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Abstract 

The Air Force employs escape systems which include ejection seats in its high-

performance aircraft. While these systems are intended to ensure aircrew safety, the 

ejection process subjects the aircrew to potentially injurious forces. System validation 

includes evaluation of forces against a standard which is linked to the probability of injury. 

The Multi-Axial Neck Injury Criteria (MANIC) was developed to account for forces in all 

six degrees of freedom. Unfortunately, the MANIC is applied to each of the three linear 

input directions separately and applies different criterion values for each direction. These 

three separate criteria create a lack of clarity regarding acceptable neck loading, leading to 

potential disputes during acquisition. Thus, the current research sought to adjust the 

MANIC formulation to provide clear, easy to interpret criterion values, and a single 

MANIC formula independent of the direction(s) of input acceleration. We developed an 

optimization program that would run the survival analysis for each of the input axes. 

Results from these optimizations were compared to an alternative formulation in which 

scaling factors for various critical values underwent a joint optimization, producing a single 

formulation, regardless of input axis. The feasibility of the joint optimization to produce a 

unified MANIC criterion are discussed as a potential method to develop a rectified MANIC 

which provided improved interpretability.  
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A PROPOSED METHOD TO RECTIFY THE MULTI-AXIS NECK INJURY 

CRITERION TO SUPPORT EJECTION SYSTEM VALIDATION 

 

I.  Introduction 

General Issue 

Helmet Mounted Displays (HMDs) are becoming more prevalent in the cockpits 

of high-performance aircraft. They support three of the five strategic capabilities set out 

in the USAF Science and Technology Strategy for 2030, resilient information sharing, 

rapid and effective decision-making, and speed and reach of lethality [1]. HMDs increase 

pilots’ capabilities in these areas, providing faster information conveyance. Specifically, 

these displays reduce the pilot’s need to look down to in-cockpit displays and enable 

look-to-shoot missile locks; these ultimately enable faster effective decisions and actions. 

While these displays are currently in use in most tactical aircraft, including the F-35, F-

18, F-16, F-15, A-10, as well as, many rotary wing aircraft, there is a push to expand the 

capabilities of these displays.   

Unfortunately, the increased capabilities often result in increased weight and 

changes in the helmet’s center of gravity, which increases the risk to aircrew safety, 

particularly during ejection. As program offices develop new or upgrade aircraft and 

HMDs, they need clear specifications and test procedures which reflect the likelihood and 

severity of aircrew injury during ejection events [2]. These specifications and test 

procedures must be applicable to the increasing envelope of personnel anthropometry, 

including reductions in the minimum height and weight requirements for pilots. The 

inclusion of smaller individuals increases the available pool of potential pilots, many of 

them female [3].  However, pilots of smaller stature may be more likely to experience 
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neck injuries of greater magnitude due to increases in the relative HMD mass to the mass 

of bones and musculature in the neck. These injuries are especially likely in the ejection 

environment.  

There is a definite need for an accurate way to measure the loads on the human 

neck during ejection, and to predict the risk of injury to the pilot based on the HMD and 

the pilot’s size. The development of metrics to predict the risk of neck injury during 

ejection was progressed by Lt Col Parr in 2013 when he developed the first six-factor 

injury criterion called the Multi-Axial Neck Injury Criteria (MANIC). This work was a 

significant improvement from the previous evaluation criteria used by the armed services. 

However, there are some weaknesses in the current MANIC. The available measurement 

equipment and limitations in the size of existing data sets limited the original MANIC 

development.  Recently, the Air Force Research Lab (AFRL) has initiated additional 

testing to overcome known deficiencies in the existing data. The improved data sets can 

be used to refine the MANIC for more accurate evaluations and predictions. Additionally, 

there is not an accurate transfer function to equate ATD (Anthropomorphic Test Devices) 

data to human equivalent loads. Captain Satava began the development of a transfer 

function, but this capability is incomplete. Finally, the MANIC is defined separately for 

each input axis while Developmental Testing (DT) involves ejection of ATD which 

undergo all axes of stimulation during a single test.  Therefore, if an escape system and 

HMD paring provide MANIC values within the acceptable limits for two axes but fails 

by presenting MANIC values beyond these limits for the third during DT, it is unclear 

whether the system should pass [4]. This leads to disagreements or confusion during the 
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acquisitions process, ultimately delaying the program and increasing potential cost 

overruns.   

Problem Statement 

The current methods applied for predicting neck injuries during ejection while 

performing DT are not sufficient. The current MANIC enhances the evaluation method as 

compared to previous methods.  However, the fact that the metric is based upon limited 

data reduces its accuracy. Additionally, it is applied to each individual input axis, 

producing confusion, which adds time and cost to acquisition programs. Therefore, there 

is a need to revise the current MANIC to consider larger and more complete data sets. 

Most importantly, it needs to be developed into a tool that provides a single metric across 

all three input axes.  

Research Objectives 

The primary objective of this research is to evaluate the feasibility of a single 

metric which accounts for acceleration of a human or ATD in multiple axes, using 

independent axis input data, to classify neck injury risk for use in escape system 

evaluation. This work will focus on combining force and moment data resulting from 

acceleration of humans and post-mortem human subjects in the X and Y axes into a 

single value for evaluation. If successful, future work will need to explore the addition of 

Z axis acceleration. Other tasks that will be accomplished are evaluating the critical 

values to identify terms that are potentially unnecessary for certain axes and building a 

full six-factor AIS 2+ survivability curve for predicting the risk of injury to a pilot. 
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Research Focus 

The primary benefactors from this research will be aircrew of future aircraft. Air 

Force decision makers will have a better tool, permitting more robust decision making 

regarding the risk of upper neck injuries during ejection for future aircraft ejection 

systems. Additionally, this research could benefit the aviation communities of the sister 

services, especially as we see more joint development programs like the Joint Strike 

Fighter. Finally, this research will benefit the Air Force’s Life Cycle Management Center 

(AFLCMC) to reduce acquisitions cost and schedules when developing and evaluating 

escape systems and HMDs. Although targeted towards ejection system development, the 

work may additionally inform parachute and automotive collision evaluation methods. 

Methodology 

The data used will be test sled runs with humans accelerated at levels known not 

to cause injury, and test runs with PMHSs (Post-Mortem Human Subjects) at multiple 

acceleration levels to have non-injury and injury runs for each PMHS. A graph will be 

built with these test runs with the probability of injury on the vertical y-axis and the peak 

MANIC along the horizontal x-axis. A curve will be fit to the data points using a 

maximum likelihood fit to the logistic distribution resulting in an ‘S’ shaped curve.  

Survivability analysis will be used to regress the survivability curves. And they 

will be compared to older curves from previous work. The AIS 2+ is our focus, but AIS 

3+ curves may be built to be able to compare with previous work. Combining the 

MANIC calculations of the X and Y input axes will be attempted. A meaningful 
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combination of the MANIC values from the two axes will be found. This single number 

will be the pass/fail criteria for a system and human combination.  

Assumptions/Limitations 

No new test runs will be performed; the data for the analysis will be provided by 

the 711th Human Performance Wing’s Airman Biodynamics and Protection section. 

Implications 

This research will positively impact the Air Force by enabling better development 

and evaluation of escape systems thereby improving the safety of pilots. It will also 

develop better methods for interpreting and applying ejection test data in the acquisition 

process.  

Preview 

This thesis is structured with a scholarly approach, with the bulk of the 

information being in the form of articles that will be or have been submitted for 

conference publication. Chapter 2 will consist of a literature review, followed by two 

papers in Chapter 3 and 4, and finally a Conclusion in Chapter 5. The paper in Chapter 3 

is titled “Importance of Mx in MANIC during Y acceleration” and has not yet been 

submitted. Chapter 4 contains the paper titled “Optimizing Critical Values and 

Combining Axes for Multi-Axial Neck Injury” and this has been submitted to the IISE 

conference and currently under review.  
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II. Literature Review 

Chapter Overview 

The risk to military aviation aircrew in ejection seat aircraft is increasing. The 

field is being opened to smaller pilots, who are predominately female. Additionally, the 

head worn equipment such as HMDs and night vision devices are increasing in weight. 

This creates a problem when calculating the risk to pilots during an ejection, which is an 

already difficult environment to predict. Additionally, the current testing of escape 

systems relies upon ATDs, however their response is not bio-fidelic and a transfer 

function is needed for accurate evaluations. The following literature review shows the 

current state of injury and risk prediction for ejections. It also highlights the shortcomings 

in the previously accomplished work. The literature points to shortcomings that include 

unpaired data sets between human and PMHS subjects, small sample sizes for PMHS 

data, equipment deficiencies in recording a full 6 degrees of freedom during acceleration 

tests, and unavailable time history for some data sets.  Future research goals are to refine 

the 6 degree of freedom MANIC criterion developed by Lt Col Parr for more accurate 

evaluation and risk prediction of escape systems [5], and then to develop an ATD transfer 

function to allow accurate test and evaluation without human subjects. 

Coordinate System and Accelerations 

 The common coordinate system used for this type of acceleration analysis is 

shown in Figure 1. This is the same one used for the Nij (NHTSA’s Neck Injury Criteria), 

NIC (US Navy’s Neck Injury Criteria), and MANIC. For these calculations, the point of 

reference used is the center of gravity of the head, instead of the torso as in the diagram. 

But the directions and corresponding moments are the same.  
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Figure 1. Human coordinate system from MIL-HDBK 516C Revision [4] 

For x direction accelerations, the test subject is placed in an ejection seat that is 

mounted vertically and forward facing to a horizontal acceleration sled. Then the subject 

is accelerated forward in the positive x direction. The forces the participant experiences 

during a positive x acceleration are similar to the forces they would experience in a 

frontal impact car crash. For y direction accelerations, the test subject is placed in an 

ejection seat that is mounted vertically and side facing to a horizontal acceleration sled. 

Then the subject is accelerated laterally in the positive or negative y direction. The forces 

the participant experiences during y acceleration are similar to the forces they would 

experience if the ejection turned when entering the wind blast. For z direction 

accelerations, the subject is placed in an ejection seat that is either mounted vertically on 

a vertical acceleration or deceleration sled, or on the seat’s back on a horizontal 

acceleration sled. Then the subject is accelerated towards the top of their head or dropped 

and use the impact interaction to drive a force from the seat-pan through head of the 

subject (similar to the observed vertical acceleration effects). This creates a compressive 

force on their head similar to the acceleration out of the cockpit during an ejection. 



8 

Description 

The purpose for this literature review is to provide support for my work in 

refining the Multi Axial Neck Injury Criteria (MANIC) first developed by Lt Col Parr 

during his time at AFIT as a PhD student [5]. The MANIC’s purpose is to classify the 

forces and moments placed on aircrew member’s neck during an ejection and output a 

single value to be used to pass or fail an ejection system. This is the first and currently 

best method of accounting for all 6 degrees of freedom and computing a single value for 

evaluation. However, there are some short comings in this metric, which will be 

discussed in the following sections.  These shortcomings include limited data for Mx, the 

fact that is based on small data sets, the fact that these data sets had limited time history 

data, and an inability to analyze and evaluate an acceleration event that involves more 

than one axis. This research seeks to build upon Lt Col Parr’s work and refine the 

MANIC methodology. Additionally, after refining the MANIC, it will likely be necessary 

to build upon Captain Satava’s work, as an AFIT Master’s student, in developing a 

transform function to accurately relate Anthropomorphic Test Dummy (ATD) 

experienced loads to the loads a human would experience.  

MANIC Development Background 

As Parr discusses in his dissertation the current state of the head worn equipment 

for pilots includes increasing weight in the form of Helmet Mounted Displays (HMDs) 

and night visions devices [5]. The HMDs provide increased capability to pilots, but the 

added weight is a concern.  The added weight is especially a concern as the field is being 

opened to increasing numbers of female pilots. While a positive trend for military 
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aviation, females typically have less musculature in their shoulders and neck, potentially 

increasing their risk of injury in case of an ejection. The combination of increasing HMD 

mass and the inclusion of smaller pilots has raised concerns about pilot safety in the 

aviation community. In fact, concerns over the weight and design of the F-35 helmet 

were significant enough for Air Combat Command (ACC) to ground the F-35 fleet for a 

short time. Air Force Materiel Command (AFMC) has led a push to develop a multi-axial 

criterion for neck injury that also provides a way to evaluate ejection systems. Further 

support for developing a better criterion is the fact that historically programs have 

experienced delays and issues due to an inability to effectively evaluate ejection systems 

[7].  

In his work Parr explores adoption of the Neck Injury Criteria (Nij) by NHTSA 

for automobiles in frontal crash accidents and the development of the US Navy Ejection 

Neck Injury Criteria (NIC) as a potential metric for F-35 ejection system evaluation. The 

Nij only provides evaluation in a single axis, but its basis is used in developing the 

MANIC. The NIC is good for providing accurate indicators of potentially high forces on 

each separate axis that could injure a pilot, but not a way to evaluate all axes together. 

When developing the MANIC function, data sets with all six degrees of freedom were 

measured. To develop metrics, paired human and Post-Mortem Human Subjects (PMHS) 

testing would be preferred to permit a better model by removing variability from the data 

set. Unfortunately, this was not available, so Parr carefully combined the data from 

previous human and PHMS studies to begin development of the MANIC. Frequently 

there was not paired test data of humans and PMHS, nor were there large sample sizes of 

PMHS data due to the expense and difficulty in conducting these studies. Additionally, 
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some of the test runs did not have all axes or moments recorded, nor was there time 

history data for all runs. Nevertheless, Parr combined the available data to form a 

proposed criterion for participants experiencing acceleration along each of the three 

cardinal axes, as referenced in Figure 1.  

Updated Tensile NIC 

Parr also updated the USAF tensile Neck Injury Criteria. He used the most up to 

date PMHS tensile data available and combined it with data used previously for a total 

sample size of 22 human or PMHS runs. Due to the previous data, he was constrained to 

just calculate an AIS 3+ risk curve, instead of the AIS 2+ risk curve that is preferred by 

the military aviation community. His calculations compared well to the work the FAA 

performed in side-facing aircraft seats, providing predicted limits that were slightly 

lower. Ultimately, he recommended the new loading limit for tensile neck injury to be 

1136 N for a 5% chance at AIS 3+, significantly lower than the previous limit of 1559 N. 

Unfortunately, he was restricted in having to use only the AIS 3+ injury curve because of 

the available data. Future work has been planned to gather new data for the building of an 

AIS 2+ risk curve. Specifically, the Airman Biodynamics and Protection section at the 

711HPW is currently working on assembling a complete data set for additional analysis 

at an AIS Level 2+ level.  

Injury Risk Curves for X axis input 

Parr additionally applied the NHTSA Nij formula to the aviation escape 

environment with HMDs. The Nij was developed to quantify the forces on the neck of a 

vehicle occupant during a frontal collision. It is calculated with the simultaneous 
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instantaneous peak Fx and My, and the Fx critical and My critical values. The measure is 

scaled based on occupant size and is calculated from ATD tests. The critical values are 

the level for a subject with a specified mass that would result in an AIS 3+ injury, so if 

the measured loads result in an Nij value of greater than 1, that system fails the criteria. 

AFLCMC requires the AIS 2+ level of injury, allowing for survival and evasion for 

aircrew that have to eject in combat. The study conducted by Parr included 73 human 

participants wearing helmets with varying masses and varying levels of G accelerations. 

To build survival curves, the data was combined with six PMHS data points. A potential 

problem with the PMHS data is that no time history was available, just the peak 

individual loads were available. Analysis showed that there was a significant difference 

in Nij values between 6 and 8 Gs with constant helmet weight of 2kg. There was no 

significant difference between helmet weights of 1.6 and 2 kg when the G’s were 

constant at 6. This study did not try to relate ATD performance to human, it solely 

focused on human and PMHS data to build a risk curve. However, the critical values 

were developed from ATD data, which is not fully bio-fidelic. The takeaway for this pilot 

study is that the structure of the Nij has some potential for helping the aviation 

community. 

Side Impact in Aircraft 

  Another study was performed to develop a lateral impact, upper neck injury 

criteria for use in designing military aviation escape systems and HMDs. It should be 

noted that lateral impact is especially useful for the rotary wing community [8]. This 

study works to address increasing weight of HMDs and expanding pilot populations to 
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include shorter statures, and increasingly more females. The study incorporates human 

subjects as well as PMHS data. An AIS 2+ risk curve was developed to yield a 5% risk 

criteria. Additionally, an AIS 3+ risk curve was created. The full six factors were desired 

to build the MANIC, but due to a lack of observing Mx motion for humans in y 

acceleration that term was intentionally left out, so the MANIC is only made up of 5 

factors and is called MANIC(Gy). LtCol Parr found that females experience a higher 

MANIC(Gy) score than males for both high G and low helmet weight and for the low G 

and high helmet weight. Additionally, body mass, sitting height, height, neck 

circumference and age were negatively correlated with MANIC(Gy) scores for both test 

configurations. These findings imply that as a person’s size and mass increased, their 

MANIC(Gy) score was lower. Something to note from the different data sets is that the 

PMHS subjects were set in side-facing aircraft seats, while the human subjects were in 

standard ejection seats that were accelerated sideways, this could affect the accuracy of 

pairing the data together for constructing the risk curve. Takeaways from this study is 

that it appears that females and smaller people experience higher MANIC(Gy) scores and 

therefore increased risk of injury.  

ATD Transform  

Captain Satava studied the differences between the human and ATD response to 

Gy, lateral acceleration, and worked to build a transfer function for developing risk 

curves. The ATD data was all from the Hybrid III ATD neck, which is the most bio-

fidelic ATD neck produced.  However, this neck was design for evaluation systems 

during frontal impacts. The analysis showed that the loading between a human neck and 
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an ATD neck is very different when applied in a side impact scenario. The ATD would 

bend to the side, while the human will roll and flex. Other findings were that male/female 

subject types were not normalized by the critical values as the critical values were 

designed to do, and multiple regression showed that females’ responses were higher. 

Additionally, head supported mass (i.e., a helmet) caused a significant response increase 

for humans. Video confirmed the human neck response of flexing forward and rolling, 

with Mx highly correlated with Fx and Mz. Visually this looked like the human subjects 

were trying to ‘look into their pocket’, while the ATDs neck would strictly bend laterally 

and ‘put their ear to their shoulder’ [9]. Unfortunately, a significant amount of data used 

for Parr’s MANIC did not include the sixth measurement of Mx due to the lack of 

observation in human test subjects. Poor data and nonequivalent responses keep the 

transfer function from being accurate, but Satava’s work can be built on with better data 

sets that recorded a full six degrees of freedom. A transfer function in a different axis 

may be more feasible until a better ATD neck is developed.  

Conclusions 

The work done by Lt Col to develop the MANIC has been very influential and 

has advanced the ability for decision makers to evaluate escape systems and the effect of 

HMDs. Likewise, Captain Satava has continued the process of transforming ATD data to 

human equivalents which has the potential to greatly help the acquisition and aviation 

safety community. With increased fidelity in data sets from AFRL, a more accurate 

MANIC function and AIS 2+ risk curves can be developed. This will eliminate the issues 

of unpaired human and PMHS data, unavailable time history data, and missing load data. 



14 

Additionally, the work towards an ATD to human transfer function can be progressed 

with the better data and by focusing on an axis with more closely matched responses.   
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III.  Importance of Mx in MANIC during Y acceleration 

1. Introduction 

Ejection based escape systems are employed on most high-performance aircraft to 

raise personnel survivability during a catastrophic event. Unfortunately, the nature of 

an ejection event places elevated and complicated loads on the individual that could 

cause injury [5]. A pilot can experience forces in all three directional axes. As the head 

pivots on the neck, these forces exert forces, along with the associated moments, on 

the human neck during an ejection event. Any one of these loads or moments has the 

potential to cause an injury to the individual’s spine or neck.  Complex tools are 

needed to analyze this environment and predict the likelihood and severity of an injury 

from ejection during acquisition of aircraft with integrated escape systems.  

 

Recently Parr and colleagues developed the Multi-Axial Neck Injury Criteria 

(MANIC) for application to the ejection environment [6]. This metric has been 

adopted by the Air Force Lifecycle Management Center (AFLCMC) for evaluating 

ejection-based escape systems. The MANIC works by calculating a number from all 

three forces and all three moments about the occipital condyles as a function of time. 

In the calculation it uses critical values related to injury in denominator terms to 

normalize the force and moment values. The equation was developed based upon and 

extends the Neck Injury Criteria (Nij) from the National Highway Traffic Safety 

Administration (NHTSA) [7]. The Nij was developed to predict the likelihood of 

injury during frontal car crashes. It only included what was expected to be the three 

largest contributors to injury in a frontal crash, the force exerted on the upper neck in 

the x axis (Fx), the tensile force exerted in the z axis (Fz) and the moment about the y 

axis (My). The Nij was calibrated to predict injury on an Abbreviated Injury Scale 

(AIS) Level 3, and the critical values were selected such that a value of 1 corresponded 

to a 20% chance of an AIS 3 injury. The development of the MANIC required 

adjusting current terms and adding additional terms. AFLCMC desired prediction of a 

5% chance of injury on the AIS Level 2 scale, a lower level of injury than applied in 

the Nij [6]. Additionally, with ejections being more dynamic than a frontal crash, it 

was necessary to include additional degrees of freedom within the metric.  

 

Because of the cost and risk of testing actual ejection sequences with live humans, 

testing to develop these metrics was performed on single direction test tracks with 

humans at accelerations below the injury threshold and with Post-Mortem Human 

Subjects (PHMS) at accelerations above the injury thresholds. In Parr’s original 

formulation of the MANIC for y axis acceleration, he included five of the six degrees 

of freedom, omitting Mx due to lack of observed responses. To combine the results for 
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the three individual axes of acceleration tests, it will be important that all potential 

forces and moments be included in the metric for each axis. Therefore, this paper will 

investigate the effects of including the Mx term on the MANIC equation results for y 

axis accelerations. Additionally, the paper will investigate the effect of using the table 

critical values versus linear fits for the critical values.  

2. Methods 

Data was selected from a mix of human subjects, which are typically uninjured, and 

PMHS. The PMHS are typically exposed to higher accelerations than live human 

subjects, including accelerations that will result in soft tissue tears or bone fractures 

corresponding to injury. The PMHS data used here was also used in previous MANIC 

research and was previously described [7], as was the human data. The data was 

structured in spreadsheets with separate columns for forces, moments, and time. Each 

test run had its own spreadsheet. Separate spreadsheets were built with the test run 

number, subject mass, and injury results. The acceleration data included data for all 

three forces and moments. 

The current research incorporated all six terms of the MANIC equation in our analysis 

when available. Previous work by Parr excluded Mx for the Y axis due to a lack of 

observing Mx during previous tests. However, these values are readily available in the 

newer data sets, allowing us to explore the significance of the Mx term.   

 

Four different sets of survival analysis were performed. The survival analysis was run 

with and without the Mx term. Additionally, the survival analysis was run with critical 

values from the table and run with the linear fits for comparison. The method of using 

linear fits has been previously established by Williams [11]. This resulted in four 

survival analyses each with a corresponding MANIC cutoff value for a 5% chance of 

AIS Level 2 injury.  

 

3. Results 

Table 1 shows the resulting MANIC cutoff values from the survival analyses. 

Including the Mx term results in an increase in the cutoff value for the data set using 

linear fits for the critical values. The increase of the injury cutoff value shows the 

result of the survival analysis curve being shifted to the left by the inclusion of the Mx 

term. The difference in cutoff values is expected with the inclusion of the additional 

moment. However, the values for the analysis with the tabular critical values does not 

change. This suggests that the resulting MANIC is influenced more by the critical 

values being from the table, than the inclusion or removal of Mx.  
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Mx & Table/Line fit Sensitivity 

  w/o Mx w/ Mx 

Linear Fits 0.4752 0.6451 

Table values 0.6444 0.6444 

Table 1: MANIC values at a 5% chance of AIS Level 2 injury. 

Survival Analysis curves can be seen in Figures 2 and 3 below. Figure 2 is the original 

curve without Mx and the new curve with Mx included, both with linear fits. The slope 

with the addition of Mx is significantly changed, due to some of the non-injurious 

points being higher in MANIC as a result of adding the Mx term.  

 

 

Figure 2: SA Curves for Mx Comparison. Left graph has Mx removed, right graph has 

Mx included. Both use linear fits for the critical values. 

Figure 3 shows the comparison of the critical values from the table on the left, and the 

critical values from the linear fits on the right. No noticeable difference is seen between 

them, and from Table 1, the cutoff values are very close to one another.  

 

 

Figure 3: SA Curves for critical value source comparison. Left graph uses critical values 

from the table, right graph uses linear fits for the critical values. Both include the Mx 

term. 
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Another noteworthy result is the similarity in the cutoff value between the current 

analysis and what was found by Parr. The MANIC value equating to a 5% chance of 

AIS Level 2 injury found by Parr was 0.48. This current survival analysis using the 

linear fit to find a more precise match of critical value to the subjects’ mass and without 

the Mx also produces a value of 0.48. However, the analysis with the critical values 

from the table have a cutoff value of .64, which is higher than what was found by Parr.  

4. Discussion 

When Parr first studied the MANIC applied to accelerations in the y direction, he 

removed Mx because no true Mx rotation was observed during video of humans under 

later acceleration. There was significant My and Mz motions coupled with some Mx 

motion. Due to some observations with x direction and y direction data combined, it 

appeared that the Mx term was potentially a significant indicator of injury. Comparing 

the results of the survival analysis with and without the Mx term, it does not appear 

that the Mx term has a significant effect for y axis accelerations because there is only a 

small change in the cutoff value. Additionally, from the correlation graph in Figure 4, 

the MANIC score without the Mx term correlate to the scores with the Mx term, 

although the slopes of these lines differ somewhat between the human and PMHS data 

points. 

 

Figure 4: Correlation graph of Mx term for MANIC scores. 

The shape of the second curve from Figure 3 is expected. The addition of the sixth 

term raises the MANIC score for the non-injurious data, this flattens the curve. If 

additional injurious data points were inserted in the data set, it is expected to improve 

the shape of the graph and improve its accuracy.  
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Another observation of note, even with the difference of the critical value calculation 

methods, the same cutoff value was found. Also, when the Mx term was varied for the 

table values the cutoff value was the same, unlike for the linear fits. This could mean 

that the selection of critical values from the table could influence the resulting 

MANIC.  

 

5. Conclusion 

From the results, it does not appear that Mx is a strong contributor to chance of injury 

for accelerations in the y direction. Inclusion of additional injurious test runs with all 

six degrees of freedom measured would increase the accuracy of the survival analysis 

calculations and MANIC cutoff values. Also, more injurious points from robust tests 

are needed to help define the upper end of the survival curve for an accurate estimate 

of injury risk. Additional non-injurious human test data with all six degrees of freedom 

would also strengthen the survival analysis and MANIC calculations. Finally, it also 

appears that the linear fits for the critical values do provide a more precise calculation 

of MANIC scores.  
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IV.  Optimizing Critical Values and Combining Axes for Multi-Axial Neck Injury 

 

Abstract 

 

The Air Force employs escape systems, which include ejection seats, in its high-

performance aircraft. While these systems are intended to ensure aircrew safety, the 

ejection process subjects the aircrew to potentially injurious forces. System validation 

includes evaluation of forces against a standard which is linked to the probability of injury. 

The Muti-Axial Neck Injury Criteria (MANIC) was developed to account for forces in all 

six degrees of freedom. Unfortunately, the MANIC is applied to each of the three linear 

input directions separately and applies different criterion values for each direction. These 

three separate criteria create a lack of clarity regarding acceptable neck loading, leading to 

potential disputes during acquisition. Thus, the current research sought to adjust the 

MANIC formulation to provide clear, easy to interpret, criterion values and a single 

MANIC formula independent of the direction(s) of input acceleration. We developed an 

optimization program that would run the survival analysis for each of the input axes. These 

results were compared to an alternative formulation in which scaling factors for various 

critical values underwent a joint optimization, producing a single formulation, regardless 

of input axis. These results are compared and the feasibility of the joint optimization to 

produce a unified MANIC criterion are discussed as a potential method to increase the 

interpretability of the MANIC. 

 

Keywords 

Optimization, survival analysis, safety, neck injury, test and evaluation 

1. Introduction 

Ejection systems are included in most high-performance aircraft to improve the personnel 

survivability during catastrophic events [5]. Unfortunately, the individual experiences the 

ejection sequence as a complicated series of musculoskeletal loads. During the initial 

phase of ejection, as the seat accelerates upward out of the aircraft, the pilot’s neck and 

spine are compressed in the vertical, z axis. Assuming the ejection seat remains facing 

forward, the wind blast exerts a strong load in the x direction, like the loads experienced 

during a frontal car crash.  However, if the ejection seat turns, that windblast can exert 

loads in the lateral, y axis. Wind can also enter the helmet, placing a tensile force on the 

neck and spine in the z axis. Therefore, the pilot can experience high loading in all three 

major axes during ejection from the aircraft. The end of the ejection sequence results in 

additional loading from the parachute deployment and opening shock, which typically 

presents a compressive force in the z direction [5]. Any of these forces or their 

combination can result in spinal or neck injury [4]. Tools are required to understand the 

likelihood of injury from the loads experienced by the pilot to support development of 

safe ejection systems.  
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Complex tools are needed to analyze this combination of loads experienced by the pilot. 

Recently, the Multi-Axial Neck Injury Criteria (MANIC) was proposed by Parr and 

colleagues [8]. A version of this criteria was adopted by the Air Force Lifecycle 

Management Center (AFLCMC) for evaluating ejection-based escape systems for 

modern high-performance aircraft [4]. The MANIC calculates the forces and moments 

exerted at the upper neck in all three axes, as a function of time. These forces and 

moments are each normalized by a critical value, which is an estimate of the force or 

moment value which would likely induce injury. This formulation was inspired by the 

National Highway Traffic Safety Administration’s (NHTSA) Neck Injury Criteria, 

referred to the Nij [9]. The maximum MANIC value during an ejection sequence is then 

used to estimate the likelihood of injury. To develop this criterion, the likelihood that an 

individual will experience a specified level of injury is estimated based upon existing 

experimental data collected from human and post-mortem human subjects (PMHS) using 

survival analysis. The Nij was developed to account for the three largest factors 

contributing to injury in a frontal automobile crash, which are the force exerted in the 

upper neck in the x axis (i.e., Fx), the force exerted in the z axis (i.e., Fz) and the moment 

about the y axis (i.e., My). The equation for Nij used critical values developed from 

extensive testing that were closely related to the force level that would lead to a 20% 

chance of injury at an Abbreviated Injury Scale (AIS) Level 3, permitting the Nij to 

produce a corresponding value of 1.  

 

To extend this metric to assess ejection systems for the F35 Joint Strike Fighter (JSF), a 

panel of subject matter experts selected critical values for the remaining upper neck 

forces and moments to use in a family of early metrics based upon limited experimental 

evidence. The MANIC adopted these same critical values. As specified by the United 

States Department of Defense, the ejection system should have less than a 5% probability 

of producing an AIS Level 2 injury.  Thus, the permissible MANIC value was derived by 

applying survival analysis to a combination of existing human and Post-Mortem Human 

Subject (PMHS) data to determine the MANIC value corresponding to the probability 

and severity of injury.  

 

Due to the difficulty, risk, and cost associated with conducting experiments using actual 

ejections, the experiments used to develop the MANIC were simplified. Individual test 

runs were performed with different laboratory apparatus, where each apparatus was 

designed to expose the test specimens (human or PMHS subjects) to accelerations in one 

of the three axes. As a result, a different MANIC equation and criteria were developed 

for each axis, leading to MANIC values of 0.56 for the x axis [9] and 0.48 for the y axis 

[7]. This effort provided a set of criteria, simplifying system test, evaluation, and 

specification. However, it remains necessary to calculate three individual criteria to 

evaluate a system. As it is unclear which of the MANIC values apply to any segment of 

the ejection sequence, the existence of these three individual criteria sometimes leads to 

disputes regarding the sufficiency of an ejection system, particularly when this system 

can provide MANIC values significantly below the critical MANIC value in some but not 



23 

all three axes. Further, the resulting criteria may each be biased as they assume that the 

individual is only exposed to forces in one direction at any moment in time.  

 

Measuring the loads on aircrew necks during ejection events is becoming increasingly 

important as Helmet Mounted Displays (HMDs) become more prevalent, placing 

additional mass on the pilot’s head.  Additionally, pilot anthropomorphic ranges are 

increasing to include individuals of smaller and larger stature. The current MANIC 

equation combines forces and moments at the upper neck for all six degrees of freedom 

and returns a single value. Incorporating all six axes into this single metric permitted it to 

replace most of the prior metrics that were applied by the Air Force Lifecycle 

Management Center (AFLCMC) for evaluating ejection-based escape systems. However, 

it is necessary to simplify the application of this metric, such that a single, clear, criteria 

can be applied to assess ejection systems. This research seeks to modify the MANIC so 

that a single, universal criteria is provided. This will give decision makers in acquisitions 

a simpler and clearer rule to apply when evaluating escape systems.  

 

2. Methods 

2.1 Data Source and Structure 

To support the analysis of our current research, it was important to select data from a mix 

of human subjects, which are typically uninjured humans and PMHS. The PMHS are 

typically exposed to accelerations which result in soft tissue tears or bone fractures 

corresponding to injury. Further, it was important to include data from acceleration tests 

in at least two axes.  Data from X axis acceleration tests were adopted from previous 

MANIC research and has been described previously [8].  The PMHS data for the Y axis 

was also used in previous MANIC research and was also previously described [7]. The 

data was structured in spreadsheets with separate columns for forces, moments, and time. 

Each test run had its own spreadsheet. Separate spreadsheets were built with the test run 

number, subject mass, and injury results. The data for the X axis acceleration only 

contained measured values for the Fx and Fz and My values, forcing the assumption that 

Fy, as well as Mx and Mz were negligible. The Y axis acceleration data included data for 

all three forces and moments.  

 

2.2 Analysis Philosophy and Approach 

In the current analysis, we sought to develop a method to adjust the MANIC formulation 

which simplifies its application.  First, we wish to redefine the MANIC formulation such 

that each of the critical values can be scaled.  This requires us to define the MANIC 

formula as shown in Eqn 1. 

 

𝑀𝐴𝑁𝐼𝐶 =  √(
𝐹𝑥

𝑝1∗𝐹𝑥𝑐𝑟
)
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In this equation, each of the critical values are scaled by an appropriate parameter (p1 

through p6). The remaining parameters in Equation 1 were present in the original MANIC 

formulation, where the forces in the upper neck are represented by Fx, Fy, and Fz, the 

moments in the upper neck are represented by Mx, My, and Mz, and the critical values are 

represented by the F or M values in the denominator of each term, annotated with the 

subscript cr. In the current research, we assume p1 through p6 can be derived to provide 

MANIC values with specific desirable qualities. 

 

In a first analysis step, we assume that the original critical values were selected such that 

the relative values of each of the critical values were correct.  Therefore, we assume that 

each of the new parameters added to the MANIC formulation are equal.  These values are 

then scaled such that a MANIC value of 1 will correspond to a 5% chance of an AIS 

Level 2 injury. In subsequent analyses we then assume that the critical values were not 

correctly chosen, such that their relative values provide an inappropriate scaling.  For this 

reason, we expect the dominant forces created by acceleration in the X-axis to result in a 

first MANIC value at a 5% chance of an AIS2 injury while dominant forces created by 

acceleration in the Y-axis will result in a second, different MANIC value for the same 

injury probability and level. Under this condition, it becomes necessary to assume that 

the parameters p1 through p6 will differ from one another.  
 

2.3 MANIC Calculations 

Overall, the goal was to optimize the values of the parameters p1 through p6 such that 

interpretation of the modified MANIC was simplified. The approach developed in this 

research is depicted in Figure 5.  As shown, the first step of this approach was to fit linear 

equations to the critical values which are provided as a function of mass of the test 

participant, as suggested previously [10]. The modified MANIC equation shown as 

Equation 1 was then applied to calculate the peak MANIC for each experimental run.  

Survival analysis is then applied to fit a survival function to the data given the injurious 

and non-injurious data in the data set [11]. The resulting curve is then used to calculate 

the MANIC value which corresponds to a 5% probability of an AIS Level 2 injury.  This 

computation was originally computed using parameter values all equal to 1, resulting in a 

critical MANIC value, at which one would expect injury to occur.  To simplify 

interpretation, the initial optimization adjusted the parameters such that the resulting 

MANIC value would be equal to 1. Thus, an optimization was performed to determine 

the parameter values which would result in a critical MANIC value of 1 at a 5% 

probability of AIS2. All calculations were performed using MATLAB 2020a. 

 

 

Figure 5: Flow chart of calculations and steps for the optimization and survival analysis 
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Equation 2 below shows the form for calculating the probability of injury from the 

MANIC score. The parameters ‘a’ and ‘b’ are calculated from the Matlab code for the 

Survival Analysis curve fit and specific values will be given for the Survival Analysis 

curves later in the paper.  

 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐼𝑛𝑗𝑢𝑟𝑦 =
1

1+𝑒
−(𝑀𝐴𝑁𝐼𝐶−𝑎)

𝑏

                                       (2) 

 

For this work, we assume that a straight line is the best method to estimate the critical 

values. Additionally, we assume that the relationships between the slopes and intercepts 

should not change. Therefore, multipliers in the denominators of the terms in the MANIC 

equation were used. This allows us to influence the final MANIC number without 

changing the relative critical value equations as a function of participant mass, as 

assumed by subject matter experts during the initial development of the Nij. It should also 

be noted that the optimization utilized the combined data set from the X and Y axis 

acceleration conditions.  Thus, the optimization seeks to find a single set of parameter 

values which provide a single MANIC value regardless of the input axis. 

 

A total of three optimizations were performed. The first utilized a single value for all 

parameters. This optimization maintained the relationship between the critical values and 

simply offset the maximum MANIC value to achieve a criteria value of 1.0.  This was 

intended to simplify specification of the test criteria as an escape system providing a 

MANIC value greater than 1.0 would be assumed to fail the qualification test. The second 

optimization permitted the parameter for the force terms (p1, p2, and p3) to vary 

separately from the moment terms (p4, p5, and p6). This manipulation was performed 

since the force and moments are specified with different units. The third scenario 

permitted all parameters to vary independently. The compilation of code was able to 

successfully compute the MANIC values with the linear equations for the critical values, 

run the survival analysis, analyze the MANIC value, and adjust the denominator 

parameters to obtain a MANIC value of 1 at a 5% chance of an AIS level 2 injury for all 

cases.  

 

3. Results 

Table 2 contains the parameters for the four optimizations. From early analysis using the 

full six terms for the MANIC equation and the newer Y-axis data, the parameter value 

from the optimization which produces a MANIC of 1.0 at a 5% probability of an AIS 2 

injury is 0.6748 for the X-axis and 0.6451 for the Y-axis. When both axes are combined, 

the parameter value is 0.6598 as shown in Table 2. Applying this parameter simply shifts 

the survival analysis curve to provide this more intuitive cutoff value. However, this 

analysis does not permit any adjustment to account for any error in the critical values 

which might produce differences in the different parameter values for the X and Y axis 

acceleration conditions. 
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Table 2: Table of the different multiplier values for the three optimization scenarios. 

Optimization  p1 p2 p3 p4 p5 p6 

p1=p2=p3=p4=p5=p6 0.6598 0.6598 0.6598 0.6598 0.6598 0.6598 

p1=p2=p3, p4=p5=p6 1.1124 1.1124 1.1124 0.5132 0.5132 0.5132 

p1≠p2≠p3≠p4≠p5≠p8 0.9286 0.9611 1.1468 0.3766 1.0174 1.2251 

 

Permitting p1, p2, and p3 to vary separately from p4, p5, and p6, results in a larger 

parameter value for the force parameter than the moment parameter, indicating that 

perhaps the critical values for the forces are not large enough relative to the moment 

critical values. Finally, allowing each parameter to vary independently increases p3 and 

p6 noticeably, while p4 falls well below 1.  

 

Figure 6 shows the maximum MANIC values as a function of participant mass for the 

original values, as compared to the maximum MANIC values for three of the 

optimization conditions. As shown, the original MANIC values are less than the 

optimized values, except for Scenario 3. This change shifts the survival curve to the left 

permitting the MANIC value with a 5% chance of an AIS 2 injury to be increased to 1. 

 

Figure 6: Graph showing the maximum MANIC values for the original calculations and 

Optimization scenarios 1, 2, and 3. 

0

1

2

3

4

5

6

7

8

9

100 120 140 160 180 200 220 240 260 280

M
A

N
IC

Mass (lbs)

Original

Scenario 1

Scenario 2

Scenario 3



27 

 

Figure 7: Graph showing the difference in MANIC between the original calculations and 

optimization scenario 4 in the right panel. Data points represented by outlined diamonds 

signify injurious trials while the circles represent non-injurious trials. 

Figure 7 shows the difference between the optimized maximum MANIC values 

determined in Optimization scenario 3 from the MANIC values using the original 

MANIC formulation, plotted on a semi log plot. The use of the semi log plot improves 

the visibility of small changes which occur when both the original and optimized MANIC 

values are small. Comparing Figure 6 and Figure 7, we see that the difference in MANIC 

values is related to the initial magnitude. Also, there is not an obvious influence of 

subject mass upon the differences in MANIC values. 

 

4. Discussion 

The decision to Multiply the denominators in the MANIC equation by individual 

constants was made for two reasons. First, we needed to adjust the MANIC values and 

adjusting the denominators in the equation allowed this goal to be achieved, while also 

being able to adjust individual terms if desired. Second, by multiplying the denominator 

values, we would influence the effective relative differences between the critical values 

without changing the relationship between critical values and participant mass. An initial 

attempt involved changing the slopes and intercepts of the critical value-mass 

relationships. However, this manipulation produced significant changes in both the 

intercepts and slopes of the functions, making interpretation of the relative changes in 

critical value difficult. Therefore, a multiplier was added to the denominator. This 

preserves the relative differences in critical values as a function of mass, consistent with 

the Nij and MANIC formulations.  

 

In Optimization scenario 2, the force parameter multiplier was higher than the moment 

parameter, indicating that the relative values for the force critical values to the moment 

critical values may be smaller than desired. This indicates that the forces have less of an 

effect than the moments on the magnitude of the resulting MANIC. The final two 
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optimization scenarios indicate that the critical values for Fx and My may be much 

smaller relative to the other parameters than is optimal. At first, this finding may seem 

counter intuitive. The original analyses produced by Parr and colleagues indicated that 

the MANIC values which result in injury for the X input axis  was very close to the 

MANIC values, which would result in injury for the Y input axis (i.e., 0.56 [9] as 

compared to 0.48 [7]).  However, in that analysis the input data set for they Y axis did not 

include the moments about the x axis. When this value was included in the present 

analysis, the unadjusted MANIC value increased from 0.48 to 0.65.  This would indicate 

that injury occurs at higher original MANIC values when the neck is exposed 

predominantly to y axis forces and x axis moments, as was the case for the Y axis 

acceleration, than when the neck is exposed to predominantly x axis forces and y axis 

moments, as was the case for the X axis acceleration.  Thus, the larger parameters, which 

were found in the later optimization scenarios, permit the critical values to be adjusted to 

adjust for this difference. Figure 8 below shows the shift in the survival curves that 

results from the optimization. Also shown is that the injurious points from the Y axis 

input are predominantly to the left of the points from the X axis input in the original 

MANIC formulation. However, these values are intermingled in the optimized 

formulation. Thus, the optimization approach is compensating for differences in the 

injurious MANIC values between the two input axes. 

 

Figure 8: Survival Analysis Curves. Results for the original MANIC Equation shown on 

the left. Optimized MANIC Equation from optimization scenario 3 shown on the right. 

Black squares are X direction test points. Blue diamonds are Y direction test points. For 

the original calculations, the SA curve parameters are: a = 1.3975, b = .2506. For the 

optimized calculations, the SA curve parameters are: a = 2.6448, b = .5586. 

While the optimization method shows promise in reconciling differences in neck 

response and injury thresholds to acceleration in different input axes, the results from this 

analysis are insufficient to advise a change in the current MANIC formulation. The 

currently available data is simply insufficient. The existing data has incomplete force and 

moment information for the neck in response to acceleration along the x direction; only 

the Fx, Fz, and My were recorded. Additionally, there is no data with time histories 

available for the PMHS in response to x axis acceleration. Nor are there enough injurious 

test points for the x or y axes. Additionally, insufficient data exists for the input 

accelerations in the z axis. Finally, the current method optimizes the MANIC values 
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based upon data from single axis inputs while the ejection sequence is much more 

complex. Ideally any optimized MANIC equation would be verified based upon tests 

which better emulate an actual ejection. However, it is recognized that such an 

experiment would be difficult to conduct in a controlled fashion and head accelerations 

are not currently monitored during real world ejections. Finally, previous research has 

shown that available Anthropomorphic Test Devices (ATDs) do not exhibit a bio-fidelic 

neck response, particularly in response to y axis acceleration. Thus, it will be necessary to 

define a robust transform function to transform ATD response to better represent the 

response of humans [12].  

  

5. Conclusion 

We have demonstrated a potential method for improving the MANIC formulation for 

evaluating escape systems and informing acquisition decisions. This method employed 

optimization on parameters within the MANIC equation to reconcile differences in the 

MANIC threshold in response to x and y axis acceleration. If additional data for x and z 

axis acceleration were available, this method could potentially be applied to provide a 

single MANIC formulation to support analysis of forces and moments about the upper 

neck in response to complex accelerations, such as those experienced during ejection. 

Once all three axes are incorporated, work can then begin on applying it to a more 

realistic ejection environment, considering additional complicating factors such as the 

lack of ATD bio-fidelity.  

 

Disclaimer 

The views expressed in this paper are those of the authors and do not reflect the official 

policy or position of the U.S. Air Force, the Department of Defense, or the U.S. 

Government. 
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V.  Conclusions and Recommendations 

Conclusions of Research 

From Chapter 3 of this document, the effect the Mx term has on injury for y axis 

acceleration is not significant. Although this term should not be completely disregarded 

for cervical injury research. The Mx term may have significant effects for accelerations in 

the x or z direction. Additionally, as work progresses to combine the analysis of the three 

axes, it should be included for thoroughness.  

Also, from Chapter 3, there is value in using the linear fits for the critical value 

over using the table values. While the table values work for ATD testing, the linear fits 

will provide the most accuracy for human and PHMS testing. With humans being the 

ultimate subject for ejections, the linear fits should be used for calculations. 

The work done for the paper in Chapter 4 showed that it is possible to calculate 

MANIC for more than one axis at a time. Combining x and y direction accelerations in 

the same calculations shows promise for being able to calculate all three directions 

together, to improve the MANIC tool for predicting cervical injuries. This is a significant 

step for MANIC to become a tool to evaluate a full ejection sequence.  

Additionally, in Chapter 4, the optimization was successful in handling not only a 

single axis, which would improve the MANIC tool as an evaluation criterion. But it was 

also able to successfully optimize the equation for two axes, providing another step 

forward to being able to provide an easily communicated tool for evaluating a full 

ejection sequence.  
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Significance of Research 

The goal of this research was to develop a method that could improve the MANIC 

for evaluating ejection seat injury chances. This goal has been accomplished. The first 

way this was done was with combining the x and y axes together for evaluation. In the 

past, each axis had to be analyzed separately. An actual ejection however puts the pilot 

through all three acceleration directions in one combined event. Being able to combine 

the two axes together brings us a step closer to combining all three.  

A metric derived from such a method would permit us to analyze a full ejection 

sequence with a single tool. This will enable the best prediction of pilot injury, allowing 

the acquisition community to build the best escape systems for high performance aircraft. 

The second way we accomplished our goal was using an optimization to have the 

survival analysis return an easily communicated criteria for the desired chance of injury. 

This will allow development and acquisitions personnel to more easily communicate 

across teams and to decision makers the capabilities of escape systems. The combination 

of these two methods was also successful and combining them has the potential for 

creating a greater impact for evaluating and developing ejection systems than applying 

either approach singularly. Ultimately this research will have the potential to improve 

decision making during acquisition, decrease disputes during acquisition, and increase the 

lethality and capability of our pilots in combat, by giving development teams an accurate 

set of constraints for when they test HMDs and ejection systems. Enabling the best 

capability to be given to the pilot, while also keeping them safe in the event they need to 

eject provides a method to facilitate system Human Systems Integration tradeoffs.  
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Recommendations for Future Research 

The first recommendation for future research would be to acquire better injurious 

data for the x and y acceleration directions. Currently for the x direction, only the peak 

load and moment values for the terms used for the Nij are available to support analysis. 

For the y direction, there is only time histories for the terms used for the Nij criterion. 

Therefore, the analysis would be greatly improved if full six degrees of freedom and time 

histories were available for x and y injurious data. Additionally, there is no satisfactory 

data available for the z direction. Collection of this data would significantly improve the 

capability to derive more reliable MANIC values.  

The second recommendation is to combine all three axes together for MANIC 

calculations, then apply an optimization as illustrated in this thesis. This analysis will 

show if it is possible to develop the MANIC into something that can be used on 

multidirectional acceleration event like an ejection. This analysis will optimize the 

critical values to provide easily communicated cutoff values for evaluation for the three 

directions. If successful, this will provide an easily communicated criteria for escape 

system evaluation.    

The final recommendation, to be done after a successful completion of the second 

recommendation, is to develop a transform function for applying the MANIC to ATD 

data. Currently, full ejection tests are performed with ATDs and not humans due to risk. 

Due to the difficulty of building a truly bio-fidelic crash dummy, the ATDs do not 

respond to accelerations in the same way as humans. Therefore, something is needed to 

transfer the data from a test done with ATDs into an accurate representation of a human 
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response. This would be the final step in developing a tool to completely and accurately 

evaluate ejection-based escape systems for high-performance aircraft.    
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Appendix A: Data Origins 

 

Loading Orientation, Facility, Cell, and Test Number Tables 

X Direction Data 

Facility: HIA             

Cell   Test Numbers Cell   Test Numbers Cell Test Numbers Cell Test Numbers 

 B  

7327 

C 

7364 

D 

7422 

PMHS 

3022 

7341 7367 7423 3026 

7342 7368 7425 3032 

7351 7381 7435 3035 

7360 7405 7439 3038 

7361 7406 7443 3039 

7365 7411 7447  
 

7366 7412 7450  
 

7369 7418 7451  
 

7373 7419 7453  
 

7374 7420 7454  
 

7377 7427 7458  
 

7378 7428 7459  
 

7380 7430 7461  
 

7382 7432 7462  
 

7402 7433 7471  
 

7403 7445 7482  
 

7407 7449 7483  
 

7409 7457 7497  
 

7415 7467 7711  
 

7416 7625 7717  
 

7424 7673 7723  
 

7436 7678 7758  
 

7437 7679    
 

7507 7705    
 

7637 7746    
 

7655      
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Y Direction Data 

Facility: HIA         

Cell   Test Numbers Cell   Test Numbers Cell Test Numbers 

C  

6750 

F 

6881 

PMHS 

1 

6751 6882 2 

6752 6885 3 

6753 6892 4 

6755 6893 5 

6757 6894 6 

6758 6895 7 

6759 6899 8 

6760 6900 9 

6761 6905   

6762 6906   

6769 6907   

6770 6909   

6771 6910   

6772 6913   

6773 6915   

6774 6916   

6775 6917   

6781 6918   

6782 6919   

6783 6926   

6806 6927   

6807 6929   

6809     

6810     

6820     

6821     

6822     

6833     

6834     
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Appendix B: Matlab Code 

 

This Appendix contains all of the Matlab codes used for this research. They are presented 

in alphabetical order. The file names are bulleted, then followed by the code. Some of 

them have file directories that would need to be changed if ran on a different computer to 

access the data spreadsheets. The two main ones are SetupOptimization5 and 

PlotSurvivalAnalysis3. SetupOptimization5 will find the values for the optimization 

parameters, and the different optimization scenarios can be adjusted by changing the 

array for “x”. PlotSurvivalAnalysis3 plots the survival analysis curves, and if the 

optimization parameters entered, can plot the different scenarios by commenting in/out 

the different parameter arrays.  

adjfits3  

function [parameters] = adjfits3(fits, xSelect, paramadj) 
%formatfits simply copies the slopes and intercepts out of fits and 
%populates parameters with the appropriate values. 
% INPUT 
% fits is the fit functions for Fx, Fz, nFz, Mz and My 
% xSelect indicates pairings of values to be fit 
% OUTPUT 
% parameters - slope and intercept parameters for Fx, Fz, nFz,  
numfits = length(paramadj); 
for i=1:numfits 
    [~,cols,~] = find(xSelect==i); 
    for j=1:length(cols) 
        if (cols(j) == 1) 
            parameters.pos.Fx.slope = paramadj(1,i) .* fits.Fx.p1; 
            parameters.pos.Fx.int = paramadj(1,i) .* fits.Fx.p2; 
            parameters.neg.Fx.slope = paramadj(1,i) .* fits.Fx.p1; 
            parameters.neg.Fx.int = paramadj(1,i) .* fits.Fx.p2; 
        elseif(cols(j) == 2) 
            parameters.pos.Fy.slope = paramadj(1,i) .* fits.Fx.p1; 
            parameters.pos.Fy.int = paramadj(1,i) .* fits.Fx.p2; 
            parameters.neg.Fy.slope = paramadj(1,i) .* fits.Fx.p1; 
            parameters.neg.Fy.int = paramadj(1,i) .* fits.Fx.p2; 
        elseif(cols(j) == 3) 
            parameters.pos.Fz.slope = paramadj(1,i) .* fits.Fz.p1; 
            parameters.pos.Fz.int = paramadj(1,i) .* fits.Fz.p2; 
            parameters.neg.Fz.slope = paramadj(1,i) .* fits.nFz.p1; 
            parameters.neg.Fz.int = paramadj(1,i) .* fits.nFz.p2; 
        elseif(cols(j) == 4) 
            % Moment Fits 
            parameters.pos.Mx.slope = paramadj(1,i) .* fits.Mx.p1; 
            parameters.pos.Mx.int = paramadj(1,i) .* fits.Mx.p2; 
            parameters.neg.Mx.slope = paramadj(1,i) .* fits.Mx.p1; 
            parameters.neg.Mx.int = paramadj(1,i) .* fits.Mx.p2; 
        elseif(cols(j) == 5) 
            parameters.pos.My.slope = paramadj(1,i) .* fits.My.p1; 
            parameters.pos.My.int = paramadj(1,i) .* fits.My.p2; 
            parameters.neg.My.slope = paramadj(1,i) .* fits.Mx.p1; 
            parameters.neg.My.int = paramadj(1,i) .* fits.Mx.p2; 
        elseif(cols(j) == 6) 
            parameters.pos.Mz.slope = paramadj(1,i) .* fits.Mx.p1; 
            parameters.pos.Mz.int = paramadj(1,i) .* fits.Mx.p2; 
            parameters.neg.Mz.slope = paramadj(1,i) .* fits.Mx.p1; 
            parameters.neg.Mz.int = paramadj(1,i) .* fits.Mx.p2; 
        else 
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        end 
    end 
end 
end 

 

ComputeSurvivalAnalysis 

% Routine to calculate Survival Functions 
clear all; 
close all;  
clc; 
  
path = 'C:\Users\Ethan\Documents\MATLAB\Survival Analysis Optimization\Gy Excel Data'; % Directory which contains 
excel files 
filenames = dir([path,'\*.xlsx']); 
  
%% STEP 2: Read Data 
loading = readLoading(filenames);          % Raw neck loading time history with participant Mass 
  
%% STEP 3: Calculate MANIC Values 
% Obtain fitting parameters for critical values 
metric = false; 
[fits, goodness] = fitfunctions(metric); 
[parameters] = formatfits(fits); 
% Perform manic calculation for each participant/condition 
setf = 0; 
for i=1:size(loading,1) 
    [manic(i,1), manicIndex(i,1), NMIx(i,1), NMIxindex(i,1)] = paramMANIC(loading(i).Mass, loading(i), parameters); 
    loading(i).manic=manic(i,1); 
    if(loading(i).injured == 0) 
        survinput(i,:) = [manic(i,1), inf]; 
    else 
        survinput(i,:) = [0, manic(i,1)]; 
%         if(manic(i,1) >0.9)&&(manic(i,1)< 1.0) && (setf == 0)  
%             setf = 1; 
%             survinput(i,1) = manic(i,1); 
%         end             
    end 
end 
  
  
%% Step 4: Write Data 
  
% for i=1:size(loading,1) 
%     carray{i,1} = filenames(i).name; 
%     carray{i,2} = loading(i).Mass; 
%     carray{i,3} = loading(i).HeadCircumference; 
%     carray{i,4} = loading(i).HeadMass; 
%     carray{i,5} = manic(i,1); 
%     carray{i,6} = manicIndex(i,1); 
%     carray{i,7} = NMIx(i,1); 
%     carray{i,8} = NMIxindex(i,1); 
% end 
% outfile = '\\DISKSTATION\Work Files\Research\Ethan\Ethans Analysis\newoutput.xls';  
% xlswrite(outfile, carray); 
%% STEP 4: Perform Survival Analysis 
options=optimset('MaxFunEvals',10000,'MaxIter',10000); %do the same by also providing some option to fminsearchbnd 
since minimizer=1 
% [A, B]=wblfit(survinput,1,[2 2],options) 
[pars covars SE gval exitflag]=logistfitc(survinput,1,[2 2],options); 
  
%% STEP 5: Plot Survival Functions 
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x=zeros(length(loading),1); 
y=zeros(length(loading), 1); 
for i=1:length(loading) 
    x(i) = loading(i).manic; 
    y(i) = loading(i).injured; 
end 
plot(x, y, 'ks'); 
hold on 
X = 0:.01:max(x); 
curve = 1./(1+exp(-(X-pars(1))./(pars(2)))); 
plot(X, curve, 'k-'); 
 

critValues 

function [critFx, critFy, critFz, critMx, critMy, critMz] = critValues(mass,parameters) 
%UNTITLED Summary of this function goes here 
%   Detailed explanation goes here 
  
%INPUTS: 
% mass - the mass of the human or ATD given as a single value. 
% parameters - parameters to linear equations for the critical values 
%   
% OUTPUTS: 
  
% 
% Routine written by Michael E. Miller November 20, 2020 
  
%% Check Inputs 
if nargin < 2 
    error('Not enough parameters input to paramManic'); 
end 
    
  
%% STEP 1: Determine Critical Values 
  
% Determine critical values for Fx 
critFx.p = parameters.pos.Fx.int +parameters.pos.Fx.slope.*mass; 
critFx.n = parameters.neg.Fx.int + parameters.neg.Fx.slope.*mass; 
  
% Determine critical values for Fy 
critFy.p = parameters.pos.Fy.int + parameters.pos.Fx.slope.*mass; 
critFy.n = parameters.neg.Fy.int + parameters.neg.Fy.slope.*mass; 
  
% Determine critical values for Fz 
critFz.p = parameters.pos.Fz.int + parameters.pos.Fz.slope.*mass; 
critFz.n = parameters.neg.Fz.int + parameters.neg.Fz.slope.*mass; 
  
% Determine critical values for Mx 
critMx.p = parameters.pos.Mx.int + parameters.pos.Mx.slope .* mass; 
critMx.n = parameters.neg.Mx.int + parameters.neg.Mx.slope .* mass; 
    
% Determine critical values for My 
critMy.p = parameters.pos.My.int + parameters.pos.My.slope .* mass; 
critMy.n = parameters.neg.My.int + parameters.neg.My.slope .* mass; 
  
% Determine critical values for Mz 
critMz.p = parameters.pos.Mz.int + parameters.pos.Mz.slope .* mass; 
critMz.n = parameters.neg.Mz.int + parameters.neg.Mz.slope .* mass; 
  
end 

 

• defaultMANIC 
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function varargout = defaultMANIC(mass, load, metric) 
%MANIC The purpose of this function is to calculate the MANIC value given the  
% values input. 
% 
%INPUTS: 
% mass - the mass of the human or ATD given as a single value. 
% load - a structure assumed to contain Fx, Fy, Fz, Mx, My and Mz as arrays  
%           of values captured throughout the run. 
% metric is an optional variable boolean, assumed to be true but can be set 
%           to false if the mass and load is input in english units  
% 
% OUTPUTS: 
% manic - maximum manic value 
% manicindex - optional index to the load producing the maximum manic value 
% NMIx - neck moment index about the x axis 
% NMIxindex - optional index to the load producing the maximum NIMIx 
% 
% Routine written by Michael E. Miller June 4, 2020 
  
%% Check Inputs 
if nargin < 3 
    metric = true; 
end 
if nargin < 2 
    error('Mass and load must be input to the function MANIC'); 
end 
  
%% STEP 1: Setup MANIC Critical Values 
[massVals, crit] = getCriticalValues; 
%% STEP 2: Determine correct critical value and units 
if(metric) 
    unit = 2; 
else 
    unit=1; 
end 
vals = find(massVals.Human(:,unit) < mass); 
critVal = size(vals,1); 
  
  
%% STEP 3: Set up arrays containing proper critical values 
lengthArray = size(load.Fx,1); 
  
% Determine critical values for Fx 
critFx = repmat(crit.nFx(critVal, unit), lengthArray, 1); 
xindex = find(load.Fx >=0); 
critFx(xindex) = repmat(crit.Fx(critVal, unit), size(xindex,1), 1); 
  
% Determine critical values for Fy 
critFy = repmat(crit.nFy(critVal, unit), lengthArray, 1); 
xindex = find(load.Fx >=0); 
critFy(xindex) = repmat(crit.Fy(critVal, unit), size(xindex,1), 1); 
  
% Determine critical values for Fz 
critFz = repmat(crit.nFz(critVal, unit), lengthArray, 1); 
xindex = find(load.Fz >=0); 
critFz(xindex) = repmat(crit.Fz(critVal, unit), size(xindex,1), 1); 
  
% Determine critical values for Fz 
critMx = repmat(crit.nMx(critVal, unit), lengthArray, 1); 
xindex = find(load.Mx >=0); 
critMx(xindex) = repmat(crit.Mx(critVal, unit), size(xindex,1), 1); 
  
% Determine critical values for Fz 
critMy = repmat(crit.nMy(critVal, unit), lengthArray, 1); 
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xindex = find(load.Fz >=0); 
critMy(xindex) = repmat(crit.My(critVal, unit), size(xindex,1), 1); 
  
% Determine critical values for Fz 
critMz = repmat(crit.nMz(critVal, unit), lengthArray, 1); 
xindex = find(load.Mz >=0); 
critMz(xindex) = repmat(crit.Mz(critVal, unit), size(xindex,1), 1); 
  
%% STEP 4: Calculate MANIC 
  
manicArray = sqrt((load.Fx./critFx).^2 + (load.Fy ./ critFy).^2 + ... 
            (load.Fz ./ critFz).^2 + (load.Mx ./ critMx).^2 + ... 
            (load.My ./ critMy).^2 + (load.Mz ./ critMz).^2); 
[manic, mindex] = max(manicArray(:,1)); 
  
%% STEP 5: Calculate NMIx 
  
[MxPeak, NMIxindex] = max(abs(load.Mx)); 
NMIx = MxPeak./critMx(1,1); 
  
%% Output Appropriate Variables 
  
if(nargout == 1) 
    varargout = {manic}; 
elseif(nargout == 2) 
    varargout = {manic, mindex}; 
elseif(nargout ==3) 
    varargout = {manic, mindex, NMIx}; 
else 
    varargout = {manic, mindex, NMIx, NMIxindex}; 
end 
  
end 

 

fitfunctions 

function [fits, goodness] = fitfunctions(metric) 
%fitfunctions - fit functions to the critical value axes 
  
if(metric)          % Select data column based on English (col 1) or metric (col 2) 
    col = 2; 
else 
    col=1; 
end 
  
  
[massVals, crit] = getCriticalValues(); 
[fits.Fx, goodness.Fx] = fit(massVals.ATD(:,col), crit.Fx(:,col), 'poly1'); 
[fits.Fz, goodness.Fz] = fit(massVals.ATD(:,col), crit.Fz(:,col), 'poly1'); 
[fits.nFz, goodness.nFz]=fit(massVals.ATD(:,col), crit.nFz(:,col), 'poly1'); 
[fits.Mx, goodness.Mz] = fit(massVals.ATD(:,col), crit.Mx(:,col), 'poly1'); 
[fits.My, goodness.My] = fit(massVals.ATD(:,col), crit.My(:,col), 'poly1'); 
  
end 

 

format fits 

function [parameters] = formatfits(fits) 
%formatfits simply copies the slopes and intercepts out of fits and 
%populates parameters with the appropriate values. 



43 

% INPUT 
% fits is the fit functions for Fx, Fz, nFz, Mz and My 
% OUTPUT 
% parameters - slope and intercept parameters for Fx, Fz, nFz,  
  
  
parameters.pos.Fx.slope = fits.Fx.p1; 
parameters.pos.Fx.int = fits.Fx.p2; 
parameters.neg.Fx.slope = fits.Fx.p1; 
parameters.neg.Fx.int = fits.Fx.p2; 
  
parameters.pos.Fy.slope = fits.Fx.p1; 
parameters.pos.Fy.int = fits.Fx.p2; 
parameters.neg.Fy.slope = fits.Fx.p1; 
parameters.neg.Fy.int = fits.Fx.p2; 
  
parameters.pos.Fz.slope = fits.Fz.p1; 
parameters.pos.Fz.int = fits.Fz.p2; 
parameters.neg.Fz.slope = fits.nFz.p1; 
parameters.neg.Fz.int = fits.nFz.p2; 
  
% Moment Fits 
parameters.pos.Mx.slope = fits.Mx.p1; 
parameters.pos.Mx.int = fits.Mx.p2; 
parameters.neg.Mx.slope = fits.Mx.p1; 
parameters.neg.Mx.int = fits.Mx.p2; 
  
parameters.pos.My.slope = fits.My.p1; 
parameters.pos.My.int = fits.My.p2; 
parameters.neg.My.slope = fits.Mx.p1; 
parameters.neg.My.int = fits.Mx.p2; 
  
parameters.pos.Mz.slope = fits.Mx.p1; 
parameters.pos.Mz.int = fits.Mx.p2; 
parameters.neg.Mz.slope = fits.Mx.p1; 
parameters.neg.Mz.int = fits.Mx.p2; 
  
end 

 

getCriticalValues 

function [massVals, crit] = getCriticalValues() 
% getCriticalValues returns standard mass values and corresponding critical 
% values. 
% INPUTS 
% null  
% OUTPUTS 
% massVals - mass values of the ATDs or lower bound for humans 
% crit - critical values 
% 
% Critical Values Taken From: 
% Parr, J.C. Miller, M.E., Colombi, J.M., Schubert Kabban, C.M. and 
% Pellettiere, J.A. (2015) Development of a Side-Impact (Gy) Neick Injury 
% Criterion for Use in Aircraft and Vehicle Safety Evaluation, IIE 
% Transactions on Occupational Ergonomics and Human Factors, 3:3-4, 
% 151-164. 
  
% ATD Mass in Each Category (lb, kg) 
massVals.ATD = [46.7; 56.7; 61.7; 68.0; 78.0; 90.7; 99.8; 111.1]; 
massVals.ATD(:,2) = massVals.ATD(:,1); 
massVals.ATD(:,1) = 2.20462.*massVals.ATD(:,1); 
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% Minimum Human Mass in Each Category (lb kg) 
massVals.Human = [0; 51.7; 59.2; 64.9; 73.0; 84.4; 95.3; 105.5]; 
massVals.Human(:,2) = massVals.Human(:,1); 
massVals.Human(:,1) = 2.20462.*massVals.Human(:,1); 
  
% Critical Force Values for Each Mass Cateogry (lb, N) 
crit.Fx = [405, 1802; 496, 2206; 522, 2322; 561, 2495; 625, 2780; ... 
            683, 3038; 777, 3456; 836, 3719]; 
crit.nFx = crit.Fx; 
crit.Fy = crit.Fx; 
crit.nFy = crit.Fx; 
crit.Fz = [964, 4287; 1214, 5400; 1278, 5685; 1373, 6107; 1530, 6806; ... 
            1671, 7433; 1847, 8216; 2047, 9106]; 
crit.nFz = [872, 3880; 1099, 4889; 1157, 5147; 1243, 5529; 1385, 6160; ... 
            1513, 6730; 1673, 7440; 1853, 8243]; 
% Critical Moment Values for each Mass Category (in-lb, Nm) 
crit.Mx = [593, 67; 845, 95; 912, 103; 1016, 115; 1195, 135; ... 
            1364, 154; 1584, 179; 1850, 209]; 
crit.nMx = crit.Mx; 
crit.nMy = crit.Mx; 
crit.Mz = crit.Mx; 
crit.nMz = crit.Mx; 
crit.My = [1373, 155; 1939, 210; 2094, 237; 2333, 264; 2744, 310; ... 
            3133, 354; 3673, 415; 4248, 480]; 
  
end 

 

MANIC 

function varargout = defaultMANIC(mass, load, metric) 
%MANIC The purpose of this function is to calculate the MANIC value given the  
% values input. 
% 
%INPUTS: 
% mass - the mass of the human or ATD given as a single value. 
% load - a structure assumed to contain Fx, Fy, Fz, Mx, My and Mz as arrays  
%           of values captured throughout the run. 
% metric is an optional variable boolean, assumed to be true but can be set 
%           to false if the mass and load is input in english units  
%  
% OUTPUTS: 
% manic - maximum manic value 
% manicindex - optional index to the load producing the maximum manic value 
% NMIx - neck moment index about the x axis 
% NMIxindex - optional index to the load producing the maximum NIMIx 
% 
% Routine written by Michael E. Miller June 4, 2020 
  
%% Check Inputs 
if nargin < 3 
    metric = true; 
end 
if nargin < 2 
    error('Mass and load must be input to the function MANIC'); 
end 
  
%% STEP 1: Setup MANIC Critical Values 
[massVals, crit] = getCriticalValues(metric); 
%% STEP 2: Determine correct critical value and units 
if(metric) 
    unit = 1; 
else 
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    unit=0; 
    massVals.Human = 2.20462.*massVals.Human; % Convert mass of human to kg 
end 
vals = find(massVals.Human < mass); 
critVal = size(vals,1) + 1; 
  
  
%% STEP 3: Set up arrays containing proper critical values 
lengthArray = size(load.Fx,1); 
  
% Determine critical values for Fx 
critFx = repmat(crit.nFx(critVal, unit), lengthArray, 1); 
xindex = find(load.Fx >=0); 
critFx(xindex) = repmat(crit.Fx(critVal, unit), size(xindex,1), 1); 
  
% Determine critical values for Fy 
critFy = repmat(crit.nFy(critVal, unit), lengthArray, 1); 
xindex = find(load.Fx >=0); 
critFy(xindex) = repmat(crit.Fy(critVal, unit), size(xindex,1), 1); 
  
% Determine critical values for Fz 
critFz = repmat(crit.nFz(critVal, unit), lengthArray, 1); 
xindex = find(load.Fz >=0); 
critFz(xindex) = repmat(crit.Fz(critVal, unit), size(xindex,1), 1); 
  
% Determine critical values for Fz 
critMx = repmat(crit.nMx(critVal, unit), lengthArray, 1); 
xindex = find(load.Mx >=0); 
critMx(xindex) = repmat(crit.Mx(critVal, unit), size(xindex,1), 1); 
  
% Determine critical values for Fz 
critMy = repmat(crit.nMy(critVal, unit), lengthArray, 1); 
xindex = find(load.Fz >=0); 
critMy(xindex) = repmat(crit.My(critVal, unit), size(xindex,1), 1); 
  
% Determine critical values for Fz 
critMz = repmat(crit.nMz(critVal, unit), lengthArray, 1); 
xindex = find(load.Mz >=0); 
critMz(xindex) = repmat(crit.Mz(critVal, unit), size(xindex,1), 1); 
  
%% STEP 4: Calculate MANIC 
  
manicArray = sqrt((load.Fx./critFx).^2 + (load.Fy ./ critFy).^2 + ... 
            (load.Fz ./ critFz).^2 + (load.Mx ./ critMx).^2 + ... 
            (load.My ./ critMy).^2 + (load.Mz ./ critMz).^2); 
[manic, mindex] = max(manicArray(:,1)); 
  
%% STEP 5: Calculate NMIx 
  
[MxPeak, NMIxindex] = max(abs(load.Mx)); 
NMIx = MxPeak./critMx(1,1); 
  
%% Output Appropriate Variables 
  
if(nargout == 1) 
    varargout = {manic}; 
elseif(nargout == 2) 
    varargout = {manic, mindex}; 
elseif(nargout ==3) 
    varargout = {manic, mindex, NMIx}; 
else 
    varargout = {manic, mindex, NMIx, NMIxindex}; 
end 
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end 
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MANIC_CritValEqu 

function varargout = MANIC_CritValEqu(mass, load, parameters) 
%MANIC The purpose of this function is to calculate the MANIC value given the  
% values input.  It relies on linear parameters to determine critical 
% values 
% 
%INPUTS: 
% mass - the mass of the human or ATD given as a single value. 
% load - a structure assumed to contain Fx, Fy, Fz, Mx, My and Mz as arrays  
%           of values captured throughout the run. 
% parameters - linear slopes and offsets for each axis, corresponding to 
% the critical values 
% 
% OUTPUTS: 
% manic - maximum manic value 
% manicindex - optional index to the load producing the maximum manic value 
% NMIx - neck moment index about the x axis 
% NMIxindex - optional index to the load producing the maximum NIMIx 
% 
% Routine written by Michael E. Miller June 4, 2020 
  
  
  
%% STEP 1: Calculate Critical Values from Parameters and Mass 
critFx = parameters.pos.Fx.slope.*mass + parameters.pos.Fx.int; 
critFx = critFx *ones(size(load.Fx,1),1); 
critnFx = parameters.neg.Fx.slope.*mass + parameters.neg.Fx.int; 
critFx = critnFx(find(load.Fx(:,1) < 0), 1); 
  
critFy = parameters.pos.Fy.slope.*mass + parameters.pos.Fy.int; 
critFy = critFy *ones(size(load.Fx,1),1); 
critnFy = parameters.neg.Fy.slope.*mass + parameters.neg.Fy.int; 
critFy = critnFy(find(load.Fy(:,1) < 0), 1); 
  
critFz = parameters.pos.Fz.slope.*mass + parameters.pos.Fz.int; 
critFz = critFz *ones(size(load.Fx,1),1); 
critnFz = parameters.neg.Fz.slope.*mass + parameters.neg.Fz.int; 
critFz = critnFz(find(load.Fz(:,1) < 0), 1); 
  
% Moment calculatons 
critMx = parameters.pos.Mx.slope.*mass + parameters.pos.Mx.int; 
critMx = critMx *ones(size(load.Fx,1),1); 
critnMx = parameters.neg.Mx.slope.*mass + parameters.neg.Mx.int; 
critMx = critnMx(find(load.Mx(:,1) < 0), 1); 
  
critMy = parameters.pos.My.slope.*mass + parameters.pos.My.int; 
critMy = critMy *ones(size(load.Fx,1),1); 
critnMy = parameters.neg.My.slope.*mass + parameters.neg.My.int; 
critMy = critnmMy(find(load.My(:,1) < 0), 1); 
  
critMz = parameters.pos.Mz.slope.*mass + parameters.pos.Mz.int; 
critMz = critMz *ones(size(load.Fx,1),1); 
critnMz = parameters.neg.Mz.slope.*mass + parameters.neg.Mz.int; 
critMz = critnMz(find(load.Mz(:,1) < 0), 1); 
  
%% STEP 2: Calculate MANIC 
  
manicArray = sqrt((load.Fx./critFx).^2 + (load.Fy ./ critFy).^2 + ... 
            (load.Fz ./ critFz).^2 + (load.Mx ./ critMx).^2 + ... 
            (load.My ./ critMy).^2 + (load.Mz ./ critMz).^2); 
[manic, mindex] = max(manicArray(:,1)); 
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%% STEP 5: Calculate NMIx 
  
[MxPeak, NMIxindex] = max(abs(load.Mx)); 
NMIx = MxPeak./critMx(1,1); 
  
%% Output Appropriate Variables 
  
if(nargout == 1) 
    varargout = {manic}; 
elseif(nargout == 2) 
    varargout = {manic, mindex}; 
elseif(nargout ==3) 
    varargout = {manic, mindex, NMIx}; 
else 
    varargout = {manic, mindex, NMIx, NMIxindex}; 
end 
  
end 

 

Opt3 

function [diffAim] = Opt3(paramadj) 
%Opt1 is a routine for performing an initial optimization.  All it does is  
% permit the slopes and intercepts to be adjusted by a factor and calculate 
% the probability for a MANIC equal to 1 
% 
% INPUTS 
% loading - data needed for manic and survivability analyis 
% fits - the slope and intercept values for the functions fit to critical 
% values 
% paramadj - the adjustments made to the parameters of the fits 
% plot - boolean indicating whether the survivability function should be 
% plotted 
%  
% OUTPUTS 
% diffAim The difference in proprotion of 0.05 with a MANIC value equal to 1. 
load('workdata'); 
[parameters] = adjfits3(fits, xSelect, paramadj); % Adjust parameters based on paramadj 
                                                  % Calculate Manic 
for i=1:size(loading,1) 
    [manic(i,1), manicIndex(i,1), NMIx(i,1), NMIxindex(i,1)] = paramMANIC(loading(i).Mass, loading(i), parameters); 
    loading(i).manic=manic(i,1); 
    if(loading(i).injured == 0) 
        survinput(i,:) = [manic(i,1), inf]; 
    else 
        survinput(i,:) = [0, manic(i,1)]; 
%         if(manic(i,1) >0.9)&&(manic(i,1)< 1.0) && (setf == 0)  
%             setf = 1; 
%             survinput(i,1) = manic(i,1); 
%         end             
    end 
end 
 

• OptimizationScript 

clear all 
close all 
  
path = '\\diskstation\work files\Research\Ethan\Applying Justin Williams Data\ExcelData';                                     % 
Directory which contains excel files 
filenames = dir([path,'\*.xlsx']); 
loading = readLoading(filenames);                                           % Raw neck loading time history  
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metric=1; 
[fits, goodness] = fitfunctions(metric); % Fit equations to Critical Values 
parameters = formatfits(fits);              % Format the fits into parameters 
% need mass 
[manic, mindex, NMIx, NMIxindex] = paramMANIC(mass, load, parameters); 

paramMANIC  

function varargout = paramMANIC(mass, load, parameters) 
%MANIC The purpose of this function is to calculate the MANIC value given the  
% values and the parameters input. 
% 
%INPUTS: 
% mass - the mass of the human or ATD given as a single value. 
% load - a structure assumed to contain Fx, Fy, Fz, Mx, My and Mz as arrays  
%           of values captured throughout the run. 
% parameters - parameters to linear equations for the critical values 
%   
% OUTPUTS: 
% manic - maximum manic value 
% manicindex - optional index to the load producing the maximum manic value 
% NMIx - neck moment index about the x axis 
% NMIxindex - optional index to the load producing the maximum NIMIx 
% 
% Routine written by Michael E. Miller August 24, 2020 
  
%% Check Inputs 
if nargin < 3 
    error('Not enough parameters input to paramManic'); 
end 
    
  
%% STEP 1: Determine Critical Values 
  
loadsize = length(load.Fx); 
  
% Determine critical values for Fx 
critFx = repmat(parameters.pos.Fx.int +parameters.pos.Fx.slope.*mass, loadsize,1); 
xindex = find(load.Fx <0); 
if(xindex ~=0) 
    critFx(xindex) = repmat(parameters.neg.Fx.int + parameters.neg.Fx.slope.*mass, length(xindex),1); 
end 
  
% Determine critical values for Fy 
critFy = repmat(parameters.pos.Fy.int + parameters.pos.Fx.slope.*mass, loadsize,1); 
yindex = find(load.Fy < 0); 
if(yindex ~=0) 
    critFy(yindex) = repmat(parameters.neg.Fy.int + parameters.neg.Fy.slope.*mass, length(yindex), 1); 
end 
  
% Determine critical values for Fz 
critFz = repmat(parameters.pos.Fz.int + parameters.pos.Fz.slope.*mass, loadsize,1); 
zindex = find(load.Fz < 0); 
if(zindex ~=0) 
    critFz(zindex) = repmat(parameters.neg.Fz.int + parameters.neg.Fz.slope.*mass, length(zindex), 1); 
end 
  
% Determine critical values for Mx 
critMx = repmat(parameters.pos.Mx.int + parameters.pos.Mx.slope .* mass, loadsize, 1); 
xMindex = find(load.Mx < 0); 
if(xMindex ~=0) 
    critMx(xMindex) = repmat(parameters.neg.Mx.int + parameters.neg.Mx.slope .* mass, length(xMindex), 1); 
end 
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% Determine critical values for My 
critMy = repmat(parameters.pos.My.int + parameters.pos.My.slope .* mass, loadsize,1); 
yMindex = find(load.My < 0); 
if(yMindex ~= 0) 
    critMy(yMindex) = repmat(parameters.neg.My.int + parameters.neg.My.slope .*mass, length(yMindex), 1); 
end 
  
% Determine critical values for Mz 
critMz = repmat(parameters.pos.Mz.int + parameters.pos.Mz.slope .* mass, loadsize,1); 
zMindex = find(load.Mz < 0); 
if(zMindex ~= 0) 
    critMz(zMindex) = repmat(parameters.neg.Mz.int + parameters.neg.Mz.slope .* mass, length(zMindex), 1); 
end 
  
%% STEP 4: Calculate MANIC 
  
manicArray = sqrt((load.Fx./critFx).^2 + (load.Fy ./ critFy).^2 + ... 
            (load.Fz ./ critFz).^2 + (load.Mx ./ critMx).^2 + ... 
            (load.My ./ critMy).^2 + (load.Mz ./ critMz).^2); 
  
[manic, mindex] = max(manicArray(:,1)); 
  
%% STEP 5: Calculate NMIx 
  
[MxPeak, NMIndex] = max(abs(load.Mx)); 
if(load.Mx(NMIndex) >=0) 
    critMx = parameters.pos.Mx.int +parameters.pos.Mx.slope.*mass; 
else 
    critMx = parameters.neg.Mx.int + parameters.neg.Mx.slope.*mass; 
end 
NMIx = MxPeak./critMx; 
  
%% Output Appropriate Variables 
  
if(nargout == 1) 
    varargout = {manic}; 
elseif(nargout == 2) 
    varargout = {manic, mindex}; 
elseif(nargout ==3) 
    varargout = {manic, mindex, NMIx}; 
else 
    varargout = {manic, mindex, NMIx, NMIndex}; 
end 
  
end 
 

PlotSurvivalAnalysis 

% Routine to calculate Survival Functions 
clear all; 
%close all;  
clc; 
  
DataSets = [0; 1; 0];  % Data sets to be read, 1, indicates include this set in the analysis, [x; y; z]; 
Xloading = []; 
Yloading = []; 
Zloading = []; 
filenames = []; 
linfits = true; 
if(DataSets(1)==1) 
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    path = 'C:\Users\Ethan\Documents\MATLAB\Survival Analysis Optimization\Gx Excel Data'; % Directory which contains 
Gx excel files 
    filenames = dir([path,'\*.xlsx']); 
    %% STEP 2: Read Data 
    Xloading = readXLoading(filenames);          % Raw neck loading time history with participant Mass 
end 
numXvals = size(filenames,1); 
filenames = []; 
if(DataSets(2)) 
    path = 'C:\Users\Ethan\Documents\MATLAB\Survival Analysis Optimization\Gy Excel Data'; 
    %path = '\\diskstation\work files\Research\Ethan\Applying Justin Williams Data\ExcelData\';             % Directory which 
contains Gy excel files 
    filenames = dir([path,'\*.xlsx']); 
  
    %% STEP 2: Read Data 
    Yloading = readYLoading(filenames);          % Raw neck loading time history with participant Mass 
end 
numYvals = size(filenames,1); 
filenames = []; 
if(DataSets(3)) 
    path = 'C:\Users\Ethan\Documents\MATLAB\Survival Analysis Optimization\Gz Excel Data'; % Directory which contains 
Gx excel files 
    filenames = dir([path,'\*.xlsx']); 
end 
numZvals = size(filenames,1); 
loading = [Xloading; Yloading; Zloading]; 
  
%% STEP 3: Calculate MANIC Values 
% Obtain fitting parameters for critical values 
metric = false; 
[fits, goodness] = fitfunctions(metric); 
[parameters] = formatfits(fits); 
  
%% Change both xSelect and x values 
xSelect = [1 2 3 4 5 6];  
 x = [1.0 1.0 1.0 1.0 1.0 1.0]; 
% x = [0.6598  0.6598  0.6598  0.6598  0.6598  0.6598]; 
% x = [1.1124  1.1124  1.1124  0.5132  0.5132  0.5132]; 
% x = [0.9286  0.9611  1.1468  0.3766  1.0174  1.2251]; 
% Just optimizing X 
% x = []; 
% Just optimizing Y 
% x = []; 
  
[parameters] = adjfits3(fits, xSelect, x); % Adjust parameters based on paramadj 
setf = 0; 
for i=1:size(loading,1) 
    if(linfits) 
        [manic(i,1), manicIndex(i,1), NMIx(i,1), NMIxindex(i,1)] = paramMANIC(loading(i).Mass, loading(i), parameters); 
    else 
        [manic(i,1), manicIndex(i,1), NMIx(i,1), NMIxindex(i,1)] = defaultMANIC(loading(i).Mass, loading(i), metric); 
    end 
    loading(i).manic=manic(i,1); 
    mass(i) = loading(i).Mass; 
    if(loading(i).injured == 0) 
        survinput(i,:) = [manic(i,1), inf]; 
    else 
        survinput(i,:) = [0, manic(i,1)]; 
%         if(manic(i,1) >0.9)&&(manic(i,1)< 1.0) && (setf == 0)  
%             setf = 1; 
%             survinput(i,1) = manic(i,1); 
%         end             
    end 
end 
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xlswrite('myoutput.xls', [mass' manic]); 
  
%% STEP 4: Perform Survival Analysis 
options=optimset('MaxFunEvals',10000,'MaxIter',10000); %do the same by also providing some option to fminsearchbnd 
since minimizer=1 
% [A, B]=wblfit(survinput,1,[2 2],options) 
[pars covars SE gval exitflag]=logistfitc(survinput,1,[2 2],options); 
  
%% STEP 5: Plot Survival Functions 
x=zeros(length(loading),1); 
y=zeros(length(loading), 1); 
for i=1:length(loading) 
    x(i) = loading(i).manic; 
    y(i) = loading(i).injured; 
end 
figure; 
plot(x(1:numXvals), 100.*y(1:numXvals), 'ks'); 
hold on 
if(numYvals ~= 0) 
    plot(x((numXvals+1):(numXvals+numYvals)), 100.*y((numXvals+1):(numXvals+numYvals)), 'bd'); 
end 
X = 0:.001:max(x); 
curve = 1./(1+exp(-(X-pars(1))./(pars(2)))); 
plot(X, 100.*curve, 'k-'); 
xlabel('MANIC'); 
ylabel('Probability of Injury'); 
% Inverse Logistic Function 
val = 1.0;       % This is the manic valuefor which the probability is calculated. 
probManic = 1./(1+exp(-(val-pars(1))./(pars(2)))) 
pM = 0.05; 
val=pars(1) -(pars(2)).*log((1./pM)-1); 
 

readLoading 

function [loading] = readLoading(filenames) 
% Written by: Michael Miller & Justin Williams 
% Date: 05/22/2018 
% 
% INPUTS: 1, Path to Excel Files 
%         2, List of Filenames 
% 
% This code reads the files provided to it and sorts the data into its 
% individual components. 
% 
% OUTPUTS: 1, Raw Neck Loading 
%% Define Location of Fx, Fy, Fz, Mx, My, Mz by column number 
loc = [2, 3, 4, 5, 6, 7]; 
startrow = 2;   % Define the starting row in the data file 
  
[mass] = xlsread('C:\Users\Ethan\Documents\MATLAB\Survival Analysis Optimization\Gy_test Numbers and 
Weights.xlsx', 'Sheet1', 'B2:D66'); 
loadstruct = struct( ... 
        'injured', false, ... 
        'Mass', 0, ... 
        'Fx', 0, ... 
        'Fy', 0, ... 
        'Fz', 0, ... 
        'Mx', 0, ... 
        'My', 0, ... 
        'Mz', 0 ... 
        ); 
loading = repmat(loadstruct, size(filenames,1), 1); 
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for i = 1:length(filenames) 
    curfile = [filenames(i).folder '\' filenames(i).name]; 
%     if(strcmp(filenames(i).name(1,1:4),'PMHS')) 
%         loading(i).injured = true; 
%     end 
    [num,~,~] = xlsread(curfile, 'Time History'); 
  
    if(strcmp(filenames(i).name(1:4),'PMHS')) 
        fnumber = str2double(filenames(i).name(1,5)); 
    else 
        fnumber = str2double(filenames(i).name(1,1:4)); 
    end 
    [j,~]=find(mass(:,1)==fnumber); 
    loading(i).Mass=mass(j,2); 
    loading(i).injured = mass(j,3); 
    
     
    loading(i).Fx = num(startrow:end,loc(1)); 
    loading(i).Fy = num(startrow:end,loc(2)); 
    loading(i).Fz = num(startrow:end,loc(3)); 
    loading(i).Mx = num(startrow:end,loc(4)); 
    loading(i).My = num(startrow:end,loc(5)); 
    loading(i).Mz = num(startrow:end,loc(6)); 
end 

readXLoading 

function [loading] = readXLoading(filenames) 
% Written by: Michael Miller & Justin Williams 
% Date: 05/22/2018 
% 
% INPUTS: 1, Path to Excel Files 
%         2, List of Filenames 
% 
% This code reads the files provided to it and sorts the data into its 
% individual components. 
% 
% OUTPUTS: 1, Raw Neck Loading 
%% Define Location of Fx, Fy, Fz, Mx, My, Mz by column number 
loc = [2, 0, 4, 0, 3, 0]; 
startrow = 1;   % Define the starting row in the data file 
  
[mass] = xlsread('C:\Users\Ethan\Documents\MATLAB\Survival Analysis Optimization\Gx_test Numbers and 
Weights.xlsx', 'Sheet1', 'B2:D83'); 
loadstruct = struct( ... 
        'injured', false, ... 
        'Mass', 0, ... 
        'Fx', 0, ... 
        'Fy', 0, ... 
        'Fz', 0, ... 
        'Mx', 0, ... 
        'My', 0, ... 
        'Mz', 0 ... 
        ); 
loading = repmat(loadstruct, size(filenames,1), 1); 
for i = 1:length(filenames) 
    curfile = [filenames(i).folder '\' filenames(i).name]; 
%     if(strcmp(filenames(i).name(1,1:4),'PMHS')) 
%         loading(i).injured = true; 
%     end 
  
  
    if(strcmp(filenames(i).name(1:4),'PMHS')) 
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        [num,~,~] = xlsread(curfile, 'Peak values'); 
        fnumber = str2double(filenames(i).name(6:9)); 
  
        [j,~]=find(mass(:,1)==fnumber); 
        loading(i).Mass=mass(j,2); 
        loading(i).injured = mass(j,3); 
         
        col = find(loc>0); 
        ds = size(num(startrow:end, col(1))); 
        datasize = ds(1,1); 
        if(loc(1)>0) 
            loading(i).Fx = num(startrow:end,loc(1)); 
        else 
            loading(i).Fx = zeros(datasize,1); 
        end 
        if(loc(2)>0) 
            loading(i).Fy = num(startrow:end,loc(2)); 
        else 
            loading(i).Fy = zeros(datasize,1); 
        end 
        if(loc(3)>0) 
            loading(i).Fz = num(startrow:end,loc(3)); 
        else 
            loading(i).Fz = zeros(datasize,1); 
        end 
        if(loc(4)>0) 
            loading(i).Mx = num(startrow:end,loc(4)); 
        else 
            loading(i).Mx = zeros(datasize,1); 
        end 
        if(loc(5)>0) 
            loading(i).My = num(startrow:end,loc(5)); 
        else 
            loading(i).My = zeros(datasize,1); 
        end 
        if(loc(6)>0) 
            loading(i).Mz = num(startrow:end,loc(6)); 
        else 
            loading(i).Mz = zeros(datasize,1); 
        end 
    else 
        [num,~,~] = xlsread(curfile, 'NIJ Time History'); 
        fnumber = str2double(filenames(i).name(1,1:4)); 
  
        [j,~]=find(mass(:,1)==fnumber); 
        loading(i).Mass=mass(j,2); 
        loading(i).injured = mass(j,3); 
  
        col = find(loc>0); 
        ds = size(num(startrow:end, col(1))); 
        datasize = ds(1,1); 
        if(loc(1)>0) 
            loading(i).Fx = 0.224809.*num(startrow:end,loc(1)); 
        else 
            loading(i).Fx = zeros(datasize,1); 
        end 
        if(loc(2)>0) 
            loading(i).Fy = 0.224809.*num(startrow:end,loc(2)); 
        else 
            loading(i).Fy = zeros(datasize,1); 
        end 
        if(loc(3)>0) 
            loading(i).Fz = 0.224809.*num(startrow:end,loc(3)); 
        else 
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            loading(i).Fz = zeros(datasize,1); 
        end 
        if(loc(4)>0) 
            loading(i).Mx = 8.8507457676.*num(startrow:end,loc(4)); 
        else 
            loading(i).Mx = zeros(datasize,1); 
        end 
        if(loc(5)>0) 
            loading(i).My = 8.8507457676.*num(startrow:end,loc(5)); 
        else 
            loading(i).My = zeros(datasize,1); 
        end 
     
        if(loc(6)>0) 
            loading(i).Mz = 8.8507457676.*num(startrow:end,loc(6)); 
        else 
            loading(i).Mz = zeros(datasize,1); 
        end 
    end 
     
end 

readYLoading 

function [loading] = readYLoading(filenames) 
% Written by: Michael Miller & Justin Williams 
% Date: 05/22/2018 
% 
% INPUTS: 1, Path to Excel Files 
%         2, List of Filenames 
% 
% This code reads the files provided to it and sorts the data into its 
% individual components. 
% 
% OUTPUTS: 1, Raw Neck Loading 
%% Define Location of Fx, Fy, Fz, Mx, My, Mz by column number 
loc = [2, 3, 4, 5, 6, 7]; 
startrow = 1;   % Define the starting row in the data file 
pmhsstartrow = 7;   % Define the starting row in the data file 
  
[mass] = xlsread('C:\Users\Ethan\Documents\MATLAB\Survival Analysis Optimization\Gy_test Numbers and 
Weights.xlsx', 'Sheet1', 'B2:D63'); 
loadstruct = struct( ... 
        'injured', false, ... 
        'Mass', 0, ... 
        'Fx', 0, ... 
        'Fy', 0, ... 
        'Fz', 0, ... 
        'Mx', 0, ... 
        'My', 0, ... 
        'Mz', 0 ... 
        ); 
loading = repmat(loadstruct, size(filenames,1), 1); 
for i = 1:length(filenames) 
    curfile = [filenames(i).folder '\' filenames(i).name]; 
%     if(strcmp(filenames(i).name(1,1:4),'PMHS')) 
%         loading(i).injured = true; 
%     end 
    [num,~,~] = xlsread(curfile, 'Time History'); 
  
    if(strcmp(filenames(i).name(1:4),'PMHS')) 
        fnumber = str2double(filenames(i).name(1,5)); 
        sr = pmhsstartrow; 
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    else 
        fnumber = str2double(filenames(i).name(1,1:4)); 
        sr = startrow; 
    end 
    [j,~]=find(mass(:,1)==fnumber); 
    loading(i).Mass=mass(j,2); 
    loading(i).injured = mass(j,3); 
    
     
    loading(i).Fx = num(sr:end,loc(1)); 
    loading(i).Fy = num(sr:end,loc(2)); 
    loading(i).Fz = num(sr:end,loc(3)); 
    loading(i).Mx = num(sr:end,loc(4)); 
    loading(i).My = num(sr:end,loc(5)); 
    loading(i).Mz = num(sr:end,loc(6)); 
end 

 

SetupOptimization5 

% Perform Optimization 
% Routine to calculate Survival Functions 
clear all; 
close all;  
clc; 
DataSets = [1; 1; 0];  % Data sets to be read, 1, indicates include this set in the analysis, [x; y; z]; 
Xloading = []; 
Yloading = []; 
Zloading = []; 
if(DataSets(1)==1) 
    path = 'C:\Users\Ethan\Documents\MATLAB\Survival Analysis Optimization\Gx Excel Data'; % Directory which contains 
Gx excel files 
    filenames = dir([path,'\*.xlsx']); 
    %% STEP 2: Read Data 
    Xloading = readXLoading(filenames);          % Raw neck loading time history with participant Mass 
end 
if(DataSets(2)) 
    path = 'C:\Users\Ethan\Documents\MATLAB\Survival Analysis Optimization\Gy Excel Data';             % Directory which 
contains Gy excel files 
    filenames = dir([path,'\*.xlsx']); 
  
    %% STEP 2: Read Data 
    Yloading = readYLoading(filenames);          % Raw neck loading time history with participant Mass 
end 
if(DataSets(3)) 
    path = 'C:\Users\Ethan\Documents\MATLAB\Survival Analysis Optimization\Gz Excel Data'; % Directory which contains 
Gx excel files 
    filenames = dir([path,'\*.xlsx']); 
end 
loading = [Xloading; Yloading; Zloading]; 
  
%% STEP 3: Determine Initial Parameters for Optimization 
% Obtain fitting parameters for critical values 
metric = false; 
[fits, goodness] = fitfunctions(metric); 
%% STEP 4: Begin Optimization 
%Fit single parameters in front of critical values 
xSelect = [1 1 1 1 1 1];    %Indicate independent parameters to fit. Values ordered Fx, Fy, Fz, Mx, My, Mz. 
numparams = max(xSelect'); 
x = 1.0 .*ones(1,numparams);% Establish appropriate numbers of params          
save('workdata'); 
[x,fval,exitflag,output] = fminsearch(@Opt3,x); 
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