sensitive to the variations in

the tip force across the measured surface. Since the peak force, minimum force, and

indentation depth will all vary at every point, the material modulus determined from

each force curve will vary. Decreasing the variation associated with these different

portions of the force curve is critical to minimizing the measurement error of the

PF-QNM method.

2.3 Sources of Error in Atomic Force Microscopy

As in any instrumental technique, AFM measurements are influenced by sources

of error that can be intrinsic to the specific instrument, the AFM technique itself, or

deviations induced by the operator or environment. Marinello, et. al. proposed a

13



taxonomy for the classification of error sources in AFM measurement and a model for

how these sources can be characterized and measured. The four sources of error in

AFM measurement are the scanning system, the tip-surface interaction, the environ-

ment, and the data processing technique, each of which can present multiple different

distortions of the true sample image [10].

Distortions due to the scanning system are caused by variation in the photodiode

signal produced by lateral motion of the piezoelectric scanner. The three modes

which can cause these distortions are scaling of the scanned topography, piezoelectric

hysteresis, and scanner cross-talk. Topography scaling error arises from a poorly

calibrated scaling coefficient to correct for the difference between the real tip position

and the measured tip position. The linear model of the correction coefficient is shown

below, where x’ is the measured coordinate and x is the correct coordinate.

cxx′ =
∂x

∂x′
(1)

While non-linear scaling error is possible for some AFMs, the Bruker Dimension

Icon AFM used in this study does not present this contribution due to its closed

feedback loop. Closed feedback loop AFMs have been characterized as presenting po-

sition distortions <1% relative to the measured range in position for the entire image.

Piezoelectric hysteresis is due to different material properties and dimensions of the

materials used to in the scanner system. This variation is described as the sensitiv-

ity, which is the ratio between the piezo movement and piezo voltage. The scanner

exhibits more sensitivity at the extreme range of the scanner, and so voltage instabil-

ities will result in larger movement deviations. This sensitivity can be minimized by

accounting for instrument warm-up time, which allows the piezoelectric material to

condition to the applied voltage. Piezoelectric creep also causes deviation due to drift

when an offset voltage is applied, such as for a large change in position. This can be
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minimized by accounting for where the creep effect will be greatest in the image and

removing that section of the image during post-analysis. Finally, scanner cross-talk

occurs due to correlation between coordinate motion in 3D, which results in drift in

one axis when the scanner moves in another. It is of greatest concern in open feedback

loop AFMs, but can be present in closed loop systems, and presents most significantly

when imaging curved surfaces, so that minimizing this source of error is limited both

by the instrument and the topography of the sample being measured [10].

Tip-surface interaction distortions are caused by overshoot, mode switching, and

convolution. Edge overshoots arise from improper hysteresis and creep compensation

in the z-axis piezoelectric, and can be reduced through variation of the feedback loop

gain. Mode switching arises in intermittent mode (tapping) due to jumps between

repulsive and attractive behavior. Convolution arises from the convolution of the

tip geometry with the surface topography to produce an image that combines both.

This becomes more significant as the tip dimension approaches the measured feature

dimension, and can vary over time due to tip degradation and contamination [10].

This convolution can be minimized by ensuring a sufficiently sharp tip relative to the

surface roughness and periodic recharacterization of the tip shape to prevent overuse.

Environmental errors arise from complex instrument-operator-room interactions,

exemplified by drift and noise. Drift is the gradual uncontrolled movement of the

system over time and can be recognized by a varying misalignment producing shifts

in the z and x directions. It is most prevalent during room temperature changes.

Drift velocities are usually between 30-100 nm/hr (or ∼1 nm/min), with 10 nm/hr

being the effective minimum limit. Drift is of concern in closed-loop scanners, since

the tip position is determined based on a reference frame. Initial drift generally

decays over time, and so a ”warm-up” period is employed. Noise effects are caused

by many interactions, including mechanical, vibrational, acoustical, and electrical.
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Some can be minimized via insulation and dampening, but generally are unavoidable.

Filtering of noise can be performed, but also leads to loss of information from the

measurement [10].

Data processing distortions arise from the digital image processing performed

by the instrument, and can result from the filtering and leveling methods due to

their application to all data points in an image. Filtering is performed in three

ways. Statistical filtering is used for noise removal via averaging, median filtering, or

conservative reduction. Fourier filtering is used for frequency dependent noise. Outlier

filtering allows for elimination of artifacts and unwanted features due to anomalies

such as dust particles, but can be misleading since the true image data is replaced

by a software generated value. Data leveling is performed by instrument software to

remove the instrument slope from image data. Routines compute the best fit plane

for the measured data and subtract it from each data point. This produces two errors.

Cosine error results in an angle dependent shrinking of the total topography (1-cosβ).

This distortion is not constant over the image plane, but is proportional to both the

x-position and the local height. Surface topography deformation results when each

scan line is adjusted by a given parameter with respect to adjacent lines (in the fast

scan direction), leading to a flattening of the image in the slow scan direction. This

is due to the applied flattening not being based on the real measurement value [10].

All of these sources of measurement deviation can be controlled or adjusted to

some degree, however simultaneous characterization and control is challenging, re-

quiring a complete characterization of the instrument with a known standard. For

the PF-QNM method used in this study, it is important to understand the scale on

which scanning system and tip-surface interaction errors present themselves in the

z-axis, since an inaccurate z-axis measurement results in both an inaccurate inden-

tation depth and an inaccurate tip radius. Tip-surface convolution is an important
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source of error in tip shape characterization, which will be described later. For the

study of carbon fibers, which have both a macroscopic curvature and microscale sur-

face roughness, the influence of tip-surface interaction errors from mode switching

and of scanner deviations due to axis cross-talk may also contribute to uncertainty

in a measurement. Statistical measurement error will also arise from the hundreds of

individual nanoindentation measurements performed during the PF-QNM method,

and so an appropriate distribution must be used to determine the standard deviation

for these measurements. Finally, this study proposes to develop a method of image

data processing that is performed outside of the instrumental analysis software, and

so should avoid errors arising from filtering and leveling methods applied by that

software, which are not clearly described in the instrument software guide. Other

error sources are expected to arise during this alternative data processing, however,

and will be appropriately characterized.

2.4 Contact Mechanics Modeling

While the interaction between the AFM tip and the sample prior to contact can

be modeled by the short-range force interactions described earlier, the contact forces

after the tip begins indenting the sample surface must be determined using the models

of contact mechanics developed for macroscopic objects. In the case of the Bruker

PF-QNM method, the two models utilized are the Derjaguin, Muller, and Toporov

(DMT) model and the Sneddon model. The Sneddon model is based on a conical

indentor with no adhesion force, and is not applicable for this study [11]. The DMT

model, on the other hand, is an extension of the Hertz model of contact between

two hard spheres, which was the earliest analytical solution for contact forces [12].

The DMT model extends the Hertz model by accounting for adhesion forces, though

this is limited to frictionless adhesion. The DMT model has also been extended to
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many other indentor shapes, including the paraboloid indentor that is assumed in the

Bruker DMT model [13].

2.4.1 Contact Mechanics for Nanomechanical Measurements

The physical mechanism used by the PF-QNM method is effectively the same as

that used for macro-scale mechanical measurements and microindentor instrumental

methods, in which a compressive force is applied over some surface area of the sample

and the deformation distance is measured, as shown in Figure 8. From the applied

values and the measured deformation, the compressive modulus can be determined

as

E =
σ

ε
=

F/A0

∆L/L0

=
FL0

∆LA0

(2)

where σ is the mechanical stress, ε is the mechanical strain, F is the force applied by

the indentor, ∆L is the indentation distance, L0 and A0 are the sample thickness and

indented surface area, respectively.

Figure 8. Diagram of Stress-Strain Deformation Mechanics [3].

This simple model is sufficient for macroscopic samples, such as those used in

mechanical testing of engineering alloys, which can be shaped to precise thicknesses,
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and for indentors with precisely known indentation area. The PF-QNM method of

nanoindentation using the AFM, however, is not able to apply this model due to the

geometry of the indentor tip and the imprecision in the sample thickness. The DMT

Model of surface contact mechanics, introduced earlier, provides the mechanism for

determining the mechanical interaction between the AFM tip and the sample.

The DMT model of contact mechanics was originally developed in 1975 as a model

for determining the surface interaction mechanics between an elastic spherical particle

and a rigid surface. It extends the Hertz model developed in 1881 by accounting for

adhesion between the particle and the surface [12]. For the two interacting objects,

there are two balanced force components, the repulsive and attractive forces. The

DMT model gives the attractive force as

Fe =
4R1/2E

3(1− ν2)
α3/2 =

4E∗

3

√
Rα3 (3)

where Fe is the elastic repulsive force applied by the surface to the sphere, R is the

radius of the sphere, E is the elastic modulus of the sphere, ν is the Poisson’s ratio of

the sphere, E∗ is the sample reduced modulus, and α is the indentation depth. The

repulsive force is given by

Fg = πRφ(ε) (4)

where Fg is the molecular attraction force applied by the surface to the sphere, and

φ(ε) is a material dependent repulsive interaction potential that varies with α, but at

large α becomes constant [12]. Since the repulsive/attractive labeling of these forces

is merely a convention for conceptually balancing forces, the labels could be reversed

if the surface is assumed to be elastic and the tip rigid, as shown in Figure 9, without

affecting the mathematical particulars of the derivation.
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Figure 9. Diagram of Rigid Paraboloid Tip Indenting an Elastic Surface [9]. F is the
applied tip force, R is the radius of curvature of the tip, δ is the indentation depth, a
is the tip radius at δ.

The assumption underlying the early development of the DMT model required an

elastic spherical indentor and a rigid surface, such that the forces described above

could be used to determine the interaction surface area and the pressure incident on

the rigid surface. The DMT model has been extended over time to allow for the use

of other indentor shapes, including any indentor shape with a power law profile of

the form,

f(r) = crn (5)

where r is the indentor tip radius, c is an arbitrary constant and n is any positive real

number. This study utilizes the power law indentor profile formulation to determine

a numerical approximation of the AFM tip radius at any indentation depth.

As described earlier, the PF-QNM method applied using the AFM instrument

uses a peak applied tip force value as a constant feedback loop parameter, while

measuring the z-axis tip movement as the tip indents the sample. The DMT model

allows for the calculation of the sample surface elastic modulus if the AFM tip is
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assumed to be rigid relative to the sample. This necessitates correct tip selection

for a sufficiently hard tip relative to the sample so that this approximation can hold.

Finally, the PF-QNM method is also capable of measuring the adhesion force as the

tip withdraws from the surface, which avoids the difficulty of determining an accurate

analytical form of the repulsive interaction potential between the tip and sample.

2.4.2 Error in the DMT Modulus Calculation

The DMT model described by Equation 3 can be solved for the Young’s modulus

to give the following:

E =
3(Fpeak − Fadh)(1− ν2)

4
√
Rα3

(6)

where Fpeak is the maximum applied tip force and Fadh is the adhesion force. These

force values define the point on the AFM indentation force curve between which the

Young’s modulus is the slope. The Peak Force AFM is capable of imaging using

measurements of the peak tip force, adhesion force, and indentation depth, each of

which will have their own variation about some mean value. In the case of the peak

force, the mean value will be the peak force setpoint, and the instrument will attempt

to maintain a constant peak force through a feedback loop. The indentation depth

and the adhesion force will themselves vary based on the feedback loop. Additionally,

the tip radius is a function of indentation depth. By characterizing the variation

in each of these secondary image measurements, and using error propagation on the

DMT modulus equation, a theoretical minimum variance bound can be derived.

∂E

∂Fpeak
=

3(1− ν2)
4
√
Rα3

∂E

∂Fadh
= −3(1− ν2)

4
√
Rα3
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∂E

∂ν
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3(ν − 1)(Fadh − Fpeak)
2
√
Rα3

∂E

∂R
= −

3(1− ν2)(Fadh − Fpeak)
(
α3 + 3Rα2 dα

dR

)
8(Rα3)3/2

∂E

∂α
= −

3(1− ν2)(Fadh − Fpeak)
(
3Rα2 + α3 dR

dα

)
8(Rα3)3/2

σ2
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∂E

∂Fpeak
σFpeak

)2
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(
∂E

∂Fadh
σFadh

)2

+

(
∂E

∂R
σR

)2

+

(
∂E

∂α
σα

)2

+

(
∂E

∂ν
σν

)2

(7)

The theoretical minimum variance, Equation 7, for any DMT modulus measure-

ment can be compared to the actual variance to test the measurement precision

against the absolute limit based on the tip-sample interaction. Two important terms

in this theoretical error are the uncertainty in the Poisson ratio and the interdepen-

dence of α and R. While the Poisson ratio is generally assumed to be a fixed value,

this value is either determined via experiments that are inherently uncertain to some

degree, or is merely asserted to be a certain value. Both of these assumption involve

uncertainty, and this will influence the expected uncertainty in the modulus. Regard-

ing the interdependence of α and R, each of these values has their own measurement

uncertainty while directly causing the value of the other. This will add a dependence

on the rates of change of each of these measurements. This theoretical formulation of

the error can be used to assess the contributions of each source of variance and com-

pared to determine if any source is more strongly correlated with the variance in the

modulus, which would provide a specific focus for error reduction when manipulating

AFM imaging parameters.
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2.4.3 AFM Tip Characterization

Understanding the AFM tip geometry is necessary for calculating the sample

modulus via the DMT model since most AFM tips are not fabricated with a controlled

geometry. Additionally, the mechanical interactions during indentation will erode the

tip over time, degrading the fine tip point to a more rounded shape. An accurate

determination of the tip shape is a critical part of the PF-QNM method calibration

since the instrument relies on the operator to input a single tip radius value and

control the indentation of the tip to depths near the height of the tip where that

radius occurs. Determination of tip geometry via an analytical solution is generally

not feasible due to the manufacturing tolerances of AFM tips and the unconventional

geometric shape of most tips. For example, the Bruker RTESPA-525 tip shown in

Figure 10 used in this study has a trigonal planar shape with the faces defined by

the crystal plane angles of 15, 25, & 17.5◦ +/- 2◦ and a nominal tip height of 10-

15µm. This imprecision in the nominal tip geometry parameters necessitates the use

of indirect methods to characterize the tip.

Figure 10. Scanning Electron Microscope Image of Bruker RTESPA-525 AFM Tip [14].
Reproduced with permission from Bruker Corporation.

The indirect method of tip qualification involves the imaging of a surface roughness
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standard, such as the Bruker titanium standard shown in Figure 11, with many sharp

surface features which can then be used to reconstruct the tip. The sharpness of

the surface roughness features is the primary determinant of the accuracy of this

method. When many features are imaged and the result combined, an inverse image

of the tip shape is produced. While a tip characterizer with infinite sharpness would

produce a perfect tip image, this impossible limit means that any tip reconstruction

is a superposition of the tip shape and surface feature. By imaging many surface

features, the characterizer can provide an upper bound limit on the tip shape [15].

As shown in Figure 12, a characterization standard sharper than the AFM tip will

most accurately reproduce the tip shape, a smooth standard will interpret a rounded

tip, and a standard of random surface roughness will produce some combination.

Another disadvantage of this method is that, for AFM tips of very large size or

with very stiff cantilevers, the tip may not be able to travel sufficiently deep into

the roughness sample, or may damage the sample if the tip is much harder than

the sample. Finally, it should be noted that while this method provides an accurate

means to determine the tip shape, it cannot provide a direct measurement of the

tip shape and thus contributes an indeterminate source of error in the calculation of

precise values from PF-QNM images.

For the AFM tip used in this study, the Bruker RTESPA-525, nominal geometry

parameters are provided that allow for a comparison of the nominal true tip geometry

and the tip geometry necessary for use in the DMT model. The RTESPA-525 AFM

tip specification is shown below in Table 1 and Figure 13. From the angle parameters,

the surface area at any height from the tip can be calculated and compared to the

theoretical volume or surface area of a spherical indentor, as required by the DMT

model. These can then be compared and an upper indentation depth bound can be

specified for use in AFM imaging.
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Figure 11. Image of Ti Surface Roughness Tip Characterization Standard.

Figure 12. Tip Estimates Given by Different Surface Features [16]. Reproduced with
permission from Bruker Corporation.
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Table 1. RTESPA-525 Nominal Tip Geometry [14].

Nominal Value Variation

Tip Height (h) 10-15 µm
Front Angle (FA) 15o 2o

Back Angle (BA) 25o 2o

Side Angle (SA) 17.5o 2o

Figure 13. Bruker AFM Probe Geometry Specification [14]. Reprinted with permission
from Bruker Corporation. TSB is the tip setback distance, the distance from the end
of the cantilver to the vertical axis of the tip. FA, BA, SA, and h are as defined in
Table 1.
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The tip surface area is described by Equation 8, which is derived using trigono-

metric relations between the various triangular faces of the AFM tip.

SAtip = 2
√
p1(p1 − f)(p1 − s)(p1 − a) + 2

√
p2(p2 − f)(p2 − s)(p2 − b) (8)

p1 =
f + s+ a

2
p2 =

f + s+ b

2
f =

h

sin(90− FA)

s =
h

sin(90− SA)
a =
√
L2 + w2 b =

√
l2 + w2

L = h
sin(FA)

sin(90− FA)
l = h

sin(BA)

sin(90−BA)
w = h

sin(SA)

sin(90− SA)

This relationship can be applied for any trigonal pyramid AFM tip with similarly

defined geometry specifications

2.5 Carbon Fiber Production and Microstructure

The production of carbon fibers for use in reinforced composites is a well estab-

lished industry with manufacturing and distribution across the globe, though the

largest operations by weight occur in Japan and the United States, with the three

largest producers by manufacturing capacity being Toray, HEXCEL, and Mitsubishi

Chemical Carbon Fiber & Composites, with Toray producing slightly less than the

next four largest producers combined [17]. Manufacturing firms produce a wide ar-

ray of fiber types to support broad material requirements for tensile modulus and

tensile strength, with fibers distributed as stranded tows of many single fibers or

as pre-formed sheets or weaves. Finally, fibers can be provided “sized”, to increase

the surface energy of the fiber to improve adherence to a specific composite matrix,

27



or unsized without this treatment. Of interest to this study is the effect on fiber

modulus and strength due to the different precursor materials and manufacturing

processes, while the actual fibers used in this study are both sized and unsized based

on availability from the manufacturer or existing materials on hand.

2.5.1 Carbon Fiber Microstructure

Carbon fibers, unlike the more highly ordered forms of carbon such as diamond

or graphene, consist of many graphite crystallites organized into layered planes that

are then formed into a fiber macrostructure [18]. These crystallites are generally

oriented along the fiber axis with some deviation from parallel known as the misori-

entation angle, which has an average value of 30◦ for most fibers. Higher longitudinal

modulus fibers are produced primarily by decreasing this misorientation angle, as

shown in Figure 14. Increasing the axial alignment of the crystallites is normally

done by increased heat treatment temperature and stretching. Increased heat treat-

ment temperature also encourages the release of crystalline impurity atoms, further

improving performance [19]. Due to the differences between the precursor materials,

Pitch-based fibers require a lower heat treatment temperature to achieve the same

orientation angle, as shown in Figure 15. This lower heat treatment temperature

leads to lower production costs, and so the Pitch precursor is the prevalent form of

ultra high modulus fibers. Perturbation in this heat treatment during production

may result in the observed variation of the modulus from nominal values, as seen in

the Mitsubishi fibers measured in this study, which had certified longitudinal modulus

values between 3.28% and 1.08% greater than the nominal values.

PAN and Pitch-based fibers possess slightly different microstructures that lead to

this variation in the amount of heating required to change the crystallite alignment

angle. Additionally, high strength and high modulus fibers each possess slightly
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Figure 14. Correlation of Fiber Orientation Angle to Longitudinal Modulus. The
Theoretical Young Modulus is for a perfectly oriented, defect free ideal fiber [20].
Reproduced with permission from Springer Nature.

Figure 15. Pitch and PAN Fiber Orientation Angle with Heat Treatment ◦C [19].
Reproduced with permission from Springer Nature. As the heat treatment temperature
increases the crystallites become more longitudinally aligned, resulting in an increased
longitudinal modulus as shown in Figure 14.
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different microstructures that lead to the difference in their characteristic mechanical

property. PAN fibers possess a random crystallite orientation about the fiber axis,

while Pitch fibers possess a more ordered radial folding microstructure, as shown in

Figure 16.

Figure 16. Cross-sectional Optical & SEM Images of PAN and Pitch-Based (MPP)
Fibers [21]. Reproduced with permission from Wiley-VCH Verlag GmbH & Co.

The randomly oriented microstructure of PAN fibers leads to a larger average

interplanar spacing between the graphite layers and a tendency for fibers to have

many small, folded crystallites. This lack of orientation and the effect of many small

crystallites failing and relieving the applied stress leads to the high tensile strength

of these fibers, while this same misorientation and low degree of graphitization leads

to weaker interplanar bonds resulting in the relatively lower tensile modulus of most

PAN fibers [18].

Pitch-based fibers, on the other hand, show a large degree of order along the fiber

axis while possessing varying levels of order perpendicular to it. This higher longi-
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tudinal order allows for smaller interplanar distances and thus stronger interplaner

bonding between the graphite crystallites. The overall 3D order, however, does not

strongly determine Pitch precursor fiber properties. Pitch fibers in general possess a

much greater tensile modulus due to the liquid-crystalline nature of the Pitch precur-

sor, which allows for greater strain relief [18].

The different microstructural properties of the various fiber types also has an in-

fluence on other mechanical properties. Of interest to this study, as the fiber tensile

modulus increases, it is expected that the transverse compressive modulus will de-

crease. As the crystallites become more longitudinally aligned they also become less

transversely aligned, and so the same effects of crystallite alignment will apply. It

has been shown that the structure/microstructure of carbon fibers are “clearly cor-

related with transverse compressive properties of PAN-based and Pitch-based single

carbon fibers and especially with the transverse compressive modulus/strength and

the Weibull modulus of transverse compressive strength,” with the Weibull modulus

being a statistical parameter that describes variability in mechanical properties of

brittle materials [22]. Additionally, it has been demonstrated for Pitch-based fibers

that both the transverse modulus and transverse compressive strength decrease with

increased crystallite size, and that these differences cannot be attributed to variations

in cross-sectional structure [23]. Instead, the transverse modulus is strongly deter-

mined by interplanar crystallite bonding, while the transverse compressive strength

is determined by the strength of the inner fiber core, indicating that fibers should not

be treated as homogeneous media for transverse compressive testing.

The exponential correlation shown in Figure 14 between the fiber longitudinal

modulus and the crystallite orientation angle gives an indication of how the trans-

verse modulus and longitudinal modulus are likely correlated. The transverse modu-

lus is expected to decrease as the longitudinal orientation angle increases, and so the
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transverse modulus must decrease in the same manner that the longitudinal modulus

increases. Prior work by Veigas found a negative linear correlation between the trans-

verse and longitudinal modulus for fibers between 231-377 GPa, generally within the

high strength (HT) or intermediate modulus (IM) regime on Figure 14 [3]. For this

study, which will also measure the transverse modulus of fibers between 434-924 GPA,

the correlation is predicted to resemble that of the high modulus (HM) and ultra-high

modulus (UHM) regimes, which begins to resemble a power law correlation.

2.6 Summary

This chapter has presented the theory of AFM instrument operations and the

principles applied to produce AFM images via PF-QNM. It further describes the

contact mechanics forces involved in a PF-QNM measurement, and how those forces

and other AFM imaging data channels can be used to calculate the elastic modulus of

a sample. Additionally, the variety of error sources in the AFM imaging method were

described along with the accepted practices for minimizing their influence on an mea-

sured image, as well as how the error in the DMT modulus is dependent on the error

of the physically measured variable of indentation depth, interaction forces, and the

tip radius. It also described the importance of accurately characterizing the AFM tip,

and the inherent uncertainty involved in tip characterization. Finally, the process of

carbon fiber manufacturing was briefly described and the precursor-dependent varia-

tion in fiber structure between PAN and Pitch-based fibers were characterized, along

with the expected impact of this microstructure on fiber modulus measurements.
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III. Methodology

The methodology employed to achieve the research objectives was undertaken in

two experimental areas. The primary area of experimentation is the development of a

post-processing technique applied to the raw image data produced by the AFM, with

the goal of reducing measurement error relative to that provided by built-in instru-

ment analysis software. This post-processing technique was developed with the DMT

modulus channel serving as the baseline data set, with both statistical techniques

and numerical methods employed to determine whether other parameters that were

theoretically similar to the DMT modulus could be derived from the image data that

could be measured with better precision than the directly reported DMT modulus.

The second area of experimentation, which supports the primary area, is the experi-

mental measurement of carbon fibers with high and ultra-high longitudinal modulus

using the PF-QNM AFM method, and the improvement of this method by modifica-

tion of instrument settings and measurement technique. This area of experimentation

both expands the available data set and to provides new measurements for previously

characterized fibers to assess the relative improvement to the measurement precision

and ensure consistency of measurement parameters within the data set.

For the purposes of this study, while the “true” transverse modulus value is the

ideal measurement value, it is difficult to declare that the AFM reported values are

the true transverse modulus since the reported values of modulus by a force-controlled

indentation technique will be coupled to the selected indentation force setpoint. This

study does not seek to improve the established PF-QNM method to definitively mea-

sure the “true” transverse modulus, but instead seeks to optimize the instrument set-

tings and technique to achieve high levels of measurement precision. This improved

precision allows for instrument-specific trends in the fiber transverse moduli to be

determined, but are not necessarily the “true” transverse modulus of the fiber. Since
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the method by which the instrument calculates the DMT modulus is not a direct

measurement, but instead is based on a software calculation using other measure-

ment data, such as peak force, adhesion force, and indentation depth, this study will

describe the measured transverse modulus as the “relative transverse modulus”, to

clearly define that the values measured are relative to a consistent set of measurement

parameters.

3.1 Methodology for Measurement of Fiber Transverse Moduli

Eleven different types of carbon fibers from three manufacturers were measured

in this study. The first group of five fibers, possessing a tensile modulus ranging from

377-231 GPa, were measured in order to reproduce previous measurements by Veigas

to provide a baseline set to compare the measurement precision. The second group

of six fibers, ranging from 924-241 GPa, were measured to both increase the number

of fibers in the available measurement set and to expand the set to demonstrate

the application of the method to high and ultra-high modulus fibers, ensuring the

method is valid for all commercially available carbon fiber types. Table 2 details the

full set of fibers measured in this study. It should be noted that the Mitsubishi fibers

were provided with a certified specification document that give the actual longitudinal

tensile strength and longitudinal tensile modulus of the fibers, whereas all other fibers

are listed with the manufacturer nominal strength and modulus. Fibers with certified

properties are denoted with an asterisk in Table 2. Additionally, IM9/G-12K fibers

are no longer listed by HEXCEL as available for purchase, and so the tensile modulus

reported by Veigas is used, while tensile strength is unavailable.
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Table 2. Fibers of Interest.

Fiber Precursor Manufacturer Longitudinal
Modulus

[GPa]

Longitudinal
Strength

[GPa]

K13C2U [2] Pitch Mitsubishi 924* 3.94*
K63A12 Pitch Mitsubishi 800* 3.14*
K1352U Pitch Mitsubishi 647* 3.67*
K63712 Pitch Mitsubishi 642* 2.85*

TRH50 [24] PAN Mitsubishi 255 5.6
34-700WD PAN Mitsubishi 234 4.83
HM63 [25] PAN HEXCEL 434 4.826

IM9/G-12k [3] PAN HEXCEL 304
AS4D PAN HEXCEL 241 4.723

AS4-GP-12K PAN HEXCEL 231 4.413
M40JB [26] PAN Toray 377 4.40

3.1.1 Reproduction of Low Modulus Fiber Measurements

Measurements of the fibers characterized by Veigas are conducted in order to

provide direct comparison between methods, specifically to assess how varying imag-

ing parameters such as the PeakForce Setpoint change the measured modulus values

and/or the measurement error. Prior measurements performed by Veigas will be dis-

cussed in the context of comparison to determine if and how variation of instrument

settings led to any reduction in precision or in the variation of the fiber transverse

modulus

3.1.2 Measurement of High and Very High Modulus Fibers

The purpose of expanding the measured sample set is to account for a larger va-

riety of carbon fiber classifications and precursor types. Research by Veigas utilized

high strength fibers with tensile strengths ranging from 4.41-6.5 GPa and longitudinal

modulus ranging between 231-377 GPa, exclusively using PAN-based fibers.[3] Addi-

tional fibers in the high and very high modulus ranges from three manufacturers will

be measured to demonstrate the application of the PF-QNM measurement method-
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ology to all commercially available carbon fibers classification types. The new fibers

span tensile strengths from 2.6-4.826 GPa, a similar span to Veigas’ sample set, but

with tensile moduli spanning from 241-935 GPa, a range about 4.75 times broader

than Veigas’ sample set. In addition to conducting modulus measurements across

a broader modulus range, the addition of Pitch-based carbon fibers will account for

fibers possessing a different precursor material, manufacturing process, and internal

microstructure. The fiber classification by strength/modulus properties are shown in

Figure 17.

Figure 17. Modulus Classification of Analyzed Fibers. [27]

3.1.3 Sample Preparation Procedure

Fiber sample preparation was performed in accordance with the method developed

by Veigas. A∼1cm section of carbon fiber tow was cleaved from the bulk using a knife,

and small bundles of fibers were teased from this section to progressively separate out

single fibers. These small fiber bundles were then mounted on a 12mm sample disc
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using less than 1ml of cyanoacrylate resin adhesive, which was allowed to cure for

about one hour. The fibers were then swabbed lightly with a cotton swab soaked

in methanol to dissolve any adhesive that may have wicked onto the fiber surface.

The samples were then allowed to cure a further hour and swabbed a second time.

The fibers were then passed into the AFM glovebox and arranged on the sample

tray, where they cured overnight. Table 3 shows the number of samples prepared and

measured for each fiber type.

Table 3. Fiber Sample Preparation.

Fiber Precursor Manufacturer # of
Samples

Measured

K13C2U Pitch Mitsubishi 5
K63A12 Pitch Mitsubishi 6
K1352U Pitch Mitsubishi 10
K63712 Pitch Mitsubishi 15
TRH50 PAN Mitsubishi 11

34-700WD PAN Mitsubishi 9
HM63 [25] PAN HEXCEL 22

IM9/G-12k [3] PAN HEXCEL 16
AS4D PAN HEXCEL 28

AS4-GP-12K PAN HEXCEL 19
M40JB [26] PAN Toray 7

In order to characterize the properties of the cyanoacrylate adhesive after treat-

ment with methanol, samples were also prepared without any fiber and measured

using the AFM to determine the cured adhesive modulus value, which would serve as

a boundary value for the accurate measurement of the fiber transverse modulus.

3.2 Methodology for Error Reduction

The objective of this work is to develop and demonstrate a method for reducing the

measurement error associated with a previously developed PF-QNM AFM method

for determining the carbon fiber transverse Young modulus. This improvement is
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achieved by a combination of instrument parameter optimization and measurement

data post-processing using statistical analysis. Instrument parameter optimization is

focused on the parameters governing direct AFM tip-fiber interaction and the means

by which the various errors in the measured interactions governing the AFM force

curve, such as the peak force, adhesion force, indentation depth, and tip radius, can

have their individual errors reduced. It was assumed that by reducing these errors, the

error in the DMT modulus measured by the instrument would be reduced, though

it was not known a priori which of these errors was most strongly correlated with

the modulus error, nor was it known whether any of these individual errors were

themselves correlated or coupled. This was investigated separately.

3.2.1 Instrument Parameter Approaches to Error Reduction

The PF-QNM AFM method uses a large number of instrument settings to allow

the researcher fine control over the imaging of a wide array of materials. For the

purposes of this study, only the instrument settings that were expected to strongly

influence the tip-sample interaction mechanics were examined. The PeakForce Set-

point controls the maximum applied tip force, and so is the most direct means of

varying the tip-sample interaction. Additionally, an optimal spatial dimension for

the measurement is used to ensure the fiber surface height change is small relative to

the image size. Finally, the image resolution was held constant for all images, while

the scan rate was allowed to vary under instrument control based on image size. The

setting ranges used for imaging each fiber, and the adhesive, throughout this study

are shown in Table 4. Finally, to prevent measurement error associated with piezo-

electric drift after instrument startup, an instrument warmup period of 20 minutes

was used.

Variation of the PeakForce Setpoint was performed for four of the fibers studied
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Table 4. Instrument Imaging Parameters.

Fiber Peak Force
Setpoint

[nN]

Peak Force
Amplitude

[nm]

Image
Area
[µm2]

Resolution Scan
Rate

[µm/s]

K13C2U 569.9 100 2.73-11.02 128x128 0.25
K63A12 456.4-569.9 100 0.098-0.705 128x128 0.25-0.50
K1352U 499.7 100 1.03-25 128x128 0.25-0.50
K63712 473.4-500.4 100 6.25-25 128x128 0.50
HM63 456.4-569.9 100 0.021-3.99 128x128 0.25-0.50
M40JB 500 100 0.165-4.08 128x128 0.50

IM9 456.4-3499 100 0.250.67 128x128 0.50
TRH50 149.9-3031 100 0.001-0.56 128x128 0.50
AS4D 399.4-1299.8 100 0.027-0.71 128x128 0.50

34-700WD 3000-3185.4 100 0.002-0.56 128x128 0.25-0.50
AS4-GP 468.8-3000.3 100 0.67-4.09 128x128 0.50
Adhesive 400-436.2 100 0.39 128x128 0.25-0.50

by Veigas for which prior raw data was available (IM9, TRH50, 34-700WD, & AS4-

GP-12K). The study was limited to these fibers in order to have a directly comparable

set of measurements at different setpoints. The setpoint was decreased from the value

used by Veigas, ∼3µN, by about one order of magnitude to ∼400nN.

Decreasing the PeakForce Setpoint is expected to decrease the magnitude of vari-

ation in the PeakForce, described as PeakForce Error by Bruker. A decreased Peak-

Force Error magnitude should lead to a more consistent indentation depth, tip radius

at this depth, and adhesion force. For a perfectly flat sample and an invariant Peak-

Force, these values should also be invariant. Since the carbon fibers are curved,

however, the only operator-controllable means of decreasing the variation in the in-

dentation, tip radius, and adhesion force is to decrease the variation in the applied

tip force. Since the instrument operates using a force feedback loop, force variation

is an intrinsic measurement error that itself can only be reduced in absolute magni-

tude. For example, a 5000nN PeakForce with 10% PeakForce Error will have a 500nN

PeakForce Error magnitude, while a 500nN PeakForce with the same 10% error will

only have a 50nN error magnitude. Since the PeakForce must be above some thresh-
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old value to actually indent the fiber, this PeakForce error can only be minimized in

magnitude and not eliminated, while it is expected that the variation in the adhesion

force and indentation depth would decrease relative to the smaller PeakForce error

amplitude.

The optimal measurement size is expected to be smaller than the actual fiber

width of about 5µm. While the variation in height observed with the AFM is useful

for differentiating fiber from adhesive, and for locating the ridges and valleys char-

acteristic of the fiber microstructure, this variation can be as large as 500nm over a

5µm image. This large difference in height is expected to increase the measurement

error due to surface roughness effects, where the tip does not indent normal to the

fiber surface. This order of magnitude difference is observed to be consistent as the

image area is decreased. A measurement area of approximately 500nm2 produces a

height variation less than 50nm, and the image appears flat.

3.2.2 Statistical Approaches to Error Reduction

The statistical post-processing of the data involves two approaches that can be

utilized simultaneously or separately. The first approach focuses on improving in-

dividual fiber image data quality by excluding extreme values in each of the data

channels. This entails determining an appropriate cut-off value for each channel that

allows for exclusion of very small and very large values that are not characteristic

of the measurement and would otherwise bias a modulus calculation. For example,

the AFM will occasionally measure negative indentation depths, resulting in points

with moduli on the order of TPa. Though these points are usually few in number,

the points will shift the mean of the modulus measurement and must be excluded.

Another example are points with large indentation depth. In these cases, the tip may

indent by one or two orders of magnitude greater than the rest of the measurement.
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In this case, the indentation is likely the result of some contaminant on the fiber

surface, such as cyanoacrylate adhesive, which can also be identified by inspection

of the adhesion force data. These points result in moduli on the order of MPa, and

must be excluded for the same reason as the very small indentation depth.

The second statistical method for data processing in this study focuses on improv-

ing the quality of the overall fiber measurement data set by excluding whole images

based on specific criteria. The first criteria is based on individual measurement error,

and excludes any images regardless of reported modulus that has measurement error

greater than a defined exclusion value. The second criteria excludes measurements

that are indistinguishable from the cyanoacrylate adhesive used to mount the fiber

samples. While it is possible that the fibers could have the same modulus as the ad-

hesive, it is expected that this result would be more likely to occur from poor sample

preparation, and so these images are excluded.

Finally, the third criteria excludes high modulus outlier images. Earlier exclusion

criteria remove low modulus outliers, and so a similar criteria is established in order

to prevent high modulus outliers from influencing the sample set. It is known from

prior study that the PF-QNM method can report occasional high modulus values

due to improper installation of the tip, or due to poor sample mounting. These high

modulus outliers are identified by analysis of the complete fiber sample results and

removing any measurements with a modulus value larger than 150% of the mean for

that fiber.

3.3 Post-Processing Methodology

The methodology described above will be performed through the direct manip-

ulation of raw AFM data files output from the instrument. Since the instrument is

designed for imaging a variety of materials and using many different imaging modes,
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the optimal output file types and analysis software procedure must be determined to

ensure that the desired measurement data are exported for further statistical analysis.

This study assumes that a simple method with low computational cost is preferred in

order to conduct a greater number of measurements in the same time frame. Addition-

ally, this study develops a method requiring minimal access to proprietary software

or actual instrumentation, and would be usable on any computer workstation. This

study uses the Bruker NanoScope Analysis software, which can be attained at no cost

directly from the Bruker Corporation website, for viewing and exporting AFM im-

age data.[28] This data is then imported into and manipulated with a Python script,

included in Appendix A.

In developing the post-processing method, this study assumes that it is feasible to

replicate the instrument software technique wherein the DMT modulus is calculated

by slope fitting a linear section of the AFM force curve. Using a scripted routine that

allows for more selective exclusion of certain portions of the force curve, this study

use multiple approaches to determine if an alternative calculation method can achieve

the same or better precision as the instrument software.

The first calculation method used in this study is to directly apply the DMT mod-

ulus formula, Equation 6, using the measured indentation depth, interaction forces,

and tip radius. This method assumes that the measured values in these data chan-

nels do not differ significantly from those used for the instrument’s modulus fitting

routine. This method is further expanded by adding additional known material data,

such as the AFM tip modulus and Poisson Ratio, in order to deconvolve the AFM tip

material properties from the sample, of which the former is otherwise assumed to be

much, much harder than the sample. Additionally, since the Poisson Ratio is poorly

characterized for carbon fibers, this method allows variation of the Poisson Ratio to

provide an approximate error bound based on inherent imprecision in this parameter.
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This method also allows the exploration of variation due to the use of different tip fit

functional formulations.

A second calculation method is also proposed and described wherein the AFM

force curves are directly analyzed and a DMT modulus fitting routine is employed.

This method is not utilized in the characterization of the complete fiber sample set,

due to its significantly greater computational cost and NanoScope Analysis software

limitations, however the method is described and an exemplar measurement is pre-

sented for completeness and to demonstrate its feasibility for future research.

Each of the curves in the ensemble derived from a single AFM measurement,

shown in Figure 18, is used to calculate the DMT modulus using the slope fitting

technique described earlier as used by the Bruker software.

Figure 18. Ensemble of Force Curves for a Single AFM Image.

The modulus for each force curve is determined by selectively fitting the slope of

the force curve between the PeakForce and the Adhesion Force, in the same manner

as the instrument software described earlier. The fit region was defined between
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80% and 40% of the total force amplitude, that is the sum of the Peak Force and

Adhesion Force. The region was then fit to Equation 9, where F and α are the force

and indentation depth respectively, a is the fitting parameter containing the Young’s

modulus, and b is a fitting parameter to account for bias in the force curve baseline.

Fnet = aα2/3 + b (9)

The Young modulus is then calculated from the calculated fit parameter a, as

shown in Equation 10.

E =
a

4/3
√
rtip

(10)

The mean modulus and standard deviation are then determined from the collected

ensemble of values.

3.3.1 Use of Instrument-Specific Analysis Software

The Bruker Dimension Icon used in this research outputs multiple different file

types while capturing an image, none of which can be directly interpreted by a user

and require analysis software to interpret and reproduce a sample image. Two file

types provide the specific data for the complete image, the first being the .spm file,

and the second is the .pfc file. The .spm file is a raw data file containing image pa-

rameters and image information, while the .pfc file is a similar file that also contains

the required information to recreate all force curves generated during imaging. The

Bruker Dimension Icon AFM is furnished with the image analysis software NanoScope

Analysis, which is capable of interpreting these raw instrument data files and out-

putting a data channel text file that can be used for calculating point-wise image data

or full image recreation.
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The third file type produced by the AFM is output when the user enables ”high

speed data capture” during imaging, and generates a .hsdc file. The .hsdc file is

an alternative means of capturing the complete force curve data from the image, as

in the .pfc file, but has the advantage of including a larger number of force curves

and outputting one file for each imaging line. This file type, however, also does not

provide the raw data of the image and must be processed by the NanoScope Analysis

software.

The chosen file type used for analysis in the post-processing script is imported

into NanoScope Analysis, which is used to export a .txt file containing the actual

measured data, in the case of the .spm file type. For the .pfc and .hsdc files, how-

ever, the software exports multiple files containing force curve data in a proprietary

format again, which must be imported into NanoScope Analysis again and the .txt

file containing the actual force curve data exported. During the course of this study

the process of exporting the true raw force curve data from the .hsdc or .pfc files was

found to be exceptionally laborious and time consuming relative to the .spm, with

the time to export raw data from the .spm on the order of seconds, while exporting

a full image worth of force curves could take as long as one hour.

Due to the ease of use, this research utilized only the .spm image files captured

by the instrument and data text files exported from NanoScope Analysis, which con-

tained all the information required to recreate an image and produce the data for

calculation of the fiber modulus. The .pfc and .hsdc files were also captured for

future study, but were not utilized to produce the results of this study.

The NanoScope Analysis software is also used to determine the AFM tip shape,

which is a necessary requirement to determine the tip radius at the indentation depth

where the modulus is calculated. A study was conducted of all new AFM tips used

to characterize the variation in tip radius with height. Both a power law fit and
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polynomial fit were used to determine the optimal functional representation of the

tip over a 20nm indentation depth interval. This functional representation of the tip

was then incorporated into the data analysis script and used for comparison between

the AFM measured modulus and the script calculated modulus.

3.4 Determination of Image Exclusion Criteria

In order to improve the quality of the measurement data prior to performing

statistical analysis, a number of studies were performed to determine appropriate

criteria for excluding certain indentation measurements or entire images. The first

study conducted was of the AFM tip. First, a comparison between a power law and

multiple polynomials was performed to determine the best method for approximating

the tip radius, which could then be used in the DMT model formula to calculate the

modulus, rather than using the instrument reported value. The second study was

performed to measured the modulus of the cyanoacrylate adhesive. Finally, a set of

statistical criteria were established to exclude images characterized by larger than

expected measurement error.

3.4.1 Exclusion of Outliers Within a Single Image

Exclusion of extreme values in each of the PeakForce, adhesion force, and inden-

tation depth data channels was performed in order to improve the image quality by

removing measurement points that are characterized by extreme values in the mea-

surement distribution. The first cut-off that is applied removes all measurements

with indentation depths larger than 20nm, chosen due to the applicable range for

the DMT model and the tip radius fit model. A second cutoff is then applied to

remove measurements where any single data channel value is more than two standard

deviations from the mean value in that channel, with the assumption that the overall
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distribution of each data channel was Gaussian.

3.4.2 AFM Tip Shape Modeling

As described earlier, the Bruker AFM PF-QNM method applies the DMT contact

mechanics model to determine the sample modulus. The instrument requires a single

tip radius input in order to develop a sample image using the DMT modulus, which

assumes a constant indentation depth over the entire image area. Since the AFM

produces measurements of all necessary data to calculate the DMT modulus, a more

precise calculation of the DMT modulus requires determination of the tip radius at

each individual indentation depth. Since the AFM can only receive a single tip radius

as an input image parameter, and the NanoScope Analysis software can only charac-

terize a tip in 0.5nm intervals, a functional approximation is used to determine the

tip radius using the tip characterization data. This indentor radius is the approxi-

mate AFM tip radius, with the assumption that the AFM tip can be treated as a 3D

parabola.

Tips are provided with either nominal tip geometry parameters or with a certified

calibration. The necessity of obtaining an accurate tip characterization is demon-

strated in Figure 19, which shows how the characterized tip radius differs from the

tip radius calculated from both the nominal tip geometry, based on a trigonal planar

tip shape, and a tip radius that assumes a perfectly spherical tip. While the difference

is not large, about 5 times larger than the nominal tip geometry and twice as large

as an ideally spherical tip, an accurate tip shape characterization will improve the

accuracy of the AFM measurement of the DMT modulus.

The fabrication of the Bruker RTESPA AFM tips used in this study entails etching

the tip from a crystal substrate, resulting in a shape that is a trigonal pyramid, rather

than the ideal parabola required by the DMT model. The AFM tip was characterized
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Figure 19. Tip Shape Model Fit for New AFM Tip

using the Bruker NanoScope Analysis tip characterization method using a titanium

roughness standard furnished with the instrument. Tip radii were measured at 41

height intervals from 0.5-20nm and numerically fit as a function of the indentation

depth z to both a power law function, Equation 11, using SciPy curve fit method

and a 3rd order polynomial, Equation 12, using the Numpy polyfit method, with the

quality of fit quantified via the R2 value. In these equations, rtip is the calculated

radius of curvature at distance z from the vertex of the tip, while parameters a-f are

the fit constants. Each unique tip will possess a unique set of parameters. The results

shown below are presented for a single new exemplar tip, which were consistent for

all other new tips used in this study. Tips worn over time diverged from these results,

however, and are presented later.

rtip = f(z) = azb (11)

rtip = f(z) = cz3 + dz2 + ez + f (12)
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Figure 20. Tip Shape Model Comparison for Power Law and Polynomial fits.

A new AFM tip possesses a good fit to a power law function with R2 = 0.98221

and a slightly better fit to the 3rd order polynomial with R2 = 0.99822. When directly

compared, as shown in Figure 20, with tip radius values normalized to the measured

values in order to exaggerate small differences, it is clear that the polynomial method

more closely matches the measured tip radius across a broader range in indentation

depth. Both fit methods show extreme behavior as indentation approaches 0nm,

which is expected since the tip radius at zero height must also be zero. This divergence

from the measured radius at low indentation depth is also not expected to significantly

influence characterization of the fibers in this study, since the instrument method

uses a target indentation depth between 4-10nm. Variation in the actual indentation

depth, or a very low AFM Peak Force Setpoint, could however lead to a larger number

of shallow indentations, and so the behavior of the fit function must be kept in mind

while optimizing the instrument settings for use with these models. A further study

of fourth and fifth order polynomials was performed to determine if a better fit could

be achieved.

For the comparison of polynomial fits, the Numpy polyfit method was applied
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to polynomial functions of a similar form to Equation 12, but expanded to fourth

and fifth orders as well. The correlation between the polynomial tip models and the

measured data, for this exemplar tip, are shown in Figure 21. Both the fourth and fifth

order polynomials more accurately replicate the measured tip radius at values above

2.5nm than does the third order polynomial. All polynomials tested demonstrate

extreme behavior as indentation depth approaches zero, which is expected due both

to the nature of fitting a truncated range with a polynomial, and because the tip

radius at zero indentation is forced to equal zero. Based on these results, a fifth

order polynomial was selected as the optimum fit method, while an indentation depth

maximum of 20nm was selected to ensure a valid tip fit range.

Figure 21. Tip Shape Model Comparison for Different Polynomials.

This study of tip shape modeling for a new tip is important, it should be noted that

the tip will become worn over time and change shape due to mechanical interaction

during indentation, and during scanning if a tip crash occurs. The change in tip

shape due to indentation is relatively uniform since it is assumed the tip indents

normal to the sample surface. Variations in tip wear due to surface roughness or

sample orientation, which results in indentations off axis from the normal, were not

50



studied but could lead to asymmetric tip wear. A tip crash, in which tip motion

in the scan direction is more rapid than the tip height can be adjusted for a rapid

height change, can result in more drastic tip wear better defined as breaking. A tip

crash often results in a large section of the tip being shorn off, leading to more than

an order of magnitude difference in the tip radius. For these reasons, criteria for tip

exchange were explored to clearly define when a tip was too worn for further use.

A study of the change in tip shape due to sustained usage was explored for three

levels of wear. A new AFM tip was compared to an AFM tip that was worn solely

by imaging and an AFM tip that had experienced a tip crash. The measured tip

radii are shown in Figure 22. The most pronounced feature of the worn tips is the

divergence in shape beginning at 2.5nm for the crashed tip. Since a tip crash is likely

to shear a section of the tip, it is likely that this divergence is actually the true tip,

while the sharper section is an artifact of the image characterization algorithm. The

worn tip also exhibits divergence from the new tip, however it occurs between 4-6nm,

a range that is similar to the range of indentations produced by the instrumental

method on carbon fibers. This comparison shows the qualitative difference between

tip crash and imaging use wear for the actual tip radius, and also identifies a criteria

for immediate tip exchange after a tip crash.

For a worn tip, the tip exchange criteria must be based on a combination of the

required image resolution and the number of images required for a fiber. For the

PF-QNM method, increased image resolution will increase the number of indentation

measurements performed on the fiber, allowing for more data to be collected and im-

proved measurement statistics. This study used a 128x128 image resolution, resulting

in 16,384 measurements per image, which is the largest resolution that allows export

of all data file formats. The number of images taken for a single fiber is determined

by the level of precision required. For this study, the target precision level was chosen
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Figure 22. Tip Shape Model Fit for Various States of Tip Wear.

as less than 5% measurement error, which required between five and twenty images.

A study was made of the tip shape change over a large number of indentations

to determine the degree of wear sustained by the AFM tip. This study was made

for twelve measurements, about 200,000 indentations of the Hexcel HM63 fiber with

a longitudinal modulus of 434 GPa, at a 128x128 resolution and PeakForce Setpoint

of 569.9 nN. Since there are also uncountable indentations made in the course of

selecting an area of fiber for measurement, the number of total indentations performed

is approximate. Twelve images is also the maximum number of images reasonably

achieveable in a single 8 hour day, assuming thirty minutes per image. Figure 23

shows the absolute increase in tip radius after the twelve images, while Figure 24

shows the relative increase.

The images performed with the tip used for this study had mean indentation

depths of about 4nm +/- 10%. The largest relative wear occurs near the mean

indentation depth, while above 7nm the relative change decreases at a constant rate.

The very large relative change at 0.5nm is due to the large relative change between the
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very small radius at the tip point. If the peak force, adhesion force, and indentation

depth values were the same for both the first and last image, a ∼50% increase in the

tip radius would result in a ∼11% increase in the calculated DMT modulus. This

result, however, is less than observed in practice, with the weighted modulus error

of the twelve measurements being 16.72%. This is expected to be due to the other

contributions to the modulus variance as described earlier, which are observed to

change from image to image.

Figure 23. New and Worn AFM Tip Radius after ∼200,000 Indentations.

Since tip wear due to short-term use does not appear to cause an increase in

the measured modulus, a reasonable tip exchange criterion was selected to be either

exchange after ten images of the same fiber type or every time a new type of fiber was

measured, whichever was most frequent. This approach ensures that each fiber type

was measured with a new tip, while the process of taking many fiber measurements is

not disrupted by frequent time consuming tip exchanges. This approach is also easily

integrated into an eight hour daily measurement program, beginning with one hour

of tip exchange and calibration, followed by six hours of imaging.
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Figure 24. Relative Increase in Tip Radius after ∼200,000 Indentations.

3.4.3 Measurement of Cyanoacrylate Adhesive Young Modulus

The Young modulus of the cyanoacrylate adhesive used to mount the carbon fibers

was measured using the PF-QNM method to establish a precise value that could

be used to better differentiate uncontaminated fibers from fibers that had wicked

adhesive onto their surface. Additionally, a precise determination of the adhesive

modulus would support the establishment of an upper and lower modulus bound

where the fiber could not be differentiated from the adhesive. Since the adhesive is

an amorphous liquid prior to setting into a solid, its material properties are assumed

to be isotropic. Two sample discs were prepared with adhesive and swabbed with

methanol, using the same method as a fiber sample, but without mounting the fibers.

Eleven measurements were performed using the PF-QNM method, with a PeakForce

Setpoint between 400-436.233nN and a resolution of 128x32 for 4,096 indentations per

image. The error weighted mean for the adhesive measurements was determined to be

10.57 +/- 0.113 GPa, an error of 1.07%. The Young’s modulus of the cyanoacrylate

adhesive was used as a threshold criterion for excluding fiber measurements whose
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mean values were less than the measured adhesive modulus.

3.5 Summary

This chapter has presented the methodology used to measure the transverse mod-

ulus of single strand carbon fibers, as well as the statistical and physical criterion to

be used for improving the quality of both single image data and fiber type sub-sets

of the eleven fibers to be measured. It also describes two alternative methods that

will be tested for use in calculating the transverse modulus from the measured peak

force, adhesion force, and indentation depth directly, in lieu of relying solely on the

instrument reported value.
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IV. Results

4.1 Overview

This section describes the results attained with regard to improving the preci-

sion of the transverse modulus measurement of single strand carbon fiber fragments.

The transverse moduli determined after applying statistical exclusion criteria are pre-

sented, followed by transverse moduli calculated via three different post-processing

methods. Finally, potential error effects due to material assumptions are also pre-

sented, as well as the correlations between the measurement errors for other instru-

ment data channels.

4.2 Measurement of Fiber Transverse Modulus

The transverse modulus of all fibers were measured using PF-QNM and the data

set was treated with the exclusion criteria described earlier. The correlation between

the fiber transverse and longitudinal moduli was then determined for each precursor

type separately, and for all eleven fibers together.

4.2.1 Exclusion of Extreme Values

The result of removing outlier measurements within single AFM images is found

by analyzing the change in the distributions in the Peak Force, adhesion force, and

indentation depth data channels before and after extreme value removal for a single

fiber measurement. Exemplar results are shown for a K13C2U fiber image in Figures

25-32.

The PeakForce distribution, Figure 25, transforms to a distribution that more

clearly demonstrates the non-continuous change due to the nature of the feedback

loop variation from the PeakForce Setpoint, shown in Figure 26. Alternative binning
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methods for the histogram do not remove this jagged appearance. The tails of the

distribution are truncated as well, decreasing the absolute range of the PeakForce

variation from 94.37 nN to 26.96 nN, a 71% decrease in this range.

Figure 25. PeakForce Distribution, Excluding Indentation Depths ≥ 20nm.

Unlike the PeakForce distribution, the adhesion force distribution appears largely

unchanged from Figure 27 to Figure 28. However, if compared with the data prior to

removal of ≥20 nm indentations, the effect of removing outliers results in a reduction

in the adhesion force range from 41.87 nN to 20.82 nN, a 50% reduction.

Finally, the indentation depth and tip radius distributions, Figures 29 & 31 re-

spectively, transform in the same way, as expected since tip radius is solely a function

of the indentation depth. The most extreme change is the removal of the high value

tails resulting primarily from removing indentations ≥20 nm. The indentation depth

range is decreased from 96.85 nm to 1.12 nm, a 98% decrease, while the tip radius

range decreases from 7823 nm to 1.71 nm, a 99.97% decrease. These very large rel-

ative changes are due the presence of a small number of outlier indentation depths
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Figure 26. PeakForce Distribution Excluding Peak Force Values ≥2σ from the Mean.

Figure 27. Adhesion Force Distribution, Excluding Indentation Depths ≥ 20nm.
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Figure 28. Adhesion Force Distribution Excluding Peak Force Values ≥2σ from the
Mean.

which are removed when the 20nm indentation depth cutoff is applied.

Figure 29. Indentation Depth Distribution, Excluding Indentation Depths ≥ 20nm.
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Figure 30. Indentation Depth Distribution Excluding Peak Force Values ≥2σ from the
Mean.

Figure 31. Tip Radius Distribution, Excluding Indentation Depths ≥ 20nm.

60



Figure 32. Tip Radius Distribution Excluding Peak Force Values ≥2σ from the Mean.

As far as how excluding these extreme values changes the fiber modulus mea-

surement values, the modulus distribution for all data points is compared with those

points where an extreme value in one of the other data channels occurs. Table 5

shows the number of measurements outside two standard deviations from the mean

value in each data channel, and the percentage relative to the total number of mea-

surements. As expected, the number of values outside of two standard deviations is

relatively small, with no measurement exceeding the ideal Gaussian 5% value. Vari-

ation from this ideal value is expected, since none of the distributions are perfectly

Gaussian. The location of the extreme values shown in Figure 33 in terms of the index

location of the measurement point, shows that these values are distributed relatively

uniformly across the entire image area. The adhesion force, however, shows a large

increase in the number of outliers between indices 6000-7000, roughly the middle of

the scan area. This increase of about 300 outliers corresponds with a scan area of

about 17.5nm2. Examining the actual adhesion force image produced by the AFM,
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a dark spot is seen in the middle of the scan area, likely the source of this difference

in the adhesion force outlier count.

Table 5. Number of Measurements Outside 2 Standard Deviations from Mean.

Data
Channel

Number of
Measure-

ments

% of Total

Indentation 686 4.21
PeakForce 595 3.65
Adhesion 651 3.99

Figure 33. Location of Extreme Values by Measurement Index.

The modulus distribution for all measurements in comparison to the distributions

due only to extreme values is shown in Figure 35. The modulus distribution for

measurements due to extreme values in any data channels are all spread broadly

across the distribution of all modulus measurements, indicating that any individual

extreme value does not lead to deviation from the measured mean value. Further

study was made for coincident extreme values, in which multiple extremes occur at
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Figure 34. Adhesion Force AFM Image.

the same measurement location. Similar results were found, with the distributions

centered near the mean for all measurements. Additionally, the number of coincident

extreme values was very low, usually between 0.1-1%. The result of this study of

the measurements at extreme values of indentation, adhesion force, and PeakForce

demonstrates that these values do not contribute to shifting the mean, and so can be

excluded from the image without changing the resulting modulus value. This method

of extreme value exclusion was used in determination of the measured mean value of

all images used to determine the sample means reported in Table 6.

4.2.2 Correlation Between Transverse and Longitudinal Fiber Modu-

lus

The transverse modulus of each carbon fiber type was imaged using the PF-QNM

method using a PeakForce Setpoint between 456.4-569.9 nN and the mean transverse
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Figure 35. Transverse Modulus Measurements Due to Extreme Values.

modulus value of each was determined assuming a Gaussian distribution. The error

weighted means and error weighted standard deviations were then calculated, after

excluding any measurements that met the exclusion criterion described earlier. Figure

36 shows the error weighted mean transverse modulus for the 11 measured fibers

plotted with their respective longitudinal modulus. The transverse modulus error

is also shown for all fibers, calculated from the error weighted standard deviation.

The Mitsubishi fibers, with longitudinal moduli between 641-924 GPa, also show

the longitudinal modulus error calculated from the percent deviation of the certified

modulus value from the nominal value. All other fibers were not provided with a

certified modulus, and so the deviation of the longitudinal modulus from the nominal

value is unknown. When linear fitting is performed, the Pitch-based fibers show

a linear correlation with R2 of 0.6334, while the PAN-based fibers show a linear

correlation with R2 of 0.0001. When all points are fit as a single data set, however,

the overall linear correlation is R2 of 0.7577. Table 6 shows the numerical results, as
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well as the absolute and relative error.

Figure 36. Measured Carbon Fiber Transverse Modulus.

Table 6. Carbon Fiber Transverse Moduli, Error Weighted.

Fiber Manufacturer Transverse
Modulus

[GPa]

Absolute
Error [GPa]

Relative
Error [%]

K13C2U Mitsubishi 14.15 0.2031 1.44
K63A12 Mitsubishi 13.66 0.1385 1.01
K1352U Mitsubishi 15.17 0.0621 0.41
K63712 Mitsubishi 15.94 0.1329 0.83
HM63 HEXCEL 21.32 0.3237 1.52
M40JB Toray 18.13 0.6777 3.74

IM9/G-12k HEXCEL 20.53 1.047 5.10
TRH50 Mitsubishi 22.58 0.541 2.40
AS4D HEXCEL 20.05 0.9759 4.87

34-700WD Mitsubishi 18.40 0.4740 2.58
AS4-GP-12K HEXCEL 20.03 0.4168 2.08
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4.2.3 Variation between PeakForce Modulus and Alternative Modulus

As stated earlier, the modulus values resulting from calculation are not expected

to be the same as those reported by the AFM. This variation is due to the the points

on the force curve selected for calculation. The Bruker AFM software automatically

selects cutoff points for maximum and minimum fit regions based on user-defined

setpoints, which cannot be easily replicated with the exported image data. Certain

points on the force curve, however, are defined in terms of the measured tip force.

Specifically, the PeakForce is the absolute maximum, the adhesion force is the ab-

solute minimum, and the indentation depth is where force equals zero between the

PeakForce and adhesion force values. Figure 37 shows how fitting between different

points on the force curve will change the calculated value. For this fiber, the reduced

modulus calculated between the PeakForce and adhesion force points gives a value

50.1% less than the AFM measured modulus, while the reduced modulus calculated

between the PeakForce and indentation depth points give a value 33.5% larger than

the measured modulus. From this analysis it can be concluded that the instrument

DMT fitting routine includes the contribution of both the linear indentation and

non-linear adhesion region.

For most images, the modulus calculation excluding the adhesion region produces

a narrower distribution and thus a more precise value, while the calculation including

the adhesion region is usually less precise. Both methods were found to be less useful

as a characteristic measure for a specific fiber type, as can be seen in Figures 38

and 39. For either method, the trend found for the instrument-reported modulus

no longer holds, with calculated mean modulus values for low longitudinal modulus

fibers showing lower transverse modulus than that of very high modulus fibers, a

result that is unlikely given the physical understanding of fiber microstructure and

its contribution to the longitudinal and transverse mechanical properties. Based on
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Figure 37. Comparison of Calculated and Measured Fiber Transverse Modulus.

this result, post-processing methods of modulus calculation were not found to be

useful for comparing fiber types, though these methods were used to conduct further

studies of the influence of other material parameters such as the Poisson Ratio and

tip hardness assumption in the DMT model.

4.3 Error Contributions from Material Assumptions

The results shown in Figures 36, 39, and 40 are determined directly from statisti-

cal analysis of the instrument raw data, without attempting to deconvolve the AFM

tip and fiber sample material properties. These methods can be applied through cal-

culation with the AFM measurement data using the post-processing script described

earlier using the DMT model in Equation 6. This modulus calculation assumes that

the AFM tip’s Young modulus is infinitely hard, or at least much harder than the

sample. This assumption allows the reduced fiber Young modulus to be treated as

the true fiber modulus. In the case of the AFM tip and the carbon fiber, the differ-
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Figure 38. Mean Calculated Relative Transverse Modulus, Eleven Fibers.
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Figure 39. Mean Calculated Relative Transverse Modulus without Adhesion, Eleven
Fibers.
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ence in modulus is only about one order of magnitude, meaning the reduced Young

modulus is likely not appropriate. Additionally, since the maximum and minimum

forces associated with the force curve are characterized by large variations over a

single image, it is expected that excluding these high error regions will improve the

overall modulus precision.

The modulus values resulting from this direct calculation are not expected to be

the same as those determined by the AFM. This is due to the design of the DMT

modulus fitting routine, which specifically excludes portions of the force curve around

the force maximum and minimum regions. By using the data measured directly from

the tip-sample interaction, however, trends can be determined for how uncertainty in

different material properties, such as the fiber Poisson Ratio, and uncertainty due to

the assumptions required by the DMT model leads to variation from an ideal “true”

modulus measurement.

4.3.1 Variation Due to Tip Hardness Assumption

A study to compare the modulus to the modulus using the assumption that the

tip is not ”infinitely hard”. This study, conducted using the calculated modulus

fit between the PeakForce and adhesion force, provides a error bound for using the

assumption, with the error being the deviation from the “true” fiber modulus. Figure

40 shows a small variation if the AFM tip is not assumed to be infinitely hard. For

this measurement, this variation was a 3.78% increase in the calculated modulus. For

other fibers the variation is similar, ranging from 1.32%-12.52%, with most calculated

values varying by less than 5% and within one standard deviation of the calculated

modulus mean. This result supports the conclusion that, while the tip hardness

assumption does result in a different modulus value, the difference is usually within

normal statistical variation for the measurement method.
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Figure 40. Comparison of Calculated Fiber Transverse Modulus.

4.3.2 Modulus Variation due to Uncertainty in Poisson Ratio

The second study compares the effect of varying the fiber Poisson Ratio. This

study, again conducted using the calculated modulus fit between the PeakForce and

adhesion force, is necessary since the Poisson Ratio for carbon fibers is not well char-

acterized, and is generally assumed to be 0.3. For this study, the Poisson Ratio was

varied between 0.2 and 0.4 to determine the relative change in the calculated modu-

lus. Figure 41 shows this variation, with ν=0.3 selected as the nominal value to be

varied about. For this measurement, the variation in modulus relative to the nominal

case mean is 13.19%, slightly larger than twice the measurement standard deviation.

For ν=0.2 the relative variation is -5.49%, while ν=0.4 gives a 7.69% variation. This

variation trend holds across all fibers and measurements in this study, indicating that

this variation is solely due to the numerical value of the Poisson ratio, and that un-

certainty in this value does not influence the precision of the measured modulus as

long as the ratio is held constant. The accuracy of the modulus measurement to the
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”true” modulus, however, requires precise knowledge of the Poisson ratio.

Figure 41. Change in Fiber Transverse Modulus due to Poisson Ratio 0.2-0.4.

4.4 Modulus Calculation Directly from Force Curves

The Bruker AFM software calculates the DMT modulus of the sample by apply-

ing the directly measured force curve at each indentation and applying a linear fit

algorithm to some region between the PeakForce maximum and adhesion minimum.

The specific method used is proprietary, however the data necessary to perform the

same calculations can be exported via the NanoScope Analysis software, and so it

should be possible to perform the same calculation via a post-processing script.

4.4.1 Preparation of Instrument Output Files

The method of directly accessing and manipulating the raw indentation force

curves requires a multi-step procedure conducted within the Bruker NanoScope Anal-

ysis software. This method is limited by the capabilities of the software itself to han-
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dle a large number of files and the ability for the user to manipulate them. While

potentially a powerful source of more data, the limitations of the software proved

challenging in developing a feasible implementation of the method. The software is

limited to viewing and batch exporting 2000 files at once. While this number appears

relatively large, a typical 128x128 image produces 128 .hsdc High-Speed Data Cap-

ture files, one for each scan line in the image. Each of these .hsdc files contains 3000

force curves, providing potentially 384,000 force curves for analysis. In practice the

number of force curves exported per line was limited to 50, since the Bruker software

limits the number of exported curves to 50. Finally, each of these exported force curve

files must be reimported into NanoScope Analysis and the force curve exported as a

.txt file that is human readable for use by the post-processing script. It was found

that the method of file preparation to produce human readable force curve files takes

approximately one hour per image of direct interaction with the software, in addition

to computational time. This is contrasted with a processing time of about 60 seconds

for the methods described earlier.

4.4.2 Modulus Distributions from Force Curves

The method of determining the transverse modulus via direct calculation for the

complete fiber measurement set was deemed infeasible due to the large amount of time

required for the analysis. Additionally, as will be shown below, the modulus calculated

via this method deviates from the expected value and from the instrument-reported

value, indicating that the method applied to determine the modulus may be flawed.

For the AS4-GP-12K fiber, the modulus distribution calculated from the force

curves was determined and the mean value was found. Figure 42 compares the mod-

ulus distribution determined directly from the force curves, with a mean modulus

of 1.014 GPa and a relative error of 84%, to the distribution determined from the
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instrument reported measurement, with a mean modulus of 13.64 GPa and a relative

error of 5.87%. In addition to the clear difference in the modulus and precision, the

method determined via the force curve fitting script also produces a bimodal distri-

bution, with a very large number of measurements with a near zero modulus value.

Similar findings, in which the modulus found via directly fitting the force curves was

much less than that of the instrument reported values, with a much larger error and

dissimilar modulus distribution, were also found for other fiber measurements.

Figure 42. Comparison of Modulus Distributions Calculated from Force Curves and
Reported by AFM.

4.5 Correlations Between Transverse Modulus Error and Other Measure-

ment Errors

As described earlier by Equation 7, a theoretical minimum expected error in the

modulus can be calculated from the error of the associated PeakForce, adhesion force,

indentation depth, and tip radius. For any measured set of these values, the minimum
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expected error sets a bound which cannot be improved upon. This minimum error

bound, however, is not necessarily achievable since the DMT model used to calculate

the modulus does not account for any multivariate relationships between these differ-

ent measured values. For example, the error in the indentation depth and tip radius

should be correlated since the tip shape is fixed, and thus the tip radius is determined

by the indentation depth and the fixed tip shape. The tip also experiences minute

wear while imaging, which would be expected to lead to a change in the indentation

depth and the adhesion force, since an increased interaction surface between the tip

and the sample is expected to lead to increased adhesive interaction.

4.5.1 Multivariate Tip-Sample Relationships

In order to study whether any of the measured tip-sample interactions behave

in a multivariate manner, the distributions for the PeakForce, adhesion force, and

indentation depth data, as well as the measured DMT modulus, were plotted as 2-D

histograms, shown in Figures 43-52. If the data are univariate they would be expected

to be centered on the heat map, with Gaussian behavior for each data distribution.

If the data are multivariate, however, the 2-D histogram would show some other

behavior. The 2-D histograms shown below exclude values outside one standard

deviation from the mean in order to improve the contrast of the plot, however they

are indicative of the relationships between the measurements when all data points

are included. The striations shown on the histograms of Peak Force are due to the

feedback loop iteration performed by the instrument, as seen in Figure 26.

The 2D histograms of indentation depth in Figures 43-44 show both expected

behavior and unexpected behavior. The relationship between indentation depth and

PeakForce shows an even distribution over both ranges, indicating that these mea-

surements are univariate. The relationship between indentation depth and tip radius
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is, as expected, strongly bivariate, since the tip radius is itself a function of the in-

dentation depth. Because of this, any variation in the tip radius is expected to be

strongly correlated with the variation in indentation depth. The relationship between

indentation depth and adhesion force, however, appears only weakly bivariate, with

decreasing adhesion force correlated with increasing indentation depth. This result

is not expected, since a larger indentation depth should lead to increased interaction

area between the tip and the sample, and so a larger area over which attractive forces

can act.

Figure 43. 2D Histogram of Indentation Depth and PeakForce.

The 2D histograms of PeakForce in Figures 46-47 show results that are expected.

The relationship between PeakForce and Adhesion force appears univariate, which is

expected since the adhesive forces and the applied tip force are caused by completely

different physical phenomena, that of short-range attractive forces and mechanical

indentation, respectively. The relationship between PeakForce and Tip Radius is

similar to that between Indentation Depth and PeakForce, which is expected since

76



Figure 44. 2D Histograms of Indentation Depth and Tip Radius.

Figure 45. 2D Histogram of Indentation Depth and Adhesion.
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indentation depth and tip radius are strongly correlated. Finally, the 2D histogram

of adhesion force and tip radius in Figure 48 is again expected from the indentation

and adhesion force results.

Figure 46. 2D Histogram of Peak Force and Adhesion.

The 2D histograms of the DMT modulus and PeakForce, adhesion, indentation,

and tip radius shown in Figures 49-52 clearly show relationships between the measured

modulus and variation in the other measured tip-sample interactions. PeakForce and

DMT modulus appear univariate, which is expected since the use of the PeakForce

as the feedback loop parameter implies that its variation should not influence the

measured value. On the other hand, adhesion force demonstrates a weak bivariate

relationship with DMT modulus, with lower modulus values correlated with lower

adhesion force values. This is expected since the adhesion region, as defined in the

measurement force curve, is highly non-linear. This non-linear behavior leads to

variation in the lower bound for DMT modulus fitting, while a smaller adhesion force

leads to a shallower slope in the force curve and thus a lower DMT modulus fit value.
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Figure 47. 2D Histogram of Peak Force and Tip Radius.

Figure 48. 2D Histogram of Adhesion Force and Tip Radius.
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Finally, indentation depth is very strongly correlated to the DMT modulus, with

larger modulus values associated with shallower indentation. This is expected based

on the mechanical model of indentation, with a harder material being less susceptible

to deformation by the indentor tip. The correlation with tip radius is similar, as

expected from the relationship between indentation and tip radius described earlier.

Figure 49. 2D Histogram of Transverse Modulus and Peak Force.

The bivariate relationships between the modulus and the adhesion force, indenta-

tion depth, and tip radius indicate that these channels are likely good candidates for

error reduction that would produce a correlated reduction in the modulus error.

4.5.2 Correlations Between Transverse Modulus Error and Other Er-

rors

Based on the results above, correlation testing was performed to determine if

the measurement error of the modulus is in fact correlated with other measurement

errors, and if so how strongly. Two correlation tests were performed, the Pearson
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Figure 50. 2D Histogram of Transverse Modulus and Adhesion Force.

Figure 51. 2D Histogram of Transverse Modulus and Indentation Depth.
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Figure 52. 2D Histogram of Transverse Modulus and Tip Radius.

R and the Spearman R. The Pearson R is a simple test for linear correlation, with

the assumption that the samples are independent, normally distributed, and have

the same variance. The Spearman R is a test for rank correlation, testing whether

the samples are correlated by a monotonic function, not necessarily linearly. The

Spearman R test requires only that the samples can be rank ordered and that they

are independent and identically distributed.

The results of each correlation test are shown below in Table 7. From these tests,

it was found that the proposed theoretical modulus error described earlier in Equation

7 is strongly correlated with the measured modulus. Surprisingly, accounting for a

nominal variation (νmean = 0.3, σnu = 0.06) in Poisson’s ratio weakens the correlation

between the theoretical error and the measured error in the modulus. As expected

from analysis of the multivariate histogram between the modulus and the other data

channels, the correlation between the modulus and the peak force is poor, while for

the Spearman R test the correlation between the modulus and both the indentation
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depth and adhesion force is strong.

Table 7. Correlation Testing Between Modulus Error and Other Errors.

Error Type Pearson R Spearman R

Theoretical 0.69 0.70
Theoretical w/

ν
0.50 0.62

Indentation 0.44 0.76
Adhesion 0.55 0.68

Peak Force 0.26 0.36

4.6 Summary

This chapter described the results of measuring the transverse modulus for sin-

gle strand carbon fibers, finding a linear correlation between the longitudinal and

transverse modulus with an R2 of 0.7577 for the entire sample set. The correlation

is weaker for the Pitch-based fibers, with an R2 of 0.6334, and non-existent for PAN

fibers. The influence of outlier values in indentation depth, peak force, and adhesion

force on the measured modulus distribution is shown, demonstrating a small influ-

ence on the mean modulus value and a decrease in the standard deviation. Results

for the three alternative means of directly calculating the modulus using the other

AFM measurement data are also described, finding significant deviation from the in-

strument values and no correlation with the longitudinal modulus. Additionally, the

technique using the measurement force curves is found to be exceptionally tedious

and impossible to automate completely, preventing its application to the complete

data set. Results are also described for the intrinsic modulus variation due to the

tip hardness approximation and due to uncertainty in the Poisson ratio for specific

carbon fiber types. The variation in the modulus resulting from changing the Poisson

ratio may be an unaccounted source of the measurement error in the modulus due

to difference in the fiber microstructure from point to point. Finally, correlations
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between the measured modulus error and the measured errors in indentation depth,

peak force, and adhesion force, finding that the theoretical modulus error derived

earlier is correlated with the true measured modulus error, and that the correlations

between the modulus error and both indentation depth and adhesion force are much

stronger than the correlation with the peak force. This correlation indicates that

optimizing the indentation depth and adhesion force measurement to minimize their

variation in an image should lead to the strongest reduction in the measurement error

for the fiber modulus.

84



V. Analysis

5.1 Overview

This section provides analysis and describes the significance of the results to sup-

porting the research objectives. Additionally, it explains the assumptions that gave

rise to deviation from the expected values in the calculated modulus methods.

5.2 Measurement of Fiber Transverse Modulus

Prior study by Veigas demonstrated a linear correlation between increased lon-

gitudinal fiber modulus and decreased transverse modulus.[3] The current research

strengthened the asserted correlation and extended it to Pitch-based carbon fibers.

Calculated modulus error was reduced via a combination of statistical techniques and

an increased number of fiber measurements.

The fiber modulus correlation is strengthened by including a larger number of

fibers across a broad longitudinal modulus range, even if the correlation appears weak

or non-existent within one portion of the sample set. Specifically, the correlation in

the PAN-based fibers was very poor, however their introduction into the sample set

with the Pitch-based fibers improved the correlation of both subsets. It is unclear

from this study why the PAN fibers showed such a poor correlation, contradicting

the results of Veigas for the same fibers.

Two fibers previously studied by Veigas, 34-700WD, and AS4-GP-12K, showed

large deviations below the expected values, while a new fiber, HM63 show a deviation

above the expected value. A possible explanation for the deviation of the 34-700WD

and AS4-GP-12K fiber is a difference in the Peak Force used. These fibers were

measured early in the study using the largest Peak Force values in this study, with

an average Peak Force value of 1799 nN, about twice the average of all other fibers
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of 664 nN. The transverse moduli measured for the 34-700WD and AS4-GP-12K

fibers were closer to the values predicted from the correlation determined by Veigas,

indicating that the modulus measurement is dependent on the Peak Force Setpoint

used to produce the image. When these fibers are excluded, the strength of the PAN

fiber correlation improves to an R2 of 0.5961, and the correlation for the complete

sample set improve to an R2 of 0.8884. This is shown in Figure 53.

Figure 53. Measured Carbon Fiber Transverse Modulus.

Additionally, the PAN-based fiber measurements all possessed larger measurement

error than measurement of Pitch-based fibers, despite using similar PeakForce Set-

point values, identical other imaging parameters, and as many or more total images.

This larger measurement error may be due to the differences in fiber microstructure

that would give rise to slightly different mechanical properties at different points on

a fiber. Pitch-based fibers possess a microstructure characterized by both high lo-
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cal order and long range order, while PAN-based fibers have a microstructure with

relatively lower long range order.

The observed variation likely results from how these different microstructures

result in a variation in the Poisson ratio, since changes in the orientation of the

crystallites would lead to a change in how the fiber deforms under applied stress. As

described in Equation 7, and its constituent terms, the Poisson ratio is squared in

most of the error terms, and so any relative difference from one point to the next

will be amplified. This could result in slightly different measured moduli at different

points on a fiber fragment, thus decreasing the precision of the measurement.

Another material property that differentiates the Pitch and PAN-based fibers is

their densities. The pitch-based fibers have densities between 2.1-2.21 g
cm3 , the PAN

based fibers have densities between 1.77-1.81 g
cm3 . This difference of between 16-24%

from the pitch to PAN fibers may contribute to the difference in measurement error,

since the physical composition of the Pitch-based fibers will be predominantly more

carbon and than the PAN-based fiber, which may posses larger void spaces or defects

allowing environmental intrusion, which could result in variations from the true fiber

modulus. For an indentation into one of these void spaces or defect regions, the tip

will interact with a different adhesion force due to the difference in the composition

of the void or defect, in addition to a change in the indentation depth due to the

different modulus of the void or defect region.

Another possible reason for the larger measurement error found in the PAN fiber

sample is environmental aging. While the Pitch-based fibers and the PAN-based

HEXCEL HM63 and AS4D fibers were all newly procured from the manufacturers,

the other fibers (M40jb, IM9, TRH50, 34-700WD, and AS4-GP-12K) had all been

procured a year prior through third-party sources. These fibers were stored in an

environmentally controlled lab out of direct sunlight during the period of this research,
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however prior storage conditions are unknown. Additionally, during the period of this

research a broken window seal was discovered resulting in water intrusion during the

summer, likely increasing the relative humidity in the lab.

No studies were found specifically addressing the effect of environmental aging on

the transverse modulus of single strand carbon fibers. Research into the degradation

of carbon fibers due to age and environmental conditions predominantly focuses on

the degradation of carbon fiber reinforced composites, not of the degradation of the

fibers in isolation. Additionally, these studies focus on extreme conditions not present

in the lab, such as very high or low temperature or submersion in fluid. However,

these studies are valuable in assessing the likely mechanisms of fiber aging due to

their characterization of the failure modes after composite aging, and for the change

in mechanical properties they do characterize for the composites. The change in the

composite behavior should indicate a correlated change in the properties of the carbon

fibers.

A number of studies have found that aging decreases the tensile strength and ten-

sile modulus of composites and leads to failure at the fiber-matrix interface. Baurova

found that a carbon fiber composite consisting of UKN-5-500 carbon fiber and epox-

ide, used in conductive sensors, exposed to natural climatic conditions for one year

would experience a 7.7% reduction in tensile strength and 28.1% reduction in elec-

trical resistance, in addition to observing a thin film of contamination on the carbon

fiber surface within the composite.[29] Kollia et. al found a similar result for carbon

fiber-reinforced cyanate ester composites, comparing specimens aged 30 days in either

an inert nitrogen or normal air environment at 230◦C, resulting in a 7.5% reduction

in tensile strength for the specimen exposed to air. Additionally, the failure mecha-

nism of the composite was examined, finding both interfacial debonding and matrix

cracking.[30] Shaoquan et. al. found that for a carbon fiber/bismaleimide composite
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used in aircraft structural applications, a 47.4% decrease in the tensile strength and

a 0.782-1.027% loss of mass results for 1000 hours of aging in 200◦C air. Finally,

Cheng et. al. tested carbon/flax composite fibers submerged in water at 60◦C for 289

hours, finding that the tensile strength and tensile modulus of the carbon/flax fiber

decreased by 20.5% and 3.26%, respectively.[31]

These aging effects are indicative of degradation of the carbon fiber within the

matrix. Failure at the fiber-matrix interface indicates a change in carbon fiber surface,

most likely due to oxidation with air that diffuses into the composite via the defect

channels created between the matrix and fiber. Additionally, the loss of mass further

indicates chemical reaction with the air leading to low levels of off-gassing from the

fiber. While two of the studies described here are for extreme conditions, it is notable

that the same decrease in tensile strength resulted from a year of exposure to normal

climate conditions. Based on these studies, it is reasonable to conclude that aging in

air for long periods of time leads to a change in the carbon fiber microstucture and

surface chemistry, and this change due to aging likely would have some influence on

the transverse modulus of the fiber.

5.2.1 Exclusion of Extreme Values

Exclusion of indentations characterized by outliers in indentation, Peak Force, and

adhesion was found to be a relatively simple method to both improve measurement

precision and remove values resulting in non-physical modulus measurement. The

finding that these outliers are few in number and do not strongly influence the mean

modulus is also important, since it demonstrates that the “law of large numbers”

is powerfully applied by the PF-QNM method, in which a very large number of

measurements are used to arrive at an accurate average value.
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5.3 Error Contributions from Material Assumptions

While this study did not seek to accurately determine the true transverse Young

modulus, the method could certainly be used to do so. Of more significance to this

study is the degree to which any measurement by this method is limited by an inherent

error bound due to the assumption underlying the instrumental technique. Specific

to this method, the assumptions that were expected to contribute significantly to this

intrinsic error are the assumption that the Poisson ratio used is accurate, and that

the tip hardness assumption is valid, that is the tip is sufficiently hard that it does

not deform when indenting the fiber surface.

It was found that not applying the tip hardness assumption results in a slightly

larger measured modulus, which is expected since it is known that the AFM tip is

degraded over time, and so mechanical deformation is almost certainly occurring.

This deformation, however, appears to be consistent over the entire sample, since the

modulus found without the tip hardness assumption is within one standard deviation

of the value found using the assumption.

With regard to the assumption that the Poisson ratio is accurate, this is a question

of confidence in literature or handbook values. This method requires this ratio to be

known, and so internal consistency is more important than true accuracy. In order

to compare to other research using a different Poisson ratio, or to provide a bound

of uncertainty in reporting a “true” modulus, understanding the influence of the

ratio is important. Unlike the tip hardness assumption, which generates variation

that changes between images, varying the Poisson ratio results in the same relative

variation in the modulus mean across all images. This is due to the Poisson ratio

being part of the calculation to determine the modulus after the force curve is fit, and

thus any variation is not influenced by the actual measurement. The overall variation

in modulus is a function of the bounding values of the ratio, but was found to be
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slightly larger than the maximum variation due to the tip hardness assumption.

5.4 Variation between Measured Modulus and Calculated Modulus

Variation in the modulus calculated using a post-processing script and that re-

ported by the instrument was initially expected. Due to the size of the adhesion region

of the force curve, the use of this absolute minimum value was expected to produce

lower modulus values. Additionally, using the analogy to mechanical stress-strain

curves, it is obvious that the adhesion region is non-linear and cannot be treated

with simple linear relationships, just as plastic deformation of a material is inher-

ently non-linear. For the method fitting between the Peak Force and where the forces

are balanced, this was expected to produce a larger modulus because it neglects the

adhesion behavior. It is unclear from this study, and from literature, why the DMT

modulus fitting is appropriately applied over a portion of both the adhesion and re-

pulsive regions of the force curve. The force fit region, however, is a user-controlled

setting for the Bruker AFM used, and so it merits further study whether varying this

fit region results in reduced measurement error.

5.5 Modulus Calculation Directly from Force Curves

The method of calculating the modulus directly from the raw AFM force curves

was initially thought to be the most suitable for study to reduce the measurement

error, however it proved to be more challenging than expected due both the obtuse-

ness of the proprietary software and the difficulty of reproducing the results of the

instrument. It was also found that this method, as implemented, did not result in

improved measurement precision. This is likely due to an incorrect implementation

and replication of the Bruker software routine, and so it may be possible in the fu-

ture to improve upon the force curve analysis method as well as implement the other
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statistical exclusion techniques described in this study.

5.6 Correlations Between Transverse Modulus Error and Other Measure-

ment Errors

Given that the DMT model is a relatively simple analytical model, and the method

of error propagation used to develop the theoretical errors are also simple, the strength

of the correlation between theoretical and PeakForce modulus errors is very good and

should serve as a guide for determining modifications to the current methodology to

decrease the measurement error. It is also reasonable that the Spearman R corre-

lations, which do not assume linear correlation prior to testing, are stronger than

the Pearson R correlations, since the measured values of the various interaction data

between the AFM tip and sample result from the single indentation force curve at

the measurement point, and so the relationship between the indentation depth, peak

force, and adhesion force must be more complex than a simple linear relationship.

The strength of correlation between the modulus error and indentation depth error

was expected based on the bivariate relationship found by analysis of the 2D his-

togram, while the correlation between the modulus and adhesion force was stronger

than expected. For future refinement to this methodology, optimization to mini-

mize error in these two components of the tip-sample interaction would be the most

promising. Other studies have demonstrated methods of ablating the carbon fiber

to expose a flat cross-section of the fiber core, which is likely the ideal method of

eliminating the surface roughness of the fiber, leading to more consistent indentation

and adhesion.[32]
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5.7 Summary

This chapter analyzes the results of this study, with specific interest in the unex-

pected lack of correlation between the longitudinal and transverse modulus for the

PAN fibers, and the increased measurement error for the same fibers. This deviation

from the correlation found by Veigas for the same fibers is most likely attributable

to the difference in fiber microstructure, which may contribute to the larger measure-

ment error, due to the lack of long-range order in PAN fibers. Additionally, fiber

aging and oxidation by the atmosphere may also play a role, due to the increased age

of some of the PAN fibers and their uncertain storage conditions prior to this study.

This chapter also assesses the result of outlier exclusion, finding that the very large

number of measurements possible using the PF-QNM method provides a statistically

very large number of measurements that preclude the influence of individual outliers

strongly effecting the overall distribution. The variation due to the tip hardness

assumption and uncertainty in Poisson’s ratio are also as expected, with variation

similar in magnitude to the PeakForce calculated modulus error. While this variation

is important to precise characterizations of the fibers, it is less significant for the

purpose of demonstrating the modulus correlation when using the same instrument.

The variation of the calculated modulus results from the PeakForce calculated

modulus results, while expected, merit further study to determine if the method

utilizing the raw force curves can be improved and optimized, while the results of the

other simpler method indicate some of the underlying assumptions used in the Bruker

technique. Finally, the correlation of errors is found to be as expected, since the PF-

QNM technique is capable of measuring many different interactions arising from an

indentation measurement, it is reasonable to expect that all of these interactions will

be correlated to some degree. The result provides direction towards further technique

improvement to decrease the measurement error by reduction of the indentation depth
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and adhesion force variation.
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VI. Conclusion

The precision measurement and characterization of carbon fiber material prop-

erties is an important area of research that both supports their utilization in novel

composite materials for new and innovative applications as well as the field of treaty

monitoring and verification. While the longitudinal mechanical behavior of carbon

fibers is well characterized, both within a variety of composite and alone, the trans-

verse mechanical properties are poorly characterized, with studies producing values

with relatively large errors and with difficult sample preparation procedures. [32]

This study sought to refine the demonstrated method developed by Veigas, which

showed that a simple sample preparation procedure and measurement method using

AFM PF-QNM could be applied to measure the fiber transverse modulus. In order

to improve Veigas’ method, it was necessary to decrease the measurement error so

that precision characterization was possible.

This study demonstrated that, for single strand carbon fiber samples for which

traditional tensile testing is impossible, the transverse fiber modulus can be used

as an analog for differentiating between modulus regimes and fiber precursor types.

Additionally, this study demonstrated the feasibility of high precision measurement

of the transverse modulus, achieving between 0.5-5% weighted measurement error for

a variety of carbon fibers spanning a broad range of longitudinal modulus and both

Pitch and PAN precursor fibers. This decrease in measurement error was achieved

via statistical methods of excluding individual indentations within a single image

measurement based on the indentation depth, peak force, and adhesion force, as well

as exclusion criteria for complete images.

Alternative methods were explored for calculating the transverse modulus from

other measurement data, such as the indentation depth, peak force, and adhesion

force. The two simplest methods attempted to approximate the measured force curve,
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but were not successful in replicating either the instrument-reported values or the

modulus correlation behavior. This is due to the method by which the instrument fits

the force curve to calculate the modulus, which includes a portion of both the linear

and non-linear areas of the curve. A more complicated method of calculating the

modulus using the raw force curve data was also attempted, but was also unsuccessful

in replicating the instrument-reported modulus data. This method was also found

to be infeasible for analysis of many images, with the time required to manually

manipulate the data files within the instrument software increasing the single image

analysis time by an order of magnitude.

The modulus correlation between the transverse and longitudinal modulus shown

by this study requires further study, specifically the unexpected behavior of the PAN-

based fibers. These fibers demonstrated higher measurement error than the Pitch-

based and no apparent correlation between the moduli. This is suspected to be due

to the storage conditions of the PAN fibers and their unknown age, which may have

resulted in environmental oxidation degrading the fiber, leading to both lower than

expected transverse moduli for some fibers and larger error due to differing rates

of oxidation within the fiber tow. Additionally, it is not known if this difference

in measurement errors between precursors is due to the microstructure of the fibers

themselves, for which the long-range order within the fiber is known to vary between

the Pitch and PAN fibers.

The precision measurement of the transverse modulus, however, is only a single

step in developing alternative methods for determining if an unknown fiber sample

is derived from an export controlled material. Since the export control criteria are

defined in terms of both the specific tensile modulus and specific tensile strength, two

additional methods must be developed. First, since the criteria are specific in terms

of specific strength and modulus, the density of the fiber must be determined. This
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is problematic since fiber oxidation is known to result in mass loss and thus density

change over time. Additionally, the tensile strength must be determined via a means

other than indentation since compressive strength and tensile strength can vary for a

single material. Luckily, methods do exist for determining nanoscale tensile strength

using micro-electromechanical systems (MEMS), though these techniques are beyond

the scope of this study. [33] Efforts to apply these methods to the same samples used

for this study would be a fruitful avenue for future study.
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Appendix A. Data Analysis Script

1.1 Script for Analysis of Data Exported from .spm Images

This script was utilized for analysis of the data exported from the .spm image file

into a .txt file, consisting of tab-separated columnar data for each of the eight data

channels the Bruker AFM is capable of capturing for a single image scan.

1
2 import pandas as pd
3 from scipy.optimize import curve_fit
4 from scipy.stats import skewnorm
5 from scipy.stats import norm
6 from scipy.special import erf
7 from scipy.special import gamma
8 from scipy.stats import pearsonr
9 from scipy.stats import spearmanr

10 import numpy as np
11 import matplotlib.pyplot as plt
12 import math
13
14 #%% Functions
15
16 # PDF Fitting Functions
17
18 def gaussian(x, a, b, c):
19 return a*np.exp(-np.power(x - b, 2)/(2*np.power(c, 2)))
20
21 def skew(x, a, b, c, alpha):
22 return (2/c)*(a*np.exp(-np.power(x - b, 2)/(2*np.power(c,

2)))) * (1/2) * (1 + erf(( alpha *((x-b)/c))/np.sqrt (2)))
23
24 def skew_mode(b,c,alpha):
25 delta = alpha/np.sqrt (1+ alpha **2)
26 mu = np.sqrt (2/np.pi)*delta
27 sigma = np.sqrt(1-mu**2)
28 gamma = ((4-np.pi)/2) * ((delta*np.sqrt (2/np.pi))

**3/(1 -(2* delta **2)/np.pi)**(3/2))
29 m_0 = mu - (gamma*sigma)/2 - (np.sign(alpha)/2)*(np.exp

((2*np.pi)/np.abs(alpha)))
30 mode = b + c*m_0
31 return mode
32
33 def skew_mean(b,c,alpha):
34 delta_skew = alpha/np.sqrt (1+ alpha **2)
35 mean = b + c*delta_skew*np.sqrt (2/np.pi)
36 return mean
37
38 def skew_std(c,alpha):
39 delta_skew = alpha/np.sqrt (1+ alpha **2)
40 std = np.sqrt(c**2 * (1-(2* delta_skew **2)/np.pi))
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41 return std
42
43 def gennorm(x, a, b, c, alpha ,):
44 return a*np.exp(-np.power(np.abs(x-b)/alpha ,c))
45
46 def laplace(x,a,b,c):
47 return a*np.exp(-np.abs(x-b)/c)
48
49 def multi_gaussian(x, *pars):
50 offset = pars[-1]
51 g1 = gaussian(x, pars[0], pars[1], pars [2])
52 g2 = gaussian(x, pars[3], pars[4], pars [5])
53 return g1 + g2 + offset
54
55 def multi_skew(x, *pars):
56 offset = pars[-1]
57 g1 = skew(x, pars[0], pars[1], pars[2],pars [3])
58 g2 = skew(x, pars[4], pars[5], pars[6],pars [7])
59 return g1 + g2 + offset
60
61 def peak_force(PF_setpoint ,PF_error):
62 PF = PF_setpoint + PF_error
63 return PF
64
65 def DMT_mod_adhes(F_tip ,F_adh ,radius_tip ,depth ,poisson_samp):
66 E_star = (3/4) * ((F_tip + F_adh)/(np.sqrt(radius_tip*

depth **3)))
67 E_samp = (1- poisson_samp **2)*E_star
68 return E_samp
69
70 def sample_modulus(E_star ,poisson_samp):
71 E_samp = (1- poisson_samp **2)*E_star
72 return E_samp
73
74 def DMT_mod_matldep(F_tip ,F_adh ,radius_tip ,depth ,poisson_samp)

:
75 poisson_tip = 0.2
76 E_tip = 200.0
77 E_star = (3/4) * ((F_tip + F_adh)/(np.sqrt(radius_tip*

depth **3)))
78 E_samp = (1- poisson_samp **2) /(1/ E_star - (1- poisson_tip

**2)/E_tip)
79 return E_samp
80
81 def DMT_mod_noadh(F_tip ,poisson_samp ,radius_tip ,depth):
82 E = (3/4)*F_tip*(1- poisson_samp **2) / (np.sqrt(radius_tip*

depth **3))
83 return E
84
85 # Tip Geometry Functions
86
87 def tip_fit(x, a, b, c, d ):
88 return a*(b*x+c)**(1/3) + d
89
90 def power_law(x, a, b):
91 return a*np.power(x, b)
92
93 def sph_indent_geo(height ,tip_rad):
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94 vol = (1/3)*np.pi*height **2*(3* tip_rad -height)
95 surf = 2*np.pi*( tip_rad*height -np.sqrt(height *(2* tip_rad -

height)))
96 return vol , surf
97
98 def tip_geo(height ,SA ,FA ,BA):
99 s = []

100 w = []
101 r = []
102 l = []
103 f = []
104 L = []
105 a = []
106 b = []
107 p1 = []
108 p2 = []
109 vol = []
110 surf = []
111 for i in range(len(SA)):
112 s.append(height /(np.sin(np.radians (90-SA[i]))))
113 w.append (( height*np.sin(np.radians(SA[i])))/(np.sin(np

.radians (90-SA[i]))))
114 r.append(height /(np.sin(np.radians (90-BA[i]))))
115 l.append (( height*np.sin(np.radians(BA[i])))/(np.sin(np

.radians (90-BA[i]))))
116 f.append(height /(np.sin(np.radians (90-FA[i]))))
117 L.append (( height*np.sin(np.radians(FA[i])))/(np.sin(np

.radians (90-FA[i]))))
118 a.append(np.sqrt(L[i]**2 + w[i]**2))
119 b.append(np.sqrt(l[i]**2 + w[i]**2))
120 p1.append ((f[i]+s[i]+a[i])/2)
121 p2.append ((r[i]+s[i]+b[i])/2)
122 vol.append ((2*w[i]*(L[i]+l[i])*height)/3)
123 surf.append (2*np.sqrt(p1[i]*(p1[i]-f[i])*(p1[i]-s[i])

*(p1[i]-a[i])) + 2*np.sqrt(p2[i]*(p2[i]-r[i])*(p2[i
]-s[i])*(p2[i]-b[i])))

124 return vol , surf
125
126 # Other Functions
127
128 def truncate(number , digits) -> float:
129 stepper = 10.0 ** digits
130 return math.trunc(stepper * number) / stepper
131
132 def zipper(y_list ,x_list):
133 zipped_lists = zip(x_list , y_list)
134 sorted_zipped_lists = sorted(zipped_lists)
135 sorted_ylist = [element for _, element in

sorted_zipped_lists]
136 return sorted_ylist
137
138 def std_bars(data ,hist_y):
139 low_val = np.mean(data)-np.std(data)
140 high_val = np.mean(data)+np.std(data)
141 low_bar = (np.full ((50 ,1),low_val),np.linspace(0,np.max(

hist_y)))
142 high_bar = (np.full ((50 ,1),high_val),np.linspace(0,np.max(

hist_y)))
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143 return low_bar ,high_bar
144
145 def DMT_err(F_tip ,F_adh ,tiprad ,indent):
146 a = np.mean(F_tip)
147 std_a = np.std(F_tip)
148 b = np.mean(F_adh)
149 std_b = np.std(F_adh)
150 c = np.mean(tiprad)
151 std_c = np.std(tiprad)
152 d = np.mean(indent)
153 std_d = np.std(indent)
154 da = 3/(4* np.sqrt(c*d**3))
155 db = -3/(4*np.sqrt(c*d**3))
156 dc = (3*(b-a)*d**3) /(8*(c*d**3) **(3/2))
157 dd = (9*(b-a)*c*d**2) /(8*(c*d**3) **(3/2))
158 std_dev = np.sqrt(da**2* std_a **2 + db**2* std_b **2 + dc**2*

std_c **2 + dd**2* std_d **2)
159 return std_dev
160
161 def point_slope(x1 ,x2 ,y1 ,y2):
162 m = (y1 -y2)/(x2-x1)
163 return m
164
165 def mod_from_pars(par ,tip_rad):
166 E_star = par /((4/3)*np.sqrt(tip_rad))
167 return E_star
168
169 #%% The What Do Box
170
171 tip_name = r’03DEC20 #1’
172
173 path = r’.\ December \03 DEC20 - K13C2U ’
174 file = r’03 DEC20_K13C2U .0 _00098.spm.txt’
175 channel = r’{}\{}’.format(path ,file)
176 fiber_name = r’03DEC20 K13C2U ’
177 fig_temp = r’{}\{} ’.format(path ,fiber_name)
178 # mult_fit = ’Measured ’
179 # mult_fit = ’Tip Fit’
180 mult_fit = ’Tip & Matl Props ’
181
182 PF_setpoint = 569.9
183 PF_str = ’PF Setpoint = {} nN’.format(truncate(PF_setpoint ,5))
184
185 # Material Properties
186 nu_samp = 0.3
187 nu_tip = 0.2
188 E_tip = 200.0
189 tip_str = ’nu_tip = {}, E_tip = {}’.format(nu_tip ,E_tip)
190
191 glue_mean = 8.2738
192 glue_std = 2.126524
193
194 # Image Values
195 scans = 256
196 lines = 64
197
198 # Indentation Limits for Tip Fitting
199 indent_min = 0.5
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200 indent_max = 20.0
201
202 # Outlier limit - multiple of measurement standard deviation
203 out_lim = 2
204
205 # Verticle Bars on plots to show number of standard deviations

on plots
206 vert_bars = 2
207
208 # Assign data channel headings to variables
209 height_sens = ’Height_Sensor(nm)’
210 pf_error = ’Peak_Force_Error(nN)’
211 DMT_mod = ’DMTModulus(MPa)’
212 indent = ’Indentation(nm)’
213 adhes = ’Adhesion(nN)’
214 dissip = ’Dissipation(eV)’
215 height = ’Height(nm)’
216 peakforce = ’Peak_Force(nN)’
217
218 # Data Channel of interest for histogram PDF fitting
219 histfit = DMT_mod
220
221 # Print all results
222 verbose_calculations = True # Print all numerical

results
223 verbose_plots = True # Print all visual results
224
225 # Tip Analysis
226 power = False # Fit the tip to a power

law function
227 poly = True # Fit the tip to a

polynomial
228 tip_vol_compare = False # Plot the nominal

geometrical tip shape and the functional tip shape
229
230 # AFM Image Import & Display
231 import_data = True # Import data from the AFM

.spm.txt file
232 no_outliers = False # Remove outliers from

data set based on multiple of standard deviations
233 only_outliers = False # Use only outliers from

data set based on multiple of standard deviations
234 make_arrays = True # Assembles array of

calculated modulus
235 force_curve = False # Build approximate force

curve assuming indentation depth is zero force
236 plot_mods = True # Plot the modulus

histograms
237 plot_tipfitmod = False # Determine the effect of

using the tip modulus and Poisson Ratio to deconvolve the
238 poisson_study = False # Determine the effect of

Poisson ’s Ratio on the calculated modulus
239 channel_hists = False # Plot histograms of all

data channels in the image
240
241 # Data Processing
242 outlier_test = False # Count the number of

outliers in the data set based on a multiple of standard
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deviations , determine coincidence of the outliers , and
compare values to complete data set

243 adhesion_func = False # Determine relationship
between measurement data and adhesion force

244 histogram_fitter = False # Fit data histograms to
various Probability Distribution Functions

245 multi_fit = False # Fit data to multiple
Gaussian function

246
247 #%% Tip Profile Function Fitting Script
248
249 tip_file = r’tip_profiles.csv’
250 tip_data = pd.read_csv(tip_file ,sep=’,’)
251
252 x = tip_data[’Depth (nm)’]
253 # yfit = tip_data[r ’{}’.format(tip_name)]
254
255 tip_name = r’04DEC20 #1’
256 tip_name1 = r’08DEC20 #1’
257 yfit = tip_data[r’{}’.format(tip_name)]
258 yfit1 = tip_data[r’{}’.format(tip_name1)]
259
260
261 # Power Law Fit
262 if power == True:
263 pars = np.array ([])
264 pars , cov = curve_fit(f=power_law , xdata=x, ydata=yfit , p0

=[1,1], bounds=(-np.inf , np.inf)) # Get
the standard deviations of the parameters (square roots
of the # diagonal of the covariance)

265 residuals = yfit - power_law(x, *pars)
266 ss_res = np.sum(residuals **2)
267 ss_tot = np.sum((yfit -np.mean(yfit))**2)
268 r_squared = 1 - (ss_res / ss_tot)
269 r2_str = ’R^2 = {}’.format(truncate(r_squared ,5))
270 fit_str = ’The tip fit power law is r(z) = {}*z^{}’.format

(truncate(pars [0],3),truncate(pars [1],3))
271 print(r2_str)
272 print(fit_str)
273
274 # Polynomial Fit
275 if poly == True:
276
277 # # Polynomial Order comparison
278 # order = 4
279 # poly_pars ,poly_res = np.polyfit(x,yfit ,deg=order ,full=

True)[0:2]
280 # ss_tot = np.sum((yfit -np.mean(yfit))**2)
281 # r_squared_poly = 1 - (poly_res / ss_tot)
282 # r2_str_poly = ’R^2 = {}’. format(truncate(float(

r_squared_poly) ,5))
283 # # fit_str_poly = ’The tip fit polynomial is r(z) = {}*z

^3 + {}*z^2 + {}*z + {}’. format(truncate(poly_pars
[0] ,5),truncate(poly_pars [1],3),truncate(poly_pars
[2] ,3),truncate(poly_pars [3],3))

284 # fit_str_poly = ’The tip fit polynomial is r(z) = {}*z^4
+ {}*z^3 + {}*z^2 + {}*z + {}’. format(truncate(
poly_pars [0],3),truncate(poly_pars [1],3),truncate(
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poly_pars [2],3),truncate(poly_pars [3],3),truncate(
poly_pars [4],3))

285 # # fit_str_poly = ’The tip fit polynomial is r(z) = {}*z
^5 + {}*z^4 + {}*z^3 + {}*z^2 + {}*z + {}’. format(
truncate(poly_pars [0],3),truncate(poly_pars [1] ,3),
truncate(poly_pars [2],3),truncate(poly_pars [3] ,3),
truncate(poly_pars [4],3),truncate(poly_pars [5] ,3))

286 # print(fit_str_poly)
287 # print(r2_str_poly)
288
289 # order = 3
290 # poly_pars1 ,poly_res1 = np.polyfit(x,yfit ,deg=order ,full=

True)[0:2]
291 # ss_tot = np.sum((yfit -np.mean(yfit))**2)
292 # r_squared_poly1 = 1 - (poly_res1 / ss_tot)
293 # r2_str_poly1 = ’R^2 = {}’. format(truncate(float(

r_squared_poly1) ,5))
294 # fit_str_poly1 = ’The tip fit polynomial is r(z) = {}*z^3

+ {}*z^2 + {}*z + {}’. format(truncate(poly_pars [0],5),
truncate(poly_pars [1],3),truncate(poly_pars [2],3),
truncate(poly_pars [3],3))

295 # # fit_str_poly = ’The tip fit polynomial is r(z) = {}*z
^4 + {}*z^3 + {}*z^2 + {}*z + {}’. format(truncate(
poly_pars1 [0],3),truncate(poly_pars1 [1],3),truncate(
poly_pars1 [2],3),truncate(poly_pars1 [3],3),truncate(
poly_pars1 [4],3))

296 # # fit_str_poly = ’The tip fit polynomial is r(z) = {}*z
^5 + {}*z^4 + {}*z^3 + {}*z^2 + {}*z + {}’. format(
truncate(poly_pars [0],3),truncate(poly_pars [1],3),
truncate(poly_pars [2],3),truncate(poly_pars [3],3),
truncate(poly_pars [4],3),truncate(poly_pars [5],3))

297 # print(r2_str_poly1)
298 # print(fit_str_poly1)
299
300 # order = 5
301 # poly_pars2 ,poly_res2 = np.polyfit(x,yfit ,deg=order ,full=

True)[0:2]
302 # ss_tot = np.sum((yfit -np.mean(yfit))**2)
303 # r_squared_poly2 = 1 - (poly_res2 / ss_tot)
304 # r2_str_poly2 = ’R^2 = {}’. format(truncate(float(

r_squared_poly2) ,5))
305 # # fit_str_poly = ’The tip fit polynomial is r(z) = {}*z

^3 + {}*z^2 + {}*z + {}’. format(truncate(poly_pars
[0] ,5),truncate(poly_pars [1],3),truncate(poly_pars
[2] ,3),truncate(poly_pars [3],3))

306 # fit_str_poly2 = ’The tip fit polynomial is r(z) = {}*z^4
+ {}*z^3 + {}*z^2 + {}*z + {}’. format(truncate(

poly_pars2 [0],3),truncate(poly_pars2 [1],3),truncate(
poly_pars2 [2],3),truncate(poly_pars2 [3],3),truncate(
poly_pars2 [4],3))

307 # # fit_str_poly = ’The tip fit polynomial is r(z) = {}*z
^5 + {}*z^4 + {}*z^3 + {}*z^2 + {}*z + {}’. format(
truncate(poly_pars [0],3),truncate(poly_pars [1],3),
truncate(poly_pars [2],3),truncate(poly_pars [3],3),
truncate(poly_pars [4],3),truncate(poly_pars [5],3))

308 # print(r2_str_poly2)
309 # print(fit_str_poly2)
310
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311 # New and Worn Tip comparison
312 order = 4
313 poly_pars ,poly_res = np.polyfit(x,yfit ,deg=order ,full=True

)[0:2]
314 ss_tot = np.sum((yfit -np.mean(yfit))**2)
315 r_squared_poly = 1 - (poly_res / ss_tot)
316 r2_str_poly = ’R^2 = {}’.format(truncate(float(

r_squared_poly) ,5))
317 # fit_str_poly = ’The tip fit polynomial is r(z) = {}*z^3

+ {}*z^2 + {}*z + {}’. format(truncate(poly_pars [0],5),
truncate(poly_pars [1],3),truncate(poly_pars [2] ,3),
truncate(poly_pars [3],3))

318 fit_str_poly = ’The tip fit polynomial is r(z) = {}*z^4 +
{}*z^3 + {}*z^2 + {}*z + {}’.format(truncate(poly_pars
[0],3),truncate(poly_pars [1],3),truncate(poly_pars
[2],3),truncate(poly_pars [3],3),truncate(poly_pars
[4],3))

319 # fit_str_poly = ’The tip fit polynomial is r(z) = {}*z^5
+ {}*z^4 + {}*z^3 + {}*z^2 + {}*z + {}’. format(truncate
(poly_pars [0],3),truncate(poly_pars [1],3),truncate(
poly_pars [2],3),truncate(poly_pars [3],3),truncate(
poly_pars [4],3),truncate(poly_pars [5],3))

320 print(fit_str_poly)
321 print(r2_str_poly)
322
323 order = 4
324 poly_pars1 ,poly_res1 = np.polyfit(x,yfit1 ,deg=order ,full=

True)[0:2]
325 ss_tot1 = np.sum((yfit1 -np.mean(yfit1))**2)
326 r_squared_poly1 = 1 - (poly_res1 / ss_tot1)
327 r2_str_poly1 = ’R^2 = {}’.format(truncate(float(

r_squared_poly1) ,5))
328 # fit_str_poly = ’The tip fit polynomial is r(z) = {}*z^3

+ {}*z^2 + {}*z + {}’. format(truncate(poly_pars [0],5),
truncate(poly_pars [1],3),truncate(poly_pars [2],3),
truncate(poly_pars [3],3))

329 fit_str_poly1 = ’The tip fit polynomial is r(z) = {}*z^4 +
{}*z^3 + {}*z^2 + {}*z + {}’.format(truncate(poly_pars

[0] ,3),truncate(poly_pars [1] ,3),truncate(poly_pars
[2] ,3),truncate(poly_pars [3] ,3),truncate(poly_pars
[4] ,3))

330 # fit_str_poly = ’The tip fit polynomial is r(z) = {}*z^5
+ {}*z^4 + {}*z^3 + {}*z^2 + {}*z + {}’. format(truncate
(poly_pars [0],3),truncate(poly_pars [1],3),truncate(
poly_pars [2],3),truncate(poly_pars [3],3),truncate(
poly_pars [4],3),truncate(poly_pars [5],3))

331 print(fit_str_poly1)
332 print(r2_str_poly1)
333
334 if verbose_plots == True:
335
336 x_fit = np.linspace (0.5 ,20 ,40)
337 # tip_rad_poly = np.polyval(poly_pars ,x_fit)
338 # tip_rad_poly1 = np.polyval(poly_pars1 ,x_fit)
339 # tip_rad_poly2 = np.polyval(poly_pars2 ,x_fit)
340
341 # plt.figure ()
342 # plt.plot(x,yfit/yfit*100,’--k’,label=’Actual Tip ’)
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343 # # plt.plot(x_fit ,tip_rad_poly/yfit *100, label=’4th Order
Poly Fit ’)

344 # plt.plot(x_fit ,tip_rad_poly1/yfit *100, label=’3rd Order
Poly Fit ’)

345 # # plt.plot(x_fit ,tip_rad_poly2/yfit *100, label=’5th Order
Poly Fit ’)

346 # plt.plot(x_fit ,power_law(x_fit ,*pars)/yfit*100,’r’,label
=’Power Law Fit ’)

347 # # plt.plot(x,yfit1 ,’--g ’)
348 # # plt.plot(x_fit ,tip_rad_poly1 ,’r ’)
349 # plt.xlabel(’Indentation Depth [nm]’,fontsize =20)
350 # plt.xticks(fontsize =16)
351 # plt.ylabel(’Tip Radius [% Diff from Measured]’,fontsize

=20)
352 # plt.yticks(fontsize =16)
353 # plt.title(’Comparison of Tip Radius Fit Methods ,

Normalized to Measured Tip Radius ’,fontsize =24)
354 # # plt.title(’Comparison of Polynomial Fit Methods ,

Normalized to Measured Tip Radius ’,fontsize =24)
355 # plt.legend(fontsize =20)
356 # fig_name = r ’{} tip_rad.png ’.format(tip_name)
357 # # plt.savefig(r ’{}\{}’. format(path ,fig_name),bbox_inches

=’tight ’)
358 # plt.show()
359
360 # New/Worn Tip Comparison Plot
361
362 plt.figure ()
363 plt.plot(x,yfit ,’--b’,label=’New Tip’)
364 plt.plot(x,yfit1 ,’--r’,label=’Worn Tip’)
365 plt.xlabel(’Indentation Depth [nm]’,fontsize =20)
366 plt.xticks(fontsize =16)
367 plt.ylabel(’Tip Radius [nm]’,fontsize =20)
368 plt.yticks(fontsize =16)
369 plt.title(’Absolute Change in Tip Radius after ~200 ,000

Indentations ’,fontsize =24)
370 # plt.title(’Comparison of Polynomial Fit Methods ,

Normalized to Measured Tip Radius ’,fontsize =24)
371 plt.legend(fontsize =20)
372 fig_name = r’{} tip_rad.png’.format(tip_name)
373 # plt.savefig(r ’{}\{}’. format(path ,fig_name),bbox_inches=’

tight ’)
374 plt.show()
375
376 plt.figure ()
377 # plt.plot(x,100- yfit/yfit*100,’--b’,label=’New Tip ’)
378 plt.plot(x,((yfit1 -yfit)/yfit)-1,’--r’,label=’Worn Tip’)
379 plt.xlabel(’Indentation Depth [nm]’,fontsize =20)
380 plt.xticks(fontsize =16)
381 plt.ylabel(’Tip Radius [% Increase from New Tip]’,fontsize

=20)
382 plt.yticks(fontsize =16)
383 plt.title(’Relative Change in Tip Radius after ~200 ,000

Indentations ’,fontsize =24)
384 # plt.title(’Comparison of Polynomial Fit Methods ,

Normalized to Measured Tip Radius ’,fontsize =24)
385 plt.legend(fontsize =20)
386 fig_name = r’{} tip_rad.png’.format(tip_name)
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387 # plt.savefig(r ’{}\{}’. format(path ,fig_name),bbox_inches=’
tight ’)

388 plt.show()
389
390 #%% Raw Data Channel Import Script
391
392 if import_data == True:
393
394 # channel = input(’What is the data channel filename?’)
395 # spm = r ’.\Lorin Good Data\Nov 08 2019\34 -700 WD Meas 2b

.0 _00000.spm’
396 # PF_setpoint = float(input(’What is the PF Setpoint in nN

?’))
397 # tip_rad = float(input(’What is the tip radius in nm?’))
398
399 data_image = pd.read_csv(channel ,sep="\s+")
400
401 # PF_setpoint = linecache.getline(spm ,301)
402 # PF_setpoint = float(PF_setpoint [-4:-1])
403
404 # import linecache
405 # tip_rad = linecache.getline(spm ,315)
406 # tip_rad = float(tip_rad [-5:-1])
407
408 # nu_samp = linecache.getline(spm ,317)
409 # nu_samp = float(nu_samp [-4:-1])
410
411 if no_outliers == False:
412 DMT_mod_array = np.array(data_image[DMT_mod ])*10** -3
413 DMT_mod_array = DMT_mod_array[np.where(DMT_mod_array >

0)]
414 mod_meas_pure = ’The mean measured DMT modulus is {}

GPa w/ std dev {} GPa.’.format(truncate(np.mean(
DMT_mod_array) ,3),truncate(np.std(DMT_mod_array) ,3)
)

415 indentation = np.array(data_image[indent ][np.
logical_and(data_image[indent] < indent_max ,
data_image[indent] > indent_min)])

416 PF_total = np.array(peak_force(PF_setpoint ,data_image[
pf_error ][np.logical_and(data_image[indent] <
indent_max , data_image[indent] > indent_min)]))

417 F_adhes = np.array(data_image[adhes][np.logical_and(
data_image[indent] < indent_max , data_image[indent]
> indent_min)])

418
419 if verbose_calculations == True:
420 print(’All Data Points ’)
421 print(mod_meas_pure)
422 print(’The modulus precision is’,np.std(

DMT_mod_array)/np.mean(DMT_mod_array)*100,’%.’)
423
424 if no_outliers == True:
425 DMT_mod_array = np.array(data_image[DMT_mod ])*10** -3
426 mod_meas_pure = ’The mean measured DMT modulus before

outlier removal is {} GPa w/ std dev {} GPa.’.
format(truncate(np.mean(DMT_mod_array) ,3),truncate(
np.std(DMT_mod_array) ,3))
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427 # Remove indentations that cannot be approximated by
tip fit function

428 indentation = np.array(data_image[indent ][np.
logical_and(data_image[indent] < indent_max ,
data_image[indent] > indent_min)])

429 PF_total = np.array(peak_force(PF_setpoint ,data_image[
pf_error ][np.logical_and(data_image[indent] <
indent_max , data_image[indent] > indent_min)]))

430 F_adhes = np.array(data_image[adhes][np.logical_and(
data_image[indent] < indent_max , data_image[indent]
> indent_min)])

431 DMT_mod_array = np.array(DMT_mod_array[np.logical_and(
data_image[indent] < indent_max , data_image[indent]
> indent_min)])

432 mod_meas_sml_indent = ’The mean measured DMT modulus
after exclusion of >20nm indentation is {} GPa w/
std dev {} GPa.’.format(truncate(np.mean(
DMT_mod_array) ,3),truncate(np.std(DMT_mod_array) ,3)
)

433 # Remove indentation outliers based on defined limit
434 PF_total = np.array(PF_total[np.logical_and(

indentation < np.mean(indentation) + out_lim*np.std
(indentation), indentation > np.mean(indentation) -
out_lim*np.std(indentation))])

435 F_adhes = np.array(F_adhes[np.logical_and(indentation
< np.mean(indentation) + out_lim*np.std(indentation
), indentation > np.mean(indentation) - out_lim*np.
std(indentation))])

436 DMT_mod_array = np.array(DMT_mod_array[np.logical_and(
indentation < np.mean(indentation) + out_lim*np.std
(indentation), indentation > np.mean(indentation) -
out_lim*np.std(indentation))])

437 indentation = np.array(indentation[np.logical_and(
indentation < np.mean(indentation) + out_lim*np.std
(indentation), indentation > np.mean(indentation) -
out_lim*np.std(indentation))])

438 mod_meas_indent_outs = ’The mean measured DMT modulus
after indentation outlier removal is {} GPa w/ std
dev {} GPa.’.format(truncate(np.mean(DMT_mod_array)
,3),truncate(np.std(DMT_mod_array) ,3))

439 # Remove PF outliers
440 indentation = np.array(indentation[np.logical_and(

PF_total < np.mean(PF_total) + out_lim*np.std(
PF_total), PF_total > np.mean(PF_total) - out_lim*
np.std(PF_total))])

441 F_adhes = np.array(F_adhes[np.logical_and(PF_total <
np.mean(PF_total) + out_lim*np.std(PF_total),
PF_total > np.mean(PF_total) - out_lim*np.std(
PF_total))])

442 DMT_mod_array = np.array(DMT_mod_array[np.logical_and(
PF_total < np.mean(PF_total) + out_lim*np.std(
PF_total), PF_total > np.mean(PF_total) - out_lim*
np.std(PF_total))])

443 PF_total = np.array(PF_total[np.logical_and(PF_total <
np.mean(PF_total) + out_lim*np.std(PF_total),

PF_total > np.mean(PF_total) - out_lim*np.std(
PF_total))])
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444 mod_meas_pf_outs = ’The mean measured DMT modulus
after peak force outlier removal is {} GPa w/ std
dev {} GPa.’.format(truncate(np.mean(DMT_mod_array)
,3),truncate(np.std(DMT_mod_array) ,3))

445 # Remove Adhesion outliers
446 indentation = np.array(indentation[np.logical_and(

F_adhes < np.mean(F_adhes) + out_lim*np.std(F_adhes
), F_adhes > np.mean(F_adhes) - out_lim*np.std(
F_adhes))])

447 PF_total = np.array(PF_total[np.logical_and(F_adhes <
np.mean(F_adhes) + out_lim*np.std(F_adhes), F_adhes
> np.mean(F_adhes) - out_lim*np.std(F_adhes))])

448 DMT_mod_array = np.array(DMT_mod_array[np.logical_and(
F_adhes < np.mean(F_adhes) + out_lim*np.std(F_adhes
), F_adhes > np.mean(F_adhes) - out_lim*np.std(
F_adhes))])

449 F_adhes = np.array(F_adhes[np.logical_and(F_adhes < np
.mean(F_adhes) + out_lim*np.std(F_adhes), F_adhes >
np.mean(F_adhes) - out_lim*np.std(F_adhes))])

450 mod_meas_adhes_outs = ’The mean measured DMT modulus
after adhesion force outlier removal is {} GPa w/
std dev {} GPa.’.format(truncate(np.mean(
DMT_mod_array) ,3),truncate(np.std(DMT_mod_array) ,3)
)

451
452 if verbose_calculations == True:
453 print(’Outliers Excluded ’)
454 print(mod_meas_pure)
455 print(mod_meas_sml_indent)
456 print(mod_meas_indent_outs)
457 print(mod_meas_pf_outs)
458 print(mod_meas_adhes_outs)
459
460 if only_outliers == True:
461 DMT_mod_array = np.array(data_image[DMT_mod ])*10** -3
462 mod_meas_pure = ’The mean measured DMT modulus before

outlier removal is {} GPa w/ std dev {} GPa.’.
format(truncate(np.mean(DMT_mod_array) ,3),truncate(
np.std(DMT_mod_array) ,3))

463 # Remove indentations that cannot be approximated by
tip fit function

464 indentation = np.array(data_image[indent ][np.
logical_and(data_image[indent] < indent_max ,
data_image[indent] > indent_min)])

465 PF_total = np.array(peak_force(PF_setpoint ,data_image[
pf_error ][np.logical_and(data_image[indent] <
indent_max , data_image[indent] > indent_min)]))

466 F_adhes = np.array(data_image[adhes][np.logical_and(
data_image[indent] < indent_max , data_image[indent]
> indent_min)])

467 DMT_mod_array = np.array(DMT_mod_array[np.logical_and(
data_image[indent] < indent_max , data_image[indent]
> indent_min)])

468 mod_meas_sml_indent = ’The mean measured DMT modulus
after exclusion of >20nm indentation is {} GPa w/
std dev {} GPa.’.format(truncate(np.mean(
DMT_mod_array) ,3),truncate(np.std(DMT_mod_array) ,3)
)
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469 # Remove indentation outliers based on defined limit
470 PF_total = np.array(PF_total[np.logical_or(indentation

> np.mean(indentation) + out_lim*np.std(
indentation), indentation < np.mean(indentation) -
out_lim*np.std(indentation))])

471 F_adhes = np.array(F_adhes[np.logical_or(indentation >
np.mean(indentation) + out_lim*np.std(indentation)

, indentation < np.mean(indentation) - out_lim*np.
std(indentation))])

472 DMT_mod_array = np.array(DMT_mod_array[np.logical_or(
indentation > np.mean(indentation) + out_lim*np.std
(indentation), indentation < np.mean(indentation) -
out_lim*np.std(indentation))])

473 indentation = np.array(indentation[np.logical_or(
indentation > np.mean(indentation) + out_lim*np.std
(indentation), indentation < np.mean(indentation) -
out_lim*np.std(indentation))])

474 mod_meas_indent_outs = ’The mean measured DMT modulus
after indentation outlier removal is {} GPa w/ std
dev {} GPa.’.format(truncate(np.mean(DMT_mod_array)
,3),truncate(np.std(DMT_mod_array) ,3))

475 # Remove PF outliers
476 indentation = np.array(indentation[np.logical_or(

PF_total > np.mean(PF_total) + out_lim*np.std(
PF_total), PF_total < np.mean(PF_total) - out_lim*
np.std(PF_total))])

477 F_adhes = np.array(F_adhes[np.logical_or(PF_total > np
.mean(PF_total) + out_lim*np.std(PF_total),
PF_total < np.mean(PF_total) - out_lim*np.std(
PF_total))])

478 DMT_mod_array = np.array(DMT_mod_array[np.logical_or(
PF_total > np.mean(PF_total) + out_lim*np.std(
PF_total), PF_total < np.mean(PF_total) - out_lim*
np.std(PF_total))])

479 PF_total = np.array(PF_total[np.logical_or(PF_total >
np.mean(PF_total) + out_lim*np.std(PF_total),
PF_total < np.mean(PF_total) - out_lim*np.std(
PF_total))])

480 mod_meas_pf_outs = ’The mean measured DMT modulus
after peak force outlier removal is {} GPa w/ std
dev {} GPa.’.format(truncate(np.mean(DMT_mod_array)
,3),truncate(np.std(DMT_mod_array) ,3))

481 # Remove Adhesion outliers
482 indentation = np.array(indentation[np.logical_or(

F_adhes > np.mean(F_adhes) + out_lim*np.std(F_adhes
), F_adhes < np.mean(F_adhes) - out_lim*np.std(
F_adhes))])

483 PF_total = np.array(PF_total[np.logical_or(F_adhes >
np.mean(F_adhes) + out_lim*np.std(F_adhes), F_adhes
< np.mean(F_adhes) - out_lim*np.std(F_adhes))])

484 DMT_mod_array = np.array(DMT_mod_array[np.logical_or(
F_adhes > np.mean(F_adhes) + out_lim*np.std(F_adhes
), F_adhes < np.mean(F_adhes) - out_lim*np.std(
F_adhes))])

485 F_adhes = np.array(F_adhes[np.logical_or(F_adhes > np.
mean(F_adhes) + out_lim*np.std(F_adhes), F_adhes <
np.mean(F_adhes) - out_lim*np.std(F_adhes))])
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486 mod_meas_adhes_outs = ’The mean measured DMT modulus
after adhesion force outlier removal is {} GPa w/
std dev {} GPa.’.format(truncate(np.mean(
DMT_mod_array) ,3),truncate(np.std(DMT_mod_array) ,3)
)

487
488 if verbose_calculations == True:
489 print(’Outliers Only’)
490 print(mod_meas_pure ,mod_meas_sml_indent ,

mod_meas_indent_outs ,mod_meas_pf_outs ,
mod_meas_adhes_outs)

491
492
493 if make_arrays == True:
494
495 numbins = int (2*( len(DMT_mod_array))**(1/3))

# Number of Bins determine by "
Rice’s Rule"

496 DMT_mod_hist = np.histogram(DMT_mod_array ,bins=numbins)
497
498 if power == True:
499 E_adh_pwr = DMT_mod_adhes(PF_total ,F_adhes ,power_law(

indentation ,*pars),indentation ,nu_samp)
500 E_adh_pwr_array = np.array(E_adh_pwr)
501 E_adh_pwr_str = ’The mean calculated modulus w/ power

law tip is {} GPa w/ std dev {} GPa.’.format(
truncate(np.mean(E_adh_pwr_array) ,3),truncate(np.
std(E_adh_pwr_array) ,3))

502 E_matl_pwr = DMT_mod_matldep(PF_total ,F_adhes ,
power_law(indentation ,*pars),indentation ,nu_samp)

503 E_matl_pwr_array = np.array(E_matl_pwr)
504 E_matl_pwr_str = ’The mean calculated modulus w/ power

law tip & tip prop assn is {} GPa w/ std dev {}
GPa.’.format(truncate(np.mean(E_matl_pwr_array) ,3),
truncate(np.std(E_matl_pwr_array) ,3))

505 E_adh_pwr_hist = np.histogram(E_adh_pwr_array ,bins=
numbins)

506 E_matl_pwr_hist = np.histogram(E_matl_pwr_array ,bins=
numbins)

507
508 E_adh_array = E_adh_pwr_array
509 E_matl_array = E_matl_pwr_array
510 E_adh_hist = E_adh_pwr_hist
511 E_matl_hist = E_matl_pwr_hist
512
513
514 if verbose_calculations == True:
515 print(’Power Law Tip’)
516 print(E_adh_pwr_str)
517 print(E_matl_pwr_str)
518
519 if poly == True:
520 E_adh_poly = DMT_mod_adhes(PF_total ,F_adhes ,np.polyval

(poly_pars ,indentation),indentation ,nu_samp)
521 E_adh_poly_array = np.array(E_adh_poly)
522 E_adh_poly_str = ’The mean calculated modulus w/ poly

tip is {} GPa w/ std dev {} GPa.’.format(truncate(
np.mean(E_adh_poly_array) ,3),truncate(np.std(
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E_adh_poly_array) ,3))
523 E_matl_poly = DMT_mod_matldep(PF_total ,F_adhes ,np.

polyval(poly_pars ,indentation),indentation ,nu_samp)
524 E_matl_poly_array = np.array(E_matl_poly)
525 E_matl_poly_str = ’The mean calculated modulus w/ poly

tip & tip prop assn is {} GPa w/ std dev {} GPa.’.
format(truncate(np.mean(E_matl_poly_array) ,3),
truncate(np.std(E_matl_poly_array) ,3))

526 E_adh_poly_hist = np.histogram(E_adh_poly_array ,bins=
numbins)

527 E_matl_poly_hist = np.histogram(E_matl_poly_array ,bins
=numbins)

528
529 E_adh_array = E_adh_poly_array
530 E_matl_array = E_matl_poly_array
531 E_adh_hist = E_adh_poly_hist
532 E_matl_hist = E_matl_poly_hist
533
534 if verbose_calculations == True:
535 print(’Polynomial Tip’)
536 print(E_adh_poly_str)
537 print(E_matl_poly_str)
538
539 #%% Plot Modulus Distributions
540
541 if plot_mods == True:
542
543 diff = np.mean(E_adh_array)-np.mean(E_matl_array)
544 rel_diff = diff/np.mean(E_adh_array)*100
545 num_devs = np.abs(diff/np.std(E_adh_array))
546
547 diff = np.std(E_adh_array)-np.std(E_matl_array)
548 rel_diff = diff/np.std(E_adh_array)*100
549
550 xbox = 1.5 #np.max(DMT_mod_array)
551 ybox1 = 0.8*np.max(E_adh_hist [0])
552 ybox2 = 0.9*np.max(E_adh_hist [0])
553 ybox3 = 0.85*np.max(E_adh_hist [0])
554 ybox4 = 1.0*np.max(E_adh_hist [0])
555 ybox5 = 0.95*np.max(E_adh_hist [0])
556
557 DMT_mean = np.mean(DMT_mod_array)
558 DMT_std = np.std(DMT_mod_array)
559 DMT_mod = np.array(data_image[DMT_mod ]*10** -3)
560
561 # DMT_mod.append(DMT_mod_array[np.logical_or ((

DMT_mod_array < (DMT_mean + 3* DMT_std)) ,(DMT_mod_array
> (DMT_mean - 3* DMT_std)))])

562 # DMT_index.append(np.where (( DMT_mod_array > (DMT_mean +
2* DMT_std))))

563 # DMT_index.append(np.where (( DMT_mod_array < (DMT_mean -
2* DMT_std))))

564 # DMT_mod = DMT_mod [0]
565 # DMT_mod = DMT_mod [0]
566
567 numbins_DMT = int ((2* len(DMT_mod))**(1/3))
568
569 DMT_hist = np.histogram(DMT_mod ,bins=numbins_DMT)

112



570 pd.DataFrame(DMT_hist).to_csv(r’{}\{}’.format(path ,’
DMT_hist ’),index=None)

571
572 if force_curve == True:
573
574 point1 = []
575 point2 = []
576 m = []
577 E = []
578
579 for i in range(len(PF_total)):
580 point1.append ((0, PF_total[i]))
581 point2.append (( indentation[i],0))
582 m.append(point_slope(point1[i][0], point2[i][0], point1[

i][1], point2[i][1]))
583
584 E = mod_from_pars(m,np.polyval(poly_pars ,indentation))
585
586 print(’The mean via approximate force curve is’,np.mean(E)

,’GPa.’)
587 print(’The std devn via approximate force curve is’,np.std

(E),’GPa.’)
588
589 numbins = int ((2* len(E))**(1/3))
590
591 curve_hist = np.histogram(E,bins=numbins)
592
593 if verbose_plots == True:
594 plt.figure ()
595 plt.plot(DMT_mod_hist [1][0: -1] , DMT_mod_hist [0], label=’

Measured ’)
596 # plt.plot(E_adh_hist [1][0: -1] , E_adh_hist [0],label=’

Calc ’)
597 # plt.plot(E_matl_hist [1][0: -1] , E_matl_hist [0],label=’

Calc w/ Tip Props ’)
598 # plt.plot(curve_hist [1][0: -1] , curve_hist [0],label=’

Calc w/o Adhesion ’)
599 # plt.plot(DMT_hist [1][0: -1] , DMT_hist [0])
600 # plt.legend(fontsize =20)
601 # plt.title(’Tranverse Modulus Distribution Comparison

, Measured and Calculated , {}’. format(fiber_name),
fontsize =24)

602 plt.title(’Transverse Modulus Distribution , {}’.format
(fiber_name),fontsize =24)

603 plt.xlabel(’Transverse Modulus [GPa]’,fontsize =20)
604 plt.xticks(fontsize =16)
605 plt.yticks(fontsize =16)
606 fig_name = r’{} mod_dist.png’.format(fiber_name)
607 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
608 plt.show
609
610 plt.figure ()
611 plt.plot(E_adh_hist [1][0: -1] , E_adh_hist [0], label=’Calc

’)
612 plt.plot(E_matl_hist [1][0: -1] , E_matl_hist [0], label=’

Calc w/ Tip Props ’)
613 plt.legend(fontsize =20)
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614 plt.title(’Calculated Tranverse Modulus Comparison , {}
’.format(fiber_name),fontsize =24)

615 plt.xlabel(’Transverse Modulus [GPa]’,fontsize =20)
616 plt.xticks(fontsize =16)
617 plt.yticks(fontsize =16)
618 fig_name = r’{} mod_dist.png’.format(fiber_name)
619 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
620 plt.show
621
622 plt.figure ()
623 plt.plot(curve_hist [1][0: -1] , curve_hist [0], label=’No

Adhesion ’)
624 plt.plot(DMT_mod_hist [1][0: -1] , DMT_mod_hist [0], label=’

Raw Data’)
625 # plt.plot(DMT_hist [1][0: -1] , DMT_hist [0],label=’Raw

Data ’)
626 plt.title(’Tranverse Modulus Distribution , No Adhesion

, {}’.format(fiber_name),fontsize =24)
627 plt.xlabel(’Transverse Modulus [GPa]’,fontsize =20)
628 plt.xticks(fontsize =16)
629 plt.yticks(fontsize =16)
630 plt.legend(fontsize =20)
631 fig_name = r’{} force_curve.png’.format(fiber_name)
632 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
633 plt.show()
634
635 #%% Distribution Function Fitter
636
637 if histogram_fitter == True:
638
639 data_histfit = DMT_mod_array
640
641 mean_data = np.mean(data_histfit)
642 std_data = np.std(data_histfit)
643 rel_error_data = std_data/mean_data
644
645 fit_bins = int (2*( len(data_histfit))**(1/3))
646 hist_fit = np.histogram(data_histfit ,bins=fit_bins)
647
648 x_hist = hist_fit [1][0: -1]
649 y_hist = hist_fit [0]
650
651 # Fit to Gaussian distribution
652 try:
653 pars_gauss , cov_gauss = curve_fit(f=gaussian , xdata=

x_hist , ydata=y_hist , p0=[np.max(y_hist), np.mean(
data_histfit), np.std(data_histfit)], bounds =(0, np
.inf),maxfev =10000)

654 mean_gauss = pars_gauss [1]
655 std_gauss = pars_gauss [2]
656 rel_error_gauss = std_gauss/mean_gauss
657
658 res_gauss = y_hist - gaussian(x_hist ,pars_gauss [0],

pars_gauss [1], pars_gauss [2])
659 ss_res_gauss = np.sum(res_gauss **2)
660 ss_tot = np.sum((y_hist -np.mean(y_hist))**2)
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661 r2_gauss = 1 - (ss_res_gauss / ss_tot)
662 except RuntimeError:
663 print(’The Guassian fit failed to converge.’)
664 pars_gauss = np.zeros (3)
665 res_gauss = y_hist
666 r2_gauss = 0
667
668 # Fit to skew normal distribution
669 try:
670 pars_skew , cov_skew = curve_fit(f=skew , xdata=x_hist ,

ydata=y_hist , p0=[np.max(y_hist), np.mean(
data_histfit), np.std(data_histfit), -2], bounds=(-
np.inf , np.inf),maxfev =10000)

671 mean_skew = skew_mean(pars_skew [1], pars_skew [2],
pars_skew [3])

672 std_skew = skew_std(pars_skew [2], pars_skew [3])
673 rel_error_skew = std_skew/mean_skew
674
675 res_skew = y_hist - skew(x_hist ,pars_skew [0], pars_skew

[1], pars_skew [2], pars_skew [3])
676 ss_res_skew = np.sum(res_skew **2)
677 ss_tot = np.sum((y_hist -np.mean(y_hist))**2)
678 r2_skew = 1 - (ss_res_skew / ss_tot)
679 except RuntimeError:
680 print(’The Skew Guassian fit failed to converge.’)
681 pars_skew = np.zeros (4)
682 res_skew = y_hist
683 r2_skew = 0
684
685 # Fit to Generalied Normal Distribution
686 try:
687 pars_gennorm , cov_gennorm = curve_fit(f=gennorm , xdata

=x_hist , ydata=y_hist , p0=[np.max(y_hist), np.mean(
data_histfit), np.std(data_histfit), 1], bounds =(0,
np.inf),maxfev =10000)

688 mean_gennorm = pars_gennorm [1]
689 std_gennorm = np.sqrt(( pars_gennorm [3]**2* gamma (3/

pars_gennorm [2]))/gamma (1/ pars_gennorm [2]))
690 rel_error_gennorm = std_gennorm/mean_gennorm
691
692 res_gennorm = y_hist - gennorm(x_hist ,pars_gennorm [0],

pars_gennorm [1], pars_gennorm [2], pars_gennorm [3])
693 ss_res_gennorm = np.sum(res_gennorm **2)
694 ss_tot = np.sum((y_hist -np.mean(y_hist))**2)
695 r2_gennorm = 1 - (ss_res_gennorm / ss_tot)
696 except RuntimeError:
697 print(’The Generalized Normal fit failed to converge.’

)
698 pars_gennorm = np.zeros (3)
699 res_gennorm = y_hist
700 r2_gennorm = 0
701
702 # Fit to Laplace Distribution
703 try:
704 pars_laplace , cov_laplace = curve_fit(f=laplace , xdata

=x_hist , ydata=y_hist , p0=[np.max(y_hist), np.mean(
data_histfit), np.std(data_histfit)], bounds =(0, np
.inf),maxfev =10000)
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705 mean_laplace = pars_laplace [1]
706 std_laplace = np.sqrt (2* pars_laplace [2]**2)
707 rel_error_laplace = std_laplace/mean_laplace
708
709 res_laplace = y_hist - laplace(x_hist ,pars_laplace [0],

pars_laplace [1], pars_laplace [2])
710 ss_res_laplace = np.sum(res_laplace **2)
711 ss_tot = np.sum((y_hist -np.mean(y_hist))**2)
712 r2_laplace = 1 - (ss_res_laplace / ss_tot)
713 except RuntimeError:
714 print(’The Laplace fit failed to converge.’)
715 pars_laplace = np.zeros (3)
716 res_laplace = y_hist
717 r2_laplace = 0
718
719 if verbose_calculations == True:
720 if np.logical_and(np.logical_and(r2_gauss > r2_skew ,

r2_gauss > r2_gennorm), r2_gauss > r2_laplace):
721 print(’The distribution for this measurement is

Guassian.’)
722 print(’The arithmetic mean for the {} channel is

{} +/- {} %.’.format(histfit ,truncate(mean_data
,3),truncate(rel_error_data *100 ,3)))

723 print(’The Gaussian fit mean is {} +/- {} %.’.
format(truncate(mean_gauss ,3),truncate(
rel_error_gauss *100 ,3)))

724 print(’The R^2 value for the Gaussian fit is {}.’.
format(truncate(r2_gauss ,3)))

725 is_gauss = True
726
727 elif np.logical_and(np.logical_and(r2_skew > r2_gauss ,

r2_skew > r2_gennorm), r2_skew > r2_laplace):
728 print(’The distribution for this measurement is

Skew Guassian.’)
729 print(’The arithmetic mean for the {} channel is

{} +/- {} %.’.format(histfit ,truncate(mean_data
,3),truncate(rel_error_data *100 ,3)))

730 print(’The skew fit mean is {} +/- {} %.’.format(
truncate(mean_skew ,3),truncate(rel_error_skew
*100 ,3)))

731 print(’The R^2 value for the Gaussian fit is {}.’.
format(truncate(r2_skew ,3)))

732 is_skew = True
733
734 elif np.logical_and(np.logical_and(r2_gennorm >

r2_gauss , r2_gennorm > r2_skew), r2_gennorm >
r2_laplace):

735 print(’The distribution for this measurement is
Generalized Normal.’)

736 print(’The arithmetic mean for the {} channel is
{} +/- {} %.’.format(histfit ,truncate(mean_data
,3),truncate(rel_error_data *100 ,3)))

737 print(’The Generalized Normal fit mean is {} +/-
{} %.’.format(truncate(mean_gennorm ,3),truncate
(rel_error_gennorm *100 ,3)))

738 print(’The R^2 value for the Generalised Normal
fit is {}.’.format(truncate(r2_gennorm ,3)))

739 is_gennorm = True
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740
741 elif np.logical_and(np.logical_and(r2_laplace >

r2_gauss , r2_laplace > r2_skew), r2_laplace >
r2_gennorm):

742 print(’The distribution for this measurement is
Laplace.’)

743 print(’The arithmetic mean for the {} channel is
{} +/- {} %.’.format(histfit ,truncate(mean_data
,3),truncate(rel_error_data *100 ,3)))

744 print(’The Laplace fit mean is {} +/- {} %.’.
format(truncate(mean_laplace ,3),truncate(
rel_error_laplace *100 ,3)))

745 print(’The R^2 value for the Laplace fit is {}.’.
format(truncate(r2_laplace ,3)))

746 is_laplace = True
747
748 if verbose_plots == True:
749
750 xlims = np.linspace(mean_data - vert_bars*std_data ,

mean_data + vert_bars*std_data ,100)
751
752 plt.figure ()
753 plt.plot(x_hist ,y_hist ,’k--’)
754 plt.plot(x_hist ,gaussian(x_hist ,pars_gauss [0],

pars_gauss [1], pars_gauss [2]))
755 plt.plot(x_hist ,skew(x_hist ,pars_skew [0], pars_skew [1],

pars_skew [2], pars_skew [3]))
756 plt.plot(x_hist ,gennorm(x_hist ,pars_gennorm [0],

pars_gennorm [1], pars_gennorm [2], pars_gennorm [3]))
757 plt.plot(x_hist ,laplace(x_hist ,pars_laplace [0],

pars_laplace [1], pars_laplace [2]))
758 # plt.plot(xlims ,np.zeros(len(xlims)),’k ’)
759 plt.plot(std_bars(data_histfit ,y_hist)[0][0] , std_bars(

data_histfit ,y_hist)[0][1] ,’k--’)
760 plt.plot(std_bars(data_histfit ,y_hist)[1][0] , std_bars(

data_histfit ,y_hist)[1][1] ,’k--’)
761 plt.title(’Comparison of Measurement & Various PDFs

for DMT Modulus ’,fontsize =16)
762 plt.xlabel(’Transverse Modulus [GPa]’,fontsize =14)
763 # plt.title(’Comparison of Measurement & Various PDFs

for Peak Force ’,fontsize =16)
764 # plt.xlabel(’Peak Force [nN]’,fontsize =14)
765 # plt.title(’Comparison of Measurement & Various PDFs

for Indentation ’,fontsize =16)
766 # plt.xlabel(’Indentation Depth [nm]’,fontsize =14)
767 # plt.title(’Comparison of Measurement & Various PDFs

for Adhesion ’,fontsize =16)
768 # plt.xlabel(’Adhesion Force [nN]’,fontsize =14)
769 plt.legend ([’Measured ’,’Gaussian , R^2 = {}’.format(

truncate(float(r2_gauss) ,3)),’Skew Gaussian , R^2 =
{}’.format(truncate(float(r2_skew) ,3)),’Generalized
Normal , R^2 = {}’.format(truncate(float(r2_gennorm

) ,3)),’Laplace , R^2 = {}’.format(truncate(float(
r2_laplace) ,3)),’Measurement Standard Deviation ’],
fontsize =14)

770 plt.xlim(( xlims[0], xlims [-1]))
771 fig_name = r’{} hist_fits.png’.format(fiber_name)
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772 # plt.savefig(r ’{}\{}’. format(path ,fig_name),
bbox_inches=’tight ’)

773 plt.show()
774
775 plt.figure ()
776 plt.plot(x_hist ,res_gauss)
777 plt.plot(x_hist ,res_skew)
778 plt.plot(x_hist ,res_gennorm)
779 plt.plot(x_hist ,res_laplace)
780 # plt.plot(xlims ,np.zeros(len(xlims)),’k ’)
781 plt.plot(std_bars(data_histfit ,y_hist)[0][0] , std_bars(

data_histfit ,y_hist)[0][1] ,’k--’)
782 plt.plot(std_bars(data_histfit ,y_hist)[1][0] , std_bars(

data_histfit ,y_hist)[1][1] ,’k--’)
783 plt.title(’Comparison of Fit Residuals for Various

PDFs for DMT Modulus ’,fontsize =16)
784 plt.xlabel(’Transverse Modulus [GPa]’,fontsize =14)
785 # plt.title(’Comparison of Fit Residuals for Various

PDFs of Peak Force ’,fontsize =16)
786 # plt.xlabel(’Peak Force [nN]’,fontsize =14)
787 # plt.title(’Comparison of Fit Residuals for Various

PDFs for Indentation ’,fontsize =16)
788 # plt.xlabel(’Indentation Depth [nm]’,fontsize =14)
789 # plt.title(’Comparison of Fit Residuals for Various

PDFs for Adhesion ’,fontsize =16)
790 # plt.xlabel(’Adhesion Force [nN]’,fontsize =14)
791 plt.legend ([’Gaussian ’,’Skew Gaussian ’,’Generalized

Normal ’,’Laplace ’],fontsize =14)
792 plt.xlim(( xlims[0], xlims [-1]))
793 fig_name = r’{} hist_fit_res.png’.format(fiber_name)
794 plt.savefig(r’{}\{}’.format(path ,fig_name),bbox_inches

=’tight ’)
795 plt.show()
796
797 #%% Multiple Gaussian Fitting
798
799 if multi_fit == True:
800
801 data_histfit = DMT_mod_array
802 # data_histfit = E_adh_array
803 # data_histfit = E_matl_array
804
805 fit_bins = int (2*( len(data_histfit))**(1/3))
806 hist_fit = np.histogram(data_histfit ,bins=fit_bins)
807
808 x_hist = hist_fit [1][0: -1]
809 y_hist = hist_fit [0]
810
811 # Initial guesses for the parameters to fit:
812 # 3 amplitudes , means and standard deviations plus a

continuum offset.
813 # guess_glue = [np.max(y_hist)/2,glue_mean ,glue_std ,np.max

(y_hist)/2,np.mean(x_hist),np.std(x_hist) ,0]
814 # guess_gauss = [950 ,3.5 ,1.5 ,1300 ,9.5 ,1.5 ,0]
815 # guess_gauss = [3000,18,2,0,0,0,0]
816 guess_gauss = [0,0,0,np.max(y_hist)/2,np.mean(x_hist),np.

std(x_hist) ,0]
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817 guess_skew = [0,0,0,0,np.max(y_hist)/2,np.mean(x_hist),np.
std(x_hist) ,0,0]

818
819 # Glue peak check
820 # try:
821 # popt_glue , pcov = curve_fit(multi_gaussian , x_hist ,

y_hist , guess_glue , bounds =(0, np.inf), maxfev =10000)
822 # glue1 = gaussian(x_hist , popt_glue [0], popt_glue [1],

popt_glue [2])
823 # glue2 = gaussian(x_hist , popt_glue [3], popt_glue [4],

popt_glue [5])
824
825 # if popt_glue [0] > popt_glue [3]:
826 # peak_big = popt_glue [0]
827 # mean_big = popt_glue [1]
828 # std_big = popt_glue [2]
829 # peak_sml = popt_glue [3]
830 # mean_sml = popt_glue [4]
831 # std_sml = popt_glue [5]
832 # else:
833 # peak_big = popt_glue [3]
834 # mean_big = popt_glue [4]
835 # std_big = popt_glue [5]
836 # peak_sml = popt_glue [0]
837 # mean_sml = popt_glue [1]
838 # std_sml = popt_glue [2]
839 # print(’Statistics for the glue check fit ’)
840 # print(’For Gauss 1, A = ’,popt_glue [0],’mean =’,

popt_glue [1],’and std devn =’,popt_glue [2])
841 # print(’For Gauss 2, A = ’,popt_glue [3],’mean =’,

popt_glue [4],’and std devn =’,popt_glue [5])
842 # res_glue = y_hist - multi_gaussian(x_hist ,* popt_glue

)
843 # ss_res_glue = np.sum(res_glue **2)
844 # ss_tot = np.sum((y_hist -np.mean(y_hist))**2)
845 # r2_glue = 1 - (ss_res_glue / ss_tot)
846 # print(’R^2 for the glue check fit is’,r2_glue)
847 # if np.abs(mean_big -mean_sml)/(2*np.sqrt(std_big*

std_sml)) <= 1:
848 # print(’This peak is unimodal , by the liklihood

test for bimodality .’)
849 # else:
850 # print(’This peak is bimodal , by the liklihood

test for bimodality .’)
851 # D = np.sqrt (2)*(np.abs(mean_big -mean_sml)/np.

sqrt(std_big **2* std_sml **2))
852 # print (" Ashman ’s D for this distribution is",D)
853 # if D > 2:
854 # print(’The peaks can be cleanly seperated .’)
855 # else:
856 # print(’The peaks cannot be cleanly seperated

.’)
857 # print(’The bimodal seperation is ’,(mean_big -

mean_sml)/(2*( std_big*std_sml)))
858 # print(’The bimodality amplitude is ’,(peak_big -

peak_sml)/peak_big)
859 # print(’The bimodality ratio is’,peak_sml/

peak_big)

119



860 # except RuntimeError:
861 # print(’The multi -peak gaussian fit failed to

converge.’)
862
863 # Multi -Gaussian fitter
864 try:
865 popt_gauss , pcov = curve_fit(multi_gaussian , x_hist ,

y_hist , guess_gauss , bounds =(0, np.inf), maxfev
=10000)

866 gauss1 = gaussian(x_hist , popt_gauss [0], popt_gauss [1],
popt_gauss [2])

867 gauss2 = gaussian(x_hist , popt_gauss [3], popt_gauss [4],
popt_gauss [5])

868
869 if popt_gauss [0] > popt_gauss [3]:
870 peak_big = popt_gauss [0]
871 mean_big = popt_gauss [1]
872 std_big = popt_gauss [2]
873 peak_sml = popt_gauss [3]
874 mean_sml = popt_gauss [4]
875 std_sml = popt_gauss [5]
876 else:
877 peak_big = popt_gauss [3]
878 mean_big = popt_gauss [4]
879 std_big = popt_gauss [5]
880 peak_sml = popt_gauss [0]
881 mean_sml = popt_gauss [1]
882 std_sml = popt_gauss [2]
883 print(’Statistics for the multi -gaussian fit’)
884 print(’The deviation from the arithmetic mean for the

large peak is’,np.abs(mean_big -np.mean(data_histfit
))/np.mean(data_histfit)*100,’%’)

885 if np.abs(mean_big -np.mean(data_histfit)) > np.std(
data_histfit):

886 print(’The fit peak mean deviates from the data
mean by more than 1 std devn’)

887 print(’The change in precision is’,(np.std(
data_histfit)/np.mean(data_histfit) - std_big/
mean_big)/(np.std(data_histfit)/np.mean(
data_histfit))*100,’%.’)

888 print(’For Gauss 1, A = ’,popt_gauss [0],’mean =’,
popt_gauss [1],’and std devn =’,popt_gauss [2])

889 print(’For Gauss 2, A = ’,popt_gauss [3],’mean =’,
popt_gauss [4],’and std devn =’,popt_gauss [5])

890 print(’The fit parameters are’,popt_gauss)
891 res_multgauss = y_hist - multi_gaussian(x_hist ,*

popt_gauss)
892 ss_res_multgauss = np.sum(res_multgauss **2)
893 ss_tot = np.sum((y_hist -np.mean(y_hist))**2)
894 r2_multgauss = 1 - (ss_res_multgauss / ss_tot)
895 print(’R^2 for the multi -Gaussian fit is’,r2_multgauss

)
896 if np.abs(mean_big -mean_sml)/(2*np.sqrt(std_big*

std_sml)) <= 1:
897 print(’This peak is unimodal , by the liklihood

test for bimodality.’)
898 else:
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899 print(’This peak is bimodal , by the liklihood test
for bimodality.’)

900 D = np.sqrt (2)*(np.abs(mean_big -mean_sml)/np.sqrt(
std_big **2* std_sml **2))

901 print("Ashman ’s D for this distribution is",D)
902 if D > 2:
903 print(’The peaks can be cleanly seperated.’)
904 else:
905 print(’The peaks cannot be cleanly seperated.’

)
906 print(’The bimodal seperation is’,(mean_big -

mean_sml)/(2*( std_big*std_sml)))
907 print(’The bimodality amplitude is’,(peak_big -

peak_sml)/peak_big)
908 print(’The bimodality ratio is’,peak_sml/peak_big)
909 except RuntimeError:
910 print(’The multi -peak gaussian fit failed to converge.

’)
911
912 # Multi -Skew Gaussian Fitter
913 # try:
914 # popt_skew , pcov = curve_fit(multi_skew , x_hist ,

y_hist , guess_skew , bounds =(0, np.inf), maxfev =10000)
915 # skew1 = skew(x_hist , popt_skew [0], popt_skew [1],

popt_skew [2], popt_skew [3])
916 # skew2 = skew(x_hist , popt_skew [4], popt_skew [5],

popt_skew [6], popt_skew [7])
917
918 # if popt_skew [0] > popt_skew [4]:
919 # peak_big = skew_mode(popt_skew [1], popt_skew [2],

popt_skew [3])
920 # mean_big = skew_mean(popt_skew [1], popt_skew [2],

popt_skew [3])
921 # std_big = skew_std(popt_skew [2], popt_skew [3])
922 # peak_sml = skew_mode(popt_skew [5], popt_skew [6],

popt_skew [7])
923 # mean_sml = skew_mean(popt_skew [5], popt_skew [6],

popt_skew [7])
924 # std_sml = skew_std(popt_skew [6], popt_skew [7])
925 # else:
926 # peak_big = skew_mode(popt_skew [5], popt_skew [6],

popt_skew [7])
927 # mean_big = skew_mean(popt_skew [5], popt_skew [6],

popt_skew [7])
928 # std_big = skew_std(popt_skew [6], popt_skew [7])
929 # peak_sml = skew_mode(popt_skew [1], popt_skew [2],

popt_skew [3])
930 # mean_sml = skew_mean(popt_skew [1], popt_skew [2],

popt_skew [3])
931 # std_sml = skew_std(popt_skew [2], popt_skew [3])
932 # print(’Statistics for the multi -skew fit ’)
933 # print(’The deviation from the arithmetic mean for

the large peak is’,np.abs(mean_big -np.mean(data_histfit
))/np.mean(data_histfit)*100,’%’)

934 # if np.abs(mean_big -np.mean(data_histfit)) > np.std(
data_histfit):

935 # print(’The fit peak mean deviates from the data
mean by more than 1 std devn ’)
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936 # print(’The change in precision is ’,(np.std(
data_histfit)/np.mean(data_histfit) - std_big/mean_big)
/(np.std(data_histfit)/np.mean(data_histfit))*100,’%.’)

937 # print(’For Skew 1, A = ’,skew_mode(popt_skew [1],
popt_skew [2], popt_skew [3]) ,’mean =’,skew_mean(popt_skew
[1], popt_skew [2], popt_skew [3]) ,’and std devn =’,
skew_std(popt_skew [2], popt_skew [3]))

938 # print(’For Skew 2, A = ’,skew_mode(popt_skew [5],
popt_skew [6], popt_skew [7]) ,’mean =’,skew_mean(popt_skew
[5], popt_skew [6], popt_skew [7]) ,’and std devn =’,
skew_std(popt_skew [6], popt_skew [7]))

939 # if np.abs(mean_big -mean_sml)/(2*np.sqrt(std_big*
std_sml)) <= 1:

940 # print(’This peak is unimodal , by the liklihood
test for bimodality .’)

941 # else:
942 # print(’This peak is bimodal , by the liklihood

test for bimodality .’)
943 # D = np.sqrt (2)*(np.abs(mean_big -mean_sml)/np.

sqrt(std_big **2* std_sml **2))
944 # print (" Ashman ’s D for this distribution is",D)
945 # if D > 2:
946 # print(’The peaks can be cleanly seperated .’)
947 # else:
948 # print(’The peaks cannot be cleanly seperated

.’)
949 # print(’The bimodal seperation is ’,(mean_big -

mean_sml)/(2*( std_big*std_sml)))
950 # print(’The bimodality amplitude is ’,(peak_big -

peak_sml)/peak_big)
951 # print(’The bimodality ratio is’,peak_sml/

peak_big)
952 # except RuntimeError:
953 # print(’The multi -peak skew fit failed to converge.’)
954
955 # if verbose_plots == True:
956 if verbose_plots == False:
957
958 # plt.figure ()
959 # plt.plot(x_hist , y_hist , ’-’, linewidth =4, label=’

Data ’)
960 # plt.plot(x_hist , multi_gaussian(x_hist , *popt_glue),

’k--’, linewidth=2, label=’Fit ’)
961 # plt.plot(x_hist , glue1 , ’r--’, linewidth =2, label=’

Fit1 ’)
962 # plt.plot(x_hist , glue2 , ’g--’, linewidth =2, label=’

Fit2 ’)
963 # plt.title(’Glue Check Fit , {} {}’. format(fiber_name ,

mult_fit),fontsize =16)
964 # plt.xlabel(’Transverse Modulus[GPa]’,fontsize =14)
965 # plt.ylabel(’# of Measurements ’,fontsize =14)
966 # plt.xlim ([0 ,30])
967 # plt.legend(fontsize =14)
968 # fig_name = r ’{} glue_fit.png ’.format(fiber_name)
969 # # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
970 # plt.show()
971
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972 plt.figure ()
973 plt.plot(x_hist , y_hist , ’-’, linewidth=4, label=’Data

’)
974 plt.plot(x_hist , multi_gaussian(x_hist , *popt_gauss),

’k--’, linewidth=2, label=’Fit’)
975 plt.plot(x_hist , gauss1 , ’r--’, linewidth=2, label=’

Fit1’)
976 plt.plot(x_hist , gauss2 , ’g--’, linewidth=2, label=’

Fit2’)
977 plt.title(’Multiple -Gaussian Fit , {} {}’.format(

fiber_name ,mult_fit),fontsize =16)
978 plt.xlabel(’Transverse Modulus[GPa]’,fontsize =14)
979 plt.ylabel(’# of Measurements ’,fontsize =14)
980 plt.xlim ([0 ,30])
981 plt.legend(fontsize =14)
982 fig_name = r’{} mult_gauss_fit.png’.format(fiber_name)
983 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
984 plt.show()
985
986 # plt.figure ()
987 # plt.plot(x_hist , y_hist , ’-’, linewidth =4, label=’

Data ’)
988 # plt.plot(x_hist , multi_skew(x_hist , *popt_skew), ’k

--’, linewidth =2, label=’Fit ’)
989 # plt.plot(x_hist , skew1 , ’r--’, linewidth =2, label=’

Fit1 ’)
990 # plt.plot(x_hist , skew2 , ’g--’, linewidth =2, label=’

Fit2 ’)
991 # plt.title(’Multiple -Skew Fit , {} {}’. format(

fiber_name ,mult_fit),fontsize =16)
992 # plt.xlabel(’Transverse Modulus[GPa]’,fontsize =14)
993 # plt.ylabel(’# of Measurements ’,fontsize =14)
994 # plt.legend(fontsize =14)
995 # fig_name = r ’{} mult_skew_fit.png ’.format(fiber_name

)
996 # # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
997 # plt.show()
998
999 # plt.figure ()

1000 # plt.plot(x_hist , y_hist -gauss1 , ’r’, linewidth =4,
label=’Data -Fit1 ’)

1001 # plt.plot(x_hist , y_hist -gauss2 , ’g’, linewidth =4,
label=’Data -Fit2 ’)

1002 # plt.plot(x_hist , y_hist -gauss3 , ’b’, linewidth =4,
label=’Data -Fit3 ’)

1003 # plt.plot(x_hist , multi_gaussian(x_hist , *popt), ’k
--’, linewidth =2, label=’Fit ’)

1004 # plt.legend ()
1005 # fig_name = r ’{} mult_gauss_fit.png ’.format(

fiber_name)
1006 # # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1007 # plt.show()
1008
1009 #%% Outlier Testing
1010
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1011 if outlier_test == True:
1012
1013 DMT_mean = np.mean(DMT_mod_array)
1014 DMT_std = np.std(DMT_mod_array)
1015 indent_mean = np.mean(indentation)
1016 indent_std = np.std(indentation)
1017 PF_total_mean = np.mean(PF_total)
1018 PF_total_std = np.std(PF_total)
1019 adhes_mean = np.mean(F_adhes)
1020 adhes_std = np.std(F_adhes)
1021
1022 DMT_index = []
1023 indent_index = []
1024 PF_index = []
1025 adhes_index = []
1026
1027 DMT_index.append(np.where(np.logical_or (( DMT_mod_array > (

DMT_mean + out_lim*DMT_std)) ,(DMT_mod_array < (DMT_mean
- out_lim*DMT_std)))))

1028 DMT_index = DMT_index [0]
1029 DMT_index = DMT_index [0]
1030
1031 indent_index.append(np.where(np.logical_or (( indentation >

(indent_mean + out_lim*indent_std)) ,(indentation < (
indent_mean - out_lim*indent_std)))))

1032 indent_index = indent_index [0]
1033 indent_index = indent_index [0]
1034
1035 PF_index.append(np.where(np.logical_or (( PF_total > (

PF_total_mean + out_lim*PF_total_std)) ,(PF_total < (
PF_total_mean - out_lim*PF_total_std)))))

1036 PF_index = PF_index [0]
1037 PF_index = PF_index [0]
1038
1039 adhes_index.append(np.where(np.logical_or (( F_adhes > (

adhes_mean + out_lim*adhes_std)) ,(F_adhes < (adhes_mean
- out_lim*adhes_std)))))

1040 adhes_index = adhes_index [0]
1041 adhes_index = adhes_index [0]
1042
1043 indent_PF_counter = 0
1044 indent_adhes_counter = 0
1045 PF_adhes_counter = 0
1046 treble_counter = 0
1047 indent_PF_tuples = []
1048 indent_adhes_tuples = []
1049 PF_adhes_tuples = []
1050 trebles = []
1051
1052 for i in range(len(indent_index)):
1053 for j in range(len(PF_index)):
1054 if indent_index[i] == PF_index[j]:
1055 indent_PF_tuples.append ((i,j,i))
1056 indent_PF_counter = indent_PF_counter + 1
1057 for k in range(len(adhes_index)):
1058 if indent_index[i] == adhes_index[k]:
1059 indent_adhes_tuples.append ((i,k,i))
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1060 indent_adhes_counter = indent_adhes_counter +
1

1061 for l in range(len(PF_index)):
1062 for m in range(len(adhes_index)):
1063 if PF_index[l] == adhes_index[m]:
1064 PF_adhes_tuples.append ((l,m))
1065 PF_adhes_counter = PF_adhes_counter + 1
1066 for n in range(len(indent_index)):
1067 if indent_index[n] == PF_index[l]:
1068 trebles.append ((i,j,m))
1069 treble_counter = treble_counter + 1
1070
1071 PF_outlier_mods = []
1072 indent_outlier_mods = []
1073 adhes_outlier_mods = []
1074
1075 PF_outlier_mods.append(DMT_mod_array[PF_index ])
1076 E_PF_out_hist = np.histogram(PF_outlier_mods ,bins = int

((2* len(PF_outlier_mods [0]) **(1/3))))
1077 indent_outlier_mods.append(DMT_mod_array[indent_index ])
1078 E_indent_out_hist = np.histogram(indent_outlier_mods ,bins

= int ((2* len(indent_outlier_mods [0]) **(1/3))))
1079 adhes_outlier_mods.append(DMT_mod_array[adhes_index ])
1080 E_adhes_out_hist = np.histogram(adhes_outlier_mods ,bins =

int ((2* len(adhes_outlier_mods [0]) **(1/3))))
1081
1082 if verbose_calculations == True:
1083 print(’Outliers Counting and Coincidence ’)
1084 print(’Total Outliers in Data Channel , {}’.format(

fiber_name))
1085 print(’The number of indentations >{} std devn from

the mean are’.format(out_lim),len(indent_index),’or
’,len(indent_index)/len(indentation)*100,’% of all
measurements.’)

1086 print(’The number of PeakForce values >{} std devn
from the mean are’.format(out_lim),len(PF_index),’
or’,len(PF_index)/len(indentation)*100,’% of all
measurements.’)

1087 print(’The number of adhesion values >{} std devn from
the mean are’.format(out_lim),len(adhes_index),’or

’,len(adhes_index)/len(indentation)*100,’% of all
measurements.’)

1088
1089 print(’The number of coincident indent -PF >{} std devn

outliers is’.format(out_lim),indent_PF_counter ,’or
’,indent_PF_counter/len(indentation)*100,’% of all
measurements.’)

1090 print(’The number of coincident indent -adhes >{} std
devn outliers is’.format(out_lim),
indent_adhes_counter ,’or’,indent_adhes_counter/len(
indentation)*100,’% of all measurements.’)

1091 print(’The number of coincident PF-adhes >{} std devn
outliers is’.format(out_lim),PF_adhes_counter ,’or’,
PF_adhes_counter/len(indentation)*100,’% of all
measurements.’)

1092 print(’The number of coincident indent -PF-adhes >{}
std devn outliers is’.format(out_lim),
treble_counter ,’or’,treble_counter/len(indentation)
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*100,’% of all measurements.’)
1093
1094 if verbose_plots == True:
1095
1096 plt.figure ()
1097 plt.plot(indent_index ,range(len(indent_index)))
1098 plt.plot(PF_index ,range(len(PF_index)))
1099 plt.plot(adhes_index ,range(len(adhes_index)))
1100 plt.xlabel(’Index Location in Original Data’,fontsize

=20)
1101 plt.xticks(fontsize =16)
1102 plt.yticks(fontsize =16)
1103 plt.ylabel(’Outlier #’,fontsize =20)
1104 plt.legend ([’Indentation ’,’PeakForce ’,’Adhesion ’],

fontsize =20)
1105 plt.title(’Comparison of Locations of >{} Std Devn

Values , {}’.format(out_lim ,fiber_name),fontsize =24)
1106 # fig_name = r ’{} outlier_index.png ’.format(fiber_name

)
1107 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1108 plt.show()
1109
1110 plt.figure ()
1111 plt.plot(E_indent_out_hist [1][0: -1] , E_indent_out_hist

[0])
1112 plt.plot(E_adhes_out_hist [1][0: -1] , E_adhes_out_hist

[0])
1113 plt.plot(E_PF_out_hist [1][0: -1] , E_PF_out_hist [0])
1114 plt.plot(DMT_mod_hist [1][0: -1] , DMT_mod_hist [0])
1115 plt.legend ([’Indent ’,’Adhesion ’,’PeakForce ’,’All

Measurements ’],fontsize =20)
1116 plt.title(’Tranverse Modulus Distribution with {} Std

Devn Outliers , {}’.format(out_lim ,fiber_name),
fontsize =24)

1117 plt.xlabel(’Transverse Modulus [GPa]’,fontsize =20)
1118 plt.xticks(fontsize =16)
1119 plt.yticks(fontsize =16)
1120 # fig_name = r ’{} coin_out_dists.png ’.format(

fiber_name)
1121 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1122 plt.show
1123
1124 ident_PF_outlier_mods = []
1125 indent_adhes_outlier_mods = []
1126 PF_adhes_outlier_mods = []
1127 treble_outlier_mods = []
1128
1129 for i in range(indent_PF_counter):
1130 ident_PF_outlier_mods.append(DMT_mod_array[i])
1131 # ident_PF_outlier_mods.append(DMT_mod_matldep(

PF_total[indent_PF_tuples[i][1]] , F_adhes[
indent_PF_tuples[i][0]],np.polyval(poly_pars ,
indentation[indent_PF_tuples[i][0]]) ,indentation[
indent_PF_tuples[i][0]], nu_samp))

1132 # ident_PF_outlier_mods.append(DMT_mod_matldep(
PF_total[indent_PF_tuples[i][1]] , F_adhes[
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indent_PF_tuples[i][0]], power_law(indentation[
indent_PF_tuples[i][0]] ,* pars),indentation[
indent_PF_tuples[i][0]], nu_samp))

1133
1134 for i in range(indent_adhes_counter):
1135 indent_adhes_outlier_mods.append(DMT_mod_array[i])
1136 # indent_adhes_outlier_mods.append(DMT_mod_matldep(

PF_total[indent_adhes_tuples[i][1]] , F_adhes[
indent_adhes_tuples[i][0]] ,np.polyval(poly_pars ,
indentation[indent_adhes_tuples[i][0]]) ,indentation
[indent_adhes_tuples[i][0]] , nu_samp))

1137 # indent_adhes_outlier_mods.append(DMT_mod_matldep(
PF_total[indent_adhes_tuples[i][1]] , F_adhes[
indent_adhes_tuples[i][0]] , power_law(indentation[
indent_adhes_tuples[i][0]] ,* pars),indentation[
indent_adhes_tuples[i][0]] , nu_samp))

1138
1139 for i in range(PF_adhes_counter):
1140 PF_adhes_outlier_mods.append(DMT_mod_array[i])
1141 # PF_adhes_outlier_mods.append(DMT_mod_matldep(

PF_total[PF_adhes_tuples[i][1]] , F_adhes[
PF_adhes_tuples[i][0]] ,np.polyval(poly_pars ,
indentation[PF_adhes_tuples[i][0]]) ,indentation[
PF_adhes_tuples[i][0]] , nu_samp))

1142 # PF_adhes_outlier_mods.append(DMT_mod_matldep(
PF_total[PF_adhes_tuples[i][1]] , F_adhes[
PF_adhes_tuples[i][0]] , power_law(indentation[
PF_adhes_tuples[i][0]] ,* pars),indentation[
PF_adhes_tuples[i][0]] , nu_samp))

1143
1144 for i in range(treble_counter):
1145 treble_outlier_mods.append(DMT_mod_array[i])
1146 # treble_outlier_mods.append(DMT_mod_matldep(PF_total[

trebles[i][1]], F_adhes[trebles[i][2]],np.polyval(
poly_pars ,indentation[trebles[i][0]]) ,indentation[
trebles[i][0]], nu_samp))

1147 # treble_outlier_mods.append(DMT_mod_matldep(PF_total[
trebles[i][1]], F_adhes[trebles[i][2]], power_law(
indentation[trebles[i][0]] ,* pars),indentation[
trebles[i][0]], nu_samp))

1148
1149 if verbose_plots == True:
1150
1151 numbins_indent_PF_out = int ((2* indent_PF_counter)

**(1/3))
1152 numbins_indent_adhes = int ((2* indent_adhes_counter)

**(1/3))
1153 numbins_PF_adhes = int ((2* PF_adhes_counter)**(1/3))
1154 numbins_treble = int ((2* treble_counter)**(1/3))
1155
1156 E_indent_PF_out_hist = np.histogram(

ident_PF_outlier_mods ,bins=numbins_indent_PF_out)
1157 E_indent_adhes_out_hist = np.histogram(

indent_adhes_outlier_mods ,bins=numbins_indent_adhes
)

1158 E_PF_adhes_out_hist = np.histogram(
PF_adhes_outlier_mods ,bins=numbins_PF_adhes)
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1159 E_treble_out_hist = np.histogram(treble_outlier_mods ,
bins=numbins_treble)

1160
1161 plt.figure ()
1162 plt.plot(E_indent_PF_out_hist [1][0: -1] ,

E_indent_PF_out_hist [0])
1163 plt.plot(E_indent_adhes_out_hist [1][0: -1] ,

E_indent_adhes_out_hist [0])
1164 plt.plot(E_PF_adhes_out_hist [1][0: -1] ,

E_PF_adhes_out_hist [0])
1165 plt.plot(E_treble_out_hist [1][0: -1] , E_treble_out_hist

[0])
1166 plt.plot(DMT_mod_hist [1][0: -1] , DMT_mod_hist [0])
1167 plt.legend ([’Indent -PF’,’Indent -Adhes’,’PF -Adhes’,’

Triple Outliers ’,’All Measurements ’],fontsize =20)
1168 plt.title(’Tranverse Modulus Distribution with {} Std

Devn Outliers , {}’.format(out_lim ,fiber_name),
fontsize =24)

1169 plt.xlabel(’Transverse Modulus [GPa]’,fontsize =20)
1170 plt.xticks(fontsize =16)
1171 # fig_name = r ’{} coin_out_dists.png ’.format(

fiber_name)
1172 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1173 plt.show
1174
1175 #%% Adhesion Force -Indentation -Tip Shape Functional

Interaction
1176
1177 if adhesion_func == True:
1178 PF = PF_total
1179 adh = F_adhes
1180 depth = indentation
1181 tip_rad = np.polyval(poly_pars ,indentation)
1182 tip_surf = 4*np.pi*tip_rad **2
1183
1184 length = len(adh)
1185
1186 dep_tip_tuples = []
1187 dep_adh_tuples = []
1188 dep_PF_tuples = []
1189 PF_adh_tuples = []
1190 PF_tip_tuples = []
1191 adh_tip_tuples = []
1192 DMT_dep_tuples = []
1193 DMT_PF_tuples = []
1194 DMT_adh_tuples = []
1195 DMT_tip_tuples = []
1196
1197 for i in range(length):
1198 dep_tip_tuples.append (( depth[i],tip_rad[i]))
1199 dep_adh_tuples.append (( depth[i],adh[i]))
1200 PF_adh_tuples.append ((PF[i],adh[i]))
1201 PF_tip_tuples.append ((PF[i],tip_rad[i]))
1202 adh_tip_tuples.append (( tip_rad[i],adh[i]))
1203 dep_PF_tuples.append ((depth[i],PF[i]))
1204 DMT_dep_tuples.append (( DMT_mod_array[i],depth[i]))
1205 DMT_PF_tuples.append (( DMT_mod_array[i],PF[i]))
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1206 DMT_adh_tuples.append (( DMT_mod_array[i],adh[i]))
1207 DMT_tip_tuples.append (( DMT_mod_array[i],tip_rad[i]))
1208
1209 dep_tip_tuples.sort(key=lambda tup: tup [0])
1210 dep_adh_tuples.sort(key=lambda tup: tup [0])
1211 dep_PF_tuples.sort(key=lambda tup: tup [0])
1212 PF_adh_tuples.sort(key=lambda tup: tup [0])
1213 PF_tip_tuples.sort(key=lambda tup: tup [0])
1214 adh_tip_tuples.sort(key=lambda tup: tup [0])
1215 DMT_dep_tuples.sort(key=lambda tup: tup [0])
1216 DMT_PF_tuples.sort(key=lambda tup: tup [0])
1217 DMT_adh_tuples.sort(key=lambda tup: tup [0])
1218 DMT_tip_tuples.sort(key=lambda tup: tup [0])
1219
1220 dep_tip_plot = []
1221 tip_dep_plot = []
1222 adh_dep_plot = []
1223 dep_adh_plot = []
1224 tip_adh_plot = []
1225 adh_tip_plot = []
1226 PF_adh_plot = []
1227 adh_PF_plot = []
1228 depth_PF_plot = []
1229 PF_depth_plot = []
1230 PF_tip_plot = []
1231 tip_PF_plot = []
1232 DMT_dep_plot = []
1233 dep_DMT_plot = []
1234 DMT_PF_plot = []
1235 PF_DMT_plot = []
1236 DMT_adh_plot = []
1237 adh_DMT_plot = []
1238 DMT_tip_plot = []
1239 tip_DMT_plot = []
1240
1241 for i in range(length):
1242 adh_tip_plot.append(adh_tip_tuples[i][0])
1243 tip_adh_plot.append(adh_tip_tuples[i][1])
1244 dep_tip_plot.append(dep_tip_tuples[i][0])
1245 tip_dep_plot.append(dep_tip_tuples[i][1])
1246 dep_adh_plot.append(dep_adh_tuples[i][0])
1247 adh_dep_plot.append(dep_adh_tuples[i][1])
1248 PF_adh_plot.append(PF_adh_tuples[i][0])
1249 adh_PF_plot.append(PF_adh_tuples[i][1])
1250 depth_PF_plot.append(dep_PF_tuples[i][0])
1251 PF_depth_plot.append(dep_PF_tuples[i][1])
1252 PF_tip_plot.append(PF_tip_tuples[i][0])
1253 tip_PF_plot.append(PF_tip_tuples[i][1])
1254 DMT_dep_plot.append(DMT_dep_tuples[i][0])
1255 dep_DMT_plot.append(DMT_dep_tuples[i][1])
1256 DMT_PF_plot.append(DMT_PF_tuples[i][0])
1257 PF_DMT_plot.append(DMT_PF_tuples[i][1])
1258 DMT_adh_plot.append(DMT_adh_tuples[i][0])
1259 adh_DMT_plot.append(DMT_adh_tuples[i][1])
1260 DMT_tip_plot.append(DMT_tip_tuples[i][0])
1261 tip_DMT_plot.append(DMT_tip_tuples[i][1])
1262
1263 if verbose_plots == True:
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1264
1265 # Generate 2D histogram heatmap of indentation depth

and tip radius
1266 plt.figure ()
1267 N_numbers = len(dep_tip_plot) + len(tip_dep_plot)
1268 N_bins = int ((2* N_numbers)**(1/3))
1269 x, y = dep_tip_plot , tip_dep_plot
1270 plt.hist2d(x, y, bins=N_bins , density=False , cmap=’

Greys’)
1271 hist_test = np.histogram2d(x, y,bins=N_bins)
1272 cb = plt.colorbar ()
1273 cb.set_label(’Measurements in Bin’,fontsize =16)
1274 plt.clim(np.mean(hist_test [0])+np.std(hist_test [0]))
1275 plt.title(’2D Histogram of Indentation and Tip Radius

Measurements , {}’.format(fiber_name),fontsize =24)
1276 plt.xlabel(’Indentation [nm]’,fontsize =20)
1277 plt.xticks(fontsize =16)
1278 plt.ylabel(’Tip Radius [nm]’,fontsize =20)
1279 plt.yticks(fontsize =16)
1280 fig_name = r’{} indent -adhes_heatmap.png’.format(

fiber_name)
1281 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1282 plt.show()
1283
1284 # Generate 2D histogram heatmap of indentation depth

and adhesion force
1285 plt.figure ()
1286 N_numbers = len(dep_adh_plot) + len(adh_dep_plot)
1287 N_bins = int ((2* N_numbers)**(1/3))
1288 x, y = dep_adh_plot , adh_dep_plot
1289 plt.hist2d(x, y, bins=N_bins , density=False , cmap=’

Greys’)
1290 hist_test = np.histogram2d(x, y,bins=N_bins)
1291 cb = plt.colorbar ()
1292 cb.set_label(’Measurements in Bin’,fontsize =16)
1293 plt.clim(np.mean(hist_test [0])+np.std(hist_test [0]))
1294 plt.title(’2D Histogram of Indentation and Adhesion

Measurements , {}’.format(fiber_name),fontsize =24)
1295 plt.xlabel(’Indentation [nm]’,fontsize =20)
1296 plt.xticks(fontsize =16)
1297 plt.ylabel(’Adhesion Force [nN]’,fontsize =20)
1298 plt.yticks(fontsize =16)
1299 fig_name = r’{} indent -adhes_heatmap.png’.format(

fiber_name)
1300 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1301 plt.show()
1302
1303 # Generate 2D histogram heatmap of indentation depth

and Peak force
1304 plt.figure ()
1305 N_numbers = len(depth_PF_plot) + len(PF_depth_plot)
1306 N_bins = int ((2* N_numbers)**(1/3))
1307 x, y = depth_PF_plot , PF_depth_plot
1308 plt.hist2d(x, y, bins=N_bins , density=False , cmap=’

Greys’)
1309 hist_test = np.histogram2d(x, y,bins=N_bins)
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1310 cb = plt.colorbar ()
1311 cb.set_label(’Measurements in Bin’,fontsize =16)
1312 plt.clim(np.mean(hist_test [0])+np.std(hist_test [0]))
1313 plt.title(’2D Histogram of Indentation and Peak Force

data points , {}’.format(fiber_name),fontsize =24)
1314 plt.xlabel(’Indentation [nm]’,fontsize =20)
1315 plt.xticks(fontsize =16)
1316 plt.ylabel(’Peak Force [nN]’,fontsize =20)
1317 plt.yticks(fontsize =16)
1318 fig_name = r’{} PF-adhes_heatmap.png’.format(

fiber_name)
1319 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1320 plt.show()
1321
1322 # Generate 2D histogram heatmap of Peak Force and

adhesion force
1323 plt.figure ()
1324 N_numbers = len(PF_adh_plot) + len(adh_PF_plot)
1325 N_bins = int ((2* N_numbers)**(1/3))
1326 x, y = PF_adh_plot , adh_PF_plot
1327 plt.hist2d(x, y, bins=N_bins , density=False , cmap=’

Greys’)
1328 hist_test = np.histogram2d(x, y,bins=N_bins)
1329 cb = plt.colorbar ()
1330 cb.set_label(’Measurements in Bin’,fontsize =16)
1331 plt.clim(np.mean(hist_test [0])+np.std(hist_test [0]))
1332 plt.title(’2D Histogram of Peak Force and Adhesion

data points , {}’.format(fiber_name),fontsize =24)
1333 plt.xlabel(’Peak Force [nN]’,fontsize =20)
1334 plt.xticks(fontsize =16)
1335 plt.ylabel(’Adhesion Force [nN]’,fontsize =20)
1336 plt.yticks(fontsize =16)
1337 fig_name = r’{} PF-adhes_heatmap.png’.format(

fiber_name)
1338 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1339 plt.show()
1340
1341 # Generate 2D histogram heatmap of peak force and tip

radius
1342 plt.figure ()
1343 N_numbers = len(PF_tip_plot) + len(tip_PF_plot)
1344 N_bins = int ((2* N_numbers)**(1/3))
1345 x, y = PF_tip_plot , tip_PF_plot
1346 plt.hist2d(x, y, bins=N_bins , density=False , cmap=’

Greys’)
1347 hist_test = np.histogram2d(x, y,bins=N_bins)
1348 cb = plt.colorbar ()
1349 cb.set_label(’Measurements in Bin’,fontsize =16)
1350 plt.clim(np.mean(hist_test [0])+np.std(hist_test [0]))
1351 plt.title(’2D Histogram of Peak Force and Tip Radius

Measurements , {}’.format(fiber_name),fontsize =24)
1352 plt.xlabel(’Peak Force [nN]’,fontsize =20)
1353 plt.xticks(fontsize =16)
1354 plt.ylabel(’Tip Radius [nm]’,fontsize =20)
1355 plt.yticks(fontsize =16)
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1356 fig_name = r’{} indent -adhes_heatmap.png’.format(
fiber_name)

1357 # plt.savefig(r ’{}\{}’. format(path ,fig_name),
bbox_inches=’tight ’)

1358 plt.show()
1359
1360 # Generate 2D histogram heatmap of adhesion force and

tip radius
1361 plt.figure ()
1362 N_numbers = len(adh_tip_plot) + len(tip_adh_plot)
1363 N_bins = int ((2* N_numbers)**(1/3))
1364 x, y = adh_tip_plot , tip_adh_plot
1365 plt.hist2d(x, y, bins=N_bins , density=False , cmap=’

Greys’)
1366 hist_test = np.histogram2d(x, y,bins=N_bins)
1367 cb = plt.colorbar ()
1368 cb.set_label(’Measurements in Bin’,fontsize =16)
1369 plt.clim(np.mean(hist_test [0])+np.std(hist_test [0]))
1370 plt.title(’2D Histogram of Adhesion Force and Tip

Radius Measurements , {}’.format(fiber_name),
fontsize =24)

1371 plt.xlabel(’Adhesion Force [nN]’,fontsize =20)
1372 plt.xticks(fontsize =16)
1373 plt.ylabel(’Tip Radius [nm]’,fontsize =20)
1374 plt.yticks(fontsize =16)
1375 fig_name = r’{} indent -adhes_heatmap.png’.format(

fiber_name)
1376 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1377 plt.show()
1378
1379 # Generate 2D histogram heatmap of DMT Modulus and

Peak force
1380 plt.figure ()
1381 N_numbers = len(DMT_PF_plot) + len(PF_DMT_plot)
1382 N_bins = int ((2* N_numbers)**(1/3))
1383 x, y = DMT_PF_plot , PF_DMT_plot
1384 plt.hist2d(x, y, bins=N_bins , density=False , cmap=’

Greys’)
1385 hist_test = np.histogram2d(x, y,bins=N_bins)
1386 cb = plt.colorbar ()
1387 cb.set_label(’Measurements in Bin’,fontsize =16)
1388 plt.clim(np.mean(hist_test [0])+np.std(hist_test [0]))
1389 plt.title(’2D Histogram of DMT Modulus and Peak Force

data points , {}’.format(fiber_name),fontsize =24)
1390 plt.xlabel(’DMT_modulus [GPa]’,fontsize =20)
1391 plt.xticks(fontsize =16)
1392 plt.ylabel(’Peak Force [nN]’,fontsize =20)
1393 plt.yticks(fontsize =16)
1394 fig_name = r’{} PF-adhes_heatmap.png’.format(

fiber_name)
1395 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1396 plt.show()
1397
1398 # Generate 2D histogram heatmap of DMT Modulus and

adhesion force
1399 plt.figure ()
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1400 N_numbers = len(DMT_adh_plot [0: -2]) + len(adh_DMT_plot
)

1401 N_bins = int ((2* N_numbers)**(1/3))
1402 x, y = DMT_adh_plot , adh_DMT_plot
1403 plt.hist2d(x, y, bins=N_bins , density=False , cmap=’

Greys’)
1404 hist_test = np.histogram2d(x, y,bins=N_bins)
1405 cb = plt.colorbar ()
1406 cb.set_label(’Measurements in Bin’,fontsize =16)
1407 plt.clim(np.mean(hist_test [0])+np.std(hist_test [0]))
1408 plt.title(’2D Histogram of DMT Modulus and Adhesion

Force data points , {}’.format(fiber_name),fontsize
=24)

1409 plt.xlabel(’DMT_modulus [GPa]’,fontsize =20)
1410 plt.xticks(fontsize =16)
1411 plt.ylabel(’Adhesion Force [nN]’,fontsize =20)
1412 plt.yticks(fontsize =16)
1413 fig_name = r’{} PF-adhes_heatmap.png’.format(

fiber_name)
1414 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1415 plt.show()
1416
1417 # Generate 2D histogram heatmap of DMT Modulus and

indentation
1418 plt.figure ()
1419 N_numbers = len(DMT_dep_plot) + len(dep_DMT_plot)
1420 N_bins = int ((2* N_numbers)**(1/3))
1421 x, y = DMT_dep_plot , dep_DMT_plot
1422 plt.hist2d(x, y, bins=N_bins , density=False , cmap=’

Greys’)
1423 hist_test = np.histogram2d(x, y,bins=N_bins)
1424 cb = plt.colorbar ()
1425 cb.set_label(’Measurements in Bin’,fontsize =16)
1426 plt.clim(np.mean(hist_test [0])+np.std(hist_test [0]))
1427 plt.title(’2D histogram of DMT Modulus and Indentation

data points , {}’.format(fiber_name),fontsize =24)
1428 plt.xlabel(’DMT_modulus [GPa]’,fontsize =20)
1429 plt.xticks(fontsize =16)
1430 plt.ylabel(’Indentation Depth [nm]’,fontsize =20)
1431 plt.yticks(fontsize =16)
1432 fig_name = r’{} PF-adhes_heatmap.png’.format(

fiber_name)
1433 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1434 plt.show()
1435
1436 # Generate 2D histogram heatmap of DMT Modulus and tip

radius
1437 plt.figure ()
1438 N_numbers = len(DMT_tip_plot) + len(tip_DMT_plot)
1439 N_bins = int ((2* N_numbers)**(1/3))
1440 x, y = DMT_tip_plot , tip_DMT_plot
1441 plt.hist2d(x, y, bins=N_bins , density=False , cmap=’

Greys’)
1442 hist_test = np.histogram2d(x, y,bins=N_bins)
1443 cb = plt.colorbar ()
1444 cb.set_label(’Measurements in Bin’,fontsize =16)
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1445 plt.clim(np.mean(hist_test [0])+np.std(hist_test [0]))
1446 plt.title(’2D histogram of DMT Modulus and Tip Radius

data points , {}’.format(fiber_name),fontsize =24)
1447 plt.xlabel(’DMT_modulus [GPa]’,fontsize =20)
1448 plt.xticks(fontsize =16)
1449 plt.ylabel(’Tip Radius [nm]’,fontsize =20)
1450 plt.yticks(fontsize =16)
1451 fig_name = r’{} PF-adhes_heatmap.png’.format(

fiber_name)
1452 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1453 plt.show()
1454
1455 # plt.figure ()
1456 # plt.scatter(tip_rad ,adh)
1457 # plt.title(’Tip Radius vs. Adhesion Force ’)
1458 # plt.xlabel(’Tip Radius [nm]’)
1459 # plt.ylabel(’Adhesion Force [nN]’)
1460 # plt.show()
1461
1462 # plt.figure ()
1463 # plt.scatter(tip_surf ,adh)
1464 # plt.title(’Contact Surface Area vs. Adhesion Force ’)
1465 # plt.xlabel(’Contact Area [nm^2]’)
1466 # plt.ylabel(’Adhesion Force [nN]’)
1467 # plt.show()
1468
1469 #%% Compare Approximate Tip Volume to Sphere of same radius
1470
1471 if tip_vol_compare == True:
1472
1473 front_angle = (15.0 ,13.0 ,17.0)
1474 side_angle = (17.5 ,15.5 ,19.5)
1475 back_angle = (25.0 ,23.0 ,27.0)
1476
1477 height = np.linspace (0.5 ,20 ,40)
1478 radius = yfit
1479 tip_rad_poly = np.polyval(poly_pars ,height)
1480
1481 tip_vol_nom = tip_geo(height ,side_angle ,front_angle ,

back_angle)[0][0]
1482 tip_vol_min = tip_geo(height ,side_angle ,front_angle ,

back_angle)[0][1]
1483 tip_vol_max = tip_geo(height ,side_angle ,front_angle ,

back_angle)[0][2]
1484 tip_SA_nom = tip_geo(height ,side_angle ,front_angle ,

back_angle)[1][0]
1485 tip_SA_min = tip_geo(height ,side_angle ,front_angle ,

back_angle)[1][1]
1486 tip_SA_max = tip_geo(height ,side_angle ,front_angle ,

back_angle)[1][2]
1487
1488 indent_vol = sph_indent_geo(height ,radius)[0]
1489 indent_SA = sph_indent_geo(height ,radius)[1]
1490
1491 if verbose_plots == True:
1492
1493 plt.figure ()
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1494 plt.plot(height ,np.sqrt(tip_SA_nom /(4*np.pi)),label=’
Nominal Tip’)

1495 plt.plot(height ,np.sqrt(tip_SA_min /(4*np.pi)),label=’
Min Tip’)

1496 plt.plot(height ,np.sqrt(tip_SA_max /(4*np.pi)),label=’
Max Tip’)

1497 plt.plot(height ,np.sqrt(indent_SA /(4*np.pi)),label=’
Hemispherical Tip’)

1498 plt.plot(x,yfit ,’--k’,label=’Actual Tip’)
1499 plt.title(’Comparison of Measured Tip Radius to

Geometric Tip Radius ’,fontsize =24)
1500 plt.xlabel(’Indentation [nm]’,fontsize =20)
1501 plt.xticks(fontsize =16)
1502 plt.ylabel(’Tip Radius [nm]’,fontsize =20)
1503 plt.yticks(fontsize =16)
1504 plt.legend(fontsize =20)
1505 fig_name = r’{} tip_surfarea.png’.format(fiber_name)
1506 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1507 plt.show()
1508
1509 plt.figure ()
1510 plt.semilogy(height ,tip_vol_nom ,label=’Nominal Tip’)
1511 plt.semilogy(height ,tip_vol_min ,label=’Min Tip’)
1512 plt.semilogy(height ,tip_vol_max ,label=’Max Tip’)
1513 plt.semilogy(height ,indent_vol ,label=’Hemispherical

Tip’)
1514 plt.semilogy ()
1515 plt.title(’Comparison of Tip and Sphere Volume ’,

fontsize =24)
1516 plt.xlim ((0 ,10))
1517 plt.ylim ((0 ,1000))
1518 plt.xlabel(’Indentation [nm]’,fontsize =20)
1519 plt.xticks(fontsize =16)
1520 plt.ylabel(’Volume [nm^3]’,fontsize =20)
1521 plt.yticks(fontsize =16)
1522 plt.legend(fontsize =20)
1523 fig_name = r’{} tip_vol.png’.format(fiber_name)
1524 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1525 plt.show()
1526
1527 #%% Poisson Ratio Study
1528
1529 if poisson_study == True:
1530
1531 nu_study = np.array ([0.1 ,0.2 ,0.3 ,0.4 ,0.5])
1532
1533 numbins = int (2*( len(DMT_mod_array))**(1/3))
1534
1535 E_nu1 = DMT_mod_adhes(PF_total ,F_adhes ,np.polyval(

poly_pars ,indentation),indentation ,nu_study [0])
1536 E_nu1_hist = np.histogram(E_nu1 ,bins=numbins)
1537
1538 E_nu2 = DMT_mod_adhes(PF_total ,F_adhes ,np.polyval(

poly_pars ,indentation),indentation ,nu_study [1])
1539 E_nu2_hist = np.histogram(E_nu2 ,bins=numbins)
1540
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1541 E_nu3 = DMT_mod_adhes(PF_total ,F_adhes ,np.polyval(
poly_pars ,indentation),indentation ,nu_study [2])

1542 E_nu3_hist = np.histogram(E_nu3 ,bins=numbins)
1543
1544 E_nu4 = DMT_mod_adhes(PF_total ,F_adhes ,np.polyval(

poly_pars ,indentation),indentation ,nu_study [3])
1545 E_nu4_hist = np.histogram(E_nu4 ,bins=numbins)
1546
1547 E_nu5 = DMT_mod_adhes(PF_total ,F_adhes ,np.polyval(

poly_pars ,indentation),indentation ,nu_study [4])
1548 E_nu5_hist = np.histogram(E_nu5 ,bins=numbins)
1549
1550 diff2 = np.mean(E_nu3)-np.mean(E_nu2)
1551 rel_diff2 = diff2/np.mean(E_nu3)*100
1552 num_devs2 = np.abs(diff2/np.std(E_nu3))
1553
1554 diff_std2 = np.std(E_nu3)-np.std(E_nu2)
1555 rel_diff_std2 = diff_std2/np.std(E_nu3)*100
1556
1557 diff4 = np.mean(E_nu3)-np.mean(E_nu4)
1558 rel_diff4 = diff4/np.mean(E_nu3)*100
1559 num_devs4 = np.abs(diff4/np.std(E_nu3))
1560
1561 diff_std4 = np.std(E_nu3)-np.std(E_nu4)
1562 rel_diff_std4 = diff_std4/np.std(E_nu3)*100
1563
1564 diff_tot = np.abs(rel_diff_std2) + np.abs(rel_diff_std4)
1565
1566 if verbose_calculations == True:
1567 print("Poisson ’s Study")
1568 print(’The mean calculated modulus w/ nu = {} is’.

format(nu_study [0]),np.mean(E_nu1),’GPa w/ std dev’
,np.std(E_nu1),’GPa.’)

1569 print(’The mean calculated modulus w/ nu = {} is’.
format(nu_study [1]),np.mean(E_nu2),’GPa w/ std dev’
,np.std(E_nu2),’GPa.’)

1570 print(’The mean calculated modulus w/ nu = {} is’.
format(nu_study [2]),np.mean(E_nu3),’GPa w/ std dev’
,np.std(E_nu3),’GPa.’)

1571 print(’The mean calculated modulus w/ nu = {} is’.
format(nu_study [3]),np.mean(E_nu4),’GPa w/ std dev’
,np.std(E_nu4),’GPa.’)

1572 print(’The mean calculated modulus w/ nu = {} is’.
format(nu_study [4]),np.mean(E_nu5),’GPa w/ std dev’
,np.std(E_nu5),’GPa.’)

1573 print(’Deviations from base case’)
1574 print(’The relative deviation from the base case (nu

={}, DMT model) for nu={} is’.format(nu_study [2],
nu_study [1]))

1575 print(truncate(rel_diff2 ,3),’%, equivalent to’,
truncate(num_devs2 ,3),’base case standard
deviations.’)

1576 print(’The relative deviation from the base case (nu
={}, DMT model) for nu={} is’.format(nu_study [2],
nu_study [3]))

1577 print(truncate(rel_diff4 ,3),’%, equivalent to’,
truncate(num_devs4 ,3),’base case standard
deviations.’)
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1578 print(’The total modulus span between the mean moduli
for nu={} & {} is’.format(nu_study [1], nu_study [3]))

1579 print(truncate(diff_tot*np.mean(E_nu3)/100 ,3),’GPa , or
’,truncate(diff_tot ,3),’% of the base case (nu={},
DMT model) mean.’.format(nu_study [2]))

1580
1581 if verbose_plots == True:
1582 plt.figure ()
1583 # plt.plot(E_nu1_hist [1][0: -1] , E_nu1_hist [0])
1584 plt.plot(E_nu2_hist [1][0: -1] , E_nu2_hist [0])
1585 plt.plot(E_nu3_hist [1][0: -1] , E_nu3_hist [0],lw=5)
1586 plt.plot(E_nu4_hist [1][0: -1] , E_nu4_hist [0])
1587 # plt.plot(E_nu5_hist [1][0: -1] , E_nu5_hist [0])
1588 plt.legend ([’nu={}’.format(nu_study [1]),’nu={}’.format

(nu_study [2]),’nu={}’.format(nu_study [3])],fontsize
=20) #,’nu={}’. format(nu_study [3]) ,’nu={}’.
format(nu_study [4])],fontsize =14)

1589 plt.title(’Comparison of Tranverse Modulus Change due
to Poisson Ratio =0.2-0.4, {}’.format(fiber_name),
fontsize =24)

1590 plt.xlabel(’Transverse Modulus [GPa]’,fontsize =20)
1591 plt.xticks(fontsize =16)
1592 plt.yticks(fontsize =16)
1593 fig_name = r’{} poisson.png’.format(fiber_name)
1594 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1595 plt.show
1596
1597 #%% Build histograms to compare different data channel

distributions
1598
1599 if channel_hists == True:
1600
1601 numbins = int (2*( len(DMT_mod_array))**(1/3))
1602
1603 err_DMT = DMT_err(PF_total ,F_adhes ,np.polyval(poly_pars ,

indentation),indentation)
1604 print(’The expected DMT modulus error is’,err_DMT/np.mean(

DMT_mod_array)*100,’%’)
1605
1606 indent_mean = np.mean(data_image[indent ])
1607 indent_std = np.std(data_image[indent ])
1608 print(’The indentation error is’,indent_std/indent_mean

*100,’%.’)
1609
1610 adhes_mean = np.mean(data_image[adhes ])
1611 adhes_std = np.std(data_image[adhes ])
1612 print(’The adhesion error is’,adhes_std/adhes_mean *100,’%.

’)
1613
1614 pf_mean = np.mean(PF_total)
1615 pf_std = np.std(PF_total)
1616 print(’The peak force error is’,pf_std/pf_mean *100,’%.’)
1617
1618 tiprad_mean = np.mean(np.polyval(poly_pars ,indentation))
1619 tiprad_std = np.std(np.polyval(poly_pars ,indentation))
1620 print(’The tip radius error is’,tiprad_std/tiprad_mean

*100,’%.’)
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1621
1622 # print(’The Spearman R for indentation -modulus is’,

spearmanr(data_image[indent],DMT_mod_array ,nan_policy=’
omit ’)[0],’.’)

1623 # print(’The Spearman R for adhesion -modulus is’,spearmanr
(data_image[adhes],DMT_mod_array ,nan_policy=’omit ’)
[0],’.’)

1624 # print(’The Spearman R for peak force -modulus is’,
spearmanr(PF_total ,DMT_mod_array ,nan_policy=’omit ’)
[0],’.’)

1625 # print(’The Spearman R for tip radius -modulus is’,
spearmanr(np.polyval(poly_pars ,indentation),
DMT_mod_array ,nan_policy=’omit ’)[0],’.’)

1626
1627 # print(’The Pearson R for indentation -modulus is’,

pearsonr(data_image[indent],DMT_mod_array)[0],’.’)
1628 # print(’The Pearson R for adhesion -modulus is’,pearsonr(

data_image[adhes],DMT_mod_array)[0],’.’)
1629 # print(’The Pearson R for peak force -modulus is’,pearsonr

(PF_total ,DMT_mod_array)[0],’.’)
1630 # print(’The Pearson R for tip radius -modulus is’,pearsonr

(np.polyval(poly_pars ,indentation),DMT_mod_array)
[0],’.’)

1631
1632 indent_hist = np.histogram(indentation ,bins=numbins)
1633 # tiprad_hist = np.histogram(power_law(data_image[indent

],*pars),bins=numbins)
1634 # pferr_hist = np.histogram(data_image[pf_error],bins=

numbins)
1635 adhes_hist = np.histogram(data_image[adhes],bins=numbins)
1636 tipforce_hist = np.histogram(PF_total ,bins=numbins)
1637 tiprad_hist = np.histogram(np.polyval(poly_pars ,

indentation),bins=numbins)
1638
1639 if verbose_plots == True:
1640
1641 plt.figure ()
1642 plt.plot(indent_hist [1][0: -1] , indent_hist [0])
1643 plt.title(’Indentation Histogram , {}’.format(

fiber_name),fontsize =24)
1644 plt.xlabel(’Indentation Depth [nm]’,fontsize =20)
1645 plt.ylabel(’# of Indentations ’,fontsize =20)
1646 plt.xticks(fontsize =16)
1647 plt.yticks(fontsize =16)
1648 fig_name = r’{} indent_hist.png’.format(fiber_name)
1649 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1650 plt.show
1651
1652 plt.figure ()
1653 plt.plot(adhes_hist [1][0: -1] , adhes_hist [0])
1654 plt.title(’Adhesion Histogram , {}’.format(fiber_name),

fontsize =24)
1655 plt.xlabel(’Adhesion Force [nN]’,fontsize =20)
1656 plt.ylabel(’# of Indentations ’,fontsize =20)
1657 plt.xticks(fontsize =16)
1658 plt.yticks(fontsize =16)
1659 fig_name = r’{} adhes_hist.png’.format(fiber_name)
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1660 # plt.savefig(r ’{}\{}’. format(path ,fig_name),
bbox_inches=’tight ’)

1661 plt.show
1662
1663 plt.figure ()
1664 plt.plot(tipforce_hist [1][0: -1] , tipforce_hist [0])
1665 plt.title(’PeakForce Distribution , {}’.format(

fiber_name),fontsize =24)
1666 plt.xlabel(’PeakForce [nN]’,fontsize =20)
1667 plt.ylabel(’# of Indentations ’,fontsize =20)
1668 plt.xticks(fontsize =16)
1669 plt.yticks(fontsize =16)
1670 fig_name = r’{} PF_hist.png’.format(fiber_name)
1671 # plt.savefig(r ’{}\{}’. format(path ,fig_name),

bbox_inches=’tight ’)
1672 plt.show
1673
1674 plt.figure ()
1675 plt.plot(tiprad_hist [1][0: -1] , tiprad_hist [0])
1676 plt.title(’Tip Radius Distribution , {}’.format(

fiber_name),fontsize =24)
1677 plt.xlabel(’Tip Radius [nm]’,fontsize =20)
1678 plt.ylabel(’# of Indentations ’,fontsize =20)
1679 plt.xticks(fontsize =16)
1680 plt.yticks(fontsize =16)
1681 plt.show

1.2 Script for Analysis of Data Exported from .pfc Images or .hsdc Files

This script was utilized for analysis of the raw force curve data exported from

either .pfc image files into .txt files or from .hsdc files into .txt files. Each of the

exported .txt files consists of tab-separated columnar data for height and force.

1
2 import pandas as pd
3 from scipy.optimize import curve_fit
4 import numpy as np
5 import matplotlib.pyplot as plt
6 import math
7 import glob
8
9 def truncate(number , digits) -> float:

10 stepper = 10.0 ** digits
11 return math.trunc(stepper * number) / stepper
12
13 import_files = True
14 plot_hist = True
15 plot_curves = True
16 single_curve = True
17
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18 # Unused modulus
19 # import csv
20 # import statistics as stats
21 # from pathlib import Path
22
23 #%% Force Curve Import
24
25 # if import_files == True:
26
27 # curve_dir = r’D:\ School\Thesis\Frey Data\September \25

SEP20 - Imaging - H2 -1\H2 -1 HSDC\Forces Curves ’
28 # fiber_name = r ’25SEP20 HM63’
29
30 # all_files = glob.glob(curve_dir + "/*. txt")
31
32 # defl = ’Defl_nm_Rt ’
33 # force = ’Defl_pN_Rt ’
34 # height = ’Height_Sensor_nm_Rt ’
35
36 # num_files = 3903
37
38 # all_curves = []
39 # defl_plot = []
40 # force_plot = []
41 # height_plot = []
42
43 # for filename in all_files:
44 # curve_data = pd.read_csv(filename , sep=’\s+’,

index_col=None , header =0)
45 # all_curves.append(curve_data)
46
47 # defl_plot.append(curve_data[defl])
48 # force_plot.append(curve_data[force ]*10** -3)
49 # height_plot.append(curve_data[height ])
50 # height_plot = height_plot [::-1]
51
52 # forces = np.zeros(len(all_curves))
53 # force_mean = np.zeros(len(curve_data))
54 # force_std = np.zeros(len(curve_data))
55
56 # for i in range(len(curve_data)):
57 # for j in range(len(all_curves)):
58 # forces[j] = force_plot[j][i]
59 # force_mean[i] = np.mean(forces)
60 # force_std[i] = np.std(forces)
61
62 # plt.figure ()
63 # plt.errorbar(height_plot [0],force_mean ,yerr=force_std)
64 # plt.title(’Errorbar Plot of Average Force w/ Height ,

{}’. format(fiber_name),fontsize =16)
65 # plt.xlabel(’Height Sensor [nm]’,fontsize =14)
66 # plt.ylabel(’Force [nN]’,fontsize =14)
67 # plt.show()
68
69 # frame_col_cat = pd.concat(li, axis=0, ignore_index=True)
70 # frame_row_cat = pd.concat(li, axis=0, ignore_index=True)
71
72 #%% Test

140



73
74 if import_files == True:
75
76 curve_dir = r’D:\ School\Thesis\Frey Data\December \03 DEC20

- K13C2U\PFC1\Force Curves\New folder ’
77 fiber_name = r’03DEC20 K13C2U ’
78 tip_name = r’03DEC20 #1’
79
80 all_files = glob.glob(curve_dir + "/*.txt")
81
82 defl = ’Defl_nm_Rt ’
83 force = ’nN’
84 height = ’nm’
85
86 num_files = len(all_files)
87
88 all_curves = []
89 defl_plot = []
90 force_plot = []
91 height_plot = []
92
93 for filename in all_files:
94 curve_data = pd.read_csv(filename , sep=’\s+’,

index_col=None , header =0)
95 all_curves.append(curve_data)
96
97 # defl_plot.append(curve_data[defl])
98 force_plot.append(curve_data[force ])
99 height_plot.append(curve_data[height ])

100 height_plot = height_plot [:: -1]
101
102 forces = np.zeros(len(all_curves))
103 force_mean = np.zeros(len(curve_data))
104 force_std = np.zeros(len(curve_data))
105
106 for i in range(len(curve_data)):
107 for j in range(len(all_curves)):
108 forces[j] = force_plot[j][i]
109 force_mean[i] = np.mean(forces)
110 force_std[i] = np.std(forces)
111
112 plt.figure ()
113 plt.errorbar(height_plot [0], force_mean ,yerr=force_std)
114 plt.title(’Errorbar Plot of Average Force vs. Height , {}’.

format(fiber_name),fontsize =24)
115 plt.xlim ([160 ,200])
116 plt.xlabel(’Height Sensor [nm]’,fontsize =20)
117 plt.xticks(fontsize =16)
118 plt.ylabel(’Force [nN]’,fontsize =20)
119 plt.yticks(fontsize =16)
120 plt.show()
121 #%% Tip Fitter
122
123 tip_file = r’tip_profiles.csv’
124 tip_data = pd.read_csv(tip_file ,sep=’,’)
125
126 x = tip_data[’Depth (nm)’]
127 yfit = tip_data[r’{}’.format(tip_name)]
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128
129 # Power Law Fit
130 # pars = np.array ([])
131 # for i in range(len(tip_array)):
132 # pars[i] = curve_fit(f=power_law , xdata=x, ydata=

tip_array[i,:], p0=[1,1], bounds=(-np.inf , np.inf))[0]
# Get the standard deviations of the

parameters (square roots of the # diagonal of the
covariance)

133 # pars , cov = curve_fit(f=power_law , xdata=x, ydata=yfit , p0
=[1,1], bounds=(-np.inf , np.inf)) # Get the
standard deviations of the parameters (square roots of the
# diagonal of the covariance)

134 # residuals = yfit - power_law(x, *pars)
135 # ss_res = np.sum(residuals **2)
136 # ss_tot = np.sum((yfit -np.mean(yfit))**2)
137 # r_squared = 1 - (ss_res / ss_tot)
138 # r2_str = ’R^2 = {}’. format(truncate(r_squared ,5))
139 # fit_str = ’The tip fit power law is r(z) = {}*z^{}’. format(

truncate(pars [0],3),truncate(pars [1],3))
140 # print(’The fit parameters are a =’,pars[0],’and b =’,pars

[1],’.’)
141
142 order = 4
143 poly_pars ,poly_res = np.polyfit(x,yfit ,deg=order ,full=True)

[0:2]
144 ss_tot = np.sum((yfit -np.mean(yfit))**2)
145 r_squared_poly = 1 - (poly_res / ss_tot)
146 r2_str_poly = ’R^2 = {}’.format(truncate(float(r_squared_poly)

,5))
147
148 #%% Linearization for Fitting
149
150 def mod_fit(x,a,b):
151 y = a*x**(3/2) + b
152 return y
153
154 def mod_from_pars(par ,tip_rad):
155 E_star = par /((4/3)*np.sqrt(tip_rad))
156 return E_star
157
158 max_force = 0.8
159 min_force = 0.4
160 indent_set = 20
161
162 height_store = []
163 force_store = []
164 height_store2 = []
165 force_store2 = []
166 force_fit = []
167 height_fit = []
168 best_fit = []
169 moduli = []
170 E_array = []
171 E_poly_array0 = []
172 E_poly_array1 = []
173 E_poly_array2 = []
174 E_star = []
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175
176 for i in range(num_files):
177 height_store.append(height_plot[i][ height_plot[i] > (np.

max(height_plot[i])-indent_set)])
178 force_store.append(force_plot[i][ height_plot[i] > (np.max(

height_plot[i])-indent_set)])
179
180 for i in range(len(height_store)):
181 height_store2.append(height_store[i][ force_store[i] <

max_force*np.max(force_store[i])])
182 force_store2.append(force_store[i][ force_store[i] <

max_force*np.max(force_store[i])])
183
184 # for i in range(len(height_store)):
185 # height_fit.append(height_store2[i][ force_store2[i] >

min_force*np.min(force_store2[i])])
186 # force_fit.append(force_store2[i][ force_store2[i] >

min_force*np.min(force_store2[i])])
187
188 for i in range(len(height_store2)):
189 # height_fit.append(height_store2[i][ force_store2[i] >

force_store2[np.where(np.isclose(force_store2[i],0,atol
=5e-1))[1][0]]])

190 # force_fit.append(force_store2[i][ force_store2[i] >
force_store2[np.where(np.isclose(force_store2[i],0,atol
=5e-1))[1][0]]])

191 height_fit.append(height_store2[i][ force_store2[i] > 0])
192 force_fit.append(force_store2[i][ force_store2[i] > 0])
193
194 pars , cov = curve_fit(f=mod_fit , xdata=height_fit[i],

ydata=force_fit[i], p0=[1,1], bounds=(-np.inf , np.inf))
195 E_array.append(mod_from_pars(pars[0],np.polyval(poly_pars

,200- height_fit[i])))
196 E_star = np.concatenate(E_array)
197
198 pars_poly = np.polyfit(height_fit[i], force_fit[i], deg=2)
199 E_poly_array0.append(pars_poly [0])
200 E_poly_array1.append(pars_poly [1])
201 E_poly_array2.append(pars_poly [2])
202
203 # fit_pars = np.polyfit(height_fit[i],force_fit[i],1)
204 # moduli.append(fit_pars [0])
205 # best_fit.append(fit_pars [0]* height_fit[i] + fit_pars [1])
206
207 print(’The mean DMT modulus by the force curve method is’,np.

mean(E_star),’GPa w/ std dev’,np.std(E_star),’GPa.’)
208 print(’The mean DMT modulus by the polynomial fit force curve

method is’,truncate(np.mean(E_poly_array0) ,3),’GPa w/ rel
err’,truncate(np.std(E_poly_array0)/np.mean(E_poly_array0)
*100 ,3),’%.’)

209
210 numbins = int (2*( len(E_poly_array0))**(1/3))
211 E_poly_hist0 = np.histogram(E_poly_array0 ,bins=numbins)
212 E_poly_hist1 = np.histogram(E_poly_array1 ,bins=numbins)
213 E_poly_hist2 = np.histogram(E_poly_array2 ,bins=numbins)
214
215 plt.figure ()
216 plt.plot(E_poly_hist0 [1][0: -1] , E_poly_hist0 [0], label=’n=2’)
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217 plt.plot(E_poly_hist1 [1][0: -1]*1e-3, E_poly_hist1 [0], label=’n=1
’)

218 plt.plot(E_poly_hist2 [1][0: -1]*1e-5, E_poly_hist2 [0], label=’n=0
’)

219 plt.title(’Pseudo -Modulus Parameter Force Curves , {}’.format(
fiber_name),fontsize =24)

220 plt.xlabel(’Polyfit Pseudo -Modulus Paramter ’,fontsize =20)
221 plt.xticks(fontsize =16)
222 plt.yticks(fontsize =16)
223 plt.legend(fontsize =16)
224 plt.show
225
226 numbins = int (2*( len(E_star))**(1/3))
227 E_star_hist = np.histogram(E_star ,bins=numbins)
228
229 mod_plot = pd.read_csv(r’D:\ School\Thesis\Frey Data\December

\03 DEC20 - K13C2U\DMT_hist ’)
230
231 # blank = DMT_mod_hist.to_numpy
232
233 plt.figure ()
234 plt.plot(E_star_hist [1][0: -1] , E_star_hist [0], label=’Force

Curve’)
235 plt.plot(mod_plot.iloc [1][0: -1] , mod_plot.iloc [0][0: -1] , label=’

Measured ’)
236 plt.title(’Transverse Modulus Force Curves , {}’.format(

fiber_name),fontsize =24)
237 plt.xlabel(’Transverse Modulus [GPa]’,fontsize =20)
238 plt.ylabel(’# of Indentation ’,fontsize =20)
239 plt.legend(fontsize =20)
240 plt.xticks(fontsize =16)
241 plt.yticks(fontsize =16)
242 plt.show
243
244 forces = np.zeros(len(all_curves))
245 force_mean = np.zeros(len(curve_data))
246 force_std = np.zeros(len(curve_data))
247
248 for i in range(len(curve_data)):
249 for j in range(len(all_curves)):
250 forces[j] = force_plot[j][i]
251 force_mean[i] = np.mean(forces)
252 force_std[i] = np.std(forces)
253
254 # pars_avg , cov_avg = curve_fit(f=mod_fit , xdata=height_plot

[0][0:50] , ydata=force_mean [0:50] , p0=[10] , bounds=(-np.inf
, np.inf))

255 x = height_plot [0][0: int(np.where(force_mean == np.min(
force_mean))[0])]

256 y = force_mean [0:int(np.where (( force_mean == np.min(force_mean
)))[0])]

257 force_std = np.std(force_mean [0:int(np.where (( force_mean == np
.min(force_mean)))[0])])

258 pars_avg = np.polyfit(x, y, deg=2)
259 print(pars_avg)
260
261 plt.figure ()
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262 # plt.errorbar(height_plot [0][0:35] , force_mean [0:35] , yerr=
force_std [0:35])

263 # plt.plot(height_plot [0][0:35] , np.polyval(pars_avg ,
height_plot [0][0:35]))

264 plt.errorbar(x,y,yerr=force_std)
265 plt.plot(x,np.polyval(pars_avg ,x))
266 plt.title(’Errorbar Plot of Average Force w/ Height , {}’.

format(fiber_name),fontsize =24)
267 plt.xlabel(’Height Sensor [nm]’,fontsize =20)
268 plt.ylabel(’Force [nN]’,fontsize =20)
269 plt.xticks(fontsize =16)
270 plt.yticks(fontsize =16)
271 plt.show()
272
273 if plot_hist == True:
274
275 numbins = int (2*( len(E_star))**(1/3))
276 mod_hist = np.histogram(E_star ,bins=numbins)
277 # height_hist = np.histogram(height_fit ,bins=numbins)
278 # force_hist = np.histogram(force_fit ,bins=numbins)
279
280
281 plt.figure ()
282 plt.plot(mod_hist [1][0: -1] , mod_hist [0])
283 # plt.plot(height_hist [1][0: -1] , height_hist [0])
284 # plt.plot(force_hist [1][0: -1] , force_hist [0])
285 plt.title(’Transverse Modulus from Force Curves , {}’.

format(fiber_name),fontsize =24)
286 # plt.xlabel(’Transverse Modulus [GPa]’,fontsize =14)
287 # plt.xlabel(’Indentation [nm]’,fontsize =14)
288 # plt.xlabel(’Force [nN]’,fontsize =14)
289 plt.show
290
291 # E_str1 = ’The fit line slopes range from’
292 # E_str2 = ’{} to {}.’. format(truncate(np.max(moduli) ,4),

truncate(np.min(moduli) ,4))
293 # E_str3 = ’a relative variation of {}%.’. format(truncate

(((1 -(np.min(moduli)/np.max(moduli)))*100) ,4))
294 # mods = moduli
295
296
297 if plot_curves == True:
298
299 plt.figure ()
300 for i in range(len(force_fit)):
301 plt.scatter(height_plot[i],force_plot[i])
302 # plt.scatter(height_fit[i],force_fit[i])
303 # plt.scatter(height_fit[i],best_fit[i])
304 plt.title(’Force Curve Best Fit Lines , {}’.format(

fiber_name),fontsize =24)
305 # plt.legend([’Force Curve ’,’Best Fit ’],fontsize =14)
306 # E_str1 = ’The fit line slopes range from’
307 # E_str2 = ’{} to {}.’. format(truncate(np.max(mods) ,4)

,truncate(np.min(mods) ,4))
308 # E_str3 = ’a relative variation of {}%.’. format(

truncate (((1-(np.min(mods)/np.max(mods)))*100) ,4))
309 # plt.text (192 ,0.35 , E_str1 ,fontsize =12)
310 # plt.text (192,0.3 ,E_str2 ,fontsize =12)
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311 # plt.text (192 ,0.25 , E_str3 ,fontsize =12)
312 plt.ylabel(’Force [nN]’,fontsize =20)
313 plt.xlabel(’Height Sensor [nm]’,fontsize =20)
314 plt.xticks(fontsize =16)
315 plt.yticks(fontsize =16)
316 plt.show()
317
318 #%% Force Curve Reader
319
320 if single_curve == True:
321
322 curve_file = r’September \25 SEP20 - Imaging - H2 -1\H2 -1

HSDC\Forces Curves ’
323
324 curve_data = pd.read_csv(curve_file ,sep=’\s+’)
325
326 defl = ’Defl_nm_Rt ’
327 force = ’Defl_pN_Rt ’
328 height = ’Height_Sensor_nm_Rt ’
329
330 defl_plot = np.array(curve_data[defl])
331 force_plot = np.array(curve_data[force ])*10** -6
332 height_plot = np.array(curve_data[height ])
333 height_plot = height_plot [:: -1]
334
335 min_force = 0.05
336
337 # force_fit = force_plot[force_plot > 0]
338 force_fit = force_plot[force_plot > min_force*np.max(

force_plot)]
339 # height_fit = height_plot[force_plot > 0]
340 height_fit = height_plot[force_plot > min_force*np.max(

force_plot)]
341
342 fit_pars = np.polyfit(height_fit ,force_fit ,1)
343 print(fit_pars)
344
345 best_fit = fit_pars [0]* height_fit + fit_pars [1]
346
347 plt.figure ()
348 plt.plot(height_plot ,force_plot)
349 plt.title(’Force Curve Test , {}’.format(fiber_name),

fontsize =24)
350 plt.ylabel(’Force [uN]’,fontsize =20)
351 plt.xlabel(’Height Sensor [nm]’,fontsize =20)
352 plt.xticks(fontsize =16)
353 plt.yticks(fontsize =16)
354 plt.show
355
356 plt.figure ()
357 plt.plot(height_fit ,force_fit)
358 plt.plot(height_fit ,best_fit)
359 plt.title(’Force Curve Test , {}’.format(fiber_name),

fontsize =24)
360 plt.ylabel(’Force [uN]’,fontsize =20)
361 plt.xlabel(’Height Sensor [nm]’,fontsize =20)
362 plt.xticks(fontsize =16)
363 plt.yticks(fontsize =16)
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364 plt.show
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