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Abstract

Autonomous on-orbit satellite servicing benefits from an inspector satellite that

can gain as much information as possible about the primary satellite. This includes

performance of articulated objects such as solar arrays, antennas, and sensors. This

research develops methods for building an articulated model from monocular imagery

using tracked feature points and the known relative inspector route of the inspector

satellite with respect to the primary satellite. The articulated model consists of a

kinematic chain identifying how components are linked, a point cloud representation

of the component shapes, axes of rotation (revolute joints assumed), joint locations,

and observed articulation angles. The quality of the articulated model is assessed for

inspection routes with various illumination conditions concluding that the illumina-

tion angle should be maintained within 60◦ of the Sun angle and that a quality model

can be built without viewing the satellite from all angles. Two methods are also

developed for tracking the articulation of a satellite in real-time given an articulated

model using either feature points or silhouettes. Performance is evaluated for multiple

inspection routes and the effect of inspection route uncertainty is assessed. Addition-

ally, a physical small scale satellite model is built and used to collect stop-motion

images simulating articulated motion over a simulated inspection route in a simu-

lated space illumination environment. The images are used as measurements for the

silhouette articulation tracking method and successful tracking is demonstrated qual-

itatively. Next, a human pose tracking algorithm is modified for tracking the satellite

articulation demonstrating the applicability of human tracking to satellite articula-

tion tracking methods when an articulated model is available. Lastly, an overview of

methods is presented to assist users in determining applicability to specific problems.

iv
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SATELLITE ARTICULATION SENSING USING COMPUTER VISION

I. Introduction

1.1 Motivation

Due to the nature of the space environment, direct human interaction with on-

orbit satellites is incredibly dangerous and costly. Therefore, with the exception of a

few manned missions, interaction with satellites is traditionally limited to windows

of radio communications and observations from telescopes. These methods are in-

adequate for inspection and monitoring of a satellite to determine performance. To

perform these monitoring tasks, an inspector satellite in close proximity to the pri-

mary satellite could use sensors, such as a camera, to characterize the primary satellite

and verify the performance of articulated objects such as sensors, solar arrays, robotic

arms, and communications antennas.

Characterizing the articulation capabilities of a satellite is a portion of the larger

satellite inspection and repair research area. The area of satellite inspection and

repair has been researched heavily. Large complex satellites cost billions of dollars

to build and launch. Having the capability to inspect, repair, or refuel satellites

while on-orbit facilitates extension of their useful life cycle, and therefore tremendous

cost savings are possible. For instance, the Hubble Space Telescope (HST) has been

serviced on-orbit five times.[64]

As the capability of satellite repair improves, satellites could be built with less

redundancy allowing additional capabilities or smaller size and cost. Additionally,

repairing a satellite removes or delays the need to launch a replacement, reducing
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space debris.

The military has had multiple programs focused on researching satellite inspection

and repair. The XSS-11 [1] and Automated Navigation and Guidance Experiment for

Local Space (ANGELS) [5] experiments conducted by the Air Force Research Labo-

ratory Space Vehicles Directorate were launched in 2005 and 2014 respectively. More

recently, the EAGLE satellite experiment has launched with an attached small fly-

away satellite to improve situational awareness for space vehicles.[2] These programs

investigated/demonstrated many technologies for inspection of objects in space. The

Orbital Express mission sponsored by DARPA in 2007 [22] demonstrated the feasibil-

ity of on-orbit servicing by performing autonomous proximity operations to include

docking and refueling of another satellite. In addition to these space experiments,

numerous research efforts have been conducted on the use of computer vision for

satellite proximity operations.[32] Some of these efforts will be discussed in Chap-

ter II. In the field of computer vision, there has been significant research on detecting

and characterizing articulation of an object from imagery. Some of these methods will

also be discussed in Chapter II. To the knowledge of the author, there is no research

merging these two fields to sense and characterize articulated motion in space.

The concept of satellite articulation sensing with imagery can be broken into two

sub-categories: 1) using imagery to build an articulated model of the satellite, and 2)

using imagery and some model of the satellite to track how the satellite is moving.

1.1.1 Building an Articulated Model.

Imagery contains a lot of information, however it is also difficult to transmit to

the ground due to the large size of video files. An articulated model could provide the

necessary information to users on the ground with a fraction of the data transmission

requirement of the raw imagery. This motivates the creation of algorithms that can
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characterize the performance (articulated motion analysis, i.e. range and rate of

rotations) of the target satellite autonomously. Developing autonomous methods is

also important for autonomous repair missions [44] or deep space missions that have

little or no ability to communicate with human operators on Earth.

Many satellites, specifically in geosynchronous orbit (GEO), are required to op-

erate at all times. To accommodate these missions, the inspector must be able to

perform inspection without interfering with the operations of the primary satellite.

Imagery offers a non-invasive method of gathering information about the target satel-

lite. Monocular cameras are also relatively inexpensive with small SWAP (size, weight

and power) requirements. Additionally, cameras already exist on a number of on-orbit

satellites which could be re-tasked with an inspector mission.

For these reasons, development of a fully autonomous method of sensing and

characterizing the articulated motion of a satellite using computer vision is desired.

Specifically, this research will investigate the use of a monocular camera on-board an

inspector satellite in a close proximity orbit about a primary satellite to determine

if the primary satellite has articulating parts, and if so the range of motion of those

parts, with the stated goal of creating an articulated model.

1.1.2 Articulation Tracking.

Many algorithms have been developed using computer vision to determine the

relative pose between an inspector satellite and a primary satellite in space. Some of

these algorithms rely upon markers on the primary satellite that assist the computer

vision algorithm in determining pose.[91, 43] Others rely on prior knowledge of the

primary satellite’s configuration.[65, 39] Some methods rely on stereo vision systems,

[92, 29] some on monocular vision systems, [71, 48, 39] and some use laser illumina-

tion of reflective markers.[44] They all use a computer vision method that identifies
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features in images and matches those features from frame to frame (or in correspond-

ing frames in the case of stereo systems). The relative position of the features is

then estimated using some type of estimation filter such as an extended Kalman filter

(EKF) or a particle filter. The attitude of the primary satellite is then estimated,

with the assumption it is a rigid body, by using feature points to define a primary

reference frame, [71, 102] or by using a known model of the primary satellite.[65]

In many of these cases, the primary satellite being investigated is assumed to be

a rigid body. If feature points do not move in a manner consistent with rigid body

motion, they may be rejected as outliers, however in the case of articulation this

method may exclude significant portions of the satellite from the model.

For rendezvous and docking operations in space, it is necessary for an inspecting

satellite to understand how the satellite it is rendezvousing with is behaving. In the

case of a non-cooperative articulating satellite, this includes tracking and estimating

the primary satellite’s articulated motion.

1.2 Research Objectives

Three research objectives are listed below. Chapter III describes work toward

Objective 1, Chapters IV and V describe work toward Objective 2, and Chapter VI

describes work toward Objective 3.

1.2.1 Objective 1.

Develop a method of autonomously building an articulated model of a satellite

through inspection with a monocular camera producing resolved imagery. This work

will consist of development of an algorithm and testing on simulated feature points

from a nominal satellite with articulating panels and an articulating arm. The quality

of the model created from inspection routes with various illumination conditions will
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be assessed.

1.2.2 Objective 2.

Develop an estimation framework for tracking the articulated motion of the pri-

mary satellite sequentially as new imagery becomes available. This work will consist

of development of an algorithm that uses an articulated model of the satellite and

either simulated feature point locations or image silhouettes to track the articulated

motion of the satellite.

1.2.3 Objective 3.

Build a satellite model and collect stop motion imagery mimicking articulation in

a simulated space lighting environment. Use captured imagery to validate developed

tools as permitted by capture method uncertainties.

1.3 Research Overview

This work can be broken into two parts: 1) Building an articulated model (Chapter

III), and 2) Tracking articulation in real-time (Chapters IV and V). Both parts are

investigated using a simulated model of a satellite with articulating panels and an

articulating appendage. A physical model of a satellite is also created and used in

testing of the tracking method from Chapter V. All work assumes revolute joints,

a known satellite inspection route, and that feature points or silhouettes can be

extracted from monocular imagery. Each of the methods presented addresses some

aspect of the overall problem of sensing articulation from an inspector satellite. Figure

1 gives a graphical overview of how the different methods fit into the overall problem

and how they relate to the stated research objectives of section 1.2. An overview of

each of the methods is presented in the following subsections.
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Figure 1. Overview of how each area of research relates to the overall inspection mission
and to the research objectives.

1.3.1 Building an Articulated Model (Chapter III).

This work focuses on building an articulated model from a set of monocular images

taken from an inspection satellite on a known inspection route. Points are spread

over the faces of a model articulated satellite and projected to the image plane of

an inspector satellite on a particular inspection route resulting in simulated feature

point locations that are consolidated into a trajectory matrix. The points are then

segmented into groups that represent rigid body motion and an optimization routine

is performed on each group to identify the shape and pose of the rigid body that

best describes the feature point locations. Rigid bodies with similar motion are then

merged if required. Next a kinematic chain is built that identifies which components

are linked to each other. Finally, another optimization routine is run that enforces

the articulation constraints on linked components. Results are presented for the
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method with multiple active joints on the articulating arm and investigating the

effects of various illumination conditions. A modified method allowing for primary

satellite maneuver, trajectory matrix uncertainty, and inspection route uncertainty is

developed and performance demonstrated.

1.3.2 Articulation Tracking with Feature Points (Chapter IV).

This work uses an articulated model built with the methods of Chapter III to

initialize a set of extended Kalman filters (EKFs) to track the pose and articulation

angles of the satellite from simulated feature points. The P feature point locations

from a frame are used as the measurement in P point position EKFs to estimate the

3D position of the point in its assigned component’s body frame. Component rotation

and translation, defined by the articulation parameters, are taken as prior knowledge.

Next, the 3D body frame positions of each point are used as prior knowledge in

an articulation parameter EKF which again uses the 2D feature point locations as

measurements to update the articulation parameters. Newly observed feature points

are added to the model using a multiple model approach. Results are demonstrated

for a full natural motion circumnavigation (NMC)1 with linear articulation and for a

partial NMC with articulation start/stop included in the simulation.

1.3.3 Articulation Tracking with Silhouettes (Chapter V).

This work uses a truth articulation model and an unscented Kalman filter (UKF)

to track the pose and articulation angles of the satellite using simulated silhouette

images. Silhouette images are binary images with a value of 1 for pixel locations that

are occupied by the foreground (the satellite) and a value of zero at pixel locations

1An NMC is a 2 × 1 elliptical route of a satellite (in this case the inspector satellite) with
respect to some relative frame (in this case the primary satellite being inspected).[78] It is used
heavily in satellite proximity operations, to include inspection/servicing as a minimum fuel method
of formation flying, and therefore is used in this research as an example inspection route.
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that are occupied by the background. Simulated silhouette images are created by

projecting the corner points of a the satellite model components into the image plane

and setting the pixels on the interior of the convex hull defined by the corner points

to 1. Simulated silhouette images are used as measurements in an UKF framework

to track the main body pose and articulation angles. Results are shown for linear

articulation and sinusoidal articulation over a complete NMC and for a partial NMC

with articulation start/stop motion included in the simulation.

1.3.4 Satellite Model Image Capture and Processing (Chapter VI).

A physical satellite model similar in shape to the one used for numerical simula-

tion was constructed and used to collect imagery in a simulated space illumination

environment. An inspection route was simulated by rotating the satellite, moving the

camera forward and backward on a track, and moving a single light source to simulate

the Sun location. Images were taken at discrete locations on the inspection route with

the articulation angles of the five joints on the model moved slightly between frames

giving a set of images mimicking those that would be collected of an articulating satel-

lite from an inspector satellite on a nearby inspection route. Results are presented

when using these images as the input images for the silhouette method outlined in

Chapter V. Additionally, an algorithm created for human tracking (the Annealed

Particle Filter from [81, 28]) was modified to track satellite pose/articulation and

results are presented.

1.4 Expected Contributions

This work primarily lies in the field of computer vision, specifically as it relates

to characterizing and tracking articulated objects. Various methods exist for char-

acterizing articulation from imagery, however no previous work exists in applying
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computer vision to characterize articulation in space. Aspects of existing methods

have been used to develop a method of building an articulated model and methods

of tracking articulation in real-time. Specifically, the contributions from this research

are:

1. Introduction of computer vision for the purpose of building an articulated model

and tracking satellite articulation in space using monocular imagery.

2. Development and demonstration of a method for building an articulated model

of a satellite from monocular imagery taken from a known inspection route.

3. Development and demonstration of methods for sequentially estimating the pose

and articulation angles of a satellite using both feature points and silhouette

images.

4. Demonstration of tracking articulation angles using real images of a satellite

model taken in a simulated space lighting environment.

5. Demonstration that algorithms developed for human articulation tracking can

be modified to track the articulated motion of a satellite.

It is anticipated that there will be multiple papers produced from this work, which

will be mentioned in the associated chapters.

1.5 Document Preview

Chapter II contains a review of some important topics in the field of computer

vision as well as a review of existing work in the field. Chapter III outlines the satellite

model development method and results. Chapter IV outlines the articulation tracking

with feature points method and results. Chapter V outlines the articulation tracking

with silhouettes method and results. Chapter VI outlines the satellite model image
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capture process and tracking results from application of the method of Chapter V and

a modified human tracking algorithm. Chapter VII outlines the methods presented,

the contributions of the current work, and recommendations for future work.
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II. Background and Literature Review

2.1 Chapter Overview

This chapter discusses previous works that have informed this research. First,

background information is provided on relevant subjects within the computer vision

and stochastic estimation fields. Next, recently published work in the following ar-

eas is discussed: computer vision for proximity operations, motion segmentation,

articulated structure from motion, real-time simultaneous localization and mapping

(SLAM), and human articulated motion tracking.

2.2 Background

To provide context for the literature review in the next section, and the research

as a whole, a few concepts must be introduced.

2.2.1 Computer Vision.

Computer vision is the concept of programming a computer to do what humans

and animals do every day: convert light entering a sensor (the eye) into information

about the environment. The ability of a machine to understand its environment is

critical to increasing machine autonomy. The field of computer vision has application

in a number of areas such as: autonomous driving, facial recognition, machine inspec-

tion, medical imaging, surveillance, 3D model building, entertainment, and robotics

to name a few.[83]

2.2.2 Camera Basics.

The basic monocular camera captures a representation of a 3D scene on a 2D image

plane. The camera model describes how 3D points are translated into the 2D image

11



plane. There are numerous camera models, but first, the concept of homogeneous

coordinates must be introduced.

Homogeneous Coordinates.

Homogeneous coordinates are a method of representing points in n-space using

a vector that is n + 1 in length. The first n elements represent the direction of the

vector, while the last element can be used to scale the vector. The transformation

between standard Euclidean coordinates and homogeneous coordinates is shown in

equation (1) below.[73]




x1

x2

...

xn

w




︸ ︷︷ ︸
homogeneous

↔




x1/ω

x2/ω

...

xn/ω




︸ ︷︷ ︸
Euclidean

(1)

Homogeneous coordinates are scale-invariant, meaning that multiplying by a scalar

does not effect the Euclidean equivalent vector. One advantage of homogeneous

coordinates is that affine transformations, including rotation and translation, can be

applied through matrix multiplication. For instance, applying a rotation R and trans-

lation T to a 3D vector in Euclidean space requires separate matrix multiplication

and addition, while in homogeneous coordinates the same transformation can be done
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with a single matrix multiplication.[73]




R T

0 0 0 1







x1

x2

x3

w




︸ ︷︷ ︸
homogeneous

↔ R




x1/ω

x2/ω

x3/ω




+ T

︸ ︷︷ ︸
Euclidean

(2)

Perspective Camera Models.

Perspective is the concept that parallel lines do not appear parallel to the eye (or

camera). For instance, when looking down railroad tracks, the tracks appear to be

converging toward each other as they move out into the distance, when in fact they are

parallel. Camera models that capture this phenomenon are called perspective camera

models. One of the most popular perspective camera models is the pinhole camera.

A pinhole camera projects a 3D point to the image plane by drawing a line from

Figure 2. Representation of the pinhole camera model.[73]

the point to the camera center. The place where that line intersects the image plane

is the point’s ‘image coordinate’. From Figure 2 it is evident that using Euclidean

coordinates a point (X, Y, Z)T in 3D space translates to f


X/Z
Y/Z


 in the image plane

where f is the focal distance of the camera. This is a non-linear operation, however
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using homogeneous coordinates this ‘perspective projection’ can be written as matrix

multiplication.




X

Y

Z

ω



→




f 0 0 0

0 f 0 0

0 0 1 0







X

Y

Z

ω




=




fX

fY

Z




(3)

The term on the right side is the 2D image coordinates in homogeneous coordinates

with a scale factor of Z.

So far, the camera center has been assumed to be the center of the coordinate

frame. To generalize the concept, a rotation R and translation T can be included

which converts the 3D point from the world frame to a camera frame (with origin at

the center of the image plane and z-axis normal to the image plane). Converting a

3D point in the world frame (X, Y, Z)T to a 2D point in the image frame (x, y)T can

be expressed as follows where ωc is used to translate to Euclidean coordinates.




f 0 0 0

0 f 0 0

0 0 1 0







R T

0 0 0 1




︸ ︷︷ ︸
Pcam




X

Y

Z

ωw




=




x(ωc)

y(ωc)

ωc




(4)

The matrix Pcam is the camera’s ‘projection matrix’. Pcam converts 3D points in

the world frame to the image frame. The Pcam in the equation above represents the

pinhole camera model.
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Non-perspective Camera Models.

An example of a camera model that does not capture the perspective effect is the

orthographic camera model. In the orthographic camera model, all depth information

of the 3D point is lost when representing the point in 2D. The image coordinates (x, y)

are equal to the X and Y coordinates of the 3D point in the camera frame. Figure 3

shows the projection of points to the image plane. The camera projection matrix is

shown below.

Portho. =




1 0 0 0

0 1 0 0

0 0 0 1







R T

0 0 0 1


 (5)

This type of model is appropriate when the distance to the object is far greater than

the dimension of the object along the optical axis.

Figure 3. Representation of the orthographic camera model.[73]

A modification to the orthographic camera is the weak perspective camera with

a camera projection matrix shown below. This camera model allows the size of the

object on the image plane to be scaled. When α = β the camera model is referred to
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as a ‘scaled orthographic camera model’.

Pweak pers. =




α 0 0 0

0 β 0 0

0 0 0 1







R T

0 0 0 1


 (6)

Scaling allows projected image coordinates to more closely represent those seen

from an actual camera, which captures perspective. The affine camera model is

a further improvement on the orthographic camera model where the orthographic

projection is followed by an arbitrary affine transformation.[73]

2.2.3 Camera System Types.

There are many different types of image capture systems that can be used in

computer vision. Stereo vision systems consist of two cameras at a known separation

that take images at the same time. Having two images at different angles allows depth

to be calculated from a single image pair. RGB-D sensors (such as Microsoft Kinect)

combine an infrared projector, an infrared camera, and an RGB camera to provide a

per pixel depth measurement with the RGB image.[38] A time of flight camera times

the return of a pulse of light to estimate depth.[35] A monocular camera system,

on the other hand, consists of a single camera. This is the simplest camera system,

however each image does not have depth information. Depth information can only

be gained by looking at multiple images of the scene taken from different angles. A

monocular system is used in this research as it is probably the most likely to be used

in space due to SWAP limitations.
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2.2.4 Feature Point Detection and Tracking.

Computer vision algorithms can generally be categorized by how they describe the

scene from images. A dense representation uses every pixel as a data point (e.g. optic

flow), while a sparse representation only uses portions of the image (feature points)

to describe the scene. A feature point is a group of pixels in an image that represents

a distinct location in 3D space. By identifying corresponding feature points in mul-

tiple images more complete information can be gained about the scene, including 3D

reconstruction of the objects in the scene. Feature point detection and matching can

be broken into four stages: feature detection, feature description, feature matching,

and feature tracking.[83]

If feature points have been tracked from frame to frame, they do not need to

be matched. Feature point tracking automatically matches feature points from one

image to the location in the next image that contains the same feature point. It is

best suited for video in which images have been taken sequentially and the amount

of motion and appearance change between images is relatively small.[83] From the

literature reviewed, the most popular feature point tracker is the Kanade-Lucas-

Tomasi (KLT) tracker.[48, 58, 101, 98, 36, 76, 23] Details on the KLT tracker are

outlined in [54, 87, 88], and an overview of many aspects of feature points in general

is available at [83]. While other search methods exist and are listed outlined in [83],

the KLT tracker seems to be the most popular in the literature.

2.2.5 Trajectory Matrix.

The trajectory matrix is a ‘bookkeeping’ method used in a number of computer

vision applications as a way to organize feature point locations. A trajectory matrix is

a matrix of the 2D image coordinates of all feature points tracked through all frames.

The trajectory matrix, W , is 2F × P in size where F is the number of frames in
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the sequence and P is the number of feature points. The make up of the trajectory

matrix is shown in equation (7) where ui,j and vi,j are the horizontal and vertical

pixel-wise positions of the j-th feature point in the i-th frame in the sequence.

W =




u1,1 u1,2 · · · u1,P

v1,1 v1,2 · · · v1,P

u2,1 u2,2 · · · u2,P

v2,1 v2,2 · · · v2,P

...
...

. . .
...

uF,1 uF,2 · · · uF,P

vF,1 vF,2 · · · vF,P




(7)

Each column of the trajectory matrix represents the motion of a particular feature

point, while the combination of two rows represents the location of all feature points

in a particular image. This representation is powerful in that it allows linear algebra

based methods for segmenting the columns based on different types of motion (motion

segmentation) and in determining camera motion and a 3D point cloud of the feature

points (structure from motion). Note that the trajectory matrix is alternatively

represented as W =



U

V


 where U are all the horizontal image coordinates (u) and

V are all the vertical image coordinates (v).

2.2.6 Structure from Motion through Factorization.

A trajectory matrix consisting of points on a rigid body can be factored into a

motion matrix (R) and a shape matrix (S) that capture the relative motion of the

feature points with respect to the camera and the 3D shape of the rigid body. Tomasi

and Kanade’s paper [89] outlines the factorization method and is cited by nearly all

motion segmentation and structure from motion papers encountered.
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The structure from motion method assumes an orthographic camera model is an

appropriate representation of the images. It begins by transforming the trajectory

matrix W into the registered trajectory matrix W̃ by subtracting the row means. W̃

can then be written as follows where R is the motion matrix which represents the

relative rotation between the camera and the object and S is the shape matrix which

represents the 3D position of each of the feature points on the object.

W̃ =




iT1
...

iTF

jT1
...

jTF




[
s1 · · · sP

]
(8)

W̃ = RS (9)

The registered trajectory matrix (W̃ ) can be decomposed into R and S through sin-

gular value decomposition (SVD). Singular value decomposition finds three matrices

that when multiplied together yield the original matrix as follows W̃ = O1 ΣO2. The

rows/columns corresponding to the highest three singular values (expressed below

using Matlab notation) are then used to construct R̂ and Ŝ, which will be used to

calculate R and S.

R̂ = O1(1:3,:)[Σ(1:3,1:3)]
1
2 (10)

Ŝ = [Σ(1:3,1:3)]
1
2O2(:,1:3) (11)

W̃ = R̂Ŝ (12)

This factorization of W̃ into R̂ and Ŝ is not unique. Inserting any invertible 3× 3
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matrix (Q) and its inverse yields a different factorization: W̃ = (R̂Q)(Q−1Ŝ). The

Q that gives the appropriate factorization is the matrix which enforces the following

constraints on the motion matrix: 1) the rows of R are unit vectors, therefore they

should have a norm of one 2) the rows of R represent a translation of orthogonal x

and y axes, therefore the dot product of corresponding if and jf vectors should be

zero. These conditions yield the following ‘metric constraints’.

îTfQQ
T îf = 1 (13)

ĵTfQQ
T ĵf = 1 (14)

îTfQQ
T ĵf = 0 (15)

The Q that best meets these constraints is then used to calculate R and S.

R = R̂Q (16)

S = Q−1Ŝ (17)

A more in depth look at structure from motion through factorization is available

in computer vision text books such as [83, 40] or in the original paper [89]. Work in

low-rank matrix factorization methods such as [40, 7, 10, 36, 57] can be used to deal

with trajectory matrices that have missing data.

This factorization method is appropriate for a single rigid body. Costeira and

Kanade [15] expanded this method for multiple rigid bodies. They performed the SVD

of an unsegmented trajectory matrix containing multiple independent motions. Next

they used the right singular vectors (V ) to create a ‘shape interaction matrix’ (Q),

Q = V V T . Due to the independence of the motions, and therefore the independence

of the trajectories of points on different objects, the shape interaction matrix contains

zeros in positions where the point represented by the row and the point represented
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by the column are on different objects. The permutation of rows and columns that

transforms Q into block diagonal form represents the segmentation and can be used to

segment the original trajectory matrix. This multi-body structure from motion and

segmentation method requires the motions to be fully independent. The motion of a

satellite with an articulating component will not result in fully independent motions,

but rather articulation results in trajectory matrices that intersect.[98, 90]

One issue with this method of calculating shape is the bas-relief (or mirror)

ambiguity.[83] Since the trajectory matrix contains only information about the im-

age coordinates of the points, the correct solution has the same trajectory matrix as

would be seen if the feature points were mirrored over a plane of constant depth and

the camera moved in the opposite direction. This can be seen in Figure 4 where a

simulated satellite point cloud was used to develop a trajectory matrix which was in

turn used to calculate a point cloud through factorization. The result demonstrates

the mirror ambiguity. The calculated point cloud matches identically with the truth

when viewed down the camera axis, however, when viewed perpendicular to the cam-

era axis it is a mirror image of the truth. Numerous solutions to this problem have

been suggested, for instance: use information gathered from point occlusions,[83] use

perspective effects,[83] or compare the re-projection errors of both solutions.[84]

2.2.7 Silhouettes and Edges.

Feature points are an excellent way to translate 2D image motion into 3D shape,

however other methods exist that do not rely on individual feature points. Instead,

each image can be translated into a binary silhouette image that contains a value of 1

when the pixel is occupied by the object in question and a value of zero when it is not.

Various techniques for image segmenting can be used to build the silhouette image by

determining which pixels are in the foreground and which are in the background.[83]
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Figure 4. Illustration of the mirror ambiguity issue. (a) Point cloud calculated with
factorization and truth point cloud viewed perpendicular to the camera axis (b) Point
cloud calculated with factorization and truth point cloud viewed parallel to the camera
axis

Silhouettes have an added advantage in space because often the satellite is the only

object in view making background extraction trivial.

Edge detection is anther way to process images that can provide useful informa-

tion. Edges identify where there are large changes in the images. While many edge

detection techniques exist[83], most are in some way based on calculating the gradi-

ent between adjacent pixels. Detected edges can then be used to build an edge map

which quantifies the distance to an edge for each pixel.

2.2.8 Simultaneous Localization and Mapping.

To enable autonomous operation, robots need to be able to understand where

they are and what their surroundings look like. This problem is called simultane-

ous localization and mapping (SLAM), and it is heavily researched in the robotics

and computer vision communities. While there are numerous methods of solving the

SLAM problem, most of them involve solving for a distribution of the robot pose (xt)

and the feature point locations, or map (m), using some type of measurement (z) and

robot control (u). This is expressed mathematically as p(xt,m|z1:t, u1:t).[86] A graph-

ical representation of the SLAM problem is shown in Figure 5. The measurements (z)
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Figure 5. Overview of SLAM problem.[86] Shaded circles are observations and un-
shaded circles are the states to be estimated.

can be from any sensor such as stereo cameras, monocular cameras, RGB-D cameras,

laser scanners, or LIDAR to name a few. Regardless of the sensor type, the mea-

surements are stochastic. Since the measurements are stochastic, the calculated pose

and map cannot be calculated deterministically, but must be estimated. The Kalman

filter is a tool used to recursively estimate the state using stochastic measurements.

2.2.9 Kalman Filter.

The Kalman filter is an ‘optimal, recursive, data processing algorithm’.[59] In its

original form, it relies on the assumptions that all measurements are samples from a

Gaussian distribution and the system is linear. If these assumptions are met, linear

algebra techniques can be used to recursively transform measurements and control

inputs into a vector containing the mean of the desired states (the estimate) and a

covariance matrix that represents the uncertainty in that estimate.

The Kalman filter basically consists of two steps: a propagation step and an update

step. In the propagation step, the discretized equations of motion representing the

system dynamics are used to propagate the state forward in time using the previous
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state and the applied controls.

x̂−t = Φx̂t−1 +Bût (18)

P−t = ΦPt−1ΦT +Q (19)

In equations (18) and (19), the state vector (x̂) is propagated from time t − 1 to

time t using the discretized equations of motion (represented by Φ and B) and the

applied control u. The covariance matrix (P ) is propagated using the state transition

matrix (Φ) and a discretization of the uncertainty in the equations of motion (Q).

The propagation step is continued until a measurement is available, in which case the

update step is performed.

The update step involves incorporating the measurement (z) in a way which op-

timally accounts for the uncertainty in the propagated state and the uncertainty in

the measurement. To do this, the Kalman gain matrix (K) is created using equa-

tion (21). The Kalman gain matrix represents how to apply the residual (difference

between the measurement and the predicted measurement) to the state estimate. In

equation (20), H relates the state to the measurement equation and δ is the noise in

the measurement which has a covariance of R.

ẑt = Hxt + δ (20)

K = PtH
T (HPtH

T +R)−1 (21)

x̂+
t = x̂−t +K(zt −Hx̂−t ) (22)

P+
t = (I −KH)P−t (23)

The Kalman gain matrix is then used to calculate an updated state (x̂+
t ) and an

updated covariance matrix (P+
t ).
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2.2.10 Extended Kalman Filter.

One of the primary assumptions that enables the Kalman filter to efficiently up-

date the statistics of each state is that the equations relating each state to each mea-

surement and the equations that relate each state to the previous state are linear.

The Gaussian random variable transformed by a linear equation remains Gaussian.

When the propagation or measurement equations are not linear, the Kalman filter

(in its traditional form) cannot be used to estimate the state. For this reason, the

extended Kalman filter (EKF) was developed.

The EKF is very similar to the standard Kalman filter, but without the limitation

that equations (18) and (19) are linear. Instead, they can be any functions f and h

such that xt = f(xt−1,ut) + εt and zt = h(xt) + δt where εt and δt are Gaussian white

noise. The linearity requirement in the standard Kalman filter is not a requirement

for the propagation of the state itself, but rather it is a requirement to allow the

statistics of the state vector to be propagated using the state transition matrix as

in equation (19). The state vector statistics can be approximated as linear using a

first-order Taylor series expansion of f and h evaluated at the best estimate of the

state. To do this, the Jacobian of the function f and g must be taken to give the

approximated state transition matrix (Φ) and measurement matrix (H).

Φ ≈ ∂f(x,u)

∂x

∣∣∣∣
xt−1

(24)

H ≈ ∂h(x)

∂x

∣∣∣∣
xt

(25)

These are used in equations (19), (21)-(23) while equations (18) and (20) are replaced

with xt = f(xt−1,ut) + εt and zt = h(xt) + δt respectively.
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2.2.11 Unscented Kalman Filter.

The EKF enables the use of nonlinear dynamics and measurement models by lin-

earizing the models to calculate the statistics of the random variables. The unscented

Kalman fitler (UKF) is another method of recursive estimation that accommodates

non-linear functions. The UKF uses a set of discretely sampled ‘sigma points’ to

parameterize the mean and covariance of the random variables.[47] The following is

a brief overview of the UKF framework using notation as consistent as possible with

the previous overviews of the KF and EKF.

To begin, a matrix of 2n + 1 sigma points χt−1 is created using the previous

estimate and the covariance matrix. γ is a term that indicates how far from the mean

the sigma points are spaced.

χt−1 =

[
x̂+
t−1 x̂+

t−1 + γ
√
P xx,+
t−1 x̂+

t−1 − γ
√
P xx,+
t−1

]
(26)

Each of these sigma points (the columns of χt−1) are propogated through the non-

linear dynamics to give χ∗t−1. The propagated sigma points are then combined using

a vector of weights wm to give x̂−t which is in turn used to determine P xx,−
t using a

different vector of weights wm.

x̂−t =
2n+1∑
i=1

wimχ∗it−1 (27)

P xx,−
t =

[
2n+1∑
i=1

wic(χ∗it−1 − x̂−t )(χ∗it−1 − x̂−t )T
]

+Q (28)

The weight vectors wm and wc can be used to adjust the filter and match certain

aspects of the distribution. The propagated mean and covariance matrices are then
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used to create a new set of sigma points.

χ̄t =

[
x̂−t x̂−t + γ

√
P xx,−
t x̂−t − γ

√
P xx,−
t

]
(29)

Measurement sigma points Zt are then calculated by evaluating the measurement

model for each of the sigma points in χ̄t. These measurement sigma points can then

be used to find a predicted measurement ẑt and a measurement covariance P zz
t .

ẑt =
2n+1∑
i=1

wimZt (30)

P zz
t =

[
2n+1∑
i=1

wic(Zt − ẑt)(Zt − ẑt)
T

]
+R (31)

The measurement covariance matrix P zz
t is comparable to the term HPtH

T + R in

equation (21) of the standard Kalman filter equations. The PtH
T term is comparable

to the cross covariance matrix P xz
t calculated from the sigma point matrices, predicted

measurement, and predicted state as follows.

P xz
t =

[
2n+1∑
i=1

wic(χ̄t − x̂−t )(Zt − ẑt)
T

]
(32)

Finally, the Kalman gain can be calculated and used to update the state estimate

and the covariance matrix. The vector r is the residual, or the difference between the

actual measurement from the sensor zmeas and the predicted measurement ẑt.

K = P xz
t (P zz

t )−1 (33)

r = zmeas − ẑt (34)

x̂+
t = x̂−t +K(r) (35)

P xx,+
t = P xx,−

t −KP zz
t K

T (36)
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Texts such as“Stochastic Models, Estimation and Control”[59] and “Probabilis-

tic Robotics”[86] outline the theory and implementation of the Kalman filter, the

extended Kalman Filter (EKF), and the unscented Kalman Filter (UKF) in more

detail.

2.3 Literature Review

Many researchers have investigated different aspects of using specifically designed

spacecraft to inspect primary satellites for the purposes of maintenance and repair.

The requirement for autonomy, precision navigation, and the size, weight, and power

(SWAP) constraints in space drives many researchers to computer vision as a solution.

Research in the area of computer vision for proximity operations is very diverse, rang-

ing from stereo vision used to estimate target satellite moment of inertia (MOI)[92]

to demonstration of fully autonomous rendezvous and capture[44]. Most of these

methods use some type of feature point tracking algorithm to match up locations in

successive images that represent the same position in 3D space. These feature points

are then used to help the inspector satellite navigate around the target satellite or

identify properties of the target satellite, or in some cases even dock with the primary

satellite. In nearly all cases, the target satellite is assumed to be a rigid body. The

author has not discovered previous research attempting to use computer vision to

determine if the primary satellite is in-fact a rigid body, or if it is undergoing some

type of articulation.

While sensing and characterizing articulation has not been the focus of research in

space, there has been extensive research into the area in the computer vision commu-

nity. The existing work consists of a few sub-categories. Motion segmentation deals

specifically with segmenting imagery or feature points based on different observed

motions. Articulated structure from motion specifically looks at recovering the kine-
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matic chain, structure, and articulation parameters of linked rigid bodies from a full

set of imagery. Real-time SLAM solutions use imagery to estimate the kinematic

chain, structure, articulation parameters and associated uncertainties as new mea-

surements (imagery) becomes available. Work on tracking human articulated motion

can be applicable to track articulation of any object with a known articulated model.

2.3.1 Computer Vision for Proximity Operations.

Many algorithms have been developed using computer vision to determine the

relative pose between an inspector satellite and a primary satellite in space. Some of

these algorithms rely upon markers on the primary satellite that assist the computer

vision algorithm in determining pose.[91, 43] Others rely on prior knowledge of the

primary satellites configuration.[65, 39] Some methods rely on stereo vision systems,

[92, 29] some on monocular vision systems, [71, 48, 39] some use laser illumination of

reflective markers.[44] They all use a computer vision method that identifies features

in images and matches those features from frame to frame (or in corresponding frames

in the case of stereo systems). The relative position of the features is then estimated

using some type of estimation filter such as an extended Kalman filter (EKF) or a

particle filter. A reference frame defined with feature points [71, 102] or a known

model of the primary satellite [65] can then be used to estimate the attitude of the

primary satellite. Alternatively, if the orientation of feature points is known, the

attitude can be calculated directly and used as the measurement in the EKF.[91, 71,

102] Feature points can also be used to create a 3D model of the satellite.[33]

Previous work by Tweddle using stereo cameras has demonstrated that mass

moments of inertia can be estimated for a spinning satellite using computer vision

algorithms.[92] Similar work by Yu estimated mass center and mass moments of inertia

for tumbling satellites.[102] If the mass moment of inertia were estimated, changes in
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the mass moments of inertia estimates could be sensed,[42] which may indicate some

change such as articulation. However, this is a limiting case since the estimation of

mass moments of inertia from computer vision is dependent on the angular velocity

of the primary satellite and is ambiguous as to the real physical geometry when ar-

ticulation is possible. A well controlled operational satellite is unlikely to be spinning

or tumbling, therefore this method is unlikely to be applicable to sensing articulation

in most cases.

While both the inspector and primary satellite are moving, the problem of finding

the relative position between the two can be looked at using the assumption that

either the primary is moving and the inspector is stationary, or the inspector is

moving and the primary is stationary. Ghadiok et al.[33] made the assumption that

the primary was stationary and the inspector was moving so that angular velocity

measurements from the inspector could be used to improve the accuracy of the relative

position of feature points. They used a nonlinear complementary filter to fuse the

feature position measurements from the computer vision algorithm with inspector

gyro measurements. Similarly, Philip and Ananthasayanam[71] assumed the primary

was stationary and used the inspector gyro measurements along with a Kalman filter

and extended Kalman filter to estimate primary position and attitude respectively.

Tweedle and Saenz-Otereo [91] developed a method of navigation for a small in-

spector satellite based on a monocular camera capturing images of four co-planar

circular markers. Once the four feature points are detected a nonlinear iterative pro-

cess is used to solve for the relative pose between the inspector and the co-planar

feature points. The result of this process is a relative pose measurement (rotation

and translation). This pose calculation is then filtered using a multiplicative extended

Kalman filter (MEKF). The MEKF deals with the fact that a quaternion representa-

tion of a rotation matrix contains four elements, but only three degrees of freedom.
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This means one of the elements is not independent. To deal with this, the MEKF

uses a three parameter representation of the change in rotation in the state vector

then updates a reference quaternion at each iteration. Alternative solutions, such as

the additive EKF (AEKF), are outlined in [16].

Similarily, Philip and Ananthasayanam [71] outline a method of attitude esti-

mation and control for the final phase of rendezvous and docking using monocular

imagery to estimate the relative pose between the primary satellite and the inspector.

The primary satellite is assumed to have three feature points with known correspon-

dence. These can be used to calculate the relative pose (rotation and translation).

The calculated relative pose is used as the measurement in a linear Kalman filter for

estimation of the relative distance and velocity, and an EKF for estimation of the

relative rotation and angular velocity.

Yu et al. [102] develop a system to determine the relative pose and the moment

of inertia ratios of a non-cooperative satellite using stereo-vision. The inputs to the

system are 3D feature points (they assume the stereo vision system can provide 3D

points directly). Two algorithms (TRIAD and QUEST) are used to estimate the pose

of the target from the feature point measurements. The moment of inertia ratios can

only be determined because the target satellite is unresponsive and therefore it is

in a torque free spin. With the pose information as input measurements, an EKF

and an UKF are developed to estimate the relative pose and the moment of inertia

ratios. The QUEST algorithm and the UKF resulted in more accurate estimation of

the parameters.

2.3.2 Motion Segmentation.

The term motion segmentation is used in the computer vision field for any method

that attempts to identify and separate different motions in a video sequence. Zappella
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et al.[105] summarize a number of motion segmentation algorithms and classify them

based on the method used for segmentation. He also outlines some basic attributes

and strategies employed by various motion segmentation algorithms that could be

valuable in selecting an approriate method for a particular application. Many of the

strategies employ spectral clustering on some type of similarity matrix that quantifies

the similarity between each combination of points.

Subspace clustering methods use the fact that for an affine camera model, the

trajectory matrix of feature points on a rigid body will have a rank of at most four.

Motion segmentation then becomes a problem of clustering the columns of the tra-

jectory matrix into independent subspaces. Figure 6 graphically shows an example of

feature point trajectories from the simulated satellite both before segmentation (Fig-

ure 6a) and after the trajectory matrix has been segmented (Figure 6b-c) into two

different objects. Each line in Figure 6 represents the image coordinates (u and v) of

a feature point over time. It is evident in looking at Figure 6a that the trajectories

can be grouped into two separate motions; manifold clustering algorithms attempt

to make that separation mathematically. Vidal also provides a review of subspace

clustering algorithms.[93] In his review, numerous algorithms are outlined and the

advantages and disadvantages of each are discussed. Details of a few of the motion

segmentation algorithms are outlined in the remainder of this section.

Figure 6. Motion Segmentation Illustration: (a) All Feature Point (FP) Trajectories,
(b) Main body FP Trajectories, (c) Object 2 FP Trajectories
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Local Subspace Affinity (LSA).

Yan and Pollefeys have a number of papers on the subject of motion segmenta-

tion. The method outlined in their 2006 paper [100] has been termed ‘Local Subspace

Affinity’ (LSA). The LSA method is a manifold clustering algorithm, so it is has the

trajectory matrix described in equation (7) at its core. To segment the trajectory ma-

trix according to different motions, LSA uses the concept that trajectories of feature

points on the same object “lie in a low dimensional linear manifold” and trajectories of

feature points on objects with different motions “result in different linear manifolds”.

LSA also uses the concept of locality which means that the basis of a trajectory and

its nearest neighbors will lie in the same linear manifold as other trajectories of the

same motion.

The LSA algorithm begins by decomposing the trajectory matrix (W ) using a

singular value decomposition (SVD) to create U , S, and V . Equation (37) can be

used to find the rank (r) ofW where λi are the ordered singular values of the trajectory

matrix (W ).

r = argmin
r

(
λ2
r+1∑r
i=1 λ

2
i

+ kr

)
(37)

The columns of V can now be thought of as the direction of the feature points

motion in r-dimensional space, or their location on an r-dimensional sphere. Columns

corresponding to feature points with the same motion will lie on lower dimensional

cuts of this r-dimensional sphere. The parameter k must be tuned according to the

noise in the trajectory matrix. While the LSA algorithm technically does not require

prior knowledge regarding the rank of the trajectory matrix, the requirement to ‘tune’

k means some prior knowledge is required. Zappella provides a fix to this problem

by using the entropy of the affinity matrix as a measurement of the quality of the k
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parameter [104].

Features will likely have the same motion as features closest to themselves in the

transformed space (the r-dimensional sphere). ‘Closeness’ can be measured by the

Euclidean distance or by the principal angle between them. For each feature point,

the local subspace is found by first finding its n nearest neighbors (using Euclidean

distance or principal angle) and then finding a basis for the combination of those

points using SVD. The size of the basis is determined by finding the rank of the local

subspace using equation (37) and a lower value of k.

Next, the principal angles between theses subspaces must be determined. To do

this, first define two subspaces as S(α) and S(β), each with normalized columns.

The principal angles (θss) between these two subspaces are the angles between each

column of S(α) and the closest (largest dot product) column of S(β). These principal

angles can then be used in equation (38) to calculate an affinity (A) between each

subspace.

Ai,j = e−
∑M
k=1 sin

2(θssk ) (38)

In LSA, the number of motions is known a priori, so once the affinity matrix is

calculated a spectral clustering algorithm is used to determine which columns of the

affinity matrix match up to which motion. The normalized cuts method outlined

by Shi and Malik [80] is proposed by Yan and Pollefey [100, 101]. The normalized

cuts method recursively segments the affinity matrix until the number of segments

is met. Numerous cuts (or segmentations) of the affinity matrix are evaluated to

determine which one minimizes the ‘Ncut’, or normalized cuts, criteria shown in

equation (39). Shi and Malik [80] prove the normalized cuts criteria measures both

the total dissimilarity between the different groups (S1 and S2) and the similarity
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within the groups.

Ncut(S1, S2) =
cut(S1, S2)

assoc(S1, A)
+

cut(S1, S2)

assoc(S2, A)
(39)

In equation (39) the ‘cut(S1,S2)’ operator is the sum of all positions in the affinity

matrix where the column index is in group S1 and the row index is in the group S2.

The ‘assoc(S1,A)’ operator is sum of each of the rows of A corresponding to the group

S1.

Shi and Malik [80] also show that the eigenvector corresponding to the second

smallest eigenvalue of the symmetric normalized Laplacian matrix (Lsym) can be

used to segment the affinity matrix. Equation (40) shows how to calculate Lsym,

where D is a P × P diagonal matrix containing the sum of each row on the diagonal

of the affinity matrix and A is the affinity matrix.

L = D − A

Lsym = D−
1
2LD−

1
2 (40)

The eigenvector corresponding to the second smallest eigenvalue is then used to seg-

ment the affinity matrix. Ideally, the eigenvector should only take on two discrete

values [80], however the eigenvector could be continuous. Shi and Malik suggest using

multiple thresholds within the range of the eigenvector, calculate the normalized cuts

for each, and take the segmentation that minimizes the normalized cut criteria.

Once the affinity matrix is segmented into two groups, each of those groups is then

segmented further using the same method until the total number of groups is met. A

metric from graph theory is used to determine which of the segments to partition at

each step.[80]

While Yan and Pollefey suggest that the rank of the trajectory matrix is not
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needed for the LSA algorithm, from equation (37) it is evident that the parameter k

is directly related to the rank. The calculation of r from (37) is very sensitive to the

right selection of k [104], therefore the LSA algorithm relies on prior knowledge to

choose the correct value for k.

Motion Segmentation via Agglomerative Lossy Compression.

Rao et al. [74] developed a method based on Agglomerative Lossy Compression

which minimizes a cost function based on the ‘coding length’, or the number of bits

required to describe the segmentation. The method begins by treating each point

as a separate subspace. Then it merges subspaces and calculates the effect of the

merge on the coding length. Merges that decrease the coding length are kept and the

process is repeated until further improvement is not possible.

Generalized Principal Component Analysis.

Vidal et al.[94] proposed a different solution where they first project the trajectory

matrix into a 5-dimensional subspace. They prove that different motions, even if the

motions are partially dependent (such as articulated motions), will remain different

along at least one dimension when projected onto a 5-dimensional subspace. Once

projected, an n-degree polynomial (where n is the expected number of independent

motions) of five variables is found. The derivative of that polynomial is evaluated for

each point yielding a 5 element vector. If the two points are in the same subspace, the

angle between these vectors will be zero (or π). The points can then be segmented

according to the angle between the vectors. A disadvantage of this method is that

the number of trajectories required increases exponentially as the number of different

motions increases.[99, 93]
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RANSAC with Priors.

Yan and Pollefeys [99] propose another method where they build an affinity matrix

(A = W TW ) consisting of the inner product of each column with each other column.

They use the affinity matrix to calculate a ‘normalized spectral representation’, yi of

each trajectory in Rk where k is the rank of the affinity matrix. The ‘prior matrix’ is

then created by calculating the probability P that trajectory i belongs to the same

motion as trajectory j using the distribution:

Pij =
2√
π

y1yTj∫

0

e−t
2

dt (41)

Next, the probabilites in P are used to randomly select k trajectories that are likely

to have the same motion. A model is built from these trajectories and the trajectories

that match this model are grouped into a ‘consensus set’. This process is repeated

numerous times to find the model with the most inliers (largest ‘consensus set’).

Finally, the whole process is repeated until all the data is in a set or the existing data

cannot be satisfactorily fit to a model. This method allows for articulated motion

and does not require a priori knowledge of the number of motions, however the rank

must be estimated to find the appropriate value of k.

Sparse Subspace Clustering.

The SSC algorithm demonstrated the lowest misclassification rate for sequences

with articulated motion of the methods reviewed in [93]. This method, proposed

by Liu et al.[53], uses the lowest rank representation of the trajectory matrix to

build an affinity matrix that can be segmented using the normalized cuts method

outline above.[80] The lowest rank representation is found by solving the following
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optimization problem:

min
Z,E

(‖Z‖∗ + λ‖E‖2,1) (42)

s.t., X = XZ + E (43)

where X is the trajectory matrix, Z is the low-rank representation (LRR), λ is a

tuning parameter, and E is an error matrix to account for corrupted data points with

the l2,1-norm defined as ‖E‖2,1 =
∑n

j=1

√∑
i = 1n(Eij)2. The operator ‖ · ‖∗ is the

sum of the singular values (the nuclear norm). The optimization problem is solved by

augmenting with Lagrange multipliers. Once the low-rank represetion (Z) is found,

the affinity matrix is found by A = |Z| + |ZT |. Segmentation using this method

produces good results even with up to 60% of columns containing missing data.[53]

2.3.3 Articulated Structure from Motion.

The structure from motion problem for a single rigid body is effectively solved

using the factorization method of Tomasi and Kanade.[89] When there are multiple

independent motions, a motion segmentation algorithm can be used to separate the

feature points into rigid objects which can be reconstructed using factorization. How-

ever, when feature points are not rigid, but are not independent alternative methods

are needed to solve for the time history of the structure.

Ozden et al.[68] propose a sequential multi-body structure from motion routine

that performs initial segmentation of feature points into objects demonstrating dis-

tinct motion using three-views: the first, middle, and last views in the sequence.

When enough data is available, structure from motion is performed for each object.

The algorithm calculates the 3D motion of the detected objects. If the feature points

assigned to an object are not in fact part of the same rigid body, either due to mis-

segmentation or the object splitting into multiple independent objects, the calculated
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camera parameters will not be accurate which will lead to an increase in outliers. A

likelihood function is used to determine if the object has split into multiple motions.

A similar likelihood function is used to determine if objects have merged.

Yan and Pollefeys [98] focus on recovering the trajectory of the linkage between

the two objects in the image. Once the trajectory matrix has been segmented using

a subspace clustering algorithm, the intersection of the subspaces representing the

two motions can be determined. This intersection of the subspaces (T ) contains the

trajectory of the link between the two objects. In the case of a hinged linkage (where

the objects are connected by multiple points along an axis), the intersection will be

two dimensional. To find that subspace, take the SVD of the trajectory matrices

of the two objects: W1 = U1Σ1V
T

1 , W2 = U2Σ2V
T

2 . The motion subspaces (Ũ1 and

Ũ2) are formed by the first four columns of U1 and U2. Since the intersection is a 2-

dimensional subspace, the matrix [Ũ1|Ũ2] will have two singular values equal to zero.

Taking the SVD of [Ũ1|Ũ2] and setting N equal to the columns of V corresponding to

the zero singular values yields,

[
Ũ1|Ũ2

]
N = 0 (44)

[
Ũ1|Ũ2

]


N1

N2


 = 0 (45)

T = Ũ1N1 = −Ũ2N2 (46)

where T is the subspace representing the intersection of W1 and W2.

Once the subspace of the intersection is found, specific trajectories that lie on the

axis can be found. The requirements for a trajectory (m) to lie on the axis are: 1)

that it lies in the subspace T and 2) that it does not increase the rank of W1 (or W2)

when it is appended as an additional column. To meet the first constraint m must
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be a linear combination of the columns of T, or

m(α, β) = T



α

β


 (47)

where α and β are scalars. The second criteria is met by ensuring the augmented

matrix, [W̃1|(m(α, β)−W̄1)] has a rank of 3, where W̄1 is the row average of W1 and W̃1

is W1−W̄1. Yan and Pollefeys manipulate this constraint to yield an equation in which

the summation of five determinants is equal to zero.[98] Solving these constraints

yields a linear equation in α and β. Values of α and β can be selected to give a

point on the trajectory at a particular u or v coordinate using equation (47). In the

case of a joint linkage (where a single point on the two objects are connected) the

intersection is one dimensional. A similar method can be used to find the trajectory

of the linkage.

Yan and Pollefeys [101] also present a method for determining the kinematic chain

that links multiple articulated objects together. The kinematic chain is the order in

which parts are linked. They use the LSA motion segmentation process presented in

section 2.3.2 to segment the trajectory matrix into different objects. Next, a graph

is created containing nodes for each of the different motion subspaces. The length of

the edges connecting the nodes of the graph are the minimum principal angle between

the subspaces. This value can be found by looking at the affinity matrix described in

equation (38). Since the motion subspace of linked objects are not independent, the

minimum value for a principal angle between them will be zero (or near zero). To

build the kinematic chain a minimum spanning tree algorithm is run on the graph.

This method allows the algorithm to handle multiple independent objects each with

articulated motions.

With the kinematic chain known, the rows of the trajectory matrix for the i-th
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frame and the points from two linked objects can be expressed as shown in equa-

tion (48).

Wi = (R1
i |Ti|(R1

i ·Oi)|Ti)




S1

1

S2

1




(48)

The rotation matrix Oi represents the articulation of object 2 with respect to object

1 at frame i.

Tresadern and Reid [90] outline a method of detecting articulation, identifying

parameters of the linkage, and recovering the shape of the objects in a consistent

coordinate frame. The type of articulation is determined by looking at the singular

values of the combined trajectory matrix between two objects. The trajectory matrix

of two independent motions will have rank eight. A universal joint reduces the rank

to seven and a revolute joint reduces the rank to six. To determine the rank, the

ratios of the seventh and eight singular values (σ7/σ8) and sixth and seventh singular

values (σ6/σ7) are calculated. For completely independent motion (no articulation)

neither of these ratios will be large. For universal joint articulated motion σ7/σ8 will

be large, and for hinged articulated motion σ6/σ7 will be large.

Once the trajectories have been segmented into separate motions, methods are

outlined for determining the location of the universal joint and the orientation of the

axis for a revolute joint. For a universal joint, the rotations are independent, but the

distance between each object center (t1 and t2) and the joint location are constant
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(d1 and d2). Written in terms of the trajectory matrix this means:

W =

[
R1 R2 t1

]



S1 d1

0 S2 + d2

1 1




(49)

Normalizing the system yields:

W̃ =

[
R1 R2

]


S1 0

0 S2


 (50)

which represents the motion and shape of the two objects.

Similarly, for a revolute joint, the relative orientation of the two objects is also

constrained. By assigning the x-axis as the hinge axis, this becomes

W̃ =

[
c1 c2 c3 c′2 c′3

]




x
(1)
1 · · ·x(1)

p x
(2)
1 · · ·x(2)

p

y
(1)
1 · · · y(1)

p 0

z
(1)
1 · · · z(1)

p 0

0 y
(2)
1 · · · y(2)

p

0 z
(2)
1 · · · z(2)

p




(51)

where R1 = [c1, c2, c3] and R2 = [c1, c
′
2, c
′
3]. In each case, Tresadern and Reid [90]

outline methods of converting the full matrix shape and motion matrices from fac-

torization of the full trajectory matrix using SVD into the form shown in equations

(50) and (51).

Yucer et al.[103] developed a method of reconstructing an object with multiple

articulated motions using optimization techniques. First, a ‘ray-space optimization’

method is used to convert each 2D image trajectory into a 3D trajectory. An energy

function is developed that measures the frame to frame movement of the feature point.
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The 3D trajectory that minimizes the energy function while remaining on the ‘ray’

between the 3D point and the 2D image coordinates is selected. This method requires

the camera motion a priori, however this requirement is not an issue if the relative

inspection route between the inspector and the primary satellite is known. The 3D

trajectories of each point are then used to segment the motion into N rigid bodies

based on the idea that points on the same rigid body will remain near each other, and

the same distance from each other, throughout all frames. Once segmented, equation

(52) is used in an optimization routine to find a rotation matrix (Rt
f ), point cloud

for each object (Ωn), and translation (T nf ) that minimizes the error in re-projection

to image coordinates (W n
f ). Pcam,f is the calibration matrix at frame f .

min
Ω,R,T

F∑

f=1

N∑

n=1

‖W n
f − Pcam,f (Rn

fΩn + T nf )‖2 (52)

Next, the kinematic chain, or ‘skeleton’, is estimated as a minimum spanning

tree of a graph created with the rigid components at the nodes and edges based on

the minimum distance between objects. Finally, the location of the joints between

the rigid components is estimated and the optimization is repeated with the added

constraint that the 3D positions of joints must be maintained. This method works

with a perspective camera and demonstrated excellent results, however the camera

motion is required a priori and the multiple optimization routines are computationally

expensive.

Paladini et al. [69] present a method in which the motion matrix and shape matrix

are solved in an alternating fashion with least squares. First, an initial solution to the

motion matrix (M (0)) is found using the method outline by Tresadern and Reid[90].

This is then refined by optimizing a cost function that includes the metric constraints

and the articulation constraints. The motion matrix and the trajectory matrix are
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then used to solve the shape matrix (S(t)). The shape matrix is then used with

the trajectory matrix to solve again for the motion matrix (M (t+1)). This process is

continued until convergence. Additionally, Paladini et al. [69] ‘wrap’ this method in

an outer loop that allows the method to handle missing data. The method outlined in

[57] is used to provide an initial fit of the rigid data, then the steps outlined above are

used to calculate the motion matrix and the shape matrix. These are then multiplied

to calculate the missing entries. This process is continued until convergence. Results

suggest the algorithm is capable of handling over 60% missing data entries without

detriment to accuracy of the recovered shape.[69]

Zhang and Hung [106] approach the problem of recovering articulated structure

from motion as an ellipsoid fitting problem. They begin by noting that an ellipsoid

is defined as a set of points P such that

P =

[
r1σ1 r2σ2 r3σ3

]



V1

V2

V3




(53)

where r is a unit vector and V1, V2, and V2 are orthogonal vectors. The factorization

of W̃f can be represented by W̃f = RfS. Taking the SVD of the shape matrix

(S = UΣV T ) yields, W̃f = RfUΣV T . Incorporating the U and Σ into Rf gives,

W̃f =



r1σ1 r2σ2 r3σ3

r1σ1 r2σ2 r3σ3







V1

V2

V3




(54)

This means that each row of W̃ i, where i represents the points on a rigid body, can

be represented as a 3D ellipsoid. Since points corresponding to the same motion will

lie on the same ellipsoid, this can be used to segment the points. They use the error
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in fitting a point to an ellipsoid as a metric with which to segment the feature points

into separate motions. Once segmented, they build the kinematic chain by finding

the minimum spanning tree of a graph containing each object as a node connected

by a edges determined by a metric measuring the distance between two objects over

all frames. The mirror ambiguities are reduced to a single ambiguity for the entire

structure by picking a solution for the first part and propagating the solution to the

other parts by assuming motions of linked parts are similar.

Much of the literature on recovery of articulated structure from motion is focused

on capturing the motion of a human. Some of this research can be applied to ar-

ticulated motion of any kind. For instance, Fayad et al. [30] present a method of

automatically recovering the 3D shape and structure of an articulated body. Their

method uses an optimization routine to assign feature points to the motion that min-

imizes the total re-projection error of the solution. The method allows points to

belong to more than one motion. This overlap of points on multiple motions defines

the joint between the two objects and allows the kinematic chain to be built within

the optimization framework. The number of motions does not need to be known, but

each motion must have at least three points, and there must be at least one point

that is contained in both linked objects. While applied primarily to human motion,

the method is capable of performing on imagery of any articulated object. However,

this method may fail if there are not points on each object that overlap the joint,

which may be the case for an articulated solar array on a satellite.

Russell et al. [77] expand on the method of Fayad et al. to include the capability

to segment motion into independent objects and further segment independent objects

into multiple parts based on dependent motions such as articulation. They do this

by accounting for the fact that an object may be in front of another object, in which

case feature points that are nearest to one another are not necessarily part of the

45



same object. Another improvement to [30] is in the cost function. Rather than using

the re-projection error as the metric that enforces the geometric constraint in the

cost function, they use the summation of the Sampson errors (an approximation of

the geometric distance between image coordinates in one frame projected to the next

frame) for each point between every pair of consecutive frames as well as a saliency

term. The saliency term measures the difference between the salience at each feature

point location in each image and the average saliency of all the points in the model.

Saliency is a measure of how ‘interesting’ areas of an image are.[45]

Understanding articulated motion is also important to allow robots to learn about

how objects move in order to allow the robots to manipulate the objects in the future.

With this motivation, Pillai et al. [72] developed a training process by which the

parameters of everyday articulate objects, such as doors and drawers are determined

off-line from video of a person using those objects. RGB-D imagery is used along with

a custom method of feature point tracking to create 3D feature point trajectories for

the scene. To segment features into different motions a likelihood function is built

based on the relative motion between each pair of feature points. After segmentation,

optimization routines are used to determine the pose of each object and to build the

kinematic chain. Once the robot has ‘learned’ about how objects articulate it uses

that knowledge to predict how the objects will respond to manipulation.

2.3.4 Real-time Simultaneous Localization and Mapping (SLAM).

The Kalman filter is a powerful tool for estimation that is often applied to the

SLAM problem. Thrun et al. [86] extensively discuss the use of the EKF in solving the

SLAM problem. In many implementations the measurements supplied to the EFK are

from measurement systems capable of providing both bearing measurements as well

as depth measurements, such as laser scanners, stereo systems, or RGB-D systems.
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In the case of a monocular camera, no depth information is available from a single

measurements.

Davison et al. [24, 25] present a method of using a monocular camera to solve

the SLAM problem in real-time (at 30 Hz) using an EKF. The state vector for the

EKF consists of the camera state and (x,y,z) coordinates of feature points in the

map. The propagation (or prediction) step of the EKF requires a model of how each

of the states is changing. A constant rate model was selected for the camera motion,

requiring inclusion of the camera velocity and angular velocity in the state vector.

The primary goal of Davison et al.’s implementation is to accurately and efficiently

localize the camera, therefore, each point that is sensed is not tracked. For efficiency,

only quality points that can be reliably tracked are included in the state vector. The

feature point tracking method used is interesting in that the predicted point location

and covariance are used to inform the search area in the next image. Also of note

is the method of initializing points. Since depth information is not available from a

single image, new points cannot be added to the state vector immediately. Instead,

a line from the camera center to the observed point is added to the state vector.

Particles are added to the line at different depths. With each new measurement,

the likelihood of each particle is updated based on the location of the feature point.

When the particle likelihoods are sufficiently Gaussian, the feature point is added to

the map. Civera [14] extended this work by developing a parameterization method

which allows feature points to be added to the map immediately by coding the point

locations using the camera location in the frame where the feature was first detected,

the angles to the feature from camera center and the inverse of the depth.

The EKF is one of the most popular methods of solving the SLAM problem,

however it can be intractable when there are a large number of points in the map.

Since the covariance matrix is K × K (where K is the number of feature points)
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and must be updated with each measurement, the computational requirement scales

O(K2). To combat this problem, and relying on the conditional independence of

points in the map, Montemerlo et al. [62, 61] developed the FastSLAM approach

which combines a particle filter and an EKF. The FastSLAM method reduces the

computational requirement to O(MlogK) where M is the number of particles used.

Most solutions to the SLAM problem assume that the feature points in the im-

ages are stationary with respect to one another. Inclusion of moving points in the

state vector will introduce errors in the solution of both the camera motion and the

map. Traditionally, points that do not remain in their predicted locations (moving

points) are rejected as outliers, however in dynamic environments, or when an accu-

rate motion model of the camera is not known, moving points can cause problems.

Wangsiripitak and Murray [97] propose a solution by incorporating a moving object

tracker into their implementation of EKF monocular SLAM. By tracking moving ob-

jects they are able to avoid inclusion of feature points that are on the moving object,

or caused by the edge of the moving object interacting with the background, in the

state vector. They are also able to use the motion of the tracked object to determine

when a feature point in the scene should be occluded by the moving object. This

prevents them from dropping and reacquiring feature points that are only temporarily

occluded from the state vector.

Wang et al. [96] present a method of combining the tasks of SLAM and detection

and tracking of moving objects (DATMO). When a robot moves through a dynamic

environment, the objects in the environment can be categorized as moving objects

or stationary objects. The SLAM with DATMO problem is an attempt to find the

statistics for the robot pose (xk), the state of the moving objects (Ok), and the

location of the stationary objects (Mk) given the measurements (Zk) and the applied
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controls (Uk).

p(xk,Ok,Mk|Zk, Uk) (55)

They prove these states can be decomposed into separate components represented by

equation (57) using three assumptions: 1) the measurement can be decomposed into

measurements of moving and stationary objects (Zk = [Zo
k , Z

m
k ]), 2) the measurements

of the moving objects carry no information about the stationary landmarks, and 3)

there is no interaction between the robot and the moving object. In the case of

articulated motion, the second assumption is not true. The measurements of the

articulated object are not independent of the stationary object.

p(xk,Ok,Mk|Zk, Uk) ∝ p(zok|Ok, xk)︸ ︷︷ ︸
DATMO Update

·
∫
p(Ok|Ok−1)p(Ok−1|Zo

k−1, Uk−1)dOk−1

︸ ︷︷ ︸
DATMO Prediction

· p(zmk |Mk, xk)︸ ︷︷ ︸
SLAM Update

(56)

·
∫
p(xk|uk, xk−1)p(xk−1,Mk−1|Zm

k−1, Uk−1)dxk−1

︸ ︷︷ ︸
SLAM Prediction

In a follow-on work, Wang et al. [95] addressed the case where moving object

motion models are strongly correlated. They create a scene interaction model to

represent the long-term interactions between a moving object and its surroundings;

for instance multiple vehicles that interact with a scene in the same way due to

traffic laws. Additionally, they create a neighboring object interaction model which

uses the motion of near by objects to inform the motion of an object that may be

occluded; for instance people walking in a crowd. Both of these interaction models
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take advantage of multiple objects moving in the same way. Wang et al. [95] also

present a method detecting if a moving object has stopped by using an interactive

multiple model technique in which the object is tracked using multiple motion models,

including the stationary model, and the uncertainty in the state estimate is used to

determining which model is most likely correct.

Kundu and Jawahar [51, 50] build a framework which incorporates feature de-

tection, motion segmentation, SLAM, and moving object tracking to reconstruct a

unified dynamic 3D map of the scene which includes the reconstruction of moving rigid

bodies. Each of the modules inform one another so all the information available can

be used to constrain the possible solutions in each step. Initial feature point matching

is done over a large range, however once the relative camera motion is known from

the SLAM step it is used to refine the feature point matching. The initial motion seg-

mentation is done using a two-view motion segmentation algorithm outlined in [75].

In subsequent frames, the relative camera motions from the SLAM module is used

along with epipolar constraints to determine the probability that feature points are

part of a the stationary background or part of a previously modeled moving object.

The visual SLAM module estimates the translation and rotation between the camera

frame and the world frame using the stationary feature points and the translation and

rotation between the camera and the object frame using the feature points associated

with each object. Iterative bundle adjustments are used for each independent motion

to optimally update the relative camera pose and the feature point locations. To

track the motion of the independent objects, a bearing only tracking (BOT) particle

filter is used. Particles are placed on the ray from the camera to the object at various

depths. Information from the SLAM module is used to put bounds on the possible

depths and velocities of the particles, improving the performance of the particle filter.

In the unification, module information from SLAM and the BOT is used to eliminate
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ambiguities in the full reconstruction of the scene.

Kumar et al. [49] incorporates articulated objects into an EKF SLAM solution.

Instead of separating stationary map points and moving map points as is done in

SLAM with DATMO [96], each feature point is tracked using the parameters of a

motion model. The motion models represent the point as static, belonging to an

object with a prismatic joint, or belonging to an object with a revolute joint. Each

feature point is assigned to an articulated motion model M when the probability of

the model M given the measurements Z0:t is over a threshold τ : P (M |Z0:t) > τ . Once

assigned to a model, the parameters assigned to the state vector for the feature point

are not the world frame 3D position of the points, but rather parameters that define

the articulated structure and the articulated motion. In the case of a revolute joint,

these parameters are a plane of motion P , the center of the articulation axis in that

plane (x0, y0), the radius from the center of that circle to the point r, and the motion

parameter φt that represents the articulation angle at time t. Similar representations

are provided for the prismatic and the static case. Note that the measurements in this

work are 3D positions taken from and RGB-D camera, this simplifies the Jacobians

for the EKF significantly as compared to the monocular EKF implementation in

[24, 25, 14].

Martin and Brock [58] also used RGB-D measurements from a stationary camera

to estimate the characteristics of articulate motion in real-time. A three level recursive

filter is used where each level estimates the measurements for the next level up.

The first level takes in the measurements of the feature points from the camera and

estimates the 3D position of all the feature points using the rigid body motion to

inform the estimation. The second level consists of separate EKFs for each rigid

body which take in 3D feature point locations from the first level as measurements

and estimate the pose and velocity of the rigid object. The third level consists of three
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EKFs for every pair of rigid bodies. For each pair, an EKF is maintained for each of

three relationships between the rigid bodies: a prismatic joint, a revolute joint, and

a rigid joint. If none of these filters adequately explain the motion, they are assumed

to be disconnected.

Alternatively, a method from Hausman et al. [41] attempts to actively reduce

the uncertainty in assigning an articulation model by manipulating the object. The

relative pose between objects is used along with a particle filter to choose an ‘action’

the robot can perform on the object that is most likely to decrease model assignment

uncertainties.

2.3.5 Human Articulated Motion Tracking.

Perhaps the biggest application for tracking articulated motion is in tracking the

movement of human beings. In these cases, the articulated model and its capabili-

ties/limitations is known; it is the human skeletal system. This is akin to a situation

in which the articulated model of a satellite is known and we are attempting to es-

timate its motion. Due to the similarity with the objectives of the research herein

a very brief discussion of the work in human tracking is presented here. For a more

thorough discussion on the research in the area the reader is directed to [60] and [70].

Much of the literature on human articulated motion tracking first converts images

to silhouettes. The concept of using silhouette images to reconstruct the shape of

objects dates back to 1978 when Baumgart [6] used four silhouette images to estimate

the shape of numerous objects. Since then, various aspects of Shape-from-Silhouette

(also known as Visual Hull construction) have been investigated.[12] In a two part

work Cheung and Kanade [12, 13] first outline their method of shape reconstruction

using silhouettes from multiple synchronized camera locations [12], then they apply

these methods to build a kinematic model of an individual and track its articulated
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motion.[13, 11]

Many of the works for human motion tracking use the generic human skeletal

model along with limb lengths specific to the individual as the basis for determining

the joint articulations (pose).[60] The number of estimated parameters (degrees of

freedom, DOF) can vary widely from 10 DOF for methods that track upper body

only to over 50 DOF for full body pose tracking.[70] Often a single image (or a set

of images) could be explained by multiple sets of articulation angles leading to mul-

tiple local minimums. This led many researches to investigate tracking techniques

such as the particle filter in which multiple sets of articulation angles are propagated

and used to represent the estimated states distribution. The number of particles

required (and therefore the computational cost), however, increases exponentially as

the number of states to be estimated increases. To combat this curse of dimension-

ality Deutscher and Reid [28] implement an annealed particle filter (APF) in which

the particle weighting function is smoothed and evaluated over multiple layers. At

each layer, the smoothing is decreased until the final layer at which point the original

weighting function is used. Implementation of this method on a 30 degree of freedom

(DOF) model with 400 particles and 10 layers (requiring 4,000 weighting function

evaluations) outperformed a standard particle filter evaluation with 40,000 particles.

For each particle the articulated model (using truncated cones to represent each limb)

is projected to the image plane for each available camera and points are sampled along

the edges and within the interior of each limb. The sampled edge points are compared

to the edge map and the sampled interior points are compared to the silhouette map

to determine the quality (weight) of the particle. Sigal et al. [81] include an imple-

mentation of the APF as the baseline algorithm in the comprehensive ‘HumanEva’

dataset. The data set contains approximately 40,000 frames of synchronized motion

capture data and multi-view imagery providing a method of testing human motion
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capture methods.

John et al. [46] introduce a method they term hierarchical particle swarm opti-

mization (HPSO) in which they solve for the pose at each instance using a particle

swarm optimization technique. Using a truncated cone model with 31 DOF they limit

the number of required particles by optimizing in 12 steps. First the body position

and orientation are optimized, then the angles of five chains are optimized indepen-

dently, one joint at a time. No motion model is used, however the results of the

previous frame are used to inform the selection of particles for the next time frame.

This allows the tracker to self-initialize and recover from local minima.

Chang and Lin [9] introduce the progressive particle filter (PPF) which uses the

hierarchical search to decrease the number of required particles to 80 for a 32 DOF

model. First they sample and evaluate the weights for the global position of the

body, then they perform a iterative mean shift algorithm on each particle to shift it

to its local maximum probability and evaluate the particle weights using the mea-

surement. Next they repeat the process for the upper extremity parameters and the

lower extremity parameters in turn.

Many of the methods for tracking human pose use images from multiple synchro-

nized cameras. Tracking human pose with a single camera is more challenging [46, 81]

in part due to the depth ambiguity associated with monocular vision. Sminchisescu

and Triggs [82] proposed a solution that takes this ambiguity into account while em-

ploying a particle filter to track human pose. Alternatively, Agarwal and Triggs [4]

use known image/pose pairs to train regressors that translate a 100D vector repre-

senting the image to a 60D vector representing the pose. More recently, deep learning

and neural networks have been used in many computer vision tasks, including human

pose prediction.[85]
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2.4 Summary

Significant work has been done in recent years in the field of computer vision. It

is at the forefront in the effort to increase the autonomy of robots. In general, efforts

can be categorized into those that work on the video sequence as a whole and those

that incrementally build information about the scene in real-time as images become

available. Work has been done in both of these categories to sense and characterize

articulated motion.

Batch processing methods use all available data to calculate the articulated struc-

ture, camera motion, and kinematic chain. Many of the existing methods use opti-

mization techniques to find the solution that minimizes a cost function, such as the

re-projection error.[103, 69]

Real-time methods stem from solutions to the SLAM problem for robots, most of

which use some type of Bayesian filter to estimate the statistics of the robot position

and the feature point locations. Traditional real-time SLAM methods assume feature

points are stationary and discard those that do not meet that criteria. In dynamic

environments many of the feature points can be moving, necessitating the inclusion

of methods for detection and tracking of moving objects.[96] The two works outlined

that estimate articulation parameters in real time use a sensor capable of providing

depth information.[49, 58]

While significant of research exist in the area of articulation sensing using com-

puter vision, work has not been done in investigating the applicability of these meth-

ods to the space rendezvous and proximity operations (RPO) articulation problem.

Based on the literature, the approaches herein leverage existing techniques, partic-

ularly [103, 25, 14, 58, 62, 81], and investigate application for space articulation

sensing.
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III. Building an Articulated Model

3.1 Chapter Overview

This chapter consists of a methodology and results for building an articulated

model from simulated feature point locations to meet Objective 1 of this research.

The work presented is also available in two conference papers [18, 17]. This chapter

consists of an introduction (section 3.2), the method for building an articulated model

(section 3.3) with results (section 3.4), a modified method accomodating uncertainty

and manuever with results (section 3.5), and a conclusion (section 3.6).

3.2 Introduction

This chapter develops and demonstrates a method of using feature point locations

and the satellite inspection trajectory to build an articulated model of the inspected

satellite. Feature point locations are simulated by projecting surface points from a

nominal articulating satellite to the image plane of an inspecting satellite. These

simulated feature points are used along with the known inspection route to build an

articulated model consisting of component shapes, joint locations, axes, and range

of motion. Performance is assessed using eight evaluation metrics for up to eight

articulating joints and under various illumination conditions. A modified method

that accommodates primary satellite maneuver, trajectory matrix uncertainty, and

inspection route uncertainty is also presented.

3.3 Method

This work focuses on building an articulated model from a set of monocular images

taken from an inspection satellite on a known inspection route. Points are spread over

the faces of a simulated articulated satellite model and projected to the image plane
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of an inspector satellite on a particular inspection route resulting in simulated feature

points locations that are consolidated into a trajectory matrix. The points are then

segmented into groups that represent rigid body motion and an optimization routine

is performed on each group to identify the shape and pose of the rigid body that

best describes the feature point locations. Rigid bodies with similar motion are then

merged if required. Next a kinematic chain is built that identifies which components

are linked to each other. Finally another optimization routine is run that enforces the

articulation constraints on linked components. Results are presented for the method

with multiple active joints on the articulating arm and investigating the effects of

various illumination conditions. Finally, a modified method allowing for primary

satellite maneuver, trajectory matrix uncertainty, and inspection route uncertainty is

developed and performance demonstrated.

3.3.1 Simulating Data.

To simulate feature point locations, a point cloud that represents the inspected

satellite is used. Each of the points in the point cloud is projected to the image

frame of the inspector satellite. The 2D location of the projected point in the image

plane simulates the location of a feature point in an image. This assumes a feature

point tracker, such as a KLT tracker (see section 2.2.4), could acquire and track

feature points reliably. Simulating data in this way allows the method to be easily

tested under a number of different articulation profiles and inspection routes. The

simulated data consists of a trajectory matrix containing the feature point locations

of each visible point in the point cloud and the inspection route in the world frame.

The basic steps to building a simulated trajectory matrix are as follows:

1. Create a model of the satellite that includes the desired components and ar-

ticulated joint information (e.g. polyhedrons with axis orientations and spatial
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layout defined).

2. Randomly spread points on the surface of the satellite resulting in a 3D point

cloud that represents the satellite.

3. Assign motion to the articulation joint resulting in a 3D point cloud that is

time dependent.

4. Select points that are visible to the camera. Certain points will be on faces not

visible by the camera while other will be occluded by other parts of the satellite.

Additionally, points may not be visible because they are not illuminated.

5. Project the visible 3D points to image coordinates using the camera pose and

a pinhole camera model.

To develop the satellite model, a cursory review of a few existing space robotic

arms was conducted. Flores-Abad et al.’s [32] review provided an overview of various

robotic arms used in space. The Canadarm2 and the European Robotic Arm (ERA)

each have seven degrees of freedom, while the Japanese Experiment Module Remote

Manipulator System (JEMRMS) has six degrees of freedom. A further review of

these examples revealed that none of the joints are prismatic. All the arms consist

of numerous single degree of freedom (revolute) joints arranged in series. All of these

things were taken into account when developing the model to be used in simulation

which is shown in Figure 7. The model has six revolute joints on a robotic arm and

two solar arrays, each connected to the main body with a revolute joint. These joints

can be actuated or left rigid during simulation, allowing various configurations to be

tested.

Points are randomly spread over every face of the satellite model to simulate

feature points. To determine if a point p is visible to the camera three vectors are

needed: the vector from the Sun to the point ~vs,p, the vector from the point to the
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Figure 7. Diagram of simulated satellite model.

camera ~vp,c and the outward facing normal vector for the face ~n. The diagram in

Figure 8 shows the geometric relationships for three potential situations. The first

criteria for a point to be visible is the angle between ~n and ~vp,c, termed φ, must be less

than 90◦. This determines if the point is visible to the camera. The second criteria

is the angle between n and −~vs,p, termed θ must be less than 90◦. This determines

if the point is illuminated. Finally, to be visible the vectors ~vs,p and vp,c must not be

occluded; in other words they must not pass through any other solid object (such as

another part of the satellite).

Since the model consists of planar faces, points on a particular face will appear

and disappear together as the angle between the normal vector and the Sun or camera

cross the 90◦ mark. In reality, feature points would likely fade in/out as the illumina-

tion or viewing angles approach 90◦. To accommodate this, an error function is used

to assign a probability of illumination P (illum) or a probability of visibility P (vis)

based on θ and φ respectively. This probability allows a gradual appearance/disap-
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Figure 8. Demonstration of point visibility. (a) Point is visible and illuminated. (b)
Point on the solar array is occluded by the main body. (c) Point is visible to the
camera, but is not illuminated.

pearance of points as θ and φ cross the 90◦ mark.

For simulation purposes, it is assumed that throughout the trajectory the camera

is at a distance from the primary satellite that produces resolved imagery of appro-

priate resolution for feature point extraction and tracking. In all cases, the primary

satellite is simulated to be in geostationary orbit at equinox. The effect of Earth

shadowing is not simulated. Note that while the nominal satellite contains panels

that resemble solar arrays, no effort was taken to ensure their motion is consistent

with a solar array. Both sides of the array may be illuminated at different portions

of the route.

3.3.2 Ray Space Optimization.

The ray space optimization technique outlined in Yucer et al. [103] provides an

excellent method of estimating 3D shape from a 2D image coordinates when the

camera motion is known. The method parametrizes the 3D location of each point (p)

in a given frame (i) using the camera center (Ci), the direction vector from the camera

center to the point (Dp
i ) and the distance along the ray from the camera center to
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the point (µpi ) using the following equation:

Spi = Ci + µpiD
p
i (57)

where Spi is the 3D location of point p in frame i. Since the points are not stationary

there are many valid 3D paths that can result in the same 2D image coordinates,

therefore, an added assumption is made that the points track smoothly from frame

to frame. This leads to a cost function (equation (58)) that is only a function of

the depth µpi at each frame which can be optimized for each point using Matlab’s

‘fminunc’.

min
~µp

F−1∑

i=1

ωpi ‖(Ci + µpiD
p
i )− (Ci+1 + µpi+1D

p
i+1)‖2 (58)

The term ωpi is a weighting term that is based on the 2D distance of the point in

frame i+1 from the epipolar line corresponding to the point location in frame i (refer

to [83, 40] for more information on epipolar lines) . This weighting method effectively

keeps the 3D location of the point when it is moving near its location when it is static.

The ray space optimization technique has a limitation with regard to speed of

articulation. Since the ray space optimization routine attempts to find the shortest

path that models the observed motion, when the camera motion is less than the

articulated motion the solution tends toward a path in which the point follows a

trajectory similar to the camera motion rather than the articulated motion. If the ray

space optimization results are used for initialization later in the process inaccuracies

are compounded.

The distance from the epipolar line can also be used to determine if the point is

stationary. With the assumption that the known camera motion is with respect to the

main body of the satellite, points that are stationary are points on the main body (or
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components that are rigidly attached to the main body throughout the inspection).

Points that have an average distance from the epipolar line below a threshold (γs)

are considered stationary and are segmented to the main body.

Knowing that a point is stationary also allows the calculation of its position to

be simplified to a triangulation problem that can be solved using linear least squares.

For a stationary point Sp1 = Sp2 = ... = SpF , therefore equation (57) becomes Sp =

Ci + µpiD
p
i . When written for each of the F frames there are 3F equations. Since

S is no longer different for each frame there are only F + 3 unknowns. This set of

equations, in equation (59), can be written in the form of Ax = b (equation (60)) and

solved with linear least squares (I is a 3× 3 identity matrix).

Sp − µp1Dp
1 = C1

Sp − µp2Dp
2 = C2

... =
...

Sp − µpFDp
F = CF (59)




I −Dp
1 0 · · · 0

I 0 −Dp
2 · · · 0

...
...

...
...

...

I 0 0 · · · −Dp
F







Sp

µp1

µp2
...

µpF




=




C1

C2

...

CF




(60)

This method works well in the case where there is no uncertainty in the feature

point locations or when the main body is not maneuvering in the world frame. In the

presence of noise, or if the main body is maneuvering, however, a simple threshold

may not be capable of segmenting points that are stationary.
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3.3.3 Segmentation.

One of the most challenging aspects of this problem is segmenting points into

groups that represent distinct rigid bodies. The nature of a circumnavigation inspec-

tion route (or NMC) yields a trajectory matrix with a significant amount of missing

data. Figure 9 shows an example trajectory matrix for a complete NMC where empty

elements are shown in black and elements containing data are shown in white. Due to

the sparsity of the trajectory matrix there are many points on the same rigid compo-

nent that do not share any common frames. This makes it difficult to segment them

onto the same rigid component. When added to the fact that the number of rigid

components is not assumed to be known a priori, over segmentation (choosing more

point groups than rigid bodies) is necessary.

Figure 9. Example trajectory matrix mask for a complete NMC.

Spectral clustering is a popular method of segmenting data.[93] While there are

multiple methods of spectral clustering, they all operate on some type of similarity

matrix. For P points, a similarity matrix is P × P in dimension with each element

representing how similar the point corresponding to its column is to the point corre-

sponding to its row. The type of similarity metric used varies widely. Some, such as

LSA [100] use a metric based on the angles between the subspaces of nearest neigh-

bors, while others use a metric based on the range and velocity between points.[106]

Once the similarity metric is choosen, there are numerous ways of segmenting the

data. For this work we investigated both spectral clustering using k-means [67] as

well as recursive 2-way spectral clustering.[80, 103] Both methods involve solving for

the eigenvectors of the Laplacian matrix. The Laplacian matrix is the similarity ma-
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trix minus a diagonal matrix of the row sums of the similarity matrix. The reader

is directed to [55] for additional information on spectral clustering, and [93] for an

overview of its use in motion segmentation.

The k-means clustering technique requires the number of segments (k) to be given

while the 2-way spectral clustering technique used by Yucer et al. [103] only requires

an estimate for the number of segments. In testing both methods produced similar

results with approximately 90% of points segmented correctly. For this work a simi-

larity matrix based on the range and 2D velocity [30] between image points was used

with spectral clustering using k-means [67, 8] and a value of k ranging from 15-30

based on the number of active joints.

3.3.4 Rigid Body Optimization.

Once the points are segmented, the next step is to find how all the rigid bodies are

moving. Similar to Yucer et al.[103] we sought the translation, rotation, and shape

that minimized the reprojection error and a smoothness penalty.

min
R,T,Ω

F∑

i=1

‖W n
i − Pcam,i(Rw,bn

i Ωn + T̃w,bni )‖2

︸ ︷︷ ︸
Reprojection Error

+

λrb

F∑

i=2

[
arccos(.5(trc(Rw,bn

i (Rw,bn
i−1 )T )− 1)) + ‖Tw,bni − Tw,bni−1 ‖

]

︸ ︷︷ ︸
Smoothness Penalty

(61)

This optimization is performed for each segment. W n are the columns in the tra-

jectory matrix for the nth segment. Pcam,i is the camera matrix that projects points

in the world frame to the camera image plane for frame i. Ωn is the 3D location of

the points in the body frame. Rw,bn is the rotation matrix that rotates body frame

for segment n to the world frame. T̃ n is the translation from the origin of the world
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frame to the center of the points in Ωn while Tw,bn is the translation from the origin

of the world frame to the origin of the body frame. They are related by:

T̃w,bni = Tw,bni −Rw,bn
i Ω̄n (62)

Using T̃w,bn in the reprojection error portion of the cost function helps to decouple

the rotation from translation.

There are multiple rigid body shape and motion combinations that can minimize

the reprojection error. Since the rigid bodies are most likely to follow smooth paths,

the smoothness penalty is added to encourage solutions that follow smooth rotational

and translational paths. λrb is used to weight the smoothness penalty. The appro-

priate value of λrb will be dependent on the scaling of the trajectory matrix. Setting

it too low will not enforce smoothness and may lead to a jittery path while setting

it too high will minimize the rigid body motion at the expense of reprojection error.

To allow the method to be robust to scaling, the value of λrb is chosen adaptively.

Before optimization begins, and after every 100 iterations during optimization, the

value of λrb is adjusted so that the smoothness penalty is no more than 25% and no

less than 5% of the reprojection error.

The rotation matrix (Rw,bn) is parameterized using an Euler axis (~a) and an Euler

angle (φ) and represents the rotation matrix from the component’s body frame (bn)

to the world frame (w). The reference frames used in this work are shown in Figure

10. The Euler axis is not constrained to be unit length, instead it is normalized before

being used to calculate Rw,n.

This cost function is highly non-linear and contains (7×F )+(3×P ) optimization

variables where F is the number for frames and P is the number of points in the

component. With 100 frames and 50 points (which is typical for simulations run) this

translates to 850 optimization variables. Many optimizers, including Matlab’s fmi-
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Figure 10. Reference frames used in this work. The ‘world frame’ (w) corresponds to
the CW frame and moves with the primary satellite in its orbit. Each component has
a ‘body frame’ (b) attached to it which is arbitrarily assigned. The ‘camera frame’ (c)
is attached to the inspector camera with the positive z axis along the optical axis and
the positive x axis aligned with the camera’s direction of travel in the world frame.

nunc which was used in this work, calculate derivatives via finite differences if they

are not supplied. This method was used initially, however it was computationally

slow since the optimizer needs to compute finite differences onces for each optimiza-

tion variable to calculate the gradient at each iteration. To speed up computation,

analytical derivatives were calculated and supplied to the optimizer. The analytical

derivatives corresponding to the work herein are available in Appendix A. When the

analytical derivatives are supplied the computational time decreases by approximately

99.7% (the optimization was done ≈ 360 times faster).

To begin optimization, an initial guess must be supplied for all the optimization

variables. In many cases, the ray space optimization results provide a good method

of initializing the shape (Ωn) and the translation (T n). However, as mentioned in

section 3.3.2, when the camera rotation is less than the articulated motion there are
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issues. If inaccurate ray space optimization results are used, the error propagates

through the process resulting in an inaccurate model.

To resolve this issue, another method was developed to initialize the shape and

rotation parameters using the scaled orthographic projection model [63]. Using a

scaled orthographic camera model, the trajectory matrix can be written as W =

α(RΩ + T2D) where α is a scaling based on the distance from the camera to satellite

(α = f
|rWC |), R is the 2F × 3 motion matrix containing the first two rows of the

rotation matrix between the camera frame and the body frame at each time step, Ω

is the 3× P shape matrix in the body frame, and T2D is the 2F × 1 translation from

the world frame origin to the body frame origin projected into the 2D image plane.

Since the scale factor (α) and the rotation matrix between the camera frame and the

world frame are known from the inspection route, the scaled orthographic projection

equation can be used to solve for the resulting shape from any body rotation and

translation as follows.

W̃ = RΩ = 1
α
W − ~T2D (63)

Ω = R†W (64)

Wcalc = α(RΩ + ~T2D) (65)

E = ‖W −Wcalc‖ (66)

The motion matrix R is determined for 5,000 seeds consisting of a randomly selected

constant Euler axis ~a and a linear set of Euler angles ~φ of a random slope. For each R

and T2D (calculated from ray space optimizaiton results), the error (E) between Wcalc

andW is calculated. The seed with the lowest error is used to initialize ~a, ~φ, and Tw,bn ;

the resulting Ω is used to initialize shape. This is a highly non-linear optimization

problem with numerous local minima. While this method of initialization worked
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well for the cases run, alternatives, such as using a heuristic optimization solver for

initialization or a global optimization algorithm may produce superior results.

Outlier rejection is conducted every 100 iterations during rigid body optimization.

Points with a reprojection error higher than some multiple (γf ) of the average per

point reprojection error and points that have an average range to all other points

higher than γr standard deviations from the mean range between points are rejected

as outliers.

3.3.5 Combine Segments.

Since the data has been over segmented, the next step is to combine (merge) any

segments that are part of the same rigid body. To do this, four adjacency matrices

that compare the location and rotation of each segment to each other segment are

created. If two segments are in fact the same rigid body, the rotations should be the

same, therefore the rotation between their body frames (Rb1,b2
i ) should be constant

for all common image frames.

Rb1,b2
i = (Rw,b1

i )TRw,b2
i (67)

The average variance of the elements of Rb1,b2
i is used to define the (1, 2) position of

an N ×N adjacency matrix where N is the number of segments.

It is assumed that segments that are part of the same rigid body are close to

one another, therefore an adjacency matrix is created that compares the range be-

tween translations in common frames. Segments that are the same rigid body will

also remain at the same distance from one another over common frames so a third

adjacency matrix is created comparing the distance between components’ average

location, allowing comparison of segments that do not appear in common frames.

A fourth adjacency matrix is created to compare the variance of the range between
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the translations. These four adjacency matrices are used to determine which pairs of

segments to test for merging.

For each segment, the closest two segments from each of the four adjacency ma-

trices are selected for testing to determine if they should be merged. Rigid body

optimization is performed on the combined segments as outlined in the previous sec-

tion. If the function value is below 150% (γc) of the average function values of the

segments independently, the two segments are merged and the adjacency matrices

are recalculated. This is continued until all segments have been checked without

triggering a merge.

3.3.6 Build Kinematic Chain.

The next step is to determine the kinematic chain that best describes which com-

ponents are linked to each other. This is done by evaluating the average range adja-

cency matrix mentioned in the previous section. The kinematic chain is the minimum

spanning tree of a graph (G) with each component as a node and edges defined by

the average distance between components in common frames (CF ).

G(j, k) =
1

CF

CF∑

i=1

‖T ji − T ki ‖ (68)

To ensure the root of the kinematic chain corresponds to the main body, the segments

are first ordered by their average translation.

The kinematic chain can be expressed as a table of dimension M × 2 where M is

69



the number of joints (M = N − 1) containing parent-child relationships.

H =




parent1 child1

parent2 child2

...
...

parentM childM




(69)

H is re-ordered as required to ensure that each segment appears as a child before

it appears as a parent. Components that do not share common frames with their

parent component are eliminated. Note that this method is not robust to cycles in

the kinematic chain.

3.3.7 Articulation Parameter Optimization.

Once the kinematic chain is known, the articulation constraints can be applied.

For this application the joints are assumed to be revolute. Yucer et al. [103] use a

similar method to the one presented here, however they assume universal joints and do

not include the joint locations as optimization variables. The articulation parameters

are the articulation axes between linked parts (â), the angle of articulation (φ), and

the joint locations (Jp, J c). For N components, there are N − 1 joints. For each

joint, p identifies the parent component and c identifies the child component. The

w superscript represents the world frame defined by the center of the main body of

the primary satellite. The first term of equation (70) is the same as the reprojection

error in equation (61), however the rotation and translations are now dependent on

the higher components in the kinematic chain. The last term is also similar to the

smoothness penalty in equation (61), however due to the articulation constraints the
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articulation angle is the only temporally dependent variable.

min
R,J,Ω

N−1∑

j=1




CF∑

i=1

[
‖Wi − Pcam,i(Rw,c

i Ωc + Tw,c)‖2
]

︸ ︷︷ ︸
Reprojection Error

+

λjp

12∑

k=1

ln(1 + edkη)

︸ ︷︷ ︸
Joint Penalty

+λsc

CF∑

i=2

(1− cos(φi − φi−1))2

︸ ︷︷ ︸
Smoothness Penalty




(70)

The rotation matrices and translations are calculated based on the hierarchy

of the kinematic chain and the articulation constraints as follows. Define X =

[x1, x2, · · · , xl] as a single chain starting at the root and ending with a component

that has no children where each element of X identifies a component and l is the

length of the chain. The rotations and translations can be written as follows:

Rw,xk
i =





I , k = 1

R
w,xk−1

i R
xk−1,xk
i , otherwise

(71)

Tw,xki =





0 , k = 1

R
w,xk−1

i Jp + T
w,xk−1

i −Rw,xk
i J c , otherwise

(72)

Jp and J c are the location of the joint in the parent’s body frame and child’s body

frame respectively for the joint between xk and xk−1. Parameterizing using the joint

locations forces linkage between the components and reduces the number of optimiza-

tion variables.

The rotation between linked frames R
xk−1,xk
i is parameterized by two Euler axes,

one for the parent (xk−1) and one for the child (xk), and an Euler angle φi. Since

body frames are chosen arbitrarily during rigid body optimization of each component,
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there is no reason the articulation axis would be the same between the body frame of

the parent and the body frame of the child. This means the frames must be aligned

before the articulation angle is applied. An intermediate frame (aa) is used to align

the frames and then a rotation matrix is formed using the articulation axis of the

parent (âxkp ) and the articulation angle (φi).

R
xk−1,xk
i = R

xk−1,aa
i Raa,xk

Raa,xk = cos(ψa)I + (1− cos(ψa))âa(âa)
T − sin(ψa)â

×
a

~aa = âxk−1
× âxk

âa =
~aa
‖~aa‖

ψa = arccos(âxk−1
· âxk) (73)

R
xk−1,aa
i = cos(φi)I + (1− cos(φi))âxk−1

(âxk−1
)T − sin(φi)â

×
xk−1

(74)

The joint penalty in equation (70) ‘encourages’ the joints to remain close to the

point cloud. For each component, a bounding box (BB) containing the points in Ωn

is created and scaled by a factor of 1.5 (γBB). A soft plus function uses the difference

between joint location and the bounding box (d) and a multiplier (η) to penalize the

joints (Jp and Jc) if they are outside of the bounding box.

To initialize the optimization for each joint, the information from the rigid body

optimization is used. Since each joint is revolute it consists of rotation about a con-

stant axis. A rotation matrix relating the body frame of each component to the world

frame is available from rigid body optimization. To find the articulation parameters

(âp, âc, φi) that most closely match the calculated rotation between components (Rp,c
i )

over common frames, the following cost function is optimized:

min
M,φ

CF∑

i=1

arccos(0.5trace(Rp,c
i (Mp,c

i )T )− 1) + λa

CF−1∑

i=2

(φi+1 − 2φi + φi+1)2 (75)
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Algorithm 1 Incremental Joint Addition
1: procedure IJA
2: H is table of joints from equation (69)
3: Ω = {Ω1,Ω2, · · · ,ΩN}
4: f(x) =Value of equation (70) at x
5: while i ≤ M do
6: p = H(i, 1)
7: c = H(i, 2)

8: x0 =
[
x0, â

i
p0 , â

i
c0 ,
~φi0, J

i
p0 , J

i
c0

]

9: Optimize equation (70) for x using constant shape Ω
10: xs0 = [x,Ωc]
11: Optimize equation (70) for xs using constant shape for all except component c

12: if var(~φi) > γa then
13: f(x)org = f(x)γm
14: Combine Ωc and Ωp → Ωpc

15: i = i− 1
16: Run lines 6-11 with Ωpc as c
17: if f(x) < f(x)org(γm) then
18: Ωc = Ωpc
19: H(i, 2) = H(i+ 1, 2)
20: Delete H(i+ 1, :)
21: end if
22: end if
23: Split xs =

[
x,Ωc

∗]

24: x0 = x, Ωc = Ωc
∗

25: i = i+ 1
26: end while
27: end procedure

The first term enforces the single axis of rotation constraint while the second term

encourages smooth motion by only penalizing articulation that is not at a constant

rate. Rp,c
i is calculated from Rw,p

i and Rw,c
i . Mp,c

i is calculated from the optimization

variables (âp, âc, φi) by first aligning the axes and then rotating by φi as outlined in

equation set (74).

As expressed in Yucer et al. [103], the joint location translated into the world

frame will coincide for two linked parts.

Rp
i J

p + T pi = Rc
iJ

c + T ci , ∀i ∈ CF

For components linked by a universal joint there is a single Jp and Jc that best satisfy

this constraint. For a revolute joint, any point on the axis will satisfy this constraint.
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To narrow in on the joint locations that are closest to each other, the norm of the

joint locations is also minimized giving the following cost function.

min
Jp,Jc

CF∑

i=1

‖(Rpi Jp + T pi )− (RciJ
c + T ci )‖2 + λb [‖Jp‖+ ‖Jc‖] (76)

As the kinematic chain grows, the complexity of the problem increases, as does

the number of variables. The number of optimization variables in equation (70) is

((12 + CF )× (N − 1)) + (3× P ). Each articulation parameter (âp, âc, φ, Jp, Jc) for

each joint has an influence on each joint below it in the kinematic chain. This means

the optimization variables are highly interdependent resulting in many local minima

for equation (70). However, the articulation parameters do not have an influence on

the components above the joint in the kinematic chain. Using this relationship, a

method termed Incremental Joint Addition (IJA), similar to hierarchical methods in

[79, 9, 46]) was developed (see Alg. 1). IJA optimizes for the articulation parameters

in order, according to the kinematic chain adding each joint to the problem one at a

time and using the results to initialize the next step. Equation (70) is optimized N−1

times, each time another joint is added to the chain. This decreases the complexity

since each time a set of parameters is introduced into the optimization they only

influence the reprojection error for one component. It also provides a method of

further combining components that are likely to be the same rigid body. If the

variance of the Euler angle between components is low, they are tested and possibly

merged. More details of the IJA implementation are shown in Alg. 1. Results using

the IJA method as well as optimizing over all joint parameters together (AJP) are

presented in section 3.4.1. The IJA method was used for all results in section 3.4.2.
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3.3.8 Evaluation Metrics.

Multiple metrics are used to evaluate the results. Because the trajectory matrix

is simulated from a known point cloud, the position of each point at each time step

is known. This allows calculation of the normalized reconstruction error [30] (E3D)

which is direct comparison of the calculated point cloud to the known point cloud

in the world frame at each time step. E3D is calculated using equation (116) where

Struthi are the true world frame point locations of all points calculated in image frame

i and Scalci are the calculated world frame point locations in image frame i.

E3D =

F∑
i=1
‖Struthi −Scalci ‖
F∑
i=1
‖Struthi ‖

× 100% (77)

The calculated kinematic chain may contain more or fewer joints than the truth

model. Once the calculated joints are matched to the most appropriate truth joint

the articulation parameters can be compared. However, the articulation parameters

of the calculated model are in a body frame that is unrelated to the body frame used

to create the truth model. Therefore, the articulation axis error (Eâ) and joint error

(EJ) are calculated in the world frame (w) as follows, where N is the number of joints,

and F is the number of frames with data. Since the joints are revolute, any location

on the axis is correct, so the joint error is measured as the distance from the joint

to the line represented by the true joint location and articulation axis in the world

frame.

Eâ = 1
N

N∑
j=1

[
1
Fj

Fj∑
i=1

arccos(|(âjtruth,w)T âjcalc,w|)
]

(78)

EJ = 1
N

N∑
j=1

[
1
Fj

Fj∑
i=1

‖âjtruth,w × (J jcalc,w − J jtruth,w)‖
]

(79)

The articulation angle is evaluated using the error in the range of angles covered
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Eφrange and the rate of change of the angle Eφ̇.

Eφrange = 1
N

N∑
j=1

|∆j
truth −∆j

calc| (80)

∆j = max(~φj)−min(~φj) (81)

Eφ̇ = 1
N

N∑
j=1

[
1
Fj

Fj∑
i=2

|φ̇itruth − φ̇icalc|
]

(82)

φ̇i = φi−1 − φi (83)

In addition to evaluating the results directly, it may be interesting to understand

the satellite appendage’s range of motion, or more generally, what area around the

satellite are the appendages capable of reaching. This can be termed the satellite’s

workspace. To calculate the satellite’s workspace, the space around the satellite is

discretized into a grid of m×m×m = M points. Each joint is moved through its range

of articulation angles at Y increments. A convex hull is created encompassing each

shape in the world frame in the current increment and the previous increment. The

grid points in M that fall within the convex hull [27] are annotated as covered. The

collection of points in M that are covered represents the workspace of the satellite.

The complexity of this calculation scales exponentially with the number of increments

and the length of the longest portion of the kinematic chain K. If the computation

time for a single increment of a 2 link chain is Q then Q scales as Y K . This means

a 6 link chain incremented 10 times requires computation time of 106Q. The com-

putational requirement can be large, but can be managed by using only a handful of

increments. Both the calculated workspace and the true workspace are found in this

manner. They are compared using three percentages. Pwc is the percentage of the

truth workspace covered by the calculated model, Pwoc is the percentage of additional

space covered by the calculated model, and Pgc is the percentage of the grid points

where the true workspace matches the calculated workspace. These values are calcu-
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lated as follows where B is an M × 1 vector with Bi = 1 when grid point i is covered

and Bi = 0 when grid point i is not covered. � denotes element-wise multiplication.

Pwc =
∑
Bcalc�Btruth∑

Btruth
(84)

Pwoc =
∑
Bcalc�|Btruth−1|∑

Btruth
(85)

Pgc =
∑

1−|Bcalc−Btruth|
M

(86)

Note that the workspace calculation does not consider physical limits to motion im-

posed by other components. In other words, two components may occupy the same

physical space during some combination of motions.

3.4 Results

3.4.1 Initial Assessment.

The algorithm performance was measured with various joint activity using a 2×1

NMC [78] in geostationary orbit as the inspection route. The selected NMC was

2,000 units (in-track) by 1,000 units (radial) when projected into the orbital plane

with ±50 units of cross track and was phased for the best illumination conditions (see

Figure 12). The results presented were conducted under winter solstice illumination

conditions, however trials were also conducted under summer solstice and equinox

illumination with similar results. Figure 7 shows a schematic of the simulated satellite

and its articulating joints. In all cases, the panels articulate linearly from -1.3 radians

to 1.3 radians. Joints in the appendage that are active articulate linearly from -0.94

radians to 0.94 radians.

Two methods of articulation parameter optimization were evaluated: 1) optimiz-

ing over all joints together (AJP) and 2) incrementally adding joints (IJA). AJP

results and IJA results are comparable for most metrics and for most trials shown
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Table 1. Results for Single NMC at winter solstice.
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AJP 3 1 8 3 0.29% 80% 9.4% 0.038 0.0015 0.057 0.0036 678
IJA 3 1 6 1 0.30% 94% 8.2% 0.21 0.0044 0.015 0.0028 6,213
AJP 4 2 10 5 0.72% 97% 8.9% 1.66 0.059 1.32 0.063 646
IJA 4 2 7 2 0.31% 97% 0.82% 0.26 0.0044 0.38 0.0056 7,287
AJP 5 3 10 4 0.21% 96% 0.87% 0.48 0.013 2.35 0.028 969
IJA 5 3 8 3 0.25% 97% 0.9% 0.33 0.014 2.46 0.030 1,163
AJP 6 4 11 4 0.39% 97% 1.4% 0.74 0.024 2.92 0.044 1,280
IJA 6 4 9 4 0.32% 97% 0.87% 0.57 0.016 2.29 0.039 1,000
AJP 7 5 13 6 0.81% 92% 1.6% 2.46 0.046 4.29 0.086 1,881
IJA 7 5 11 5 0.89% 93% 1.5% 3.55 0.047 3.61 0.080 2,466
AJP 8 6 15 9 1.2% 63% 5.4% 8.59 0.051 9.17 0.15 4,427
IJA 8 6 11 6 0.82% 93% 0.70% 4.24 0.031 8.02 0.092 3,949

in Table 1. While there are cases when each performs better, there are no instances

when AJP performs significantly better than IJA. There are instances, such as when

all 6 joints are active, when the IJA performs significantly better than IJA. The abil-

ity of IJA to merge components contributes to its improved performance and allows

the number of components to be closer to truth than AJP in nearly all cases. These

advantages may be worth the added computational cost, particularly as the number

of joints increases.

The articulation parameter metrics (Eâ, EJ , E∆φ, and Eφ̇) shown in Table 1 are

calculated for only the joints on the appendage. The algorithm is able to characterize

the articulation parameters when all 6 joints are active, however the average error per

joint increases as the length of the kinematic chain increases. Detailed plots of each

trial are not presented, however the results with four active joints on the articulating

appendage are presented in Figure 11.

78



Figure 11. Example results. a) Truth (blue ·) and calculated (red ∗) 3D position of
points for an example frame. b) Calculated points, kinematic chain, joint locations,
and axes for an example frame. Points in each component are a different color. c) Grid
positions in both true and calculated workspace (blue ·), Grid positions in only true
workspace (red ·), Grid positions in only calculated workspace (green ·).

Table 2 shows the approximate computational time for this method. This is for

a simulation with 100 frames and 1,100 points with 7 active joints for a total of

8 components. The majority of the computational time is spent in the combining

segments section of the algorithm.

3.4.2 Illumination and Percentage of NMC.

For the simulations in this section the two panels and joints 3, 5, and 6 on the

articulating arm (see Figure 7) were activated. Inspection routes with sub-optimal

lighting conditions were investigated. To minimize variation, the motion of the satel-

Table 2. Computational Time.

Section Approximate Computational Time

Simulate Data 16 sec

Ray space optimization 3.5 min

Segmentation 1 min

Rigid body optimization 31 min

Combine Segments 4.3 hrs

AP optimization (AJP) 6 min

AP optimization (IJA) 35 min

Total 5-5.5 hrs
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Figure 12. Inspection route diagrams illustrating the illumination offset parameter (θ).
a) Fly-by inspection route. b) NMC inspection route.

lite is the same in all cases. Over the length of the simulation, joints 1 and 2 articulate

linearly from -1.26 radians to 1.26 radians while joints 3, 5, and 6 articulate linearly

from -0.94 radians to 0.94 radians.

Two types of inspection routes are investigated in this work: a 2 × 1 NMC,[78]

and a fly-by in which the inspector route consists of a straight line path in the relative

frame. In each case, the route can be phased for the ‘best’ illumination conditions or it

can be offset by some illumination offset angle (θ). The ‘best’ illumination conditions

are assumed to be those in which the primary satellite is most illuminated as viewed

by the inspector satellite, however, due to the nature of the space environment, even

these illumination conditions are sub-optimal as compared to a terrestrial application

in which an object can be lit from all sides. Figure 12 shows the meaning of θ for

fly-by routes and NMCs. Fly-by routes consist of the inspector satellite moving past

the primary satellite on a linear path in the relative frame that is parallel with the

in-track direction. The route is simulated to occur over 1 hour (assuming the primary

satellite is in a 24 hour circular orbit). In this case, θ is related to the location in

the orbit where the fly-by occurs. For an NMC the zero illumination offset condition

(θ = 0) represents a route in which the phasing of the NMC is such that the inspector
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is always between the primary satellite and the Sun. In this case, θ represents sub-

optimal phasing of the NMC with the primary satellite orbit.

Figure 11 shows an example of the results available from each trial. There are

numerous aspects of this method that are non-deterministic such as the placement

of points in the truth model, the segmentation algorithm, and the rigid body opti-

mization initialization method. Therefore, numerous simulations were conducted to

evaluate the effect of the illumination offset angle on the evaluation metrics. Results

for the fly-by inspection route are shown in Figure 13. Each plot shows a fourth-

order polynomial fit along with bounds containing at least 50% of predicted values

calculated using Matlab’s polyfit command. While some metrics (Eφrange , Eφ̇, and

Pwoc) do not seem to be effected by the illumination offset angle, most metrics begin

to degrade around θ = ±60◦. This is consistent with when the percentage of visible

points begins to decrease as shown in Figure 14.

Trials were also conducted for full NMCs with various illumination offsets. The

results are shown in Figure 15. As with the fly-by, the results begin to diminish

as the illumination offset approaches θ = ±60◦. This is again consistent with the

decrease in the percentage of visible points as shown in Figure 14. This suggests that

for these two types of inspection routes the percentage of visible points corresponds

to the quality of the results. However, the overall results for the fly-by are better

than the overall results of the NMC for most metrics even though the NMC views

a much higher percentage of points. This suggests that generally there is a point

at which a higher percentage of visible points does not produce better results. This

is likely because more points being visible results in a trajectory matrix with more

missing data which adds complexity to the ‘Combine Segments’ portion of the method

(section 3.3.5).

To further investigate this, additional simulations were run in which the percent-
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Figure 13. Fly-by trial results for each evaluation metric (outlined in section 3.3.8).
Blue dots represent the value for each trial, black lines are a 4th order polynomial fit
to the data, and dashed lines contain 50% of future predictions

age of the NMC completed was varied along with the illumination offset angle. As

the percentage of the NMC increases, more points will be visible, but the amount of

missing data in the trajectory matrix will also increase. More visible points means

more information is available about the overall shape of the primary satellite, how-

ever, more missing data complicates the segmentation process and the combination

of segments. This suggests there is limit at which more data is not beneficial to the

success of the algorithm.

Results are shown in Figure 16. For ease of evaluation and presentation, a single

metric (Qall) is used to quantify the results from each simulation. Qall is the sum-

mation of the normalized metrics described in section 3.3.8. The percentage metrics

(Pwc, Pwoc, Pgc) are normalized by their maximum while the error metrics (E3D, Eâ,

EJ , Eφrange , Eφ̇) are normalized by their maximum and subtracted from 1 so a better
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Figure 14. Percentage of truth model points that are visible during the inspection
route.

model is represented by a larger number. The contour represents a surface created

by a fourth-order polynomial in each of the test variables fit to the Qall metric. The

points represent each of the test points with a color corresponding to the value of Qall

for that simulation.

After 50% of the NMC is completed, the results suggest that additional data causes

an overall decreasing trend in the quality of the resulting model. This suggests that

if the inspection route covers more than 50% of the NMC, only the data from the

first half of the NMC should be used to create the model. Any additional data could

be processed using some type of model refinement method in which new points and

frames are appropriately added to the existing model. The results also suggest that

an inspection route limited to 50% of an NMC may be as suitable as a longer route

when creating a model.
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Table 3. Parameters. Method of determination: NA = Noise analysis; PPK=Prior
problem knowledge; CFR=Cost function ratios; PD=Point density; RA=Risk assess-
ment

Parameter Name/description Value Method of
determina-
tion

γs Stationary threshold: determines when a
point is considered stationary

1−6 NA

k Number of segments: determines the num-
ber of segments for spectral clustering. (sec.
3.3.3)

10 or
22

PPK

γsc+, γsc− Ratio of smoothness penalty to reprojection
error penalty. (sec. 3.3.4)

0.25,
0.05

NA

γf Reprojection error fair share multiplier for
outlier rejection. (sec. 3.3.4)

8 PD

γr Range rejection multiplier for outlier rejec-
tion. (sec. 3.3.4)

4 PD, PPK

γc Segment merge criteria: allowable increase in
function value for acceptable merge. (sec.
3.3.5)

2 RA

γBB Joint bounding box expansion: determines
the size of the bounding box around the com-
ponent shape. (sec. 42)

0.5 PPK

η Coefficient in joint penalty. (eqn. (70)) 100 CFR

λa Rotation parameter initialization smoothness
weight. (eqn. (75))

5 CFR

λb Joint location initialization closeness weight.
(eqn. (76))

5 CFR

γa Minimum articulation angle mean rate. (IJA
algorithm)

0.007
rad.
per
frame

RA

γm Segment merge criteria: allowable increase in
function value for acceptable merge. (IJA al-
gorithm)

5 RA
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Figure 15. Full NMC trial results for each evaluation metric (outlined in section 3.3.8).
Blue dots represent the value for each trial, black lines are a 4th order polynomial fit
to the data, and dashed lines contain 50% of future predictions

3.4.3 Limitations.

This method is capable of characterizing satellite articulation, however limitations

exist.

• There are a number of parameters that require adjustment based on the specifics

of the problem. These parameters are shown in Table 3 along with the method

of determining an appropriate setting. Noise analysis (NA) means that the

best parameter setting is based on the amount of uncertainty in the trajectory

matrix and the inspector satellite route. Prior problem knowledge (PPK) means

that some information regarding the particular problem, such as an estimate

on the number of components, should be used to select an appropriate value.

Cost function ratios (CFR) means that the ratio of the different terms in the

cost function should be used to scale the value appropriately. Point density
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Figure 16. Results from Illumination offset angle and Percentage of completed NMC
testing. Contour plot represents a 4th order polynomial fit of both experimentation
variables to the equally weighted combination of all evaluation metrics. Dots represent
each trial colored by the value of the combined metric at that point.

(PD) means the number of points found/tracked should dictate the criteria for

removing points. Risk assessment (RA) means the risk in having more or less

than the correct number of components should be assessed.

• The current implementation only calculates parameters for a component when

the component is visible and when all components above it in the kinematic

chain are visible. This could be highly limiting for certain cases in which a

component is shadowed or occluded for a significant number of frames.
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• As currently implemented, this method requires the main body of the satellite

to be motionless in the world frame. This limitation is investigated in the next

section.

• It is assumed that the motion of the inspector satellite is known. While this is

likely to be the case generally, the exact relative position may not be known.

Accommodating uncertainty in the inspection route is investigated in the next

section.

• Real imagery and the challenges of feature point recognition and tracking in

representative space illumination conditions have not been investigated in this

work.

3.5 Accommodating Main Body Maneuver and Uncertainty

Two of the main limitations of the method outlined above are that the main body

must remain stationary in the world frame and that the inspection route must be

known perfectly. Since the location of the world frame is relative, these two limita-

tions are related. At first glance, it seems as though removing this limitation would

be straight forward; simply add additional optimization variables that account for the

rotation and translation of the main body with respect to the world frame. Attempts

to implementing this solution however were unsuccessful, likely because of two issues:

1) inaccuracies in segmenting points on the main body, and 2) inaccuracies in cal-

culating the maneuver of the main body. In the method outlined above, the main

body points are segmented to the main body because they have small distances to

the epipolar line between temporally adjacent frames. With trajectory matrix un-

certainty, inspection route uncertainty, or a maneuver of the main body it is difficult

to segment points in this way, therefore they must be segmented with the remaining
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points using spectral clustering. None of the similarity matrices and spectral cluster-

ing techniques tested were able to segment the full trajectory matrix (including the

main body) with enough accuracy for success.

Additionally, a maneuver of the main body means that the main body shape and

pose must be solved using the rigid body optimization process which contains many

local minima. This issue can be overcome in the previous method because inaccurate

shape/pose solutions can be rectified further in the process when they are constrained

to the main body. If, however, the main body is maneuvering, and therefore its motion

must be solved using rigid body optimization, there is no way to stop a poor solution

for the main body pose from adversely effecting everything below it in the kinematic

chain.

Removing these two issues, the method as previously outlined is capable of build-

ing an articulated model. To demonstrate this, a 30% NMC test case was run in

which noise was added to the trajectory matrix and to the inspection route. Zero

mean white Gaussian noise sampled from N (0, η2
TM) where ηTM was set to 0.5% of

the overall standard deviation of all elements in the trajectory matrix was added to

each element of the trajectory matrix. For the inspection route, noise was added to

the pointing angle of the camera by multiplying RCW
i by a rotation matrix created

from a randomly sampled Euler axis and a Euler angle sampled from N (0, η2
θ) where

ηθ = 1.6e − 5, and noise was added to the camera location rCWi by adding a 3 × 1

translation sampled from N (0, η2
r) where ηr = 0.01. The points belonging to the main

body were removed (using the true segmentation) and their shape was solved using

linear least squares as described in section 3.3.2. The rest of the algorithm was run as

described in section 3.3. Results are shown in Figure 17 and Table 4. These results

are comparable to those shown in the section 3.4.2.
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Figure 17. Results with trajectory matrix and inspection route noise. a) Truth (blue
·) and calculated (red ∗) 3D position of points for first frame. b) Calculated points,
kinematic chain, joint locations, and axes (truth in blue calculated in red) for first
frame. Points in each component are a different color. c) Grid positions in both true
and calculated workspace (blue ·), Grid positions in only true workspace (red ·), Grid
positions in only calculated workspace (green ·).

Table 4. Results for 30% NMC with known main body segmentation, trajectory matrix
noise, and inspection route noise.

E3D Pwc Pwoc Pgc Eâ (deg.) EJ (units) E∆φ (deg.) Eφ̇ (deg./frame)

1.3% 95.0% 7.6% 98.8% 4.6 0.12 9.8 0.16

3.5.1 Modified Model Development Method.

In developing a method that works with main body maneuver, a few things were

taken into account. First off, a reliable segmentation method was desired. The

LSA method of [100] provides a reliable segmentation, however it requires a full TM

with no missing data. Secondly, a more realistic articulation scenario was desired.

Information available on the Canadarm2 [66] aboard the International Space Station

suggests that operation over the articulation angle range in section 3.4.1 would occur

over approximately 28 minutes, which equates to 2% of an NMC at GEO. Therefore,

for development and testing of this method an inspection route consisting of 2% of

an NMC was used. Both panels and three joints on the arm were articulated linearly

as described in section 3.4.2.

The first step of the modified method was to employ motion segmentation on the

trajectory matrix which was simulated in the same manner as outlined in section
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3.3.1. The LSA method of motion segmentation builds a P ×P affinity matrix based

on the angle between the local subspaces of each point combination as described in

section 2.3.2. This method requires a full trajectory matrix, with no missing data.

The trajectory matrix generated from a 2% NMC route consists of 22% missing

data, so to use the LSA segmentation method points viewed in less than 95% of

frames were eliminated. Empty entries within the remaining columns were filled with

the nearest value. This produced a full trajectory matrix that was segmented using

LSA. Note that the number of components was also supplied to the LSA algorithm.

This provided segmentation into six components with approximately 97% of points

assigned to the correct component.

Since the satellite was viewed at an angle from which the components are not over-

lapping, the trajectory matrix itself provides enough information to build a kinematic

chain. An adjacency matrix was created by comparing the average distance between

the points in corresponding groups. The adjacency matrix H entries are calculated

as follows using Matlab notation where W ′ is the trajectory matrix, in are the indices

of the nth component, and pn is the number of points in the nth component. The

minimum spanning tree of H is the kinematic chain.

H(j, k) =
1

pjpk

pi∑

q=1

pj∑

r=1

‖W (:, ij(q))−W (:, ik(r))‖ (87)

With a kinematic chain and segmentation, the root component can be identified.

Rigid body optimization as described in section 3.3.4 may produce an incorrect local

minimum. This is exacerbated since the camera’s angular motion relative to the

world frame is small in the 2% NMC scenario. To combat this problem, the rigid

body optimization of the root component (containing the maneuver of the primary

satellite) was paired with the solution of the articulation parameters attached to the
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root component. The root component’s rigid body motion was initialized with 20,000

seeds using the scaled orthographic camera structure from motion method described

in section 3.3.4. For the 30 seeds with the lowest error, rigid body optimization was

performed along with articulation parameter optimization for each of the components

attached to the root component using the IJA method outline in section 42 and a

particle swarm optimization (PSO) routine to initialize the articulation parameters.

The IJA method was then continued for the remaining joints using the best solution

of the 30 seeds. An overview of the method is shown in Algorithm 2.

To accommodate noise in the trajectory matrix, a change was made to the overall

reprojection error cost functions (equations (61) and (70)). Adding noise to the

trajectory matrix means that the feature point locations no longer represent rigid

body motion. The optimizer, however, still attempts to drive the reprojection error

to zero. Since zero reprojection error no longer represents rigid body motion, errors

can occur. To fix this issue, the reprojection error portion of equations (61) and (70),

D in the equations below, was adjusted to set the cost function penalty to zero when

the error is below the anticipated uncertainty in the trajectory matrix (σTM).

Gi,j = Wi,j − Pcam(Ri,jΩj + Ti,j) (88)

D =
F∑
i=1

M∑
j=1

(Ii,j(|Gi,j| − 3σTM))2 (89)

∂D
∂Gi,j

= 2(Ii,j(|Gi,j| − 3σTM))sgn(Gi,j) (90)

In the equation above, F is the number of frames, M is the number of points,

the subscript i, j on R and T refers to the appropriate rotation and translation, and

I is an indicator function that is set to zero when |Gi,j| is less than 3σTM and one

when it is greater than 3σTM . The gradient ∂D
∂Gi,j

is also shown above. Note that
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Algorithm 2 Modified Model Development Method
procedure Modified Model Development Method

H is table of joints representing the kinematic chain
for i=1:20,000 do

xi=random selction of an angular rate, starting translation, and translational rate
[fi,Ω

rc
i ]=orthographicSfM(xi)

end for
idx=indices of 30 lowest values in f
jts=rows of H attached to root component
for i=1:30 do

x̃i=RBOpt(xi,Ω
rc
i )

for j=jts do
x̃i=[x̃i, initializeAP(x̃i,H(j,:))]
[x̃i,f̃i]=articulationParameterOptimization(x̃i)

end for
end for
idx=index for minimum value of f̃
xap = x̃idx
for i=remaining joints in H do

xap=[xap, initializeAP(xap,H(i))]
xap=APOptimization(xap)

end for
Extract articulation parameters (Rwn, Twn, âm, Jmp , J

m
c , φ

m,Ωn) from xap
end procedure

procedure orthographicSfM
Translate x to a rotation R and a translation T at each frame
Use R and T to solve for the error using equations (63) - (66)

end procedure

procedure RBOpt
Translate x and Ω to state vector as shown in section 3.3.4
Minimize equation (61) with Matlab’s fminunc

end procedure

procedure initializeAP
x =

[
âp, Jp, Jc, φ̇

]

Use Matlab’s PSO to minimize error from orthographicSfM(x)
Calculate appropriate articulation parameters and child shape for joint

end procedure

procedure APOpt
Translate x and Ω to state vector as shown in section
Minimize equation (70) with Matlab’s fminunc

end procedure

this function has a continuous, but no longer smooth gradient, and therefore does

not have a continuous second derivative. The gradient is supplied to the optimization

solver (Matlab’s fminunc) however the Hessian is approximated numerically at each
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iteration using the built-in BFGS method. The discontinuity in the second derivative

of the cost function did not cause issues with this implementation, however care

should be taken using this cost function with other solvers, particularly if the Hessian

is calculated in a different way.

3.5.2 Example Results with Moving Main Body and Noise.

As discussed previously a 2% NMC inspection route was used for development of

this method. Since the world frame is arbitrary and noise was added to the inspection

route that defines the world frame with respect to the camera frame, it proved difficult

to accurately solve for the specific rotation and translation involved in the maneuver.

However, if the goal is to build an articulated model of the satellite, the maneuver

itself (rigid body motion in the world frame) is unimportant. For this reason, the

results are presented with the effects of the maneuver removed by aligning the first

frame to the truth data. For this example, noise was added to the trajectory matrix

as described in section 3.5 with ηTM equal to 0.08% of the overall standard deviation

of the trajectory matrix; this is approximately equivalent to a 3σ = 1pixel if the

image were 2000× 2000 pixels in size. Noise was added to the inspection route at a

baseline level of ηθ = ηbθ = 1.6e− 5 (equivalent to 3σ = 10arcsec) and ηr = ηbr = 0.01.

Table 5. Results for 2% NMC with LSA segmentation, main body manuever, trajectory
matrix uncertainty, and inspection route uncertainty. Terms with * are calculated for
the first frame only.

E∗3D Pwc Pwoc Pgc E∗â (deg.) E∗J (units) E∆φ (deg.) Eφ̇ (deg./frame)

3.1% 90.2% 10.6% 98.1% 4.8 0.12 6.8 .32

3.5.3 Inspection Route Noise Assessment.

To evaluate the effect of inspection route uncertainty the baseline values (ηbθ and

ηbr) were multiplied by integer values until performance decreased. Figure 19a shows
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Figure 18. Results with a maneuver, trajectory matrix noise, and inspection route
noise. a) Truth (blue ·) and calculated (red ∗) 3D position of points for first frame. b)
Calculated points, kinematic chain, joint locations, and axes (truth in blue calculated
in red) for first frame. Points in each component are a different color. c) Grid positions
in both true and calculated workspace (blue ·), Grid positions in only true workspace
(red ·), Grid positions in only calculated workspace (green ·).

the results when both noise values were increased together. The error metrics shown

were selected for ease of plotting and the units are those appropriate to the error met-

ric (see Table 5). Performance remains relatively consistent until a level of ηθ = 4ηbθ

and ηr = 4ηbr. When the noise levels were increased independently (Figure 19b and

c) performance remained consistent until the noise was 5 times the baseline. To fur-

ther investigate the limits, the minimum ratio for the smoothness penalty (γsc− from

Table 3) was decreased to 0.01. This decreases the smoothness penalty, allowing the

results to better accommodate inspection route noise. Making this slight adjustment

enabled the algorithm to build an accurate model with up to 10 times the baseline

inspection route noise as shown in Figure 19d. Notice that the 1− Pgc metric seems

to decrease at the highest noise level. This is because the results in this trial were so

far from the truth model that they were almost entirely outside the discretized space

used to calculate the workspace metrics. The average computational time (using a

desktop PC) for all of the trials in Figure 19 was 6.1 hrs.

Robustness to noise could be further improved by evaluating more seeds (line 9

of Algorithm 2). For instance, increasing to 50 seeds allowed the algorithm to build

an accurate model with ηθ = 30ηbθ and ηr = 30ηbr.
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Figure 19. Inspection route (IR) noise assessment. a) ηθ and ηr increased together;
b) ηr increased, ηθ held at the baseline; c) ηθ increased, ηr held at the baseline; b)
minimum smoothness ratio reduced, ηθ and ηr increased together. Note that when the
marker is not shown in the plot that means the error was higher than the y-axis scale.

3.6 Conclusion

The methods presented in this chapter demonstrate that an articulated model can

be created from a trajectory matrix of feature points and the inspection route. The

original method demonstrates how a model could be built from a sparse trajectory

matrix gathered from a full NMC inspection route. The capability of this method to

produce an accurate articulated model was demonstrated with up to 6 active joints in

the appendage and with inspection routes illumination offset angle of approximately

60◦. It was also found that performance was better for a partial NMC. This method

has limitations, however these limitations could be mitigated with prior knowledge

or with human input.

A modification of the method was also developed that allows the main body to

maneuver and accommodates uncertainty in the trajectory matrix and inspection

route. Example results are presented, and the performance with increasing levels of

inspection route noise was assessed. This method relies on having a known number

of components and reduces the trajectory matrix so that it does not contain any

missing elements, allowing for accurate segmentation. With a full trajectory matrix,

alternative methods employing structure from motion techniques could be used to

build the articulated model.[100, 101] As a test case, the BALM algorithm outlined
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in [26] was used to solve for the structure and motion of two linked parts from the 2%

NMC trajectory matrix outlined in section 3.5.1. When the algorithm was initiated

with the true rotation and shape as described in [26] the algorithm took 21 hours to

converge to the solution. These methods have not been investigated further, however

they have the potential advantage of being able to build the articulated model from

the trajectory matrix alone, without knowledge of the inspection route. An example

of employing these type of methods for a simple satellite with a single articulating

panel is shown in Appendix C.
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IV. Articulation Tracking with Feature Points

4.1 Chapter Overview

This chapter consists of method development and results for an estimation frame-

work to track the articulated motion of a primary satellite sequentially to meet Ob-

jective 2 of this research. The work presented is also available in a conference paper

[21]. This chapter consists of an introduction (section 4.2), the method for tracking

articulation with feature points (section 4.3), results (section 4.4), and a conclusion

(section 4.5).

4.2 Introduction

Autonomous on-orbit satellite servicing and inspection benefits from an inspec-

tor satellite that can track the motion of a primary satellite, including the motion

of appendages such as solar arrays, antennas, and sensors. This chapter presents

a method of estimating the articulation parameters and shape of a satellite using

resolved monocular imagery. A simulated point cloud representing a nominal satel-

lite with articulating solar panels and a complex articulating appendage is developed

and projected to the image coordinates that would be seen from an inspector follow-

ing a given inspection route. A model created using the method in Chapter III is

used to initialize a set of extended Kalman filters to track the satellite’s motion and

articulation from the image coordinates.

4.3 Method

The method begins with an articulated model consisting of the following: N com-

ponents each containing a set of a 3D points representing the shape of the component

in its body frame; a kinematic chain outlining which components are connected to
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each other; parameters for N − 1 joints each consisting of two joint locations (Jp, Jc)

and two axes (âp, âc). For this work, the model used was developed using the method

outlined in Chapter III, however any model with the required parameters could be

used. The filters are initialized using the model, the first frame in the simulated

sequence, and the camera’s pose. The P feature point locations from a frame are

used as the measurement in P seperate point position EKFs (ppEKF) to estimate

the 3D position of the point in its assigned component’s body frame with component

rotation and translation, defined by the articulation parameters, taken as prior knowl-

edge. Next the 3D body frame positions of each point are used as prior knowledge

in an articulation parameter EKF (apEKF) with the 2D feature point locations as

measurements to update the articulation parameters. Newly seen points are added to

the model using a multiple model approach. Results are demonstrated for a full NMC

with linear articulation and for a partial NMC with articulation start/stop included

in the simulation.

4.3.1 Simulating Data.

Data is simulated for this method in the same way as described in section 3.3.1

with articulation of both panels and joints 3, 5, and 6. The model used is shown in

Figure 7.

4.3.2 Filter Framework.

A feature point represents a specific position in 3D space projected to a 2D mea-

surement of the point’s location in an image. In this work, the 3D position of each

point sj is measured in the body frame of the component to which it is assigned. A

diagram of the coordinate frames used in this work is shown in Figure 10. The rela-

tionship between each component’s body frame and the world frame is captured in
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the articulated model which can be represented by the state vector xAP . The articu-

lated model is required to relate a 3D point sj to the corresponding 2D measurement

zjt , however, given an articulated model each point can be estimated separately, ren-

dering them conditionally independent.[86] This allows development of a framework,

inspired by the FastSLAM method of Montemerlo et al.[62, 61] and the multi-level

recursive estimation method of Martin Martin and Brock [58], consisting of a set of

EKFs to estimate sj and a separate EKF to estimate xAP .

With each measurement, the articulation parameters are propagated to the current

time step t to give xAP−t . Next, 3D positions of each point are updated independently

with an EKF, termed point position EKF (ppEKF), that estimates the 3D position

of the point sj+ given the 2D image coordinates as measurements (zjt) and the propa-

gated articulation states xAP−t . Finally, the articulation parameters are updated with

an EKF (apEKF) that estimates xAP+
t given the measurement zjt and the 3D point

positions sj+. These steps are discussed in more detail in the following sections.

The state vector for the articulation parameter EKF (apEKF) is as follows:

xAP =

[
(qwr)T (Twr)T (ωwr)T (Ṫwr)T ν1:M

]
(91)

The first 13 states capture the orientation and velocities of the root component with

respect to the world frame. The rotation of the root component is expressed in

quaternion form as qwr while its translation is expressed as Twr. Quaternions in

this work are expressed as in Markley [56] with q =


e sin(φ/2)

cos(φ/2)


. The variable ν1:M

contains the articulation parameters for each of the M = N − 1 joints as follows:

νi =

[
θi ψi (Jp

i)T (Jc
i)T φi φ̇i

]
(92)

The kinematic chain can be expressed as a table (see section 3.3.6) with each row
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containing the parent/child relationship for a joint. The states θi and ψi are the

azimuth and elevation, respectively, defining the articulation axis for the joint in the

parent’s body frame. During initialization, the body frame of the child is rotated so

that the articulation axes of the parent and child are aligned. This allows the axis

of the joint to be represented by a single set of angles. The states Jip and Jic are the

locations of the joint in the body frames of the parent and the child respectively. The

states φi and φ̇i are the articulation angle and the articulation rate respectively.

The measurement (zt) is the 2D location of feature points in the image frame

where zjt = [ujt , v
j
t ]
T and P is the number of observed feature points in frame t.

zt =

[
(zc1t )T (zc2t )T · · · (zcPt )T

]T
(93)

Since simulated feature point data is being used in this work, it is assumed that points

can be accurately tracked and the point correspondence between views is known until

the points drop out of view for a significant number of frames. The vector c provides

the correspondence between the feature point locations in frame t and the point

identifier j.

The quaternion was allowed to update unconstrained and was normalized when

used to calculate the rotation matrix. After each update, the quaternion normaliza-

tion method outlined in Civera [14] was applied to the state vector and the covari-

ance matrix. While other methods of handling the quaternion, such as in references

[37, 56, 16], were investigated, this method worked well in the situations tested.

4.3.3 Propagate Articulation Parameters.

Using this framework, most of the states are expected to remain constant over

time. The only states expected to change with time are the root component motion

(qwr and Twr) and the articulation angles (φi). The root component quaternion is
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propagated as in Civera [14] assuming a constant angular rate with noise ηω and t

indexing the time step.

qwrt = qwrt−1 ⊗ q((ωt + ηω∆t)∆t) (94)

ωwrt = ωwrt−1 + ηω∆t (95)

The ⊗ represents quaternion multiplication and q(∗) is the conversion from a rotation

vector to a quaternion q(∗) =



∗
‖∗‖ sin(‖∗‖2 )

cos(‖∗‖2 )


. The translation is propagated assuming

a constant rate with noise ηṪ .

Twr
t = Twr

t−1 + (Ṫwr
t−1 + ηṪ∆t)∆t (96)

Ṫwr
t = Ṫwr

t−1 + ηṪ∆t (97)

The articulation angle φi propagates with a constant rate φ̇i with noise ηφ̇.

φit = φit−1 + (φ̇it−1 + ηφ̇∆t)∆t (98)

φ̇it = φ̇it−1 + ηφ̇∆t (99)

The remaining states in xAP are constant and are propagated generally as xt =

xt−1 + ηx∆t where ηx is the estimated process noise for the state x. Propagation of

these states results in xAP−t . The covariance matrix PAP is propagated by PAP−
t =

FtP
AP+
t−1 (Ft)

T +GtQ(Gt)
T where Ft is the Jacobian of the propagation equations, Gt is

the derivative of the propagation equations with respect to the noise channels, and Q

is the noise strengths. The derivatives required for F and G are shown in Appendix B.
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4.3.4 Point Position EKF Update.

For every point j in component n an EKF is used to estimate the state sn,j+t using

the corresponding measurement zn,jt and the propagated state xAP−t . Since each

point is assumed constant in the body frame, the propagation step is not required

(sn,j−t = sn,j+t−1 , P sn,j−
t = P sn,j+

t−1 ). The measurement model for the ppEKF is as follows:




u′

v′

α




= ROn
t




sn,j−t

1


 (100)

ROn
t = Pcam

[
RCW rCW

]


Rwn Twn

0 0 0 1


 (101)

ẑn,jt =



u′
α

v′
α


 (102)

The reprojection operator (ROn
t ) for the nth component is a function of the known

camera orientation (RCW
t , rCWt ), the camera calibration matrix (Pcam), and the ar-

ticulation parameters xAP−t . Since the articulation parameter states are not in the

state vector for the ppEKF the linearized measurement model Hn,j
t can be written as

follows using Matlab notation to index ROn
t .

Hn,j
t =

1

α2



αRO

n,(1,1:3)
t − u′ROn,(3,1:3)

t

αRO
n,(2,1:3)
t − v′ROn,(3,1:3)

t


 (103)
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Equation (103) can be used in the standard Kalman filter update equations to update

P sn,j−
t and estimate sn,j+t where R is the measurement noise.

As
n,j

= Hn,j
t P sn,j−

t (Hn,j
t )T +R (104)

K = P sn,j−
t (Hn,j

t )T (As
n,j

)−1 (105)

P sn,j+
t = (I −KHn,j

t )P sn,j−
t (106)

rn,j = zn,jt − ẑn,jt (107)

sn,j+t = sn,j−t +Krn,j (108)

The measurement covariance As
n,j

is stored for each filter and is used in the update

of the articulation parameters outlined in the next section.

4.3.5 Update Articulation Parameters.

Next, the 3D positions of the points are used as prior knowledge to update the

articulation parameters. The measurement model is the same as outlined in equa-

tions (100)-(102), but using the updated positions sn,j+t . The articulation parameters

determine the rotation matrix Rwn and translation Twn for each component. For

the root component Twn = Twr is known directly from the state vector and Rwr

can be easily calculated from qwr. For the remaining components, rotation matrices

and translations are calculated based on the hierarchy of the kinematic chain and

the articulation parameters. Define X = [x1, x2, · · · , xl] as a single chain starting at

the root and ending with a component that has no children where each element of X

identifies a component and l is the length of the chain. The rotations and translations
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can be written as follows for the joint between xk and xk−1 defined as joint i.

Rw,xk =





Rwr , k = 1

Rw,xk−1Rxk−1,xk , otherwise

(109)

Tw,xk =





Twr , k = 1

Rw,xk−1Jip + Tw,xk−1 −Rw,xkJic , otherwise

(110)

The rotation matrices between linked parts (Rxk−1,xk) can be found by using the

azimuth (θi), elevation (ψi), and articulation angle (φi) for the joint. The term â× is

the skew-symmetric representation of â.

â =

[
cos(θi) cos(ψi), sin(θi) cos(ψi), sin(ψi)

]T
(111)

Rxk−1,xk = cos(φi)I + (1− cos(φi))ââT − sin(φi)â× (112)

In this case, the linearization of the measurement model is much more complex

since each measurement is dependent on the articulation parameters for every joint

above it in the kinematic chain. The derivatives required to calculate HAP
t are shown

in Appendix B. The state xAP−t and the articulation parameter covariance PAP−
t can

then be updated using standard Kalman filter update equations similar to equations

(105)-(108). Note that the measurement noise covariance R is built at each update

with the appropriate As
n,j

matrices from the ppEKF update along the diagonal. This

brings the uncertainties from the ppEKFs to the apEKF.

4.3.6 Initialization.

An initial state vector is required to begin the apEKF and the ppEKFs. Due

to the nature of the problem, convergence to the correct solution is not guaranteed,
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therefore the initial state must be chosen judiciously. The given model is used to

find a state vector that most closely projects points matching the first image. As

mentioned previously, the model from Chapter III was used in this work. In Chapter

III the articulation is parameterized by two axes for each joint, one defines the axis

in the parent’s frame and the other defines the axis in the child’s frame. Rotating the

child’s frame to align its axis with the parent’s axis allows one axis to be eliminated.

Defining the axis with θi and ψi as in equation (111) further reduces the number of

states, however it introduces the potential for a singularity when ψ = ±π
2
. To avoid

this, the body frame is rotated if an axis is near the singularity. Since the axis should

be stationary, it is unlikely to move to the singularity. In this way, the model is

used to initialize θi and ψi. The joint locations Jp
i and Jc

i from the model, rotated

appropriately for frame alignment, are used directly to initialize the filter.

Once the body frames have been aligned, the next step is to initiate the root

component rotation qwr and translation Twr. Defining the world frame at the origin

of the root component and assuming the inspection route is defined with respect to

the world frame allows these to be set to qwr = [0, 0, 0, 1]T and Twr = [0, 0, 0]T .

Next, the articulation angles φ can be determined. This is done by randomly

selecting 5,000 sets of φ′s and projecting the model points to the image plane assuming

those articulations. No point correspondence is known between the model and the

first image feature points, so the distance from each reprojected point (Z) to each

first image feature point (W ) is used to quantify the quality of the selected set of φ′s.

Specifically, the summed distance between each point in Z and its nearest neighbor in

W added to the summed distance between each point in W and its nearest neighbor

in Z is used as the cost function (J) measuring the quality of a set of φ′s.

J =
∑

i∈Z
min
j
Di,j +

∑

j∈W
min
i
Di,j (113)

105



D is a matrix containing the Euclidean distances between each point in Z and each

point in W . The 15 best sets of φ′s are then used as starting points for minimizing

J with Matlab’s fminunc. The best solution is used as the initial set of φ′s.

The rates (ωwr, Ṫwr, φ̇i) are initialized at zero leaving only the shapes (Ωr, Ωi
c).

These are initialized by comparing the locations in the reprojected model Z and the

first image feature point W . For each point in W the closest 12 points in Z are found.

Of these closest 12 points, the 3 that are closest to the camera (lowest z component in

the camera frame) are selected to determine the component assignment and location

for the point. The point is assigned to the most common component of these three

points in the model and the location of the point within that component is taken

as the mean location of those points. This method could have difficulties in cases

where multiple components are stacked up in-line with the camera’s optical axis at

initiation. In that case other methods such as triangulation could be used to assist

in assigning points to the appropriate component.

4.3.7 Adding Points to the Model.

In many inspection routes, such as a natural motion circumnavigation (NMC),

the inspector satellite moves around the primary satellite. This means that during

inspection, feature points will drop out of view and new feature points will be visi-

ble. Therefore, a method is necessary to add new feature points to the state vector

for tracking. In EKF SLAM applications such as Davison [24] and Civera [14], an

alternative representation for the point location is used to initialize the point in the

filter until the distance can be estimated with sufficient certainty. In this applica-

tion, the points need to be assigned to an appropriate component and their position

within that component must be estimated. To do this, a multiple model framework

is employed. For each newly seen point a bank of N ppEKFs is created, one for
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each of the components. Each filter estimates the points 3D position in the body

frame of component n. The reprojection operators (ROn) calculated from xAP+
t are

taken as prior knowledge in each filter which is propagated and updated as outlined

in the ppEKF section. The measurement covariance An,j = Hn,jP n,j(Hn,j)T +R and

the measurement residual rnj = zk − ẑk can then be used to calculate the posterior

probability p(zt|sn−j , ROn
t ) for the nth filter.[42, 31, 86]

p(zt|sn−j , ROn
t ) =

1

det(2πAnj )
1
2

e−1/2((rn)T (An,j)−1rn) (114)

The conditional probability of each component given the measurement z can then be

calculated.

p(n|zt) =
p(zt|sn−j , ROn

t )p(n|zt−1)
N∑
l=1

[
p(zt|sl−j , ROl

t)p(l|zt−1)
] (115)

The initial conditional probabilities for each component are set to 1/N . The initial

state is set to zero and the initial covariance matrix is set to the identity matrix times

σ2
s . The filter banks for each point are updated until the conditional probability of

a particular model remains above a threshold for some number of frames, at which

point the point sj is added to the model. An example of the conditional probabilities

for a point as it is assigned to a component is shown in Figure 20. Notice the highest

probability varies between multiple components before it settles to component 1.

4.3.8 Outlier Rejection.

Points are removed from the model when their RMS residual is more than four

times (judiciously chosen) the average RMS value for all the residuals. This method

works well to remove a few points that may have been assigned to the wrong com-
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Figure 20. Conditional probabilities for an example point from initial acquisition to
assignment.

ponent, however it has limitations. For instance, if the articulation parameters are

incorrect for a particular component, all the points corresponding to that component

could be rejected as outliers before the apEKF converges to the correct articulation

parameters.

4.4 Results

To test this method an articulated model resulting from the model building

method of Chapter III was used as the input model. The truth model used for

simulating the data consisted of 5 joints, one between each panel and the main body

and three on the appendage. However, the articulated model calculated from the

method in Chapter III identified an extra component and joint on one of the solar

arrays. This inaccuracy in the developed model was retained in this work to in-

vestigate performance with an inaccurate initial model. A diagram of the nominal
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satellite used is shown in Figure 7. A 2× 1 NMC inspection route phased with zero

illumination offset is the basis for the results presented. In each of the scenarios white

Gaussian noise N (0, σ2
u,v) is added to the image coordinates where σu,v is set to 0.2%

of the overall standard deviation of image coordinates. At each frame noise was also

added to RCW in the form of a random rotation of ρ radians where ρ is sampled from

N (0, σ2
ρ). Additionally, noise is added to rCW by multiplying each component by

random noise sampled from N (1, σ2
γ).

4.4.1 Full NMC Demonstration.

As with any EKF, this framework requires noise values to be tuned to improve

performance. Table 6 shows the noise values used.

Table 6. Noise settings

Initial covariance values
σ2
q σ2

T σ2
ω σ2

Ṫ
σ2
s σ2

θ,ψ σ2
J σ2

φ σ2
φ̇

1e−9 1e−7 1e−8 1e−6 1e−2 5e−6 5e−5 8e−8 1e−3

Process noise values
ηω ηṪ ηs ηθ,ψ ηJ ηφ̇

1e−12 1e−10 0 0 0 0
Measurement noise

ηu,v = (σu,v + σρ + σγ)
2

Inspection route noise
σρ = 3e−4 σγ = 2e−4

To demonstrate the capability of the filter to track the model long term, a complete

NMC is performed with the panels articulating at a constant rate between -1.26

radians to 1.26 radians and each of the active joints (joints 3, 5, and 6 from Figure

7) articulating at a constant rate between -0.94 radians to 0.94 radians. The root

component remains stationary in the world frame in this simulation. The simulation

consists of 2880 updates over the full NMC. This translates to 2 updates per minute

if the primary satellite is in geosynchronous orbit. The average computational time
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Figure 21. Full NMC results.

using a desktop computer for updating the filter is approximately 0.3 sec, leaving

plenty of time for image processing and feature point tracking. As more points are

added to the model the computational time increases. In this work, there are 1365

points in the model at the completion of the NMC; 341 of these are duplicates that

were reacquired after disappearing from view. A method of assigning reacquired

points to the appropriate ppEKF could be implemented to limit the number of points

in the model.
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Figure 22. Full NMC Final estimated point positions in world frame. Component color
labels correspond to labels in Figure 7.

The percent error of the 3D points in the model is shown in Figure 21a. The

percent error, or normalized reconstruction error as defined in [30] is calculated as

follows where Strutht is the true world frame location of each point in the model at the

tth time step and Scalct is the estimation of each point sn,j+t translated into the world

frame at the tth time step.

E3D
t =

‖Strutht −Scalct ‖
‖Strutht ‖ × 100% (116)

Notice the spikes in error around frames 900 and 2400. These correspond to the times

after the camera views the satellite down the axis of the panels so that one of the

panels is completely occluded. When the panel comes back into view, many points
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are added to the model causing the temporary increase in error.

The error between the calculated articulation rate and the true articulation rate

(Eφ̇l
t ) is shown in Figure 21b.

Eφ̇l
t = |(|φ̇calclt | − |φ̇truelt |)| (117)

Since the truth model and the calculated model do not share the same body frames for

the components, comparing angular rate gives a better indication of filter performance

than comparing the articulation angles directly. The data set labeled ‘Extra Joint’

is the joint that does not exist in the truth model, therefore it is compared to zero.

Figure 21c shows the error between the magnitude of the calculated angular rate and

the true angular rate of the root component (Eω) and Figure 21d shows the error

between the magnitude of the calculated translational rate and the truth translation

rate of the root component (EṪ).

Eω
t = |‖ωcalct ‖ − ‖ωtruet ‖| (118)

EṪ
t = |‖Ṫcalc

t ‖ − ‖Ṫtrue
t ‖| (119)

The articulation axes error and the joint errors are shown in Figure 21e-f. The

articulation axis and joint errors are calculated in the world frame (w) as defined in

equations (121), where N is the number of joints, and F is the number of frames.

Since the joints are revolute, any location on the axis is acceptable, therefore for the

joints the error is measured as the distance from the joint to the line represented by
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the true joint location and articulation axis in the world frame.

E â
t = 1

N

N∑
l=1

[
arccos(|(âtruel,wt )T âcalcl,wt |)

]
(120)

EJ
t = 1

N

N∑
l=1

[
‖âtruel,wt × (J calcl,wt − J truel,wt )‖

]
(121)

Figure 22 shows the final estimated point cloud, the truth point cloud, the truth

axes and the estimated axes locations in the world frame. Each of the axes directions

align well with the truth axis directions in the world frame. The point locations also

are near the truth locations. 94.8% of points are assigned to the correct component.

Errors in shape are visible in the solar arrays. This is likely due to the fact that

the NMC trajectory results in complete occlusion of both panels for a portion of the

NMC. Therefore, when the panel reappears, the points are added to the body frame

of the component that has been modified by any articulation rate error present at the

beginning of the occlusion.

4.4.2 Inspection Route Noise.

To investigate the effect of the inspection route noise, the filter was run at 64

combinations of σρ and σγ representing all combinations of 8 values spaced loga-

rithmically between 5e − 5 and 5e − 4. Each combination was run 5 times and the

results were averaged. Since inspection route noise causes the reprojected feature

points location to be different from the true feature point location, the impact of

the inspection route noise can be captured in the measurement noise. For each run,

the measurement noise (ηu,v) was adjusted by summing the image noise (σu,v), the

inspection route angle noise (σρ), and the inspection route position noise (σγ) then

squaring the result. For each combination, the metrics E3D
t , Eφ̇l

t , Eω
t , EṪ

t , E â
t , and

EJ
t for the individual runs are averaged. Figure 23 shows the results.
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Figure 23. Mean evaluation metrics for various inspection noise combinations

As expected, the error metrics generally increase as the noise increases. This

information could be used to select relative navigation systems such that the error

in relative position and angle can be determined with enough accuracy to give the

desired filter performance. For instance, if the performance demonstrated in Figures

21 and 22 is acceptable, position accuracy known to within ±0.06% (3σ) and relative

pointing accuracy to within ±0.05◦ (3σ) would be sufficient. This is within the

capabilities of current systems.[52]

4.4.3 Partial NMC with Articulation Start/Stop.

Perhaps a more interesting scenario would involve an inspection route in which

the primary satellite begins and stops articulation within the inspection time. Using

the comparison to an existing robotic arm mentioned in section 3.5.1 the articulation

should occur over 2% of an NMC. This faster articulation rate requires the update

rate to be increased. For this simulation the update rate is set to 0.33 Hz (one update
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Figure 24. Diagram of scenario consisting of 6% of an NMC with articulation occurring
over the middle third of the simulation only.

every 3 seconds). With a 0.3 second demonstrated computational time per update

this could still be done in real-time, particularly since the ppEKF updates can be

done in parallel. The articulation time period was then centered between two equally

sized time sets of zero articulation. A diagram illustrating the scenario is shown in

Figure 24. Throughout the simulation, the primary satellite was maneuvering in the

world frame with small translational and angular rates.
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Figure 25. Comparison of actual and estimated articulation angles and the E3D (lower
right) for the partial NMC simulation

Due to the abrupt change in articulation rate, the filter initially diverged after the

articulation started. To fix this issue, a noise inflation trigger was added. The Ma-

halanobis distance Ψ can be used as a metric to monitor the filter’s performance.[34]

It is calculated using equation (122) where rt is the residual, Ht is the measurement

matrix, Pt is the covariance matrix, and R is the measurement noise for the apEKF.

Ψt = rTt (HtPtH
T
t +R)−1rt (122)

When the Mahalanobis distance increased above a threshold of 3, 000 (judiciously

chosen) the process noise for the articulation rate was increased. This allows the

filter to appropriately adjust the articulation rate rather than other parameters such

as the articulation axis to account for the errors between prediction and measurement.

For each frame after noise inflation is triggered, the inflated noise (ηφ̇) is reduced by

10% until it reaches the original value. These settings and this method worked well for

this case, however more robust methods of picking these thresholds certainly should
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be investigated.

The estimated articulation angles compared to truth and E3D
t are shown in Fig-

ure 25. The poor results for joint 1 can be explained by looking at the number of

measurements for that component. Only six feature points are measured for the com-

ponent attached to joint 1 at the end of the simulation. With such few feature points,

the filter likely moved the feature points in the body frame rather than adjusting the

articulation angle to explain the measurements. Similarly, the inaccuracies in joints

5 and 6 likely occur because the points are allowed to move in the body frame. This

means the shape of the component could change rather than the articulation angle

to explain the measurements. A solution to this problem may be to fix points in

the body frame after their residuals are below a threshold for a certain number of

frames. While there are certainly improvements that could be made, this scenario

demonstrates the filter can adapt to articulation rate changes.

4.5 Conclusion

While this work demonstrates an initial capability to track articulation, there are

a few limitations and improvements that could be made:

• Stationary articulation parameters such as the axes and joints could be removed

from the model. Including them in the model allows the method to improve

a potentially inaccurate model, however continuing to include them could lead

to confusion when the main body motion or articulation is not at a constant

rate. Removing the stationary states after they have remained constant could

improve long term results.

• If a joint begins to articulate that is not included in the model, the filter is likely

to diverge. A method of accommodating additional joints could be developed,

perhaps using multiple models to track multiple hypothesis when residuals are
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high. A similar concept could be developed to collapse (merge) joints with near

zero articulation rates.

• If an articulation rate changes while the component is occluded, the filter may

not be able to recover when the component comes back into view. Automatic

re-initialization methods could be developed to solve this issue.

This work lays out a framework for tracking an articulated object given an inspec-

tion trajectory and demonstrates initial performance under realistic levels of noise in

the inspection route. The method is capable of tracking the articulation of the com-

ponents throughout an NMC in which points continuously come into view and are

added to the model. The effects of inaccuracies in the relative translation and rota-

tion between inspector satellite and primary satellite are investigated yielding results

which could inform system design specifications for a relative navigation system. A

simulation is also presented in which immediate changes in articulation rate are cor-

rectly estimated by employing a noise inflation technique.
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V. Articulation Tracking with Silhouettes

5.1 Chapter Overview

This chapter consists of method development and results for an estimation frame-

work to track the articulated motion of a primary satellite sequentially to meet Ob-

jective 2 of this research. The work presented is also available in a submitted journal

article [20]. This chapter differs from the work in Chapter IV primarily in that it

does not use feature points, rather silhouette (binary) images are used. This chapter

consists of an introduction (section 5.2), the method for tracking articulation with

silhouettes (section 5.3), results (section 5.4), and a conclusion (section 5.5)

5.2 Introduction

As an alternative to using feature points, given a known model, the silhouette

of the image can be used as a measurement to detect and track articulation. As

described in section 2.3.5, the problem of tracking articulation of a known model using

silhouettes has been researched heavily. Most work focuses on tracking the articulated

motion of humans. The principles and methods developed for human articulation

tracking can be adjusted for any situation in which a model of the articulated structure

is known. With these concepts in mind, a simple recursive estimation filter has been

developed which demonstrates potential for tracking articulated motion of a known

model using silhouette images as measurements.

There are numerous advantages to using silhouettes instead of feature points,

particularly for space applications.

1. Inaccuracies in feature point tracking: While methods of feature point tracking

are generally accurate, inaccuracies can arise which would cause errors in track-

ing methods that use feature points. For instance, objects such as solar panels
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could have may repetitive features. This could cause a tracker to track a fea-

ture point on the corner of a solar cell in one frame to the corner of a different

solar cell in the next frame. Additionally, glare could produce a spot of high

intensity that travels along a surface as the angle to the Sun changes. Tracking

this spot would result in corresponding feature points that do not represent a

single location on a rigid body.

2. Inadequate number of feature points: Some objects or components may be smooth

and of uniform color which could minimize the number of feature points that

can be acquired and tracked.

3. Easy background subtraction: The space environment lends itself well to sil-

houettes due to the fact that the background is often empty space. This allows

silhouettes to be created with simple pixel intensity thresholding.

4. Low resolution or blurry images: When the resolution of an image is decreased,

the number of feature points decreases while the silhouette that can be cal-

culated remains nearly the same. To demonstrate this, imagery collected as

outlined in Chapter VI was used to create Figure 26 in which an example im-

age was resized to a lower resolution using Matlab’s ‘imresize’ command. The

‘dectectFASTFeatures’ was then used with default settings to detect feature

points on the satellite and the silhouette was found using the method outlined

in section 6.4.1. As the resolution decreased the number of feature points de-

tected decreased from 137 to 24 while the percentage of pixels covered by the

silhouette remains nearly constant. Note that the work in this Chapter uses

simulated imagery, not the real imagery shown in Figure 26.

5. No segmentation required: Feature points must be assigned to a particular com-

ponent to provide valuable information regarding articulation. The use of sil-
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houettes does not require points to be assigned to a particular component.

6. No illumination: In some cases a silhouette may be able to be created without

the primary satellite being illuminated from the perspective of the inspector.

For instance, if the primary satellite is between the inspector and an illuminated

object (such as the earth or moon) the silhouette could be captured by looking at

the satellites shadow assuming the optic is capable of looking at an illuminated

celestial body.

5.3 Silhouette Based Tracking Method

This work uses an articulated model and an unscented Kalman filter (UKF) to

track the pose and articulation angles of the satellite using simulated silhouette im-

ages. Silhouette images are binary images with a 1 in pixel locations that are occupied

by the foreground (the satellite) and a 0 in pixels that are occupied by the background.

Simulated silhouette images are created by projecting the corner points of the satel-

lite model components into the image plane and setting the pixels on the interior of

the convex hull defined by the corner points to 1. Simulated silhouette images are

compared to the reprojection of the sigma points of a UKF to create a measurement

vector which is used to update the state vector at every time step. Results are shown

for linear articulation and sinusoidal articulation over a complete NMC and for a

partial NMC with articulation start/stop as in section 4.4.3.

5.3.1 Simulating Imagery.

As with the feature point method outlined in Chapter IV, the silhouette method

was developed using simulated data. In this case, the simulated data is a set of binary

images rather than a trajectory matrix. The method of creating the binary images is

similar to the method in section (simulating feature points). The main difference is
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Figure 26. Comparison of feature points to silhouettes as image resolution decreases.
Left side is the reduced size image with FAST feature points. Right side is the resulting
silhouette from the reduced size image.

that instead of projecting points spread over the model surfaces to represent feature

points, only the corner points of the illuminated and visible surfaces are projected to
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the image plane.

Figure 27. Satellite model diagram.

For simplicity, the satellite model was modified slightly from the model used in

previous chapters. The number of joints in the appendage was decreased. The model

used for this chapter is shown in Figure 27 which is a simplified version of the model

used in Chapter III and IV. For each face on the model, the outward facing normal

is checked against the camera vector and the Sun vector to determine if the face

is illuminated and visible. If it is illuminated and visible, a binary matrix of size

npy × npx is created where npy and npx are the number of pixels in the simulated

image in the x and y directions respectively. Each element in the matrix represents

a pixel in the image. Next, each of the corner points are projected to the image

plane using a pinhole camera model and the pixels (elements) in the binary image

closest to the projected points are converted to 1’s. The Matlab function ‘bwcovhull’

is then used to convert all the pixels internal to the corner points (representing the

entire surface) to value 1. After this is done for each face, the resulting matrices are
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summed, and any element greater than zero is set to 1 yielding a binary silhouette

image representing the entire model. Note that this method does not account for

portions of faces that may be shadowed by other components. Figure 28 shows the

resulting silhouette image from a particular model orientation.

Figure 28. Example of a simulated silhouette image: a) 3D representation of the model
b) resulting silhouette image

For the simulations presented here, a silhouette image size of 800× 800 was used.

This setting can be adjusted as needed. Further reductions can be realized if sparse

matrix techniques are employed. Increasing the image size will increase the compu-

tational time, but it will also increase the fidelity of the measurements.

5.3.2 Filter Framework.

An unscented Kalman filter (UKF) was selected for this demonstration. As out-

lined in section 2.2.11, the UKF allows non-linear dynamics and measurement models

by representing the state probability distributions using the mean and sigma points.

It does not require the linearization of the measurement model as in an EKF which
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would be difficult, if not impossible, given the nature of the measurements outlined

in section 5.3.4. Additionally, the number of sigma points that must be evaluated is

2n + 1 where n is the number of states. Implementing using a particle filter would

likely require significantly more measurement function evaluations.

The primary satellite is modeled as a set of rectangular prisms connected by

revolute joints. The states for the UKF are the pose and rates that characterize the

root component’s motion as well as the articulation angle and angular rates.

x =

[
(qwr)T (Twr)T (ωwr)T (Ṫwr)T φ1 φ̇1 · · · φM φ̇M

]
(123)

For simplicity, the articulation parameters that are expected to remain constant are

not included for estimation as they were in the apEKF outlined in section 4.3.2.

The size of each rectangular prism is also held constant, however the size of the

prisms as well as the stationary articulation parameters could likely be included in

the estimation framework if desired.

5.3.3 Dynamics.

As in the apEKF in section 4.3.3, the articulation parameters are propagated with

a constant rates. The propagation equations are repeated here for convenience. Once

again, the quaternion is normalized for every use and the state vector and covariance

matrix are adjusted every time step according to the method outlined in Civera [14].

qwrt = qwrt−1 ⊗ q((ωt + ηω∆t)∆t) (124)

ωwrt = ωwrt−1 + ηω∆t (125)
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The ⊗ represents the quaternion multiplication and q(∗) is the conversion from a

rotation vector to a quaternion q(∗) =



∗
‖∗‖ sin(‖∗‖2 )

cos(‖∗‖2 )


. The translation is propagated

assuming a constant rate with noise ηṪ .

Twr
t = Twr

t−1 + (Ṫwr
t−1 + ηṪ∆t)∆t (126)

Ṫwr
t = Ṫwr

t−1 + ηṪ∆t (127)

The articulation angle φi propagates with a constant rate φ̇i with noise ηφ̇.

φit = φit−1 + (φ̇it−1 + ηφ̇∆t)∆t (128)

φ̇it = φ̇it−1 + ηφ̇∆t (129)

5.3.4 Measurement Model.

No feature points are being used, therefore the measured silhouette image must be

compared to the reprojection of the shape given the estimate in a way that quantifies

the quality of the estimate. Since the measurement is a binary matrix npx × npy,

it cannot be used as a measurement directly. Instead, the measurements are more

akin to residuals in that they are a comparison of the measurement silhouette to the

reprojected silhouette given a state vector.

To evaluate the measurement (or residual), the first step is to create a silhouette

image from the estimated state. To do this, the eight corner points (cpnw) of the

rectangular prism representing component n are projected into the camera frame

(cpni ) using a pinhole camera model as in equations 100-102. The rotations and

translations of each component to the world frame (RCW and Twn) are determined

hierarchically from the known model and the articulation parameters contained in

the state vector as described in section 4.3.5.
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Next an npx × npy matrix of zeros (Mn
r ) is created. The corner points cpni are

rounded to the nearest integer and the corresponding elements of Mn
r are set to 1.

The Matlab function ‘bwcovhull’ is used to convert all the pixels internal to the corner

points to 1’s. For simplicity, this method of projection does not require knowledge

of the illumination source, nor does it calculate the effect of shadowing. These inac-

curacies contribute to measurement noise. Combining these for all components gives

the full projected silhouette binary image Mr. This information can be compared to

the measurement silhouette Mm to give the measurements as follows.

The first two measurements (ẑo and ẑu) quantify the number of pixels over-covered

(1’s in the reprojection but 0’s in the measurement) and under-covered (1’s in the

measurement but 0’s in the reprojection) respectively. The variable I is the indices

of M that are equal to 1 and the variable m is the sum of the elements of M .

ẑo =
1

mr

∑
1−Mm(Ir) (130)

ẑu =
1

mr

∑
1−Mr(Im) (131)

In some cases these two measurements alone may be sufficient, however including

metrics specific to each component was found to improve performance.

For each component, the over-coverage zon can be calculated similar to equation

(130).

ẑon =
1

mn
r

∑
1−Mm(Inr ) (132)

However, the under-covered quantity cannot be calculated for each component since

it is unknown which parts of Mm correspond to which components. Instead, nnd points

are sampled along the edges of each component. The Euclidean distance (d) from

each of these edge points to the nearest point in the measurement not covered by
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the full reprojection is calculated. These distances are then mapped to a zero mean

normal distribution with σ = 40 and averaged to give ẑdn .

ẑdn =
1

nnd
√

2πσ

∑
e
−d
2σ2 (133)

The ẑdn measurements quantifies the error for each component using the distance from

the component to pixels under-covered by the reprojection. Under-covered pixels close

to component n are likely due to incorrect placement of component n and therefore

will have a large contribution to ẑdn while error pixels far from cn are unlikely due to

incorrect placement of component n and therefore will have a minimal contribution

to ẑdn . One limitation of this approach is that if the filter diverges to the point where

the reprojected component is no longer overlapping the measurement, it will continue

to diverge because moving closer to the measurement actually would increase the

residual (ẑdn) in that case. However, as long as the component maintains overlap, the

measurement will serve to minimize the under-covered pixels.

The method described results in a total of 2 + 2N measurements where N is the

number of components. Evaluating this measurement model is the most computa-

tionally expensive part of the UKF and it must be completed for every sigma point at

each update of the UKF. In experimentation with npx = npy = 800 and six primary

satellite components, each update takes approximately 1.7 seconds using single core

processing (this does not include the image processing time to build the silhouette).

In practice, the measurement model evaluation could be easily run in parallel to speed

up processing time.

5.3.5 Implementation.

Given a set of initial images where the satellite is stationary, search methods could

likely be implemented to find the initial pose and articulation angles. These methods

128



have not been investigated, but work by Cheung et al. [12] on shape from silhouettes

gives insight into how they may be developed. Instead, the filter is initialized with

the true pose and articulation angles, but with zero rates.

Given an initialization state vector, the dynamic model, and the measurement

model previously discussed, the UKF can be implemented as described in section

2.2.11 with one slight change. In this implementation, the actual measurement is

a binary npx × npy matrix Mm not a scalar quantity. The calculated measurement

vector ẑ is in fact a set of metrics which compare the reprojected silhouette image

set M1:N
r to the measurement Mm. This means that the measurements ẑ are really

equivalent to the residuals r from equation (34). In the UKF framework of section

2.2.11 the residual is defined as zmeas − ẑt so in this implementation the update

equation (equation (35)) becomes x̂+
t = x̂−t K(−ẑ).

The process noise matrix (Q from equation (28)) is calculated from the process

noise values (ηx) in the same way as in section 4.3.3. The measurement noise was

determined by propagating the true state vector through each time step and evalu-

ating the measurements against the simulated silhouette image. The mean of each

measurement over all frames was taken as the measurement noise value for that mea-

surement.

The weights wm and wc for the UKF were determined from the parameters α, β,

and κ using standard equations where n is the number of states [86].

γ =
√
n+ λ (134)

λ = α2(n+ κ)− n (135)

w1
m = λ

n+λ
(136)

w1
c = λ

n+λ
+ (1− α2 + β) (137)

wi
m = wi

c = 1
2(n+λ)

, for i = 2, · · · , 2n+ 1 (138)
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The value of γ dictates how far the sigma points will be separated from the mean.

In this implementation κ was set to 4
α2 − n to make γ = 2 which spreads the sigma

points 2σ from the mean. The value of α was set to 0.1 and the distribution was

assumed to be Gaussian so β was set to 2.

5.3.6 Computational Requirements.

The computational requirements for this method are higher per update than the

EKF method from Chapter V. In this implementation with 800 × 800 images each

update takes approximately 1.7 seconds and does not include the time to process

an image into a silhouette. The start-stop scenario outlined in section 4.4.3 would

require an update every 15 seconds. The majority of that time is spent evaluating the

measurement model for 2n+ 1 sigma points. Computational time could be decreased

even further by increasing coding efficiency in the measurement model. Additionally,

since the measurements model evaluations are independent, they could be run in

parallel to enable real-time operation.

5.4 Results

Three scenarios were run to demonstrate this method. The first two consist of a

full NMC with linear articulation and sinusoidal articulation respectively. The third

investigates the ability to sense and accommodate articulation start and stop over a

portion of an NMC consistent with existing space robotic arms articulation speeds as

outlined in section 4.4.3.

5.4.1 Full NMC Results.

The first scenario evaluated is an NMC with linear articulation occurring over the

length of the simulation. The simulation consists of 720 frames which translates to
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one frame every 2 minutes if the primary satellite is in a geosynchronous orbit. Noise

is added to the inspection route as it is in section 4.4. A diagram of the inspection

route as well as some of the sampled and reprojected images are shown in Figure 29.

Figure 29. Diagram showing example silhouette images at frames throughout the NMC.
The reprojection of the state vector shown in red is overlaid with the input silhouette
image shown in blue. The purple color is where the two images overlap.

The estimated articulation angles and rates for each joint are shown in Figure 30

and demonstrate the method is capable of tracking the articulated motion. Notice

errors increase for joints 1 and 2 when they are completely occluded from view. When

they return to view, the filter is able to improve the estimate.

5.4.2 Sinusoidal Articulation Movement.

To demonstrate robustness to articulated motion that is non-linear, the scenario

above was repeated with a single period of sinusoidal articulation instead of linear

articulation. The dynamics used to propagate states in the filter were kept at constant

articulation rate. Results are shown in Figure 31. The filter is able to track the motion

even though it is non-linear. The extent to which the filter is capable of tracking

motion that does not match the dynamics has not been investigated further. To

further accommodate non-linear motion, multiple motion models could be developed

and interchanged based on anticipated motion types.
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Figure 30. Results from full NMC with linear articulation. Top row plots are articu-
lation angles compared to truth. Bottom row plots are articulation rates compared to
truth.

5.4.3 Start/Stop Scenario.

The final scenario tested is the same as the scenario outlined in section 4.4.3

and shown in Figure 24. The Mahalanobis distance was once again used to sense the

change and inflate the process noise as described in section 4.4.3 with a noise inflation

threshold of Ψ = 125 and noise reduced by 50% each frame after the trigger.

5.4.4 Model Sensitivity Assessment.

A perfect articulated model was used for the previous results. It is interesting to

investigate how robust this method is to inaccuracies in the truth model. To do this,

the full NMC scenario with linear articulation was run with various modifications to

the articulated model. One factor was modified at a time, and the simulation was run

with the a consistent inspection route noise profile. To modify the axis, the azimuth

and elevation were changed randomly a total of 5◦. To modify a joint a random vector

0.2 units in length was added to the parent joint location. 10 trials were run for each
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Figure 31. Results from full NMC with sinusoidal articulation. Top row plots are ar-
ticulation angles compared to truth. Bottom row plots are articulation rates compared
to truth.

Figure 32. Results from 6% of an NMC with articulation start and stop. Top row plots
are articulation angles compared to truth. Bottom row plots are articulation rates
compared to truth.

factor and the results were averaged to give the values (root mean square articulation

angle error) shown in Figure 33.

The filter was able to accurately track the motion of the articulated arm in most

cases even with the inaccuracies in the model. Modification to any axis or joint

lead to inaccuracies in tracking both panels, but particularly the first panel. The
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Figure 33. Model articulation axis (top row) and joint location (bottom row) modifi-
cation effects on articulation tracking. Bar heights are averaged values over 10 trials;
error bars are 1σ.

likely reason for this is the occurrence of an ambiguity outlined later in section 7.2.3,

specifically as shown in Figure 47b. When an articulation axis and the object face

are perpendicular to the optical axis, rotations in either direction will look the same.

Due to the nature of the particular maneuver and noise used in these simulations,

panel one is closer to the ambiguity than the other, causing the panel to diverge more

often when the model is inaccurate. To remove this issue, the inspection route was

modified slightly so that the panels were not as close to the ambiguity at any point

during the inspection route. The results, as shown in Figure 34, demonstrate that

filter can accommodate slight inaccuracies in the model, and, as expected, the angle

measurements are most effected by modification to the specific angle/joint or one

below it in the kinematic chain.

Using the modified inspection route, the effect of inaccuracies in the component

sizes was also investigated. The size of each of the components was modified by
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Figure 34. Results when inspection route is modified to reduce the ambiguity. Model
articulation axis (top row) and joint location (bottom row) modification effects on
articulation tracking. Bar heights are averaged values over 10 trials; error bars are 1σ.

increasing/decreasing the length, width, and height of the rectangular prism repre-

senting the component by an amount between ±10%. Results are shown in Figure

35. For a constant inspection route with constant inspection route noise, the results

are deterministic, so a single trial was done at 2% increments between ±10%. Gen-

erally, the filter is able to accommodate the inaccuracies in the model, however when

the root component size is reduced more than 5% the filter diverges, likely due to

inaccuracies in the estimated root component pose. The remaining spikes in the data

correspond to divergence of the filter caused by occlusion of the panels.

While the this method can accommodate some inaccuracies, issues can arise, par-

ticularly near ambiguous poses or when significant occlusion occurs. Methods could

be developed to accommodate these issues such as noise inflation when an ambiguity

or occlusion is sensed, allowing the filter to recover the correct articulation rather

than diverging.
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Figure 35. Model component size modification effects on articulation tracking.

5.5 Conclusions

This work demonstrates an additional method of tracking a satellites articulated

motion from monocular imagery. Instead of using feature points, the method demon-

strates that silhouette images can be used to track articulated motion. The silhouette

method tracks the articulated angular rates with much higher accuracy, however for

the silhouette method the exact model was given as prior knowledge, while the feature

point method estimated some of the stationary aspects of the model. Sensitivity to

inaccuracy of the satellite model was investigated with some robustness to model in-

accuracies demonstrated. Additionally, if the satellite model is know to be inaccurate

this method could be adjusted to include other articulation parameters in the state

vector.

While the method has been demonstrated in scenarios with non-linear articulation,

in situations where the motion is highly non-linear alternative methods of tracking

such as those used for tracking human motion could be employed [28]. Additionally,

the quality of silhouette type methods benefit from multiple cameras taking images
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at different angles. While more complicated and expensive, if accuracy is desired a

system using multiple inspector satellites could be developed using similar methods.
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VI. Real Imagery

6.1 Chapter Overview

This chapter consists of specifications for a satellite model, the collection method

of real imagery in a simulated space illumination environment, and results when

applying the method outlined in Chapter V for tracking articulation to meet Objective

3 of this research. Partial results are also presented in a submitted journal article

[20]. This chapter consists of an introduction (section 6.2), an overview of the imagery

collection setup (section 6.3), results of tracking using the developed UKF (section

6.5), an overview/results for a modified human articulation tracking algorithm from

[81] (section 6.6), and a conclusion (section 6.7).

6.2 Introduction

A satellite model similar to the one used for simulation (Figure 27) was built

and used to collect imagery a simulated space illumination environment. An inspec-

tion route was simulated by rotating the satellite, moving the camera forward and

backward on a track, and moving a single light source to simulate the Sun location.

Images were taken at discrete locations on the inspection route with the articulation

angles of the five joints on the model moved slightly between frames giving a set

of images mimicking those that would be collected of an articulating satellite from a

satellite on a near by inspection route. Results are presented when using these images

as the input images for the silhouette method outlined in Chapter V. Additionally,

an algorithm created for human tracking (the Annealed Particle Filter [81, 28]) was

modified to track the satellite with results presented.
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6.3 Setup

This section contains information on the physical satellite model and how images

were collected to simulate the space illumination environment.

6.3.1 Satellite Model Specifications.

The satellite model was constructed out of wood. The root component (main

body) is 8′′ × 8′′ × 8′′. Each of the panels are 16′′ × 6′′ × 1
8

′′
with a 3

4

′′
dowel mounted

to the back and used to connect the panel to the center of the appropriate root

component side. Each of the components of the arm are 1.5′′ × 1.5′′ × 12′′ with

rounded ends to accommodate articulation angle markings. They are attached to

each other and the root component with 1/4 − 20 machine screws and wing-nuts.

The root component is covered in Kapton and the panels are covered in paper to

mimic solar panels. The components on the arm are painted gray. Various items

were mounted to the root component to simulate satellite components. Figure 36

shows images of the satellite with labeled dimensions. The joints on the arm were

marked at 5◦ increments.

6.3.2 Image Collection.

Images were taken in a 50′ × 70′ black room within the Air Force Research Lab-

oratory (AFRL) µAV IARI which supports micro air vehicle testing. The satellite

was mounted to a tripod on a bearing allowing it to spin about the vertical axis. A

camera was mounted to a second tripod which was placed on a platform that rolled

forward and backward on a track. A set of two lights was placed behind the track.

The platform was moved forward and backward, the satellite was rotated on the tri-

pod, and the light was moved left and right to simulate an inspection route and Sun

lighting. The image collection setup is shown in Figure 37.
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Figure 36. Satellite model dimensions

Figure 37. Imagery collection setup

An inspection route with articulated motion was simulated using stop-motion pho-

tography. The inspection route shown in Figure 38a was discretized into 90 frames.
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At each frame, the rotation of the satellite with respect to the camera frame, distance

from the satellite to the camera, and angle between the camera and Sun were cal-

culated and used to determine the respective position of objects as shown in Figure

38b to simulate the inspection route. Between each frame, the joints were articulated

approximately 1◦ each. The joints on the arm were marked at 5◦ intervals, and set-

ting for the 1◦ increments were estimated. The panel joints were not marked, so a

small articulation was applied at each interval. This imprecise motion was assumed

to represent real ‘noise’ in an actual set of measurements on orbit.

Figure 38. Inspection route simulation diagram. a) Inspection route of camera in world
frame. b) Image capture setup.

6.3.3 Camera Calibration.

An iPhone 7 camera consisting of a 3024 × 4032 pixel array was used for data

collection. Camera calibration was performed to determine the intrinsic parameters
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of the camera using Matlab’s Single Camera Calibration App. The resulting camera

calibration matrix Pcam is as follows where fx and fy are the focal lengths, expressed

in pixels, in the camera’s x and y directions respectively. The principal point of the

camera (x0 and y0) is at the location of the camera’s optical center (in pixels) on the

pixel array.

Pcam =




fx 0 x0

0 fy y0

0 0 1




=




3269 0 2030

0 3270 1474

0 0 1




(139)

Since the inspection route was being simulated as described the extrinsic portion

of the camera calibration matrix was not used. The radial distortion was also not

applied because it was small for this camera.

6.4 Method

The model building method of Chapter III and the tracking method of Chapter

IV were not applied to the real imagery collected due to the noise in image collection.

The camera/satellite motion used to simulate the inspection route were not accurate

enough for these methods to be applied successfully. However, the silhouette tracking

method from Chapter V was applied to the real imagery collected.

6.4.1 Image Processing.

The steps to convert an image to a silhouette image are fairly straight forward

using Matlab’s Image Processing toolbox. They are shown in sequence order in Figure

39. Most of the process is automated, however the tripod was removed manually

from the image. Even though it was covered in a black sheet it was very bright in the
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images. Since the pedestal would not be required to hold up the satellite in space,

removing it manually does not detract from the realism of the experiment.

Figure 39. Steps to create a silhouette image.

6.4.2 UKF Settings.

The parameters of the UKF are set as shown in Table 7. The values for the

measurement noise were determined by manually setting the state vector to align

with the first image frame and calculating the measurements described in section 5.3.4.

These measurements represent the error in the image when the model is ‘perfectly’

aligned and are therefore used as the measurement noise values.

The filter was manually initiated with the ‘perfect’ state based on the first image

silhouette. The rate states (ω,Ṫ , and φ̇) were initiated at zero.
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Table 7. Noise settings

Initial covariance values Process noise values
σ2
q σ2

T σ2
ω σ2

Ṫ
σ2
φ σ2

φ̇
σ2
ω σ2

Ṫ
σ2
φ̇

1e− 6 1e− 2 1e−6 1e− 2 1e− 6 5.8e− 3 1e− 10 1e− 8 1.5e− 6

Measurement noise (10−3)
σẑo σẑu σẑo1 σẑd1 σẑo2 σẑd2 σẑo3 σẑd3 σẑo4 σẑd4 σẑo5 σẑd5 σẑo6 σẑd6
87.3 23.2 70.7 9.39 27.5 9.30 76.6 9.04 117 9.73 88.1 9.86 197 9.30

6.4.3 Computational Time.

Due to the larger image size, the computation time was longer than simulation

with an average update requiring 70 seconds without the image processing steps to

create the silhouette. This time could likely be reduced by reducing the image size

or parallelizing the measurement function evaluations.

6.5 Results

Qualitative results for 12 frames are shown in Figure 40. In each image, the model

reprojected from the estimated state vector (x̂+
t ) is shown in cyan by eliminating the

red component of the original image at the occupied pixels in the model reprojection.

As can be seen, the reprojection closely tracks the satellite at all frames.

Since precise truth data is not known from the articulation angles, quantitative

comparison of accuracy is difficult. Figure 41 shows the estimated articulation angles

for each frame. No attempt was made to gather truth data for the panel articulation,

so the input angle is not shown, however the tracked motion does have trends appro-

priate with the input angle trends. Notice the large changes to the articulation rate

near the middle of the simulation. These frames correspond to a time in the articu-

lation at which there is an ambiguity in the panel measurement. At this point, the

panel axis is nearly perpendicular to the camera axis and the panel outward normal

is nearly parallel to the camera axis. This means a rotation in either direction will
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Figure 40. Qualitative results using real imagery. Each frame consists of the raw image
with the reprojected silhouette overlaid in cyan.

look nearly the same as described in section 7.2.3.

An attempt was made to articulate the joints on the arm at a rate of 1◦ per frame

from 45◦ to −45◦, so the estimation is compared to the input articulation angle. The

articulation method likely resulted in true articulation angles of ±2◦. In all cases, the

UKF was generally able to track the articulated motion.

The difference between the initial settings for rotation and translation of the root
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Figure 41. Estimated articulation angle results for all 5 joints. Panels input angles were
not captured. Arm input angles were linear, however ±2◦ input inaccuracy is likely.

component and the estimated values are shown in Figure 42. While the satellite

was rotated during image collection, the rotation was to simulate the movement of

the camera along the inspection route, not a rotation of the satellite in the world

frame. The satellite was intended to remain stationary throughout image collection

in the world frame, therefore the values in Figure 42 are the errors in the rotation and

translation estimates. The camera position and the root component body frame are

both defined with respect to the world frame, however the world frame is arbitrary.

Therefore, errors in the pose of the root component are compounded by errors in the

pose of the camera in the world frame. Given the simple setup for image collection

there are numerous sources of error in the camera pose such as camera orientation in
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the tripod, satellite orientation on the tripod, accuracy in satellite rotation, accuracy

in camera location on track, and track alignment. Success under these conditions

suggests success in a realistic scenario with precision relative guidance, navigation

and control.

Figure 42. Estimated root component rotation and translation.

6.6 Modified HumanEva Baseline Algorithm

The problem of tracking the articulation of the satellite given a known model

is nearly identical to the problem of tracking the motion of a human. As outlined

in Chapter II, there is extensive work in the field of tracking human articulated

motion. To demonstrate the utility of applying human tracking methods to satellite

articulation tracking, the baseline algorithm available with the HumanEva dataset [81]

was modified. The baseline algorithm is an implementation of the annealed particle

filter (APF) introduced for human tracking by Deutscher and Reid.[28] The APF is

a modification to the traditional particle filter in which multiple filtering layers are

employed. The highest layer of the filter is evaluated first with particles spread over a

larger search space. To transition to the next layer particles are re-sampled according

to their likelihood. This allows fewer particles to be used to search high dimensional

spaces. Both [81] and [28] provide in-depth explanations of the APF.

With relatively few adjustments, this baseline algorithm was capable of tracking
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the motion of the satellite using the imagery collected. The main modification to the

existing code consisted of modifying the articulated model from a 40 DOF human

skeleton with limbs represented by cylinders to an 11 DOF satellite with components

represented by rectangular prisms. Additionally, the code was modified to use only

one camera. Multiple synchronized cameras are available and used in the Sigal et al.

implementation, however by providing an accurate initial state, reducing the state

covariance, and using the more computationally expensive bi-directional silhouette

likelihood function the algorithm demonstrated capability to track the articulated

motion with one camera.

6.6.1 Results.

The APF was run with 3 annealing layers each containing 200 particles. With

these settings, each update took approximately 11.5 minutes running on a desktop

computer without parallel processing. The likelihood function evaluates each particle

against a silhouette map by comparing it with sampled pixels within each reprojected

component and against an edge map by comparing it with sampled points along the

outside edge of the reprojected components.

Figure 43 shows the resulting reprojected edges of the weighted mean of the par-

ticles (red) and the best particle (green) overlaid on the actual image at sampled

time steps. Figures 44 and 45 show the estimated angle and root component transla-

tion/rotation.

These results are comparable to the results from the UKF method (Chapter V).

Both are able to track the general trends of the articulation. The APF does not

require a motion model, however the covariance of each state informs the span of

the search space and could be used to expand/contract the search space based on

estimated articulation rate capabilities. Reducing the covariance allows success with
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Figure 43. Qualitative results using real imagery. Each frame consistes of the raw
image with an outline of the estimated state in red and the best particle in green.

fewer particles, but also deceases robustness to large changes in the state between

frames. The UKF uses a motion model and therefore is less robust to articulation

inconsistent with the measurement model, however this allows for fewer function

evaluations and therefore a 10× faster update rate.
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Figure 44. Estimated articulation angle results for all 5 joints. Panels input angles were
not captured. Arm input angles were linear, however ±2◦ input inaccuracy is likely

Figure 45. Estimated root component rotation and translation.

6.7 Conclusion

The images collected in a space representative illumination environment demon-

strate the capabilities of the UKF silhouette based tracking method. They also were
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used to demonstrate the applicability of human motion tracking algorithms such as

the APF for the problem of articulation tracking. The feature point based methods

of Chapters III and IV were not applied to the real imagery primarily because the

image capture method did not allow for enough accuracy in the inspection route. Ad-

ditionally, as evident in Figure 26, there are very few feature points that are available

on the articulated arm.
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VII. Conclusions and Recommendations

This chapter concludes the work by reviewing research objectives (section 7.1),

providing considerations on the topic of satellite articulation sensing (section 7.2),

summarizing the methods developed in this work (section 7.3), outlining the contri-

butions of this work (section 7.4), and providing recommendations for future work

(section 7.5).

7.1 Research Objectives

Three research objectives are listed below. Chapter III describes work toward

Objective 1, Chapters IV and V describe work toward Objective 2, and Chapter VI

describes work toward Objective 3.

7.1.1 Objective 1.

Objective 1: Develop a method of autonomously building an articulated model of

a satellite through inspection with a monocular camera producing resolved imagery.

This work consisted of development of algorithms and testing on simulated feature

points from a nominal satellite with articulating panels and an articulating arm.

The quality of the model created from inspection routes with various illumination

conditions will be assessed.

Discussion: Objective 1 was met by the work presented in Chapter III. A method

of building an articulated model from a trajectory matrix containing feature point

information was presented and demonstrated. The effect of illumination angle was

assessed, and it was demonstrated that an articulated model can be built without

viewing the satellite from all sides. To accommodate uncertainty, the method was

modified, and the effect of inspection route noise was assessed.
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7.1.2 Objective 2.

Objective 2: Develop an estimation framework for tracking the articulated mo-

tion of the primary satellite sequentially as new imagery becomes available. This

work consisted of development of an algorithm that uses an articulated model of the

satellite and either simulated feature point locations or image silhouettes to track the

articulated motion of the satellite.

Discussion: Objective 2 was met by the work presented in Chapters IV and V.

Methods of tracking the articulation of a satellite using feature points or silhouettes

from monocular imagery were developed and demonstrated. The developed silhouette

tracking method from Chapter V was demonstrated to be effective with real imagery

in Chapter VI. Additionally, an algorithm developed for human motion tracking was

modified and demonstrated successful in tracking the articulation of a satellite in

Chapter VI.

7.1.3 Objective 3.

Objective 3: Build a satellite model and collect stop motion imagery mimicking

articulation in a simulated space lighting environment. Use captured imagery to

validate developed tools as permitted by capture method uncertainties.

Discussion: Objective 3 was met by the work presented in Chapter VI. A satellite

model consisting of two articulating panels and an articulating arm containing three

joints was built. Stop-motion imagery was taken in a large dark room with a single

light source to simulate the space lighting environment. The imagery was used to

validate the silhouette tracking method outlined in Chapter V.
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7.2 Satellite Articulation Sensing Considerations

In conducting this research many interesting aspects of this topic were revealed.

This section attempts to provide an overview of these aspects for consideration of

future researchers investigating the topic.

7.2.1 Building an Articulated Model.

Initial attempts to build an articulated model focused on building a complete

model from an inspection route (such as an NMC) that viewed nearly all sides of the

satellite. While viewing the satellite from all sides would be necessary to create point

clouds that represent the entire shape of the satellite, the inaccuracies in stitching

together sets of points not viewed in common frames led to inaccuracies in the overall

articulated model. Figure 46 demonstrates this issue. However, if a full point cloud

representing the entire shape of each component is less important, a more accurate

articulated model can be created by only considering the viewing angles associated

with one side of the satellite. Selecting the best inspection route will be dependent

on the particular satellite being inspected, however there are a few things to consider

to generally improve results:

• The inspection route should minimize component occlusion/shadowing.

• The inspection route should put the camera no more than 60◦ off of the Sun

vector.

• The inspection route should minimize the missing data in the trajectory matrix.

• The inspection route should maximize the range of viewing angles.

• The inspection route should minimize noise in the relative pose estimate (for

instance by minimizing jitter during image collection).
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Figure 46. Illustration of ambiguity in creating a shape from points not seen together.

Consideration should also be given for alternative sensors that contain additional

information. For instance, spectral sensors could provide useful data in segmenting

components based on the spectral content of the return, or the 3D data available from

a LIDAR sensor could remove ambiguity and complexity from any articulated model

creation method.

While the methods outlined focus on autonomously building the articulated model,

in certain situations it may make more sense for a method with a ‘human in the loop’.

Such a system could use a human operator input to determine the number of compo-

nents, validate feature point segmentation, determine the kinematic chain, clear up

ambiguities, or determine joint types. Additionally, given a few images of a satellite,

a human operator could likely develop a kinematic chain and a set of primitive shapes

that represent the shape of each component. This information could be used to build

an articulated model with silhouette images.

155



7.2.2 Articulation Tracking.

Two articulation tracking methods were developed. Each used a different method

of transforming image data to something that can be used as a sensor measurement

for a recursive estimation filter. The method in Chapter IV used feature points

while the method in Chapter V used silhouette. Each method has advantages and

disadvantages. One of the main advantages of feature points is that they are capable of

creating/maintaining a more detailed representation of the components. The shape is

represented by a point cloud, so it can take on whatever shape best explains the data.

The silhouette method on the other hand requires the shape to be defined by some

basic shape (rectangular prism in this case). While the model could be defined by

more complex shapes, additional complexity would increase computational time. The

use of feature points also requires new feature points to be assigned to components as

they are acquired. A method of assigning points to different components is outlined

in section 4.3.7, however if a joint stopped articulating, the method would fail to

assign points to the correct component. The silhouette method on the other hand

does not require assignment of points. Additional comparisons between silhouettes

and feature points are available in section 5.2.

Both of the developed articulation methods rely on a constant rate articulation

motion model. Some robustness to non-constant rate articulation was demonstrated,

however a full investigation would likely reveal some failures of a single motion model

under some circumstances. For instance, if the articulation rate changes dramatically

when a component is occluded, the filter will likely be unable to recover. Methods

could be developed to rectify this limitation such as using multiple models, or au-

tomatically re-initializing diverged states. Alternatively, methods such as the APF

(outlined in Chapter VI) that do not require a motion model could be employed.

As in building the articulated model, there may be advantages to using other
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types of sensors. In addition, it would be advantageous to have multiple synchro-

nized cameras. Multiple cameras would alleviate some of the ambiguities outlined

in section 7.2.3. Work on human pose tracking shows the accuracy advantages when

multiple cameras are used in tracking articulation.[46, 81]

The final consideration for articulation tracking is the realization of how closely

it is related to the heavily researched field of human pose tracking. As mentioned in

section 2.3.5, there is a significant body of work focused on determining how human

joints are articulated from imagery. The articulated model of a human is known;

it is the human skeleton. Aspects (such as limb length) may need to be different

from person to person, but generally the model is the same. Therefore, the methods

developed over the last few decades for human pose tracking can be applied to tracking

the pose of a satellite with a known articulated model as demonstrated in section 6.6.

In addition, rendering tools built specifically for simulating images taken in space

could be used to produce ‘training’ data for methods such as [3] that learn to predict

the articulation state from a single monocular image.

7.2.3 Monocular Vision Ambiguities.

Monocular imagery is a 2D representation of the 3D world. With this decrease

in dimensionality there are some ambiguities that should be considered. A single

2D image of a scene contains no depth information, meaning that an identical image

could be constructed with the objects in the image scaled and closer/farther from the

camera. When attempting to build a model of an object that is viewed over multiple

images, there are multiple solutions (as shown in Figure 47a). When considering

the case of sensing articulation, this can lead to a rotation ambiguity. When an

articulation axis and the object face are perpendicular to the optical axis, rotations

in either direction will look the same as shown in Figure 47b.
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Ambiguities also occur due to occlusions. When an object is viewed from one

direction only, portions of the object can be occluded from view. This can cause

problems in reconstructing the object as demonstrated in Figure 46 or could cause

problems in tracking, particularly if the articulation rate changes when the component

is out of view. For silhouettes, a component is also effectively occluded when it is

directly between the camera and another component as shown in Figure 47c.

In the context of articulation sensing, particularly with feature points, an addi-

tional ambiguity arises when a joint is not active. If a joint is not active, the two

connected components are moving as a rigid body. This means that points could

be assigned to either body frame without consequence causing ambiguity in tracking

methods that use feature point measurements.

Figure 47. Examples of monocular imagery ambiguities: a) Depth ambiguity b) Artic-
ulation ambiguity c) Occlusion ambiguity

7.2.4 Articulation Rates.

While the effect of the articulation rate on the results from the methods was not

assessed, there are a few considerations for the topic. Rather then considering the an-

gular articulation rate (degrees/second) and the image capture rate (frames/second)

separately, consider the articulation rate generally in terms of degrees/frame. This

removes the temporal aspect and instead focuses on relative rate between angular

articulation and image capture. For the methods of building the articulated model
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(Chapter III) the articulation rate can be thought of in terms of the number of frames

captured over a particular articulation period. For the original method (section 3.3)

reducing the number of frames, which increases the articulation rate, may exacerbate

the issues involved with combining segments since there will be less frame overlap

between points. Alternatively, increasing the number of frames (decreasing the artic-

ulation rate) may improve results, however it would also increase computational time.

For the modified method (section 3.5.1) reducing the number of frames is likely to

have an effect only if it reduces the accuracy of the segmentation or kinematic chain.

For the tracking methods (Chapters IV and V), the articulation rate can be

thought of as degrees/update. For the feature point method (Chapter IV) artic-

ulation rate must be low enough that the linearized measurement model remains

accurate. For the silhouette method the expected articulation rate should be con-

sidered in setting the initial covariance values and weights; if the rate is too high as

compared to the initial covariance, the sigma points may not be spaced far enough

from the mean to enable the filter to converge to the correct rates. In both cases a

lower articulation rate (faster updates) would allow the filter to better accommodate

changes to the articulation rates. For the APF method outlined in section 6.6 the

effect of the articulation rate could be minimized by increasing the number of parti-

cles (increasing the computational requirement) however applying the method with a

single camera may still yield poor results due to ambiguities outlined in section 7.2.3.

7.3 Summary of Methods Presented

An overview of each of the methods developed is included in Table 8. Figure 1

gives a graphical overview of how the different methods fit into the overall problem

and how they relate to the stated research objectives of sections 1.2 and 7.1.
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Table 8. Overview of methods. TM=Trajectory Matrix, IR=Inspection Route,
FP=Feature Point

Build Articulated Model Articulation Tracking

Original Method
(sec. 3.3)

Modified
Method (sec.

3.5.1)

Feature points
(Chapter IV)

Silhouette
(Chapter V)

P
ri

o
r

K
n

o
w

le
d

g
e

a
n

d
A

ss
u

m
p

ti
o
n

s

-Number of compo-
nents unknown.
-Main body not
maneuvering
-No IR or TM noise
(if main body can
be segmented, can
accommodate IR
and TM noise)
-Accommodates
significant missing
data; better results
with less missing
data

-Number of compo-
nents known
-Main body can be
maneuvering
-TM and IR noise
acceptable
-Viewing angle
such that kine-
matic chain can
be created directly
from TM.
-Only solves for
FPs seen in all
frames

-FPs used for mea-
surement
-Stationary articu-
lation parameters
included in state
-Initiated with
model and first
image frame
-Demonstrated
with IR and FP
noise

-Silhouettes used
for measurements
-Stationary articu-
lation parameters
excluded from state
-Initiated with true
angles/pose and
zero rates
-Demonstrated
with IR noise
-Components mod-
eled with primitive
shapes

-Depth to satellite � depth within
satellite (scaled orthographic camera
model used for initializations)

-Articulated model available

-FPs can be reliably tracked with correct correspondence
-FPs adequately cover components

-Silhouettes can be
reliably created

-IR known

T
y
p

e
o
f

A
rt

ic
u

la
ti

o
n

-Constant rate articulation assumption
used for initialization only.

-Constant rate motion model

-Non-constant rate articulation not
tested.

-Bilinear demon-
strated

-Sinusoidal and
bilinear demon-
strated

-All joints are revolute (hinge)

A
rt

ic
u

la
ti

o
n

R
a
te

-Tested with rates of 3.3e−4 to 4.4e−4
degrees per frame

-Tested with rates
of 1.1e−5 to 7.6e−5
degrees per update

-Tested with rates
of 6.1e−5 to 3.8e−4
degrees per update

P
a
ra

m
e
te

r
to

b
e

T
u

n
e
d -See Table 3 -Parameters γsc+,

γsc−, γBB , and η
from Table 3
-Range of ex-
pected values for
initializations

-Process noise
-Measurement
noise
-Criteria for adding
points

-Process noise
-Measurement
noise
-UKF weights
-Value for σ from
equation (133)

A
p

p
ro

x
im

a
te

C
o
m

p
u

ta
ti

o
n

a
l

T
im

e

-5.5 hrs. (Table 2) -7 hrs. (100 frames;
276 points)
-This could be min-
imized by reducing
the number of seeds
evaluated in line 9
of Algorithm 2

-0.3 sec. per update -Time per update
is image size de-
pendent
-1.7 sec. for
800x800 image
-70 sec. for
3024x4032 image
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7.4 Contributions

The main contribution of this work is the investigation into methods of charac-

terizing and tracking satellite articulation in space using monocular computer vision.

While previous work exists on characterizing articulation within the computer vision

community, no previous work was found in applying computer vision to characterize

articulation in space. Aspects of existing computer vision algorithms have been used

to develop methods of building an articulated model and tracking satellite articulation

in real-time. Specifically, the contributions from this research are:

1. Introduction of computer vision for the purpose of building an articulated model

and tracking satellite articulation in space using monocular imagery.

2. Development and demonstration of a method for building an articulated model

of a satellite from monocular imagery taken from a known inspection route.

3. Development and demonstration of methods for sequentially estimating the pose

and articulation angles of a satellite using both feature points and silhouette

images.

4. Demonstration of tracking articulation angles using real images of a satellite

model taken in a simulated space lighting environment.

5. Demonstration that algorithms developed for human articulation tracking can

be modified to track the articulated motion of a satellite.

Additionally, four conference papers have been published in conjunction with this

work [19, 18, 21, 17].

7.5 Recommendations for Future Work

There are numerous areas for continuation of the current work:
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• Human tracking method applications: The use of human tracking algorithms

for tracking satellite articulation could be investigated in more depth. The po-

tential of using these type of algorithms has been demonstrated, but a thorough

investigation of the existing work and its applicability had not been investigated.

• Optimize inspection route: The best inspection route depends on the satellite

being viewed and the purpose of the inspection, but with some assumptions a

cost function could be developed based on the information available from images

taken at different relative poses. Images of some nominal satellites could be

rendered and measures of the information availability could be developed that

compare detected feature points, silhouettes, or edge maps to a baseline images.

Completeness of the inspection could be measured by evaluating the amount of

the satellite that was viewed by the camera over a given route. These measures

could be used to build a simpler surrogate metric that could be used in the cost

function of an optimal control problem.

• Multiple cameras: There are added benefits for inspection in having multiple

cameras collecting imagery at the same time from different angles. Many of the

human articulation tracking algorithms employ multiple cameras. A cost/ben-

efit analysis could be performed to identify if and when it would be worth the

added cost to use multiple cameras.

• Building an articulated model from silhouettes: Methods exist for building shape

from silhouettes [12, 13]. These algorithms could be investigated for use in the

space environment.

• Machine learning for pose estimation: Training imagery could be rendered of a

known satellite in various articulation configurations from various angles. This

could be used in machine learning applications to ‘learn’ how to predict artic-
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ulation from imagery.

• Alternative sensors: The pros/cons of using alternative sensors such as LIDAR

or stereo vision for inspection could be investigated.

The work presented represents significant progress in the use of computer vision

techniques for articulation sensing in space. It outlines methods for building an artic-

ulated model and tracking articulation to answer the objectives outlined in Chapter I.

Furthermore, it demonstrates the potential of applying human articulation tracking

methods to the problem of spacecraft articulation tracking.
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Appendix A. Gradients for Chapter III

A.1 Rigid Body Optimization Gradients

Derivation for the derivatives used in rigid body optimization (section 3.3.4) are

as follows where x = [a, φ,T,Ω]T .

f(x) =
F∑

i=1

‖Wi − Pi(RiΩ + T̃i)‖2+

λrb

F∑

i=2

[
arccos(.5(trace(RiR

T
i−1)− 1)) + ‖Ti − Ti−1‖2

]
(A.1)

The optimization variables are contained in the vector x which consist of a 3F × 1

vector of Euler axes (not normalized) a = [~aT1 ,~a
T
2 , · · · ,~aTF ], a F × 1 vector of Euler

angles φ = [φ1, φ2, · · · , φF ], a 3F × 1 vector of translations T = [~T T1 , ~T
T
2 , · · · , ~T TF ],

and a 3P × 1 vector of shape coordinates Ω = [~sT1 , ~s
T
2 , · · · , ~sTP ]. These optimization

variables translate to the variables in the cost function as follows.

Ri = cos(φi)I + (1− cos(φi))âiâ
T
i − sin(φi)â

x
i (A.2)

âi =
~ai
‖~ai‖

(A.3)

T̃i = Ti −RiΩ̄ (A.4)

Ω̄ =
1

P

P∑

j=1

~sj (A.5)

The gradient of the function consists of the partial derivatives of each of the

optimization variables ∂f
∂x

=
[
∂f
∂a
, ∂f
∂φ
, ∂f
∂T
, ∂f
∂Ω

]T
. The chain rule is used to relate each

of these to the components of the cost function. Start with the partial between the

rotation matrix Ri and the rotation parameters (~ai and φi).
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∂f

∂~ai
=

∂f

∂Ri

∂Ri

∂âi

∂âi
∂~ai

(A.6)

âi = [â
(1)
i , â

(2)
i , â

(3)
i ]T (A.7)

Ri =




R
(1)
i R

(2)
i R

(3)
i

R
(4)
i R

(5)
i R

(6)
i

R
(7)
i R

(8)
i R

(9)
i




(A.8)

∂Ri

∂âi
=




∂R
(1)
i

∂â
(1)
i

∂R
(1)
i

∂â
(2)
i

∂R
(1)
i

∂â
(3)
i

∂R
(2)
i

∂â
(1)
i

∂R
(2)
i

∂â
(2)
i

∂R
(2)
i

∂â
(3)
i

...
...

...

∂R
(9)
i

∂â
(1)
i

∂R
(9)
i

∂â
(2)
i

∂R
(9)
i

∂â
(3)
i




(A.9)

The derivatives of Ri with respect to âi are as follows. They are written as 3 × 3

matrices, however they should be reshaped to 9 × 3 to be used in the chain rule as

written.

∂Ri

∂â
(1)
i

=




2(1− cos(φi))â
(1)
i (1− cos(φi))â

(2)
i (1− cos(φi))â

(3)
i

(1− cos(φi))â
(2)
i 0 sin(φi)

(1− cos(φi))â
(3)
i − sin(φi) 0




(A.10)

∂Ri

∂â
(2)
i

=




0 (1− cos(φi))â
(1)
i − sin(φi)

(1− cos(φi))â
(2)
i 2(1− cos(φi))â

(2)
i (1− cos(φi))â

(2)
i

sin(φi) (1− cos(φi))â
(3)
i 0




(A.11)

∂Ri

∂â
(3)
i

=




0 sin(φi) (1− cos(φi))â
(1)
i

− sin(φi) 0 (1− cos(φi))â
(2)
i

(1− cos(φi))â
(1)
i (1− cos(φi))â

(2)
i 2(1− cos(φi))â

(3)
i




(A.12)

The Euler axis should be constrained to be unit length. Instead of enforcing unit
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length as a hard constraint in the optimization, the vector is normalized before use in

the cost function. The following derivatives relate the Euler axis âi to the optimization

variable ~ai. I represents the 3× 3 identity matrix.

∂âi
∂~ai

=




∂â
(1)
i

∂a
(1)
i

∂â
(1)
i

∂a
(2)
i

∂â
(1)
i

∂a
(3)
i

∂â
(2)
i

∂a
(1)
i

∂â
(2)
i

∂a2
i

∂â
(2)
i

∂a
(3)
i

∂â
(3)
i

∂a
(3)
i

∂â
(3)
i

∂a
(2)
i

∂â
(3)
i

∂a
(3)
i




(A.13)

∂âi
∂~ai

=
1

‖âi‖
I − 1

‖âi‖3
(~ai~a

T
i ) (A.14)

The derivative of Ri with respect to the Euler angle φi is as follows.

∂Ri

∂φi
=




− sin(φi) cos(φi)â
(3)
i − cos(φi)â

(2)
i

− cos(φi)â
(3)
i − sin(φi) − cos(φi)â

(1)
i

cos(φi)â
(2)
i − cos(φi)â

(1)
i − sin(φi)




+ sin(φi)(âiâ
T
i ) (A.15)

The partial derivative of the centered translation T̃i with respect to the rotation

matrix Ri, the actual translation Ti, and the shape Ω must also be calculated. The

symbol ⊗ denotes the Kronecker product.

∂T̃i
∂Ti

= I (A.16)

∂T̃i
∂Ri

= −I ⊗ (Ω̄)T (A.17)

∂T̃i
∂Ωj

= − 1
P
Ri (A.18)

Now that the rotation matrix has been related to the optimization variables, it

must now be related to the cost function. The cost function can be broken into two

parts: D is the reprojection error, and L is the smoothness constraint. Note that ‖ · ‖

167



is the Frobenius norm, or the summation of each element squared.

D =
F∑
i=1

‖Wi − Pi(RiΩ + T̃i)‖2 (A.19)

L = λrb
F∑
i=2

arccos(.5(trace(RiR
T
i−1)− 1)) + ‖Ti − Ti−1‖2 (A.20)

∂f
∂R

= ∂D
∂R

+ ∂L
∂R

(A.21)

∂f
∂T

= ∂D
∂T

+ ∂L
∂T

(A.22)

∂f
∂Ω

= ∂D
∂Ω

(A.23)

The reprojection error for frame i is Di which is the summation of the reprojection

error for the P points available in frame i. The terms u and v are the image coordinates

in the horizontal and vertical dimensions respectively.

Di =
∑

u,v

P∑

j=1

G2
i,j (A.24)

Gi,j =



uj

vj


− Pi(RiΩj + T̃i) (A.25)

∂Di

∂Ri

=
∑

u,v

P∑

j=1

2Gi,j

[
∂Gi,j

∂Ri

+
∂Gi,j

∂T̃i

∂T̃i
∂Ri

]
(A.26)

Define G̃ as the second term of G written in homogeneous coordinates. f is the focal
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length of the camera using a pinhole camera model.

G̃i,j =




f 0 0

0 f 0

0 0 1




[
RCW |t

]



Ri Ti

0, 0, 0 1






sj

1


 (A.27)

G̃i,j =




G̃1i,j

G̃2i,j

ω




(A.28)

Gi,j =



uj

vj


−



G̃1i,j
ω

G̃2i,j
ω


 (A.29)

The rotation, translation and shape derivatives are then calculated as follows

using Matlab matrix notation where appropriate. The symbol � denotes element-

wise multiplication.

Rotation derivatives:

∂Gi,j

∂Ri

= −



ω
∂G̃1i,j
∂Ri

−G̃1i,j
∂ω
∂Ri

ω2

ω
∂G̃2i,j
∂Ri

−G̃2i,j
∂ω
∂Ri

ω2


 (A.30)

∂G̃1i,j
∂Ri

= −
[
∂G̃1i,j
∂R1

i
,

∂G̃1i,j
∂R2

i
, · · · ∂G̃1i,j

∂R9
i

]
(A.31)

∂G̃1i,j
∂Ri

= f
[
(R

(1,:)
CW ⊗ [1, 1, 1])� ([1, 1, 1]⊗ sTj )

]
(A.32)

∂G̃2i,j
∂Ri

= f
[
(R

(2,:)
CW ⊗ [1, 1, 1])� ([1, 1, 1]⊗ sTj )

]
(A.33)

∂ω̃i,j
∂Ri

=
[
(R

(3,:)
CW ⊗ [1, 1, 1])� ([1, 1, 1]⊗ sTj )

]
(A.34)

169



Translation derivatives:

∂Di

∂Ti
=

∑

u,v

P∑

j=1

2Gi,j
∂Gi,j

∂T̃i

∂T̃i
∂Ti

(A.35)

∂Gi,j

∂T̃i
= −




ω
∂G̃1i,j

∂T̃i
−G̃1i,j

∂ω
∂T̃i

ω2

ω
∂G̃2i,j

∂T̃i
−G̃2i,j

∂ω
∂T̃i

ω2


 (A.36)

∂G̃1i,j

∂T̃i
= fR

(1,:)
CW (A.37)

∂G̃2i,j

∂T̃i
= fR

(2,:)
CW (A.38)

∂ω

∂T̃i
= R

(3,:)
CW (A.39)

Shape derivatives:

∂D

∂Ωj

=
∑

u,v

F∑

i=1

2Gi,j

[
∂Gi,j

∂Ωj

+
∂Gi,j

∂T̃i

∂T̃i
∂Ωj

]
(A.40)

∂Gi,j

∂Ωj

= −




ω
∂G̃1i,j
∂Ωj

−G̃1i,j
∂ω
∂Ωj

ω2

ω
∂G̃2i,j
∂Ωj

−G̃2i,j
∂ω
∂Ωj

ω2


 (A.41)

∂G̃1i,j
∂Ωj

= fR
(1,:)
CWRi (A.42)

∂G̃2i,j
∂Ωj

= fR
(2,:)
CWRi (A.43)

∂ω

∂Ωj

= R
(3,:)
CWRi (A.44)

The smoothness constraint is only applied to adjacent frames, so the derivatives

are different if frame i is the first frame in a sequence, the middle frame in a sequence
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or the last frame in a sequence. For the first frame in a sequence,

Li = λrb
[
arccos(.5(trace(Ri+1R

T
i )− 1)) + ‖Ti+1 − Ti‖

]
(A.45)

Ui = 0.5(trace(RiR
T
i−1)− 1) (A.46)

∂Li
∂Ri

= − λrb√
1− U2

i+1

(.5Ri+1) (A.47)

Vi = ‖Ti − Ti−1‖ (A.48)

=
√

(T 1
i − T 1

i−1)2 + (T 2
i − T 2

i−1)2 + (T 3
i − T 3

i−1)2 (A.49)

∂Li
∂Ti

= − λrb

2
√
V 2
i+1

[
−2(Ti+1)T + 2(Ti)

T
]

(A.50)

For middle frames in a sequence,

Li = λrb[arccos(.5(trc(Ri+1R
T
i )− 1)) + ‖Ti+1 − Ti‖+

arccos(.5(trc(RiR
T
i−1)− 1)) + ‖Ti − Ti−1‖] (A.51)

∂Li
∂Ri

= − λrb√
1− U2

i

(.5Ri−1)− λrb√
1− U2

i+1

(.5Ri+1) (A.52)

∂Li
∂Ti

= − λrb

2
√
V 2
i

[
−2(Ti)

T + 2(Ti−1)T
]
− λrb

2
√
V 2
i+1

[
−2(Ti+1)T + 2(Ti)

T
]
(A.53)

For last frames in a sequence,

Li = λrb
[
arccos(.5(trc(RiR

T
i−1)− 1)) + ‖Ti − Ti−1‖

]
(A.54)

∂Li
∂Ri

= − λ√
1− U2

i

(.5Ri−1) (A.55)

∂Li
∂Ti

= − λ

2
√
V 2
i

[
−2(Ti)

T + 2(Ti−1)T
]

(A.56)
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A.2 Articulation Parameter Gradients

Derivation for the derivatives used in articulation parameter optimization (section

42) are as follows:

f(x) =
N−1∑

j=1




CF∑

i=1

[
‖Wi − Pi(Rw,cj

i Ωcj + T
w,cj
i )‖2

]

︸ ︷︷ ︸
Reprojection Error, A

+

λjp

12∑

k=1

ln(1 + edkη)

︸ ︷︷ ︸
Joint Penalty, B

+λsc

CF∑

i=2

(1− cos(φi − φi−1))2

︸ ︷︷ ︸
Smoothness Constraint, SC




(A.57)

x = [Ωc1 ,~ap1 ,~ac1 , φ1, Jp1 , J c1 , · · · ,ΩcN−1 ,~apN−1 ,~acN−1 , φN−1, JpN−1 , J cN−1 ]T (A.58)

Many of the derivatives for the articulation parameter cost function are the same as

for rigid body optimization. The primary difference is finding the partial derivatives

of the rotation matrix used for each component with respect to the optimization

variables lower in the kinematic chain. For each parameter that defines joint j between

components xk and xk−1, the derivatives must be calculated for each component that

contains xk−1 in its hierarchy. Define Xk as the set of components influenced by

component xk, or in other words Xk is the set of components below component xk in

the kinematic chain.
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∂f

∂Rw,xk
i

=
Xk∑

q=1

∂f

∂R
w,xq
i

(A.59)

∂f

∂Tw,xki

=
Xk∑

q=1

∂f

∂T
w,xq
i

(A.60)

To calculate the derivatives of the rotation matrices Rw,xk
i and the translation

vectors Tw,xki a hierarchical approach is required. Define X = [x1, x2, · · · , xl] as a

single chain starting at the root and ending with a component that has no children

where each element of X identifies a component, xk is the parent and xk−1 is the child

for any particular joint.

∂Rw,xk
i

∂R
xl−1,xl
i

=





∂R
w,xk
i

∂R
xl−1,xl
i

k = l

∂R
w,xk
i

∂R
w,xk−1
i

∂R
w,xk−1
i

∂R
xl−1,xl
i

k > l

(A.61)

∂Tw,xki

∂R
xl−1,xl
i

=





∂T
w,xk
i

∂R
w,xk
i

k = l

∂T
w,xk
i

∂R
w,xk−1
i

∂R
w,xk−1
i

∂R
xl−1,xl
i

+
∂T

w,xk
i

∂T
w,xk−1
i

∂T
w,xk−1
i

∂R
xl−1,xl
i

+
∂T

w,xk
i

∂R
w,xk
i

k > l

(A.62)

To calculate these partial derivatives, the derivative relating the actual optimiza-

tion parameters to the rotation matrices must be calculated. The symbol ⊗ denotes

the Kronecker product.

∂Rw,xk
i

∂R
xk−1,xk
i

= R
w,xk−1

i ⊗ I (A.63)

∂Rw,xk
i

∂R
w,xk−1

i

= I ⊗ (R
xk−1,xk
i )T (A.64)
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From equation set (74) the derivatives of R
xk−1,xk
i with respect to rotational opti-

mization variables for the joint between xk−1 and xk (â
xk,xk−1
p , â

xk,xk−1
c , φ

xk,xk−1

i ) can

be found.

∂R
xk−1,xk
i

∂â
xk,xk−1
p

= (R
xk−1,aa
i ⊗ I)

∂Raa,xk
i

∂â
xk,xk−1
p

+ (I ⊗ (Raa,xk)T )
∂R

xk−1,aa
i

∂â
xk,xk−1
p

(A.65)

∂Raa,xk
i

∂â
xk,xk−1
p

=
∂Raa,xk

i

∂â
xk,xk−1
a

∂â
xk,xk−1
a

∂~a
xk,xk−1
a

∂~a
xk,xk−1
a

∂â
xk,xk−1
p

+
∂R

aa,xk−1

i

∂ψ
xk,xk−1
a

∂ψ
xk,xk−1
a

∂â
xk,xk−1
p

(A.66)

The derivatives
∂R

xk−1,aa

i

∂â
xk,xk−1
p

,
∂R

aa,xk
i

∂â
xk,xk−1
a

, ∂â
xk,xk−1
a

∂~a
xk,xk−1
a

, and
∂R

aa,xk−1
i

∂ψ
xk,xk−1
a

are identical in structure

to the derivatives of a rotation matrix with respect to an Euler axis and angle shown

in section A.1.

~aa = âp × âc =




â
(2)
p â

(3)
c − â(3)

p â
(2)
c

â
(3)
p â

(1)
c − â(1)

p â
(3)
c

â
(1)
p â

(2)
c − â(2)

p â
(1)
c




(A.67)

∂~aa
âp

=




0 â
(3)
c −â(2)

c

−â(3)
c 0 â

(1)
c

â
(2)
c −â(1)

c 0




(A.68)

ψa = arccos(âp · âc) (A.69)

∂ψa
âp

= − 1√
1−(âp·âc)2

(âc)
T (A.70)

Derivatives with respect to â
xk,xk−1
c are similar except that R

xk−1,aa
i is not depen-
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dent on â
xk,xk−1
c so the product rule is not required.

∂R
xk−1,xk
i

∂â
xk,xk−1
c

= (R
xk−1,aa
i ⊗ I)

∂R
aa,xk
i

∂â
xk,xk−1
c

(A.71)

∂R
aa,xk
i

∂â
xk,xk−1
c

=
∂R

aa,xk
i

∂â
xk,xk−1
a

∂â
xk,xk−1
a

∂~a
xk,xk−1
a

∂~a
xk,xk−1
a

∂â
xk,xk−1
c

+
∂R

aa,xk−1
i

∂ψ
xk,xk−1
a

∂ψ
xk,xk−1
a

∂â
xk,xk−1
c

(A.72)

The derivative
∂R

xk−1,aa

i

∂â
xk,xk−1
c

is identical in structure to the derivatives of a rotation matrix

with respect to an Euler axis and angle shown in section A.1.

∂~aa
âc

=




0 −â(3)
p â

(2)
p

â
(3)
p 0 −â(1)

p

−â(2)
p â

(1)
p 0




(A.73)

∂ψa
âc

= − 1√
1−(âp·âc)2

(âp)
T (A.74)

The derivatives with respect to the articulation angle (φi) are not dependent on

R
xk−1,aa
i and can be calculated using the 3× 3 representation of ∂R

∂φ
from section A.1.

After multiplication,
∂R

xk−1,xk
i

∂φi
must be reshaped to a 9× 1 matrix.

∂R
xk−1,xk
i

∂φi
=
∂R

xk−1,aa
i

∂φi
Raa,xk (A.75)

The rotation also effects the translation. The remaining derivatives required for

∂T
w,xk
i

∂R
xl−1,xl
i

are as follows.

∂T
w,xk
i

∂R
w,xk
i

= I ⊗ (−Jxk,xk−1
c )T (A.76)

∂T
w,xk
i

∂R
w,xk−1
i

= I ⊗ (J
xk,xk−1
p )T (A.77)

∂T
w,xk
i

∂T
w,xk−1
i

= I (A.78)

Next, the derivatives with respect to the joint locations (Jp and Jc) must be cal-

culated. Since the joint locations do not have an effect on the rotation matrices, only
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the derivatives with respect to the translations and the joint penalty (B) are required.

BBp and BBc are the bounding boxes for the parent and the child respectively.

∂Tw,xki

∂J
xl−1,xl
p

=





R
w,xk−1

i k = l

∂T
w,xk
i

∂T
w,xk−1
i

∂T
w,xk−1
i

∂J
xl−1,xl
p

k > l

(A.79)

∂Tw,xki

∂J
xl−1,xl
c

=





−Rw,xk
i k = l

∂T
w,xk
i

∂T
w,xk−1
i

∂T
w,xk−1
i

∂J
xl−1,xl
c

k > l

(A.80)

dj = [(J jp −BBmax
p )T , (BBmin

p − J jp)T , (J jc −BBmax
c )T , (BBmin

c − J jc )T ] (A.81)

∂djk
∂Jjp

= [1, 1, 1,−1,−1,−1, 0, 0, 0, 0, 0, 0] (A.82)

∂djk
∂Jjc

= [0, 0, 0, 0, 0, 0, 1, 1, 1,−1,−1,−1] (A.83)

∂Bj

∂Jjp
= λjp

12∑
k=1

1
1+edkη

(ηedkη)
∂djk
∂Jjp

(A.84)

∂Bj

∂Jjc
= λjp

12∑
k=1

1
1+edkη

(ηedkη)
∂djk
∂Jjc

(A.85)

Finally, the derivatives with respect to the smoothness constraint (SC) must be

calculated.

∂f
∂φi

= ∂A
∂φi

+ ∂SC
∂φi

(A.86)

∆i = φi − φi−1 (A.87)

∂SC
∂φi

=





−2λsc(1− cos(∆i+1)) sin(∆i+1) first frame

−2λsc [(1− cos(∆i+1)) sin(∆i+1)− (1− cos(∆i)) sin(∆i)] middle frames

2λsc(1− cos(∆i)) sin(∆i) last frames

(A.88)

The derivative of the reprojection error (A) with respect to Ωcj , R
w,cj
i , and T

w,cj
i are

calculated as defined in section A.1.
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Appendix B. Jacobians for Chapter IV

B.1 Articulation Parameter Propagation Jacobian

The propagation Jacobian is defines as F = ∂f(xt−1)
∂xt−1

where xt = f(xt−1) propagates

the state from xt−1 to xt. Since many of the states (θi, ψi, Jp
i, Jc

i) are constant with

time, their propagation equations are xt = xt−1 + η∆t where η is the appropriate

process noise and the corresponding portion of the Jacobian is the identity matrix.

The only remain states are qwr, Twr, ωwr, Ṫwr, φi, and φ̇i. Those states associated

with the root component are addressed first. These derivatives are similar to those

worked out in Civera[14] for EKF SLAM.

xt = f(xt−1) =




qwrt

Twr
t

ωwrt

Ṫwr
t




=




qwrt−1 ⊗ q((ωt−1 + ηω∆t)∆t)

Twr
t−1 + (Ṫwr

t−1 + ηT∆t)∆t

ωwrt−1 + ηω∆t

Ṫwr
t−1 + ηT∆t




(B.1)

F = ∂f(xt−1)
∂xt−1

=




∂qwrt
∂qwrt−1

0
∂qwrt
∂ωwrt−1

0

0
∂Twrt
∂Twrt−1

0
∂Twrt
∂Ṫwrt−1

0 0
∂ωwrt
∂ωwrt−1

0

0 0 0
∂Ṫwrt
∂Ṫwrt−1




(B.2)

Define ω′ = (ωt−1 + ηω∆t)∆t and q′ = q(ω′). Quaternion multiplication is defined as

in Markley[56] with q = [(qv)
T , q4]T .

q⊗ q′ =



q4q

′
v + q′4qv − qv × q′v

q4q
′
4 − qv · q′v


 (B.3)
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With these definitions, the derivatives for the quaternion are as follows. For conve-

nience of notation, qwrt is represented by q

∂qwrt
∂qwrt−1

=




q′4 −q′3 q′2 q′1

q′3 q′4 −q′1 q′2

−q′2 q′1 q′4 q′3

−q′1 −q′2 −q′3 q′4




(B.4)

∂qwrt
∂ωwrt−1

=
∂qwrt
∂q′

∂q′

∂ω′
∂ω′
∂ωwrt−1

(B.5)

∂qwrt
∂q′ =




q4 q3 −q2 q1

−q3 q4 q1 q2

q2 −q1 q4 q3

−q1 −q2 −q3 q4




(B.6)

∂q′

∂ω′ =




( 1
‖ω′‖I − ω′

‖ω′‖
∂‖ω′‖
∂ω′ ) sin(‖ω

′‖
2

+ ω′
‖ω′‖(0.5 cos(‖ω

′‖
2

))∂‖ω
′‖

∂ω′

−0.5 sin(‖ω
′‖

2
)∂‖ω

′‖
∂ω′


 (B.7)

∂‖ω′‖
∂ω′ = ω′T

‖ω′‖ (B.8)

∂ω′
∂ωwrt−1

= I∆t (B.9)

∂qwrt
∂ωwrt−1

=
∂qwrt
∂q′

∂q′

∂ω′
∂ω′
∂ωwrt−1

(B.10)

The derivative for Twr
t , ωwrt , and Ṫwr

t are straight forward:
∂Twrt
∂Twrt−1

= I,
∂Twrt
∂Ṫwrt−1

= I∆t,

∂ωwrt
∂ωwrt−1

= I, and
∂Ṫwrt
∂Ṫwrt−1

= I. The derivative for φi and φ̇i are also straight forward:

∂φit
∂φi

= 1,
∂φit
∂φ̇i

= ∆t, and
∂φ̇it
∂φ̇i

= 1.

Similarly, the G matrix is found by taking the derivative of the propagation equa-

tions with respect to the process noise. A process noise channel η is assigned for each

type of state as follows: η = [ηω, ηṪ , ηΩ, ηθ,ψ, ηJ , ηφ̇]. The portion of the G matrix
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corresponding the the root component motion is shown in the following equations.

G = ∂f(xt−1)
∂η

=




∂qwrt
∂ηω

0

0
∂Twrt
∂ηṪ

∂ωwrt
∂ηω

0

0
∂Ṫwrt
∂ηṪ




(B.11)

∂qwrt
∂ηω

=
∂qwrt
∂q′

∂q′

∂ω′
∂ω′
∂ηω

(B.12)

∂ω′
∂ηω

=
∂Twrt
∂ηṪ

= (∆t)2 (B.13)

∂ωwrt
∂ηω

=
∂Ṫwrt
∂ηṪ

= ∆t (B.14)

The derivative for φi

ηφ
= (∆t)2 and the remaining derivative are zero or ∆t depending

on if a particular noise channel contributes to a particular state.

B.2 Measurement Model Jacobian

The measurement model Jacobian is defines as H =
∂h(x−t )

∂x−t
where ẑ = h(xt−)

transforms the state into measurement space. All states relate to the measurement

through equations (100) and (102), so begin with these derivatives letting a represent

any of the variables in equation (100) that are functions of states (Rwn and Twn).

The symbol � represents element-wise multiplication, the symbol ⊗ represents the

Kronecker product, and Matlab notation is used to refer to particular rows or columns

179



of matrices.

∂ẑj
∂a

= 1
α2
j



αj

∂u′j
∂a
− u′j ∂αj∂a

αj
∂v′j
∂a
− v′j ∂αj∂a


 (B.15)

∂u′j
∂Rwn

= f
[
(RCW

(1,:) ⊗ [1, 1, 1])� ([1, 1, 1]⊗ sTj )
]

(B.16)

∂v′j
∂Rwn

= f
[
(RCW

(2,:) ⊗ [1, 1, 1])� [1, 1, 1]⊗ sTj )
]

(B.17)

∂αj
∂Rwn

= (RCW
(3,:) ⊗ [1, 1, 1])� ([1, 1, 1]⊗ sTj ) (B.18)

∂u′j
∂Twn

= fRCW
(1,:) (B.19)

∂v′j
∂Twn

= fRCW
(2,:) (B.20)

∂αj
∂Twn

= RCW
(3,:) (B.21)

The derivatives for each point sj to be used in the ppEKF are
∂u′j
∂sj

= fRCW
(1,:)R

wn,

∂v′j
∂sj

= fRCW
(2,:)R

wn, and
∂αj
∂sj

= RCW
(3,:)R

wn where Rwn is the rotation matrix associated

with the component containing point sj.

The derivatives with respect to the root component quaternion are as follows.
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Note that q̂wr is the normalized quaternion q̂wr = qwr

‖qwr‖ .

∂Rwr

∂q̂wr
= 2




q̂1 −q̂2 −q̂3 q̂4

q̂2 q̂1 q̂4 q̂3

q̂3 −q̂4 q̂1 −q̂2

q̂2 q̂1 −q̂4 −q̂3

−q̂1 q̂2 −q̂3 q̂4

q̂4 q̂3 q̂2 q̂1

q̂3 q̂4 q̂1 q̂2

−q̂4 q̂3 q̂2 −q̂1

−q̂1 −q̂2 q̂3 q̂4




(B.22)

∂q̂wr

∂qwr
= 1
‖qwr‖I − 1

‖qwr‖3 (qwr(qwr)T ) (B.23)

To calculate the derivatives of the rotation matrices Rw,xk and the translation

vectors Tw,xk a hierarchical approach is required. Define Xk = [x1, x2, · · · , xl] as a

single chain starting at the root and ending with a component that has no children

where each element of X identifies a component, xk is the parent and xk−1 is the child

for any particular joint.

∂Rw,xk

∂Rxl−1,xl
=





∂Rw,xk
∂Rxl−1,xl k = l

∂Rw,xk
∂Rw,xk−1

∂Rw,xk−1

∂Rxl−1,xl k > l

(B.24)

∂Tw,xk

∂Rxl−1,xl
=





∂Tw,xk
∂Rw,xk

k = l

∂Tw,xk
∂Rw,xk−1

∂Rw,xk−1

∂Rxl−1,xl + ∂Tw,xk
∂Tw,xk−1

∂Tw,xk−1

∂Rxl−1,xl + ∂Tw,xk
∂Rw,xk

k > l

(B.25)

∂Rw,xk

∂Rxk−1,xk
= Rw,xk−1 ⊗ I (B.26)

∂Rw,xk

∂Rw,xk−1
= I ⊗ (Rxk−1,xk)T (B.27)
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Next, the derivatives with respect to the joint parameters must be calculated. The

translations are dependent on the joints and the rotation matrices.

∂Tw,xk

∂Rw,xk
= I ⊗ (−Jxk,xk−1

c )T (B.28)

∂Tw,xk

∂Rw,xk−1
= I ⊗ (Jxk,xk−1

p )T (B.29)

∂Tw,xk

∂Tw,xk−1
= I (B.30)

∂Tw,xk

∂J
xl−1,xl
p

=





Rw,xk−1 k = l

∂Tw,xk
∂Tw,xk−1

∂Tw,xk−1

∂J
xl−1,xl
p

k > l

(B.31)

∂Tw,xk

∂J
xl−1,xl
c

=





−Rw,xk k = l

∂Tw,xk
∂Tw,xk−1

∂Tw,xk−1

∂J
xl−1,xl
c

k > l

(B.32)

Finally, the derivatives of the rotation matrices Rxk−1,xk between two linked com-

ponents with respect to the angle θ, ψ, and φ can be calculated using the articulation

axis â as an intermediate variable where â =

[
cos(θ) cos(ψ) sin(θ) cos(ψ) sin(ψ)

]T
.

∂Rxk−1,xk

∂θ
= ∂Rxk−1,xk

∂â
∂â
∂θ

(B.33)

∂Rxk−1,xk

∂ψ
= ∂Rxk−1,xk

∂â
∂â
∂ψ

(B.34)

∂Rxk−1,xk

∂â
=




2(1− cos(φ))â1 0 0

(1− cos(φ))â2 (1− cos(φ))â1 sin(φ)

(1− cos(φ))â3 − sin(φ) (1− cos(φ))â1

(1− cos(φ))â2 (1− cos(φ))â2 0

0 2(1− cos(φ))â3 − sin(φ)

sin(φ) (1− cos(φ))â2 (1− cos(φ))â2

(1− cos(φ))â3 sin(φ) (1− cos(φ))â1

− sin(φ) (1− cos(φ))â3 (1− cos(φ))â2

0 0 2(1− cos(φ))â3




(B.35)
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∂â
∂θ

=

[
− sin(θ) cos(ψ) cos(θ) cos(ψ) 0

]T
(B.36)

∂â
∂θ

=

[
− cos(θ) sin(ψ) − sin(θ) sin(ψ) cos(ψ)

]T
(B.37)

∂Rxk−1,xk

∂φ
=




− sin(φ) cos(φ)â3 − cos(φ)â2

− cos(φ)â3 − sin(φ) − cos(φ)â1

cos(φ)â2 − cos(φ)â1 − sin(φ)




+ sin(φ)(ââT ) (B.38)

The remaining derivatives are zero.
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Appendix C. AIAA SciTech 2017 Paper

A conference paper presented at AIAA SciTech in January 2017 is included in this

Appendix. It outlines a method of sensing articulation for a single articulating panel

using structure from motion techniques. The methods presented are not discussed

elsewhere in the document so the paper is included here in its entirety.
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Satellite Articulation Sensing using Computer Vision

David H. Curtis∗ and Richard G. Cobb†

Air Force Institute of Technology, Wright-Patterson AFB, Ohio 45433

Autonomous on-orbit satellite servicing benefits from an inspector satellite that can gain
as much information as possible about the primary satellite. This includes performance
of articulated objects such as solar arrays, antennas, and sensors. This paper presents a
method of sensing and characterizing single-axis articulation of a solar panel on a target
satellite from an inspector satellite in a natural circumnavigation trajectory around the
target. The method presented uses trajectories of feature points on the target satellite
to sense articulated motion. Motion segmentation is then used to separate feature points
into groups consisting only of points that undergo the same motion. Structure from mo-
tion methods are used to develop point clouds representing each of the distinct objects.
Finally, the axis and angle of the articulation are identified. The method is demonstrated
using simulated data where point cloud radial error on the order of 2%, articulation axis
error of approximately 0.04 radians, and relative articulation angle mean square error of
approximately 0.002 radians were obtained.

Nomenclature

W Trajectory matrix
u, v Horizontal and vertical image coordinates
F Number of frames in sequence or increment
P Number of feature points

W̃ Normalized trajectory matrix

î,̂j Camera unit vectors expressed in body frame
x,y,z Point cloud 3D coordinates
R Motion matrix
S Shape matrix
r Trajectory matrix rank
k Noise adjustment parameter
A Affinity matrix
E Entropy
Q Metric constraint
Ra,b Rotation matrix from frame b to frame a
T Articulation axis motion subspace
m Articulation axis point trajectory
b Articulation axis
θ(t) Articulation angle
σ Trajectory matrix singular value
t Time or frame number

I. Introduction

Autonomous satellite inspection and monitoring can improve the effectiveness of space operations by
giving space operators information about the current state of health of a target satellite. Spacecraft could

∗Graduate Student, Department of Aeronautics and Astronautics, 2950 Hobson Way, AIAA Member.
†Professor, Department of Aeronautics and Astronautics, 2950 Hobson Way, AIAA Associate Fellow.
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be designed with a small inspector satellite capable of performing monitoring services for the main satellite,
such as verifying performance of sensors, solar arrays, robotic arms, or communication antennas. To perform
these monitoring services, it will be necessary for the inspector satellite to determine as much as possible
about the satellite, and to draw conclusions autonomously. Many methods exist for determining satellite pose
using computer vision; however, most make the assumption that the satellite is a rigid body, with feature
points that do not move with respect to one another. This assumption is inaccurate in situations in which the
satellite has components that articulate. To determine if the satellite is articulating, or articulating correctly,
a computer vision algorithm is developed that autonomously senses articulation of a satellite component.

A. Background

Many algorithms have been developed using computer vision to determine the relative pose between a
inspector satellite and a primary satellite in space. Some of these algorithms rely upon markers on the
primary satellite that assist the computer vision algorithm in determining pose.1,2 Others rely on prior
knowledge of the primary satellites configuration.3,4 Some methods rely on stereo vision systems,5,6 some on
monocular vision systems,7,8,4 some use laser illumination of reflective markers.9 They all use a computer
vision method that identifies features in images and matches those features from frame to frame (or in
corresponding frames in the case of stereo systems). The relative position of the features is then estimated
using some type of estimation filter such as an extended Kalman filter or a particle filter. The attitude of
the primary satellite is then estimated by using feature points to define a primary reference frame,7,10 or by
using a known model of the primary satellite.3 Feature points can also be used to create a 3D model of the
satellite.11

Previous work by Tweddle using stereo cameras has demonstrated that mass moments of inertia can be
estimated for a spinning satellite using computer vision algorithms.5 Similar work by Yu estimated mass
center and mass moments of inertia for tumbling satellites.10 If the mass moment of inertia were estimated,
changes in the mass moments of inertia estimates could be sensed,12 which would indicate some change
such as articulation. However, this is a limiting case since the estimation of mass moments of inertia from
computer vision is dependent on the angular velocity of the primary satellite and is ambiguous as to the
real physical geometry when articulation is possible. A well controlled operational satellite is unlikely to be
spinning or tumbling, therefore this method is unlikely to be applicable to sensing articulation in most cases.

While both the inspector and primary satellite are moving, the problem of finding the relative position
between the two can be looked at using the assumption that either the primary is moving and the inspector
is stationary, or the inspector is moving and the primary is stationary. Ghadiok et al. made the assumption
that the inspector was stationary and the primary was moving so that angular velocity measurements from
the inspector could be used to improve the accuracy of the relative position of feature points. They used a
nonlinear complementary filter to fuse the feature position measurements from the computer vision algorithm
with inspector gyro measurements.11 Similarly, Philip et al. assumed the primary was stationary and used
the inspector gyro measurements along with a Kalman filter and extended Kalman filter to estimate primary
position and attitude respectively.7

Within the computer vision field, the task of separating different motions from an image stream is called
motion segmentation. The term motion segmentation refers to any method that attempts to identify and
separate different motions in a video sequence. Zappella et al. summarize a number of motion segmentation
algorithms and classifies them based on the method used for segmentation.13 While there are a number of
strategies for motion segmentation outlined, the manifold clustering strategy seems the most applicable to
the task of sensing and characterizing articulation.

Manifold clustering is a feature-based strategy based on analysis of a trajectory matrix. A trajectory
matrix is a matrix of the 2D image coordinates of each feature point tracked through each frame. The
trajectory matrix, W, is 2F x P in size where F is the number of frames in the sequence and P is the number
of feature points. The make up of the trajectory matrix is shown in equation (1) where ui,j and vi,j are the
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horizontal and vertical pixel-wise positions of the j-th feature point in the i-th frame in the sequence.

W =




u1,1 u1,2 · · · u1,P
v1,1 v1,2 · · · v1,P

u2,1 u2,2 · · · u2,P
v2,1 v2,2 · · · v2,P

...
...

. . .
...

uF,1 uF,2 · · · uF,P
vF,1 vF,2 · · · vF,P




(1)

Assuming an affine camera model, the trajectory matrix of feature points on a rigid body will have a rank
of at most four. Using that fact, motion segmentation becomes a problem of clustering the columns of the
trajectory matrix into independent subspaces.

There are many methods of segmenting the trajectory matrix. Rao et al.14 developed a method based
on Agglomerative Lossy Compression which minimizes a cost function based on the ‘coding length’, or the
number of bits required to describe the segmentation. The method begins by treating each point as a separate
subspace. Then it merges subspaces and calculates the effect of the merge on the coding length. Merges
that decrease the coding length are kept and the process is repeated until more improvement is not possible.
Vidal et al.15 proposed a different solution where they first project the trajectory matrix into a 5-dimensional
subspace. They prove that different motions, even if the motions are partially dependent (such as articulated
motions), will remain different along at least one dimension when projected onto a 5-dimensional subspace.
Once projected, an n-degree polynomial (where n is the expected number of independent motions) of five
variables is found. The derivative of that polynomial is evaluated for each point yielding a 5 element vector.
If the two points are in the same subspace, the angle between these vectors will be zero (or π). The points
can then be segmented according to the angle between the vectors.

Yan and Pollefeys16 develop a method that has been termed Local Subspace Affinity (LSA). To segment
the trajectory matrix according to different motions, LSA uses the concept that trajectories of feature points
on the same object “lie in a low dimensional linear manifold” and trajectories of feature points on objects
with different motions “result in different linear manifolds”. LSA also uses the concept of locality which
means that the basis of a trajectory and its nearest neighbors will lie in the same linear manifold as other
trajectories of the same motion. Zappella et al.17 enhanced the LSA algorithm by adding a method of
automatically determining the rank of the trajectory matrix and the number of motions. To do this, they
used the entropy of the affinity matrix as a measure of the quality of the guessed rank. The ELSA (Enhanced
Local Subspace Affinity) algorithm, including code made available by Zappella, was used in the current work.
There are many more methods of segmenting feature points. Zappella et al.13 outlines a number of them
and also provides a chart showing the attributes of each of the methods.

After motion segmentation, the trajectory matrix can be split into an individual trajectory matrix for
each rigid body. For a trajectory matrix consisting of feature points of a rigid body under orthographic
projection, Tomasi and Kanade18 present an elegant approach to solving for the camera motion (motion
matrix, R) and the shape of the object (shape matrix, S). Defining W̃ as the trajectory matrix minus the
average of each row, they prove that

W̃ =




îT1
...

îTF
ĵT1
...

ĵTF






x1 · · · xP

y1 · · · yP
z1 · · · zP


 (2)

W̃ = RS (3)

where R is the motion matrix which represents the orientation of the camera with respect to the object (i
and j), and S is the shape matrix which represents the 3D location of each feature point with respect to
the object centroid. The W̃ matrix is at most rank 3 (since the translation has been subtracted out). The
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motion matrix and the shape matrix can be found by taking the singular value decomposition of W̃ , and
extracting the first 3 rows and columns as follows.

W̃ = UΣV T (4)

R̂ = U(1:3,:)[Σ(1:3,1:3)]
1
2 (5)

Ŝ = [Σ(1:3,1:3)]
1
2V(1:3,:) (6)

W̃ = R̂Ŝ (7)

To convert R̂ and Ŝ, to R and S they must be multiplied by Q and Q−1 respectively where Q is chosen such
that i1−F and j1−F are unit length and orthogonal to each other. This method of gaining structure from
motion is heavily cited in the computer vision literature. The original method is derived for orthographic
projection,18 however similar methods have been developed using a weak perspective camera model19 and a
paraperspective camera model.20

Manifold clustering type motion segmentation algorithms rely on the fact that a trajectory matrix con-
sisting of feature point trajectories from a rigid body will be at most rank four. However, not all of the
algorithms can handle the case of articulation where multiple rigid bodies are linked. In the case of linked
rigid bodies, the subspaces of the motions are not entirely independent. In fact, a universal joint results
in a one dimensional intersection of subspaces and hinge joint results in a two dimensional intersection of
subspaces.21,22 Tresadern and Reid22 propose a method of solving for articulated structure and motion by
manipulating the motion matrix and shape matrix so the shape matrix is of block diagonal form. Yan and
Pollefeys21 solve for a trajectory of a feature point on the joint by finding the intersection of the two subspaces
and solving for the linear combination of the columns of the intersection that maintains appropriate rank
when augmented to the separated trajectory matrix. Additional work23,24 discusses recovery of articulated
motion, but in the context of the motion of human or animal appendages.

II. Approach

The method developed herein attempts to detect and characterize the articulation and shape of a sim-
ulated satellite with an articulated solar panel from a simulated orthographic camera in an elliptical cir-
cumnavigation route around the primary satellite. Observation of the primary satellite begins when no
articulation is present, however an adjustment to this method is mentioned for cases when articulation is
occurring throughout the observation. The method begins with a trajectory matrix of feature points. Image
processing and feature point tracking is not included, but will be included in future work. The primary
concepts employed by this method are motion segmentation,17 structure from motion,18 and articulation
axis recovery.21 The contribution for this paper is the combination of these methods to characterize the
primary satellite with two distinct point clouds and the articulation of the solar array with an articulation
axis and angle.

A. Simulation set-up

The current method was developed and tested using a simulated trajectory matrix that was generated for
a point cloud representing a simple satellite. Figure 1a shows the model satellite which is approximately
14 units wide (x-direction), 3 units deep (y-direction), and 5 units tall (z-direction). Points were randomly
spread over each face to build the point cloud shown in Figure 1b. Note the articulated solar panel was
modeled with curvature. Aspects of this method rely on the normalized trajectory matrix (W̃ ) to be rank
3. If all of the points on the objects are on the same plane, W̃ will only be of rank 2. This is a limitation
that will be investigated in future work.

The trajectory matrix was created by converting the simulated point cloud into the imagery coordinates
that would be seen from a camera viewing the points as feature points while the inspector satellite is in
a 2x1 elliptical circumnavigation route around the primary. Figure 2a shows the route the inspector takes
around the primary satellite. Figure 2b shows one frame from a sequence of frames of feature point locations,
simulating the results of a feature point tracking algorithm. Note that current work does not include feature
point detection and matching. The 3D point cloud is translated directly to a 2D location via orthographic
projection and is added to the trajectory matrix. A shadowing algorithm is included so only the points that
are within view of the camera are projected into image coordinates at each frame.
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Figure 1. Simulated satellite used in testing: (a) Simulated Satellite (b) Simulated Point Cloud

Figure 2. Inspector satellite route and feature point locations: (a) Inspector satellite route (b) Feature point
locations

This elliptical circumnavigation route may not be the optimal trajectory for an inspection mission,
however it provides a realistic yet simple test case for algorithm development. Additional trajectories will
be investigated in future work.

When articulating, the articulation angle of the solar array follows a sine wave fluctuating ±30◦ from
its start position at a rate of four cycles per circumnavigation orbit. For the remainder of the paper ‘main
body’ refers to the main body of the primary satellite and ‘object 2’ refers to the articulating solar array.

B. Method

1. Sense Articulation Start

Figure 3 provides an overview of the current method that is the main contribution of this paper. The steps
of the process are further explained below.

The first step is to determine when articulation starts. The most straight forward way to sense if the
image stream consists of motion from a single rigid body or multiple rigid bodies is to check the rank of the
trajectory matrix (W), equation (1). When articulation starts, the rank of the trajectory matrix increases.
A simple way to detect this is to look at the ratio of the fourth and fifth largest singular values (σ5/σ4) of
W. To determine when articulation starts, a window consisting of ten frames of data is progressed through
the trajectory matrix. The frame of articulation start is taken as the first time when σ5/σ4 raises above
a threshold. Care must be taken or this method will produce poor results if the threshold is not tuned in
accordance with the noise in the trajectory matrix. It is also computationally expensive. Improvements to
this area are certainly possible.
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Figure 3. Overview of the proposed method

2. Increment Trajectory Matrix

Figure 4. Example of a full trajectory matrix with increments. Empty ele-
ments are black, full elements are white, and red boxes represent the incre-
ments

The full trajectory matrix is
2FxP, where F is the number
of frames and P is the num-
ber of feature points. Since
points drop in and out of view,
the matrix has undefined el-
ements. While some motion
segmentation algorithms are
capable of handling missing
data,14,25,15 the extent of the
missing data in a trajectory
matrix from a circumnaviga-
tion inspection trajectory is
higher than these algorithms
can handle. Therefore, the
trajectory matrix is first incre-
mented into sections contain-
ing a manageable amount of
missing elements. The trajectory matrix is incremented by progressing through frames (rows) and elim-
inating points (columns) that contain less more than 50% missing data until the overall increment has more
than 10% missing data. The trajectory matrix is incremented in two groups, one before the articulation start
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frame and one after articulation has started. An example trajectory matrix with incrementation is shown in
Figure 4.

3. Motion Segmentation

The increments after the articulation starts must be segmented to determine which points are part of which
object. To do this, the Enhanced Local Subspace Affinities (ELSA) algorithm developed by Zappella et al.17

is used with a slight modification to force segmentation into two groups. The ELSA algorithm does not
deal with missing data, so first the missing data points must be removed. Methods of filling missing data
in trajectory matrices such as (Rao and others) exist and will be applied in future work, however, for this
work the rows/columns of the trajectory matrix are eliminated in a way which attempts to delete as little
data as possible.

The trajectory matrix is then segmented using the ELSA algorithm with a slight modification. The ELSA
algorithm is capable of determining the number of separate motions in a given trajectory matrix. Most of
the time the number of segments is appropriately calculated, however sometimes ELSA determines there
are more than two motions. Future work will remedy this problem in a more robust manner, but currently
the solution is to limit the number of objects to two. A full description of the ELSA algorithm17 and the
underlying LSA algorithms16 are available in the respective papers; an overview of the method is provided
below.

The goal of manifold clustering algorithms such as ELSA is to separate feature point trajectories into
groups that represent different motions. Figure 5 graphically shows an example of feature point trajectories
from the simulated satellite used in this work both before segmentation (Figure 5a) and after (Figure 5b-c)
the trajectory matrix has been segmented into two different objects. Each line in Figure 5 represents the
image coordinates (u and v) of a feature point over time.

Figure 5. Motion Segmentation Illustration: (a) All Feature Point (FP) Trajectories, (b) Main body FP
Trajectories, (c) Object 2 FP Trajectories

The ELSA algorithm begins by decomposing the trajectory matrix (W) with singular value decomposition
to create U2F x r, Σr x r, and Vr x P . Equation (8) can be used to find the rank (r) of W. In equation (8) σi are
the ordered singular values of the trajectory matrix (W). The columns of the V matrix can now be thought
of as the direction of the feature points motion in r-dimensional space, or their location on an r-dimensional
sphere. Columns corresponding to feature points with the same motion will lie on lower dimensional cuts of
this r-dimensional sphere.

r = argmin
r

(
σ2
r+1∑r
i=1 σ

2
i

+ kr

)
(8)

Features will likely have the same motion as features closest to themselves in the transformed space (the
r-dimensional sphere). ‘Closeness’ can be measured by Euclidean distance or by the principal angle between
them. For each feature point, the local subspace is found by first finding its n nearest neighbors (using
Euclidean distance or principal angle) and then finding a basis for the combination of those points using the
SVD. The size of the basis is determined by finding the rank of the local subspace using equation (8).

Next, the principal angles between these subspaces must be determined. To do this, first define two
subspaces as C(α) and C(β), each with normalized columns. The principal angles (θss) between these two
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subspaces are the angles between each column of C(α) and the closest (largest dot product) column of C(β).
These principal angles can then be used in equation (9) to calculate an affinity (A) between each subspace.

Ai,j = e−
∑M

k=1 sin
2(θssk ) (9)

The affinity matrix is a measure of the similarity between subspaces created from each trajectory and its
nearest neighbors. When the estimation of rank used to decompose W into U2F x r, Σr x r, and Vr x P (and
therefore to create the affinity matrix) is nearly correct, the principal angles between subspaces generated by
trajectories under the same motion are smaller while the subspaces generated by trajectories under different
motions are larger. Visually, this causes the affinity matrices with the correct rank (generated from the
correct selection of k) to look like a block diagonal with the number of blocks corresponding to the number
of motions.

The primary addition of the ELSA algorithm17 to the LSA algorithm16 is that, affinities are calculated
using different values of k in equation (8), which is directly related to the rank estimate. The quality of the
rank estimate can be quantified by the entropy, defined in equation (10), of the affinity matrix (E(A(r))).
In equation (10), hA(r) is the histogram count when sorting the values in the A(r) affinity matrix into 256
bins.

E(A(r)) = −
256∑

i=0

hA(r)(i)log2(hA(r)(i)) (10)

With entropy as a measure of the quality of the affinity matrix, the choice of k that produces the highest
entropy can be determine. Once k is found, the rank of the trajectory matrix is found from equation (8)
and the corresponding affinity matrix can be used for the next steps. The ELSA algorithm next estimates
the number of motions by looking at the eigenvalues of the symmetric normalized Laplacian matrix. As
mentioned earlier, for the current work, the number of motions is given as two, so this step is ignored.

Once the affinity matrix is calculated, a spectral clustering algorithm is used to determine which columns
of the affinity matrix match up to which motion. The normalized cuts method outlined by Shi and Malik26

is proposed by Yan and Pollefeys.16,27 The normalized cuts method recursively segments the affinity matrix
until the number of segments is met. Numerous cuts (or segmentations) of the affinity matrix are evaluated
to determine which one minimizes the ‘Ncuts’, or normalized cuts, criteria shown in equation (11). Shi and
Malik26 prove the normalized cuts criteria measures both the total dissimilarity between the different groups
(G1 and G2) and the similarity within the groups.

Ncut(G1, G2) =
cut(G1, G2)

assoc(G1, A)
+

cut(G1, G2)

assoc(G2, A)
(11)

In equation (11) the ‘cut(G1,G2)’ operator is the sum of all positions in the affinity matrix where the column
index is in group G1 and the row index is in group G2. The ‘assoc(G1,A)’ operator is sum of each of the
rows of A corresponding to group G1.

This process of motion segmentation is repeated for all increments after the start of articulation. The
result at each increment is a vector of length P containing the group identifiers for each point.

4. Structure from Motion

For the increments before articulation starts, the structure from motion process can be accomplished without
segmentation since all points are on the same rigid body. The motion matrix (R) and the shape matrix (S)
are calculated for each increment using the singular value decomposition method presented by Tomasi and
Kanade.18 After singular value decomposition, the metric constraints, outlined in equation set (12), are used
to find Q. These constraints are linear in the elements of Ω where Ω = QQT . Linear least squares can be
used to solve for the elements of Ω, and provided Ω is positive definite, Q can be found through Cholesky
factorization of Ω. If Ω is not positive definite, a non-linear least squares solver is used to find the elements
of Q directly. The metric constraint is applied as follows: S = Q−1Ŝ and R = R̂Q.

îTf QQ
T îf = 1

ĵTf QQ
T ĵf = 1

îTf QQ
T ĵf = 0 (12)

8 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

FR
L

 D
'A

zz
o 

W
ri

gh
t-

Pa
tte

rs
on

 o
n 

A
pr

il 
17

, 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

13
29

 



One issue with the Tomasi and Kanade’s SVD approach to finding R and S is that there can be a depth
ambiguity.28 Since there is no depth information contained in the orthographic projection, it is possible to
have two sets of motion and shape matrices that adhere to the metric constraints. One combination will be
the correct one, with the correct pairing of rotation and shape, while the other one will be a reflection of the
correct shape across some plane of constant depth and motion matrix consisting of motion in the opposite
direction. Figure 6 demonstrates this depth ambiguity by showing the calculated shape matrix and the truth
point cloud projected into the camera frame. The fact that the shape is not correct is evident when looking
perpendicular to the camera axis (the z axis) (Figure 6a), while Figure 6b shows that the points match up
exactly when looking down the camera axis.

Figure 6. Demonstrated depth ambiguity: Calculated point cloud compared to truth in the camera frame: (a)
Viewed perpendicular to camera axis, (b) Viewed along camera axis

Multiple methods of solving this ambiguity problem have investigated. Szeliski and Kang29 suggest that
the depth reversal can be sensed by reflecting the shape about a plane at a constant depth, recalculating
the trajectory matrix and determining if the error is reduced. This method was attempted, however the
difference in error after reflection was so small it did not give good results. Instead for our application,
the known direction of the circumnavigation route was compared to the calculated motion matrix. As is
evident from Figure 7, given the known direction of circumnavigation, if the motion matrix is correct the
cross product of consecutive î will be in the same direction as ĵ. To correct for this ambiguity, for each
increment (and each object if applicable) equation set (13) is used to calculate the angle between the cross
product of consecutive î and the ĵ vector. If the average of these angles is over π/2 the shape matrix is
reflected through a plane of constant depth.

φ = cos−1

(
î(t)× î(t− 1)

‖‖̂i(t)× î(t− 1)‖‖
· ĵ(t)

)
(13)

Figure 7. Diagram of inspector camera orientation

For each increment, the motion and
shape matrices are calculated using the
SVD method. Next, the algorithm steps
through each frame and calculates a ro-
tation matrix that will convert the shape
matrix into the camera frame. Equation
(14) and (15) are used to calculate this
rotation matrix; î(t) and ĵ(t) are the rows
of the motion matrix corresponding to
camera frame t. In most cases, M and
Rcam,b are equal, however noise can cause
the metric constraints on R not to be met
perfectly, in which case the method in
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equation (15) and outlined by Horn et al.30 produces a best-fit orthonormal rotation matrix.

M =




î(t)T

ĵ(t)T

(̂i(t)× ĵ(t))T


 (14)

Rcam,b(t) = M(MTM)−1/2 (15)

Sw(t) = Rw,camRcam,bS (16)

The Sw(t) values are then averaged to give the point cloud in the world frame, although all of these values
should be identical assuming the depth ambiguity is solved appropriately.

For increments after the articulation starts, the first step is to separate the trajectory matrix according
to the segmentation. The structure of each of the independent objects is calculated in the same way as
above with some additional steps, including a method of determining the articulation axis, a check on the
quality of the segmentation, and a slightly different ambiguity test for the articulated object. The method
of determining the articulation axis will be discussed in the next section.

To check the quality of the segmentation, the ratio of the third and fourth largest singular values (σ4/σ3)
is calculated for each of the trajectory matrices from each group (W̃1 and W̃2). If the ratio is high enough
to suggest the trajectory matrix contains more than one motion, attempts are made to find the points that
are poorly segmented. It is assumed that the most likely points to be poorly segmented are the ones that
are furthest from W̄ (the mean of the rows of the trajectory matrix). The furthest points from W̄ in each
frame are eliminated from W one at a time. If removal of the point caused σ4 to decrease significantly that
point is switched to the other group. If this method fails to repair a segmentation sufficiently, the data from
the object in that increment is not used in the next step. This method is effective and simple for a small
number of mis-segmented points far from the center of the group, however other methods of repair such as
Zappella et al.31 may be more effective.

5. Combining Point Clouds from each Increment

The structure from motion process yields point clouds for each object (after articulation start) in each in-
crement. These point clouds must be combined to create a point could that represents the entire primary
satellite. Combining the point clouds from the increments before the articulation start is fairly straight
forward. An iterative closest point (ICP) algorithm (developed by Kjer and Wilm;32 available at Math-
Works.com33) is used to match up the points that are common between increments. The ICP algorithm34,35

finds the rotation and translation that minimizes the distance between two point clouds. The point cloud
from each successive increment is added to the previous point cloud by applying the translation/rotation
that aligns the common points between increments.

The same process continues after the articulation starts, however two point clouds, one for each object,
must be maintained. The point cloud of the entire satellite without articulation serves as a master for
how the articulated object is oriented with respect to the main body. If there are a sufficient number of
points for both objects that are common between the last increment before articulation starts and the first
increment that includes articulation, the process for orienting the point clouds is as previously described
with a slight modification. For the ICP algorithm to converge to the appropriate rotation/translation, the
two point clouds must be close to the same orientation. Before articulation, all the points are in the world
frame, so their orientation was nearly correct. Since the articulation changes the orientation of object 2 (the
articulated solar array), the orientation of the point cloud is not always close enough for ICP to converge to
the correct rotation/translation. To solve this problem, a method from Horn et al.30 is used to provide a
rotation matrix that will match up the points.

M =
n∑

i=1

rl,i(rr,i)
T (17)

Rl,r = M(MTM)−1/2 (18)

In equation (18), rl are the vectors from point cloud center to each point in the existing point cloud and rr
are the vectors from the point cloud center to each point in the point cloud to be added. Rl,r can then be
used to bring the new points close enough in orientation so that ICP converges to the correct solution.
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If there are not enough common points between the last increment before articulation starts and the first
increment with articulation to orient object 2 with respect to the main body, an alternative method is used.
The points found in the master point cloud (developed before articulation starts) that are not near any
points attributed to the main body after the articulation starts are likely part of object 2, therefore, these
points are used to orient object 2 with respect to the main body. Performing ICP using these points and
the point cloud from object 2 determines the rotation and translation necessary for alignment. If the error
from ICP is over a threshold, the translation is determine by aligning the articulation axis points for object
2 to calculated articulation axis (Section 6). To find the appropriate translation, an additional step is taken
in the structure from motion phase. The trajectory matrix for the points in the main body is augmented
with W̄2, the row average of the trajectory matrix from object 2. Next, the shape matrix is found for this
augmented matrix. The point corresponding to W̄2 represents the approximate location of the centroid of
object 2 with respect to the main body. This value is stored for each increment, averaged, and applied to
object 2 to put it in approximately the correct location with respect to the main body. This method can
also be applied to orient object 2 with respect to the main body in the case where articulation is occurring
throughout the observation time.

During the increments before articulation started, all of the points are considered part of the main body.
Once articulation is sensed, and the object 2 point cloud is built, the points in the main body that are
actually part of object 2 must be removed from the point cloud. To do this, the radial distances between
the points in object 2 and the points in the main body are calculated. Any points in the main body that
are near points in object 2 are eliminated from the main body point cloud.

The result of this process is a set of two point clouds that represent the main body and the solar array in
the world frame. The solar array will be represented in the same orientation as before articulation started.
A current limitation of this method is the way the groups are matched up from increment to increment.
Matching is currently done by assigning the label ‘group 1’ to the group with more points and ‘group 2’ to
the group with two points. While this method yields good results for the scenario considered herein, this
method is not robust to a variety of different scenarios and will be improved in future work.

6. Find Articulation Axis and Angle

To characterize the articulation it is necessary to determine how the solar array moves with respect to the
main satellite body. Yan and Pollefeys’21 work shows that for articulated motion, the intersection of the
motion subspaces of the two objects is the motion subspace of the link. If the link is a hinge joint (such
as when a solar panel rotates on an axis) this is a 2-dimensional subspace. To find that subspace, take the
SVD of the trajectory matrices of the two objects: W1 = U1Σ1V

T
1 , W2 = U2Σ2V

T
2 . The motion subspaces

(Ũ1 and Ũ2) are formed by the first four columns of U1 and U2. Since the intersection is a 2-dimensional
subspace, the matrix [Ũ1‖Ũ2] will have two singular values equal to zero. Taking the SVD of [Ũ1‖Ũ2] and
setting N equal to the columns of V corresponding to the zero singular values yields,

[
Ũ1‖Ũ2

]
N = 0 (19)

[
Ũ1‖Ũ2

] [
N1

N2

]
= 0 (20)

T = Ũ1N1 = −Ũ2N2 (21)

where T is the subspace representing the intersection of W1 and W2.
Once the subspace of the intersection is found, specific trajectories that lie on the axis can be found. The

requirements for a trajectory (m) to lie on the axis are that it lies in the subspace T and it does not increase
the rank of W1 (or W2) when it is appended as an additional column. To meet the first constraint m must
be a linear combination of the columns of T, or

m(α, β) = T

[
α

β

]
(22)

where α and β are scalars. The second criteria is met by ensuring the augmented matrix, [W̃1|(m(α, β)−W̄1)]
has a rank of 3, where W̄1 is the row average of W1 and W̃1 is W1 − W̄1. Yan and Pollefeys manipulate
this constraint to yield an equation in which the summation of five determinants is equal to zero.21 Solving
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these constraints yields a linear equation in α and β. Values of α and β can be selected to give a point on
the trajectory at a particular u or v coordinate using equation (22).

For each object in each increment, two trajectories representing two points on the articulation axis are
augmented to the trajectory matrix. The point cloud calculated from this augmented trajectory matrix
contains the 3D points on the articulation axis. These points are translated to the world frame as described
previously. The difference between these two points represents the direction of the articulation axis in the
world frame. Due to mis-segmented points and noise, the articulation axis is not the same in each increment.
Therefore, a RANSAC routine was developed to reject outliers and select the best articulation axis (b).

If required, the articulation axis can be used to combine point clouds for object 2 from different increments.
First, the structure from motion is applied for object 2 in each increment. For each increment, the vector
between the axis points for that increment (vi) is found. This is aligned with the best articulation axis (b)
by converting them to unit vectors and applying the rotation matrix (Ralign) found using the equation set
(23).

Φ = cos−1(b · vi)
â = b× vi

Ralign = cos(Φ)[I] + (1− cos(Φ))ââT − sin(Φ)




0 −â3 â2
â3 0 −â1
−â2 â1 0


 (23)

Figure 8. Articulation angle calculation method: (a) Orient object
2 frame with Articulation Axis (b) Compare Rw,ba(t = 1) to Rw,ba(t)
to find θ(t)

The articulation angle (θ(t)) within
each increment is determined by looking
at how much object 2 has rotated about
the articulation axis from the start of the
increment. First, the body frame is ro-
tated such that ibw(t = 1) (the x-axis of
the body frame expressed in the world
frame) at frame one is aligned with the
rotation axis as shown in Figure 8a. This
produces a reference frame of unit vec-
tors in the body-aligned frame expressed
in the world frame, Rw,ba(t = 1). Next,
Rw,ba(t) is calculated for each frame in
the same way. The articulation angle is
the angle between the y-axis of Rw,ba(t)
and the y-axis of Rw,ba(t = 1) (Figure 8b).

III. Results and Limitations

A. Results

Table 1. Results.

Metric Single Trial (Figures 9 & 10) Mean of 100 Trials

Mean point-wise radial error (units) 0.092 units 0.075 units

Percent of points with under 0.2 unit radial error 91% 96%

Articulation axis error (radians) 0.0067 rad 0.035 rad

Articulation angle mean square error (radians) 0.000022 rad 0.0016 rad

For all results presented, the inspector satellite circumnavigated the primary satellite twice. The solar
array articulation began after the first circumnavigation. The trajectory matrix contained a total of 600
simulated frames of feature point information. The truth point cloud contained approximately 500 points
total, however, the simulated trajectory matrix contained approximately 1400 points. This is because points
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that are re-seen after dropping out of view for a significant amount of time were considered new points. This
is to more closely aligns to a situation in which feature point trajectories are generated using imagery and
a feature point tracking algorithm. Figure 9 shows the calculated point clouds and the truth point cloud
with the solar array oriented as it was before articulation starts. Note that not all 500 points are shown.
Points were removed during the process to ensure the trajectory matrix was full for motion segmentation
and structure from motion calculations.

Figure 9. Point cloud and articulation axis results for a single
trial.

To measure the quality of the results,
the radial distance between the truth
points and the calculated points is cal-
culated. The average distance and the
percentage of distances under 0.2 units
is shown in Table 1. To measure the
quality of the articulation axis, the an-
gle between the true articulation axis and
the calculated articulation axis is deter-
mined. Due to the random point cloud
generation and other aspects this algo-
rithm is not deterministic. Therefore the
results presented in Table 1 are for the
simulation that was used to generate Fig-
ure 9 as well as the averaged results for
100 simulations (trials).

The articulation angle is calculated
for each increment in which good data
was available. Data was considered ‘bad’
if the ratio σ4/σ3 was over a threshold.
Figure 10 shows the true and calculated articulation angle as measured from the start of the increment with
the mean square error (MSE) for that increment.

Results demonstrate that this method is capable of determining distinct point clouds for a satellite with
an articulated solar array as well as being able to accurately describe the articulation.

Figure 10. Articulation angle results for a single trial.
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B. Limitations

This method produces good results for the simulated scenario described, however limitations exist.

• The feature points on the articulated object can not be co-planar. This is a significant limitation since
solar arrays are often planar. Much of the underlying assumptions for the techniques used in this
method, such as structure from motion using factorization, rely on W̃ to be rank 3. If all the points
in the trajectory matrix are co-planar, W̃ will only be rank 2. Methods of fixing this limitation likely
exist.

• The current implementation is not robust to noise in the feature point trajectories. If the trajectory
matrix is created from actual (or rendered) imagery, there will be noise in the measurements. Aspects
of this method, for instance sensing when articulation starts, are likely to fail unless adequately tuned
for noise.

• The method of matching objects from increment to increment is not robust. The number of feature
points in each object is currently used. This works well for this simulation since there are far more
feature points on the main body, however it would not work well if the number of feature points on
each object fluctuates significantly with view angle.

• There is currently no metric on quality of the results. The algorithm can not currently determine the
expected accuracy of the calculated point clouds, orientation, articulation axis, or articulation angle.

IV. Conclusion and Future Work

Existing computer vision methods for motion segmentation and structure from motion are used to develop
a method for sensing articulation of a solar panel on a simulated satellite. The method is demonstrated to
be capable of detecting articulation, creating 3D point clouds for the main body and the articulated object,
calculating the articulation angle, and calculating the articulation axis. This work contributes toward the
goal of autonomous on-orbit satellite inspection and servicing. Future work in the area of sensing and
characterizing articulated motion in satellites includes:

• Implement a Kalman filter approach for developing the point clouds. Kalman filters are often used in
computer vision to determine the 3D location of feature points, however one of the primary assumptions
in these implementations is that the feature points do not move with respect to each other. However,
the motion segmentation methods described could be used to separate the points into groups when
articulation starts, then separate Kalman filters could be used for the separate objects.

• Add capability to detect multiple objects and multiple types of articulation.

• Investigate different inspector routes to determine which routes provide the best characterization.

• Add the capability to track feature points in imagery.
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