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Abstract

Artificial neural networks are applied to elemental assay data of microscopic, actinide

bearing particles obtained using energy dispersive x-ray spectroscopy via a scanning

electron microscope (SEM-EDS) and Electron Probe Micro Analysis (EPMA). This

technique provides a non-destructive assessment of the composition of particles that

is suitable for nuclear forensics applications because it preserves the high-value mate-

rial for subsequent feature extraction. This produces large volumes of data that are

difficult for human analysts to ingest on the timescale required by national-level de-

cision and policy makers. Consequently, it is advantageous to assess the applicability

of advanced computational techniques to this large, numerical dataset.

An Artificial Neural Network (ANN) was used to compare and group like-particles

together using a Siamese network and triplet loss function. The results were then com-

pared to more traditional machine learning techniques, including logistic regression,

linear discriminate analysis, decision tree, random forest, extra forest, and voting

classifiers.

Each sample, or collection of particles of similar origin, is labeled with a serial

code. The measure of success of each technique was the accuracy with which the

model could predict the serial code, or group like-particles together based purely

on the elemental assay of each particle observation. Using moment transformation

provided up to a 7 times increase in accuracy. Models using a binary cross-entropy

loss function showed higher accuracy when compared to a triplet loss function, but

were very dependent on the type of data used for training. Training on data collected

via EPMA gave accuracies 6 times greater than random chance, and training on data

collected via SEM-EDS gave accuracies up to 60 times greater than random chance.
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APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO ELEMENTAL

ASSAY DATA FOR NUCLEAR FORENSICS ANALYSIS

I. Introduction

1.1 Overview

There is a constant concern with countries and terrorist organizations obtaining

nuclear fuel for use in weapons. With nuclear power becoming more common it

is important to understand where fissile material could have come from and what

is implied by its presence. Particles of material obtained from a nuclear plant that

generates power can be visually similar to those obtained from a plutonium generation

facility, but utilizing the unique elemental signatures that each particle possesses can

help determine its origin. This is one of the basic concepts of nuclear forensics.

Elements and their respective isotopes are found in different relative abundances

across the world [1]. A soil sample from California, USA will have a different compo-

sition compared to a soil sample from Great Britain, UK, which will have a different

composition compared to a soil sample from Hokkaido, Japan. These soil concen-

trations are, in essence, fingerprints for the location from which they originate [2].

Further, these concentrations are not just an indication of geographical origin but

also of industrial or agricultural impacts caused by human activities. The concept of

human impacts on the environment is referred to as anthropogenic. These anthro-

pogenic impacts do not have to be large in order to be detectable. Trace elements

can be indicators of nearby chemical or nuclear processing plants [3]. It is these fin-

gerprints which enable nuclear forensics. Theoretically, if every area of the world has
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a unique elemental assay then any unknown sample can be statistically correlated to

a geographical point of origin, and if every material processing method produces a

unique elemental assay, then any unknown sample can be traced back to the type of

process that generated it.

For this research, each sample consists of a number of particles collected at the

same time from the same geographical location. The number of particle observations

is determined by how the sample is loaded into the measurement equipment and

the technique used to identify and locate particles. An automated Scanning Elec-

tron Microscope coupled with Energy Dispersive X-Ray Spectroscopy (SEM-EDS)

can extract tens of thousands of observations from a single sample, but many particle

observations may not contain the elements of interest. On the other hand, a tech-

nician can isolate a particle of interest and measure its elemental composition using

an Electron Probe Micro Analysis (EPMA). EPMA produces observations more rep-

resentative of particles of interest, but typically yields less than a hundred particle

observations. Each system measures a number of elemental features based on user

input, which can lead to more than 30 features for a single particle observation. All

of this can yield a very large amount of information, and it is not always realistic for

a human to study the data and recognize a meaningful pattern within a reasonable

amount of time. However, advanced machine learning techniques could be used to

analyze the data and find patterns much more easily, and in less time, than a human.

1.2 Motivation & Problem Statement

The various isotopes of uranium and plutonium are important factors when trying

to characterize a nuclear processing plant, but these alone are not enough to create

a unique signature. Uranium and plutonium will decay into other actinides and

spontaneously fission into lighter elements. For example, the uranium isotope U-238
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follows a decay chain which results in 17 different isotopes, all of which can be used

as a 238U signature.

There are also non-fuel elements that are important in the fabrication of nuclear

fuel. Combining the fuel and non-fuel factors can result in a comprehensive charac-

terization of a nuclear plant and its intended purposes. However, an important issue

is that these characterizations often need to be done on foreign nuclear plants and

within the restraints allowed by nuclear treaty monitoring protocols. Because of this,

there are a number of considerations that need to be addressed. First, there is never

a guarantee that a large number of samples will be collected. Second, environmental

contaminants are often intermingled with the actual sample of interest. Third, sam-

ple analysis must often be conducted in the blind without precise knowledge of the

sample origins.

The first consideration cannot be controlled for. Nuclear treaty monitoring proto-

cols do not always allow for the collection of large numbers of samples. To circumvent

this issue, nuclear analysis teams try to extract as much meaningful data as possible

from the available samples, and it is traditionally assumed that the isotopic informa-

tion will give the most useful data. The issue with this lies in how the information is

obtained.

For mass spectrometry techniques, there needs to be an isotope of interest that

an analyst is specifically looking for. First, chemical separation may need to be

performed to isolate a single, or few, elements. Whether or not chemical separation is

performed, the sample is then ionized by some means and sent through high powered

magnets to separate the isotopes based on the charge to mass ratio of the nucleus.

Depending on the size of the collected sample, it can be split and this process can

be done multiple times, but this process destroys the sample and does not produce a

high number of observations per sample.
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An alternative is to bombard the sample with photons or electrons. This results in

emitted x-rays, which can be measured to determine the elemental composition based

on energies or wavelengths. This can be done to each particle in the sample to obtain

an observation. The method is non-destructive and can be done with much larger

samples, but only yields elemental data. This elemental data is useful but does not

describe the quality of nuclear fuel, which requires isotopic abundances to determine

235U enrichment level.

To summarize the first consideration, current processes either produce too few

observations from a single sample or do not produce enough fidelity on isotopic infor-

mation to be useful with current nuclear forensic techniques. It is assumed, however,

that a meaningful pattern using the low fidelity elemental data can sufficiently dis-

tinguish a unique nuclear fingerprint. A goal of this research is to either prove or

disprove this assumption through the use of advanced machine learning techniques.

The second consideration involves how to deal with elemental noise present in

the samples. The issue here is that without knowing sample origins there is no way

to determine which elements present are noise and which are characteristic of the

sample of interest. Even though local soil compositions have been characterized for

many parts of the world, localized variation can be present [1]. First a database

of soil elemental assays would need to be established that is easily compatible with

current nuclear forensics databases. There would need to be a way to accurately

determine the type of soil found in the collected sample. Then a method would need

to be developed for appropriately removing soil signatures that account for statistical

variations. Though this is an area of interest, this would diverge greatly from the

intent of this research. It is important to keep in mind that samples will very likely

have some amount of noise, but it is assumed that any signature within a sample is

sufficiently distinguishable from the noise that a machine learning program can still
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accurately characterize the sample.

The third consideration, identification of sample creation process, is considered

next. For nuclear forensics, this means those physical and chemical processes that

actually created the sample; what fuel fabrication process was used, what type of

fuel was employed by the power plant, how the ore was mined, etc. The issue with

this identification is that when a nuclear sample is received the true origins of the

sample are usually unknown so the results can not be compared directly to the truth.

Over the years, robust databases have been established linking sample data to sample

origins, but this does not directly help in the identification of a new unknown sample.

A team of experts could characterize each new sample, but this is time consuming

and may not be feasible within the time limits set by national-level decision and policy

makers. An alternative to this could be to use machine learning to quickly compare

this new unknown with the current database to determine if it is the same or similar

to anything that has already been characterized.

1.3 Description of the Data & Machine Learning Approach

The data provided for this analysis is labelled with a serial code. This is simply

used to distinguish one sample from the next. From each sample, either an automated

SEM-EDS or EPMA can extract many different observations, each of an individual

particle. Each observation is the particle’s elemental composition and is essentially

a smaller portion of the total sample. Each observation is assumed to be distinct

and independent from one another, and the cumulative set of observations from a

given sample is the distinct sample fingerprint. Figure 1 gives a visual of terminology

relevant to this project. From here out, the terms sample and class will be used

synonymously with a single sample that contains independent observations of many

individual particles.
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Figure 1. Each class represents a sample and is broken into M different particle ob-
servations. Each observation represents just a single piece of the whole sample and is
characterized by N different elemental features. Each feature represents the percent
composition of a given element present in a single observation.

Each observation consists of the elemental assay data. This means that each

observation has a number of features equal to the total number of elements measured

by the SEM-EDS or EPMA. Each feature is labeled with a single, specific element and

consists of a single value between zero and one. This number represents the relative

amount of the element found within the observation. This means that the sum of all

features for a single observation will be 1.0, or 100 percent.

The basic way a machine learning program works is that it takes a set of data and

makes a prediction on what that data most likely represents. In order to achieve this,

the program needs to be trained on a set of data where the output is already known.

It essentially creates a function based on the relationships observed between all the

inputs (x values) and all outputs (y values). In regards to the nuclear forensics data,

the input will consist of a matrix, with each row representing a particle observation

and each column representing a feature, or in this case element from the periodic

table.

In an ideal situation, the outputs would be the true sample origins, but that is
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unavailable for this data. Instead, there are methods which compare the unknown

data to known data. A common method for tackling this type of problem is to use

a type of Artificial Neural Network (ANN) called a Siamese Network. This type of

network takes the observations from one sample and compares them to the observa-

tions from another sample. If the observations are similar, then the Siamese Network

will output ‘same.’ If the observations are not similar, then the Siamese Network will

output ‘not-same.’ This effectively circumvents the issue of not having true sample

origins.

Siamese Networks can be very effective, but often require each input to be repre-

sentative of the entire sample. A single particle observation from a sample would not

suffice. In order to circumvent this issue, the set of all particle observations from a

single sample can be transformed into a more manageable meta observation using a

set invariant transform. This set can then be fed into the Siamese Network.

1.4 Research Hypothesis

Everything stated thus far describes a current issue with evaluating elemental

assays to determine nuclear processes and a potential solution using ANNs. Put

succinctly:

As an initial proof of concept, an algorithm can be designed to distinguish how an un-

characterized sample of unknown origins compares to a well-defined and characterized

sample with origins from some stage of the nuclear fuel cycle. Advanced statistical

machine learning techniques and neural networks will be used to analyze elemental

assays as input features (x values) and same/not-same probability as the outputs (y

values).
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II. Theory

2.1 Background

Much work has been done in the field of nuclear forensics and how to best attribute

nuclear products to their point of creation within the nuclear fuel cycle, though the

work is very time consuming and can take a dedicated team years to complete the

analysis [4, 5]. Even so, this process does not always give definitive results on sample

origin. It is difficult to attribute a location of origin to a sample based on common

elements, such as carbon or oxygen. It has been shown that the rare earth elements

provide the best means of unique characterization [6]. In order to acquire this infor-

mation from a collected sample, instruments such as Scanning Electron Microscopes

(SEMs) are used.

Various machine learning techniques can be used to decipher patterns within data.

There are machine learning tools that can make a simple prediction based on given

input values. For instance, a class can be predicted based on an elemental assay

input. There exists a wide selection of basic machine learning techniques, including

linear and polynomial models, decision tree classifiers, and culmination classifiers,

each with their own strengths and weaknesses.

When these relatively simple models are not enough to make accurate predictions,

or when the problem involves more than just predicting the class to which a given

set of features belong, ANNs can be used. The idea behind ANNs is that they mimic

the basic concepts of how a brain work; many individual nodes that do not work

well on their own, but when brought together can make advanced predictions and

correlations, or even serve as a means of generating artificial data [7].
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2.2 Data Collection Instruments

To acquire elemental assay data of microscopic particles, a popular, practical,

and convenient method is to use an SEM-EDS or EPMA; there are a number of

instruments capable of collecting elemental assay data, but SEM-EDS and EPMA will

be the focus of this work due to the achievable resolution of the devices. In an SEM

the portion of the sample being analyzed is bombarded with a beam of monoenergetic

electrons. These electrons scatter either elastically or inelastically. Elastic scattering

will result in electrons with comparable energy to the incident electron. These are

called backscatter electrons and typically result from direct collisions with the target

nuclei. Inelastic scatter will result in electrons with much lower energies. In inelastic

scattering, incident electrons can impart some of their energy to electrons within the

atomic electron clouds of the target material, creating secondary electrons that can

be measured. The energy of the secondary electrons will be directly dependent on

the energy level of the electron shell they are ejected from and the energy of the

incident electron. Detectors are set up around the target to measure the scattering

angle and energies of these electrons. Based on the scattering angle and final energy, a

calculation can be performed to recreate the sub-microscopic structure of the sample’s

surface. When electrons are ejected from the electron cloud, additional electrons will

move to fill in the gaps. This causes x-rays to be emitted. The number and energy

of these x-rays is dependent on which elements are present in the sample and is the

source of the term Energy Dispersive X-Ray Spectroscopy (EDS) [8].

Some of the data analyzed in this study were collected using a TESCAN Mira

3 SEM-EDS that can produce anywhere from a few hundred to tens of thousands

of particle observations from a single sample on the order of minutes. The exact

amount of time is dependent on how many particles are present and the measurement

residence time at each grid location. Each observation is characterized by a number
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of different elemental assay1 features equal to the number of elements measured by

the SEM-EDS. The TESCAN Mira 3 can scan high resolution images down to the

submicron range. At optimal settings, a 1.2 nm resolution can be obtained with a 30

keV electron beam, or a 1.5 nm resolution with a 1 keV electron beam. The pressure

of the sample chamber can be adjusted to assist in dealing with a wide range of sample

properties, such as outgassing or highly conductive material [9].

Another method for collecting similar assay data is EPMA. This method uses the

same initial principles as the SEM-EDS, except instead of using energies to determine

elemental assay, it uses the wavelength of the resulting x-rays, or Wavelength Dis-

persive X-Ray Spectroscopy (WDS). This method takes advantage of Bragg’s Law,

which essentially states that if an x-ray with a wavelength comparable to atomic spac-

ing is incident on a crystalline lattice, then at a certain angle the diffracted x-rays

will interfere constructively to produce a more intense peak. A number of different

diffraction materials can then be set up around the sample with detectors positioned

to capture the diffracted x-rays. Noting which detectors received a signal, one can

determine the wavelength of the x-ray using the equation associated with Bragg’s

Law:

nλ = 2dsinθ, (1)

where θ is the glancing angle, d is the lattice spacing of the diffractive material, and

nλ is an integer multiple of the x-ray wavelength. The wavelengths can then be

directly associated with the elements that produced the x-rays [10]. However, this

does require more effort when trying to obtain data on a large number of elements.

Often, many different WDSs are set up in an EPMA to ensure most elements can be

1Each elemental assay is the percent composition of every element found within the observation
with one exception: an amount of oxygen is assumed and added on top of what is already found in
each observation.
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analyzed, and an EDS is used to capture the rest of the elements.

The EPMA used to acquire data for this project is a JEOL JXA-8200 with five

WDSs and one EDS. WDS gives a much higher resolution over EDS, so elements

that produce similar wavelength x-rays can be distinguished and trace elements can

be detected with higher resolution. Like the TESCAN Mira 3, each observation is

characterized by a number of different elemental assay features equal to the num-

ber of elements measured by the device. The biggest difference comes in how many

observations are made. The TESCAN will take many different observations of the

material placed into the machine, and can typically handle the entire sample at once.

Conversly, the JXA-8200 essentially does a survey of the material placed in the ma-

chine, but cannot handle the same volume of material as the TESCAN. Because of

this, samples are pre-processed to isolate particles of interest before they are placed

into the JXA-8200. Each isolated particle is separately analyzed by the machine to

produce a relatively small number of observations. However, because of the time and

effort involved in the analysis, it is not typical for the entire sample to be analyzed.

So the isolated particles are the ones that show signs of elements of interest. This

process results in observations that are more representative of the material placed

within the machine, but not necessarily statistically representative of the whole sam-

ple. The JXA-8200 can generate image resolutions as low as 5nm using the EDS, and

can detect x-ray wavelengths from 0.087nm to 9.3nm using the WDS. Compared to

the TESCAN, this provides a wider range of elements that can be reliably detected,

such as elements as light as beryllium [11].

2.3 Basic Machine Learning Techniques

In order to solve complex classification problems, a number of techniques have

been developed. The open source programming language, Python, has a package
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called Scikit-Learn, which provides these techniques in an easy to use fashion [12]. The

following Scikit-Learn training models were used for this research: logistic regression,

linear discriminate analysis, decision tree classifier, random forest classifier, extra

forest classifier, and voting classifier.

2.3.1 Linear Models

Linear models are ideal when making correlations in simple datasets. Because of

their prevalence, they are easily available and easy to implement. For example, how

far an object has traveled based on how long it has traveled (assuming a relatively

consistent speed) is a linear correlation that can easily be tested. However, many

real-world datasets do not have a simple linear correlation. For instance, traveling

objects will likely accelerate and decelerate frequently throughout their journey, which

is far from a linear correlation. The further from linearity a dataset is, the worse the

accuracy will be of a linear model [13]. Two linear models were used to set a baseline

for this work: logistic regression and linear discriminate analysis.

Logistic regression is a method that can take normalized feature inputs and gives

a number between zero and one that represents the probability that the given fea-

tures correspond to a specific class [13]. The basic concept of logistic regression is

represented by the equation:

p(X) =
eβX

1 + eβX
, (2)

where β contains the unknown model parameters, X is the input data, and p̂(X)

is predicted output. If X is an array with each entry corresponding to a different

feature, then β will be a vector of the same length also with each entry corresponding

to a different feature. There can also be z number of X inputs, which requires z

number of corresponding β values. This highlights the simple case of having only

two categories to choose from. However, this concept can be extended to include any
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number of classes.

The β values are estimated using a form of gradient descent. There are a number

of options available through Scikit-Learn. The Limited-Memory Broyden–Fletcher–

Goldfarb–Shanno Bound-Constrained (L-BFGS-B) algorithm was used for this work.

L-BFGS-B is a popular and effective algorithm in the field of machine learning for

its ability to support l2 normalization and effectiveness with large bound-constrained

datasets [14, 15]. L2 normalization is the root sum square of a set of numbers, and it

is sometimes called the Euclidean norm. It is easy to calculate the derivatives of the

l2 norm, which makes it very useful for gradient based learning. A bound-constrained

dataset is one that has distinct numerical cutoffs for its data. For instance, the data

for this work will never be more than 100% or less than 0%.

Logistic regression does have limitations and can be unstable in instances when

each class is too distinct or if inputs are distributed normally. ‘Too distinct’ in

this situation refers to classes that have no overlap with one another. For example,

comparing the characteristics of a human child to the characteristics of green algae,

there will be very little to no overlap of characteristics. This makes linear discriminate

analysis a popular counter to logistic regression since this model is more stable in these

instances [13]. There is uncertainty in how the data for this work is distributed and

how distinct each sample is, so having both of these linear models ensures that a wide

range of samples can be accommodated.

Linear discriminate analysis makes the assumption that the inputs for each class

are normally distributed and decision boundaries exist where the probabilities of any

pair of differently-classed Gaussian distributions is equal. This is an approximation

of what is known as a Bayes decision boundary, or Bayes classifier. This implies that

each class has its own unique multivariate Gaussian function. Scikit-Learn employs a

few ways to solve for the mean and standard deviation, but for this work eigenvalue
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decomposition was the chosen method because it can handle classification problems

and supervised dimensionality reduction. This creates a reproducible solution since

no random seed is required for solving these matrix equations [12, 13]. Most other

machine learning applications require some form of random number generator, known

as a random seed, to initiate its algorithm.

2.3.2 Decision Trees & Ensemble Classifiers

When it comes to classification problems, a decision tree model can be a powerful

tool. The basic idea is that there are nodes in the decision tree that check whether

the input features meet specific criteria. These nodes will branch out and additional

checks will be made, and each path down the decision tree corresponds to a different

class. Figure 2 shows a simple example of how a decision tree works.

Figure 2. Two layers in a decision tree can separate data into four classes.

In order for an algorithm to build a decision tree, it first looks at all of the data

and splits it into two regions with the goal of minimizing the error in each region. For

example, this first split can be of the uranium composition. Region one could contain

samples with a uranium composition greater than 70%, and region two could contain

samples with uranium less than 70%. Each separate region is then split again in the

same fashion. The split could be made using the same elemental feature as before,

a different elemental feature altogether, or a combination of many different features.

This process continues until each class is represented by its own distinct region. The
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error analyzed at each step is found through the Gini index, which is defined as:

G =
K∑
k=1

p̂mk(1− p̂mk), (3)

where p̂mk is the fraction of the kth class found with the mth region. In certain

situations, it may be beneficial to use an alternate method called cross-entropy, or

log loss function. In its simplest form, it is defined as:

D =
K∑
k=1

p̂mklog(p̂mk). (4)

Numerically, the Gini index and cross-entropy produce similar results, and which is

used is dependent on the situation at hand. For this research, the Gini index was

used for the decision tree models, and cross-entropy was used in the ANN discussed

in the next section [13].

Computationally speaking, it is not feasible to look at every possible combination

of decision tree splits and choose the one that has the lowest Gini index overall. In-

stead, the Gini index is calculated for each split individually. This top-down approach

can suffer from high variance. This means that different subsamples of the data could

produce very different results. In order to get around this and lower the variance at

the expense of bias, a random sampling (with replacement) is taken from the data

and a tree is grown from this sampling. This is repeated many times and the output

of all the different trees is aggregated, which produces a much lower model variance

and a much more accurate prediction tool. This is referred to as bagging, or random

forest [13].

In order to lower the variance further at the expense of more bias, more random-

ness can be added into the model. Instead of searching for the split in each region

that minimizes the Gini index, a random split can be made. This is called Extremely
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Randomized Trees, or more commonly, Extra Forest. It is not easy to predetermine

whether a random forest or extra forest will perform better. It will be different from

one dataset to the next, and depends heavily on the bias and variance produced from

each model. However, similar datasets will likely have consistency in which model

performs better. Both of these models can be initialized and the results compared

using Scitkit-Learn [12, 16].

Aggregating predictions from multiple models is a common practice with the intent

to increase overall accuracy. Various linear models and tree based models can be

pipelined into a final voting classifier. Using a simple majority-vote-wins classifier

can pull from the strengths of all input models and produce a classifier that is more

accurate than each model individually. However, the assumption here is that each

model uses predictors that are as independent from one another as possible. If each

model makes similar mistakes, then the voting classifier will simply propagate those

mistakes and no improvements will be seen. Testing the effectiveness of a voting

classifier on a specific dataset is a built-in feature of Scikit-Learn [12, 16].

2.4 Artificial Neural Networks

In recent years, ANNs have been extensively studied for use as advanced prediction

tools. The effectiveness of these techniques has been shown in many different ma-

chine learning tasks, such as pattern recognition, natural language processing, event

prediction, and many others. Also, they can be used with a high degree of success

on many different types of data from images and video to stock market numbers and

molecular compounds [7, 17, 18, 16, 19]. However, the term ANN is vague and covers

a wide spectrum of machine learning models. Different types of data will require

different approaches in order to make accurate predictions. One such approach is

one-shot learning. The original paper on Siamese networks discusses one-shot learn-
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ing and how a neural network can be trained to rank similarities between inputs [20].

It discusses training a network using a large dataset that is different from, yet similar

to, another dataset with a limited number of samples. The term one-shot comes from

the trained network looking at these new samples once and still being able to make

accurate predictions. The Omniglot dataset was used in that research, which is a set

of hand-drawn images of characters from 50 different alphabets. The success of that

research was evidence that the entire range of possible classes is not needed during

training. If an appropriate representation of classes is used, then if new, previously

unknown classes are run through the Siamese network a clear distinction can still be

made. The issue, of course, is that the elemental assay data for the samples is dis-

tinctly different than any image file. With the relative newness of Siamese networks,

there has been limited research done on this topic. Though like other ANNs, it is

assumed that a Siamese network can be adjusted to work efficiently with the data for

this research.

The idea behind ANNs is that, like the human brain, there a many different nodes

that are all acting upon the input data. Each node by itself will not make a good

prediction, but when grouped together with several hundred, or even thousands of

different nodes, the prediction capabilities can be substantial. More nodes generally

mean better results, but this leads to much higher computational cost. The nodes

are organized into layers. The data is fed into the first layer where each node acts

upon each x value. Then the output of this first layer is fed into the second layer

where again, each node acts upon each input. The output of the final layer represents

the predicted y value. This concept is shown in Fig. 3. For Siamese networks, a

single input is observations with the various features. One is a known observation,

and the other is an unknown observation. For this research, the input is two particle

observations with the various elemental assay features. The output layer of a binary
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classification system can be a single node that gives a value between zero and one.

In the case of a Siamese network, the closer the output is to one, the more similar

the two observations are, and the closer the output is to zero, the less similar the two

observations are [7, 20].

Figure 3. A simplified Artificial Neural Network with an input layer, two hidden layers,
and an output layer.

Each node in an ANN has a bias associated with it, and there is a weight associated

with each input into the node. Both the weights and the bias are applied to the input

observation such that

Sum =
N∑
n=1

[ωn ∗ xn] + β, (5)

where ωn represents the weight associated with each feature, xn, of the input obser-

vation, and β is the node bias. This sum is then fed into an activation function.

There are a number of different activation functions known to be effective, and two

common activation functions used for their simplicity and reliability are the ReLU

and sigmoid functions [7]. ReLU stands for rectified linear unit and is the maximum

value between zero and the input values, and is a piecewise linear function described

by the function

ReLU = max(0, x). (6)
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This will produce a continuous, monotonically increasing line for all x in range (0,∞]

and a continuous horizontal line at zero for all x in range [−∞, 0]. The sigmoid

activation function is

S(x) =
1

1 + ex
, (7)

which increases monotonically from zero to one as the input (x) goes from negative

infinity to positive infinity. Because all negative inputs will produce an output of

0, the ReLU function tends to be less computationally intensive than the sigmoid

function; however, the sigmoid function produces results more easily attributable to

a probability. Both of these activation functions were used for this research.

A collection of nodes operating together at a specific depth within the neural

network is called a layer. There are many types of different layers that can produce

different effects. A dense layer is when all of the nodes in one layer are connected

to all of the nodes in the next layer. A dropout layer is when a certain percentage

of the nodes’ outputs are randomly set to zero, which essentially makes the current

layer be treated like a layer with a different number of nodes and connectivity to

the prior layer. This has the effect of reducing overfitting in a model [7, 17]. Using

Tensorflow, this can be set up so the dropout only occurs during training and all

nodes during testing are still used. Other layers that Tensorflow provides include a

flatten layer, which flattens multidimensional inputs into a one dimensional tensor,

and a lambda layer, which provides a means for creating custom layers, similar to the

lambda function in base Python [19].

Before the first training cycle, or training epoch, the weights and biases are ran-

domly initialized. During consecutive epochs, these are updated based on how well

the ANN performed. The specific metric that is back propagated through the network

is the loss, and this is calculated through a specific loss function. There are many

different loss functions that can be used for different situations. One that has shown
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to be effective in conjunction with a Siamese network is the triplet loss function [21].

The biggest difference here is that instead of looking at the similarity between two

observations, the triplet loss function compares three observations: One is the refer-

ence, or anchor; another is a positive match to the anchor; the final one is a negative

match to the anchor. The triplet loss function takes vector encodings produced by

the neural network and compares the vector distance between the anchor and positive

observations, and the anchor and negative observations. The anchor-positive should

have a small vector distance, whereas the anchor-negative should have a larger vector

distance. An extra value is added to the loss to ensure that there is a significant mar-

gin, m, between the vector distances. This is done because the network could output

everything as zero, then the loss would be small even though an accurate prediction

has not been made. The loss is then calculated by:

d1 = dist(A,P )

d2 = dist(A,N)

loss = max(0,m+ d1 − d2).

If d2 is significantly large, then m + d1 − d2 could be negative. A negative loss does

not add any value to the system, which is why the maximum between this sum and

zero is taken [21].

With triplet loss, there is the possibility that the vector distance d2 is smaller

than the vector distance d1. This implies that the negative is more similar to the

anchor than the positive, which could make it more difficult for the network to train

on. However, if the network manages to differentiate between the anchor and this

‘hard’ negative, the result could be a much more accurate network after training has

finished. If a network is trained using only batches of hard examples, then this is
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referred to as batch hard, whereas using all available combinations is referred to as

batch all. There is also batch semi-hard, where d2 falls somewhere between d1 and

d1 + m. It has been shown that in certain circumstances, training a network using

batch hard or semi-hard can lead to much greater accuracies overall [21].

A loss function used in contrast to triplet loss is binary cross-entropy, also known

as the log loss function. Cross-entropy was introduced in Eq. 4 in the previous section.

Binary cross-entropy is simply cross-entropy with only two possible outcomes, in this

case either same or not-same [13]. Both binary cross-entropy and triplet loss were

used for this research.

When making a prediction, a Siamese network will only have two options: same

or not-same. The number of times a network makes a correct prediction will give

the accuracy. However, this does not always give a clear indication of how well the

model performs. Because of this, it is important to look at the results in the form of

a confusion matrix in order to get a better idea at how the model is performing. The

four basic components of a confusion matrix are true positive, true negative, false

positive, and false negative results. True positive is the number of positive results

predicted as positive and false negative is the number of positive results predicted as

negative. Then true negative is the number of negative results predicted as negative,

and false positive is the number of negative results predicted as positive.

What someone considers a positive result is purely subjective. For example, when

looking at laboratory results on whether someone has a disease or not, it is often

easier to think of the positive result as someone having the disease and the negative

result as someone not having the disease. The positive does not need to represent

something that is present, but should represent the target of interest. For example, for

the purpose of trying to find people who are naturally resistant to a disease, it may be

more beneficial to have the target be those who do not have the disease. The positive
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and negative results simply need to be explicitly defined and remain consistent [13].

Once the actual and predicted values have been established, the results can be totaled

and organized into a confusion matrix like the one shown in Table 1. This example

shows that there are 30 negative observations and 10 positive observations.

Table 1. Example Confusion Matrix.

Actual
Total

Positive Negative

P
re

d
ic

te
d

Positive 8 7 15

Negative 2 23 25

Total 10 30 40

From the confusion matrix, additional performance parameters can be calculated.

These include precision, recall, and F1 score. These three metrics are defined as

follows:

precision =
true positive

true positive + false positive
, (8)

recall =
true positive

true positive + false negative
, (9)

F1 = 2× precision × recall

precision + recall
. (10)

In other words, precision is the number of accurately predicted positives over the total

number of predicted positives, or the fraction of predicted items that are relevant.

Recall is the number of accurately predicted positives over the total number of actual

positives, or the fraction of relevant items that are predicted. The F1 score is the

harmonic mean of precision and recall and can give an idea of model performance with

a single value. When multiple classes are present, these metrics can be calculated

individually for each class. Then a macro-average for each metric can be obtained by
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taking the arithmetic average from each class. A weighted average can be obtained in

the same fashion. A final metric often used is called the micro-average, which reduces

simply to the overall model accuracy [13].

When predicting if two observations from this data are the same, it is just as

important and informative to know if the two observations are same or not-same,

so positive and negative can be replaced with same and not-same for each sample.

This categorization method is common when there is no clear target. However, the

methods used to obtain the precision, recall, and F1 score remain the same, but are

now extended to account for multiple categories.

2.5 Moment Transformation and Load Balancing

Siamese networks were developed with the idea in mind that single observations

are representative of the class they represent. When looking at the data for this work,

it can not be guaranteed that a single observation is representative of the sample it

belongs to, so a means for consolidating many observations into a more representative

meta observation is needed. There are a number of different available options that

can accomplish this, but as a proof of concept a moment transformation, using the

first four moments of statistical distribution, was applied to the dataset.

In statistics, the population of a dataset can be summarized by the moments.

The nth moment of a dataset about zero is the expected value of the nth power of a

random variable, or

E[Xn] (11)

In order to calculate the moments, a moment generating function can be used, and
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is defined as (for a discrete distribution):

MX(t) = E[etX ] =
∑
x

etxp(x), (12)

where p(x) is the probability of x. Then the nth derivative with respect to t is

evaluated at t = 0 to get the nth moment. These equations are derived with the idea

that the data follows a Gaussian distribution centered around zero. These equations

become more complex when evaluating a dataset about a non-zero number, but the

concept is the same [22].

The moment generating function can generate as many moments as needed to

fully describe a distribution, but typically the first four moments are sufficient to

give a unique summary of a distribution. The first moment is the mean and simply

represents the average. The variance, skewness, and kurtosis are the second, third,

and fourth centered moments, called this because their values are always in relation

to, or centered about, the mean. The variance represents the spread of the data

about the mean. Skewness represents how symmetrical a dataset is about the mean.

Kurtosis represents how fat the tails of the distribution are, or how similar a dataset

is to a normal distribution [22].

Performing a moment transformation on the data has the benefit of also balancing

the dataset. A class that had 50 observations and a class that had 300 observations

will both now have a single meta observation that will describe the class to some

degree. A random sampling of each class can be taken multiple times in order to

generate multiple meta observations. The extent to which these meta observations

accurately describe the class is a part of this research. Alternatively, more traditional

load balancing techniques can be used. Synthetic Minority Over-sampling Technique

(SMOTE) uses a form of interpolation to generate artificial data that falls within the

bounds of the real data [23]. It has also been used to load balance datasets similar
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to the datasets used in this research [24].

2.6 Data Analysis

Nuclear data often refers to the isotopic information within a collected sample, but

due to the relative ease that elemental information can be obtained, there has been a

push for studying the practicality of using elemental information as nuclear predictors.

As discussed in Chapter 1, each collected sample can provide a distinct fingerprint

of the sample origin. Uranium, plutonium, and other actinides are obvious elemental

features for determining sample origins, but there are also non-fuel elements that can

be used in establishing a nuclear fingerprint. An example of this is zirconium which

has highly desirable mechanical and nuclear properties for cladding nuclear fuel pellets

to be used in a nuclear reactor. Hafnium on the other hand is a neutron poison and

its removal from a nuclear system is preferred. Naturally, zirconium and hafnium are

found together in similar quantities, so finding an extremely low relative abundance

of hafnium compared to zirconium can be an indication of material processed for use

in a nuclear reactor [25].

During the mining or milling processes of the nuclear fuel cycle there is still a

large amount of non-fuel elements present within any given sample. The rare earth

elements have been studied extensively as they can be used as effective geographical

signatures that can link a sample to a specific uranium mine [4]. This has been done

by looking at the elements individually and comparing them to elemental soil samples

[5], and by taking a holistic approach using principle component analysis to compare

mineral concentrations [26].

Traditionally, the data analysis has been done directly by human analysts, but this

can be a time consuming process. For this reason, there has already been work done

towards creating a machine learning program to accurately predict sample origins.
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Work by Gum has shown that an algorithm can group observations into appropriate

samples with a success rate greater than random chance [24]. Gum used various ma-

chine learning models including K Nearest Neighbors, Linear Discriminate Analysis,

Decision Tree Classifier, Random Forest Classifier, and Bernoulli Naive Bayes, which

were implemented through the Scikit-learn Python package. However, that research

used the physical morphology of a particle for characterization rather than the ele-

mental composition. A total of 43 different samples were used and the models had

test accuracies between 5.8% and 19.2%, the lowest being the Decision Tree Classifier

and the highest being the Bernoulli Naive Bayes. Random chance would be 1
43

, or

about 2.3%, so every model tested proved to be better than random chance.

Work by Holland showed that machine learning is a viable means for predicting

serial codes based on elemental assays [27]. That work explored different types of re-

gression models, boosted decision tree models, discriminant analysis, and even some

neural networks. Discriminant analysis did not initially perform well, and there was

concern with the potential black-box nature of neural networks. Because of these

reasons, Holland’s work mainly focused the regression models and decision tree mod-

els. Ten different samples were used and the models achieved test accuracies between

64.6% and 86.5%, the lowest being a discriminate analysis technique and the high-

est being the C5.0 Decision Tree algorithm. That research showed that traditional

machine learning techniques can be tuned to produce reliable prediction tools.

The issue with the previous work is that it focused on predicting the serial code

associated with the sample, but the serial code is an arbitrary designator that does

not say anything about sample origin. Using a Siamese network could give a more

meaningful prediction capability.
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III. Methodology

The first part of this research uses traditional machine learning techniques to

predict which sample an observation comes from based on the relative elemental

abundances of that observation. This will be used as the preliminary analysis to set

a baseline for the the second part of this research, which will use an ANN to predict

whether an unknown particle observation is similar to a particle observation from a

known sample based on an invariant transformation of the all the observations within

a sample. The ANN will be a Siamese Network using triplet loss to perform one-shot

learning.

3.1 PreProcessing

The data used for this research came from a number of different projects. Each

project is denoted by a unique project ID number. There are two distinct groups of

projects: one where the data was collected using an SEM-EDS and another where

the data was collected using an EPMA. The most notable differences between the

two methods is the number of particle observations obtained, and the information

contained within each particle observation. As discussed in Chapter 2, the TESCAN

Mira-3 can make thousands of different particle observations, but each observation

is not necessarily representative of the whole sample. In contrast, the E-Probe data

has relatively few observations, each representative of particles of interest that were

isolated by a technician. There are a total of 147 different samples between the two

data sets. Table 2 summarizes the data obtained using each machine [28]. More

detailed information on each dataset can be found in Appendix A.
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Table 2. Data provided by the Air Force Technical Applications Center. Measurements
conducted by the McCrone Group.
*This represents the total number of unique elemental features and each project will
have overlapping features with other projects.

Dataset Project Sample IDs Particle Observations Elemental Features

TESCAN
2017-162 3 20,221 36

2018-204 7 58,243 39

Subtotal 2 10 78,464 40*

EPMA

06-111 3 43 20

08-201 14 232 40

10-065 2 36 26

10-066 2 33 31

10-068 1 15 8

10-088 10 71 34

11-031 12 214 29

12-086 3 49 28

12-089 1 28 20

12-216 7 25 33

12-221 7 79 34

13-241 9 101 31

15-066 2 31 30

15-174 5 39 38

15-210 6 47 37

16-083 4 36 26

16-224 14 155 48

17-049 8 102 39

18-034 4 49 40

18-131 8 107 41

18-158 4 40 32

18-167 2 20 17

18-227 1 10 8

18-246 6 143 28

19-312 2 43 39

Subtotal 25 137 1748 55*

Total 27 147 80,212 55*
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The data from the TESCAN came in an Excel spreadsheet with each row being a

single particle observation, and each observation having around 100 columns of data.

Of these 100 columns, around half are the elemental assays, two establish a unique

observation identification number (serial number and particle number), and the rest

are additional details that further describe each observation that are not relevant for

this analysis. The data from the JXA-8200 came in an Excel spreadsheet with each

row being a single element from a single observation and 30 columns of information.

Most of the columns correspond to sample processing, one column is for the serial

number, one is for the element, and four are for the weight and atom percent and

their percent errors. The weight percent was used in the analysis as it coincides with

the data from the TESCAN. During the preliminary data processing the unnecessary

information from each dataset was removed. Oxygen content was estimated by both

machines, however the TESCAN data was not normalized after the addition of oxy-

gen. Normalizing the TESCAN data was also done during pre-processing. It is never

guaranteed that the same elements will be measured between different samples. In

observations that do not contain a measured element that is present in other obser-

vations, the missing elemental feature is added with a corresponding value of zero.

This ensures that each observation has the same number of features as every other

observation.

The Python code used offered a way to shuffle the data the same way during every

run in order to obtain consistent results between runs. This was accomplished using

the model selection.test train split function within the Scikit-Learn Python package

[12]. The chosen value for the random seed parameter is arbitrary as long as that

value remains constant. The variable that Scikit-Learn uses as this random seed is

called random state. The value used for the random state variable, and all consecutive

functions, was 7.
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Training and validation sets were created from the all the data. For one run, the

TESCAN data was split into 60% training and 40% validation, then the EPMA data

was used as a second validation set. For the other run, the EPMA was split into 60%

training and 40% validation with the TESCAN data used as the second validation

set.

It is difficult to ascertain whether a single element will be relevant in predicting a

sample once any potential learning algorithm is applied to a much more comprehensive

database. Because of this, it was assumed that all elements could very well play a

role in future predictions, so the only feature reduction technique used was Principle

Component Analysis (PCA). Results from this could give a preliminary idea whether

data reduction is possible. This was accomplished using the decomposition.PCA

function within the Scikit-Learn Python package.

3.2 Preliminary Work

There are many well documented machine learning algorithms that are found

within the Scikit-Learn package. The models chosen for the preliminary analysis were

linear discriminate analysis, logistic regression, decision tree, random forest, extra

forest, and voting classifier. The data was run through each model, varying certain

hyper-parameters until the most desirable results were achieved. The parameters not

adjusted were kept as the default values of the function. Once the optimal parameters

were achieved, a final run was performed.

Three parameters in the linear discriminate analysis were specified. The shrinkage

parameter was set to auto. This helps when the number of observations for a given

sample is small compared to the number of features. The solver parameter was set

to eigen as it supports the shrinkage parameter and can solve classification problems.

The default value for the tol parameter is irrelevant as this is only used when the
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solver is set to svd. There was no random state parameter. Minimal optimization

was performed to set these parameters.

The logistic regression function has six parameters that were specified. The pa-

rameter class weight was set to balanced. This gives an inversely proportional weight

to each sample based on the number of particle observations. Each sample is assumed

to be equally relevant, so a class weight parameter set to balanced helps to compen-

sate the imbalanced representation of samples seen within the data. The multi class

parameter was set to multinomial and the solver parameter was set to lbfgs. These

two together can provide faster convergence and better model calibration [12]. The

C, tol, and random state parameters were set to 300, 0.05, and 7, respectively. The

C parameter is the inverse of the regularization parameter and was obtained by re-

running the model until the highest training accuracy was obtained. Having a tol

parameter too low can lead to a model overfitting on the data, so the tol parameter

was increased between runs until the training accuracy began decreasing.

The decision tree, random forest, and extra forest all have similar parameters.

The class weight parameter was set to balanced, random state was set to 7, and

max depth was set to 22. For random forest and extra forest, n estimators was set

to 50, max features was set to None to ensure use of all features, and n jobs was set

to -1 to speed up run time.

To achieve the optimal value for max depth, a single tree model was run 100 times

with a depth starting at one and increasing the depth by one for every consecutive run.

Then the accuracy for each was plotted versus the depth of the tree. The depth at

which the accuracy began to asymptote was then chosen as the optimal max depth

value. A similar approach was used to obtain the optimal value for n estimators.

Using the value obtained for max depth, a random forest model and extra forest

model were each run 100 times starting with one tree and increasing the number
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of trees by one for every consecutive run. Then the number of trees at which the

accuracy began to level off was chosen as the optimal n estimators value. All other

parameters were kept constant during these runs.

The final model used was the voting classifier. The voting parameter was set

to soft to better address the imbalance in the number of particle observations per

sample, and n jobs was set to -1. The voting model was run three times once all

other parameters were set. Once with all models contributing, once with the decision

tree, random forest, and extra forest, and a final time with only the forest models.

Finally, the results of all models were compared. The measure of success for

every model was based primarily on the recall and weighted average scores, though

all outputs related to precision, recall, and F1-score were considered. For a given

sample, precision represents the accuracy of the predictions, recall represents how

often a given sample is predicted accurately, and the F1-Score is a combination of the

two. The accuracy output parameter is the F1-Score calculated from looking at all

the samples together, macro average is the arithmetic mean, and weighted average

is based on the number of observations per sample. All of these parameters were

obtained using the function metrics.classification report in the Scikit-Learn Python

package.

A final output parameter was the feature importance which ranked the elements

by how much they contributed to the model accuracy. This, in conjunction with

PCA, was used to determine the best features to use in the case of utilizing feature

reduction techniques. This was done by plotting the explained variance ratio against

the number of features, then taking a number of features that would still maintain a

minimum explained variance ratio.
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3.3 Siamese Network

In order for the data to be appropriately batched and run through the Siamese

network, the data first needed to be load balanced so that every sample had the

same number of observations. The Imbalanced-Learn Python package offers various

techniques for oversampling, undersampling, and a combination of the two [29]. Un-

dersampling would produce samples with too few observations, and the combination

techniques proved to take an unreasonable amount of time considering this was not

the focus of the research. Because of these factors, the oversampling SMOTE algo-

rithm was used to increase the number of particle observations each sample had to a

final load-balanced level of 19,013 observations per sample. The limitation here was

that not all samples met the minimum requirement of six observations for SMOTE to

work. For this reason, and to increase statistical variations of the final set of obser-

vations, all samples with less than ten observations were removed from the dataset.

This reduced the number of EPMA observations from 137 to 87. A list of samples

eliminated from further analysis can be found in Appendix B.

In order to transform the data, the observations from each sample were split into

ten roughly even groups, 1,901 observations for nine groups and 1,904 observations

in the remaining tenth group. Within each group, the first four moments were taken

for each element. This resulted in a 4 by N matrix for each group, where N is the

number of elements represented in the sample. These groups of elemental moments

can be thought of as meta observations that more holistically represent the sample.

For half of the runs performed, the data was transformed using the first four

moments of statistics. In order to give the network more variation, the observa-

tions within each sample were randomly split into ten even groups. The moment

transformation was then performed on each individual group. This resulted in ten

meta observations for each sample for all 97 (87 from EPMA and 10 from TESCAN)
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remaining samples, totaling 970 moment transformation observations. For this trans-

formed data, the same training and validation split was performed, where one run

was performed with the TESCAN data used as the training and validation sets with

a 60-40 split and the EPMA data used as a second validation set, then another run

where the EPMA data was used for training and validation and the TESCAN used

for a second validation.

In order for the network to be trained properly, the data needs to be batched in

specific ways. For a Siamese network without triplet loss, there needs to be pairs

of random observations that are either from the same sample or not from the same

sample. Using triplet loss, there needs to be three observations; the anchor, the

positive, and the negative. However, during testing of triplet loss, the batches need

some additional randomization so the network can predict either same or not-same.

During all batching processes, assurances were made so that a single observation is

never paired with itself, that two different observations represent the same sample

when there is supposed to be a same comparison, and that two different observations

represent different samples when there is supposed to be a not-same comparison.

To accomplish this, the batching algorithm first creates a target array with zeros

representing pairs of observations that are from the same sample, and ones represent-

ing pairs of observations that are from different samples. Then an anchor array of

random integers between zero and n is created, where n is the number of available

samples. A reference array is then created that contains the same integers as the

anchor where the target array contains zeros, and different integers where the target
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array contains ones. For example, if:

Anchor, A =



5

7

3

4


, and Target, T =



1

0

1

0


, (13)

then a valid reference could be

Reference, R =



2

7

9

4


. (14)

This was done by first generating an array filled with random integers between

one and n, then multiplying it element-wise by the target array. This array was then

added to the anchor array. The final reference array was obtained by dividing by n

and taking the remainder. For this example, if n = 10, then

remainder = [(T × randint +A)/n] =



1

0

1

0


×



7

1

6

9


+



5

7

3

4


10

=



12

7

9

4


10

=



2

7

9

4


= R (15)

This method ensures that when two observations are supposed to be from the same

sample, the result is always 0×randint+A = A. When two observations are supposed

to be from different samples, the result will always be 1× [int > 0] + A 6= A. These
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anchor and reference arrays were used as indexing arrays to obtain the appropriate

samples from the data. An index array of random integers between zero and k was

then created, where k is the number of observations within each sample. This index

array was used to choose a random observation from within a sample, and was created

in the same fashion as the anchor and reference arrays.

This method was performed during training only. When testing, every same/not-

same combination was sent through the model, only randomizing the specific obser-

vation chosen within a sample. This ensured that each sample was paired with every

other sample, which forced the model to make predictions on how similar each sample

was to one another.

As this research is meant to be a proof of concept, optimizing the network itself

was not a priority, though various network depths and widths were explored to obtain

a model that performed consistently well. The moment transformed data resulted in

a two-dimensional 4 by N matrix, where N is the number of elements, so the first

layer was a flatten layer to reduce the dimensionality. This ensures that the moment

transformed data could successfully pass through the consecutive layers, and should

have no effect on the non-transformed data. The network architectures used are

summarized in Tables 3 and 4.
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Table 3. The basic architecture of the Siamese network used for this research.
*The number of trainable parameters for the reference branch is zero to ensure the
weights are the same between the anchor and reference.
**The Lambda function compares the anchor encoding to the reference encoding using
an element-wise squared difference

Table 4. The basic architecture of the triplet loss network used for this research.
*The number of trainable parameters for the positive and negative branches is zero to
ensure the weights are the same between the anchor, positive, and negative.
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The Lambda function in the Siamese network takes the encodings from both the

anchor and reference and performs an element-wise squared difference. Since this is

a simple mathematical operation, there are no trainable parameters in this layer.

For the models with triplet loss, three separate batching processes were tested;

batch all, batch hard, and batch semi-hard. Batch all factors in the loss from every

group of triplets. Batch hard dropped all triplets where the anchor-positive vector

length was greater than the anchor-negative vector length. Batch semi-hard kept only

the triplets where the anchor-negative vector length fell between the anchor-positive

vector length and the anchor-positive vector length plus the margin. The margin used

for all runs was set to 1.

A model using triplet loss does not make definite predictions. It only outputs

the encodings, and the triplet loss function only outputs a loss. In order for the

model to make predictions when checking accuracy, a threshold parameter needed

to be implemented. If the Euclidean distance between the anchor-positive encoding

and anchor-negative encoding is above the threshold, then the two observation pairs

are counted as different. If the Euclidean distance is below the threshold, then the

two observation pairs are counted as the same. However, the Euclidean distance

can have a wide range of values, which makes choosing a single threshold value that

can accommodate all the input data somewhat difficult. To circumvent this issue,

these values were normalized to cover a range between zero and one. This required

the assumption that any distance grater than the margin value was caused by a two

observations that are from different samples. If the calculated distance was above the

margin value, then the distance was set equal to the margin. Then all values were

divided by the margin. This gave values between zero and one, similar in fashion to

the probability predictions made by the base Siamese network. Then the absolute

difference between these probabilities and target predictions was taken. The smaller
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the difference, the closer the prediction was to being accurate. So if this difference fell

below the threshold, then the prediction was counted as correct. The threshold used

for all runs was set to 0.5. This value is somewhat arbitrary and was chosen simply

because it is the midpoint between zero and one. It can be considered another hyper

parameter that can be adjusted by the end user, which will be discussed more in the

next section.

A number of different runs were performed. Only a single factor was changed

between runs in order to properly compare and contrast the effects of each change.

The factors examined were the dataset used for training and validation (TESCAN

versus EPMA), the application of moment transformation to the data, and triplet

loss versus binary cross entropy. For each run performed, the loss and the accuracy

of the training and validation sets were plotted versus the number of training epochs.

Also, a confusion matrix was created based on predictions made after the model was

finished training. Results from this confusion matrix were taken to calculate and plot

precision, recall, f1-scores, and accuracy for each sample tested. A major goal for this

research is to find a way to identify samples that are similar, so the overall accuracy

of each run was analyzed, however a great deal of attention was paid to the incorrect

predictions. When the EPMA data was provided, groups of samples were also given.

The samples within each group were determined to be similar to some degree by the

nuclear analysts who originally examined the data. The list of groups are shown in

Table 7 at the end of this chapter, and will be used to determine how effective the

model is at determining similarities between samples.

One main objective of this research is to move away from predicting the sam-

ple serial number based on a particle observation, and move towards a method of

determining how similar samples are to one another based on particle observations.

However, this creates an issue in how to label the data. If the assumption holds true
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that all samples within a group are similar to one another, then ideally all of the

particle observations within that group will be predicted as similar to one another. If

the labels are kept as they currently are (each particle observation labeled with the

sample ID it belongs to), then the accuracy will be lower than what is expected. For

example, group 1 has three samples associated with it. If all the observations from

that group are predicted as similar to one another, but each observation is labeled

with the sample ID, then the accuracy that the model calculates will only be 33%

at best. The model assumes that SN014855 is different from both SN014856 and

SN014857, but will always predict all three as the same.

The alternative is to re-label every particle observation with the group it belongs

to. However, this comes with its own set of issues. One major issue is that many

samples do not fit neatly into a single group. They share attributes with many

other samples. The mixed group from the EPMA is a group of samples that fit this

description and account for approximately 35% of all of the samples used from the

EPMA dataset. Having an ‘other’ category of samples would make it difficult for

any model to zero in on what makes an ‘other’ sample belong to the ‘other’ category.

Further, many of the ‘other’ samples share characteristics with samples from many

of the other groups. This is part of what makes the mixed group mixed. This could

lead to the model finding correlations in the data that have no physical meaning.

It was ultimately decided to keep each particle observation labeled with the sample

it belongs to, not the group, with the expectation that accuracies will be lower due

to the assumed similarities between samples. Keeping this in mind, the expected

precision and recall values for both same and not-same predictions can be calculated.

Looking at same predictions, precision is the accurate same predictions divided by

the total number of same predictions. Looking at group 1 from the EPMA data, the

precision for making same predictions is then 1/3. Again, because of how the particle
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observations are labeled and the assumed similarities between samples, a model will

make a same prediction for every possible pair of observations that are from group

1, but only one third of those same predictions will be accurate, according to the

labels. This thought process can be extended to precision and recall for same and

not-same predictions for all of the groups and projects in both the TESCAN and

EPMA datasets. These expected values are shown in Tables 5 and 6.

Table 5. Estimated precision and recall for predicting both same and not-same, sepa-
rated by sample groups from the EProbe Data.

Group
Number of

Samples

Same Not-Same

Precision Recall Precision Recall

G1 3 0.33 1.0 1.0 0.98

G2 25 0.04 1.0 1.0 0.72

G3 12 0.083 1.0 1.0 0.87

G4 11 0.091 1.0 1.0 0.88

G5 2 0.5 1.0 1.0 0.99

Mixed 32 0.031 1.0 1.0 0.64

Macro Avg 0.18 1.0 1.0 0.85

Table 6. Estimated precision and recall for predicting both same and not-same, sepa-
rated by sample projects from the TESCAN Data.

Group
Number of

Samples

Same Not-Same

Precision Recall Precision Recall

G1 3 0.33 1.0 1.0 0.78

G2 7 0.14 1.0 1.0 0.33

Macro Avg 0.24 1.0 1.0 0.56
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Table 7. Projects and samples grouped by similarity.

Group Projects Sample IDs

g1 06-111 SN014855, SN014856, SN014857

g2 08-201 SN016837, SN016838, SN016839, SN016840, SN016841, SN016842

SN016843, SN016844, SN016845, SN016846, SN016847, SN016848

SN016849, SN016850

12-089 SN019688

18-167 SN024980, SN024981

10-068 SN017959

10-065 SN017952, SN017953

12-086 SN019683, SN019684, SN019685

18-167 SN024980, SN024981

18-227 SN024984

18-246 SN025079, SN025080, SN025081, SN025082, SN025083, SN025084

g3 15-210 SN022456, SN022457, SN022458, SN022459, SN022460, SN022464

16-083 SN022817, SN022818, SN022819, SN022823

16-224 SN023170, SN023172, SN023174, SN023175, SN023176, SN023177

SN023178, SN023179, SN023180, SN023181, SN023182, SN023183

SN023185, SN023186

g4 11-031 SN018800, SN018802, SN018803, SN018804, SN018805, SN018806

SN018807, SN018808, SN018809, SN018810, SN018811, SN018812

g5 15-066 SN022017, SN022018

mixed 18-158 SN024822, SN024823, SN024824, SN024825

19-312 SN026227, SN026228

12-216 SN020087, SN020088, SN020089, SN020090, SN020091, SN020092

SN020093

12-221 SN020100, SN020101, SN020102, SN020104, SN020105, SN020107

SN020109

13-241 SN020885, SN020886, SN020887, SN020888, SN020889, SN020890

SN020891, SN020892, SN020893

15-174 SN022312, SN022313, SN022314, SN022315, SN022316

17-049 SN023522, SN023523, SN023524, SN023527, SN023528, SN023531

SN023535, SN023538

18-131 SN024794, SN024795, SN024796, SN024797, SN024798, SN024799

SN024800, SN024801

18-034 SN024399, SN024400, SN024401, SN024402

10-088 SN018062, SN018064, SN018065, SN018066, SN018067, SN018068

SN018069, SN018070, SN018071, SN018072
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IV. Results & Discussion

The main purpose of this work was to determine a way to identify samples that

are similar to one another. A baseline was established by expanding upon previous

work done with traditional machine learning techniques. Then using a combination

of moment transformation and a Siamese network with triplet loss, a means of de-

termining sample similarities was established. Prior to this work, the samples were

sorted into groups based on the evaluations done by professionals within the field of

nuclear forensics. The metric of how accurately the model grouped the samples will

be discussed.

4.1 Traditional Machine Learning Techniques

The work with traditional machine learning techniques attempted to show that

samples with few observations performed significantly worse than those with many

observations. The voting classifier performed the best with an accuracy of 0.782.

Within this model, the sample with the fewest observations had an f1-score of 0.148,

whereas the sample with the most observations had an f1-score of 0.903. This trend

was seen in every model currently used in this work.

4.1.1 Principle Component Analysis

Using Principle Component Analysis, the explained variance ratio was plotted

versus the number of features shown in Fig. 4. It shows here that as few as 6 features

can be used while still maintaining most of the information, specifically, 92.9% of the

data set’s variance still lies along the principle components [16]. The elements that

were most frequently chosen as the most important are copper, uranium, oxygen, iron,

silicon, and aluminum, though their order was not always the same. This is expected
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to be highly correlated to the samples examined and will likely be different for more

diverse samples. Also, the F1-Score of all the samples with less than 1000 observations

was drastically reduced, with the logistic regression and linear discriminate analysis

models not representing those samples at all.

Figure 4. Expected Variance vs Number of Dimensions Using PCA on sample Data
Set.

4.1.2 Linear Results

The output for the linear models with the best achieved accuracy is summarized

in Table 8. These results reflect the best achieved hyper-parameters of C = 300 and

tol = 0.05. Logistic regression appears to perform better with either the TESCAN

data or EProbe data, not both. Linear discriminate analysis had a higher accuracy

than logistic regression with the combined dataset. It is also apparent that for each

scenario, the macro average was greatly below the accuracy and weighted average.

This shows that each of the linear models has a difficult time accounting for an imbal-

anced dataset. However, separating the datasets does not solve the issues since the

44



EProbe dataset performed poorly overall yet accounts for about 90% of the samples

but only about 2% of the particle observations.

Table 8. Precision, Recall, and F1-Score results for Logistic Regression (left) and Linear
Discriminate Analysis (right).

Logistic Regression Linear Discriminate Analysis

Precision Recall F1-Score Precision Recall F1-Score

E
P

ro
b

e Accuracy 0.237 Accuracy 0.149

Macro Avg 0.191 0.181 0.171 Macro Avg 0.121 0.120 0.098

Weight Avg 0.283 0.237 0.241 Weight Avg 0.172 0.149 0.133

Precision Recall F1-Score Precision Recall F1-Score

T
E

S
C

A
N Accuracy 0.615 Accuracy 0.610

Macro Avg 0.430 0.524 0.409 Macro Avg 0.389 0.448 0.372

Weight Avg 0.679 0.615 0.616 Weight Avg 0.605 0.610 0.578

Precision Recall F1-Score Precision Recall F1-Score

B
ot

h

Accuracy 0.498 Accuracy 0.587

Macro Avg 0.082 0.181 0.087 Macro Avg 0.043 0.071 0.044

Weight Avg 0.653 0.498 0.526 Weight Avg 0.597 0.587 0.566

4.1.3 Decision Trees

Next to be analyzed was a single decision tree. Figures 5, 6, and 7 plot the

accuracy versus the depth of tree for both datasets, combined and separate. The red

lines indicate where the maximum accuracy was achieved. For all three, there is an

asymptotic trend reached above a depth of 40, though the TESCAN-only data levels

off much sooner. This is likely due to large number of training observations found

within the TESCAN data. The TESCAN-only data also reaches a higher accuracy

rate. This is presumed to be a result of the model having difficulty finding a pattern

with the low number of observations found within the EProbe data. Since the total

accuracy does not change significantly above a depth of 40, this number was used

for consecutive runs. The jaggedness of the plots is the result of the model trying

to converge on a single accuracy value. This is exacerbated in early runs with the
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combined dataset, likely because of the stark difference between the two datasets.

Figure 5. Accuracy versus depth of tree
trained on EProbe data. The red lines
show where the maximum accuracy was
achieved.

Figure 6. Accuracy versus depth of tree
trained on TESCAN data. The red line
shows where the maximum accuracy was
achieved.

Figure 7. Accuracy versus depth of tree
trained on both TESCAN and EProbe
data. The red line shows where the maxi-
mum accuracy was achieved.

The results for the decision tree classifier are summarized in Table 9. The decision

tree classifier showed similar trends as the linear models; poor performance with the

EProbe data, moderate to high performance with the TESCAN data, and moderate

to high accuracy and weighted average but low macro average with the combined

dataset. Again, there is an apparent difficulty with the model dealing with imbalanced

datasets. The logistic regression model had higher scores in every metric when trained
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on the EProbe data compared to the decision tree. However, the decision tree classifier

had notably better precision, recall, and f1-scores when trained on the TESCAN

data or combined dataset. The decision tree classifier had completely better metrics

compared to linear discriminate analysis for all dataset combinations.

Table 9. Precision, Recall, and F1-Score results for a Decision Tree Classifier.

Decision Tree Classifier

Precision Recall F1-Score

E
P

ro
b

e Accuracy 0.200

Macro Avg 0.152 0.155 0.139

Weight Avg 0.226 0.200 0.196

Precision Recall F1-Score

T
E

S
C

A
N Accuracy 0.704

Macro Avg 0.502 0.498 0.500

Weight Avg 0.705 0.704 0.705

Precision Recall F1-Score

B
ot

h

Accuracy 0.680

Macro Avg 0.167 0.176 0.157

Weight Avg 0.686 0.680 0.682

The accuracy vs number of trees, for both the random forest and extra forest,

classifiers is shown in Figures 8 through 13. Again it is shown that the TESCAN-only

data performs better, though the combined dataset does has a comparable accuracy.

Though the model chose peak accuracy at a number of trees less than 100, it appears

there is an asymptotic trend as more trees are added. Because of this, and for the

sake of computational cost, the number of trees selected for consecutive runs was 50.

This resulted in a negligible loss of accuracy.
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Figure 8. Accuracy versus number of trees
for an Extra Forest classifier trained on
EProbe data.

Figure 9. Accuracy versus number of trees
for a Random Forest classifier trained on
EProbe data.

Figure 10. Accuracy versus number of
trees for an Extra Forest classifier trained
on TESCAN data.

Figure 11. Accuracy versus number of
trees for a Random Forest classifier trained
on TESCAN data.

Figure 12. Accuracy versus number of
trees for an Extra Forest classifier trained
on both EProbe and TESCAN data.

Figure 13. Accuracy versus number of
trees for a Random Forest classifier trained
on both EProbe and TESCAN data.
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A side-by-side comparison of the final results for random forest and extra forest is

shown in Table 10. This shows that both models have comparable results, though the

extra forest classifier does appear to perform slightly better on the macro average.

This indicates the extra forest model better accounts for the imbalanced nature of

the datasets. This is likely due to the randomized decision boundaries of the extra

forest classifier, which tends to lower the variance and increase the bias, giving the

model a tighter fit around the data.

Table 10. Precision, Recall, and F1-Score results for Random Forest (left) and Extra
Forest (right) classifiers.

Random Forest Extra Forest

Precision Recall F1-Score Precision Recall F1-Score

E
P

ro
b

e Accuracy 0.256 Accuracy 0.284

Macro Avg 0.210 0.194 0.183 Macro Avg 0.205 0.206 0.192

Weight Avg 0.299 0.256 0.253 Weight Avg 0.314 0.284 0.281

Precision Recall F1-Score Precision Recall F1-Score

T
E

S
C

A
N Accuracy 0.778 Accuracy 0.775

Macro Avg 0.586 0.540 0.553 Macro Avg 0.602 0.553 0.570

Weight Avg 0.766 0.778 0.768 Weight Avg 0.765 0.775 0.766

Precision Recall F1-Score Precision Recall F1-Score

B
ot

h

Accuracy 0.765 Accuracy 0.763

Macro Avg 0.253 0.217 0.209 Macro Avg 0.287 0.226 0.229

Weight Avg 0.757 0.765 0.757 Weight Avg 0.757 0.763 0.756

4.1.4 Voting Classifier

The final model used was the voting classifier. Once the hyper-parameters of each

individual model were tuned, the voting classifier was run with two different scenarios:

all models contributing, and forest based models only. The results are shown in Table

11. The forest-only voting model performed very similarly to the extra forest model,

and the small differences appear to be simple statistical deviations. The forest-only

voting classifier performed marginally better than the voting classifier with all models.
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Again, using only TESCAN data produced much higher macro average scores, and

using the EProbe data reduced the macro average scores significantly.

Table 11. Precision, Recall, and F1-Score results for a Voting Classifier using all models
(left) and forest models only (right).

All Models Forest Models Only

Precision Recall F1-Score Precision Recall F1-Score

E
P

ro
b

e Accuracy 0.243 Accuracy 0.283

Macro Avg 0.182 0.194 0.171 Macro Avg 0.211 0.219 0.198

Weight Avg 0.258 0.243 0.231 Weight Avg 0.308 0.283 0.275

Precision Recall F1-Score Precision Recall F1-Score

T
E

S
C

A
N Accuracy 0.761 Accuracy 0.780

Macro Avg 0.560 0.557 0.551 Macro Avg 0.611 0.557 0.574

Weight Avg 0.752 0.761 0.752 Weight Avg 0.770 0.780 0.771

Precision Recall F1-Score Precision Recall F1-Score

B
ot

h

Accuracy 0.743 Accuracy 0.768

Macro Avg 0.224 0.198 0.192 Macro Avg 0.261 0.223 0.221

Weight Avg 0.738 0.743 0.734 Weight Avg 0.759 0.768 0.759

The precision, recall, and f1-scores for each sample for all of the models can be

found in Appendix B. Each model tested had low macro average scores. This shows

that a dataset with few observations per sample can lead to severe limitations in

a model’s prediction capabilities. There is a large amount of data similar to the

EProbe data presented here, so it is currently impractical to rely on predictions using

traditional machine learning techniques.

4.2 Siamese Network and Triplet Loss

Due to the limitations of traditional machine learning techniques, ANNs were

examined. A Siamese network using triplet loss could be used to make more accurate

predictions on data with few observations. There is also the concept of using a moment

transformation to obtain a meta observation that represents the whole sample, which
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could help a network learn what the data is supposed to look like. Four similar Siamese

networks were constructed to test triplet loss and moment transformation. Binary

cross-entropy was used as a baseline against triplet loss, and both the binary cross-

entropy and triplet loss models were run with and without a moment transformation.

Each combination was first trained on the TESCAN data and validated using the

EProbe data. Then each combination was trained on the EProbe data and validated

using the TESCAN data. This created a total of eight different trained models that

were analyzed. The precision and recall that would be achieved through random

chance alone is shown in Table 12. Keep in mind that during validation, each possible

combination of sample pairs is sent through the model. This means there are far more

pairs of observations from different samples, so the precision values will be skewed by

how many different samples are in the dataset. For comparison, a summary of the

precision and recall of all runs is shown in Tables 13 and 14. An important thing to

remember when looking at these tables is that the sum of the precision for same and

not-same predictions does not equal one. The precision for same predictions is the

accurate same predictions over all of the same predictions. The precision for not-same

predictions is the accurate not-same predictions over all not-same predictions. The

numerator does not take into account any of the false positives or false negatives.

Table 12. The precision and recall through randomly predicting same or not-same
given every possible combination of samples.

Same Not-Same

Precision Recall Precision Recall

Validated on EProbe 0.012 0.5 0.988 0.5

Validated on TESCAN 0.1 0.5 0.9 0.5
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Table 13. Precision and Recall for predicting both same and recall not-same validated
using EProbe data.

Same Not-Same

Precision Recall Precision Recall

Expected 0.18 1.0 1.0 0.84

Random 0.012 0.5 0.988 0.5

Binary Cross-entropy
No Transformation 0.012 0.910 0.991 0.117

Binary Cross-entropy
Moment Transformation 0.049 0.993 0.999 0.775

Triplet Loss
No Transformation 0.016 0.860 0.996 0.378

Triplet Loss
Moment Transformation 0.032 0.998 0.999 0.648

Table 14. Precision and Recall for predicting both same and not-same validated using
TESCAN data.

Same Not-Same

Precision Recall Precision Recall

Expected 0.24 1.0 1.0 0.56

Random 0.1 0.5 0.9 0.5

Binary Cross-entropy
No Transformation 0.150 0.466 0.922 0.706

Binary Cross-entropy
Moment Transformation 0.299 0.184 0.913 0.952

Triplet Loss
No Transformation 0.143 0.663 0.937 0.558

Triplet Loss
Moment Transformation 0.164 0.764 0.955 0.578

The big picture will be looked at first, this involves analyzing the overall accuracy

of each model. This includes the training and validation accuracies and how they

changed over the course of training. Then the Precision, Recall, Accuracy, and F1-

Score (PRAF) of each sample within each model will be analyzed. Due to the large
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number of samples, this will be visually represented as a bar graph, and tables with

the actual values can be found in Appendix C. The final metric to be analyzed will

be how similar each sample is to one another, as predicted by the each model.

4.2.1 Trained on TESCAN and Validated with EProbe

Figures 14 through 17 show the accuracy plotted versus the training epoch. These

graphs imply that using triplet loss gives a much more stable model. The validation

accuracy using binary cross-entropy varies and does not appear to be converging

towards any single value. This was consistent across multiple runs. Using triplet

loss consistently performed better than binary cross-entropy when no transformation

was used. When the moment transformation was applied, triplet loss sometimes

performed better and sometimes performed worse. Figure 17 is an example of the

lower accuracy and Figure 18 is an example of the higher accuracy for a different run.

Due to the computational time required for each run, not enough runs were performed

to determine how often a model using moment transformation performed better than

no transformation for triplet loss. However, if this could be stabilized, then a model

using triplet loss with moment transformation would be the best performer in both

accuracy and stability. One potential way to stabilize a network using triplet loss is

to implement batch hard or semi-hard. It is recommended that any future research

work towards implementing batch hard or semi-hard. This would help the network

learn how to better differentiate the anchor-negative pairs that are very similar to the

anchor-positive pairs.

Figures 18 and 19 show the accuracy and loss, respectively, of a different triplet

loss and moment transformation run. It appears that the model is hitting a local

minimum when optimizing the loss. This trend was seen during each run using triplet

loss and moment transformation, though not always to the same degree. The margin
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Figure 14. Binary Cross-entropy with no
Transformation. Validated on TESCAN
and EProbe Data.

Figure 15. Triplet Loss with no trans-
formation. Validated on TESCAN and
EProbe Data.

Figure 16. Binary Cross-entropy with
4 moment transformation. Validated on
TESCAN and EProbe Data.

Figure 17. Triplet Loss with 4 moment
transformation. Validated on TESCAN
and EProbe Data.

for these runs was set equal to 1, so increasing this margin right from the beginning

or gradually over time would likely increase the final performance of the model.

Before looking at the PRAF scores, it is important to have an idea of what the

model should achieve. An ideal scenario would be one that achieves a recall close

to 1 when predicting same and a precision close to 1 when predicting not-same.

This would indicate two things: First, all sample pairs that are the same are always
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predicted as the same; second, only sample pairs that are different would be predicted

as not-same. The precision when predicting same and recall when predicting not-same

would depend on how many different samples are similar to one another. The more

underlying patterns amongst samples, the lower the precision will be when predicting

same, and the lower the recall will be when predicting not-same.

Figure 18. Accuracy of a model using
Triplet Loss with 4 moment transformation
versus training epoch.

Figure 19. Loss of a model using Triplet
Loss with 4 moment transformation versus
training epoch.

It is important to remember that when the model is determining accuracy, it is

comparing each sample to every other sample. This means that an accuracy similar

to random chance would be around 1
Number of samples

= 1
87
≈ 1.15% (87 samples in the

EProbe validation data). On the other hand, an accuracy that is too high implies that

the model can distinctly identify each sample, which means it would be unsuccessful

in grouping similar samples. ‘How high is too high?’ is not an easy question to answer

as it depends greatly on what sorts of meaningful connections can be found within the

data. With the six sample groups provided with the EProbe data, an initial target

accuracy could be 5
6
≈ 83%. Recall from the previous chapter Table 5, which shows

the expected precision and recall for same and not-same predictions. It is broken up

by the provided sample groups, and also shows the estimated macro average for the
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whole model. Remember that precision for predicting same is defined as the number

of correct same predictions over the total number of same predictions, and recall for

predicting not-same is the the number of correct not-same predictions over the total

number of samples that are not-same. There are two important take-aways here: as

the number of samples in a single group increases, these precision and recall values

will decrease; and is that as the number of sample groups increases, the expected

model accuracy will decrease.

The PRAF scores for triplet loss using the moment transformation are shown in

Figures 20 and 21. A thing to note when looking at these graphs is that these scores

are absolute. They do not sum to 1. It may appear as if the scores are summing

to 1, but this is not the case. For example, in Figure 20 the recall is approximately

equal to 1.0 for every sample, and the accuracy for most samples is around 0.2, so

the sum would then be around 1.2. This model combination is being highlighted for

two reasons. First, as stated the recall for predicting ‘same’ is approximately 1.0 for

every sample. This means the model always predicts correctly when it is presented

with two particle observations from the same sample (i.e. always predicts same when

the two observations are from the same sample). Put another way, the model was

not confused with what was supposed to be the same. It still had difficulties pointing

out which samples were similar to other samples, but it was always certain when two

observations represented the same sample. The second reason this model is being

highlighted is that the precision for predicting ‘not-same’ is approximately 1.0 for

every sample. This means the model may not always predict not-same, but when it

does, the two samples are different, i.e. the model always makes accurate not-same

predictions.
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Figure 20. Precision, Recall, Accuracy, and F1-Scores using ‘Same’ as truth for the model using Triplet Loss with a moment
transformation.

Figure 21. Precision, Recall, Accuracy, and F1-Scores using ‘Not-Same’ as truth for the model using Triplet Loss with a
moment transformation.
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Another way to look at these results is that the model can determine when two

particle observations represent the same sample, but it is still finding patterns and

similarities in particle observations from different samples. However, it is not going

to the extreme by assuming all particle observations have similarities. It is important

to remember that this model had never seen the EProbe data until it was tasked with

making these predictions, which means that training on the TESCAN data alone

was enough to produce a model that could distinctly characterize samples. Every

other combination (binary cross-entropy with and without moment transformation,

and triplet loss without moment transformation) was unable to achieve recall ≈ 1 for

predicting ‘same’ or precision ≈ 1 for predicting ‘not-same.’

The final metric to be analyzed is sample similarities. Only a few examples will

be shown here. Figure 22 and Table 15 show the similarities the model predicted

using triplet loss and moment transformation. This grouping of samples does not

correspond entirely to any of the groupings that were provided. It has two samples

from group 4, but it is hard to say how the mixed group relates to the other samples.

This could imply that the samples within the entire EProbe data set contain a high

enough degree of similarity that the model has difficulty accurately labeling samples

from a single group as similar. SN020890 is a single sample collected as part of

project number 2013-241. Of the other 9 samples found within this project, only

SN020891 was labeled as similar. The cause could be one of two things. Either the

model is learning erroneous patterns during training, or there are currently unknown,

underlying patterns that the model is deciphering. If the prior is true, then adjusting

the hyper parameters and improving model performance would reduce the appearance

of erroneous patterns. If the latter is true, then further knowledge of the origin of the

samples would be needed to assess the accuracy of the predicted groupings.
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Table 15. A grouping of samples that were predicted similar to SN020890 using triplet
loss and moment transformation.

Sample ID Original Group Similarity

SN020890 Mixed 1.000

SN018809 Group 4 0.494

SN018810 Group 4 0.921

SN020891 Mixed 0.515

SN025080 Group 2 0.366

SN026227 Mixed 0.058

Figure 22. A grouping of samples that were predicted similar to SN020890 using triplet
loss and moment transformation.

Another example is of sample SN023181 from group 3. Group 3 contains 12

different samples. However, the model only predicted 2 other samples from group

3 as similar to SN023181, and the similarities were predicted as very low. This is
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shown in Figure 23. It is also shown that SN026227 was predicted as most similar to

SN023181, but the reason for this is unknown.

Figure 23. A grouping of samples that were predicted similar to SN023181.

Performing this analysis in the blind, only speculations can be made as to why

the model chose these samples as similar. However, a few observations were made

when comparing samples SN020890, SN020891, and SN018810 to a different sample,

SN022458. This sample was chosen at random out of all the samples that were

deemed ‘not-similar’. SN022458 had noticeably more iron (7.78% average versus

4.68% maximum), more magnesium (5.12% average versus 1.54% maximum), and

less uranium (0.157% average versus 70-80% average). It was also the only sample

out of these four to contain any of the following elements: Ba, Bi, Ce, Dy, Hf, La,

Nd, Pr, Sc, Sr, Th, Y, Yb, Zr. Taking the ratio of average zirconium to average

hafnium gives a value of about 37.4. This falls within the range of ratios for the

natural abundances of these two elements. This, along with the low uranium content

and diverse range of elements present, imply that SN022458 could contain a sizable
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portion of natural soil. Whether it contains only natural soil or is an anthropogenic

product is uncertain. Further, this grouping was chosen because it was the simplest

grouping. For example, sample SN014856 is from group 1, which contains 3 different

samples, and sample SN018804 is from group 4, which contains 12 different samples.

Figures 24 and 25 show that the model sometimes over associates samples to one

another. The model predicted nearly all the samples present in the EProbe data as

similar to both SN014856 and SN018804. Binary cross-entropy and triplet loss with

no transformations trended towards having all samples similar to one another. Using

the moment transformation appears to have added distinction to the data that the

models could more easily register. This trend was seen during all runs and it does not

appear that any predicted groupings made by the models coincide with the provided

groupings.
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Figure 24. A grouping of samples that were predicted similar to SN014856 using triplet loss and moment transformation.

Figure 25. A grouping of samples that were predicted similar to SN018804 using triplet loss and moment transformation.
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4.2.2 Trained on EProbe and Validated with TESCAN

Figures 26 through 29 show the accuracies plotted versus the training epoch.

These graphs show that a model trained on the EProbe data and using triplet loss has

worse performance when compared to binary cross-entropy loss. Again, implementing

batch hard or semi-hard could resolve this performance issue. However, these graphs

do show that a moment transformation improves the performance of the model, which

agrees with the models trained on TESCAN data and validated with EProbe. Binary

cross-entropy also appears more stable in this scenario.
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Figure 26. Binary Cross-entropy with no
Transformation.

Figure 27. Triplet Loss with no transfor-
mation.

Figure 28. Binary Cross-entropy with 4
moment transformation.

Figure 29. Triplet Loss with 4 moment
transformation.

Figures 30 and 31 show the accuracy and loss, respectively, of a different triplet

loss and moment transformation run. Unlike before, the loss does not appear to

decrease noticeably over the course of training. Instead it appears that the model

is constantly trying to find a better solution by decreasing the loss, but is unable

to figure out what that solution is. The issue here appears to be that the model

is overfitting on the low variance EProbe data, so making predictions on the higher

variance TESCAN data is difficult for the model.
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Figure 30. Accuracy of a model using
Triplet Loss with 4 moment transformation
versus training epoch.

Figure 31. Loss of a model using Triplet
Loss with 4 moment transformation versus
training epoch.

It is difficult to compare accuracies between this scenario (training on EProbe and

validation on TESCAN) and the previous one (training on TESCAN and validation

on EProbe). Random chance accuracy on the previous scenario is approximately

1.15%, whereas this scenario has fewer samples during the validation runs (87 versus

10). A random chance accuracy for this scenario is 1
10

= 10%. Binary cross-entropy

with moment transformation had consistently better accuracy during each scenario,

so a relative ratio can be obtained by taking the peak accuracy for that model over

the random chance accuracy. This scenario gives a ratio of 87.5
10

= 8.75. The previous

scenario gives a ratio of approximately 79
1.15
≈ 68.7. This implies that the previous

scenario has a better relative accuracy. However, each scenario provides its own

strengths and weaknesses, and this ratio is only a single metric that can be used to

measure success.

The PRAF scores for triplet loss using the moment transformation are shown in

Figures 32 and 33. This model combination is being highlighted for similar reasons as

in the previous scenario. Its micro average for recall when predicting ‘same’ is 0.75,

which is the highest amongst the models examined. This means the model more
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frequently predicts correctly when it is presented with two particle observations from

the same sample. Its micro average for precision when predicting ‘not-same’ is 0.94,

which is again the highest amongst the models examined. As in, the model more fre-

quently makes accurate not-same predictions. These values are distinctly lower than

from the previous scenario, which implies that the models have a more difficult time

learning from the EProbe data. Binary cross-entropy with moment transformation

had a distinctly higher accuracy in this scenario, so it is important to compare that

model to triplet loss with moment transformation. The precision and recall micro

average when predicting ‘not-same’ is 0.92 and 0.94, respectively. The precision and

recall micro average when predicting ‘same’ is 0.35 and 0.27, respectively. This model

made a total of 92,066 not-same predictions and 7,934 same predictions. This implies

that the model was very efficient at predicting not-same, but far less efficient when

predicting same. However, during validation the models were forced to make far

more not-same predictions, which skewed the accuracies in favor of making correct

not-same predictions. The model using binary cross-entropy with triplet loss had

higher accuracy simply because it was more likely to make not-same predictions.
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Figure 32. Precision, Recall, Accuracy, and F1-Scores using ‘Same’ as truth for the
model using Triplet Loss with a moment transformation.

Figure 33. Precision, Recall, Accuracy, and F1-Scores using ‘Not-Same’ as truth for
the model using Triplet Loss with a moment transformation.
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It is no surprise that the model using binary cross-entropy with moment transfor-

mation did not produce high similarity scores. The two samples the model predicted

as most similar were SN025333 and SN025334 with roughly a 50% similarity. Both

of these samples originate from Project 2018-204 implying there may be a correla-

tion in their origin. All other samples were predicted at less than 40% similarity to

every other sample. With a few exceptions, the general trend was for the model to

predict samples from the same project as similar, which is the desired outcome for

these models. On the other hand, the model using triplet loss with moment transfor-

mation gave a wide range of predicted similarities, and every sample was predicted

as similar to each other sample to some degree. Further, there did not appear to be

a higher association between samples originating from the same project. There did

not appear to be any trend for which samples were predicted as similar. As before,

the cause could be one of two things. Either the model is learning erroneous patterns

during training, or there are currently unknown, underlying patterns that the model

is deciphering. It is difficult to ascertain any underlying patterns without additional

information regarding the sample origins. This, along with the large number of par-

ticle observations found in the TESCAN data, make it difficult to analyze the quality

of these similarity predictions. When training on EProbe data and validating on

TESCAN data, binary cross-entropy appears to be stronger at associating accurate

similarities. An example of similarities from each model is shown in Figures 34 and

35.
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Figure 34. A grouping of samples that were predicted similar to SN025333 using
binary cross-entropy and moment transformation.

Figure 35. A grouping of samples that were predicted similar to SN025333 using
triplet loss and moment transformation.
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V. Conclusion

There is a great deal of interest in figuring out a means to quickly relate sam-

ples with measured physical properties to one another. A common proposal is to

use machine learning techniques to discern patterns that are difficult for humans to

distinguish in a reasonable amount of time. For the nuclear forensics community,

traditional machine learning techniques, such as linear models and decision tree clas-

sifiers, have been used to relate specific particle observations to the samples they

belong to. However, this does not solve the issue of figuring out how similar two dif-

ferent samples are to one another. This research proposed using a Siamese network

with triplet loss to predict sample similarities based on individual observations. An

important step in accomplishing this was to apply a moment transformation to the

data. This provided a means to load balance the data and encapsulate the essence

of the data into a few meta observations. The Siamese network was then trained

separately on two distinct elemental assay datasets that represent what is often seen

in nuclear forensics.

5.1 Research Conclusions

There were two important outcomes of a model using moment transformation and

trained on the TESCAN data. The first was that almost every time the model was

presented with a pair of observations from the same sample it predicted same. The

second was that almost every time the model predicted not-same it was a correct

prediction. Both of these together indicate that using moment transformation will

give reliable predictions of two observations from different samples as being different.

As in, if the model gives a not-same prediction, there is assurance that the prediction

is correct.
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The moment transformation was originally meant to set up the data to be used

in a one-shot learning method. A single particle observation, especially in a dataset

similar to the TESCAN data, does not always represent the whole sample. However,

when a sample is collected there is never a guarantee that a large number of particle

observations can be obtained, so this transformation was meant to level the playing

field and holistically represent a sample. In all but one scenario presented, using a

moment transformation appeared to be beneficial and increased all the PRAF scores

of each model. The one exception to this is when the model using binary cross-

entropy with moment transformation was trained on the EProbe data. The recall

for predicting same was significantly lower when compared to no transformation.

This is likely due to the very low variance seen in the EProbe data. The model

erroneously learns that samples are very distinct and will never have much in the way

of typical background soil concentrations. When this model was validated using the

TESCAN data, it was unsure how to handle the large variance seen in that dataset.

When validating on TESCAN data, guessing same on every combination would give

a precision and recall for predicting same of 0.1 and 1.0, respectively. Based on this,

the model using binary cross-entropy predicted a large number of observation pairs

from the same sample as different. In contrast, this model did achieve the highest

precision for predicting same out of all models and scenarios looked at. This says

that the model was more likely to make not-same predictions, but when it did make

a same prediction it was much more accurate than the other models. This is the

opposite of the goal of this research. It is preferred that a model find patterns and

connections between different samples and predict same more often. So if using a

model with binary cross-entropy and moment transformation, it is not recommended

to train it on EProbe-like data alone.

In contrast, a model using binary cross-entropy with no transformation is only
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marginally better than random chance. When trained on the EProbe data, this

model trended towards an increased recall for not-same predictions, but this could

be a predisposition for predicting not-same. When trained on the TESCAN data,

the model predicted same much more often, however it does not appear that those

predictions were any better than random. It would not be recommended to use a

model with binary cross-entropy with no transformation unless a lot of work could

be done to the network architecture to improve the PRAF scores.

Despite these drawback with binary cross-entropy, a model using triplet loss

showed a great deal of potential. As mentioned, a model that predicts same more

often would be more likely to find the underlying patterns amongst the samples,

which is how the triplet loss models behaved. The models using triplet loss achieved

much higher recall scores for predicting same and higher precision scores for predict-

ing not-same, when compared to binary cross-entropy. However, in its current state,

the models using triplet loss are not free of issues as they were somewhat volatile.

It appeared that local minima were hit when performing the gradient descent dur-

ing training. With no transformation, the precision for predicting both same and

not-same was higher than random chance, the recall for predicting same was signifi-

cantly greater than random chance, and the recall for predicting not-same at or below

random chance. All this says that triplet loss by itself is not necessarily a strong pre-

dictor. When the moment transformation was used, all the PRAF scores increased to

a point noticeably greater than random chance. It did trend towards a lower accuracy

compared to the model with binary cross-entropy using moment transformation, but

again, binary cross-entropy using moment transformation trended towards not-same

prediction. In short, the models using triplet loss still need some optimization before

they can achieve higher PRAF scores. However, they were much more versatile in

what data they could be trained on as they performed more consistently across the
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two datasets.

When comparing the Siamese networks to the traditional machine learning tech-

niques, it is difficult to directly compare the success metrics. The traditional machine

learning techniques used are classifiers which attempt to place an observation into a

known category, whereas the Siamese network simply predicts how similar one obser-

vation is to another. The Siamese network had generally higher macro average scores

for both datasets. The exception is the precision for predicting same. However, this

does not specifically indicate a worse performing model. The Siamese network is

not attempting to categorize the observations, it is simply giving a similarity score,

which is the true strength of the Siamese network. The traditional machine learning

techniques explored require prior knowledge of the categories that the training sam-

ples belong to, which is not true for the Siamese network. The prediction it makes

comes from how the similarity score relates to the threshold and margin hyper pa-

rameters. Optimizing these hyper parameters would likely increase the performance

of the Siamese network.

5.2 Recommendations for Application

The model using binary cross-entropy made more meaningful connections when

trained on the EProbe data. Conversely, the model using triplet loss made more

meaningful connections when trained on the TESCAN data. These two datasets can

be thought of as opposite extremes, and any database will likely contain a spectrum

of such datasets. As such, it would be beneficial to use both loss functions during

real world applications until improvements could be made to the triplet loss function.

Additionally, setting aside a test set from the known samples is crucial in ensuring

the trained model is working as intended, and should be done before any unknown

samples are fed through the network.
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When putting these models into practice, there needs to be a mindful consideration

of what type of data is being fed through the models. The models were trained using

elemental assay data, and the samples collected are suspected to contain at least

some trace remnant of a byproduct originating from some part of the nuclear fuel

cycle. Deviation from this type of sample, to include isotopic assays, could lead to

a trained model that outputs little to no meaningful results. Additional research

would need to be conducted to verify a model trained using alternate types of data.

However, staying within the realm of elemental assays, a model using these techniques

could prove very useful in determining sample origins. Using moment transformation,

these samples can be analyzed more holistically and compared to one another at a

gross level, and any unknown sample that is deemed similar to a known sample from

a database will be more likely to share characteristics with that known database

sample. In its current state, it is still important to review any prediction made by

the models, but these techniques could reduce analysis time and effort by directing

focus to more meaningful samples.

This leads into the types of data that should be used during training. The TES-

CAN data appears to contain more than just particles of interest. There are en-

vironmental signatures that increase the variability within a single sample, which

gives the model a more diverse sense of what makes the sample unique. This is a

likely contributor to the higher PRAF scores seen when training on the TESCAN

data. However, datasets similar to the EProbe data are more common and will likely

be the main contributing factor when training a model. Because of this, it may be

prudent to provide the model samples that are known to contain nothing of interest

during training. This could give an indication of which samples contain some amount

of environmental signatures, or potentially indicate which unknown samples contain

nothing of interest. Additionally, it could prove useful to train the model using a di-
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verse set of distinct samples. The more sample origins a model can distinctly identify

during training, the better equipped the model will be at accurately attributing an

unknown sample to a known sample.

5.3 Future Work

One intent of this research was to implement a triplet loss using batch hard or

semi-hard, however this was not completed. It is recommended that a correct imple-

mentation of batch hard be researched. This could overcome the local minima that

the triplet loss network appears to be getting stuck in, and it could help the model

converge much sooner. This would reduce the mount of time required for training the

network while still providing accurate results.

Using a moment transformation generally showed improvements to the prediction

capabilities. However, this was a placeholder for a potentially more capable transfor-

mation technique. There is the option for using a different number of moments, and

how many moments are required to give good results. Looking more broadly, a set

invariant transformation is not limited to using moments. Looking into set invariance

and finding a transformation technique that is especially effective with the data found

in this research could prove very useful.

It was shown that the type of dataset that was used to train the network could

drastically influence the prediction capabilities of the network. Experimenting with

the type of dataset and the samples found within is important in order to understand

the limitations of any machine learning technique. It is nice to imagine that there

is a one-size-fits-all solution, but practically speaking it is not realistic to expect one

tool to do every job. More research into how the datasets influence the network and

how to overcome those hurdles is recommended.

Much of this research was meant as a proof of concept. As such the Siamese
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network used, and all the relating hyper parameters, have a great deal of room for

optimization. The threshold and margin hyper parameters were not optimized much

and could be tuned alongside a batch hard process to increase the capabilities of using

triplet loss. The network itself is simple, and in the grand scheme of deep learning,

not that deep. With many corporate ANNs being hundreds of layers deep, it should

not be expected for a three layer deep network to adequately compete. There are

countless possible network combinations, so there is plenty of room for this network

to be improved.
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Appendix A. Data Summary

Table 16. Project TESCAN data summary.
*This represents the total number of unique elemental features and each project will
have overlapping features with other projects.

Project ID Sample ID Particle Observations Elemental Features

2017-162

SN023729 601 36

SN023730 15,191 36

SN023731 4,429 36

Subtotal 3 Samples 20,221 36

2018-204

SN025331 2,538 39

SN025332 19,013 39

SN025333 2,620 39

SN025334 391 39

SN025335 1,262 39

SN025336 13,605 39

SN025337 18,814 39

Subtotal 7 Samples 58,243 39

Total 10 Samples 78,464 40*
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Table 17. Project EProbe data summary.
*This represents the total number of unique elemental features and each project will
have overlapping features with other projects.

Group Project ID Sample ID
Particle

Observations
Elemental
Features

g1 06-111

SN014855 16 14

SN014856 19 17

SN014857 2 12

g4 11-031

SN018800 8 1

SN018802 17 23

SN018803 18 20

SN018804 15 15

SN018805 19 20

SN018806 16 20

SN018807 22 20

SN018808 20 16

SN018809 16 22

SN018810 17 18

SN018811 18 20

SN018812 19 19

g5 15-066
SN022017 28 16

SN022018 16 15
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Continuation of Table 17

Group Project ID Sample ID
Particle

Observations
Elemental
Features

g2

08-201

SN016837 12 2

SN016838 25 17

SN016839 22 23

SN016840 12 2

SN016841 26 24

SN016842 20 23

SN016843 24 4

SN016844 25 17

SN016845 20 35

SN016846 19 8

SN016847 28 20

SN016848 19 25

SN016849 27 21

SN016850 12 11

12-089 SN019688 20 28

18-167
SN024980 15 10

SN024981 16 10

10-068 SN017959 8 15

10-065
SN017952 19 18

SN017953 23 18

12-086

SN019683 16 19

SN019684 14 18

SN019685 21 12
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Continuation of Table 17

Group Project ID Sample ID
Particle

Observations
Elemental
Features

g2

18-167
SN024980 15 10

SN024981 16 10

18-227 SN024984 8 10

18-246

SN025079 19 9

SN025080 18 34

SN025081 23 27

SN025082 16 20

SN025083 18 28

SN025084 22 25
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Continuation of Table 17

Group Project ID Sample ID
Particle

Observations
Elemental
Features

g3

15-210

SN022456 11 1

SN022457 17 3

SN022458 28 12

SN022459 29 22

SN022460 26 5

SN022464 11 4

16-083

SN022817 23 20

SN022818 7 10

SN022819 10 1

SN022823 10 5

16-224

SN023170 26 5

SN023172 10 1

SN023174 12 1

SN023175 32 15

SN023176 35 20

SN023177 27 15

SN023178 26 4

SN023179 28 13

SN023180 26 17

SN023181 15 18

SN023182 29 5

SN023183 11 20

SN023185 30 15

SN023186 28 6
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Continuation of Table 17

Group Project ID Sample ID
Particle

Observations
Elemental
Features

mixed

18-158

SN024822 11 1

SN024823 15 6

SN024824 31 21

SN024825 25 12

19-312
SN026227 37 23

SN026228 18 20

12-216

SN020087 18 3

SN020088 13 1

SN020089 18 2

SN020090 23 7

SN020091 17 3

SN020092 15 5

SN020093 20 4

12-221

SN020100 15 2

SN020101 15 2

SN020102 13 22

SN020104 19 10

SN020105 10 12

SN020107 26 18

SN020109 20 13
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Continuation of Table 17

Group Project ID Sample ID
Particle

Observations
Elemental
Features

mixed

13-241

SN020885 8 1

SN020886 18 3

SN020887 18 4

SN020888 13 1

SN020889 14 16

SN020890 12 24

SN020891 14 20

SN020892 23 18

SN020893 21 14

15-174

SN022312 10 2

SN022313 13 6

SN022314 23 5

SN022315 25 6

SN022316 27 20

17-049

SN023522 15 3

SN023523 20 22

SN023524 17 20

SN023527 28 10

SN023528 14 2

SN023531 27 20

SN023535 22 11

SN023538 22 14
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Continuation of Table 17

Group Project ID Sample ID
Particle

Observations
Elemental
Features

mixed

18-131

SN024794 24 9

SN024795 29 14

SN024796 24 3

SN024797 35 20

SN024798 30 10

SN024799 32 18

SN024800 30 20

SN024801 31 13

18-034

SN024399 17 1

SN024400 31 12

SN024401 34 20

SN024402 30 16

10-088

SN018062 14 2

SN018064 22 17

SN018065 11 9

SN018066 14 3

SN018067 14 2

SN018068 22 12

SN018069 22 9

SN018070 18 6

SN018071 10 2

SN018072 24 9

End of Table
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Appendix B. Traditional Machine Learning PRAF Scores

Table 18. Precision, Recall, Accuracy, and F1-Scores for Logistic Regression trained
on EProbe Data.

Sample ID Precision Recall F1-Score Support

SN014855 1.000 0.800 0.889 5

SN014856 0.667 0.500 0.571 8

SN014857 0.222 1.000 0.364 4

SN016837 0.000 0.000 0.000 1

SN016838 0.333 0.250 0.286 8

SN016839 0.375 0.429 0.400 7

SN016840 0.000 0.000 0.000 0

SN016841 0.000 0.000 0.000 9

SN016842 0.125 0.154 0.138 13

SN016843 0.000 0.000 0.000 1

SN016844 0.000 0.000 0.000 9

SN016845 0.250 0.154 0.190 13

SN016846 0.000 0.000 0.000 2

SN016847 0.000 0.000 0.000 10

SN016848 0.250 0.222 0.235 9

SN016849 0.167 0.143 0.154 7

SN016850 0.091 0.333 0.143 3

SN017952 0.750 0.300 0.429 10

SN017953 0.000 0.000 0.000 7

SN017955 0.500 0.500 0.500 6

SN017956 0.267 0.667 0.381 6

SN017959 1.000 0.444 0.615 9

SN018062 0.000 0.000 0.000 1

SN018064 0.000 0.000 0.000 11

SN018065 0.500 0.500 0.500 4

SN018066 0.000 0.000 0.000 1

SN018068 0.500 0.143 0.222 7

SN018069 0.077 0.250 0.118 4

SN018070 0.000 0.000 0.000 3

SN018071 0.000 0.000 0.000 1

SN018072 0.000 0.000 0.000 2
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Continuation of Table 18

Sample ID Precision Recall F1-Score Support

SN018800 0.000 0.000 0.000 1

SN018802 0.667 0.182 0.286 11

SN018803 0.750 0.643 0.692 14

SN018804 0.333 0.333 0.333 3

SN018805 0.111 0.111 0.111 9

SN018806 0.500 0.286 0.364 7

SN018807 0.600 0.429 0.500 7

SN018808 0.000 0.000 0.000 4

SN018809 0.600 0.429 0.500 7

SN018810 0.667 0.333 0.444 6

SN018811 0.800 0.571 0.667 7

SN018812 0.250 0.286 0.267 7

SN019683 0.375 0.375 0.375 8

SN019684 0.000 0.000 0.000 9

SN019685 0.000 0.000 0.000 7

SN019688 0.400 0.118 0.182 17

SN020087 0.000 0.000 0.000 0

SN020088 0.000 0.000 0.000 0

SN020089 0.000 0.000 0.000 1

SN020090 0.000 0.000 0.000 3

SN020091 0.000 0.000 0.000 2

SN020092 0.000 0.000 0.000 3

SN020093 0.000 0.000 0.000 1

SN020100 0.000 0.000 0.000 2

SN020101 0.000 0.000 0.000 1

SN020102 0.143 0.111 0.125 9

SN020104 0.000 0.000 0.000 3

SN020105 0.167 0.250 0.200 4

SN020107 0.250 0.250 0.250 4

SN020109 0.000 0.000 0.000 5

SN020885 0.000 0.000 0.000 0

SN020886 0.000 0.000 0.000 1

SN020887 0.000 0.000 0.000 2

SN020888 0.000 0.000 0.000 1
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Continuation of Table 18

Sample ID Precision Recall F1-Score Support

SN020889 0.000 0.000 0.000 2

SN020890 0.286 0.167 0.211 12

SN020891 0.300 0.667 0.414 9

SN020892 0.000 0.000 0.000 6

SN020893 0.200 0.200 0.200 5

SN022017 0.200 0.250 0.222 4

SN022018 0.286 0.222 0.250 9

SN022312 0.000 0.000 0.000 0

SN022313 0.200 0.500 0.286 2

SN022314 0.000 0.000 0.000 1

SN022315 0.000 0.000 0.000 3

SN022316 0.000 0.000 0.000 9

SN022457 0.000 0.000 0.000 0

SN022458 0.000 0.000 0.000 4

SN022459 0.400 0.250 0.308 8

SN022460 0.000 0.000 0.000 2

SN022464 0.333 0.500 0.400 2

SN022817 0.000 0.000 0.000 4

SN022818 0.172 1.000 0.294 5

SN022819 0.000 0.000 0.000 1

SN022823 0.200 0.333 0.250 3

SN023170 0.000 0.000 0.000 3

SN023172 0.000 0.000 0.000 1

SN023175 0.000 0.000 0.000 6

SN023176 0.400 0.200 0.267 10

SN023177 0.250 0.286 0.267 7

SN023178 0.000 0.000 0.000 2

SN023179 0.000 0.000 0.000 3

SN023180 0.000 0.000 0.000 6

SN023181 0.750 0.500 0.600 6

SN023182 0.000 0.000 0.000 4

SN023183 0.833 0.833 0.833 6

SN023185 0.125 0.200 0.154 5

SN023186 0.000 0.000 0.000 4
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Continuation of Table 18

Sample ID Precision Recall F1-Score Support

SN023522 0.000 0.000 0.000 0

SN023523 0.333 0.167 0.222 6

SN023524 0.000 0.000 0.000 11

SN023527 0.000 0.000 0.000 5

SN023528 0.000 0.000 0.000 0

SN023531 0.000 0.000 0.000 8

SN023535 0.000 0.000 0.000 5

SN023538 0.000 0.000 0.000 2

SN024399 0.000 0.000 0.000 1

SN024400 0.000 0.000 0.000 4

SN024401 0.000 0.000 0.000 5

SN024402 0.200 0.143 0.167 7

SN024794 0.000 0.000 0.000 4

SN024795 0.250 0.250 0.250 4

SN024796 0.000 0.000 0.000 1

SN024797 0.250 0.125 0.167 8

SN024798 0.000 0.000 0.000 2

SN024799 0.000 0.000 0.000 9

SN024800 0.000 0.000 0.000 7

SN024801 0.500 0.250 0.333 4

SN024822 0.000 0.000 0.000 1

SN024823 0.000 0.000 0.000 3

SN024824 0.222 0.222 0.222 9

SN024825 0.000 0.000 0.000 3

SN024980 0.333 1.000 0.500 2

SN024981 0.500 0.167 0.250 6

SN024984 0.714 0.833 0.769 6

SN025079 0.333 0.333 0.333 3

SN025080 0.846 0.733 0.786 15

SN025081 0.571 0.444 0.500 9

SN025082 0.000 0.000 0.000 7

SN025083 0.500 0.400 0.444 15

SN025084 0.200 0.250 0.222 8

SN026227 0.500 0.455 0.476 11
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Continuation of Table 18

Sample ID Precision Recall F1-Score Support

SN026228 0.778 0.875 0.824 8

accuracy 0.237 700

macro avg 0.191 0.181 0.171 700

weighted avg 0.283 0.237 0.241 700

End of Table

Table 19. Precision, Recall, Accuracy, and F1-Scores for Linear Discriminate Analysis
trained on EProbe Data.

Sample ID Precision Recall F1-Score Support

SN014855 0.800 0.800 0.800 5

SN014856 0.800 0.500 0.615 8

SN014857 0.200 1.000 0.333 4

SN016837 0.000 0.000 0.000 1

SN016838 0.000 0.000 0.000 8

SN016839 0.167 0.143 0.154 7

SN016841 0.000 0.000 0.000 9

SN016842 0.125 0.154 0.138 13

SN016843 0.000 0.000 0.000 1

SN016844 0.000 0.000 0.000 9

SN016845 0.200 0.231 0.214 13

SN016846 0.111 0.500 0.182 2

SN016847 0.000 0.000 0.000 10

SN016848 0.100 0.111 0.105 9

SN016849 0.500 0.143 0.222 7

SN016850 0.000 0.000 0.000 3

SN017952 0.000 0.000 0.000 10

SN017953 0.000 0.000 0.000 7

SN017955 0.200 0.500 0.286 6

SN017956 0.286 0.333 0.308 6

SN017959 0.571 0.444 0.500 9

SN018062 0.000 0.000 0.000 1

SN018064 0.000 0.000 0.000 11
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Continuation of Table 19

Sample ID Precision Recall F1-Score Support

SN018065 0.375 0.750 0.500 4

SN018066 0.000 0.000 0.000 1

SN018068 0.000 0.000 0.000 7

SN018069 0.040 0.250 0.069 4

SN018070 0.000 0.000 0.000 3

SN018071 0.000 0.000 0.000 1

SN018072 0.000 0.000 0.000 2

SN018800 0.000 0.000 0.000 1

SN018802 0.000 0.000 0.000 11

SN018803 0.000 0.000 0.000 14

SN018804 0.000 0.000 0.000 3

SN018805 0.000 0.000 0.000 9

SN018806 0.000 0.000 0.000 7

SN018807 0.500 0.143 0.222 7

SN018808 0.000 0.000 0.000 4

SN018809 0.143 0.143 0.143 7

SN018810 0.200 0.167 0.182 6

SN018811 0.667 0.571 0.615 7

SN018812 0.000 0.000 0.000 7

SN019683 0.000 0.000 0.000 8

SN019684 0.200 0.222 0.211 9

SN019685 0.000 0.000 0.000 7

SN019688 0.000 0.000 0.000 17

SN020087 0.000 0.000 0.000 0

SN020088 0.000 0.000 0.000 0

SN020089 0.000 0.000 0.000 1

SN020090 0.000 0.000 0.000 3

SN020091 0.000 0.000 0.000 2

SN020092 0.000 0.000 0.000 3

SN020093 0.000 0.000 0.000 1

SN020100 0.000 0.000 0.000 2

SN020101 0.000 0.000 0.000 1

SN020102 0.000 0.000 0.000 9

SN020104 0.000 0.000 0.000 3
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Continuation of Table 19

Sample ID Precision Recall F1-Score Support

SN020105 0.000 0.000 0.000 4

SN020107 0.500 0.250 0.333 4

SN020109 0.000 0.000 0.000 5

SN020886 0.000 0.000 0.000 1

SN020887 0.000 0.000 0.000 2

SN020888 0.000 0.000 0.000 1

SN020889 0.000 0.000 0.000 2

SN020890 0.154 1.000 0.267 12

SN020891 0.000 0.000 0.000 9

SN020892 0.000 0.000 0.000 6

SN020893 0.071 0.200 0.105 5

SN022017 0.000 0.000 0.000 4

SN022018 0.000 0.000 0.000 9

SN022312 0.000 0.000 0.000 0

SN022313 0.067 0.500 0.118 2

SN022314 0.000 0.000 0.000 1

SN022315 0.000 0.000 0.000 3

SN022316 0.250 0.111 0.154 9

SN022456 0.000 0.000 0.000 0

SN022457 0.000 0.000 0.000 0

SN022458 0.000 0.000 0.000 4

SN022459 0.500 0.125 0.200 8

SN022460 0.000 0.000 0.000 2

SN022464 0.083 1.000 0.154 2

SN022817 0.000 0.000 0.000 4

SN022818 0.000 0.000 0.000 5

SN022819 0.000 0.000 0.000 1

SN022823 0.091 0.333 0.143 3

SN023170 0.000 0.000 0.000 3

SN023172 0.000 0.000 0.000 1

SN023175 0.000 0.000 0.000 6

SN023176 1.000 0.100 0.182 10

SN023177 0.500 0.143 0.222 7

SN023178 0.000 0.000 0.000 2
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Continuation of Table 19

Sample ID Precision Recall F1-Score Support

SN023179 0.000 0.000 0.000 3

SN023180 0.000 0.000 0.000 6

SN023181 1.000 0.333 0.500 6

SN023182 0.000 0.000 0.000 4

SN023183 0.800 0.667 0.727 6

SN023185 0.125 0.200 0.154 5

SN023186 0.000 0.000 0.000 4

SN023523 0.000 0.000 0.000 6

SN023524 0.267 0.364 0.308 11

SN023527 0.000 0.000 0.000 5

SN023528 0.000 0.000 0.000 0

SN023531 0.000 0.000 0.000 8

SN023535 0.000 0.000 0.000 5

SN023538 0.000 0.000 0.000 2

SN024399 0.000 0.000 0.000 1

SN024400 0.037 0.250 0.065 4

SN024401 0.000 0.000 0.000 5

SN024402 0.000 0.000 0.000 7

SN024794 0.000 0.000 0.000 4

SN024795 0.000 0.000 0.000 4

SN024796 0.000 0.000 0.000 1

SN024797 0.000 0.000 0.000 8

SN024798 0.000 0.000 0.000 2

SN024799 0.000 0.000 0.000 9

SN024800 0.333 0.429 0.375 7

SN024801 0.000 0.000 0.000 4

SN024822 0.000 0.000 0.000 1

SN024823 0.333 0.333 0.333 3

SN024824 0.000 0.000 0.000 9

SN024825 0.000 0.000 0.000 3

SN024980 0.000 0.000 0.000 2

SN024981 0.167 0.333 0.222 6

SN024984 0.667 0.333 0.444 6

SN025079 0.000 0.000 0.000 3
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Continuation of Table 19

Sample ID Precision Recall F1-Score Support

SN025080 0.500 0.400 0.444 15

SN025081 0.300 0.333 0.316 9

SN025082 0.000 0.000 0.000 7

SN025083 0.333 0.200 0.250 15

SN025084 0.600 0.375 0.462 8

SN026227 0.333 0.091 0.143 11

SN026228 0.750 0.375 0.500 8

accuracy 0.149 700

macro avg 0.121 0.120 0.098 700

weighted avg 0.172 0.149 0.133 700

End of Table

Table 20. Precision, Recall, Accuracy, and F1-Scores for Decision Tree Classifier trained
on EProbe Data.

Sample ID Precision Recall F1-Score Support

SN014855 0.500 0.600 0.545 5

SN014856 0.714 0.625 0.667 8

SN014857 0.400 1.000 0.571 4

SN016837 0.000 0.000 0.000 1

SN016838 0.000 0.000 0.000 8

SN016839 0.000 0.000 0.000 7

SN016840 0.000 0.000 0.000 0

SN016841 0.000 0.000 0.000 9

SN016842 0.250 0.154 0.190 13

SN016843 0.000 0.000 0.000 1

SN016844 0.200 0.111 0.143 9

SN016845 0.071 0.077 0.074 13

SN016846 0.000 0.000 0.000 2

SN016847 0.182 0.200 0.190 10

SN016848 0.000 0.000 0.000 9

SN016849 0.182 0.286 0.222 7

SN016850 0.111 0.333 0.167 3
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Continuation of Table 20

Sample ID Precision Recall F1-Score Support

SN017952 0.000 0.000 0.000 10

SN017953 0.000 0.000 0.000 7

SN017955 0.222 0.333 0.267 6

SN017956 0.250 0.167 0.200 6

SN017959 1.000 0.444 0.615 9

SN018062 0.000 0.000 0.000 1

SN018064 0.200 0.091 0.125 11

SN018065 0.400 0.500 0.444 4

SN018066 0.000 0.000 0.000 1

SN018067 0.000 0.000 0.000 0

SN018068 0.143 0.143 0.143 7

SN018069 0.000 0.000 0.000 4

SN018070 0.000 0.000 0.000 3

SN018071 0.000 0.000 0.000 1

SN018072 0.200 0.500 0.286 2

SN018800 0.000 0.000 0.000 1

SN018802 0.250 0.091 0.133 11

SN018803 0.000 0.000 0.000 14

SN018804 0.000 0.000 0.000 3

SN018805 0.000 0.000 0.000 9

SN018806 0.500 0.571 0.533 7

SN018807 0.250 0.571 0.348 7

SN018808 0.000 0.000 0.000 4

SN018809 0.200 0.429 0.273 7

SN018810 0.000 0.000 0.000 6

SN018811 0.833 0.714 0.769 7

SN018812 0.286 0.286 0.286 7

SN019683 0.333 0.125 0.182 8

SN019684 0.111 0.111 0.111 9

SN019685 0.000 0.000 0.000 7

SN019688 0.000 0.000 0.000 17

SN020087 0.000 0.000 0.000 0

SN020088 0.000 0.000 0.000 0

SN020089 0.000 0.000 0.000 1
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Continuation of Table 20

Sample ID Precision Recall F1-Score Support

SN020090 0.000 0.000 0.000 3

SN020091 0.000 0.000 0.000 2

SN020092 0.000 0.000 0.000 3

SN020093 0.000 0.000 0.000 1

SN020100 0.000 0.000 0.000 2

SN020101 0.000 0.000 0.000 1

SN020102 0.333 0.222 0.267 9

SN020104 0.250 0.333 0.286 3

SN020105 0.000 0.000 0.000 4

SN020107 0.000 0.000 0.000 4

SN020109 0.000 0.000 0.000 5

SN020885 0.000 0.000 0.000 0

SN020886 0.000 0.000 0.000 1

SN020887 0.000 0.000 0.000 2

SN020888 0.000 0.000 0.000 1

SN020889 0.000 0.000 0.000 2

SN020890 0.357 0.417 0.385 12

SN020891 0.000 0.000 0.000 9

SN020892 0.250 0.167 0.200 6

SN020893 0.125 0.200 0.154 5

SN022017 0.143 0.250 0.182 4

SN022018 0.667 0.222 0.333 9

SN022312 0.000 0.000 0.000 0

SN022313 0.000 0.000 0.000 2

SN022314 0.000 0.000 0.000 1

SN022315 0.000 0.000 0.000 3

SN022316 0.167 0.222 0.190 9

SN022457 0.000 0.000 0.000 0

SN022458 0.000 0.000 0.000 4

SN022459 0.222 0.250 0.235 8

SN022460 0.000 0.000 0.000 2

SN022464 0.000 0.000 0.000 2

SN022817 0.333 0.500 0.400 4

SN022818 0.286 0.800 0.421 5
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Continuation of Table 20

Sample ID Precision Recall F1-Score Support

SN022819 0.000 0.000 0.000 1

SN022823 0.000 0.000 0.000 3

SN023170 0.000 0.000 0.000 3

SN023172 0.000 0.000 0.000 1

SN023175 0.000 0.000 0.000 6

SN023176 0.222 0.200 0.211 10

SN023177 0.250 0.143 0.182 7

SN023178 0.000 0.000 0.000 2

SN023179 0.300 1.000 0.462 3

SN023180 0.200 0.167 0.182 6

SN023181 0.375 0.500 0.429 6

SN023182 0.000 0.000 0.000 4

SN023183 0.500 1.000 0.667 6

SN023185 0.000 0.000 0.000 5

SN023186 0.000 0.000 0.000 4

SN023522 0.000 0.000 0.000 0

SN023523 0.111 0.167 0.133 6

SN023524 0.167 0.091 0.118 11

SN023527 0.000 0.000 0.000 5

SN023528 0.000 0.000 0.000 0

SN023531 0.143 0.125 0.133 8

SN023535 0.000 0.000 0.000 5

SN023538 0.125 0.500 0.200 2

SN024399 0.000 0.000 0.000 1

SN024400 0.000 0.000 0.000 4

SN024401 0.000 0.000 0.000 5

SN024402 0.000 0.000 0.000 7

SN024794 0.000 0.000 0.000 4

SN024795 0.000 0.000 0.000 4

SN024796 0.000 0.000 0.000 1

SN024797 0.000 0.000 0.000 8

SN024798 0.000 0.000 0.000 2

SN024799 0.333 0.111 0.167 9

SN024800 0.222 0.286 0.250 7
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Continuation of Table 20

Sample ID Precision Recall F1-Score Support

SN024801 0.250 0.250 0.250 4

SN024822 0.000 0.000 0.000 1

SN024823 0.000 0.000 0.000 3

SN024824 0.000 0.000 0.000 9

SN024825 0.000 0.000 0.000 3

SN024980 0.200 0.500 0.286 2

SN024981 0.500 0.167 0.250 6

SN024984 0.250 0.167 0.200 6

SN025079 1.000 0.333 0.500 3

SN025080 1.000 0.667 0.800 15

SN025081 0.357 0.556 0.435 9

SN025082 0.400 0.286 0.333 7

SN025083 0.727 0.533 0.615 15

SN025084 0.375 0.375 0.375 8

SN026227 0.600 0.273 0.375 11

SN026228 1.000 0.500 0.667 8

accuracy 0.200 700

macro avg 0.152 0.155 0.139 700

weighted avg 0.226 0.200 0.196 700

End of Table

Table 21. Precision, Recall, Accuracy, and F1-Scores for Random Forest Classifier
trained on EProbe Data.

Sample ID Precision Recall F1-Score Support

SN014855 0.500 0.800 0.615 5

SN014856 0.800 0.500 0.615 8

SN014857 0.444 1.000 0.615 4

SN016837 0.000 0.000 0.000 1

SN016838 0.200 0.125 0.154 8

SN016839 0.105 0.286 0.154 7

SN016841 0.000 0.000 0.000 9

SN016842 0.071 0.077 0.074 13
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Continuation of Table 21

Sample ID Precision Recall F1-Score Support

SN016843 0.000 0.000 0.000 1

SN016844 0.000 0.000 0.000 9

SN016845 0.211 0.308 0.250 13

SN016846 0.000 0.000 0.000 2

SN016847 0.400 0.200 0.267 10

SN016848 0.000 0.000 0.000 9

SN016849 0.154 0.286 0.200 7

SN016850 0.000 0.000 0.000 3

SN017952 0.500 0.100 0.167 10

SN017953 0.059 0.143 0.083 7

SN017955 0.429 0.500 0.462 6

SN017956 0.375 0.500 0.429 6

SN017959 0.833 0.556 0.667 9

SN018062 0.000 0.000 0.000 1

SN018064 0.000 0.000 0.000 11

SN018065 0.333 0.500 0.400 4

SN018066 0.000 0.000 0.000 1

SN018067 0.000 0.000 0.000 0

SN018068 0.500 0.286 0.364 7

SN018069 0.000 0.000 0.000 4

SN018070 0.000 0.000 0.000 3

SN018071 0.000 0.000 0.000 1

SN018072 0.333 0.500 0.400 2

SN018800 0.000 0.000 0.000 1

SN018802 0.500 0.091 0.154 11

SN018803 0.500 0.071 0.125 14

SN018804 0.000 0.000 0.000 3

SN018805 0.250 0.111 0.154 9

SN018806 0.833 0.714 0.769 7

SN018807 0.333 0.286 0.308 7

SN018808 0.143 0.250 0.182 4

SN018809 0.222 0.286 0.250 7

SN018810 0.000 0.000 0.000 6

SN018811 1.000 0.714 0.833 7
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Continuation of Table 21

Sample ID Precision Recall F1-Score Support

SN018812 0.333 0.143 0.200 7

SN019683 0.250 0.125 0.167 8

SN019684 0.333 0.111 0.167 9

SN019685 0.250 0.143 0.182 7

SN019688 0.000 0.000 0.000 17

SN020087 0.000 0.000 0.000 0

SN020089 0.000 0.000 0.000 1

SN020090 0.000 0.000 0.000 3

SN020091 0.000 0.000 0.000 2

SN020092 0.000 0.000 0.000 3

SN020093 0.000 0.000 0.000 1

SN020100 0.000 0.000 0.000 2

SN020101 0.000 0.000 0.000 1

SN020102 0.571 0.444 0.500 9

SN020104 0.200 0.333 0.250 3

SN020105 0.000 0.000 0.000 4

SN020107 0.200 0.500 0.286 4

SN020109 0.000 0.000 0.000 5

SN020885 0.000 0.000 0.000 0

SN020886 0.000 0.000 0.000 1

SN020887 0.000 0.000 0.000 2

SN020888 0.000 0.000 0.000 1

SN020889 0.000 0.000 0.000 2

SN020890 0.412 0.583 0.483 12

SN020891 0.000 0.000 0.000 9

SN020892 0.200 0.167 0.182 6

SN020893 0.286 0.400 0.333 5

SN022017 1.000 0.250 0.400 4

SN022018 0.750 0.333 0.462 9

SN022312 0.000 0.000 0.000 0

SN022313 0.000 0.000 0.000 2

SN022314 0.000 0.000 0.000 1

SN022315 0.000 0.000 0.000 3

SN022316 0.400 0.222 0.286 9

100



Continuation of Table 21

Sample ID Precision Recall F1-Score Support

SN022457 0.000 0.000 0.000 0

SN022458 0.000 0.000 0.000 4

SN022459 0.375 0.375 0.375 8

SN022460 0.000 0.000 0.000 2

SN022464 0.000 0.000 0.000 2

SN022817 0.222 0.500 0.308 4

SN022818 0.235 0.800 0.364 5

SN022819 0.000 0.000 0.000 1

SN022823 0.000 0.000 0.000 3

SN023170 0.000 0.000 0.000 3

SN023172 0.000 0.000 0.000 1

SN023175 0.000 0.000 0.000 6

SN023176 0.800 0.400 0.533 10

SN023177 0.250 0.286 0.267 7

SN023178 0.000 0.000 0.000 2

SN023179 0.167 0.333 0.222 3

SN023180 0.062 0.167 0.091 6

SN023181 0.444 0.667 0.533 6

SN023182 0.000 0.000 0.000 4

SN023183 0.400 0.667 0.500 6

SN023185 0.333 0.200 0.250 5

SN023186 0.000 0.000 0.000 4

SN023523 0.333 0.333 0.333 6

SN023524 0.545 0.545 0.545 11

SN023527 0.000 0.000 0.000 5

SN023531 0.143 0.125 0.133 8

SN023535 0.000 0.000 0.000 5

SN023538 0.000 0.000 0.000 2

SN024399 0.000 0.000 0.000 1

SN024400 0.000 0.000 0.000 4

SN024401 0.000 0.000 0.000 5

SN024402 0.333 0.143 0.200 7

SN024794 0.000 0.000 0.000 4

SN024795 0.000 0.000 0.000 4
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Continuation of Table 21

Sample ID Precision Recall F1-Score Support

SN024796 0.000 0.000 0.000 1

SN024797 0.000 0.000 0.000 8

SN024798 0.000 0.000 0.000 2

SN024799 0.000 0.000 0.000 9

SN024800 0.286 0.286 0.286 7

SN024801 0.200 0.500 0.286 4

SN024822 0.000 0.000 0.000 1

SN024823 0.000 0.000 0.000 3

SN024824 0.125 0.222 0.160 9

SN024825 0.000 0.000 0.000 3

SN024980 0.500 1.000 0.667 2

SN024981 0.667 0.333 0.444 6

SN024984 0.600 0.500 0.545 6

SN025079 1.000 0.333 0.500 3

SN025080 0.650 0.867 0.743 15

SN025081 0.500 0.556 0.526 9

SN025082 0.500 0.429 0.462 7

SN025083 0.750 0.600 0.667 15

SN025084 0.400 0.500 0.444 8

SN026227 0.444 0.364 0.400 11

SN026228 1.000 0.500 0.667 8

accuracy 0.256 700

macro avg 0.210 0.194 0.183 700

weighted avg 0.299 0.256 0.253 700

End of Table

Table 22. Precision, Recall, Accuracy, and F1-Scores for Extra Forest Classifier trained
on EProbe Data.

Sample ID Precision Recall F1-Score Support

SN014855 0.500 0.800 0.615 5

SN014856 0.500 0.500 0.500 8

SN014857 0.444 1.000 0.615 4
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Continuation of Table 22

Sample ID Precision Recall F1-Score Support

SN016837 0.000 0.000 0.000 1

SN016838 0.286 0.250 0.267 8

SN016839 0.125 0.143 0.133 7

SN016841 0.143 0.111 0.125 9

SN016842 0.222 0.308 0.258 13

SN016843 0.000 0.000 0.000 1

SN016844 0.250 0.111 0.154 9

SN016845 0.250 0.231 0.240 13

SN016846 0.000 0.000 0.000 2

SN016847 0.250 0.200 0.222 10

SN016848 0.000 0.000 0.000 9

SN016849 0.154 0.286 0.200 7

SN016850 0.000 0.000 0.000 3

SN017952 0.556 0.500 0.526 10

SN017953 0.154 0.286 0.200 7

SN017955 0.444 0.667 0.533 6

SN017956 0.333 0.500 0.400 6

SN017959 0.625 0.556 0.588 9

SN018062 0.000 0.000 0.000 1

SN018064 0.667 0.364 0.471 11

SN018065 0.500 0.500 0.500 4

SN018066 0.000 0.000 0.000 1

SN018067 0.000 0.000 0.000 0

SN018068 0.333 0.286 0.308 7

SN018069 0.000 0.000 0.000 4

SN018070 0.000 0.000 0.000 3

SN018071 0.000 0.000 0.000 1

SN018072 0.167 0.500 0.250 2

SN018800 0.000 0.000 0.000 1

SN018802 0.500 0.182 0.267 11

SN018803 0.333 0.071 0.118 14

SN018804 0.000 0.000 0.000 3

SN018805 0.500 0.333 0.400 9

SN018806 0.667 0.857 0.750 7
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Continuation of Table 22

Sample ID Precision Recall F1-Score Support

SN018807 1.000 0.429 0.600 7

SN018808 0.091 0.250 0.133 4

SN018809 0.222 0.286 0.250 7

SN018810 0.000 0.000 0.000 6

SN018811 0.833 0.714 0.769 7

SN018812 0.250 0.143 0.182 7

SN019683 0.200 0.125 0.154 8

SN019684 0.167 0.111 0.133 9

SN019685 0.000 0.000 0.000 7

SN019688 0.500 0.235 0.320 17

SN020087 0.000 0.000 0.000 0

SN020088 0.000 0.000 0.000 0

SN020089 0.000 0.000 0.000 1

SN020090 0.000 0.000 0.000 3

SN020091 0.000 0.000 0.000 2

SN020092 0.000 0.000 0.000 3

SN020093 0.000 0.000 0.000 1

SN020100 0.000 0.000 0.000 2

SN020101 0.000 0.000 0.000 1

SN020102 0.500 0.222 0.308 9

SN020104 0.500 0.333 0.400 3

SN020105 0.000 0.000 0.000 4

SN020107 0.286 0.500 0.364 4

SN020109 0.000 0.000 0.000 5

SN020886 0.000 0.000 0.000 1

SN020887 0.000 0.000 0.000 2

SN020888 0.000 0.000 0.000 1

SN020889 0.000 0.000 0.000 2

SN020890 0.429 0.500 0.462 12

SN020891 0.000 0.000 0.000 9

SN020892 0.167 0.167 0.167 6

SN020893 0.400 0.400 0.400 5

SN022017 0.000 0.000 0.000 4

SN022018 0.500 0.333 0.400 9
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Continuation of Table 22

Sample ID Precision Recall F1-Score Support

SN022312 0.000 0.000 0.000 0

SN022313 0.000 0.000 0.000 2

SN022314 0.000 0.000 0.000 1

SN022315 0.000 0.000 0.000 3

SN022316 0.143 0.111 0.125 9

SN022458 0.000 0.000 0.000 4

SN022459 0.444 0.500 0.471 8

SN022460 0.000 0.000 0.000 2

SN022464 0.000 0.000 0.000 2

SN022817 0.333 0.500 0.400 4

SN022818 0.267 0.800 0.400 5

SN022819 0.000 0.000 0.000 1

SN022823 0.000 0.000 0.000 3

SN023170 0.000 0.000 0.000 3

SN023172 0.000 0.000 0.000 1

SN023174 0.000 0.000 0.000 0

SN023175 0.250 0.167 0.200 6

SN023176 0.300 0.300 0.300 10

SN023177 0.286 0.286 0.286 7

SN023178 0.000 0.000 0.000 2

SN023179 0.143 0.333 0.200 3

SN023180 0.100 0.167 0.125 6

SN023181 0.375 0.500 0.429 6

SN023182 0.000 0.000 0.000 4

SN023183 0.462 1.000 0.632 6

SN023185 0.000 0.000 0.000 5

SN023186 0.000 0.000 0.000 4

SN023522 0.000 0.000 0.000 0

SN023523 0.167 0.167 0.167 6

SN023524 0.444 0.364 0.400 11

SN023527 0.000 0.000 0.000 5

SN023528 0.000 0.000 0.000 0

SN023531 0.286 0.250 0.267 8

SN023535 0.000 0.000 0.000 5
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Continuation of Table 22

Sample ID Precision Recall F1-Score Support

SN023538 0.000 0.000 0.000 2

SN024399 0.000 0.000 0.000 1

SN024400 0.000 0.000 0.000 4

SN024401 0.000 0.000 0.000 5

SN024402 0.333 0.143 0.200 7

SN024794 0.000 0.000 0.000 4

SN024795 0.125 0.250 0.167 4

SN024796 0.000 0.000 0.000 1

SN024797 0.000 0.000 0.000 8

SN024798 0.250 0.500 0.333 2

SN024799 0.000 0.000 0.000 9

SN024800 0.429 0.429 0.429 7

SN024801 0.083 0.250 0.125 4

SN024822 0.000 0.000 0.000 1

SN024823 0.000 0.000 0.000 3

SN024824 0.200 0.222 0.211 9

SN024825 0.000 0.000 0.000 3

SN024980 0.125 0.500 0.200 2

SN024981 0.667 0.333 0.444 6

SN024984 0.800 0.667 0.727 6

SN025079 0.500 0.333 0.400 3

SN025080 0.619 0.867 0.722 15

SN025081 0.600 0.667 0.632 9

SN025082 0.500 0.429 0.462 7

SN025083 0.833 0.667 0.741 15

SN025084 0.556 0.625 0.588 8

SN026227 0.750 0.273 0.400 11

SN026228 1.000 0.500 0.667 8

accuracy 0.284 700

macro avg 0.205 0.206 0.192 700

weighted avg 0.314 0.284 0.281 700

End of Table
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Table 23. Precision, Recall, Accuracy, and F1-Scores for Voting Classifier with all
models trained on EProbe Data.

Sample ID Precision Recall F1-Score Support

SN014855 0.833 1.000 0.909 5

SN014856 0.556 0.625 0.588 8

SN014857 0.400 1.000 0.571 4

SN016837 0.000 0.000 0.000 1

SN016838 0.000 0.000 0.000 8

SN016839 0.400 0.286 0.333 7

SN016840 0.000 0.000 0.000 0

SN016841 0.000 0.000 0.000 9

SN016842 0.200 0.154 0.174 13

SN016843 0.000 0.000 0.000 1

SN016844 0.000 0.000 0.000 9

SN016845 0.273 0.231 0.250 13

SN016846 0.167 0.500 0.250 2

SN016847 0.400 0.200 0.267 10

SN016848 0.143 0.111 0.125 9

SN016849 0.273 0.429 0.333 7

SN016850 0.125 0.333 0.182 3

SN017952 0.000 0.000 0.000 10

SN017953 0.000 0.000 0.000 7

SN017955 0.333 0.500 0.400 6

SN017956 0.273 0.500 0.353 6

SN017959 1.000 0.556 0.714 9

SN018062 0.000 0.000 0.000 1

SN018064 0.000 0.000 0.000 11

SN018065 0.500 0.500 0.500 4

SN018066 0.000 0.000 0.000 1

SN018068 0.333 0.143 0.200 7

SN018069 0.000 0.000 0.000 4

SN018070 0.000 0.000 0.000 3

SN018071 0.000 0.000 0.000 1

SN018072 0.333 0.500 0.400 2

SN018800 0.000 0.000 0.000 1

SN018802 0.333 0.091 0.143 11
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Continuation of Table 23

Sample ID Precision Recall F1-Score Support

SN018803 0.000 0.000 0.000 14

SN018804 0.000 0.000 0.000 3

SN018805 0.000 0.000 0.000 9

SN018806 0.714 0.714 0.714 7

SN018807 0.188 0.429 0.261 7

SN018808 0.000 0.000 0.000 4

SN018809 0.286 0.571 0.381 7

SN018810 0.143 0.167 0.154 6

SN018811 1.000 0.714 0.833 7

SN018812 0.500 0.143 0.222 7

SN019683 0.333 0.125 0.182 8

SN019684 0.231 0.333 0.273 9

SN019685 0.000 0.000 0.000 7

SN019688 0.200 0.059 0.091 17

SN020087 0.000 0.000 0.000 0

SN020088 0.000 0.000 0.000 0

SN020089 0.000 0.000 0.000 1

SN020090 0.000 0.000 0.000 3

SN020091 0.000 0.000 0.000 2

SN020092 0.000 0.000 0.000 3

SN020093 0.000 0.000 0.000 1

SN020100 0.000 0.000 0.000 2

SN020101 0.000 0.000 0.000 1

SN020102 0.333 0.222 0.267 9

SN020104 0.333 0.333 0.333 3

SN020105 0.000 0.000 0.000 4

SN020107 0.111 0.250 0.154 4

SN020109 0.000 0.000 0.000 5

SN020885 0.000 0.000 0.000 0

SN020886 0.000 0.000 0.000 1

SN020887 0.000 0.000 0.000 2

SN020888 0.000 0.000 0.000 1

SN020889 0.000 0.000 0.000 2

SN020890 0.400 0.500 0.444 12
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Continuation of Table 23

Sample ID Precision Recall F1-Score Support

SN020891 0.000 0.000 0.000 9

SN020892 0.111 0.167 0.133 6

SN020893 0.154 0.400 0.222 5

SN022017 0.500 0.250 0.333 4

SN022018 1.000 0.222 0.364 9

SN022312 0.000 0.000 0.000 0

SN022313 0.111 0.500 0.182 2

SN022314 0.000 0.000 0.000 1

SN022315 0.000 0.000 0.000 3

SN022316 0.200 0.222 0.211 9

SN022457 0.000 0.000 0.000 0

SN022458 0.000 0.000 0.000 4

SN022459 0.667 0.500 0.571 8

SN022460 0.000 0.000 0.000 2

SN022464 0.000 0.000 0.000 2

SN022817 0.286 0.500 0.364 4

SN022818 0.286 0.800 0.421 5

SN022819 0.000 0.000 0.000 1

SN022823 0.000 0.000 0.000 3

SN023170 0.000 0.000 0.000 3

SN023172 0.000 0.000 0.000 1

SN023175 0.000 0.000 0.000 6

SN023176 0.250 0.300 0.273 10

SN023177 0.333 0.143 0.200 7

SN023178 0.000 0.000 0.000 2

SN023179 0.333 0.667 0.444 3

SN023180 0.167 0.167 0.167 6

SN023181 0.429 0.500 0.462 6

SN023182 0.000 0.000 0.000 4

SN023183 0.600 1.000 0.750 6

SN023185 0.000 0.000 0.000 5

SN023186 0.000 0.000 0.000 4

SN023523 0.200 0.167 0.182 6

SN023524 0.200 0.273 0.231 11
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Continuation of Table 23

Sample ID Precision Recall F1-Score Support

SN023527 0.000 0.000 0.000 5

SN023528 0.000 0.000 0.000 0

SN023531 0.250 0.125 0.167 8

SN023535 0.000 0.000 0.000 5

SN023538 0.182 1.000 0.308 2

SN024399 0.000 0.000 0.000 1

SN024400 0.000 0.000 0.000 4

SN024401 0.000 0.000 0.000 5

SN024402 0.000 0.000 0.000 7

SN024794 0.000 0.000 0.000 4

SN024795 0.000 0.000 0.000 4

SN024796 0.000 0.000 0.000 1

SN024797 0.250 0.125 0.167 8

SN024798 0.000 0.000 0.000 2

SN024799 0.000 0.000 0.000 9

SN024800 0.133 0.286 0.182 7

SN024801 0.250 0.250 0.250 4

SN024822 0.000 0.000 0.000 1

SN024823 0.000 0.000 0.000 3

SN024824 0.000 0.000 0.000 9

SN024825 0.000 0.000 0.000 3

SN024980 0.333 0.500 0.400 2

SN024981 0.429 0.500 0.462 6

SN024984 0.500 0.333 0.400 6

SN025079 0.500 0.333 0.400 3

SN025080 0.750 0.800 0.774 15

SN025081 0.417 0.556 0.476 9

SN025082 0.250 0.143 0.182 7

SN025083 0.500 0.533 0.516 15

SN025084 0.375 0.375 0.375 8

SN026227 0.625 0.455 0.526 11

SN026228 1.000 0.500 0.667 8

accuracy 0.243 700

macro avg 0.182 0.194 0.171 700
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Continuation of Table 23

Sample ID Precision Recall F1-Score Support

weighted avg 0.258 0.243 0.231 700

End of Table

Table 24. Precision, Recall, Accuracy, and F1-Scores for Voting Classifier with tree
models only trained on EProbe Data.

Sample ID Precision Recall F1-Score Support

SN014855 0.500 0.800 0.615 5

SN014856 0.571 0.500 0.533 8

SN014857 0.444 1.000 0.615 4

SN016837 0.000 0.000 0.000 1

SN016838 0.333 0.125 0.182 8

SN016839 0.200 0.143 0.167 7

SN016841 0.000 0.000 0.000 9

SN016842 0.150 0.231 0.182 13

SN016843 0.000 0.000 0.000 1

SN016844 0.250 0.111 0.154 9

SN016845 0.273 0.231 0.250 13

SN016846 0.000 0.000 0.000 2

SN016847 0.333 0.200 0.250 10

SN016848 0.000 0.000 0.000 9

SN016849 0.154 0.286 0.200 7

SN016850 0.125 0.333 0.182 3

SN017952 0.667 0.400 0.500 10

SN017953 0.000 0.000 0.000 7

SN017955 0.444 0.667 0.533 6

SN017956 0.250 0.333 0.286 6

SN017959 0.714 0.556 0.625 9

SN018062 0.000 0.000 0.000 1

SN018064 0.400 0.364 0.381 11

SN018065 0.500 0.500 0.500 4

SN018066 0.000 0.000 0.000 1

SN018067 0.000 0.000 0.000 0
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Continuation of Table 24

Sample ID Precision Recall F1-Score Support

SN018068 0.667 0.286 0.400 7

SN018069 0.000 0.000 0.000 4

SN018070 0.000 0.000 0.000 3

SN018071 0.000 0.000 0.000 1

SN018072 0.200 0.500 0.286 2

SN018800 0.000 0.000 0.000 1

SN018802 0.600 0.273 0.375 11

SN018803 0.000 0.000 0.000 14

SN018804 0.000 0.000 0.000 3

SN018805 0.500 0.556 0.526 9

SN018806 0.833 0.714 0.769 7

SN018807 0.667 0.571 0.615 7

SN018808 0.125 0.250 0.167 4

SN018809 0.222 0.286 0.250 7

SN018810 0.000 0.000 0.000 6

SN018811 0.714 0.714 0.714 7

SN018812 0.333 0.286 0.308 7

SN019683 0.250 0.125 0.167 8

SN019684 0.100 0.111 0.105 9

SN019685 0.333 0.143 0.200 7

SN019688 0.333 0.059 0.100 17

SN020087 0.000 0.000 0.000 0

SN020088 0.000 0.000 0.000 0

SN020089 0.000 0.000 0.000 1

SN020090 0.000 0.000 0.000 3

SN020091 0.000 0.000 0.000 2

SN020092 0.000 0.000 0.000 3

SN020093 0.000 0.000 0.000 1

SN020100 0.000 0.000 0.000 2

SN020101 0.000 0.000 0.000 1

SN020102 0.429 0.333 0.375 9

SN020104 0.250 0.333 0.286 3

SN020105 0.000 0.000 0.000 4

SN020107 0.200 0.500 0.286 4
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Continuation of Table 24

Sample ID Precision Recall F1-Score Support

SN020109 0.000 0.000 0.000 5

SN020885 0.000 0.000 0.000 0

SN020886 0.000 0.000 0.000 1

SN020887 0.000 0.000 0.000 2

SN020888 0.000 0.000 0.000 1

SN020889 0.000 0.000 0.000 2

SN020890 0.500 0.583 0.538 12

SN020891 0.000 0.000 0.000 9

SN020892 0.250 0.167 0.200 6

SN020893 0.333 0.400 0.364 5

SN022017 0.500 0.250 0.333 4

SN022018 0.429 0.333 0.375 9

SN022312 0.000 0.000 0.000 0

SN022313 0.000 0.000 0.000 2

SN022314 0.000 0.000 0.000 1

SN022315 0.000 0.000 0.000 3

SN022316 0.333 0.111 0.167 9

SN022457 0.000 0.000 0.000 0

SN022458 0.000 0.000 0.000 4

SN022459 0.429 0.375 0.400 8

SN022460 0.000 0.000 0.000 2

SN022464 0.000 0.000 0.000 2

SN022817 0.333 0.500 0.400 4

SN022818 0.267 0.800 0.400 5

SN022819 0.000 0.000 0.000 1

SN022823 0.000 0.000 0.000 3

SN023170 0.000 0.000 0.000 3

SN023172 0.000 0.000 0.000 1

SN023175 0.143 0.167 0.154 6

SN023176 0.500 0.100 0.167 10

SN023177 0.333 0.286 0.308 7

SN023178 0.000 0.000 0.000 2

SN023179 0.250 0.667 0.364 3

SN023180 0.067 0.167 0.095 6
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Continuation of Table 24

Sample ID Precision Recall F1-Score Support

SN023181 0.400 0.667 0.500 6

SN023182 0.000 0.000 0.000 4

SN023183 0.462 1.000 0.632 6

SN023185 0.250 0.200 0.222 5

SN023186 0.000 0.000 0.000 4

SN023523 0.143 0.167 0.154 6

SN023524 0.333 0.273 0.300 11

SN023527 0.000 0.000 0.000 5

SN023531 0.000 0.000 0.000 8

SN023535 0.000 0.000 0.000 5

SN023538 0.000 0.000 0.000 2

SN024399 0.000 0.000 0.000 1

SN024400 0.000 0.000 0.000 4

SN024401 0.000 0.000 0.000 5

SN024402 0.333 0.143 0.200 7

SN024794 0.000 0.000 0.000 4

SN024795 0.100 0.250 0.143 4

SN024796 0.000 0.000 0.000 1

SN024797 0.000 0.000 0.000 8

SN024798 0.250 0.500 0.333 2

SN024799 0.000 0.000 0.000 9

SN024800 0.333 0.429 0.375 7

SN024801 0.167 0.500 0.250 4

SN024822 0.000 0.000 0.000 1

SN024823 0.200 0.333 0.250 3

SN024824 0.200 0.222 0.211 9

SN024825 0.000 0.000 0.000 3

SN024980 0.286 1.000 0.444 2

SN024981 0.750 0.500 0.600 6

SN024984 0.600 0.500 0.545 6

SN025079 0.500 0.333 0.400 3

SN025080 0.650 0.867 0.743 15

SN025081 0.538 0.778 0.636 9

SN025082 0.500 0.429 0.462 7
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Continuation of Table 24

Sample ID Precision Recall F1-Score Support

SN025083 0.818 0.600 0.692 15

SN025084 0.500 0.625 0.556 8

SN026227 0.800 0.364 0.500 11

SN026228 1.000 0.500 0.667 8

accuracy 0.283 700

macro avg 0.211 0.219 0.198 700

weighted avg 0.308 0.283 0.275 700

End of Table

Table 25. Precision, Recall, Accuracy, and F1-Scores for Logistic Regression trained
on TESCAN Data.

Sample ID Precision Recall F1-Score Support

SN023729 0.122 0.736 0.209 258

SN023730 0.864 0.442 0.585 6009

SN023731 0.375 0.628 0.470 1789

SN025331 0.429 0.714 0.536 1004

SN025332 0.708 0.801 0.752 7627

SN025333 0.191 0.112 0.142 1006

SN025334 0.056 0.587 0.103 167

SN025335 0.157 0.041 0.065 533

SN025336 0.592 0.282 0.382 5439

SN025337 0.804 0.893 0.846 7554

accuracy 0.615 31386

macro avg 0.430 0.524 0.409 31386

weighted avg 0.679 0.615 0.616 31386

End of Table
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Table 26. Precision, Recall, Accuracy, and F1-Scores for Linear Discriminate Analysis
trained on TESCAN Data.

Sample ID Precision Recall F1-Score Support

SN023729 0.161 0.655 0.258 258

SN023730 0.772 0.578 0.661 6009

SN023731 0.387 0.234 0.292 1789

SN025331 0.384 0.696 0.495 1004

SN025332 0.654 0.840 0.735 7627

SN025333 0.102 0.063 0.077 1006

SN025334 0.075 0.299 0.120 167

SN025335 0.148 0.023 0.039 533

SN025336 0.513 0.170 0.256 5439

SN025337 0.695 0.917 0.790 7554

accuracy 0.610 31386

macro avg 0.389 0.448 0.372 31386

weighted avg 0.605 0.610 0.578 31386

End of Table

Table 27. Precision, Recall, Accuracy, and F1-Scores for Decision Tree Classifier trained
on TESCAN Data.

Sample ID Precision Recall F1-Score Support

SN023729 0.408 0.345 0.374 258

SN023730 0.815 0.820 0.818 6009

SN023731 0.517 0.516 0.517 1789

SN025331 0.536 0.541 0.538 1004

SN025332 0.757 0.746 0.752 7627

SN025333 0.301 0.343 0.321 1006

SN025334 0.108 0.096 0.102 167

SN025335 0.169 0.161 0.165 533

SN025336 0.556 0.557 0.557 5439

SN025337 0.855 0.855 0.855 7554

accuracy 0.704 31386
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Continuation of Table 27

Sample ID Precision Recall F1-Score Support

macro avg 0.502 0.498 0.500 31386

weighted avg 0.705 0.704 0.705 31386

End of Table

Table 28. Precision, Recall, Accuracy, and F1-Scores for Random Forest Classifier
trained on TESCAN Data.

Sample ID Precision Recall F1-Score Support

SN023729 0.568 0.341 0.426 258

SN023730 0.824 0.936 0.876 6009

SN023731 0.761 0.499 0.603 1789

SN025331 0.582 0.694 0.633 1004

SN025332 0.795 0.844 0.819 7627

SN025333 0.401 0.376 0.388 1006

SN025334 0.067 0.018 0.028 167

SN025335 0.299 0.184 0.228 533

SN025336 0.691 0.585 0.634 5439

SN025337 0.874 0.927 0.900 7554

accuracy 0.778 31386

macro avg 0.586 0.540 0.553 31386

weighted avg 0.766 0.778 0.768 31386

End of Table

Table 29. Precision, Recall, Accuracy, and F1-Scores for Extra Forest Classifier trained
on TESCAN Data.

Sample ID Precision Recall F1-Score Support

SN023729 0.590 0.395 0.473 258

SN023730 0.823 0.936 0.876 6009

SN023731 0.756 0.477 0.585 1789
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Continuation of Table 29

Sample ID Precision Recall F1-Score Support

SN025331 0.595 0.676 0.633 1004

SN025332 0.790 0.836 0.812 7627

SN025333 0.412 0.370 0.390 1006

SN025334 0.200 0.120 0.150 167

SN025335 0.298 0.210 0.246 533

SN025336 0.685 0.586 0.632 5439

SN025337 0.874 0.927 0.900 7554

accuracy 0.775 31386

macro avg 0.602 0.553 0.570 31386

weighted avg 0.765 0.775 0.766 31386

End of Table

Table 30. Precision, Recall, Accuracy, and F1-Scores for Voting Classifier with all
models trained on TESCAN Data.

Sample ID Precision Recall F1-Score Support

SN023729 0.439 0.516 0.474 258

SN023730 0.833 0.889 0.860 6009

SN023731 0.679 0.505 0.579 1789

SN025331 0.512 0.741 0.605 1004

SN025332 0.779 0.844 0.810 7627

SN025333 0.403 0.290 0.337 1006

SN025334 0.148 0.180 0.162 167

SN025335 0.257 0.144 0.185 533

SN025336 0.694 0.528 0.600 5439

SN025337 0.856 0.936 0.894 7554

accuracy 0.761 31386

macro avg 0.560 0.557 0.551 31386

weighted avg 0.752 0.761 0.752 31386

End of Table
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Table 31. Precision, Recall, Accuracy, and F1-Scores for Voting Classifier with tree
models only trained on TESCAN Data.

Sample ID Precision Recall F1-Score Support

SN023729 0.599 0.388 0.471 258

SN023730 0.826 0.940 0.879 6009

SN023731 0.769 0.490 0.598 1789

SN025331 0.603 0.697 0.647 1004

SN025332 0.796 0.842 0.818 7627

SN025333 0.409 0.376 0.392 1006

SN025334 0.224 0.114 0.151 167

SN025335 0.315 0.203 0.247 533

SN025336 0.694 0.592 0.639 5439

SN025337 0.877 0.930 0.902 7554

accuracy 0.780 31386

macro avg 0.611 0.557 0.574 31386

weighted avg 0.770 0.780 0.771 31386

End of Table

Table 32. Precision, Recall, Accuracy, and F1-Scores for Logistic Regression trained
on both datasets.

Sample ID Precision Recall F1-Score Support

SN014855 0.062 0.111 0.080 9

SN014856 0.000 0.000 0.000 4

SN014857 0.024 1.000 0.047 5

SN016837 0.000 0.000 0.000 1

SN016838 0.012 0.125 0.021 8

SN016839 0.035 0.375 0.064 8

SN016840 0.000 0.000 0.000 1

SN016841 0.000 0.000 0.000 9

SN016842 0.000 0.000 0.000 6

SN016843 0.000 0.000 0.000 3
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Continuation of Table 32

Sample ID Precision Recall F1-Score Support

SN016844 0.000 0.000 0.000 9

SN016845 0.000 0.000 0.000 7

SN016846 0.000 0.000 0.000 4

SN016847 0.026 0.111 0.042 9

SN016848 0.018 0.200 0.034 10

SN016849 0.000 0.000 0.000 6

SN016850 0.034 0.250 0.061 4

SN017952 0.833 0.455 0.588 11

SN017953 0.000 0.000 0.000 4

SN017955 0.038 0.167 0.062 6

SN017956 0.167 0.286 0.211 7

SN017959 0.030 1.000 0.058 5

SN018064 0.143 0.143 0.143 7

SN018065 0.300 1.000 0.462 3

SN018066 0.000 0.000 0.000 1

SN018067 0.000 0.000 0.000 0

SN018068 0.250 0.500 0.333 6

SN018069 0.000 0.000 0.000 3

SN018070 0.000 0.000 0.000 2

SN018071 0.000 0.000 0.000 2

SN018072 0.048 0.500 0.087 2

SN018800 0.000 0.000 0.000 1

SN018802 0.143 0.231 0.176 13

SN018803 0.098 0.800 0.174 5

SN018804 0.002 0.200 0.005 5

SN018805 0.133 0.400 0.200 5

SN018806 0.188 0.273 0.222 11

SN018807 0.091 0.429 0.150 7

SN018808 0.000 0.000 0.000 5

SN018809 0.062 0.143 0.087 7

SN018810 0.333 0.167 0.222 6

SN018811 0.086 0.333 0.136 9

SN018812 0.000 0.000 0.000 5

SN019683 0.016 0.111 0.027 9
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Continuation of Table 32

Sample ID Precision Recall F1-Score Support

SN019684 0.004 0.200 0.007 10

SN019685 0.167 0.167 0.167 6

SN019688 0.050 0.429 0.089 14

SN020087 0.000 0.000 0.000 2

SN020088 0.000 0.000 0.000 0

SN020089 0.000 0.000 0.000 2

SN020090 0.000 0.000 0.000 2

SN020091 0.000 0.000 0.000 1

SN020092 0.000 0.000 0.000 2

SN020093 0.000 0.000 0.000 3

SN020100 0.000 0.000 0.000 0

SN020101 0.000 0.000 0.000 2

SN020102 0.000 0.000 0.000 9

SN020104 0.100 0.200 0.133 5

SN020105 0.000 0.000 0.000 5

SN020107 0.019 0.200 0.035 5

SN020109 0.000 0.000 0.000 4

SN020885 0.000 0.000 0.000 1

SN020886 0.000 0.000 0.000 0

SN020887 0.000 0.000 0.000 1

SN020888 0.000 0.000 0.000 1

SN020889 0.125 0.125 0.125 8

SN020890 0.008 0.167 0.015 12

SN020891 0.029 0.333 0.053 3

SN020892 0.000 0.000 0.000 6

SN020893 0.056 0.400 0.098 5

SN022017 0.000 0.000 0.000 5

SN022018 0.100 0.375 0.158 8

SN022312 0.000 0.000 0.000 0

SN022313 0.250 0.400 0.308 5

SN022314 0.000 0.000 0.000 2

SN022315 0.000 0.000 0.000 2

SN022316 0.167 0.125 0.143 8

SN022456 0.000 0.000 0.000 1
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Continuation of Table 32

Sample ID Precision Recall F1-Score Support

SN022457 0.000 0.000 0.000 1

SN022458 0.000 0.000 0.000 5

SN022459 0.002 0.125 0.005 8

SN022460 0.143 0.500 0.222 2

SN022464 0.000 0.000 0.000 3

SN022817 0.000 0.000 0.000 10

SN022818 0.069 0.667 0.125 3

SN022819 0.000 0.000 0.000 0

SN022823 0.009 0.333 0.018 3

SN023170 0.000 0.000 0.000 5

SN023172 0.000 0.000 0.000 0

SN023174 0.000 0.000 0.000 0

SN023175 0.000 0.000 0.000 4

SN023176 0.000 0.000 0.000 5

SN023177 0.200 0.167 0.182 6

SN023178 0.000 0.000 0.000 3

SN023179 0.143 0.200 0.167 5

SN023180 0.013 0.143 0.023 7

SN023181 0.600 0.750 0.667 4

SN023182 0.000 0.000 0.000 1

SN023183 0.013 1.000 0.025 1

SN023185 0.000 0.000 0.000 8

SN023186 0.000 0.000 0.000 2

SN023522 0.000 0.000 0.000 1

SN023523 0.286 0.167 0.211 12

SN023524 0.154 0.222 0.182 9

SN023527 0.000 0.000 0.000 3

SN023528 0.000 0.000 0.000 1

SN023531 0.000 0.000 0.000 10

SN023535 0.000 0.000 0.000 4

SN023538 0.000 0.000 0.000 6

SN023729 0.120 0.632 0.202 223

SN023730 0.810 0.181 0.296 6082

SN023731 0.270 0.136 0.181 1737
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Continuation of Table 32

Sample ID Precision Recall F1-Score Support

SN024400 0.200 0.167 0.182 6

SN024401 0.000 0.000 0.000 9

SN024402 0.000 0.000 0.000 8

SN024794 0.143 0.250 0.182 4

SN024795 0.000 0.000 0.000 7

SN024796 0.000 0.000 0.000 1

SN024797 0.000 0.000 0.000 9

SN024798 0.000 0.000 0.000 3

SN024799 0.125 0.091 0.105 11

SN024800 0.059 0.111 0.077 9

SN024801 0.000 0.000 0.000 6

SN024822 0.000 0.000 0.000 0

SN024823 0.000 0.000 0.000 2

SN024824 0.000 0.000 0.000 5

SN024825 0.000 0.000 0.000 6

SN024980 0.000 0.000 0.000 3

SN024981 0.067 0.500 0.118 2

SN024984 0.028 1.000 0.054 2

SN025079 0.000 0.000 0.000 3

SN025080 0.071 0.462 0.124 13

SN025081 0.024 0.333 0.045 6

SN025082 0.039 0.286 0.069 7

SN025083 0.018 0.429 0.034 14

SN025084 0.071 0.250 0.111 12

SN025331 0.433 0.695 0.533 1012

SN025332 0.719 0.752 0.736 7603

SN025333 0.139 0.196 0.163 1004

SN025334 0.064 0.512 0.115 170

SN025335 0.056 0.034 0.042 530

SN025336 0.586 0.323 0.416 5465

SN025337 0.819 0.777 0.797 7572

SN026227 0.875 0.538 0.667 13

SN026228 0.333 1.000 0.500 4

accuracy 0.498 32085
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Continuation of Table 32

Sample ID Precision Recall F1-Score Support

macro avg 0.082 0.182 0.087 32085

weighted avg 0.653 0.498 0.526 32085

End of Table

Table 33. Precision, Recall, Accuracy, and F1-Scores for Linear Discriminate Analysis
trained on both datasets.

Sample ID Precision Recall F1-Score Support

SN014855 0.000 0.000 0.000 9

SN014856 0.091 0.250 0.133 4

SN014857 0.000 0.000 0.000 5

SN016837 0.000 0.000 0.000 1

SN016838 0.000 0.000 0.000 8

SN016839 0.000 0.000 0.000 8

SN016840 0.000 0.000 0.000 1

SN016841 0.000 0.000 0.000 9

SN016842 0.000 0.000 0.000 6

SN016843 0.000 0.000 0.000 3

SN016844 0.000 0.000 0.000 9

SN016845 0.000 0.000 0.000 7

SN016846 0.000 0.000 0.000 4

SN016847 0.000 0.000 0.000 9

SN016848 0.000 0.000 0.000 10

SN016849 0.000 0.000 0.000 6

SN016850 0.000 0.000 0.000 4

SN017952 0.000 0.000 0.000 11

SN017953 0.000 0.000 0.000 4

SN017955 0.000 0.000 0.000 6

SN017956 0.143 0.286 0.190 7

SN017959 0.000 0.000 0.000 5

SN018062 0.000 0.000 0.000 0

SN018064 0.000 0.000 0.000 7

SN018065 0.000 0.000 0.000 3
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Continuation of Table 33

Sample ID Precision Recall F1-Score Support

SN018066 0.000 0.000 0.000 1

SN018068 0.000 0.000 0.000 6

SN018069 0.000 0.000 0.000 3

SN018070 0.000 0.000 0.000 2

SN018071 0.000 0.000 0.000 2

SN018072 0.000 0.000 0.000 2

SN018800 0.000 0.000 0.000 1

SN018802 0.000 0.000 0.000 13

SN018803 0.000 0.000 0.000 5

SN018804 0.000 0.000 0.000 5

SN018805 0.000 0.000 0.000 5

SN018806 0.143 0.182 0.160 11

SN018807 0.000 0.000 0.000 7

SN018808 0.000 0.000 0.000 5

SN018809 0.000 0.000 0.000 7

SN018810 0.333 0.167 0.222 6

SN018811 0.167 0.222 0.190 9

SN018812 0.000 0.000 0.000 5

SN019683 0.000 0.000 0.000 9

SN019684 0.000 0.000 0.000 10

SN019685 0.000 0.000 0.000 6

SN019688 0.000 0.000 0.000 14

SN020087 0.011 0.500 0.022 2

SN020088 0.000 0.000 0.000 0

SN020089 0.000 0.000 0.000 2

SN020090 0.000 0.000 0.000 2

SN020091 0.000 0.000 0.000 1

SN020092 0.000 0.000 0.000 2

SN020093 0.000 0.000 0.000 3

SN020101 0.000 0.000 0.000 2

SN020102 0.200 0.111 0.143 9

SN020104 0.000 0.000 0.000 5

SN020105 0.000 0.000 0.000 5

SN020107 0.000 0.000 0.000 5
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Continuation of Table 33

Sample ID Precision Recall F1-Score Support

SN020109 0.000 0.000 0.000 4

SN020885 0.000 0.000 0.000 1

SN020887 0.000 0.000 0.000 1

SN020888 0.000 0.000 0.000 1

SN020889 0.000 0.000 0.000 8

SN020890 0.000 0.000 0.000 12

SN020891 0.000 0.000 0.000 3

SN020892 0.000 0.000 0.000 6

SN020893 0.000 0.000 0.000 5

SN022017 0.000 0.000 0.000 5

SN022018 0.000 0.000 0.000 8

SN022312 0.000 0.000 0.000 0

SN022313 0.012 0.200 0.022 5

SN022314 0.000 0.000 0.000 2

SN022315 0.000 0.000 0.000 2

SN022316 0.000 0.000 0.000 8

SN022456 0.000 0.000 0.000 1

SN022457 0.000 0.000 0.000 1

SN022458 0.000 0.000 0.000 5

SN022459 0.000 0.000 0.000 8

SN022460 0.000 0.000 0.000 2

SN022464 0.050 0.333 0.087 3

SN022817 0.000 0.000 0.000 10

SN022818 0.000 0.000 0.000 3

SN022819 0.000 0.000 0.000 0

SN022823 0.100 0.333 0.154 3

SN023170 0.000 0.000 0.000 5

SN023172 0.000 0.000 0.000 0

SN023175 0.000 0.000 0.000 4

SN023176 0.000 0.000 0.000 5

SN023177 0.200 0.167 0.182 6

SN023178 0.000 0.000 0.000 3

SN023179 0.000 0.000 0.000 5

SN023180 0.000 0.000 0.000 7
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Continuation of Table 33

Sample ID Precision Recall F1-Score Support

SN023181 0.000 0.000 0.000 4

SN023182 0.000 0.000 0.000 1

SN023183 0.000 0.000 0.000 1

SN023185 0.000 0.000 0.000 8

SN023186 0.000 0.000 0.000 2

SN023522 0.000 0.000 0.000 1

SN023523 0.000 0.000 0.000 12

SN023524 0.082 0.778 0.149 9

SN023527 0.000 0.000 0.000 3

SN023528 0.000 0.000 0.000 1

SN023531 0.000 0.000 0.000 10

SN023535 0.000 0.000 0.000 4

SN023538 0.000 0.000 0.000 6

SN023729 0.148 0.659 0.242 223

SN023730 0.785 0.508 0.617 6082

SN023731 0.363 0.276 0.314 1737

SN024400 0.000 0.000 0.000 6

SN024401 0.000 0.000 0.000 9

SN024402 0.000 0.000 0.000 8

SN024794 0.000 0.000 0.000 4

SN024795 0.000 0.000 0.000 7

SN024796 0.000 0.000 0.000 1

SN024797 0.000 0.000 0.000 9

SN024798 0.000 0.000 0.000 3

SN024799 0.000 0.000 0.000 11

SN024800 0.000 0.000 0.000 9

SN024801 0.000 0.000 0.000 6

SN024822 0.000 0.000 0.000 0

SN024823 0.000 0.000 0.000 2

SN024824 0.000 0.000 0.000 5

SN024825 0.000 0.000 0.000 6

SN024980 0.125 0.333 0.182 3

SN024981 0.038 0.500 0.071 2

SN024984 0.006 0.500 0.013 2
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Continuation of Table 33

Sample ID Precision Recall F1-Score Support

SN025079 0.000 0.000 0.000 3

SN025080 0.000 0.000 0.000 13

SN025081 0.000 0.000 0.000 6

SN025082 0.000 0.000 0.000 7

SN025083 0.000 0.000 0.000 14

SN025084 0.357 0.417 0.385 12

SN025331 0.407 0.658 0.503 1012

SN025332 0.666 0.816 0.734 7603

SN025333 0.063 0.012 0.020 1004

SN025334 0.075 0.418 0.127 170

SN025335 0.095 0.008 0.014 530

SN025336 0.518 0.215 0.304 5465

SN025337 0.695 0.919 0.791 7572

SN026227 0.000 0.000 0.000 13

SN026228 0.200 0.250 0.222 4

accuracy 0.587 32085

macro avg 0.043 0.071 0.044 32085

weighted avg 0.597 0.587 0.566 32085

End of Table

Table 34. Precision, Recall, Accuracy, and F1-Scores for Decision Tree Classifier trained
on both datasets.

Sample ID Precision Recall F1-Score Support

SN014855 0.667 0.222 0.333 9

SN014856 0.143 0.250 0.182 4

SN014857 0.385 1.000 0.556 5

SN016837 0.000 0.000 0.000 1

SN016838 0.000 0.000 0.000 8

SN016839 0.000 0.000 0.000 8

SN016840 0.000 0.000 0.000 1

SN016841 0.000 0.000 0.000 9

SN016842 0.100 0.167 0.125 6
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Continuation of Table 34

Sample ID Precision Recall F1-Score Support

SN016843 0.000 0.000 0.000 3

SN016844 0.273 0.333 0.300 9

SN016845 0.053 0.143 0.077 7

SN016846 0.000 0.000 0.000 4

SN016847 0.000 0.000 0.000 9

SN016848 0.333 0.200 0.250 10

SN016849 0.111 0.167 0.133 6

SN016850 0.000 0.000 0.000 4

SN017952 0.429 0.273 0.333 11

SN017953 0.125 0.250 0.167 4

SN017955 0.000 0.000 0.000 6

SN017956 0.000 0.000 0.000 7

SN017959 0.400 0.400 0.400 5

SN018064 0.000 0.000 0.000 7

SN018065 0.500 0.667 0.571 3

SN018066 0.000 0.000 0.000 1

SN018067 0.000 0.000 0.000 0

SN018068 0.200 0.167 0.182 6

SN018069 0.000 0.000 0.000 3

SN018070 0.000 0.000 0.000 2

SN018071 0.000 0.000 0.000 2

SN018072 0.167 0.500 0.250 2

SN018800 0.000 0.000 0.000 1

SN018802 0.333 0.154 0.211 13

SN018803 0.364 0.800 0.500 5

SN018804 0.143 0.200 0.167 5

SN018805 0.000 0.000 0.000 5

SN018806 0.500 0.182 0.267 11

SN018807 0.182 0.286 0.222 7

SN018808 0.000 0.000 0.000 5

SN018809 0.400 0.286 0.333 7

SN018810 0.000 0.000 0.000 6

SN018811 0.667 0.444 0.533 9

SN018812 0.143 0.200 0.167 5
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Continuation of Table 34

Sample ID Precision Recall F1-Score Support

SN019683 0.400 0.222 0.286 9

SN019684 0.500 0.100 0.167 10

SN019685 0.500 0.333 0.400 6

SN019688 0.500 0.357 0.417 14

SN020087 0.000 0.000 0.000 2

SN020089 0.000 0.000 0.000 2

SN020090 0.000 0.000 0.000 2

SN020091 0.000 0.000 0.000 1

SN020092 0.000 0.000 0.000 2

SN020093 0.000 0.000 0.000 3

SN020101 0.000 0.000 0.000 2

SN020102 0.143 0.111 0.125 9

SN020104 0.000 0.000 0.000 5

SN020105 0.143 0.200 0.167 5

SN020107 0.111 0.200 0.143 5

SN020109 0.000 0.000 0.000 4

SN020885 0.000 0.000 0.000 1

SN020886 0.000 0.000 0.000 0

SN020887 0.000 0.000 0.000 1

SN020888 0.000 0.000 0.000 1

SN020889 0.000 0.000 0.000 8

SN020890 0.286 0.167 0.211 12

SN020891 0.000 0.000 0.000 3

SN020892 0.200 0.167 0.182 6

SN020893 0.500 0.400 0.444 5

SN022017 0.000 0.000 0.000 5

SN022018 0.143 0.125 0.133 8

SN022312 0.000 0.000 0.000 0

SN022313 0.000 0.000 0.000 5

SN022314 0.000 0.000 0.000 2

SN022315 0.000 0.000 0.000 2

SN022316 0.333 0.125 0.182 8

SN022456 0.000 0.000 0.000 1

SN022457 0.000 0.000 0.000 1
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Continuation of Table 34

Sample ID Precision Recall F1-Score Support

SN022458 0.000 0.000 0.000 5

SN022459 0.125 0.125 0.125 8

SN022460 0.000 0.000 0.000 2

SN022464 0.000 0.000 0.000 3

SN022817 0.467 0.700 0.560 10

SN022818 0.143 0.667 0.235 3

SN022819 0.000 0.000 0.000 0

SN022823 0.000 0.000 0.000 3

SN023170 0.000 0.000 0.000 5

SN023172 0.000 0.000 0.000 0

SN023174 0.000 0.000 0.000 0

SN023175 0.000 0.000 0.000 4

SN023176 0.000 0.000 0.000 5

SN023177 0.333 0.500 0.400 6

SN023178 0.000 0.000 0.000 3

SN023179 0.000 0.000 0.000 5

SN023180 0.000 0.000 0.000 7

SN023181 0.250 0.500 0.333 4

SN023182 0.000 0.000 0.000 1

SN023183 0.500 1.000 0.667 1

SN023185 0.333 0.250 0.286 8

SN023186 0.000 0.000 0.000 2

SN023522 0.000 0.000 0.000 1

SN023523 0.250 0.083 0.125 12

SN023524 0.200 0.444 0.276 9

SN023527 0.167 0.333 0.222 3

SN023528 0.000 0.000 0.000 1

SN023531 0.200 0.200 0.200 10

SN023535 0.000 0.000 0.000 4

SN023538 0.133 0.333 0.190 6

SN023729 0.306 0.336 0.321 223

SN023730 0.811 0.779 0.795 6082

SN023731 0.477 0.512 0.494 1737

SN024399 0.000 0.000 0.000 0
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Continuation of Table 34

Sample ID Precision Recall F1-Score Support

SN024400 0.000 0.000 0.000 6

SN024401 0.000 0.000 0.000 9

SN024402 0.000 0.000 0.000 8

SN024794 0.000 0.000 0.000 4

SN024795 0.000 0.000 0.000 7

SN024796 0.000 0.000 0.000 1

SN024797 0.000 0.000 0.000 9

SN024798 0.000 0.000 0.000 3

SN024799 0.000 0.000 0.000 11

SN024800 0.250 0.111 0.154 9

SN024801 0.000 0.000 0.000 6

SN024823 0.200 0.500 0.286 2

SN024824 0.200 0.200 0.200 5

SN024825 1.000 0.167 0.286 6

SN024980 0.000 0.000 0.000 3

SN024981 1.000 0.500 0.667 2

SN024984 0.333 0.500 0.400 2

SN025079 0.000 0.000 0.000 3

SN025080 0.769 0.769 0.769 13

SN025081 0.125 0.167 0.143 6

SN025082 0.250 0.286 0.267 7

SN025083 0.412 0.500 0.452 14

SN025084 0.429 0.250 0.316 12

SN025331 0.549 0.513 0.530 1012

SN025332 0.745 0.746 0.746 7603

SN025333 0.258 0.296 0.275 1004

SN025334 0.083 0.100 0.090 170

SN025335 0.166 0.185 0.175 530

SN025336 0.544 0.545 0.545 5465

SN025337 0.858 0.843 0.850 7572

SN026227 0.200 0.385 0.263 13

SN026228 0.500 1.000 0.667 4

accuracy 0.680 32085

macro avg 0.167 0.176 0.157 32085
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Continuation of Table 34

Sample ID Precision Recall F1-Score Support

weighted avg 0.686 0.680 0.682 32085

End of Table

Table 35. Precision, Recall, Accuracy, and F1-Scores for Random Forest Classifier
trained on both datasets.

Sample ID Precision Recall F1-Score Support

SN014855 1.000 0.333 0.500 9

SN014856 0.333 0.500 0.400 4

SN014857 0.500 1.000 0.667 5

SN016837 0.000 0.000 0.000 1

SN016838 0.000 0.000 0.000 8

SN016839 0.000 0.000 0.000 8

SN016840 0.000 0.000 0.000 1

SN016841 0.000 0.000 0.000 9

SN016842 0.167 0.167 0.167 6

SN016843 0.000 0.000 0.000 3

SN016844 1.000 0.111 0.200 9

SN016845 0.000 0.000 0.000 7

SN016846 0.000 0.000 0.000 4

SN016847 0.167 0.111 0.133 9

SN016848 0.375 0.300 0.333 10

SN016849 0.250 0.167 0.200 6

SN016850 0.000 0.000 0.000 4

SN017952 0.667 0.545 0.600 11

SN017953 0.500 0.250 0.333 4

SN017955 0.000 0.000 0.000 6

SN017956 0.000 0.000 0.000 7

SN017959 0.500 0.600 0.545 5

SN018062 0.000 0.000 0.000 0

SN018064 0.000 0.000 0.000 7

SN018065 0.400 0.667 0.500 3

SN018066 0.000 0.000 0.000 1
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Continuation of Table 35

Sample ID Precision Recall F1-Score Support

SN018068 0.167 0.167 0.167 6

SN018069 0.000 0.000 0.000 3

SN018070 0.000 0.000 0.000 2

SN018071 0.000 0.000 0.000 2

SN018072 0.400 1.000 0.571 2

SN018800 0.000 0.000 0.000 1

SN018802 0.500 0.154 0.235 13

SN018803 0.500 0.800 0.615 5

SN018804 0.250 0.200 0.222 5

SN018805 0.000 0.000 0.000 5

SN018806 1.000 0.273 0.429 11

SN018807 1.000 0.143 0.250 7

SN018808 0.500 0.200 0.286 5

SN018809 0.222 0.286 0.250 7

SN018810 0.143 0.167 0.154 6

SN018811 1.000 0.333 0.500 9

SN018812 0.000 0.000 0.000 5

SN019683 0.333 0.111 0.167 9

SN019684 1.000 0.100 0.182 10

SN019685 0.250 0.167 0.200 6

SN019688 0.556 0.357 0.435 14

SN020087 0.000 0.000 0.000 2

SN020089 0.000 0.000 0.000 2

SN020090 0.000 0.000 0.000 2

SN020091 0.000 0.000 0.000 1

SN020092 0.000 0.000 0.000 2

SN020093 0.000 0.000 0.000 3

SN020100 0.000 0.000 0.000 0

SN020101 0.000 0.000 0.000 2

SN020102 0.400 0.222 0.286 9

SN020104 0.222 0.400 0.286 5

SN020105 0.167 0.200 0.182 5

SN020107 0.167 0.200 0.182 5

SN020109 0.200 0.250 0.222 4
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Continuation of Table 35

Sample ID Precision Recall F1-Score Support

SN020885 0.000 0.000 0.000 1

SN020886 0.000 0.000 0.000 0

SN020887 0.000 0.000 0.000 1

SN020888 0.000 0.000 0.000 1

SN020889 0.667 0.250 0.364 8

SN020890 0.400 0.167 0.235 12

SN020891 0.077 0.333 0.125 3

SN020892 0.500 0.167 0.250 6

SN020893 1.000 0.600 0.750 5

SN022017 0.000 0.000 0.000 5

SN022018 0.500 0.375 0.429 8

SN022312 0.000 0.000 0.000 0

SN022313 0.000 0.000 0.000 5

SN022314 0.000 0.000 0.000 2

SN022315 0.000 0.000 0.000 2

SN022316 0.200 0.125 0.154 8

SN022456 0.000 0.000 0.000 1

SN022457 0.000 0.000 0.000 1

SN022458 0.000 0.000 0.000 5

SN022459 0.444 0.500 0.471 8

SN022460 0.000 0.000 0.000 2

SN022464 0.000 0.000 0.000 3

SN022817 0.889 0.800 0.842 10

SN022818 0.143 0.667 0.235 3

SN022823 0.000 0.000 0.000 3

SN023170 0.000 0.000 0.000 5

SN023172 0.000 0.000 0.000 0

SN023175 0.250 0.250 0.250 4

SN023176 0.000 0.000 0.000 5

SN023177 0.500 0.667 0.571 6

SN023178 0.000 0.000 0.000 3

SN023179 0.000 0.000 0.000 5

SN023180 0.000 0.000 0.000 7

SN023181 0.286 0.500 0.364 4
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Continuation of Table 35

Sample ID Precision Recall F1-Score Support

SN023182 0.000 0.000 0.000 1

SN023183 0.333 1.000 0.500 1

SN023185 0.111 0.125 0.118 8

SN023186 0.000 0.000 0.000 2

SN023522 0.000 0.000 0.000 1

SN023523 0.400 0.167 0.235 12

SN023524 0.571 0.444 0.500 9

SN023527 0.000 0.000 0.000 3

SN023528 0.000 0.000 0.000 1

SN023531 0.250 0.200 0.222 10

SN023535 0.000 0.000 0.000 4

SN023538 0.000 0.000 0.000 6

SN023729 0.442 0.561 0.494 223

SN023730 0.816 0.915 0.863 6082

SN023731 0.730 0.508 0.599 1737

SN024399 0.000 0.000 0.000 0

SN024400 0.000 0.000 0.000 6

SN024401 0.000 0.000 0.000 9

SN024402 0.200 0.125 0.154 8

SN024794 0.000 0.000 0.000 4

SN024795 0.333 0.143 0.200 7

SN024796 0.000 0.000 0.000 1

SN024797 0.000 0.000 0.000 9

SN024798 0.000 0.000 0.000 3

SN024799 0.000 0.000 0.000 11

SN024800 0.375 0.333 0.353 9

SN024801 0.250 0.167 0.200 6

SN024823 0.200 0.500 0.286 2

SN024824 0.111 0.200 0.143 5

SN024825 0.000 0.000 0.000 6

SN024980 1.000 0.333 0.500 3

SN024981 0.250 0.500 0.333 2

SN024984 0.333 0.500 0.400 2

SN025079 0.000 0.000 0.000 3
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Continuation of Table 35

Sample ID Precision Recall F1-Score Support

SN025080 0.923 0.923 0.923 13

SN025081 0.500 0.500 0.500 6

SN025082 0.571 0.571 0.571 7

SN025083 0.636 0.500 0.560 14

SN025084 0.800 0.333 0.471 12

SN025331 0.580 0.699 0.634 1012

SN025332 0.796 0.843 0.819 7603

SN025333 0.427 0.375 0.400 1004

SN025334 0.148 0.159 0.153 170

SN025335 0.256 0.204 0.227 530

SN025336 0.705 0.575 0.633 5465

SN025337 0.875 0.932 0.903 7572

SN026227 0.778 0.538 0.636 13

SN026228 0.571 1.000 0.727 4

accuracy 0.765 32085

macro avg 0.253 0.217 0.209 32085

weighted avg 0.757 0.765 0.757 32085

End of Table

Table 36. Precision, Recall, Accuracy, and F1-Scores for Extra Forest Classifier trained
on both datasets.

Sample ID Precision Recall F1-Score Support

SN014855 0.800 0.444 0.571 9

SN014856 0.400 0.500 0.444 4

SN014857 0.500 1.000 0.667 5

SN016837 0.000 0.000 0.000 1

SN016838 0.333 0.125 0.182 8

SN016839 0.000 0.000 0.000 8

SN016840 0.000 0.000 0.000 1

SN016841 0.000 0.000 0.000 9

SN016842 0.400 0.333 0.364 6

SN016843 0.000 0.000 0.000 3
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Continuation of Table 36

Sample ID Precision Recall F1-Score Support

SN016844 1.000 0.111 0.200 9

SN016845 0.000 0.000 0.000 7

SN016846 0.000 0.000 0.000 4

SN016847 0.200 0.111 0.143 9

SN016848 0.333 0.100 0.154 10

SN016849 0.200 0.167 0.182 6

SN016850 1.000 0.250 0.400 4

SN017952 0.667 0.545 0.600 11

SN017953 1.000 0.250 0.400 4

SN017955 0.000 0.000 0.000 6

SN017956 0.000 0.000 0.000 7

SN017959 0.500 1.000 0.667 5

SN018064 0.273 0.429 0.333 7

SN018065 0.500 1.000 0.667 3

SN018066 0.000 0.000 0.000 1

SN018068 0.250 0.167 0.200 6

SN018069 0.000 0.000 0.000 3

SN018070 0.000 0.000 0.000 2

SN018071 0.000 0.000 0.000 2

SN018072 0.500 0.500 0.500 2

SN018800 0.000 0.000 0.000 1

SN018802 0.500 0.154 0.235 13

SN018803 0.308 0.800 0.444 5

SN018804 0.250 0.200 0.222 5

SN018805 0.000 0.000 0.000 5

SN018806 0.833 0.455 0.588 11

SN018807 0.750 0.429 0.545 7

SN018808 0.333 0.200 0.250 5

SN018809 0.500 0.571 0.533 7

SN018810 0.167 0.167 0.167 6

SN018811 1.000 0.333 0.500 9

SN018812 0.000 0.000 0.000 5

SN019683 1.000 0.222 0.364 9

SN019684 0.500 0.100 0.167 10
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Continuation of Table 36

Sample ID Precision Recall F1-Score Support

SN019685 0.000 0.000 0.000 6

SN019688 0.556 0.357 0.435 14

SN020087 0.000 0.000 0.000 2

SN020089 0.000 0.000 0.000 2

SN020090 0.000 0.000 0.000 2

SN020091 0.000 0.000 0.000 1

SN020092 0.000 0.000 0.000 2

SN020093 0.000 0.000 0.000 3

SN020100 0.000 0.000 0.000 0

SN020101 0.000 0.000 0.000 2

SN020102 1.000 0.222 0.364 9

SN020104 0.250 0.400 0.308 5

SN020105 0.222 0.400 0.286 5

SN020107 0.250 0.200 0.222 5

SN020109 0.000 0.000 0.000 4

SN020885 0.000 0.000 0.000 1

SN020886 0.000 0.000 0.000 0

SN020887 0.000 0.000 0.000 1

SN020888 0.000 0.000 0.000 1

SN020889 0.500 0.125 0.200 8

SN020890 0.400 0.167 0.235 12

SN020891 0.000 0.000 0.000 3

SN020892 0.200 0.167 0.182 6

SN020893 0.750 0.600 0.667 5

SN022017 0.000 0.000 0.000 5

SN022018 0.750 0.375 0.500 8

SN022312 0.000 0.000 0.000 0

SN022313 0.500 0.200 0.286 5

SN022314 0.000 0.000 0.000 2

SN022315 0.000 0.000 0.000 2

SN022316 0.200 0.125 0.154 8

SN022456 0.000 0.000 0.000 1

SN022457 0.000 0.000 0.000 1

SN022458 0.000 0.000 0.000 5
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Continuation of Table 36

Sample ID Precision Recall F1-Score Support

SN022459 0.308 0.500 0.381 8

SN022460 0.000 0.000 0.000 2

SN022464 0.000 0.000 0.000 3

SN022817 0.889 0.800 0.842 10

SN022818 0.133 0.667 0.222 3

SN022823 0.000 0.000 0.000 3

SN023170 0.000 0.000 0.000 5

SN023172 0.000 0.000 0.000 0

SN023174 0.000 0.000 0.000 0

SN023175 0.500 0.250 0.333 4

SN023176 0.000 0.000 0.000 5

SN023177 0.333 0.333 0.333 6

SN023178 0.000 0.000 0.000 3

SN023179 0.111 0.200 0.143 5

SN023180 0.000 0.000 0.000 7

SN023181 0.500 0.500 0.500 4

SN023182 0.000 0.000 0.000 1

SN023183 1.000 1.000 1.000 1

SN023185 0.333 0.250 0.286 8

SN023186 0.000 0.000 0.000 2

SN023522 0.000 0.000 0.000 1

SN023523 0.500 0.167 0.250 12

SN023524 0.429 0.333 0.375 9

SN023527 0.000 0.000 0.000 3

SN023528 0.000 0.000 0.000 1

SN023531 0.200 0.200 0.200 10

SN023535 0.000 0.000 0.000 4

SN023538 0.000 0.000 0.000 6

SN023729 0.495 0.439 0.466 223

SN023730 0.817 0.924 0.867 6082

SN023731 0.738 0.499 0.595 1737

SN024399 0.000 0.000 0.000 0

SN024400 0.000 0.000 0.000 6

SN024401 0.000 0.000 0.000 9
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Continuation of Table 36

Sample ID Precision Recall F1-Score Support

SN024402 0.500 0.125 0.200 8

SN024794 0.000 0.000 0.000 4

SN024795 0.500 0.143 0.222 7

SN024796 0.000 0.000 0.000 1

SN024797 0.000 0.000 0.000 9

SN024798 0.125 0.333 0.182 3

SN024799 0.000 0.000 0.000 11

SN024800 0.429 0.333 0.375 9

SN024801 0.143 0.167 0.154 6

SN024823 0.250 0.500 0.333 2

SN024824 0.000 0.000 0.000 5

SN024825 0.000 0.000 0.000 6

SN024980 1.000 0.333 0.500 3

SN024981 0.500 0.500 0.500 2

SN024984 1.000 0.500 0.667 2

SN025079 0.000 0.000 0.000 3

SN025080 0.786 0.846 0.815 13

SN025081 0.600 0.500 0.545 6

SN025082 0.500 0.571 0.533 7

SN025083 0.636 0.500 0.560 14

SN025084 0.571 0.333 0.421 12

SN025331 0.592 0.676 0.631 1012

SN025332 0.793 0.833 0.813 7603

SN025333 0.441 0.367 0.400 1004

SN025334 0.118 0.235 0.157 170

SN025335 0.304 0.234 0.264 530

SN025336 0.695 0.578 0.631 5465

SN025337 0.874 0.929 0.901 7572

SN026227 0.857 0.462 0.600 13

SN026228 0.667 1.000 0.800 4

accuracy 0.763 32085

macro avg 0.287 0.226 0.229 32085

weighted avg 0.757 0.763 0.756 32085

End of Table

141



Table 37. Precision, Recall, Accuracy, and F1-Scores for Voting Classifier with all
models trained on both datasets.

Sample ID Precision Recall F1-Score Support

SN014855 0.750 0.333 0.462 9

SN014856 0.222 0.500 0.308 4

SN014857 0.500 1.000 0.667 5

SN016837 0.000 0.000 0.000 1

SN016838 0.000 0.000 0.000 8

SN016839 0.000 0.000 0.000 8

SN016840 0.000 0.000 0.000 1

SN016841 0.000 0.000 0.000 9

SN016842 0.200 0.167 0.182 6

SN016843 0.000 0.000 0.000 3

SN016844 0.250 0.111 0.154 9

SN016845 0.071 0.143 0.095 7

SN016846 0.000 0.000 0.000 4

SN016847 0.000 0.000 0.000 9

SN016848 0.200 0.100 0.133 10

SN016849 0.167 0.167 0.167 6

SN016850 0.000 0.000 0.000 4

SN017952 0.556 0.455 0.500 11

SN017953 0.125 0.250 0.167 4

SN017955 0.000 0.000 0.000 6

SN017956 0.500 0.143 0.222 7

SN017959 0.500 0.400 0.444 5

SN018062 0.000 0.000 0.000 0

SN018064 0.000 0.000 0.000 7

SN018065 0.750 1.000 0.857 3

SN018066 0.000 0.000 0.000 1

SN018067 0.000 0.000 0.000 0

SN018068 0.250 0.167 0.200 6

SN018069 0.000 0.000 0.000 3

SN018070 0.000 0.000 0.000 2

SN018071 0.000 0.000 0.000 2

SN018072 0.500 0.500 0.500 2
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Continuation of Table 37

Sample ID Precision Recall F1-Score Support

SN018800 0.000 0.000 0.000 1

SN018802 0.400 0.154 0.222 13

SN018803 0.500 0.800 0.615 5

SN018804 0.200 0.200 0.200 5

SN018805 0.000 0.000 0.000 5

SN018806 0.400 0.364 0.381 11

SN018807 0.273 0.429 0.333 7

SN018808 0.000 0.000 0.000 5

SN018809 0.500 0.286 0.364 7

SN018810 0.125 0.167 0.143 6

SN018811 0.800 0.444 0.571 9

SN018812 0.500 0.200 0.286 5

SN019683 0.667 0.222 0.333 9

SN019684 1.000 0.100 0.182 10

SN019685 0.400 0.333 0.364 6

SN019688 0.750 0.429 0.545 14

SN020087 0.000 0.000 0.000 2

SN020089 0.000 0.000 0.000 2

SN020090 0.000 0.000 0.000 2

SN020091 0.000 0.000 0.000 1

SN020092 0.000 0.000 0.000 2

SN020093 0.000 0.000 0.000 3

SN020101 0.000 0.000 0.000 2

SN020102 0.200 0.111 0.143 9

SN020104 0.250 0.200 0.222 5

SN020105 0.000 0.000 0.000 5

SN020107 0.167 0.200 0.182 5

SN020109 0.000 0.000 0.000 4

SN020885 0.000 0.000 0.000 1

SN020886 0.000 0.000 0.000 0

SN020887 0.000 0.000 0.000 1

SN020888 0.000 0.000 0.000 1

SN020889 0.000 0.000 0.000 8

SN020890 0.333 0.167 0.222 12
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Continuation of Table 37

Sample ID Precision Recall F1-Score Support

SN020891 0.000 0.000 0.000 3

SN020892 0.250 0.167 0.200 6

SN020893 1.000 0.400 0.571 5

SN022017 0.000 0.000 0.000 5

SN022018 0.286 0.250 0.267 8

SN022312 0.000 0.000 0.000 0

SN022313 0.000 0.000 0.000 5

SN022314 0.000 0.000 0.000 2

SN022315 0.000 0.000 0.000 2

SN022316 0.250 0.125 0.167 8

SN022456 0.000 0.000 0.000 1

SN022457 0.000 0.000 0.000 1

SN022458 0.000 0.000 0.000 5

SN022459 0.059 0.125 0.080 8

SN022460 0.000 0.000 0.000 2

SN022464 0.000 0.000 0.000 3

SN022817 0.778 0.700 0.737 10

SN022818 0.143 0.667 0.235 3

SN022819 0.000 0.000 0.000 0

SN022823 0.000 0.000 0.000 3

SN023170 0.000 0.000 0.000 5

SN023172 0.000 0.000 0.000 0

SN023175 0.000 0.000 0.000 4

SN023176 0.000 0.000 0.000 5

SN023177 0.364 0.667 0.471 6

SN023178 0.000 0.000 0.000 3

SN023179 0.250 0.200 0.222 5

SN023180 0.000 0.000 0.000 7

SN023181 0.400 0.500 0.444 4

SN023182 0.000 0.000 0.000 1

SN023183 0.500 1.000 0.667 1

SN023185 0.400 0.250 0.308 8

SN023186 0.000 0.000 0.000 2

SN023522 0.000 0.000 0.000 1
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Continuation of Table 37

Sample ID Precision Recall F1-Score Support

SN023523 0.333 0.167 0.222 12

SN023524 0.294 0.556 0.385 9

SN023527 0.500 0.333 0.400 3

SN023528 0.000 0.000 0.000 1

SN023531 0.091 0.100 0.095 10

SN023535 0.000 0.000 0.000 4

SN023538 0.000 0.000 0.000 6

SN023729 0.337 0.610 0.435 223

SN023730 0.820 0.866 0.842 6082

SN023731 0.663 0.491 0.564 1737

SN024399 0.000 0.000 0.000 0

SN024400 0.000 0.000 0.000 6

SN024401 0.000 0.000 0.000 9

SN024402 0.000 0.000 0.000 8

SN024794 0.000 0.000 0.000 4

SN024795 0.000 0.000 0.000 7

SN024796 0.000 0.000 0.000 1

SN024797 0.000 0.000 0.000 9

SN024798 0.000 0.000 0.000 3

SN024799 0.000 0.000 0.000 11

SN024800 0.200 0.111 0.143 9

SN024801 0.100 0.167 0.125 6

SN024822 0.000 0.000 0.000 0

SN024823 1.000 0.500 0.667 2

SN024824 0.000 0.000 0.000 5

SN024825 1.000 0.167 0.286 6

SN024980 0.500 0.333 0.400 3

SN024981 0.143 0.500 0.222 2

SN024984 1.000 0.500 0.667 2

SN025079 0.000 0.000 0.000 3

SN025080 0.833 0.769 0.800 13

SN025081 0.500 0.500 0.500 6

SN025082 0.375 0.429 0.400 7

SN025083 0.778 0.500 0.609 14
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Continuation of Table 37

Sample ID Precision Recall F1-Score Support

SN025084 0.417 0.417 0.417 12

SN025331 0.514 0.722 0.601 1012

SN025332 0.775 0.844 0.808 7603

SN025333 0.412 0.262 0.320 1004

SN025334 0.100 0.229 0.139 170

SN025335 0.226 0.132 0.167 530

SN025336 0.694 0.518 0.594 5465

SN025337 0.859 0.935 0.896 7572

SN026227 0.778 0.538 0.636 13

SN026228 0.400 1.000 0.571 4

accuracy 0.743 32085

macro avg 0.224 0.198 0.192 32085

weighted avg 0.738 0.743 0.734 32085

End of Table

Table 38. Precision, Recall, Accuracy, and F1-Scores for Voting Classifier with tree
models only trained on both datasets.

Sample ID Precision Recall F1-Score Support

SN014855 1.000 0.444 0.615 9

SN014856 0.333 0.500 0.400 4

SN014857 0.500 1.000 0.667 5

SN016837 0.000 0.000 0.000 1

SN016838 0.000 0.000 0.000 8

SN016839 0.000 0.000 0.000 8

SN016840 0.000 0.000 0.000 1

SN016841 0.000 0.000 0.000 9

SN016842 0.500 0.333 0.400 6

SN016843 0.000 0.000 0.000 3

SN016844 1.000 0.111 0.200 9

SN016845 0.000 0.000 0.000 7

SN016846 0.000 0.000 0.000 4

SN016847 0.200 0.111 0.143 9
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Continuation of Table 38

Sample ID Precision Recall F1-Score Support

SN016848 0.600 0.300 0.400 10

SN016849 0.250 0.167 0.200 6

SN016850 0.000 0.000 0.000 4

SN017952 0.600 0.545 0.571 11

SN017953 0.500 0.250 0.333 4

SN017955 0.000 0.000 0.000 6

SN017956 0.000 0.000 0.000 7

SN017959 0.600 0.600 0.600 5

SN018064 0.300 0.429 0.353 7

SN018065 0.400 0.667 0.500 3

SN018066 0.000 0.000 0.000 1

SN018068 0.143 0.167 0.154 6

SN018069 0.000 0.000 0.000 3

SN018070 0.000 0.000 0.000 2

SN018071 0.000 0.000 0.000 2

SN018072 0.200 0.500 0.286 2

SN018800 0.000 0.000 0.000 1

SN018802 0.667 0.154 0.250 13

SN018803 0.444 0.800 0.571 5

SN018804 0.250 0.200 0.222 5

SN018805 0.000 0.000 0.000 5

SN018806 1.000 0.364 0.533 11

SN018807 0.667 0.286 0.400 7

SN018808 0.000 0.000 0.000 5

SN018809 0.429 0.429 0.429 7

SN018810 0.143 0.167 0.154 6

SN018811 1.000 0.333 0.500 9

SN018812 0.000 0.000 0.000 5

SN019683 0.500 0.111 0.182 9

SN019684 0.500 0.100 0.167 10

SN019685 0.333 0.333 0.333 6

SN019688 0.636 0.500 0.560 14

SN020087 0.000 0.000 0.000 2

SN020089 0.000 0.000 0.000 2
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Continuation of Table 38

Sample ID Precision Recall F1-Score Support

SN020090 0.000 0.000 0.000 2

SN020091 0.000 0.000 0.000 1

SN020092 0.000 0.000 0.000 2

SN020093 0.000 0.000 0.000 3

SN020100 0.000 0.000 0.000 0

SN020101 0.000 0.000 0.000 2

SN020102 0.600 0.333 0.429 9

SN020104 0.222 0.400 0.286 5

SN020105 0.143 0.200 0.167 5

SN020107 0.125 0.200 0.154 5

SN020109 0.200 0.250 0.222 4

SN020885 0.000 0.000 0.000 1

SN020886 0.000 0.000 0.000 0

SN020887 0.000 0.000 0.000 1

SN020888 0.000 0.000 0.000 1

SN020889 0.333 0.125 0.182 8

SN020890 0.333 0.167 0.222 12

SN020891 0.077 0.333 0.125 3

SN020892 0.167 0.167 0.167 6

SN020893 1.000 0.600 0.750 5

SN022017 0.333 0.400 0.364 5

SN022018 0.600 0.375 0.462 8

SN022313 0.000 0.000 0.000 5

SN022314 0.000 0.000 0.000 2

SN022315 0.000 0.000 0.000 2

SN022316 0.250 0.125 0.167 8

SN022456 0.000 0.000 0.000 1

SN022457 0.000 0.000 0.000 1

SN022458 0.000 0.000 0.000 5

SN022459 0.333 0.375 0.353 8

SN022460 0.000 0.000 0.000 2

SN022464 0.000 0.000 0.000 3

SN022817 0.889 0.800 0.842 10

SN022818 0.133 0.667 0.222 3
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Continuation of Table 38

Sample ID Precision Recall F1-Score Support

SN022823 0.000 0.000 0.000 3

SN023170 0.000 0.000 0.000 5

SN023172 0.000 0.000 0.000 0

SN023175 0.333 0.250 0.286 4

SN023176 0.000 0.000 0.000 5

SN023177 0.600 0.500 0.545 6

SN023178 0.000 0.000 0.000 3

SN023179 0.000 0.000 0.000 5

SN023180 0.000 0.000 0.000 7

SN023181 0.400 0.500 0.444 4

SN023182 0.000 0.000 0.000 1

SN023183 0.500 1.000 0.667 1

SN023185 0.111 0.125 0.118 8

SN023186 0.000 0.000 0.000 2

SN023522 0.000 0.000 0.000 1

SN023523 0.600 0.250 0.353 12

SN023524 0.800 0.444 0.571 9

SN023527 0.000 0.000 0.000 3

SN023528 0.000 0.000 0.000 1

SN023531 0.222 0.200 0.211 10

SN023535 0.000 0.000 0.000 4

SN023538 0.000 0.000 0.000 6

SN023729 0.491 0.516 0.503 223

SN023730 0.816 0.924 0.866 6082

SN023731 0.744 0.503 0.600 1737

SN024399 0.000 0.000 0.000 0

SN024400 0.000 0.000 0.000 6

SN024401 0.000 0.000 0.000 9

SN024402 0.500 0.125 0.200 8

SN024794 0.000 0.000 0.000 4

SN024795 0.000 0.000 0.000 7

SN024796 0.000 0.000 0.000 1

SN024797 0.000 0.000 0.000 9

SN024798 0.111 0.333 0.167 3
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Continuation of Table 38

Sample ID Precision Recall F1-Score Support

SN024799 0.000 0.000 0.000 11

SN024800 0.500 0.222 0.308 9

SN024801 0.200 0.167 0.182 6

SN024823 0.000 0.000 0.000 2

SN024824 0.125 0.200 0.154 5

SN024825 0.000 0.000 0.000 6

SN024980 0.000 0.000 0.000 3

SN024981 0.250 0.500 0.333 2

SN024984 1.000 0.500 0.667 2

SN025079 0.000 0.000 0.000 3

SN025080 0.917 0.846 0.880 13

SN025081 0.714 0.833 0.769 6

SN025082 0.571 0.571 0.571 7

SN025083 0.667 0.571 0.615 14

SN025084 0.667 0.333 0.444 12

SN025331 0.596 0.699 0.643 1012

SN025332 0.796 0.840 0.817 7603

SN025333 0.440 0.379 0.407 1004

SN025334 0.137 0.194 0.161 170

SN025335 0.284 0.215 0.245 530

SN025336 0.705 0.581 0.637 5465

SN025337 0.875 0.932 0.903 7572

SN026227 0.800 0.615 0.696 13

SN026228 0.571 1.000 0.727 4

accuracy 0.768 32085

macro avg 0.261 0.223 0.221 32085

weighted avg 0.759 0.768 0.759 32085

End of Table
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Appendix C. Siamese Network PRAF Scores

Table 39. Precision, Recall, Accuracy, and F1-Scores for binary cross-entropy with no
moment transformation trained on TESCAN and tested on EProbe.

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN014855 0.011752 0.552 0.023013 0.988808 0.460233 0.628114

SN014856 0.010968 0.8 0.021639 0.985775 0.161163 0.277034

SN014857 0.012083 1 0.023877 1 0.049256 0.093887

SN016838 0.011427 0.88 0.02256 0.987984 0.114733 0.20559

SN016839 0.011392 0.866 0.022488 0.987797 0.126128 0.223693

SN016841 0.009883 0.594 0.019442 0.984904 0.308 0.469254

SN016842 0.011735 0.929 0.023177 0.990937 0.090267 0.165462

SN016844 0.011137 0.83 0.021978 0.986368 0.143035 0.24984

SN016845 0.010251 0.654 0.020185 0.985086 0.265744 0.418571

SN016847 0.012166 0.994 0.024038 0.998867 0.061512 0.115887

SN016848 0.011022 0.784 0.021738 0.986389 0.182012 0.307316

SN016849 0.011744 0.924 0.023194 0.990869 0.095895 0.174867

SN016850 0.011014 0.805 0.02173 0.985981 0.159477 0.274547

SN017952 0.012256 1 0.024215 1 0.062884 0.118327

SN017953 0.012158 0.998 0.024023 0.999593 0.057116 0.108058

SN017955 0.011924 0.944 0.02355 0.992847 0.090384 0.165684

SN017956 0.012629 0.996 0.024942 0.999508 0.094558 0.172771

SN017959 0.012554 1 0.024797 1 0.085407 0.157373

SN018064 0.01217 0.98 0.024041 0.996911 0.075047 0.139585

SN018068 0.011716 0.925 0.023139 0.990682 0.092721 0.169571

SN018802 0.011376 0.842 0.022449 0.987834 0.149174 0.259206

SN018803 0.012382 1 0.024461 1 0.072512 0.135218

SN018804 0.011808 0.921 0.023316 0.991221 0.103721 0.187791

SN018805 0.012038 0.941 0.023772 0.99332 0.102012 0.185022

SN018806 0.010273 0.613 0.020207 0.985839 0.313267 0.475452

SN018807 0.010971 0.787 0.02164 0.986045 0.175 0.297246

SN018808 0.011578 0.903 0.022862 0.989227 0.10357 0.187508

SN018809 0.011929 0.959 0.023565 0.993796 0.076372 0.141844

SN018810 0.011221 0.838 0.022146 0.98685 0.14136 0.247297

SN018811 0.012706 0.962 0.025081 0.996634 0.130826 0.23129
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Continuation of Table 39

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN018812 0.011073 0.801 0.021845 0.986429 0.168198 0.287392

SN019683 0.011829 0.946 0.023366 0.992315 0.081081 0.149913

SN019684 0.012068 0.965 0.023838 0.995027 0.08143 0.150541

SN019685 0.011488 0.869 0.022675 0.988461 0.130488 0.230542

SN019688 0.011723 0.909 0.023147 0.990379 0.108919 0.196254

SN020102 0.011691 0.933 0.023092 0.990685 0.08286 0.15293

SN020104 0.012356 1 0.024411 1 0.070581 0.131856

SN020105 0.011609 0.907 0.022924 0.989515 0.102058 0.185032

SN020107 0.011825 0.914 0.023347 0.991137 0.111826 0.200976

SN020109 0.011639 0.906 0.022984 0.989739 0.10543 0.190561

SN020889 0.012202 0.997 0.024109 0.999433 0.0615 0.11587

SN020890 0.012174 0.975 0.024047 0.996382 0.080058 0.148208

SN020891 0.01244 1 0.024574 1 0.076907 0.142829

SN020892 0.010992 0.81 0.021689 0.985723 0.152535 0.264188

SN020893 0.012108 1 0.023926 1 0.051256 0.097513

SN022017 0.012036 0.963 0.023775 0.994708 0.080872 0.149583

SN022018 0.012399 1 0.024495 1 0.073837 0.13752

SN022316 0.01218 0.978 0.024061 0.996719 0.077721 0.144198

SN022458 0.01191 0.938 0.023522 0.99248 0.095151 0.173654

SN022459 0.012027 0.948 0.023752 0.99364 0.094465 0.172528

SN022817 0.012103 1 0.023916 1 0.05086 0.096798

SN022818 0.012454 1 0.024601 1 0.07793 0.144592

SN023175 0.012248 0.993 0.024198 0.998819 0.068826 0.128777

SN023176 0.011661 0.919 0.023029 0.990109 0.094279 0.172164

SN023177 0.011929 0.951 0.023562 0.993266 0.084035 0.154959

SN023179 0.011612 0.907 0.022931 0.989541 0.102314 0.185453

SN023180 0.012146 1 0.024 1 0.054279 0.102969

SN023181 0.012438 1 0.024571 1 0.076779 0.142609

SN023183 0.012454 0.998 0.024602 0.999709 0.079837 0.147866

SN023185 0.011836 0.938 0.023376 0.991998 0.089372 0.163971

SN023523 0.011893 0.932 0.023487 0.992127 0.09964 0.181092

SN023524 0.012077 1 0.023865 1 0.048779 0.093021

SN023527 0.011506 0.877 0.022714 0.988588 0.123895 0.220195
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Continuation of Table 39

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN023531 0.012295 1 0.02429 1 0.065849 0.123561

SN023535 0.012282 1 0.024265 1 0.06486 0.12182

SN023538 0.012239 0.998 0.024181 0.999633 0.063419 0.11927

SN024400 0.012391 1 0.024478 1 0.073186 0.13639

SN024401 0.011867 0.936 0.023438 0.992127 0.093779 0.171361

SN024402 0.01106 0.798 0.021818 0.986398 0.170337 0.290508

SN024795 0.012184 0.999 0.024075 0.9998 0.058233 0.110055

SN024797 0.012021 0.97 0.023749 0.995246 0.073035 0.136083

SN024798 0.011435 0.888 0.02258 0.988015 0.10736 0.193676

SN024799 0.011689 0.919 0.023085 0.990335 0.096512 0.175883

SN024800 0.012136 1 0.023981 1 0.053512 0.101587

SN024801 0.012244 1 0.024192 1 0.061942 0.116658

SN024824 0.012044 0.976 0.023795 0.995977 0.069081 0.129201

SN024825 0.012349 0.993 0.024394 0.998937 0.0765 0.142117

SN024980 0.010228 0.597 0.02011 0.985923 0.328198 0.492463

SN024981 0.016027 0.602 0.031222 0.99195 0.570233 0.724169

SN024984 0.012346 1 0.024391 1 0.069791 0.130475

SN025080 0.012299 0.995 0.024299 0.999181 0.070895 0.132397

SN025081 0.012277 0.826 0.024194 0.991176 0.227279 0.369769

SN025082 0.011031 0.796 0.02176 0.986252 0.170174 0.290265

SN025083 0.012002 0.956 0.023706 0.99401 0.084907 0.15645

SN025084 0.011195 0.832 0.022092 0.986751 0.145488 0.253587

SN026227 0.009875 0.634 0.019446 0.983944 0.260802 0.412317

SN026228 0.012435 1 0.024565 1 0.076535 0.142187

Accuracy 0.12651 0.12651

Micro Av 0.011853 0.91046 0.12651 0.991209 0.117394 0.12651

Macro Av 0.011843 0.91046 0.023377 0.993479 0.117394 0.201289

End of Table

153



Table 40. Precision, Recall, Accuracy, and F1-Scores for binary cross-entropy with 4
moment transformation trained on TESCAN and tested on EProbe.

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN014855 0.032309 1 0.062596 1 0.651733 0.78915

SN014856 0.648508 1 0.786782 1 0.993698 0.996839

SN014857 0.034953 1 0.067545 1 0.678953 0.808782

SN016838 0.033697 1 0.065198 1 0.666558 0.799922

SN016839 0.042622 1 0.081759 1 0.738814 0.849791

SN016841 0.03644 1 0.070319 1 0.692535 0.81834

SN016842 0.037226 1 0.07178 1 0.699267 0.823022

SN016844 0.060924 1 0.11485 1 0.820767 0.901562

SN016845 0.086896 1 0.159898 1 0.877814 0.934932

SN016847 0.065591 1 0.123107 1 0.834349 0.909695

SN016848 0.104855 1 0.189807 1 0.900733 0.947774

SN016849 0.045155 1 0.086408 1 0.754116 0.859825

SN016850 0.075369 1 0.140174 1 0.857349 0.923196

SN017952 0.050731 1 0.096562 1 0.782419 0.877929

SN017953 0.043157 1 0.082744 1 0.742198 0.852025

SN017955 0.049422 1 0.094189 1 0.776349 0.874095

SN017956 0.055897 1 0.105876 1 0.803605 0.89111

SN017959 0.038101 1 0.073405 1 0.706442 0.827971

SN018064 0.050421 1 0.096002 1 0.781012 0.877043

SN018068 0.054242 1 0.102902 1 0.797256 0.887192

SN018802 0.048183 1 0.091937 1 0.770302 0.870249

SN018803 0.039434 1 0.075875 1 0.716756 0.835012

SN018804 0.05591 1 0.105899 1 0.803651 0.891138

SN018805 0.043081 1 0.082604 1 0.741721 0.85171

SN018806 0.063103 1 0.118715 1 0.82736 0.905525

SN018807 0.048167 1 0.091908 1 0.770221 0.870198

SN018808 0.053362 1 0.101317 1 0.793721 0.884999

SN018809 0.035391 1 0.068362 1 0.68307 0.811695

SN018810 0.043797 0.746 0.082737 0.99637 0.810616 0.893946

SN018811 0.036566 1 0.070552 1 0.693628 0.819103

SN018812 0.042584 1 0.081689 1 0.73857 0.849629

SN019683 0.052359 1 0.099507 1 0.789547 0.882398
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Continuation of Table 40

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN019684 0.038244 1 0.07367 1 0.707581 0.828753

SN019685 0.04281 1 0.082105 1 0.740012 0.850582

SN019688 0.04607 1 0.088082 1 0.759233 0.863141

SN020102 0.038234 1 0.073651 1 0.7075 0.828697

SN020104 0.045832 1 0.087646 1 0.757919 0.862291

SN020105 0.03257 1 0.063086 1 0.654616 0.791261

SN020107 0.051682 1 0.098285 1 0.78664 0.88058

SN020109 0.038497 1 0.07414 1 0.709581 0.830123

SN020889 0.037291 1 0.071901 1 0.699814 0.823401

SN020890 0.595221 0.822 0.690466 0.997921 0.9935 0.995706

SN020891 0.959322 0.849 0.900796 0.998247 0.999581 0.998914

SN020892 0.03733 1 0.071974 1 0.70014 0.823626

SN020893 0.059698 1 0.11267 1 0.816849 0.899193

SN022017 0.03785 1 0.072939 1 0.704419 0.826579

SN022018 0.03657 1 0.070559 1 0.693663 0.819127

SN022316 0.07373 1 0.137334 1 0.853919 0.921204

SN022458 0.045809 1 0.087604 1 0.757791 0.862208

SN022459 0.042398 1 0.081347 1 0.737372 0.848836

SN022817 0.036082 1 0.06965 1 0.68936 0.81612

SN022818 0.049327 1 0.094016 1 0.775895 0.873808

SN023175 0.057541 1 0.10882 1 0.809547 0.894751

SN023176 0.050525 1 0.096191 1 0.781488 0.877343

SN023177 0.076858 1 0.142745 1 0.860337 0.924926

SN023179 0.053726 1 0.101973 1 0.795198 0.885917

SN023180 0.05542 1 0.10502 1 0.801814 0.890007

SN023181 0.051314 1 0.097618 1 0.785023 0.879566

SN023183 0.081867 1 0.151343 1 0.869593 0.930248

SN023185 0.061192 1 0.115327 1 0.821605 0.902067

SN023523 0.060547 1 0.114181 1 0.819581 0.900846

SN023524 0.052609 1 0.09996 1 0.790605 0.883059

SN023527 0.046094 1 0.088125 1 0.75936 0.863223

SN023531 0.055075 1 0.1044 1 0.8005 0.889197

SN023535 0.053824 1 0.10215 1 0.795593 0.886162

155



Continuation of Table 40

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN023538 0.046393 1 0.088672 1 0.760988 0.864274

SN024400 0.041404 1 0.079517 1 0.730791 0.844459

SN024401 0.041859 1 0.080354 1 0.733837 0.846489

SN024402 0.058156 1 0.10992 1 0.811686 0.896056

SN024795 0.053876 1 0.102244 1 0.795802 0.886292

SN024797 0.045354 1 0.086772 1 0.755244 0.860557

SN024798 0.057894 1 0.109451 1 0.810779 0.895503

SN024799 0.043651 1 0.083651 1 0.745244 0.854029

SN024800 0.11183 0.95 0.200105 0.999363 0.912267 0.953831

SN024801 0.055685 1 0.105496 1 0.802814 0.890623

SN024824 0.056351 1 0.106689 1 0.805279 0.892138

SN024825 0.046984 1 0.08975 1 0.76414 0.866303

SN024980 0.038196 1 0.073581 1 0.707198 0.82849

SN024981 0.038275 1 0.073727 1 0.707826 0.82892

SN024984 0.038405 1 0.07397 1 0.70886 0.829629

SN025080 0.057501 1 0.108749 1 0.809407 0.894665

SN025081 0.06776 1 0.12692 1 0.840023 0.913057

SN025082 0.031984 1 0.061985 1 0.64807 0.786459

SN025083 0.07277 1 0.135667 1 0.851837 0.919991

SN025084 0.069051 1 0.129182 1 0.843233 0.91495

SN026227 0.049407 1 0.094162 1 0.776279 0.874051

SN026228 0.038305 1 0.073784 1 0.70807 0.829088

Accuracy 0.777905 0.777905

Micro Av 0.048884 0.992724 0.777905 0.999891 0.775407 0.777905

Macro Av 0.074376 0.992724 0.120312 0.999907 0.775407 0.871691

End of Table
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Table 41. Precision, Recall, Accuracy, and F1-Scores for triplet loss with no moment
transformation trained on TESCAN and tested on EProbe.

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN014855 0.01379 0.699 0.027046 0.991711 0.418721 0.588827

SN014856 0.0113 0.703 0.022243 0.988019 0.284791 0.442138

SN014857 0.033722 1 0.065244 1 0.666814 0.800106

SN016838 0.017963 0.967 0.03527 0.999005 0.385267 0.556081

SN016839 0.011874 0.742 0.023373 0.989473 0.281988 0.438896

SN016841 0.011887 0.749 0.023402 0.989536 0.276012 0.431629

SN016842 0.012609 0.813 0.024833 0.991697 0.259721 0.411636

SN016844 0.01689 0.932 0.033178 0.997863 0.369198 0.538979

SN016845 0.011509 0.775 0.022682 0.988558 0.226035 0.36794

SN016847 0.017039 0.929 0.033464 0.997814 0.376826 0.547055

SN016848 0.012933 0.778 0.025443 0.99173 0.309558 0.471837

SN016849 0.01488 0.875 0.029263 0.995567 0.32643 0.491655

SN016850 0.014105 0.907 0.027778 0.995903 0.262837 0.415908

SN017952 0.018656 0.959 0.0366 0.998848 0.413419 0.584794

SN017953 0.015573 0.872 0.0306 0.995872 0.359058 0.527815

SN017955 0.016348 0.824 0.03206 0.995191 0.423488 0.594147

SN017956 0.015964 0.943 0.031396 0.997959 0.324081 0.489274

SN017959 0.015658 0.838 0.030741 0.995161 0.387419 0.557717

SN018064 0.019833 1 0.038894 1 0.425326 0.596812

SN018068 0.014819 0.844 0.029128 0.994808 0.347581 0.515166

SN018802 0.019079 0.856 0.037327 0.996582 0.488267 0.655418

SN018803 0.026632 1 0.051882 1 0.575012 0.730168

SN018804 0.024344 0.96 0.047485 0.999159 0.552628 0.711648

SN018805 0.016994 0.897 0.033357 0.99699 0.396686 0.567552

SN018806 0.014182 0.77 0.027851 0.992967 0.377616 0.547155

SN018807 0.013957 0.848 0.027462 0.994208 0.30336 0.464875

SN018808 0.010428 0.689 0.020546 0.985142 0.239767 0.385669

SN018809 0.013757 0.772 0.027032 0.992617 0.356442 0.524529

SN018810 0.025019 0.962 0.048769 0.999217 0.564081 0.72109

SN018811 0.013562 0.705 0.026612 0.991576 0.403744 0.573837

SN018812 0.010025 0.649 0.019745 0.984234 0.254791 0.404792

SN019683 0.011114 0.692 0.021876 0.987548 0.284023 0.441165
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Continuation of Table 41

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN019684 0.014208 0.803 0.027921 0.993537 0.35214 0.519982

SN019685 0.015004 0.88 0.029505 0.995767 0.328244 0.493734

SN019688 0.012354 0.727 0.024296 0.990303 0.324198 0.48848

SN020102 0.011261 0.708 0.02217 0.987899 0.277186 0.432907

SN020104 0.018448 0.978 0.036213 0.999353 0.39493 0.566133

SN020105 0.011622 0.718 0.022874 0.988818 0.289977 0.448445

SN020107 0.011869 0.743 0.023364 0.989467 0.280721 0.437359

SN020109 0.01102 0.715 0.021706 0.987116 0.253895 0.403903

SN020889 0.022597 0.93 0.044123 0.998473 0.532267 0.694376

SN020890 0.029817 0.989 0.057889 0.999796 0.625814 0.769786

SN020891 0.029051 0.989 0.056443 0.999792 0.61564 0.76204

SN020892 0.011748 0.735 0.023126 0.989154 0.281035 0.437709

SN020893 0.017228 0.937 0.033833 0.998068 0.378465 0.548819

SN022017 0.022498 0.915 0.043916 0.998165 0.537733 0.698934

SN022018 0.017963 0.833 0.035167 0.995889 0.470453 0.639031

SN022316 0.015113 0.867 0.029709 0.995512 0.343023 0.510235

SN022458 0.016137 0.9 0.031705 0.996798 0.36193 0.531043

SN022459 0.016612 0.909 0.032627 0.997181 0.374291 0.544285

SN022817 0.015751 0.895 0.030957 0.996521 0.349674 0.517693

SN022818 0.033334 1 0.064518 1 0.662802 0.797211

SN023175 0.018666 0.981 0.036635 0.999448 0.400291 0.571635

SN023176 0.015975 0.891 0.031388 0.996509 0.361826 0.530889

SN023177 0.019915 1 0.039053 1 0.427756 0.5992

SN023179 0.014107 0.827 0.027741 0.993904 0.327965 0.493189

SN023180 0.01686 0.916 0.03311 0.997429 0.378895 0.549175

SN023181 0.016922 0.848 0.033183 0.99588 0.427174 0.597889

SN023183 0.03175 1 0.061546 1 0.645395 0.784487

SN023185 0.018047 0.96 0.035429 0.998817 0.39264 0.56369

SN023523 0.011748 0.755 0.023136 0.989224 0.261512 0.413666

SN023524 0.020151 0.992 0.0395 0.999788 0.439116 0.610219

SN023527 0.014791 0.873 0.02909 0.995461 0.32386 0.488722

SN023531 0.015154 0.867 0.029788 0.995535 0.344826 0.512229

SN023535 0.017711 0.955 0.034777 0.99864 0.384105 0.554813
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Continuation of Table 41

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN023538 0.017884 0.938 0.035099 0.998206 0.401035 0.572189

SN024400 0.018043 0.966 0.035424 0.998984 0.388674 0.559618

SN024401 0.0158 0.907 0.031059 0.996858 0.343047 0.510437

SN024402 0.012623 0.787 0.024848 0.991361 0.284209 0.441769

SN024795 0.017935 0.959 0.035211 0.998777 0.389384 0.560321

SN024797 0.017685 0.933 0.034712 0.998043 0.397395 0.568449

SN024798 0.017381 0.949 0.034137 0.998426 0.376151 0.546436

SN024799 0.013532 0.833 0.02663 0.993436 0.293872 0.453571

SN024800 0.016952 0.91 0.033284 0.997299 0.386384 0.556978

SN024801 0.017128 0.932 0.033638 0.997913 0.378116 0.548429

SN024824 0.014636 0.879 0.028793 0.995509 0.311895 0.474979

SN024825 0.01629 0.952 0.032032 0.998319 0.331523 0.497752

SN024980 0.033902 0.859 0.065229 0.997713 0.71536 0.833268

SN024981 0.211334 0.992 0.348437 0.999903 0.956953 0.977957

SN024984 0.017466 0.677 0.034053 0.993304 0.557151 0.713881

SN025080 0.018053 0.793 0.035302 0.995194 0.498442 0.664213

SN025081 0.012336 0.679 0.024231 0.989955 0.367849 0.536386

SN025082 0.011382 0.734 0.022416 0.988184 0.258674 0.410019

SN025083 0.011182 0.706 0.022015 0.98768 0.274058 0.429062

SN025084 0.012379 0.821 0.024391 0.991344 0.238384 0.384346

SN026227 0.012862 0.798 0.025316 0.991906 0.287837 0.446195

SN026228 0.013837 0.839 0.027225 0.993893 0.304698 0.466409

Accuracy 0.394061 0.394061

Micro Av 0.016095 0.860092 0.394061 0.995831 0.388642 0.394061

Macro Av 0.018994 0.860092 0.036465 0.995005 0.388642 0.548976

End of Table
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Table 42. Precision, Recall, Accuracy, and F1-Scores for triplet loss with 4 moment
transformation trained on TESCAN and tested on EProbe.

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN014855 0.023346 1 0.045627 1 0.513558 0.67861

SN014856 0.025702 1 0.050115 1 0.559209 0.717299

SN014857 0.022966 1 0.044901 1 0.505326 0.671384

SN016838 0.074272 1 0.138274 1 0.85507 0.921873

SN016839 0.023725 1 0.046351 1 0.521523 0.685528

SN016841 0.058896 1 0.111241 1 0.814198 0.897584

SN016842 0.022289 1 0.043606 1 0.489942 0.657666

SN016844 0.050705 1 0.096516 1 0.782302 0.877856

SN016845 0.027376 1 0.053292 1 0.586872 0.739659

SN016847 0.05952 1 0.112353 1 0.816267 0.898841

SN016848 0.023006 1 0.044977 1 0.506198 0.672153

SN016849 0.087207 1 0.160424 1 0.878291 0.935202

SN016850 0.022433 1 0.043882 1 0.493291 0.660676

SN017952 0.052645 1 0.100025 1 0.790756 0.883153

SN017953 0.021515 1 0.042124 1 0.471174 0.640542

SN017955 0.022252 1 0.043535 1 0.48907 0.65688

SN017956 0.074884 1 0.139334 1 0.856349 0.922616

SN017959 0.022386 1 0.043792 1 0.492209 0.659705

SN018064 0.051517 1 0.097986 1 0.785919 0.880128

SN018068 0.069633 1 0.1302 1 0.84464 0.915777

SN018802 0.022997 1 0.04496 1 0.506 0.671979

SN018803 0.020239 1 0.039675 1 0.437105 0.608313

SN018804 0.021899 1 0.042859 1 0.48064 0.649232

SN018805 0.027974 1 0.054426 1 0.595965 0.74684

SN018806 0.024305 1 0.047457 1 0.533221 0.695557

SN018807 0.047955 1 0.091521 1 0.769151 0.869514

SN018808 0.023967 1 0.046812 1 0.526465 0.689783

SN018809 0.021805 1 0.042679 1 0.47836 0.64715

SN018810 0.021597 1 0.042282 1 0.473233 0.642441

SN018811 0.021064 1 0.041259 1 0.459605 0.629766

SN018812 0.022594 1 0.044189 1 0.496977 0.663974

SN019683 0.023169 1 0.045288 1 0.509744 0.675272
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Continuation of Table 42

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN019684 0.021294 1 0.041701 1 0.46557 0.635343

SN019685 0.057359 1 0.108495 1 0.808907 0.89436

SN019688 0.021712 1 0.042501 1 0.47607 0.64505

SN020102 0.021586 1 0.04226 1 0.472953 0.642184

SN020104 0.043731 1 0.083798 1 0.745733 0.854349

SN020105 0.023014 1 0.044993 1 0.506384 0.672317

SN020107 0.024485 1 0.0478 1 0.536733 0.698537

SN020109 0.024032 1 0.046935 1 0.527767 0.6909

SN020889 0.022998 1 0.044962 1 0.506023 0.671999

SN020890 0.023318 1 0.045574 1 0.512965 0.678092

SN020891 0.020804 1 0.040761 1 0.452709 0.623262

SN020892 0.023313 1 0.045564 1 0.51286 0.678001

SN020893 0.050279 1 0.095744 1 0.78036 0.876632

SN022017 0.023726 1 0.046352 1 0.521535 0.685538

SN022018 0.024218 1 0.047291 1 0.5315 0.694091

SN022316 0.029338 1 0.057003 1 0.615279 0.761824

SN022458 0.04686 1 0.089526 1 0.763488 0.865884

SN022459 0.048522 1 0.092554 1 0.771988 0.871324

SN022817 0.025661 1 0.050039 1 0.5585 0.716715

SN022818 0.021387 1 0.041879 1 0.467942 0.637548

SN023175 0.049903 1 0.095062 1 0.778616 0.87553

SN023176 0.049283 1 0.093936 1 0.775686 0.873675

SN023177 0.047578 1 0.090835 1 0.767233 0.868287

SN023179 0.044998 1 0.086122 1 0.753221 0.859242

SN023180 0.073915 1 0.137656 1 0.854314 0.921434

SN023181 0.213584 1 0.351989 1 0.957186 0.978125

SN023183 0.039311 1 0.075649 1 0.715837 0.834388

SN023185 0.054107 1 0.102659 1 0.796721 0.886861

SN023523 0.110278 1 0.198649 1 0.906186 0.950784

SN023524 0.091083 1 0.166959 1 0.883965 0.938409

SN023527 0.040823 1 0.078444 1 0.726791 0.841782

SN023531 0.039407 1 0.075827 1 0.716558 0.834878

SN023535 0.050033 1 0.095297 1 0.779221 0.875913
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Continuation of Table 42

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN023538 0.044528 1 0.085259 1 0.750488 0.857462

SN024400 0.071434 1 0.133342 1 0.848849 0.918246

SN024401 0.043844 1 0.084005 1 0.746419 0.854799

SN024402 0.048272 1 0.092098 1 0.770744 0.870531

SN024795 0.039828 1 0.076605 1 0.719674 0.836989

SN024797 0.041569 0.797 0.079017 0.997007 0.786326 0.879221

SN024798 0.040042 1 0.077 1 0.721233 0.838042

SN024799 0.105507 1 0.190876 1 0.901419 0.948154

SN024800 0.032289 1 0.062559 1 0.651512 0.788988

SN024801 0.063155 1 0.118807 1 0.827512 0.905616

SN024824 0.200602 1 0.334169 1 0.953663 0.976282

SN024825 0.097305 1 0.177352 1 0.892128 0.942989

SN024980 0.02037 1 0.039927 1 0.440802 0.611885

SN024981 0.021586 1 0.042259 1 0.472942 0.642173

SN024984 0.020178 1 0.039559 1 0.435372 0.606633

SN025080 0.022414 1 0.043846 1 0.49286 0.66029

SN025081 0.039049 1 0.075163 1 0.713849 0.833036

SN025082 0.020389 1 0.039964 1 0.441337 0.6124

SN025083 0.022533 1 0.044073 1 0.495593 0.662738

SN025084 0.030641 1 0.05946 1 0.63214 0.774615

SN026227 0.178253 1 0.302572 1 0.946395 0.97246

SN026228 0.020113 1 0.039433 1 0.4335 0.604813

0.651612 0.651612

Micro Av 0.031869 0.997667 0.651612 0.999958 0.647588 0.651612

Macro Av 0.044387 0.997667 0.082921 0.999966 0.647588 0.77465

End of Table
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Table 43. Precision, Recall, Accuracy, and F1-Scores for binary cross-entropy with no
moment transformation trained on EProbe and tested on TESCAN.

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN025331 0.110954 0.471 0.1796 0.90808 0.580667 0.70837

SN025332 0.152655 0.759 0.254186 0.952068 0.531889 0.682492

SN025333 0.123423 0.45 0.193715 0.91344 0.644889 0.756024

SN025334 0.102429 0.388 0.162072 0.901481 0.622222 0.736261

SN025335 0.100481 0.397 0.160372 0.900314 0.605111 0.723769

SN025336 0.129425 0.596 0.212667 0.925116 0.554556 0.693435

SN025337 0.222688 0.691 0.336827 0.955198 0.732 0.828836

SN023729 0.155455 0.721 0.255764 0.947967 0.564778 0.70784

SN023730 0.089247 0.288 0.136267 0.894877 0.673444 0.768528

SN023731 0.111543 0.316 0.164884 0.904563 0.720333 0.802004

Accuracy 0.61146 0.61146

Micro Av 0.130153 0.5077 0.61146 0.919284 0.622989 0.61146

Macro Av 0.12983 0.5077 0.205635 0.92031 0.622989 0.740756

End of Table

Table 44. Precision, Recall, Accuracy, and F1-Scores for binary cross-entropy with 4
moment transformation trained on EProbe and tested on TESCAN.

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN025331 0.186275 0.114 0.141439 0.905624 0.944667 0.924734

SN025332 0.146919 0.062 0.087201 0.902067 0.96 0.930132

SN025333 0.220183 0.24 0.229665 0.914703 0.905556 0.910106

SN025334 0.522739 1 0.686577 1 0.898556 0.946568

SN025335 0.681481 0.092 0.162115 0.907957 0.995222 0.949589

SN025336 0.130016 0.081 0.099815 0.901994 0.939778 0.920498

SN025337 0.720165 0.35 0.471063 0.93168 0.984889 0.957546

SN023729 0.283105 0.248 0.264392 0.91758 0.930222 0.923858

SN023730 0.359411 0.464 0.405063 0.938454 0.908111 0.923033

SN023731 0.1893 0.092 0.123822 0.904562 0.956222 0.929675

Accuracy 0.87552 0.87552
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Continuation of Table 44

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

Micro Av 0.345727 0.2743 0.87552 0.921176 0.942322 0.87552

Macro Av 0.34396 0.2743 0.267115 0.922462 0.942322 0.931574

End of Table

Table 45. Precision, Recall, Accuracy, and F1-Scores for triplet loss with no moment
transformation trained on EProbe and tested on TESCAN.

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN025331 0.120936 0.651 0.203979 0.92441 0.474222 0.626863

SN025332 0.291053 0.771 0.422582 0.968848 0.791333 0.871139

SN025333 0.131195 0.638 0.217636 0.929531 0.530556 0.675532

SN025334 0.110513 0.595 0.186404 0.912262 0.467889 0.618537

SN025335 0.107351 0.59 0.18165 0.90897 0.454889 0.606339

SN025336 0.149812 0.637 0.242574 0.936848 0.598333 0.730269

SN025337 0.205776 0.741 0.322104 0.959525 0.682222 0.797454

SN023729 0.180231 0.64 0.281257 0.944177 0.676556 0.788271

SN023730 0.101847 0.59 0.173708 0.902543 0.421889 0.574998

SN023731 0.119131 0.581 0.19772 0.918212 0.522667 0.666147

Accuracy 0.57019 0.57019

Micro Av 0.14033 0.6434 0.57019 0.934147 0.562056 0.57019

Macro Av 0.151784 0.6434 0.242961 0.930533 0.562056 0.695555

End of Table

Table 46. Precision, Recall, Accuracy, and F1-Scores for triplet loss with 4 moment
transformation trained on EProbe and tested on TESCAN.

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN025331 0.0978 0.68 0.171005 0.894979 0.303 0.452727
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Continuation of Table 46

Sample ID Precision Recall F1-Score Precision Recall F1-Score

Same Not-Same

SN025332 0.099485 0.657 0.172804 0.898999 0.339222 0.492578

SN025333 0.144444 0.845 0.246715 0.962651 0.443889 0.607605

SN025334 0.129066 0.746 0.220059 0.93981 0.440667 0.6

SN025335 0.204918 1 0.340136 1 0.568889 0.725212

SN025336 0.111345 0.687 0.191632 0.918277 0.390778 0.548246

SN025337 0.219292 0.632 0.325605 0.9483 0.75 0.837573

SN023729 0.171963 0.92 0.289764 0.982796 0.507778 0.669597

SN023730 0.104141 0.679 0.180585 0.907759 0.351 0.50625

SN023731 0.103955 0.623 0.178178 0.905915 0.403333 0.558161

0.47956 0.47956

Micro Av 0.131076 0.7469 0.47956 0.941164 0.449856 0.47956

Macro Av 0.138641 0.7469 0.231648 0.935948 0.449856 0.599795

End of Table
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29. G. Lemâıtre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A python

toolbox to tackle the curse of imbalanced datasets in machine learning,” Journal

of Machine Learning Research, vol. 18, no. 17, pp. 1–5, 2017. [Online]. Available:

http://jmlr.org/papers/v18/16-365.html [Accessed: 2020-10-21]

169



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

21–03–2019 Master’s Thesis Sept 2019 — Mar 2021

Application of Artificial Neural Networks to Elemental Assay Data for
Nuclear Forensics Analysis

XXXXXX

Seik, Jason G, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering an Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENP-MS-21-M-135

Air Force Technical Applications Center

AFTAC

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

An Artificial Neural Network (ANN) is applied to elemental assay data of microscopic, actinide bearing particles
obtained using energy dispersive x-ray spectroscopy via a scanning electron microscope (SEM-EDS) and Electron Probe
Micro Analysis (EPMA). This technique provides a non-destructive assessment of the composition of particles that is
suitable for nuclear forensics applications. A moment transformation was applied to the data before the ANN was used
to compare and group like-particles together using a Siamese network and triplet loss function. A moment transformation
provided a noticeable increase in accuracy across all runs. Models using triplet loss had nearly perfect precision when two
observations were the same, and provided a preliminary means to compare unknown samples to a database of known
samples. Adjusting the hyper parameters could further increase the performance of the models.

Artificial Neural Networks, Siamese Network, Triplet Loss, Moment Transformation, Nuclear Forensics

U U U UU 185

Dr. Abigail Bickley, AFIT/ENP

(937) 255-6565; abigail.bickley@afit.edu


	Application of Artificial Neural Networks to Elemental Assay Data for Nuclear Forensics Analysis
	Recommended Citation

	tmp.1630682998.pdf.9NBbm

