
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2021

Contract Information Extraction Using Machine Learning Contract Information Extraction Using Machine Learning

Zachary E. Butcher

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Data Science Commons, and the Operations Research, Systems Engineering and Industrial

Engineering Commons

Recommended Citation Recommended Citation
Butcher, Zachary E., "Contract Information Extraction Using Machine Learning" (2021). Theses and
Dissertations. 5026.
https://scholar.afit.edu/etd/5026

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=scholar.afit.edu%2Fetd%2F5026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=scholar.afit.edu%2Fetd%2F5026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=scholar.afit.edu%2Fetd%2F5026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5026?utm_source=scholar.afit.edu%2Fetd%2F5026&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

CONTRACT INFORMATION EXTRACTION USING MACHINE LEARNING

THESIS

Zachary E. Butcher, Captain, USAF

AFIT-ENS-MS-21-M-145

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the U.S. Government and is not

subject to copyright protection in the United States.

AFIT-ENS-MS-21-M-145

CONTRACT INFORMATION EXTRACTION USING MACHINE LEARNING

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Zachary E. Butcher, BS

Captain, USAF

March 2021

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENS-MS-21-M-145

CONTRACT INFORMATION EXTRACTION USING MACHINE LEARNING

Zachary E Butcher, BS

Captain, USAF

Committee Membership:

Dr. Jeffery D. Weir

Chair

Capt Phillip R. Jenkins, PhD

Member

iv

AFIT-ENS-MS-21-M-145

Abstract

The Air Force Sustainment Center assisted by the Data Analytics Resource Team

and the Defense Logistics Agency has collected four million contracts onto one of the Air

Force Research Laboratory’s high power computers. Many efforts are underway to utilize

this new database. This thesis focuses on the effort to determine if parts are available

through existing contracts. Parts are anything that is expendable, such as a B-52 tire or an

annual JMP license.

To determine availability, this thesis implements the process outlined below:

a. Identify contracts containing parts and the part

b. Determine which organization initiated the contract

c. Determine which organization is supplying the part

d. Determine the contract start and end date

e. Discover details about the part, including name and category

f. Create easy to understand visualization of information

The process tasks are accomplished using a variety of tools and techniques. Some

information is extracted from the contracts using machine learning (ML) in combination

with natural language processing. Specifically, two types of ML models are used, named

entity recognition (NER) and classification. Where ML methods are unsuccessful or

inappropriate, more text mining techniques, such as pattern recognition and rules, are

used. Upon completion, the information is combined into a Gantt chart for quick

evaluation.

v

While each step in the process is generally successful, there is little overlap in

successes. As a result, only 21% of the contracts have their information correctly

extracted with this process. To provide an accurate depiction of availability for every

part, an improvement is needed. There are several adjustments which could provide better

results. The likely most effective improvement is to develop a custom NER model.

vi

Acknowledgments

I would like to express my sincere appreciation to my advisor, Dr. Jeffery Weir, for his

guidance. I would also like to thank Derrick Chiwinsky, from the DART.

 Zach Butcher

vii

Table of Contents

Page

Abstract .. iv

Table of Contents .. vii

List of Figures .. ix

List of Tables ...x

I. Introduction ...1

General Issue ..1

Objective...1

II. Literature Review ..3

Chapter Overview ...3

Natural Language Processing (NLP) ..3

Machine Learning (ML) ...5

Deep Learning (DL) ...6

Evaluation Metrics..10

Cross Validation ...12

Classification Models ...13

Relevant Research ..16

Preparation Steps ..19

III. Methodology ...21

Chapter Overview ...21

Datasets...22

Part Contract Identification ..23

Contract Information Extraction...24

Part Information Extraction ..27

viii

Part Availability..28

Summary...28

IV. Results and Analysis ...30

Chapter Overview ...30

Initial Results ..30

Additional Results ..42

Analysis ..43

Summary...46

V. Conclusions and Recommendations ..47

Chapter Overview ...47

Conclusions of Research ..47

Recommendations ..48

Significance of Research ..50

Summary...50

Appendix A ..51

Bibliography ..53

ix

List of Figures

Figure 1. Demonstration of Word Relation and Identification ... 5

Figure 2. One-hot Word Vector Example (Ali, 2019) .. 8

Figure 3. Notional Word Embedding Example .. 8

Figure 4. Embedding Vector Generation (Agrawal, 2019)... 8

Figure 5. NER Demonstrated (Terry-Jack, 2019) ... 9

Figure 6. General Confusion Matrix ... 10

Figure 7. K-Fold Cross Validation (Bisgin, Kilinc, Ugur, Xu, & Tuzcu, 2011) 12

Figure 8. Logistic Regression Example (Yiu, 2019) .. 14

Figure 9. Support Vector Machine Example (Gandhi, 2018) ... 15

Figure 10. Random Forest Example (Silipo, 2019) .. 16

Figure 11. Flowchart of Methodology .. 21

Figure 12. Example Gantt Chart (Gantt Chart, 2021) ... 22

Figure 13. Histogram of Contract Page Counts .. 23

Figure 14. Example of a Found NSN.. 24

Figure 15. Part Webpage Example ... 27

Figure 16. Random Forest Max Depths’ F1 Scores .. 33

Figure 17. Process to extract information with NER and classification modeling 34

Figure 18. F1 Scores for Logistic Regression Hyperparameter Settings 38

Figure 19. F1 Scores for Support Vector Machine Hyperparameter Settings 38

Figure 20. Example Chart of Parts Covered by Contracts .. 41

Figure 21. Notional Gantt Chart Product .. 45

x

List of Tables

Table 1. Datasets Summarized .. 23

Table 2. NER Model Results .. 30

Table 3. LazyPredict Output ... 32

Table 4. LazyPredict Output for Contract Effective Date .. 36

Table 5. LazyPredict Output for Contract End Date ... 37

Table 6. Results of NER with Classification .. 39

Table 7. Results from Multiple Runs .. 42

1

CONTRACT INFORMATION EXTRACTION USING MACHINE LEARNING

I. Introduction

General Issue

The Air Force Sustainment Center (AFSC) executes hundreds of thousands of

contracts each year. For the past decade, these contracts have been written under

changing policies, in a myriad of formats, and stored in several disconnected systems. In

the current climate of data capitalization, an effort is being made to bring together every

contract to provide useful insights.

Objective

From the compilation of contracts several products are desired. The specific goal

of this effort is to determine part availability. If a part is covered by an active contract, it

is available, if the part is not, a contract would need to be created to provide said part.

This goal requires several steps to accomplish. Those steps are outlined below:

1. Locate “parts” contracts

2. Extract relevant information from those contracts

3. Compile information by part

From this effort it can be determined if specific parts are currently covered by a

contract. Due to the complexities of data retrieval, machine learning (ML) techniques are

used in conjunction with natural language processing (NLP). The immense size of the

data sets makes the use of high-powered computing necessary.

This paper provides a framework developed on a sample set of contracts. The

framework is successful if it can be applied to several data sets and return the necessary

2

information. A proven framework could then be applied to every contract, accomplishing

one of AFSC’s primary goals.

In Chapter 2 the necessary background on each process in the framework is

presented. In addition, similar efforts are reviewed, focusing on their similarities and

success or failure. With the processes explained, their application to the project is

detailed in Chapter 3. Chapter 4 reports the individual process successes and other

findings. The implications of the entire project are then explored to determine if it is

effective. Finally, the understanding obtained from this endeavor is summarized in

Chapter 5 to provide value to the reader and AFSC.

3

II. Literature Review

Chapter Overview

The purpose of this chapter is to provide a description of NLP, discuss

applications of ML to natural language, and highlight other’s efforts along these lines.

Natural Language Processing (NLP)

NLP is a method of taking written language, such as a contract, and turning it into

a format which can be quickly analyzed (Isahara, 2007).

The first step is to identify the item of interest. In this case, it will be the content

of the contracts. This content is already somewhat structured, but not for ML techniques.

As such, the content must be prepared for machine learning (Marinov & Efremov, 2019).

Some preparation is easy such as removing punctuation, stop words, and other

unnecessary characters. Other processing, such as tokenization and lemmatization, are

more difficult.

Stop words are high frequency words such as “I”, “a”, and “the” (Patel & Shah,

2013). These words routine usage causes them to have almost no significance. Removing

them reduces noise and unnecessary processing. There is not a universal list of stop

words. The advantage of this fact is task specific words such as “Air Force” can be

considered stop words and removed to improve processing.

Tokenization is the process of breaking a larger entity down into smaller pieces,

or tokens (Li, Ma, & Lee, 2013). In this case, converting the entire contract text into

individual words to evaluate. One largely complex variable changed into many simpler

variables. Once text is tokenized, processing and analysis is straight forward.

4

Lemmatization is the procedure of reducing a word to its root form or lemma

(Han, Shen, Wang, & Liu, 2012). It involves removing inflections on a word such as the

“d” on “united” to provide the base word “unite.” It is more useful than stemming (a

similar process) because lemmatization uses disambiguation to help reduce each word to

its dictionary term. Using a dictionary provides a predefined vocabulary list, allowing for

more consistent application.

Disambiguation is a product of syntactic analysis (Bessmertny, Platonov,

Poleschuk, & Pengyu, 2016). It uses the context of the word to determine what it is. For

example, it could infer if “bat” was the animal or the sport equipment. In general,

syntactic analysis is any evaluation of a word’s nature, placement, and/or use to provide

more information.

Part-of-speech tagging is one component of syntactic analysis. It involves

labeling, or “tagging,” each word with the speech category it belongs to. Categories

include verbs, nouns, and adjectives.

Dependency parsing is another component of syntactic analysis (Park & Kang,

2019). It evaluates how words are related to each other. Figure 1 shows the relationship

of each word to the other words in a sample sentence.

5

Figure 1. Demonstration of Word Relation and Identification

Once the words have been processed, ML can be applied. At this point ML can

treat each word as a feature.

Machine Learning (ML)

ML uses features as inputs to train a model to produce correct outputs (James,

Witten, Hastie, & Tibshirani, 2015). “Learning” in ML refers to the training portion of

the process since the machine “learns” the most effective model.

There are several types of learning: supervised, unsupervised, reinforcement, and

semi-supervised. In supervised learning, the outcome for a specific input is known. Given

the inputs, the machine can learn/train a model to approximate the output. It can then

apply the model to another input-output set, reinforcing what has been learned or forcing

a change to the model to better accommodate all the data. If a change is needed, the

change is determined by an optimization algorithm. The algorithm determines the

adjustment(s) to the model needed to reduce the difference between the predicted

outcome and the true outcome.

6

Classification is a typical application of machine learning (Bulbul & Unsal,

2011). It involves sorting entities into different groups, known as classes.

Deep Learning (DL)

DL is a subset of ML in the same way that ML is a subset of artificial intelligence

(AI). It allows the computer to learn complex concepts from simple systems

(Goodfellow, Bengio, & Courville, 2016). DL utilizes artificial neural networks (ANNs)

which are capable of developing hundreds of connections and nodes. Conceptually it is

difficult to explain what each element of the network does, but the aggregate allows

complex understanding to be applied to every input.

Embeddings

DL can be used to create embeddings for each word. These word embeddings are

vectors used to signify words while providing additional information (Goodfellow,

Bengio, & Courville, 2016). They are referred to as distributed representations because

each vector element provides context for the word. However, vector elements are similar

to principal components, their meaning is not explicit. They are determined using neural

networks with unsupervised learning.

The benefit of embedding is instead of matching a word by its characters, words

can be compared on an element-by-element basis. This allows words with multiple

meanings, such as “pass,” to be differentiated and similar words, such as “king” and

“ruler,” to be associated.

Many embeddings are generated by Recurrent Neural Networks (RNNs) (Salim,

Ghanshyam, Ashok, Mazahir, & Thakare, 2020). RNNs are neural networks that work for

sequential data. This is important since sentences provide meaning through word

7

sequence. Unfortunately, simple RNNs are not enough since words can be referenced

from multiple points within a sentence and differently from sentence to sentence. As

such, a special RNN called a RNN-LSTM is used, where LSTM stands for long short-

term memory. This RNN allows the model to remember how a word was used in a

sentence at the beginning of a document as well as at the end.

ML, like many modeling techniques, considers more samples better than less. DL,

unlike most modeling techniques, will continue to improve as the number of samples

increases (Halevy, Norvig, & Pereira, 2009). As a result, the more samples that are

provided, the better the model performs. Typically, embeddings are learned from a

corpus with millions of words.

The learned embedding is a square matrix. A word is passed to it as a one-hot

vector of all possible words; an example vector is in Figure 2. The result of multiplying

the one-hot vector with the embedding matrix is an embedding vector for the word;

example shown in Figure 3. This vector can then be compared to other word’s vectors. It

is important to note that the context represented by each element of the vector is notional

and not able to be explained as completely as it is in the figure. Once the embeddings are

generated, they can be used in models as a layer or preprocessing step. This entire

mathematical process is summarized well in Figure 4.

8

Figure 2. One-hot Word Vector Example (Ali, 2019)

Figure 3. Notional Word Embedding Example

Figure 4. Embedding Vector Generation (Agrawal, 2019)

Named Entity Recognition (NER)

 NER utilizes supervised, deep ML to classify words as specific entities

(Shokripour, Anvik, Kasirun, & Zamani, 2013).

9

To conduct supervised learning, a set of words labeled with their corresponding entity

must be provided. Entities include “person”, “place”, “date”, etc. This labeled dataset

serves as the corpus. An example corpus is in Figure 5 (Terry-Jack, 2019).

Figure 5. NER Demonstrated (Terry-Jack, 2019)

Labels are the backbone of NER. There are many pretrained NER models which

can identify generic entities like person and place. However, for domain specific entities

such as companies, diseases, and laws, a corpus with these specifically labeled is needed

(Zhang, Lin, Gao, & Chen, 2019). Labeling a corpus is completed mostly by hand.

Labeling millions of words takes a considerable amount of time. As such, acquiring the

required corpus is not a trivial matter. There are several available for free. However, for

more niche applications, appropriate corpus are usually purchased or generated.

To generate an NER model, each word in the corpus can be reduced to its lemma

to greatly shrink the feature space. This can increase learning speed at the cost of

accuracy; it is sometimes used but not necessary (Kutuzov & Kuzmenko, 2019). After the

10

corpus is prepared, embeddings can then be trained or pretrained embeddings

downloaded. The obtained embedding allows new words to be compared to the corpus

words. If a new word is found to be similar, the label from the corpus word can be

applied to it. Ultimately this process allows entities to be classified/recognized.

Evaluation Metrics

ML does not provide a perfect model. As such, the model must be evaluated in

some way to convey its worth. Standard metrics have been developed to evaluate models.

For classification, the F1 score is the preferred metric (Zhang, Wang, Zhao, & Wang,

2015). The F1 score evaluates how well the predictions match the truth. Related terms

are true positives, true negatives, false positives, and false negatives (Farhadloo &

Rolland, 2013). True positive means the classifier was positive (true) and the

prediction was positive, thus they were in alignment. Compared to false positive

where the classifier was negative (false) but the prediction was positive. A confusion

matrix helps identify this concept further. Though shown in Figure 6 as a 2x2 matrix,

a confusion matrix can take on a more robust visage (Ariza-Lopez, Rodriguez-Avi, &

Alba-Fernandez, 2018).

 Predicted Positive Predicted Negative

Actually Positive True Positive False Negative

Actually Negative False Positive True Negative

Figure 6. General Confusion Matrix

11

Precision.

Precision measures how many predictions were correct out of all the positive

predictions made (Avola, et al., 2019). It is useful when the costs of false positives are

high. For example, a test should have high precision if those who test positive will

receive a risky surgery. Only those that need the surgery should have it, any false-

positives would be taking unnecessary risks.

 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(1)

Recall.

 Recall measures how many were predicted positive out of the ones that were truly

positive. It is valuable when the cost of false negatives is high. Recall is sometimes

referred to as the detection rate (Wang, Li, Wan, & Wang, 2019). For example, a test

should have high recall if it is used to identify infected patients. Failing to detect an

infected patient could allow them to infect the rest of the hospital.

 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 (2)

F1 Score.

F1 Score is the harmonic mean of precision and recall which means it gives much

more weight to low values (Geron, 2017). As a result, it takes both high precision and

high recall to obtain a high F1 score.

2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 (3)

12

Cross Validation

 Cross validation is a technique applied during model generation, when an

algorithm is applied to a data set (James, Witten, Hastie, & Tibshirani, 2015). Cross

validation varies the samples, from a single data set, used to train and validate a model.

This variation allows the same algorithm to develop several similar models instead of

only one. The models are then aggregated to determine the expected outcome of the

algorithm on the dataset.

 A specific cross validation strategy is k-fold. In this approach the dataset is split

into k equal parts. A model is then trained using all of the parts except one, reserving the

excluded part for validation. This process is repeated until each part has served as the

validation data, resulting in k models. Since each model trained and validated on different

data, each produced a unique F1 score. The F1 score from each model can then be

averaged together, producing an expected F1 score for the proposed algorithm on the

dataset. This method is displayed in Figure 7.

Figure 7. K-Fold Cross Validation (Bisgin, Kilinc, Ugur, Xu, & Tuzcu, 2011)

13

 In addition to providing an expected F1 score, aggregating the models helps to

mitigate the effects of a single model over or under fitting the data. Extremely

sensitive/accurate models are said to overfit the training data. They learn the sample too

well and lose generality the population exhibits. Alternatively, some models favor

excessive generality and do not appropriately capture important traits in the training data.

Averaging these notable models with others causes their extreme characteristics to

become subdued.

Classification Models

 Classification models utilize a set of features to predict which class the sample

should belong to. There are many different classification modeling methods.

Logistic Regression.

One classification technique is logistic regression. This method uses the logistic

function to split the decision space into a binary ruling (James, Witten, Hastie, &

Tibshirani, 2015). This technique can be applied to multiple classes by using the concept

of one against many; if the sample does not belong to the class of interest, it must be in

one of the others. One significant advantage of this technique is it provides the

probability that the sample belongs in the predicted class. It has one primary

hyperparameter which is the solver it uses. The concept is displayed well in Figure 8.

14

Figure 8. Logistic Regression Example (Yiu, 2019)

Support Vector Machine.

Support Vector Machine (SVM) is a classification method that utilizes an

algorithmic approach. It develops models which try to increase the space between classes

(James, Witten, Hastie, & Tibshirani, 2015). While a very robust modeling technique, it

does not provide a probability of class inclusion. The two primary hyperparameters of

SVM are C and kernel. The kernel function allows data to be projected into a higher

dimension. This allows the arrangement of the data to be modified to better apply a

hyperplane which separates the classes. C, also known as the regularization parameter,

functions as the cost of a datapoint breaking that hyperplane, as the cost increases fewer

and fewer misclassified datapoints are allowed. While a high cost sounds appealing, it

makes the model unyielding and can cause lower success. SVM is demonstrated in Figure

9.

15

Figure 9. Support Vector Machine Example (Gandhi, 2018)

Random Forest.

Random forests are a collection of decision trees (James, Witten, Hastie, &

Tibshirani, 2015). A decision tree is a series of decisions based upon feature values that

branch and bound to a conclusion. A random forest generates many decision trees and

randomly limits the features the decision nodes can use. In addition, each decision tree

uses a unique training set created by bootstrapping. Bootstrapping randomly draws, with

replacement, a specified number of samples from the original training set. These design

characteristics cause different, independent decision trees to be generated. The ensemble

of the many different trees is then leveraged to determine which outcome is the most

common for a set of inputs. A primary hyperparameter of the random forest algorithm is

the max tree depth. That is the maximum number of decisions it can make for a single

outcome. Both decision trees and random forests as displayed in Figure 10, highlighting

how a random forest is a collection of decision trees.

16

Figure 10. Random Forest Example (Silipo, 2019)

Relevant Research

There are off-the-shelf NER options available, the most common in Python being

SpaCy and Stanford NER. SpaCy provides a pretrained model which is built on a generic

entity corpus (Partalidou, Spyromitros-Xioufis, Doropoulos, Vologiannidis, &

Diamantaras, 2019). The model can be adjusted by providing raw text to train a new

embedding as well as provide additional labeled data to add domain entities (Honnibal,

2020). Stanford NER functions very similar to SpaCy except it is based in java and there

is less of a distinction between the embedding and the entity recognition processes

(Luthfi, Distiawan, & Manurung, 2014).

Research was conducted to determine if using the Stanford NER algorithm was as

effective as training a custom model for generic entity recognition. The Stanford NER

produced an F1 score of 66.97% while the custom NER scored 68.69% (Sotomayor &

Veloz, 2017). Since this study there have been advancements in embeddings. Training a

17

custom NER using Embeddings from Language Models (ELMo) would likely perform

better (Peters, et al., 2018).

As domain specific corpus can be very expensive to produce; efforts have been

made to bypass this requirement. One such effort was to combine many free corpus from

the internet (Menezes, Milidiú, & Savarese, 2019). The idea being with a vast training

set, a model could become robust enough to handle niche data. Unfortunately, on its own,

it did not perform as well as traditional efforts. A similar effort was applied to detecting

legal entities (Ex. Laws, judgements, etc.) where the goal was to use legislative

documents posted in the news, journal articles, and contracts (Badji, 2018).

It was found that a small corpus can be successfully paired with unsupervised

learning to identify domain specific entities (Zhang, Lin, Gao, & Chen, 2019). The study

examined words near the target word to determine the context of the word. If the context

was similar to the training set, it would apply domain specific entity recognition. When

compared to the classic domain-relevance-based entity recognition algorithm Concept-

Relation-Concept Tuple-based Ontology Learning (CRCTOL), this method found 65%

more entities. CRCTOL is used to determine ontologies from documents (Jiang & Tan,

2010). Ontology is a representation of a subject by determining its concepts and how they

are related (Chandrasekaran, Josephson, & Benjamins, 1999).

Other improvements to NER have been focused on the embedding portion of the

model. In 2015 a clinical corpus was used to develop the embedding and compared to the

default embedding (Wu, Xu, Jiang, Zhang, & Xu, 2015). The result was an over 2%

increase in the F1 score for the NER model. In another effort, Word2Vec was used as the

embedding generator, and while increasing the size of the unlabeled corpus did improve

18

the embeddings, the improved embeddings failed to improve the NER performance

(Siencnik, 2015).

Assuming an annotated corpus is obtained, there is still the decision on the best

method to use. NER models can be built with various ANN architectures. A study

applying NER to legal entities found that bidirectional LSTMs (bi-LSTM) out performed

conditional random field (CRF) models in terms of F1 score (Leitner, Rehm, & Moreno-

Schneider, 2019).

Applying NLP to contracts is not a new endeavor. In fact, at the Conference on

Data Science and Machine Learning Applications on May 4th, 2020, the use of NLP on

contracts was discussed (Kim, Lee, Lee, & Lee, 2020). The specific application discussed

was predicting the costs associated with engineering design. In another study, insurance

policies/contracts content was automatically analyzed and tagged to automate the process

of finding relevant contracts (Zhang, Sun, & Ji, 2019).

Application of NER on contracts has become a commercial venture. A company

called Skyl.AI helps organizations do many kinds of ML, including NER (Named Entity

Recognition, 2020). Specifically, it has helped insurance companies and real estate

companies do contract content analysis. Google is also involved; their cloud

environments offer NLP, to include NER (Natural Language, 2020). They offer generic

entity extraction as well as domain specific entity extraction. Unfortunately, both options

require a labeled corpus for domain specific entity extraction. They do provide tools to

assist with labeling, but the labor burden is still on the customer.

19

Preparation Steps

Source.

 Approximately four million contracts were loaded onto one of the Department of

Defense’s (DoD) high power computers (HPCs). The HPC provided a secure

environment to host the protected data. It also possesses the resources to effectively work

with large data sets. In addition, the HPCs are partially funded, allowing any DoD

organization to use them for free to a certain extent.

 The original contracts consisted of PDFs, scanned images, and word documents.

In addition to the type of file, there were inconsistent layouts, tags, and other aspects of

the documents. The Data Analytics Resource Team (DART) converted them all to plain

text files.

Access.

 There are two methods primarily used to access the data. The first utilizes a

program optimized by the HPC resource team called iLauncher (iLauncher v1.10

Downloads, 2020). This method provides access to Python, a virtual desktop, and a few

other useful tools, all within the user’s workspace. It is the simplest way to begin an HPC

session. The second method can be completed on its own but is usually done proceeding

the first method to provide additional capabilities. It utilizes Putty, a secure shell (SSH)

client, to develop a secure connection directly to the server (Download Putty, 2020). This

connection allows access to any directory the user is authorized and gives the ability to

execute Linux commands. The combination of these methods was used for this project.

Putty was used to copy documents to the user’s workspace where they could be accessed

by iLauncher’s Python instance.

20

Environment.

 To utilize Python programming on the HPC several unique packages are needed.

Python utilizes too many packages to have all of them available initially. Instead, they are

downloaded and installed as needed. To host the installed packages a custom

environment must be created, this prevents the standard environment becoming

overwhelmed with mostly unused packages. The server installation of Jupyter Notebook

has a conda (as in Anaconda) module which facilitates simple environment management.

From this tool environments can be created, duplicated, and deleted. This tool also allows

a list of known packages to be added to an environment. For packages not known to the

environment manager, a script can be run within a Jupyter Notebook to download and

install the necessary packages.

Instance.

 The instance on which the development environment is built is one of the HPC

standard user instances. It accesses 24 cores and 126 gigabytes of virtual memory.

Processes are executed with standard priority, a mid-level provision.

21

III. Methodology

Chapter Overview

This chapter details the processes employed to achieve the goal of determining

part availability. Each process is explored in depth in the same order in which it is

utilized, displayed in Figure 11. The methodology is conducted on a sample of contracts

for the study, however, the tools developed could be applied to the entire data set.

Figure 11. Flowchart of Methodology

First, part contracts are found using pattern matching. Then NER models are

applied to the contract text to identify date and organization entities. Those entities are

then fed to classification models to determine which entities are relevant for the study.

Any information not acquired through this method is located with text mining. While

contract information is collected, part information is also gathered. Once both portions

22

are complete their products are combined. This useful combination is ultimately

displayed in a Gantt chart for ease of understanding.

A Gannt chart represents time on the horizontal axis and different items on the

vertical axis. The period of time relevant to each item is represented on the graph by a

horizontal bar. This allows quick determination of when an item begins and ends, as well

as any time segments during which items overlap. An example Gantt chart is shown in

Figure 12.

Figure 12. Example Gantt Chart (Gantt Chart, 2021)

Datasets

To develop and validate the methodology a sample from the contract database is

used. This sample contains approximately 1000 of the 4 million contracts. Two additional

samples are used to examine the success of applying the approach to new data. These

samples are provided by the DART team from extracts of their on-going work. They are

referred to as the initial data set, first test set, and second test set.

23

The initial data set contains 999 contracts. The contracts range from 2 to 149

pages, averaging 8.6 pages. A histogram of the number of pages is in Figure 13. The first

test set contains 1166 contracts, and the second text set contains another 999 contracts.

The data sets are compared in Table 1 below.

Figure 13. Histogram of Contract Page Counts

Table 1. Datasets Summarized

 Initial Data Set First Test Set Second Test Set

Number of Contracts 999 1166 999

Min # Pages 2 1 1

Average # Pages 8.6 9.7 7.6

Max # Pages 149 205 134

Part Contract Identification

 To locate part-buy contracts within the sample, an approach known as Regular

Expression is used. Each part has a national stock number (NSN). This NSN is always in

24

the format ####-##-###-####. Each document’s text is searched for any characters that

match this pattern. An example of a found NSN is in Figure 14.

Figure 14. Example of a Found NSN

Contract Information Extraction

 With a set of part-buy contracts identified, named entity recognition is used to

determine each contract’s originating organization, supplying organization, origination

date, and expiration date.

 To determine the entities in each document, SpaCy’s large English model is used.

This umbrella model contains an NER model, an embedding model, and several others.

The NER model identifies several entity types including organization, dates, and money.

To utilize any of the SpaCy models, a document must first be converted into a SpaCy

object. Once completed, the NER model is applied to return entities of a desired type.

The result is a long list of suspected entities. However, since this is a predictive model,

not all entities are valid. To identify the useful entities within this list, another model is

applied.

25

 Evaluating the relevancy of an entity is accomplished with a binary classification

model. To construct a classification model a training set containing features and

responses must be provided. While the words that represent the entity could provide a

feature set, they are unlikely to provide enough information to determine relevancy.

Instead, the entity plus several words around it forms the feature set. This sentence

fragment provides enough information for decision making.

 Each word in the sentence fragment is converted to a numeric representation, here

forth referred to as an embedding vector, by an embedding model. For this study, the

embedding model delivered with the large, English SpaCy model is used. Once each

word is converted to an embedding vector, the vectors are averaged together to produce a

single vector. This single vector represents the sentence fragment. Each element of the

vector serves as a feature.

Currently there is not an automatic method to classify, nor an existing classified

data set. As such, a subset of sentence fragments and their corresponding entities is

manually evaluated to be “relevant” or “not relevant.” This provides the data set

necessary to create the classification model.

Before any modeling efforts begin, a portion of the classified data set is set aside

for testing. This sequestered test data is later used for an impartial evaluation of the

developed models. A 20% test/train split is used. The practice of using 20% for the split

is based on the Pareto Principle and is widely used as a starting point (Detective, 2020).

 The resulting training set is not balanced since most entities are irrelevant.

Imbalanced classes may create inappropriate, biased classification models. To mitigate

this a corrective sampling technique called SMOTE is applied. SMOTE stands for

26

Synthetic Minority Oversampling Technique and belongs to the Imbalanced-learn python

package (Lemaître, Nogueira, & Aridas, 2017). It over-samples small classes and can

under samples large classes to create a balanced ensemble. The result is a much larger,

balanced training set which maintains the characteristics of the original data.

 With a balanced training set, classification methods are examined. There are

many binary classification methods. As such, instead of examining only a few, 30 of the

most popular can be evaluated using a python package called lazypredict (Pandala, 2020).

Lazypredict applies models with default settings on a sample set. The results identify

which modeling techniques are likely capable of producing the best results. From these

results, a final modeling technique can be selected, tuned, and trained.

 Named entity recognition in combination with classification modeling produces

meaningful extracts from the documents. This approach returns a single entity type. To

return each entity type, the entire approach must be applied over and over until all

instances are accounted for. This requires manual data classification and model

evaluation for each repetition.

For information of interest in which the previous method fails, text mining

techniques are used instead. These methods are typically based on a series of rules that

look for patterns or exact matches within a document. Using these methods is not ideal

which is why NER is applied first. The rules employed work well for observed cases but

almost never apply well to others. This results in a rigid model, unsuited to different style

documents.

Examining the list of organizations (“ORG” entities) found, it rarely contains the

originating organization. This is likely due to the unique names of the originating

27

organizations, such as 88th ABW, which the NER model has not seen before. As such,

using NER for this goal is not advised, instead text mining is used.

Part Information Extraction

 Beyond the information determined by NER methods, other aspects of the

contracts are desired such as part name. Part information is obtained from

https://www.iso-group.com/. A specific part is located by adjusting the web address to

include the NSN, such as https://www.iso-group.com/NSN/3830-01-352-6260. Each

NSN page utilizes an identical layout, which can be seen in Figure 15. With the use of a

popular web scraping tool called Beautiful Soup, this strict layout is leveraged to

successfully extract information from the webpage (Richardson, 2020). Beautiful Soup is

a powerful python library which handles webpage encoding and parsing. It also provides

several functions that assist users in quickly and efficiently manipulating webpages.

Figure 15. Part Webpage Example

https://www.iso-group.com/

28

Part Availability

 With relevant information extracted from each contract, analysis can be

performed. One of the primary items of interest is part availability.

The first concern of part availability is if a part is available in current supplies.

There are databases that manage supplies where this can be determined. If a supply is

available, it can be sourced. If a supply is not available, the next concern becomes are

there any contracts that can be used to produce more supplies.

The contracts can be searched for a specific part however there could be many

contracts for a single part. Once contracts are identified they must still be examined to

determine if they are currently valid. To alleviate this issue, a Gantt Chart can be created

to track the periods in which a part has an active contract. With this tool, a user can

quickly determine if a part is covered, how long until a part contract expires, or which

contract covers the part. To make the most use of this tool, it could be used to determine

which parts are currently covered by an active contract but soon will not be. This creates

a focus list for future contract efforts to ensure part availability.

Summary

Accessing contract data is not a straightforward affair. The data is sensitive which

requires it be housed in a secure environment. The HPC provides such an environment,

but the server architecture of the HPC evokes additional effort. Specific access must be

granted, unique tools utilized, and additional coding implemented to work on a server.

Once access to the contracts is established in a useful coding environment, the main

effort can begin.

29

Using multiple techniques, important information can be extracted from a

contract. NER models in combination with classification models can be used to

determine important characteristics such as the organization supplying the contract as

well as the date the contract expires. Some important features require more rudimentary

techniques, such as text extraction following a set of rules. Methods such as this can be

used to determine the organization that generated the contract and other features that do

not perform well with other methods. In addition to extraction, some features can be used

to retrieve additional information. One such example is using the part number (extracted

using a simple pattern locator) with robust webpage scraping tools to search the internet

for additional information about the part. This new information can then be added to the

contract’s summary.

Information is only part of the process, it must be leveraged to provide utility.

Using elements of the extraction such as part number and contract end date, a Gantt Chart

can be created. This simple tool allows quick discovery of parts with active or soon to be

ending contracts.

30

IV. Results and Analysis

Chapter Overview

This chapter details the results of implementing the methodology. Application to

three sample sets is presented and analyzed.

Initial Results

This section details the results of applying the methodology on the initial data set.

Using Regular Expression, 301 of the 999 contracts from the initial data set are identified

as part contracts. These 301 contracts are used for the remainder of this section.

To facilitate NER, each contract is converted to a SpaCy object. This process is

nearly instantaneous, taking less than 0.01 seconds per contract. The entities of interest

for NER are the organization fulfilling the contract, the date the contract became

effective, and the date the contract expired. The supplying organizations is found by

using the “organization” SpaCy NER model. Likewise, the effective date and end date

are identified by the “date” model. The immediate benefit of this is that only two models

are run on the documents. Each model has a unique application time, summarized in

Table 2. Table 2 also shows the number of entities found.

Table 2. NER Model Results

 Organization Entities Date Entities

Average Run Time Per Document 0.27 seconds 0.57 seconds

Average Number of Entities Found Per Document 118.8 47.6

The output from the “organization” NER model contains many of the supplying

organizations. With this success, a subset of 10 documents is collected. Each document is

manually examined to determine the supplying organization. Once identified, the

31

supplying organization is located in the list of entities returned for the document and

classified as “relevant”; all other returned entities are classified as “irrelevant”. This

produces a classified data set with 301 irrelevant entities and 17 relevant entities. Such a

manual process takes time and skill to be reliable; for this application it took roughly an

hour to complete.

Utilizing SMOTE, a final data set of 927 irrelevant entities and 927 relevant

entities is created. This step corrects the imbalanced classes. To create the test set, 20% of

the data (371 samples) is set aside. The other 80% (1483 samples) is passed to

LazyPredict for classification model determination. The LaztPredict functions takes

approximately 12 seconds to execute. The results of the LazyPredict application are

below in Table 3.

32

Table 3. LazyPredict Output

Table 3 shows the algorithm used, the time taken to generate a model, and the

success of that model in the form of its F1 score. The higher the F1 score the better the

model performs as a classifier, which is why the results are arranged in descending order

by this statistic. The highest F1 score is achieved with the adaptive boost algorithm,

however, it took over 3 seconds to run, more than double the next longest application and

far longer than almost every other algorithm. For this reason, it is not considered a good

33

option. The next highest F1 score is the random forest algorithm. There are no apparent

issues with this option, so it is selected as the best option to proceed with.

A random forest model is tuned by adjusting one of its primary hyperparameters,

“maximum tree depth.” In addition, 10-fold cross validation is used to ensure a more

biased, lower variance model. Seven values for the hyperparameter are evaluated: 1, 2, 3,

5, 10, 25, and 50. Figure 16 shows the results. Ten produced the highest F1 Score of

0.998 on the validation data. Applying the model with a max depth of 10 to the test data

yields an F1 Score of 0.997. This high rate of success is considered appropriate to apply

the model further.

Figure 16. Random Forest Max Depths’ F1 Scores

This classification model is applied to the list of organizations returned by the

NER model for each document. Of the 301 documents, 122 successfully have their

34

supplying organization found by applying the two models in sequence. The entire process

to determine supplying organization is summarized in Figure 17.

Figure 17. Process to Extract Information with NER and Classification Modeling

The process in Figure 17 is also used to determine the effective date and end date

for each contract. Table 4 and shows the LazyPredict outputs for each process. For the

contract effective date, logistic regression is one of the most promising classification

models. The only hyperparameter to tune in the logistic regression algorithm is the

solver. Three of the most common solvers are explored: liblinear, Limited-memory

Broyden–Fletcher–Goldfarb–Shanno algorithm (LBFGS), and newton-conjugate gradient

(newton-cg) (Hale, 2019). Liblinear improves one variable at a time, seeking an optimal

solution (minimum cost/loss) by looping through the next most promising variable.

LBFGS uses gradient evaluation to estimate the update needed to minimize the cost.

Newton-cg computes the second derivative of the cost function to determine the update

35

needed to minimize the cost. Figure 18 shows the F1 score for a model created with each

solver, indicating liblinear as the best solver.

For the contract end date, SVM is likely the most effective classification method.

SVM has two hyperparameters to tune, the kernel and C. The two kernels explored are

linear and radial basis function (RBF). It is best practice to check if data is linear, which

leads to using the linear kernel (Zoltan, 2018). RBF is a general kernel that is commonly

used when nothing is known about the data (SVM Kernel Functions, 2021). The values

for C explored are based on 8 log scale steps from 0.01 to 100, resulting in 8 values to

explore. It is difficult to predict what level of regularization will be needed, thus very

small and very large values of C must be explored. To efficiently move through such a

vast range, log steps are ideal. For this instance, 8 steps break up the test space well.

Figure 19 shows the F1 score for each hyperparameter combination. The linear kernel

with a C of 7.2 performed the best.

36

Table 4. LazyPredict Output for Contract Effective Date

37

Table 5. LazyPredict Output for Contract End Date

38

Figure 18. F1 Scores for Logistic Regression Hyperparameter Settings

Figure 19. F1 Scores for Support Vector Machine Hyperparameter Settings

39

With those classification models successfully developed, three items of interest

are covered. A summary of the three entity recognition efforts is in Table 6. Now focus

can shift to resolving the other items of interest.

Table 6. Results of NER with Classification

 Supplying
Organization

Effective Date End Date

Number of Documents in
Manually Classified Set

15 10 10

Number of Relevant Entities
Found

17 9 22

Number of Irrelevant Entities 927 211 214

Number of Samples after SMOTE 1854 422 428

LazyPredict Best Classifier Random Forest Logistic Regression
Support
Vector

Machine

LazyPredict F1 Score 1.00 1.00 1.00

Tuned Hyperparameter Max depth = 10 Solver = liblinear
Kernel = linear

C = 7.2

Tuned Validation F1 Score 0.998 0.97 0.991

Tuned Test F1 Score 0.997 0.98 0.988

Number of Documents with
Relevant Entities Found

122 181 96

Percent of Documents
Successfully Extracted

40.5% 60.1% 31.9%

 In addition to information about the contract, information about the part(s) in each

contract is also desired. While many contracts contain only one NSN, several have more;

in some cases, up to 312 in a single contract. In instances where there are multiple NSNs,

usually some NSNs are repeated. To eliminate repetitive, useless information retrievals,

repeated NSNs in a contract are eliminated. Once refined, the list of NSNs in a contract is

used to determine part information.

A website, https://www.iso-group.com, provides part information. Each part’s

webpage contains the NSN in the URL. As such, modifying the URL to contain the NSN

40

of interest successfully loads that NSN’s webpage. Once loaded, information is scraped

using Python’s Beautiful Soup package. The name of the part identified by the NSN as

well as the category to which the part belongs is obtained. Repeating this process for each

of the 459 parts successfully gathers information on 457 of them. As a result, every one

of the 301 parts contracts has some information added.

To obtain the contract originating organization, text mining is implemented.

However, before applying this approach, an issue must be resolved. Many contracts

appear to be similar but have different raw text layouts due to how they were extracted.

To correct this, the original PDF of the contract is converted into raw text using the

PyPDF2 package (Phaseit Inc., 2016). This new raw text serves as the medium for the

current approach.

To employ text mining, specific words which precede the originating organization

are identified. From these, if an end word is located within 100 characters, a nearly

perfect extract occurs by isolating the string between the start and end word and splicing

based on spaces in the string. However, in the absence of an end word, the 100-character

string is stripped where excessive spaces are found, also producing a useful extract. This

approach provides consistent results. Of the 301 contracts, 275 have their originating

organization successfully identified.

All the information collected is maintained in separate files. This is primarily due

to the need to keep processes separate for ease of implementation and to protect the

outputs. To make a useful, final product, the files must be combined. The resulting

product contains a list of contracts, their server location, the parts they contain (including

41

NSN, name, and category), originating organization, supplying organization, effective

date, and end date. Of the 301 contracts, 30 have all fields successfully populated.

Contracts with effective date and end date populated are used to determine part

availability. For each part, all contracts containing the part with both dates populated are

collected. The dates are then combined to determine periods of contract coverage. The

periods of coverage for each part are then plotted on a timeline, creating a Gantt chart. An

example Gantt chart covering five parts is in Figure 20. Part 7540-01-152-8070 is shown

to be covered by multiple contracts; each change in color represents a new contract.

While different contracts provide access to the part, there is no break in access; where

one contract ends, another picks up. From this example it is easy to determine when a

contract is open for a particular part.

Figure 20. Example Chart of Parts Covered by Contracts

42

Additional Results

 With the successful implementation of the methodology on a single data set,

efforts are taken to apply the product to additional data sets. Each coded portion and its

resulting product are combined into a single batch file. This allows the technique to be

easily applied to any similar data set. Two additional data sets are acquired for testing.

The results of all three applications are summarized in Table 7.

Table 7. Results from Multiple Runs

Initial Data Set First Test Set Second Test Set

Number of Contracts 999 1166 999
Found Part Contracts 301 592 80

(Time to run) 27 sec 16 sec 16 sec
Found Originating

Organization
275 559 55

(Time to run) 6 sec 13 sec 6 sec
Found Supplying

Organization
122 153 4

(Time to run) 9 min, 34 sec 26 min, 36 sec 2 min, 18 sec
Found Effective Date 181 157 9

(Time to run) 5 min, 32 sec 14 min, 40 sec 1 min, 3 sec
Found End Date 96 155 5

(Time to run) 5 min, 35 sec 14 min, 31 sec 1 min, 3 sec
Parts (Information

Found)
457 381 8

(Time to run) 6 min, 49 sec 3 min, 41 sec 6 sec
Contracts with All

Features Found
30 19 0

Contracts Sufficient for
Gantt Chart

62 57 2

Parts in Gantt Chart 323 57 1
(Time to run) 9 sec 5 sec 8 sec

Total Time 28 min, 28 sec 49 min, 12 sec 5 min, 2 sec

43

Analysis

 The application of the methodology is successful; however, the desired outcome

is not achieved. Though the process did provide several important insights.

 Application success is based on the overall effectiveness of each portion of the

process. The NSN search discovers almost a third of the contracts are part contracts,

enough to create a meaningful set. To determine specific details of those contracts a

combination of NER and classification are used. SpaCy NER models are able to locate

many various entities within each contract and classification models determine which of

those entities are relevant. About a third of the desired details are found. For other details,

text mining techniques are applied. This approach finds nearly all the desired details. In

addition to contract details, part details are also needed. Nearly all desired details are

successfully obtained using web scraping methods. From these efforts a Gantt chart is

successfully created.

 While each individual portion is successful, the project as a whole is not. Due to

the lack of overlapping success, only 10% of the contracts have every detail of interest

successfully extracted. The lack of overlapping success also means only 21% of the

contracts have both an effective date and end date identified. With such few contracts

viable for the Gantt chart, only 71% of the parts are represented at all.

 Using pattern recognition results in a fast, effective method to identify part

contracts. It takes less than 0.03 seconds to determine if a contract contains an NSN.

While some contracts are likely missed, most are probably found.

 Each contract detail acquired by an NER model combined with a classification

model takes about 1.37 seconds per document to acquire. Since the NER models only

44

take 0.42 seconds to identify entities for a document, most of the run-time is due to

applying the classification model. Also, the NER models generate a large number of

entities, creating a sparse data space for the classification models to perform in. While the

tuned classification models are highly effective on the training data, the many irrelevant

entities in the true data makes locating relevant entities difficult, resulting in poor

performance.

Alternatively, each detail acquired by text mining only takes 0.02 seconds per

contract. In addition, text mining is also more successful at acquiring each detail. Due to

the higher success rate and quicker execution time, for this dataset, text mining

techniques are likely the best choice. However, this method is highly unlikely to apply

well to a different dataset.

 Retrieving part information from www.iso-group.com is fast, taking only 0.89

seconds per part. However, since there are 1.63 parts per contract on average, it takes

about 1.5 seconds per contract to acquire part information this way.

 The Gantt chart executes quickly and provides useful information in an easy-to-

understand format. Even when only one part is plotted, as in the case of the third data set,

there is still value. Figure 21 shows how the single part is covered by two contracts and

each contract’s covered date range.

http://www.iso-group.com/

45

Figure 21. Notional Gantt Chart Product

 Unfortunately, the overall execution time is long. The entire process averages 5.7

seconds per contract. If this method were applied unaltered to all 4 million contracts, it

would take approximately 263 days to run. However, the process was developed to

execute sequentially on a single core. Taking advantage of the other 23 cores would

reduce runtime to 11 days.

In addition to the contract evaluation time, there is the process development time.

The manual classification of entities takes about an hour, applying LazyPredict and

tuning the results takes an additional 5-10 minutes. Thankfully, this process is only

completed once per item of interest. That said, if this process was applied to each dataset

in an effort to improve accuracy, it would add considerable time.

The NER models run very quickly, averaging only 0.42 seconds per document. A

custom NER could obtain many of the contract details more quickly, bringing down the

overall execution time to only 3.8 seconds. This would reduce execution time by a third

and likely be more accurate.

46

Summary

The individual steps of the process are successfully executed, and results

compiled. However, while each standalone portion performs well enough, there is very

little overlap in successes. In addition, some steps take considerable time to execute. As a

result of these findings, this method presented is not practical. An alternative method

such as a custom built NER is likely more appropriate.

47

V. Conclusions and Recommendations

Chapter Overview

The partial success and failure of the approach presented in this paper leads to

several conclusions. These conclusions are discussed in detail within this chapter.

Conclusions of Research

Supercomputing and machine learning provide access to information at

unparalleled levels. Evaluating hundreds of documents for specific pieces of information

would take a person weeks to accomplish. Automating the task allows it to be

accomplished in half an hour. Furthermore, once a strategy is developed, it can be applied

to millions of documents in less than a year, a feat unimaginable for its human

counterpart. Though the process is not without its complications.

Machine learning in the form of NER identifies information within a text based

on its use, allowing things such as meaningful dates and organizations to be found

quickly and accurately. However, existing NER models return all dates and all

organizations. If these models are to be useful, additional refinement of the results is

needed. Classification models can be used to provide this refinement. This combination

of NER models with classification models is also very adaptable to new texts. This is

important since all contracts do not follow the same format.

Unfortunately, the performance of this technique was not sufficient to consider it

a viable option. The process took a considerable amount time to run and the results were

less than satisfactory.

48

Where NER failed, text mining techniques were used. They performed very well.

However, text mining typically only works in similar applications and fails if formats

change. As such, despite its success, it is not a recommended approach either.

While the NER models used were not successful, the speed at which they can be

applied and return significant information was noteworthy. If custom NER models were

built that only returned the desired entities, the classification step, which contributed

largely to the failure of the method, could be eliminated. These custom NER models

would require a significant investment of time or money to develop.

One part of the process that was successful was extracting part information. With

the methods outlined in this paper, a useful repository of parts could be built, identifying

when parts are available under contract, who supplies them, and who owns the contract.

This information could be used in many beneficial ways, but possibly most important, it

could be used to determine if a new contract is needed to maintain or establish access to

parts.

Recommendations

To improve upon the approach taken within this paper, a custom NER should be

built. This could be used in place of the existing NER models combined with

classification models to produce more accurate result, faster. To develop a custom NER,

a labeled corpus must be produced. While there are tools to assist this process, it is still

manual and requires thousands of contracts be labeled. Once produced, a company such

as Google or Skyl.AI could assist in building and applying the custom NER. With the

expertise gained from this paper, an individual would also likely be able to create a

reasonable model and apply it.

49

If there was not enough time to produce an entire corpus, the approach taken in

this paper could likely be improved in less time. That time would be spent increasing the

number of labeled entities on which the classification models are built. Increasing the

number of contracts labeled should improve the applicability of the prebuilt NER and

improve the overall success rate.

A unique classification algorithm was used for each classification model

developed. However, the initial results for each model indicated extra trees might be a

good approach. It might be possible to develop a single classification model using the

extra trees algorithm. Using a single model could have several advantages, the most

immediate benefit being triple the number of training samples.

Furthermore, while not the most difficult part of the process, the collection of part

info does take time. Since this information does not change regularly, if a list of parts was

obtained, a repository could be built. The benefit of this is a lengthy internet search

would not be required each time a part is identified in a contract. The repository could be

searched, and the part information quickly acquired.

An additional advantage to using an HPC is the ability to increase computing

power. The process utilized for this paper utilized a single core with a standard priority,

however the HPC has 592 cores (Talon User Guide, 2020). To use multiple cores,

parallel processing would need to be implemented. If all 384 cores in the project node

were utilized, the project could run in under 17 hours.

Besides parallel processing, multi-threading would allow multiple, simultaneous

internet searches for part information. Implementing this could greatly reduce the time

taken to gather part information. Even without consuming all the cores, employing both

50

parallel processing and multi-threading could result in a process that could be run on all

the contracts over a weekend.

Significance of Research

The team, DART, working to provide significance from the effort to collect

AFSC contracts received pertinent guidance with regards to the important goal of

determining contract expirations. This goal can be achieved to a certain degree using the

process in this paper. However, to meaningfully determine expirations for all contracts,

time is needed to develop a corpus or improve the classification data sets. No matter the

approach, the desired goal of determining part availability is attainable. More

importantly, from this determination, access to parts can be assured.

Summary

Contract information can be successfully extracted using machine learning and

text mining techniques. However, to provide meaningful outputs a well-developed corpus

is needed. In lieu of this corpus, a combination of several methods can be applied to

generate a moderately successful model. Once contract information is extracted, it can be

used to develop useful tools such as a listing of part availability.

51

Appendix A

Package Name Version

Package Name Version

aiohttp 3.6.3

nltk 3.5

argon2-cffi 20.1.0

notebook 6.1.4

async-generator 1.1

numpy 1.19.1

async-timeout 3.0.1

packaging 20.4

attrs 20.2.0

pandas 1.1.3

backcall 0.2.0

pandocfilters 1.4.3

beautifulsoup4 4.9.3

parso 0.7.0

bleach 3.2.1

pexpect 4.8.0

blis 0.4.1

pickleshare 0.7.5

boto3 1.9.66

pillow 8.1.0

boto 2.49.0

pip 20.2.3

botocore 1.12.67

plac 0.9.6

cachetools 4.1.1

plotly 4.12.0

catalogue 1.0.0

pluggy 0.13.1

certifi 2020.6.20

preshed 3.0.2

cffi 1.14.3

prometheus-
client

0.8.0

chardet 3.0.4

prompt-toolkit 3.0.8

click 7.1.2

protobuf 3.13.0

cryptography 3.1.1

psutil 5.8.0

cycler 0.10.0

ptyprocess 0.6.0

cymem 2.0.3

py 1.9.0

decorator 4.4.2

pyasn1-modules 0.2.8

defusedxml 0.6.0

pyasn1 0.4.8

docutils 0.16

pycparser 2.2

en-core-web-lg 2.3.1

pygments 2.7.1

en-core-web-sm 2.3.1

pyopenssl 19.1.0

entrypoints 0.3

pyparsing 2.4.7

gensim 3.8.0

pypdf2 1.26.0

google-api-core 1.22.2

pyrsistent 0.17.3

google-auth 1.22.1

pysocks 1.7.1

google-cloud-core 1.4.3

pytest 6.1.1

google-cloud-storage 1.31.0

python-dateutil 2.8.1

google-crc32c 1.0.0

pytz 2020.1

google-resumable-media 1.1.0

pyzmq 19.0.2

googleapis-common-
protos

1.52.0

regex 2020.10.11

idna 2.1

requests 2.24.0

imbalanced-learn 0.7.0

retrying 1.3.3

importlib-metadata 2.0.0

rsa 4.6

52

iniconfig 1.1.1

s3transfer 0.1.13

ipykernel 5.3.4

scikit-learn 0.23.2

ipython-genutils 0.2.0

scipy 1.5.2

ipython 7.18.1

selenium 3.141.0

jedi 0.17.2

send2trash 1.5.0

jinja2 2.11.2

setuptools 50.3.0.post20201006

jmespath 0.10.0

six 1.15.0

joblib 0.17.0

smart-open 3.0.0

jsonschema 3.0.2

soupsieve 2.0.1

jupyter-client 6.1.7

spacy 2.3.2

jupyter-core 4.6.3

srsly 1.0.2

jupyterlab-pygments 0.1.2

terminado 0.9.1

kiwisolver 1.3.1

testpath 0.4.4

lazypredict 0.2.7

thinc 7.4.1

lightgbm 3.0.0

threadpoolctl 2.1.0

lxml 4.5.2

toml 0.10.1

markupsafe 1.1.1

tornado 6.0.4

matplotlib 3.3.3

tqdm 4.50.2

mistune 0.8.4

traitlets 5.0.4

mkl-fft 1.2.0

urllib3 1.24.3

mkl-random 1.1.1

wasabi 0.8.0

mkl-service 2.3.0

wcwidth 0.2.5

multidict 4.7.6

webencodings 0.5.1

murmurhash 1.0.2

wheel 0.35.1

nbclient 0.5.1

xgboost 1.2.1

nbconvert 6.0.7

xlrd 1.2.0

nbformat 5.0.8

yarl 1.6.2

nest-asyncio 1.4.2

zipp 3.3.1

53

Bibliography

Agrawal, S. (2019, february 10). what the heck is word embedding. Retrieved from

towards data science: https://towardsdatascience.com/what-the-heck-is-word-

embedding-b30f67f01c81

Ali, Z. (2019, November 20). Simple Tutorial on Word Embedding and Word2Vec.

Retrieved from Medium: https://medium.com/@zafaralibagh6/simple-tutorial-on-

word-embedding-and-word2vec-

43d477624b6d#id_token=eyJhbGciOiJSUzI1NiIsImtpZCI6IjAzYjJkMjJjMmZlY

2Y4NzNlZDE5ZTViOGNmNzA0YWZiN2UyZWQ0YmUiLCJ0eXAiOiJKV1Qi

fQ.eyJpc3MiOiJodHRwczovL2FjY291bnRzLmdvb2dsZS5jb20iL

Ariza-Lopez, F. J., Rodriguez-Avi, J., & Alba-Fernandez, M. V. (2018). Complete

Control of an Observed Confusion Matrix. IGARSS 2018 - 2018 IEEE

International Geoscience and Remote Sensing Symposium, (pp. 1222-1225).

Avola, D., Cinque, L., Foresti, G. L., Lamacchia, F., Marini, M. R., Perini, L., . . .

Telesca, G. (2019). A Shape Comparison Reinforcement Method Based on

Feature Extractors and F1-Score. 2019 IEEE International Conference on

Systems, Man and Cybernetics (SMC), (pp. 2155-2159).

Badji, I. (2018). Legal entity extraction with NERSystems.

Bessmertny, I. A., Platonov, A. V., Poleschuk, E. A., & Pengyu, M. (2016). Syntactic

text analysis without a dictionary. 2016 IEEE 10th International Conference on

Application of Information and Communication Technologies (AICT), (pp. 1-3).

Bisgin, H., Kilinc, O., Ugur, A., Xu, X., & Tuzcu, V. (2011, 1). Diagnosis of long QT

syndrome via support vector machines classification. J. Biomedical Science and

Engineering, 444036, 264-271. doi:10.4236/jbise.2011.44036

Bulbul, H. I., & Unsal, Ö. (2011). Comparison of Classification Techniques used in

Machine Learning as Applied on Vocational Guidance Data. 2011 10th

International Conference on Machine Learning and Applications and Workshops,

2, pp. 298-301.

Chandrasekaran, B., Josephson, J. R., & Benjamins, V. R. (1999). What are ontologies,

and why do we need them? IEEE Intelligent Systems and their Applications, 14,

20-26. doi:10.1109/5254.747902

54

Detective, D. (2020, Jan 31). Why We Use an 80-20 Split. Retrieved from Toward Data

Science: https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-

training-and-test-data-plus-an-alternative-method-oh-yes-edc77e96295d

Download Putty. (2020). Retrieved from Putty: https://www.putty.org/

Farhadloo, M., & Rolland, E. (2013). Multi-Class Sentiment Analysis with Clustering

and Score Representation. 2013 IEEE 13th International Conference on Data

Mining Workshops, (pp. 904-912).

Gandhi, R. (2018, June 7). Support Vector Machine — Introduction to Machine Learning

Algorithms. Retrieved from Towards Data Science:

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-

learning-algorithms-934a444fca47

Gantt Chart. (2021). Retrieved from ProductPlan:

https://www.productplan.com/glossary/gantt-chart/

Geron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow.

Boston: O'Reilly.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Hale, J. (2019, December 20). Don't Sweat the Solver Stuff. Retrieved from Towards Data

Science: https://towardsdatascience.com/dont-sweat-the-solver-stuff-

aea7cddc3451

Halevy, A., Norvig, P., & Pereira, F. (2009). The Unreasonable Effectiveness of Data.

IEEE Intelligent Systems, 24, 8-12.

Han, P., Shen, S., Wang, D., & Liu, Y. (2012). The influence of word normalization in

English document clustering. 2012 IEEE International Conference on Computer

Science and Automation Engineering (CSAE), 2, pp. 116-120.

Honnibal, M. (2020). Training spaCy’s Statistical Models. Retrieved from spaCy:

https://spacy.io/usage/training

iLauncher v1.10 Downloads. (2020, August 10). Retrieved from HPC Training:

https://training.hpc.mil/mod/page/view.php?id=3651

55

Isahara, H. (2007). Resource-based Natural Language Processing. 2007 International

Conference on Natural Language Processing and Knowledge Engineering, (pp.

11-12).

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2015). An Introduction to Statistical

Learning. New York: Springer.

Jiang, X., & Tan, A.-H. (2010, January). CRCTOL: A semantic‐based domain ontology

learning system. JASIST, 61(1), 150-168.

Kim, Y., Lee, J., Lee, E.-B., & Lee, J.-H. (2020). Application of Natural Language

Processing (NLP) and Text-Mining of Big-Data to Engineering-Procurement-

Construction (EPC) Bid and Contract Documents. Conference on Data Science

and Machine Learning Applications. Riyadh. Retrieved from

http://eds.b.ebscohost.com.afit.idm.oclc.org/eds/detail/detail?vid=5&sid=08311b7

9-350a-482d-a0f1-70b60a8e92d2%40pdc-v-

sessmgr04&bdata=JnNpdGU9ZWRzLWxpdmU%3d#AN=edseee.9044209&db=

edseee

Kutuzov, A., & Kuzmenko, E. (2019). To lemmatize or not to lemmatize: how word

normalisation affects ELMo performance in word sense disambiguation. To

lemmatize or not to lemmatize: how word normalisation affects ELMo

performance in word sense disambiguation.

Leitner, E., Rehm, G., & Moreno-Schneider, J. (2019). Fine-Grained Named Entity

Recognition in Legal Documents. In M. Acosta, P. Cudré-Mauroux, M.

Maleshkova, T. Pellegrini, H. Sack, & Y. Sure-Vetter (Ed.), Semantic Systems.

The Power of AI and Knowledge Graphs (pp. 272–287). Cham: Springer

International Publishing.

Lemaître, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A Python Toolbox

to Tackle the Curse of Imbalanced Datasets in Machine Learning. Journal of

Machine Learning Research, 18, 1-5. Retrieved from

http://jmlr.org/papers/v18/16-365

Li, H., Ma, B., & Lee, K. A. (2013). Spoken Language Recognition: From Fundamentals

to Practice. Proceedings of the IEEE, 101, 1136-1159.

Luthfi, A., Distiawan, B., & Manurung, R. (2014). Building an Indonesian named entity

recognizer using Wikipedia and DBPedia. 2014 International Conference on

Asian Language Processing (IALP), (pp. 19-22).

56

Marinov, M., & Efremov, A. (2019). Representing Character Sequences as Sets : A

simple and intuitive string encoding algorithm for NLP data cleaning. 2019 IEEE

International Conference on Advanced Scientific Computing (ICASC), (pp. 1-6).

Menezes, D., Milidiú, R., & Savarese, P. (2019). Building a Massive Corpus for Named

Entity Recognition Using Free Open Data Sources. 2019 8th Brazilian

Conference on Intelligent Systems (BRACIS), (pp. 6-11).

Muthukadan, B. (2020). Retrieved from Selenium with Python: https://selenium-

python.readthedocs.io/

Named Entity Recognition. (2020). Retrieved from Skyl.AI:

https://skyl.ai/solutions/named-entity-recognition

Natural Language. (2020). Retrieved from Google Cloud:

https://cloud.google.com/natural-language

Pandala, S. R. (2020). Lazypredict. Retrieved from PyPI:

https://pypi.org/project/lazypredict/

Park, Y., & Kang, S. (2019). Natural Language Generation Using Dependency Tree

Decoding for Spoken Dialog Systems. IEEE Access, 7, 7250-7258.

Partalidou, E., Spyromitros-Xioufis, E., Doropoulos, S., Vologiannidis, S., &

Diamantaras, K. I. (2019). Design and implementation of an open source Greek

POS Tagger and Entity Recognizer using spaCy. 2019 IEEE/WIC/ACM

International Conference on Web Intelligence (WI), (pp. 337-341).

Patel, B., & Shah, D. (2013). Significance of stop word elimination in meta search

engine. 2013 International Conference on Intelligent Systems and Signal

Processing (ISSP), (pp. 52-55).

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer,

L. (2018). Deep contextualized word representations. Deep contextualized word

representations.

Phaseit Inc. (2016, May 2016). PyPDF2. Retrieved from PyPI:

https://pypi.org/project/PyPDF2/

Ray, S. (2019). A Quick Review of Machine Learning Algorithms. 2019 International

Conference on Machine Learning, Big Data, Cloud and Parallel Computing

(COMITCon), (pp. 35-39).

57

Richardson, L. (2020). Beautiful Soup 4. Retrieved from PyPi:

https://pypi.org/project/beautifulsoup4/

Salim, S. S., Ghanshyam, A. N., Ashok, D. M., Mazahir, D. B., & Thakare, B. S. (2020).

Deep LSTM-RNN with Word Embedding for Sarcasm Detection on Twitter.

2020 International Conference for Emerging Technology (INCET), (pp. 1-4).

Shokripour, R., Anvik, J., Kasirun, Z. M., & Zamani, S. (2013). Why so complicated?

Simple term filtering and weighting for location-based bug report assignment

recommendation. 2013 10th Working Conference on Mining Software

Repositories (MSR), (pp. 2-11).

Siencnik, S. K. (2015). Adapting word2vec to Named Entity Recognition. NODALIDA.

Silipo, R. (2019, October 1). From a Single Decision Tree to a Random Forest. Retrieved

from Towards Data Science: https://towardsdatascience.com/from-a-single-

decision-tree-to-a-random-forest-b9523be65147

Sotomayor, M., & Veloz, F. (2017). Thesaurus-based named entity recognition system

for detecting spatio-temporal crime events in Spanish language from Twitter.

2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), (pp. 1-5).

SVM Kernel Functions. (2021). Retrieved from Data Flair: https://data-

flair.training/blogs/svm-kernel-functions/

Talon User Guide. (2020). Retrieved from AFRL HPC:

https://afrl.hpc.mil/docs/talonUserGuide.html#sysConfig

Terry-Jack, M. (2019, May 3). NLP: Pretrained Named Entity. Retrieved from Medium:

https://medium.com/@b.terryjack/nlp-pretrained-named-entity-recognition-

7caa5cd28d7b

Wang, Y., Li, L., Wan, X., & Wang, J. (2019). Woven Fabric Defect Detection Based on

the Cascade Classifier. 2019 12th International Congress on Image and Signal

Processing, BioMedical Engineering and Informatics (CISP-BMEI), (pp. 1-5).

Williams III, C. O. (2020). Meta Learning Recommendation System for Classification.

Dayton: AFIT.

Wu, Y., Xu, J., Jiang, M., Zhang, Y., & Xu, H. (2015, Nov 5). A Study of Neural Word

Embeddings for Named Entity Recognition in Clinical Text. AMIA Annual

58

Symposium proceedings. Retrieved from

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765694/

Yiu, T. (2019, May 5). Understanding Logistic Regression. Retrieved from Towards Data

Science: https://towardsdatascience.com/understanding-logistic-regression-using-

a-simple-example-163de52ea900

Zhang, D., Wang, J., Zhao, X., & Wang, X. (2015). A Bayesian Hierarchical Model for

Comparing Average F1 Scores. 2015 IEEE International Conference on Data

Mining, (pp. 589-598).

Zhang, K., Sun, L., & Ji, F. (2019). A TOI based CNN with Location Regression for

Insurance Contract Analysis. 2019 International Joint Conference on Neural

Networks (IJCNN), (pp. 1-8).

Zhang, S., Lin, S., Gao, J. F., & Chen, J. (2019). Recognizing Small-Sample Biomedical

Named Entity Based on Contextual Domain Relevance. 2019 IEEE 3rd

Information Technology, Networking, Electronic and Automation Control

Conference (ITNEC), (pp. 1509-1516).

Zoltan, C. (2018, November 13). SVM and Kernel SVM. Retrieved from Towards Data

Science: https://towardsdatascience.com/svm-and-kernel-svm-fed02bef1200

59

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

25-03-2021
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)

SEP 2019 – March 2021

TITLE AND SUBTITLE

Contract Information Extraction Using Machine Learning

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Butcher, Zachary E., Captain, U.S. Air Force

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology

Graduate School of Engineering and Management (AFIT/EN)

2950 Hobson Way

Wright-Patterson AFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENS-MS-21-M-145

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

 Air Force Life Cycle Management Center

 1865 4th St

 Wright-Patterson Air Force Base

 OH 45433

POC: Mr. Philip Ball (Philip.ball@us.af.mil)

10. SPONSOR/MONITOR’S
ACRONYM(S)

AFMC AFLCMC/LZIA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in the

United States.

14. ABSTRACT

The Air Force Sustainment Center assisted by the Data Analytics Resource Team and the Defense

Logistics Agency collected four million contracts onto one of the Air Force Research Laboratory’s high

power computers. This thesis focuses on the effort to determine if parts are available through those

contracts. Some information is extracted using machine learning in combination with natural language

processing. Where machine learning methods are unsuccessful or inappropriate, text mining techniques,

such as pattern recognition and rules, are used. Upon completion, the information is combined into a

Gantt chart for quick evaluation. Only 21% of the contracts have their information correctly extracted

with this process. To provide an accurate depiction of availability for every part, an improvement is

needed. The likely most effective improvement is to develop a custom NER model.

15. SUBJECT TERMS

 Machine Learning, Named Entity Recognition, Natural Language Processing, High Power

Computing, Word Embedding
16. SECURITY CLASSIFICATION
OF:

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

70

19a. NAME OF RESPONSIBLE PERSON

Dr. Jeffery Weir, AFIT/ENS
a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)

(937) 255-3636 Ext 4523 (DSN 785)

(Jeffery.Weir@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Contract Information Extraction Using Machine Learning
	Recommended Citation

	tmp.1630686000.pdf.IahLV

