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Abstract 

The Air Force Sustainment Center assisted by the Data Analytics Resource Team 

and the Defense Logistics Agency has collected four million contracts onto one of the Air 

Force Research Laboratory’s high power computers. Many efforts are underway to utilize 

this new database. This thesis focuses on the effort to determine if parts are available 

through existing contracts. Parts are anything that is expendable, such as a B-52 tire or an 

annual JMP license.  

To determine availability, this thesis implements the process outlined below: 

a. Identify contracts containing parts and the part 

b. Determine which organization initiated the contract 

c. Determine which organization is supplying the part 

d. Determine the contract start and end date 

e. Discover details about the part, including name and category 

f. Create easy to understand visualization of information 

The process tasks are accomplished using a variety of tools and techniques. Some 

information is extracted from the contracts using machine learning (ML) in combination 

with natural language processing. Specifically, two types of ML models are used, named 

entity recognition (NER) and classification. Where ML methods are unsuccessful or 

inappropriate, more text mining techniques, such as pattern recognition and rules, are 

used. Upon completion, the information is combined into a Gantt chart for quick 

evaluation. 
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While each step in the process is generally successful, there is little overlap in 

successes. As a result, only 21% of the contracts have their information correctly 

extracted with this process. To provide an accurate depiction of availability for every 

part, an improvement is needed. There are several adjustments which could provide better 

results. The likely most effective improvement is to develop a custom NER model. 
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CONTRACT INFORMATION EXTRACTION USING MACHINE LEARNING 

 

I.  Introduction 

General Issue 

The Air Force Sustainment Center (AFSC) executes hundreds of thousands of 

contracts each year. For the past decade, these contracts have been written under 

changing policies, in a myriad of formats, and stored in several disconnected systems. In 

the current climate of data capitalization, an effort is being made to bring together every 

contract to provide useful insights. 

Objective 

From the compilation of contracts several products are desired. The specific goal 

of this effort is to determine part availability. If a part is covered by an active contract, it 

is available, if the part is not, a contract would need to be created to provide said part. 

This goal requires several steps to accomplish. Those steps are outlined below: 

1. Locate “parts” contracts 

2. Extract relevant information from those contracts 

3. Compile information by part 

From this effort it can be determined if specific parts are currently covered by a 

contract. Due to the complexities of data retrieval, machine learning (ML) techniques are 

used in conjunction with natural language processing (NLP). The immense size of the 

data sets makes the use of high-powered computing necessary. 

This paper provides a framework developed on a sample set of contracts. The 

framework is successful if it can be applied to several data sets and return the necessary 
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information. A proven framework could then be applied to every contract, accomplishing 

one of AFSC’s primary goals. 

In Chapter 2 the necessary background on each process in the framework is 

presented. In addition, similar efforts are reviewed, focusing on their similarities and 

success or failure. With the processes explained, their application to the project is 

detailed in Chapter 3. Chapter 4 reports the individual process successes and other 

findings. The implications of the entire project are then explored to determine if it is 

effective. Finally, the understanding obtained from this endeavor is summarized in 

Chapter 5 to provide value to the reader and AFSC. 
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II. Literature Review 

Chapter Overview 

The purpose of this chapter is to provide a description of NLP, discuss 

applications of ML to natural language, and highlight other’s efforts along these lines. 

Natural Language Processing (NLP) 

NLP is a method of taking written language, such as a contract, and turning it into 

a format which can be quickly analyzed (Isahara, 2007). 

The first step is to identify the item of interest. In this case, it will be the content 

of the contracts. This content is already somewhat structured, but not for ML techniques. 

As such, the content must be prepared for machine learning (Marinov & Efremov, 2019). 

Some preparation is easy such as removing punctuation, stop words, and other 

unnecessary characters. Other processing, such as tokenization and lemmatization, are 

more difficult. 

Stop words are high frequency words such as “I”, “a”, and “the” (Patel & Shah, 

2013). These words routine usage causes them to have almost no significance. Removing 

them reduces noise and unnecessary processing. There is not a universal list of stop 

words. The advantage of this fact is task specific words such as “Air Force” can be 

considered stop words and removed to improve processing. 

Tokenization is the process of breaking a larger entity down into smaller pieces, 

or tokens (Li, Ma, & Lee, 2013). In this case, converting the entire contract text into 

individual words to evaluate. One largely complex variable changed into many simpler 

variables. Once text is tokenized, processing and analysis is straight forward. 
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Lemmatization is the procedure of reducing a word to its root form or lemma 

(Han, Shen, Wang, & Liu, 2012). It involves removing inflections on a word such as the 

“d” on “united” to provide the base word “unite.” It is more useful than stemming (a 

similar process) because lemmatization uses disambiguation to help reduce each word to 

its dictionary term. Using a dictionary provides a predefined vocabulary list, allowing for 

more consistent application. 

Disambiguation is a product of syntactic analysis (Bessmertny, Platonov, 

Poleschuk, & Pengyu, 2016). It uses the context of the word to determine what it is. For 

example, it could infer if “bat” was the animal or the sport equipment. In general, 

syntactic analysis is any evaluation of a word’s nature, placement, and/or use to provide 

more information. 

Part-of-speech tagging is one component of syntactic analysis. It involves 

labeling, or “tagging,” each word with the speech category it belongs to. Categories 

include verbs, nouns, and adjectives. 

Dependency parsing is another component of syntactic analysis (Park & Kang, 

2019). It evaluates how words are related to each other. Figure 1 shows the relationship 

of each word to the other words in a sample sentence. 
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Figure 1. Demonstration of Word Relation and Identification 

Once the words have been processed, ML can be applied. At this point ML can 

treat each word as a feature. 

Machine Learning (ML) 

ML uses features as inputs to train a model to produce correct outputs (James, 

Witten, Hastie, & Tibshirani, 2015). “Learning” in ML refers to the training portion of 

the process since the machine “learns” the most effective model. 

There are several types of learning: supervised, unsupervised, reinforcement, and 

semi-supervised. In supervised learning, the outcome for a specific input is known. Given 

the inputs, the machine can learn/train a model to approximate the output. It can then 

apply the model to another input-output set, reinforcing what has been learned or forcing 

a change to the model to better accommodate all the data. If a change is needed, the 

change is determined by an optimization algorithm. The algorithm determines the 

adjustment(s) to the model needed to reduce the difference between the predicted 

outcome and the true outcome.  
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Classification is a typical application of machine learning (Bulbul & Unsal, 

2011). It involves sorting entities into different groups, known as classes. 

Deep Learning (DL) 

DL is a subset of ML in the same way that ML is a subset of artificial intelligence 

(AI). It allows the computer to learn complex concepts from simple systems 

(Goodfellow, Bengio, & Courville, 2016). DL utilizes artificial neural networks (ANNs) 

which are capable of developing hundreds of connections and nodes. Conceptually it is 

difficult to explain what each element of the network does, but the aggregate allows 

complex understanding to be applied to every input. 

Embeddings 

DL can be used to create embeddings for each word. These word embeddings are 

vectors used to signify words while providing additional information (Goodfellow, 

Bengio, & Courville, 2016). They are referred to as distributed representations because 

each vector element provides context for the word. However, vector elements are similar 

to principal components, their meaning is not explicit. They are determined using neural 

networks with unsupervised learning. 

The benefit of embedding is instead of matching a word by its characters, words 

can be compared on an element-by-element basis. This allows words with multiple 

meanings, such as “pass,” to be differentiated and similar words, such as “king” and 

“ruler,” to be associated. 

Many embeddings are generated by Recurrent Neural Networks (RNNs) (Salim, 

Ghanshyam, Ashok, Mazahir, & Thakare, 2020). RNNs are neural networks that work for 

sequential data. This is important since sentences provide meaning through word 
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sequence. Unfortunately, simple RNNs are not enough since words can be referenced 

from multiple points within a sentence and differently from sentence to sentence. As 

such, a special RNN called a RNN-LSTM is used, where LSTM stands for long short-

term memory. This RNN allows the model to remember how a word was used in a 

sentence at the beginning of a document as well as at the end. 

ML, like many modeling techniques, considers more samples better than less. DL, 

unlike most modeling techniques, will continue to improve as the number of samples 

increases (Halevy, Norvig, & Pereira, 2009). As a result, the more samples that are 

provided, the better the model performs. Typically, embeddings are learned from a 

corpus with millions of words. 

The learned embedding is a square matrix. A word is passed to it as a one-hot 

vector of all possible words; an example vector is in Figure 2. The result of multiplying 

the one-hot vector with the embedding matrix is an embedding vector for the word; 

example shown in Figure 3. This vector can then be compared to other word’s vectors. It 

is important to note that the context represented by each element of the vector is notional 

and not able to be explained as completely as it is in the figure. Once the embeddings are 

generated, they can be used in models as a layer or preprocessing step. This entire 

mathematical process is summarized well in Figure 4. 
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Figure 2. One-hot Word Vector Example (Ali, 2019) 

 

Figure 3. Notional Word Embedding Example 

 

Figure 4. Embedding Vector Generation (Agrawal, 2019) 

Named Entity Recognition (NER) 

 NER utilizes supervised, deep ML to classify words as specific entities 

(Shokripour, Anvik, Kasirun, & Zamani, 2013). 
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To conduct supervised learning, a set of words labeled with their corresponding entity 

must be provided. Entities include “person”, “place”, “date”, etc. This labeled dataset 

serves as the corpus. An example corpus is in Figure 5 (Terry-Jack, 2019). 

 

Figure 5. NER Demonstrated (Terry-Jack, 2019) 

Labels are the backbone of NER. There are many pretrained NER models which 

can identify generic entities like person and place. However, for domain specific entities 

such as companies, diseases, and laws, a corpus with these specifically labeled is needed 

(Zhang, Lin, Gao, & Chen, 2019). Labeling a corpus is completed mostly by hand. 

Labeling millions of words takes a considerable amount of time. As such, acquiring the 

required corpus is not a trivial matter. There are several available for free. However, for 

more niche applications, appropriate corpus are usually purchased or generated. 

To generate an NER model, each word in the corpus can be reduced to its lemma 

to greatly shrink the feature space. This can increase learning speed at the cost of 

accuracy; it is sometimes used but not necessary (Kutuzov & Kuzmenko, 2019). After the 
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corpus is prepared, embeddings can then be trained or pretrained embeddings 

downloaded. The obtained embedding allows new words to be compared to the corpus 

words. If a new word is found to be similar, the label from the corpus word can be 

applied to it. Ultimately this process allows entities to be classified/recognized. 

Evaluation Metrics 

ML does not provide a perfect model. As such, the model must be evaluated in 

some way to convey its worth. Standard metrics have been developed to evaluate models. 

For classification, the F1 score is the preferred metric (Zhang, Wang, Zhao, & Wang, 

2015). The F1 score evaluates how well the predictions match the truth. Related terms 

are true positives, true negatives, false positives, and false negatives (Farhadloo & 

Rolland, 2013). True positive means the classifier was positive (true) and the 

prediction was positive, thus they were in alignment. Compared to false positive 

where the classifier was negative (false) but the prediction was positive. A confusion 

matrix helps identify this concept further. Though shown in Figure 6 as a 2x2 matrix, 

a confusion matrix can take on a more robust visage (Ariza-Lopez, Rodriguez-Avi, & 

Alba-Fernandez, 2018). 

 Predicted Positive Predicted Negative 

Actually Positive True Positive False Negative 

Actually Negative False Positive True Negative 

Figure 6. General Confusion Matrix 
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Precision. 

Precision measures how many predictions were correct out of all the positive 

predictions made (Avola, et al., 2019). It is useful when the costs of false positives are 

high. For example, a test should have high precision if those who test positive will 

receive a risky surgery. Only those that need the surgery should have it, any false-

positives would be taking unnecessary risks. 

  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 
(1) 

 

Recall. 

 Recall measures how many were predicted positive out of the ones that were truly 

positive. It is valuable when the cost of false negatives is high. Recall is sometimes 

referred to as the detection rate (Wang, Li, Wan, & Wang, 2019). For example, a test 

should have high recall if it is used to identify infected patients. Failing to detect an 

infected patient could allow them to infect the rest of the hospital. 

  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 (2) 

F1 Score. 

F1 Score is the harmonic mean of precision and recall which means it gives much 

more weight to low values (Geron, 2017). As a result, it takes both high precision and 

high recall to obtain a high F1 score. 

  
2 ∗ 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 (3) 
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Cross Validation 

 Cross validation is a technique applied during model generation, when an 

algorithm is applied to a data set (James, Witten, Hastie, & Tibshirani, 2015). Cross 

validation varies the samples, from a single data set, used to train and validate a model. 

This variation allows the same algorithm to develop several similar models instead of 

only one. The models are then aggregated to determine the expected outcome of the 

algorithm on the dataset. 

 A specific cross validation strategy is k-fold. In this approach the dataset is split 

into k equal parts. A model is then trained using all of the parts except one, reserving the 

excluded part for validation. This process is repeated until each part has served as the 

validation data, resulting in k models. Since each model trained and validated on different 

data, each produced a unique F1 score. The F1 score from each model can then be 

averaged together, producing an expected F1 score for the proposed algorithm on the 

dataset. This method is displayed in Figure 7. 

 

Figure 7. K-Fold Cross Validation (Bisgin, Kilinc, Ugur, Xu, & Tuzcu, 2011) 
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  In addition to providing an expected F1 score, aggregating the models helps to 

mitigate the effects of a single model over or under fitting the data. Extremely 

sensitive/accurate models are said to overfit the training data. They learn the sample too 

well and lose generality the population exhibits. Alternatively, some models favor 

excessive generality and do not appropriately capture important traits in the training data. 

Averaging these notable models with others causes their extreme characteristics to 

become subdued. 

Classification Models 

 Classification models utilize a set of features to predict which class the sample 

should belong to. There are many different classification modeling methods. 

Logistic Regression. 

One classification technique is logistic regression. This method uses the logistic 

function to split the decision space into a binary ruling (James, Witten, Hastie, & 

Tibshirani, 2015). This technique can be applied to multiple classes by using the concept 

of one against many; if the sample does not belong to the class of interest, it must be in 

one of the others. One significant advantage of this technique is it provides the 

probability that the sample belongs in the predicted class. It has one primary 

hyperparameter which is the solver it uses. The concept is displayed well in Figure 8. 
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Figure 8. Logistic Regression Example (Yiu, 2019) 

Support Vector Machine. 

Support Vector Machine (SVM) is a classification method that utilizes an 

algorithmic approach. It develops models which try to increase the space between classes 

(James, Witten, Hastie, & Tibshirani, 2015). While a very robust modeling technique, it 

does not provide a probability of class inclusion. The two primary hyperparameters of 

SVM are C and kernel. The kernel function allows data to be projected into a higher 

dimension. This allows the arrangement of the data to be modified to better apply a 

hyperplane which separates the classes. C, also known as the regularization parameter, 

functions as the cost of a datapoint breaking that hyperplane, as the cost increases fewer 

and fewer misclassified datapoints are allowed. While a high cost sounds appealing, it 

makes the model unyielding and can cause lower success. SVM is demonstrated in Figure 

9. 
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Figure 9. Support Vector Machine Example (Gandhi, 2018) 

Random Forest. 

Random forests are a collection of decision trees (James, Witten, Hastie, & 

Tibshirani, 2015). A decision tree is a series of decisions based upon feature values that 

branch and bound to a conclusion. A random forest generates many decision trees and 

randomly limits the features the decision nodes can use. In addition, each decision tree 

uses a unique training set created by bootstrapping. Bootstrapping randomly draws, with 

replacement, a specified number of samples from the original training set. These design 

characteristics cause different, independent decision trees to be generated. The ensemble 

of the many different trees is then leveraged to determine which outcome is the most 

common for a set of inputs. A primary hyperparameter of the random forest algorithm is 

the max tree depth. That is the maximum number of decisions it can make for a single 

outcome. Both decision trees and random forests as displayed in Figure 10, highlighting 

how a random forest is a collection of decision trees. 
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Figure 10. Random Forest Example (Silipo, 2019) 

Relevant Research 

There are off-the-shelf NER options available, the most common in Python being 

SpaCy and Stanford NER. SpaCy provides a pretrained model which is built on a generic 

entity corpus (Partalidou, Spyromitros-Xioufis, Doropoulos, Vologiannidis, & 

Diamantaras, 2019). The model can be adjusted by providing raw text to train a new 

embedding as well as provide additional labeled data to add domain entities (Honnibal, 

2020). Stanford NER functions very similar to SpaCy except it is based in java and there 

is less of a distinction between the embedding and the entity recognition processes 

(Luthfi, Distiawan, & Manurung, 2014). 

Research was conducted to determine if using the Stanford NER algorithm was as 

effective as training a custom model for generic entity recognition. The Stanford NER 

produced an F1 score of 66.97% while the custom NER scored 68.69% (Sotomayor & 

Veloz, 2017). Since this study there have been advancements in embeddings. Training a 



17 

custom NER using Embeddings from Language Models (ELMo) would likely perform 

better (Peters, et al., 2018). 

As domain specific corpus can be very expensive to produce; efforts have been 

made to bypass this requirement. One such effort was to combine many free corpus from 

the internet (Menezes, Milidiú, & Savarese, 2019). The idea being with a vast training 

set, a model could become robust enough to handle niche data. Unfortunately, on its own, 

it did not perform as well as traditional efforts. A similar effort was applied to detecting 

legal entities (Ex. Laws, judgements, etc.) where the goal was to use legislative 

documents posted in the news, journal articles, and contracts (Badji, 2018).  

It was found that a small corpus can be successfully paired with unsupervised 

learning to identify domain specific entities (Zhang, Lin, Gao, & Chen, 2019). The study 

examined words near the target word to determine the context of the word. If the context 

was similar to the training set, it would apply domain specific entity recognition. When 

compared to the classic domain-relevance-based entity recognition algorithm Concept-

Relation-Concept Tuple-based Ontology Learning (CRCTOL), this method found 65% 

more entities. CRCTOL is used to determine ontologies from documents (Jiang & Tan, 

2010). Ontology is a representation of a subject by determining its concepts and how they 

are related (Chandrasekaran, Josephson, & Benjamins, 1999). 

Other improvements to NER have been focused on the embedding portion of the 

model. In 2015 a clinical corpus was used to develop the embedding and compared to the 

default embedding (Wu, Xu, Jiang, Zhang, & Xu, 2015). The result was an over 2% 

increase in the F1 score for the NER model. In another effort, Word2Vec was used as the 

embedding generator, and while increasing the size of the unlabeled corpus did improve 
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the embeddings, the improved embeddings failed to improve the NER performance 

(Siencnik, 2015). 

Assuming an annotated corpus is obtained, there is still the decision on the best 

method to use.  NER models can be built with various ANN architectures. A study 

applying NER to legal entities found that bidirectional LSTMs (bi-LSTM) out performed 

conditional random field (CRF) models in terms of F1 score (Leitner, Rehm, & Moreno-

Schneider, 2019). 

Applying NLP to contracts is not a new endeavor. In fact, at the Conference on 

Data Science and Machine Learning Applications on May 4th, 2020, the use of NLP on 

contracts was discussed (Kim, Lee, Lee, & Lee, 2020). The specific application discussed 

was predicting the costs associated with engineering design. In another study, insurance 

policies/contracts content was automatically analyzed and tagged to automate the process 

of finding relevant contracts (Zhang, Sun, & Ji, 2019).  

Application of NER on contracts has become a commercial venture. A company 

called Skyl.AI helps organizations do many kinds of ML, including NER (Named Entity 

Recognition, 2020). Specifically, it has helped insurance companies and real estate 

companies do contract content analysis. Google is also involved; their cloud 

environments offer NLP, to include NER (Natural Language, 2020). They offer generic 

entity extraction as well as domain specific entity extraction. Unfortunately, both options 

require a labeled corpus for domain specific entity extraction. They do provide tools to 

assist with labeling, but the labor burden is still on the customer. 
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Preparation Steps 

Source. 

 Approximately four million contracts were loaded onto one of the Department of 

Defense’s (DoD) high power computers (HPCs). The HPC provided a secure 

environment to host the protected data. It also possesses the resources to effectively work 

with large data sets. In addition, the HPCs are partially funded, allowing any DoD 

organization to use them for free to a certain extent.  

 The original contracts consisted of PDFs, scanned images, and word documents. 

In addition to the type of file, there were inconsistent layouts, tags, and other aspects of 

the documents. The Data Analytics Resource Team (DART) converted them all to plain 

text files. 

Access. 

 There are two methods primarily used to access the data. The first utilizes a 

program optimized by the HPC resource team called iLauncher (iLauncher v1.10 

Downloads, 2020). This method provides access to Python, a virtual desktop, and a few 

other useful tools, all within the user’s workspace. It is the simplest way to begin an HPC 

session. The second method can be completed on its own but is usually done proceeding 

the first method to provide additional capabilities. It utilizes Putty, a secure shell (SSH) 

client, to develop a secure connection directly to the server (Download Putty, 2020). This 

connection allows access to any directory the user is authorized and gives the ability to 

execute Linux commands. The combination of these methods was used for this project. 

Putty was used to copy documents to the user’s workspace where they could be accessed 

by iLauncher’s Python instance. 
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Environment. 

 To utilize Python programming on the HPC several unique packages are needed. 

Python utilizes too many packages to have all of them available initially. Instead, they are 

downloaded and installed as needed. To host the installed packages a custom 

environment must be created, this prevents the standard environment becoming 

overwhelmed with mostly unused packages. The server installation of Jupyter Notebook 

has a conda (as in Anaconda) module which facilitates simple environment management. 

From this tool environments can be created, duplicated, and deleted. This tool also allows 

a list of known packages to be added to an environment. For packages not known to the 

environment manager, a script can be run within a Jupyter Notebook to download and 

install the necessary packages. 

Instance. 

 The instance on which the development environment is built is one of the HPC 

standard user instances. It accesses 24 cores and 126 gigabytes of virtual memory. 

Processes are executed with standard priority, a mid-level provision. 
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III.  Methodology 

Chapter Overview 

This chapter details the processes employed to achieve the goal of determining 

part availability. Each process is explored in depth in the same order in which it is 

utilized, displayed in Figure 11. The methodology is conducted on a sample of contracts 

for the study, however, the tools developed could be applied to the entire data set. 

 

Figure 11. Flowchart of Methodology 

First, part contracts are found using pattern matching. Then NER models are 

applied to the contract text to identify date and organization entities. Those entities are 

then fed to classification models to determine which entities are relevant for the study. 

Any information not acquired through this method is located with text mining. While 

contract information is collected, part information is also gathered. Once both portions 
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are complete their products are combined. This useful combination is ultimately 

displayed in a Gantt chart for ease of understanding. 

A Gannt chart represents time on the horizontal axis and different items on the 

vertical axis. The period of time relevant to each item is represented on the graph by a 

horizontal bar. This allows quick determination of when an item begins and ends, as well 

as any time segments during which items overlap. An example Gantt chart is shown in 

Figure 12. 

 

 

Figure 12. Example Gantt Chart (Gantt Chart, 2021) 

Datasets 

To develop and validate the methodology a sample from the contract database is 

used. This sample contains approximately 1000 of the 4 million contracts. Two additional 

samples are used to examine the success of applying the approach to new data. These 

samples are provided by the DART team from extracts of their on-going work. They are 

referred to as the initial data set, first test set, and second test set. 
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The initial data set contains 999 contracts. The contracts range from 2 to 149 

pages, averaging 8.6 pages. A histogram of the number of pages is in Figure 13. The first 

test set contains 1166 contracts, and the second text set contains another 999 contracts. 

The data sets are compared in Table 1 below. 

 

Figure 13. Histogram of Contract Page Counts 

Table 1. Datasets Summarized 

 Initial Data Set First Test Set Second Test Set 

Number of Contracts 999 1166 999 

Min # Pages 2 1 1 

Average # Pages 8.6 9.7 7.6 

Max # Pages 149 205 134 

 

Part Contract Identification 

 To locate part-buy contracts within the sample, an approach known as Regular 

Expression is used. Each part has a national stock number (NSN). This NSN is always in 
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the format ####-##-###-####. Each document’s text is searched for any characters that 

match this pattern. An example of a found NSN is in Figure 14. 

 

Figure 14. Example of a Found NSN 

Contract Information Extraction 

 With a set of part-buy contracts identified, named entity recognition is used to 

determine each contract’s originating organization, supplying organization, origination 

date, and expiration date. 

 To determine the entities in each document, SpaCy’s large English model is used. 

This umbrella model contains an NER model, an embedding model, and several others. 

The NER model identifies several entity types including organization, dates, and money. 

To utilize any of the SpaCy models, a document must first be converted into a SpaCy 

object. Once completed, the NER model is applied to return entities of a desired type. 

The result is a long list of suspected entities. However, since this is a predictive model, 

not all entities are valid. To identify the useful entities within this list, another model is 

applied. 
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 Evaluating the relevancy of an entity is accomplished with a binary classification 

model. To construct a classification model a training set containing features and 

responses must be provided. While the words that represent the entity could provide a 

feature set, they are unlikely to provide enough information to determine relevancy. 

Instead, the entity plus several words around it forms the feature set. This sentence 

fragment provides enough information for decision making. 

 Each word in the sentence fragment is converted to a numeric representation, here 

forth referred to as an embedding vector, by an embedding model. For this study, the 

embedding model delivered with the large, English SpaCy model is used. Once each 

word is converted to an embedding vector, the vectors are averaged together to produce a 

single vector. This single vector represents the sentence fragment. Each element of the 

vector serves as a feature. 

Currently there is not an automatic method to classify, nor an existing classified 

data set. As such, a subset of sentence fragments and their corresponding entities is 

manually evaluated to be “relevant” or “not relevant.” This provides the data set 

necessary to create the classification model. 

Before any modeling efforts begin, a portion of the classified data set is set aside 

for testing. This sequestered test data is later used for an impartial evaluation of the 

developed models. A 20% test/train split is used. The practice of using 20% for the split 

is based on the Pareto Principle and is widely used as a starting point (Detective, 2020). 

 The resulting training set is not balanced since most entities are irrelevant. 

Imbalanced classes may create inappropriate, biased classification models. To mitigate 

this a corrective sampling technique called SMOTE is applied. SMOTE stands for 
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Synthetic Minority Oversampling Technique and belongs to the Imbalanced-learn python 

package (Lemaître, Nogueira, & Aridas, 2017). It over-samples small classes and can 

under samples large classes to create a balanced ensemble. The result is a much larger, 

balanced training set which maintains the characteristics of the original data. 

 With a balanced training set, classification methods are examined. There are 

many binary classification methods. As such, instead of examining only a few, 30 of the 

most popular can be evaluated using a python package called lazypredict (Pandala, 2020). 

Lazypredict applies models with default settings on a sample set. The results identify 

which modeling techniques are likely capable of producing the best results. From these 

results, a final modeling technique can be selected, tuned, and trained. 

 Named entity recognition in combination with classification modeling produces 

meaningful extracts from the documents. This approach returns a single entity type. To 

return each entity type, the entire approach must be applied over and over until all 

instances are accounted for. This requires manual data classification and model 

evaluation for each repetition. 

For information of interest in which the previous method fails, text mining 

techniques are used instead. These methods are typically based on a series of rules that 

look for patterns or exact matches within a document. Using these methods is not ideal 

which is why NER is applied first. The rules employed work well for observed cases but 

almost never apply well to others. This results in a rigid model, unsuited to different style 

documents. 

Examining the list of organizations (“ORG” entities) found, it rarely contains the 

originating organization. This is likely due to the unique names of the originating 
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organizations, such as 88th ABW, which the NER model has not seen before. As such, 

using NER for this goal is not advised, instead text mining is used. 

Part Information Extraction 

 Beyond the information determined by NER methods, other aspects of the 

contracts are desired such as part name. Part information is obtained from 

https://www.iso-group.com/. A specific part is located by adjusting the web address to 

include the NSN, such as https://www.iso-group.com/NSN/3830-01-352-6260. Each 

NSN page utilizes an identical layout, which can be seen in Figure 15. With the use of a 

popular web scraping tool called Beautiful Soup, this strict layout is leveraged to 

successfully extract information from the webpage (Richardson, 2020). Beautiful Soup is 

a powerful python library which handles webpage encoding and parsing. It also provides 

several functions that assist users in quickly and efficiently manipulating webpages. 

 

Figure 15. Part Webpage Example 

https://www.iso-group.com/
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Part Availability 

 With relevant information extracted from each contract, analysis can be 

performed. One of the primary items of interest is part availability. 

The first concern of part availability is if a part is available in current supplies. 

There are databases that manage supplies where this can be determined. If a supply is 

available, it can be sourced. If a supply is not available, the next concern becomes are 

there any contracts that can be used to produce more supplies. 

The contracts can be searched for a specific part however there could be many 

contracts for a single part. Once contracts are identified they must still be examined to 

determine if they are currently valid. To alleviate this issue, a Gantt Chart can be created 

to track the periods in which a part has an active contract. With this tool, a user can 

quickly determine if a part is covered, how long until a part contract expires, or which 

contract covers the part. To make the most use of this tool, it could be used to determine 

which parts are currently covered by an active contract but soon will not be. This creates 

a focus list for future contract efforts to ensure part availability. 

Summary 

Accessing contract data is not a straightforward affair. The data is sensitive which 

requires it be housed in a secure environment. The HPC provides such an environment, 

but the server architecture of the HPC evokes additional effort. Specific access must be 

granted, unique tools utilized, and additional coding implemented to work on a server. 

Once access to the contracts is established in a useful coding environment, the main 

effort can begin. 
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Using multiple techniques, important information can be extracted from a 

contract. NER models in combination with classification models can be used to 

determine important characteristics such as the organization supplying the contract as 

well as the date the contract expires. Some important features require more rudimentary 

techniques, such as text extraction following a set of rules. Methods such as this can be 

used to determine the organization that generated the contract and other features that do 

not perform well with other methods. In addition to extraction, some features can be used 

to retrieve additional information. One such example is using the part number (extracted 

using a simple pattern locator) with robust webpage scraping tools to search the internet 

for additional information about the part. This new information can then be added to the 

contract’s summary. 

Information is only part of the process, it must be leveraged to provide utility. 

Using elements of the extraction such as part number and contract end date, a Gantt Chart 

can be created. This simple tool allows quick discovery of parts with active or soon to be 

ending contracts. 
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IV.  Results and Analysis 

Chapter Overview 

This chapter details the results of implementing the methodology. Application to 

three sample sets is presented and analyzed. 

Initial Results 

This section details the results of applying the methodology on the initial data set. 

Using Regular Expression, 301 of the 999 contracts from the initial data set are identified 

as part contracts. These 301 contracts are used for the remainder of this section. 

To facilitate NER, each contract is converted to a SpaCy object. This process is 

nearly instantaneous, taking less than 0.01 seconds per contract. The entities of interest 

for NER are the organization fulfilling the contract, the date the contract became 

effective, and the date the contract expired. The supplying organizations is found by 

using the “organization” SpaCy NER model. Likewise, the effective date and end date 

are identified by the “date” model. The immediate benefit of this is that only two models 

are run on the documents. Each model has a unique application time, summarized in 

Table 2. Table 2 also shows the number of entities found. 

Table 2. NER Model Results 

  Organization Entities Date Entities 

Average Run Time Per Document  0.27 seconds  0.57 seconds 

Average Number of Entities Found Per Document  118.8  47.6 

 

The output from the “organization” NER model contains many of the supplying 

organizations. With this success, a subset of 10 documents is collected. Each document is 

manually examined to determine the supplying organization. Once identified, the 
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supplying organization is located in the list of entities returned for the document and 

classified as “relevant”; all other returned entities are classified as “irrelevant”. This 

produces a classified data set with 301 irrelevant entities and 17 relevant entities. Such a 

manual process takes time and skill to be reliable; for this application it took roughly an 

hour to complete. 

Utilizing SMOTE, a final data set of 927 irrelevant entities and 927 relevant 

entities is created. This step corrects the imbalanced classes. To create the test set, 20% of 

the data (371 samples) is set aside. The other 80% (1483 samples) is passed to 

LazyPredict for classification model determination. The LaztPredict functions takes 

approximately 12 seconds to execute. The results of the LazyPredict application are 

below in Table 3. 
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Table 3. LazyPredict Output 

 

Table 3 shows the algorithm used, the time taken to generate a model, and the 

success of that model in the form of its F1 score. The higher the F1 score the better the 

model performs as a classifier, which is why the results are arranged in descending order 

by this statistic. The highest F1 score is achieved with the adaptive boost algorithm, 

however, it took over 3 seconds to run, more than double the next longest application and 

far longer than almost every other algorithm. For this reason, it is not considered a good 
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option. The next highest F1 score is the random forest algorithm. There are no apparent 

issues with this option, so it is selected as the best option to proceed with. 

A random forest model is tuned by adjusting one of its primary hyperparameters, 

“maximum tree depth.” In addition, 10-fold cross validation is used to ensure a more 

biased, lower variance model. Seven values for the hyperparameter are evaluated: 1, 2, 3, 

5, 10, 25, and 50. Figure 16 shows the results. Ten produced the highest F1 Score of 

0.998 on the validation data. Applying the model with a max depth of 10 to the test data 

yields an F1 Score of 0.997. This high rate of success is considered appropriate to apply 

the model further. 

 

Figure 16. Random Forest Max Depths’ F1 Scores 

This classification model is applied to the list of organizations returned by the 

NER model for each document. Of the 301 documents, 122 successfully have their 
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supplying organization found by applying the two models in sequence. The entire process 

to determine supplying organization is summarized in Figure 17. 

 

Figure 17. Process to Extract Information with NER and Classification Modeling 

The process in Figure 17 is also used to determine the effective date and end date 

for each contract. Table 4 and shows the LazyPredict outputs for each process. For the 

contract effective date, logistic regression is one of the most promising classification 

models. The only hyperparameter to tune in the logistic regression algorithm is the 

solver. Three of the most common solvers are explored: liblinear, Limited-memory 

Broyden–Fletcher–Goldfarb–Shanno algorithm (LBFGS), and newton-conjugate gradient 

(newton-cg) (Hale, 2019). Liblinear improves one variable at a time, seeking an optimal 

solution (minimum cost/loss) by looping through the next most promising variable. 

LBFGS uses gradient evaluation to estimate the update needed to minimize the cost. 

Newton-cg computes the second derivative of the cost function to determine the update 



35 

needed to minimize the cost. Figure 18 shows the F1 score for a model created with each 

solver, indicating liblinear as the best solver. 

For the contract end date, SVM is likely the most effective classification method. 

SVM has two hyperparameters to tune, the kernel and C. The two kernels explored are 

linear and radial basis function (RBF). It is best practice to check if data is linear, which 

leads to using the linear kernel (Zoltan, 2018). RBF is a general kernel that is commonly 

used when nothing is known about the data (SVM Kernel Functions, 2021). The values 

for C explored are based on 8 log scale steps from 0.01 to 100, resulting in 8 values to 

explore. It is difficult to predict what level of regularization will be needed, thus very 

small and very large values of C must be explored. To efficiently move through such a 

vast range, log steps are ideal. For this instance, 8 steps break up the test space well. 

Figure 19 shows the F1 score for each hyperparameter combination. The linear kernel 

with a C of 7.2 performed the best. 
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Table 4. LazyPredict Output for Contract Effective Date 
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Table 5. LazyPredict Output for Contract End Date 
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Figure 18. F1 Scores for Logistic Regression Hyperparameter Settings 

 

Figure 19. F1 Scores for Support Vector Machine Hyperparameter Settings 
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With those classification models successfully developed, three items of interest 

are covered. A summary of the three entity recognition efforts is in Table 6. Now focus 

can shift to resolving the other items of interest. 

Table 6. Results of NER with Classification 

 Supplying 
Organization 

Effective Date End Date 

Number of Documents in 
Manually Classified Set 

15 10 10 

Number of Relevant Entities 
Found 

17 9 22 

Number of Irrelevant Entities 927 211 214 

Number of Samples after SMOTE 1854 422 428 

LazyPredict Best Classifier Random Forest Logistic Regression 
Support 
Vector 

Machine 

LazyPredict F1 Score 1.00 1.00 1.00 

Tuned Hyperparameter Max depth = 10 Solver = liblinear 
Kernel = linear 

C = 7.2 

Tuned Validation F1 Score 0.998 0.97 0.991 

Tuned Test F1 Score 0.997 0.98 0.988 

Number of Documents with 
Relevant Entities Found 

122 181 96 

Percent of Documents 
Successfully Extracted 

40.5% 60.1% 31.9% 

 

 In addition to information about the contract, information about the part(s) in each 

contract is also desired. While many contracts contain only one NSN, several have more; 

in some cases, up to 312 in a single contract. In instances where there are multiple NSNs, 

usually some NSNs are repeated. To eliminate repetitive, useless information retrievals, 

repeated NSNs in a contract are eliminated. Once refined, the list of NSNs in a contract is 

used to determine part information. 

A website, https://www.iso-group.com, provides part information. Each part’s 

webpage contains the NSN in the URL. As such, modifying the URL to contain the NSN 
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of interest successfully loads that NSN’s webpage. Once loaded, information is scraped 

using Python’s Beautiful Soup package. The name of the part identified by the NSN as 

well as the category to which the part belongs is obtained. Repeating this process for each 

of the 459 parts successfully gathers information on 457 of them. As a result, every one 

of the 301 parts contracts has some information added. 

To obtain the contract originating organization, text mining is implemented. 

However, before applying this approach, an issue must be resolved. Many contracts 

appear to be similar but have different raw text layouts due to how they were extracted. 

To correct this, the original PDF of the contract is converted into raw text using the 

PyPDF2 package (Phaseit Inc., 2016). This new raw text serves as the medium for the 

current approach. 

To employ text mining, specific words which precede the originating organization 

are identified. From these, if an end word is located within 100 characters, a nearly 

perfect extract occurs by isolating the string between the start and end word and splicing 

based on spaces in the string. However, in the absence of an end word, the 100-character 

string is stripped where excessive spaces are found, also producing a useful extract. This 

approach provides consistent results. Of the 301 contracts, 275 have their originating 

organization successfully identified. 

All the information collected is maintained in separate files. This is primarily due 

to the need to keep processes separate for ease of implementation and to protect the 

outputs. To make a useful, final product, the files must be combined. The resulting 

product contains a list of contracts, their server location, the parts they contain (including 
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NSN, name, and category), originating organization, supplying organization, effective 

date, and end date. Of the 301 contracts, 30 have all fields successfully populated. 

Contracts with effective date and end date populated are used to determine part 

availability. For each part, all contracts containing the part with both dates populated are 

collected. The dates are then combined to determine periods of contract coverage. The 

periods of coverage for each part are then plotted on a timeline, creating a Gantt chart. An 

example Gantt chart covering five parts is in Figure 20. Part 7540-01-152-8070 is shown 

to be covered by multiple contracts; each change in color represents a new contract. 

While different contracts provide access to the part, there is no break in access; where 

one contract ends, another picks up. From this example it is easy to determine when a 

contract is open for a particular part. 

 

Figure 20. Example Chart of Parts Covered by Contracts 
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Additional Results 

 With the successful implementation of the methodology on a single data set, 

efforts are taken to apply the product to additional data sets. Each coded portion and its 

resulting product are combined into a single batch file. This allows the technique to be 

easily applied to any similar data set. Two additional data sets are acquired for testing. 

The results of all three applications are summarized in Table 7. 

Table 7. Results from Multiple Runs 

 
Initial Data Set First Test Set Second Test Set 

Number of Contracts 999 1166 999 
Found Part Contracts 301 592 80 

(Time to run) 27 sec 16 sec 16 sec 
Found Originating 

Organization 
275 559 55 

(Time to run) 6 sec 13 sec 6 sec 
Found Supplying 

Organization 
122 153 4 

(Time to run) 9 min, 34 sec 26 min, 36 sec 2 min, 18 sec 
Found Effective Date 181 157 9 

(Time to run) 5 min, 32 sec 14 min, 40 sec 1 min, 3 sec 
Found End Date 96 155 5 

(Time to run) 5 min, 35 sec 14 min, 31 sec 1 min, 3 sec 
Parts (Information 

Found) 
457 381 8 

(Time to run) 6 min, 49 sec 3 min, 41 sec 6 sec 
Contracts with All 

Features Found 
30 19 0 

Contracts Sufficient for 
Gantt Chart 

62 57 2 

Parts in Gantt Chart 323 57 1 
(Time to run) 9 sec 5 sec 8 sec 

Total Time 28 min, 28 sec 49 min, 12 sec 5 min, 2 sec 
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Analysis 

 The application of the methodology is successful; however, the desired outcome 

is not achieved. Though the process did provide several important insights.  

 Application success is based on the overall effectiveness of each portion of the 

process. The NSN search discovers almost a third of the contracts are part contracts, 

enough to create a meaningful set. To determine specific details of those contracts a 

combination of NER and classification are used. SpaCy NER models are able to locate 

many various entities within each contract and classification models determine which of 

those entities are relevant. About a third of the desired details are found. For other details, 

text mining techniques are applied. This approach finds nearly all the desired details. In 

addition to contract details, part details are also needed. Nearly all desired details are 

successfully obtained using web scraping methods. From these efforts a Gantt chart is 

successfully created. 

 While each individual portion is successful, the project as a whole is not. Due to 

the lack of overlapping success, only 10% of the contracts have every detail of interest 

successfully extracted. The lack of overlapping success also means only 21% of the 

contracts have both an effective date and end date identified. With such few contracts 

viable for the Gantt chart, only 71% of the parts are represented at all. 

 Using pattern recognition results in a fast, effective method to identify part 

contracts. It takes less than 0.03 seconds to determine if a contract contains an NSN. 

While some contracts are likely missed, most are probably found. 

 Each contract detail acquired by an NER model combined with a classification 

model takes about 1.37 seconds per document to acquire. Since the NER models only 
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take 0.42 seconds to identify entities for a document, most of the run-time is due to 

applying the classification model. Also, the NER models generate a large number of 

entities, creating a sparse data space for the classification models to perform in. While the 

tuned classification models are highly effective on the training data, the many irrelevant 

entities in the true data makes locating relevant entities difficult, resulting in poor 

performance. 

Alternatively, each detail acquired by text mining only takes 0.02 seconds per 

contract. In addition, text mining is also more successful at acquiring each detail. Due to 

the higher success rate and quicker execution time, for this dataset, text mining 

techniques are likely the best choice. However, this method is highly unlikely to apply 

well to a different dataset. 

 Retrieving part information from www.iso-group.com is fast, taking only 0.89 

seconds per part. However, since there are 1.63 parts per contract on average, it takes 

about 1.5 seconds per contract to acquire part information this way. 

 The Gantt chart executes quickly and provides useful information in an easy-to-

understand format. Even when only one part is plotted, as in the case of the third data set, 

there is still value. Figure 21 shows how the single part is covered by two contracts and 

each contract’s covered date range. 

 

http://www.iso-group.com/
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Figure 21. Notional Gantt Chart Product 

 Unfortunately, the overall execution time is long. The entire process averages 5.7 

seconds per contract. If this method were applied unaltered to all 4 million contracts, it 

would take approximately 263 days to run. However, the process was developed to 

execute sequentially on a single core. Taking advantage of the other 23 cores would 

reduce runtime to 11 days. 

In addition to the contract evaluation time, there is the process development time. 

The manual classification of entities takes about an hour, applying LazyPredict and 

tuning the results takes an additional 5-10 minutes. Thankfully, this process is only 

completed once per item of interest. That said, if this process was applied to each dataset 

in an effort to improve accuracy, it would add considerable time. 

The NER models run very quickly, averaging only 0.42 seconds per document. A 

custom NER could obtain many of the contract details more quickly, bringing down the 

overall execution time to only 3.8 seconds. This would reduce execution time by a third 

and likely be more accurate. 
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Summary 

The individual steps of the process are successfully executed, and results 

compiled. However, while each standalone portion performs well enough, there is very 

little overlap in successes. In addition, some steps take considerable time to execute. As a 

result of these findings, this method presented is not practical. An alternative method 

such as a custom built NER is likely more appropriate. 
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V.  Conclusions and Recommendations 

Chapter Overview 

The partial success and failure of the approach presented in this paper leads to 

several conclusions. These conclusions are discussed in detail within this chapter. 

Conclusions of Research 

Supercomputing and machine learning provide access to information at 

unparalleled levels. Evaluating hundreds of documents for specific pieces of information 

would take a person weeks to accomplish. Automating the task allows it to be 

accomplished in half an hour. Furthermore, once a strategy is developed, it can be applied 

to millions of documents in less than a year, a feat unimaginable for its human 

counterpart. Though the process is not without its complications. 

Machine learning in the form of NER identifies information within a text based 

on its use, allowing things such as meaningful dates and organizations to be found 

quickly and accurately. However, existing NER models return all dates and all 

organizations. If these models are to be useful, additional refinement of the results is 

needed. Classification models can be used to provide this refinement. This combination 

of NER models with classification models is also very adaptable to new texts. This is 

important since all contracts do not follow the same format. 

Unfortunately, the performance of this technique was not sufficient to consider it 

a viable option. The process took a considerable amount time to run and the results were 

less than satisfactory. 
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Where NER failed, text mining techniques were used. They performed very well. 

However, text mining typically only works in similar applications and fails if formats 

change. As such, despite its success, it is not a recommended approach either. 

While the NER models used were not successful, the speed at which they can be 

applied and return significant information was noteworthy. If custom NER models were 

built that only returned the desired entities, the classification step, which contributed 

largely to the failure of the method, could be eliminated. These custom NER models 

would require a significant investment of time or money to develop. 

One part of the process that was successful was extracting part information. With 

the methods outlined in this paper, a useful repository of parts could be built, identifying 

when parts are available under contract, who supplies them, and who owns the contract. 

This information could be used in many beneficial ways, but possibly most important, it 

could be used to determine if a new contract is needed to maintain or establish access to 

parts. 

Recommendations 

To improve upon the approach taken within this paper, a custom NER should be 

built. This could be used in place of the existing NER models combined with 

classification models to produce more accurate result, faster. To develop a custom NER, 

a labeled corpus must be produced. While there are tools to assist this process, it is still 

manual and requires thousands of contracts be labeled. Once produced, a company such 

as Google or Skyl.AI could assist in building and applying the custom NER. With the 

expertise gained from this paper, an individual would also likely be able to create a 

reasonable model and apply it. 



49 

If there was not enough time to produce an entire corpus, the approach taken in 

this paper could likely be improved in less time. That time would be spent increasing the 

number of labeled entities on which the classification models are built. Increasing the 

number of contracts labeled should improve the applicability of the prebuilt NER and 

improve the overall success rate. 

A unique classification algorithm was used for each classification model 

developed. However, the initial results for each model indicated extra trees might be a 

good approach. It might be possible to develop a single classification model using the 

extra trees algorithm. Using a single model could have several advantages, the most 

immediate benefit being triple the number of training samples. 

Furthermore, while not the most difficult part of the process, the collection of part 

info does take time. Since this information does not change regularly, if a list of parts was 

obtained, a repository could be built. The benefit of this is a lengthy internet search 

would not be required each time a part is identified in a contract. The repository could be 

searched, and the part information quickly acquired. 

An additional advantage to using an HPC is the ability to increase computing 

power. The process utilized for this paper utilized a single core with a standard priority, 

however the HPC has 592 cores (Talon User Guide, 2020). To use multiple cores, 

parallel processing would need to be implemented. If all 384 cores in the project node 

were utilized, the project could run in under 17 hours. 

Besides parallel processing, multi-threading would allow multiple, simultaneous 

internet searches for part information. Implementing this could greatly reduce the time 

taken to gather part information. Even without consuming all the cores, employing both 
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parallel processing and multi-threading could result in a process that could be run on all 

the contracts over a weekend. 

Significance of Research 

The team, DART, working to provide significance from the effort to collect 

AFSC contracts received pertinent guidance with regards to the important goal of 

determining contract expirations. This goal can be achieved to a certain degree using the 

process in this paper. However, to meaningfully determine expirations for all contracts, 

time is needed to develop a corpus or improve the classification data sets. No matter the 

approach, the desired goal of determining part availability is attainable. More 

importantly, from this determination, access to parts can be assured. 

Summary 

Contract information can be successfully extracted using machine learning and 

text mining techniques. However, to provide meaningful outputs a well-developed corpus 

is needed. In lieu of this corpus, a combination of several methods can be applied to 

generate a moderately successful model. Once contract information is extracted, it can be 

used to develop useful tools such as a listing of part availability. 
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Appendix A 

Package Name Version 
 

Package Name Version 

aiohttp 3.6.3 
 

nltk 3.5 

argon2-cffi 20.1.0 
 

notebook 6.1.4 

async-generator 1.1 
 

numpy 1.19.1 

async-timeout 3.0.1 
 

packaging 20.4 

attrs 20.2.0 
 

pandas 1.1.3 

backcall 0.2.0 
 

pandocfilters 1.4.3 

beautifulsoup4 4.9.3 
 

parso 0.7.0 

bleach 3.2.1 
 

pexpect 4.8.0 

blis 0.4.1 
 

pickleshare 0.7.5 

boto3 1.9.66 
 

pillow 8.1.0 

boto 2.49.0 
 

pip 20.2.3 

botocore 1.12.67 
 

plac 0.9.6 

cachetools 4.1.1 
 

plotly 4.12.0 

catalogue 1.0.0 
 

pluggy 0.13.1 

certifi 2020.6.20 
 

preshed 3.0.2 

cffi 1.14.3 
 

prometheus-
client 

0.8.0 

chardet 3.0.4 
 

prompt-toolkit 3.0.8 

click 7.1.2 
 

protobuf 3.13.0 

cryptography 3.1.1 
 

psutil 5.8.0 

cycler 0.10.0 
 

ptyprocess 0.6.0 

cymem 2.0.3 
 

py 1.9.0 

decorator 4.4.2 
 

pyasn1-modules 0.2.8 

defusedxml 0.6.0 
 

pyasn1 0.4.8 

docutils 0.16 
 

pycparser 2.2 

en-core-web-lg 2.3.1 
 

pygments 2.7.1 

en-core-web-sm 2.3.1 
 

pyopenssl 19.1.0 

entrypoints 0.3 
 

pyparsing 2.4.7 

gensim 3.8.0 
 

pypdf2 1.26.0 

google-api-core 1.22.2 
 

pyrsistent 0.17.3 

google-auth 1.22.1 
 

pysocks 1.7.1 

google-cloud-core 1.4.3 
 

pytest 6.1.1 

google-cloud-storage 1.31.0 
 

python-dateutil 2.8.1 

google-crc32c 1.0.0 
 

pytz 2020.1 

google-resumable-media 1.1.0 
 

pyzmq 19.0.2 

googleapis-common-
protos 

1.52.0 
 

regex 2020.10.11 

idna 2.1 
 

requests 2.24.0 

imbalanced-learn 0.7.0 
 

retrying 1.3.3 

importlib-metadata 2.0.0 
 

rsa 4.6 
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iniconfig 1.1.1 
 

s3transfer 0.1.13 

ipykernel 5.3.4 
 

scikit-learn 0.23.2 

ipython-genutils 0.2.0 
 

scipy 1.5.2 

ipython 7.18.1 
 

selenium 3.141.0 

jedi 0.17.2 
 

send2trash 1.5.0 

jinja2 2.11.2 
 

setuptools 50.3.0.post20201006 

jmespath 0.10.0 
 

six 1.15.0 

joblib 0.17.0 
 

smart-open 3.0.0 

jsonschema 3.0.2 
 

soupsieve 2.0.1 

jupyter-client 6.1.7 
 

spacy 2.3.2 

jupyter-core 4.6.3 
 

srsly 1.0.2 

jupyterlab-pygments 0.1.2 
 

terminado 0.9.1 

kiwisolver 1.3.1 
 

testpath 0.4.4 

lazypredict 0.2.7 
 

thinc 7.4.1 

lightgbm 3.0.0 
 

threadpoolctl 2.1.0 

lxml 4.5.2 
 

toml 0.10.1 

markupsafe 1.1.1 
 

tornado 6.0.4 

matplotlib 3.3.3 
 

tqdm 4.50.2 

mistune 0.8.4 
 

traitlets 5.0.4 

mkl-fft 1.2.0 
 

urllib3 1.24.3 

mkl-random 1.1.1 
 

wasabi 0.8.0 

mkl-service 2.3.0 
 

wcwidth 0.2.5 

multidict 4.7.6 
 

webencodings 0.5.1 

murmurhash 1.0.2 
 

wheel 0.35.1 

nbclient 0.5.1 
 

xgboost 1.2.1 

nbconvert 6.0.7 
 

xlrd 1.2.0 

nbformat 5.0.8 
 

yarl 1.6.2 

nest-asyncio 1.4.2 
 

zipp 3.3.1 
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