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Abstract 

Collaborations utilizing small spacecraft in near earth orbit between the U. S. Coast 

Guard Academy (CGA), Naval Research Lab (NRL), the U. S. Naval Academy (USNA), 

and the Air Force Institute of Technology (AFIT) have initiated scientific and engineering 

space-based experiments. Sourced opportunities like the VaSpace ThinSat missions have 

provided a platform for payload, sensor, and experiment development that would have 

otherwise been resource prohibitive. We have constructed an impedance probe payload 

derived from the existing ‘Space PlasmA Diagnostic suitE’ (SPADE) mission operating 

from NASA’s International Space Station.  Currently both space and laboratory plasmas 

are investigated with AC impedance measurements using a radio frequency antenna. 

Plasma electron density data collected from the ThinSat will however use an innovative 

surface-mounted dipole antenna to gather the required sheath-plasma and plasma 

resonance information. Results from this experiment will provide the framework for a CGA 

CubeSat with an impedance probe payload set to launch in late 2021. Impedance probe 

optimization, data collection obstacles, solutions, and procedures will be reported. 
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Impedance Probe Payload Development for Space-Based Joint Service 

Collaboration 

 

Introduction 

Humanities excursion into space has become more than a symbol of prosperity and 

prowess. Recent advances in private and military space frameworks and infrastructures has 

galvanized our efforts to explore, maintain, and thrive in space. Real-time measurements 

of space plasmas are now possible on scale never seen before. Our goal is to demonstrate 

that for a fraction of the cost of a traditional satellite, we can build and deploy space plasma 

measuring payloads.  

1.1 U.S. Space System Capabilities Enhanced with Accurate Plasma Parameters 

The United States (U.S.) and U.S. Air Force depend on understanding the space 

environment. The space environment is an enormously complex system that has a direct 

impact on U.S. defense capabilities. Dependence on satellites continues to grow, as does 

the number of space systems in operation. All space systems operate in the harsh space 

environment and are subject to unpredictable space weather events.  It is becoming vital to 

better understand the environment our satellites operate in and this can be achieved by 

improving U.S. capabilities to measure the plasma environment. The vast majority of all 

Low Earth Orbit (LEO) Satellites operate in the ionosphere which is a low-density, weakly 

ionized plasma region that ranges from 60 km to 1000 km (Schunk and Nagy, 2009).  

Plasma is the most prevalent state of matter in the universe and is usually found in 

a vacuum environment or in stars. A plasma is a “quasineutral gas of charged and neutral 
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particles which exhibits collective behavior” (Chen, 2015). The motion of the charged 

particles creates localized electric fields and currents which in turn generates magnetic 

fields (Chen, 2015). Most space weather in our solar system is driven by the Sun. The Sun 

is capable violently ejecting plasma in an event known as a Coronal Mass Ejection (CME) 

(Russell, 2016). A CME is capable of reaching the Earth’s magnetosphere and ionosphere 

potentially causing significant damage to satellites and other sensitive electronic 

equipment. The plasma environment with its varying electric currents can cause charge 

buildup on satellites. This is known as spacecraft charging and it can cause damage or 

destroy the satellite if not mitigated (NESC, 2016). Accurate, real-time measurements of 

plasma density and temperature are needed to help prevent spacecraft failure due to 

charging. 

Satellite communications and long-range communications require an 

electromagnetic signal to either reflect off or propagate through the ionosphere. The plasma 

density in the ionosphere is a key parameter for determining the capability of these 

communications (Pisacane, 2008). Certain ionospheric conditions could lead to signal 

degradation or completely absorb it. Additionally, the density of space plasmas is primarily 

a factor of solar activity. Solar winds from the Sun are the primary driver for all space 

weather in our solar system (Russell, 2016). Having additional real-time, space-based in-

situ plasma density measuring satellites will improve U.S. satellite communication 

capabilities and global space weather monitoring and characterization. 

1.2 Ionospheric Environment  

 Ionospheric parameters are measured with several ground and space-based systems 

to provide near real-time data (Pisacane, 2008). There are a variety of models that provide 
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a global picture of the ionosphere available to the public. Space-based constellations that 

measure ionospheric characteristics are much more rare than ground-based systems. The 

recently launched Constellation Observing Satellite for Meteorology, Ionosphere, and 

Climate (COSMIC-2) and GPS constellation provide near real-time global ionospheric 

measurements. However, many more additional space-based in-situ sensors are needed to 

accurately measure and model the ionosphere. 

The ionosphere contains a significant number of free electrons and ions that are 

primarily produced via extreme ultraviolet or EUV radiation from the Sun. Once ionized 

the electrons and ions are exposed to several different processes including chemical 

reactions, diffusion, plasma instabilities, and transport due to electric and magnetic fields. 

This forms a weakly ionized plasma (Schunk and Nagy, 2009). In the ionosphere the 

plasma density varies drastically with altitude and peaks around 350 km then begins to 

decrease. Dominant ion concentration, day/night cycle, latitude, longitude, and solar 

activity are several key factors that determine what the plasma density will be (Pisacane, 

2008).  

1.3 Current and future impedance probe effort 

With the cost of launching to space constantly decreasing, access to space is 

becoming easier for a wide variety of organizations. Research organizations that were 

traditionally limited to ground-based labs can now conduct space-based research. The 

United States Coast Guard Academy (USCGA), Naval Research Labs (NRL), the U. S. 

Naval Academy (USNA), and the Air Force Institute of Technology (AFIT) have initiated 

a scientific and engineering space-based collaboration effort. We have partnered with 

Virginia Space’s (VaSpace) ThinSat missions that will provided a platform for payload, 
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sensor, and experiment development that would have otherwise been resource prohibitive 

(James et al., 2020). We have constructed an impedance probe that is designed to measure 

the absolute electron density in a uniform plasma by recording the resonant frequencies of 

the reflected signal. The impedance probe built will use a unique surface-mounted dipole 

antenna to measure the required resonant information between the plasma and probe. The 

ThinSat mission will help determine if small satellites with an impedance payload can 

provide accurate real-time plasma parameters in a cost effect and low power budget 

approach. The results learned from the design and testing of the ThinSat will be used to 

design an upcoming USCGA CubeSat with an expected launch timeframe in late 2021. 

The USCGA and partners plan to design and build a CubeSat with an impedance probe 

payload that will operate in a LEO environment. 

1.4 Collaborative partners for space weather measurements  

 Our key collaborator for designing and testing the impedance probe is the NRL. 

The NRL has been a global leader in impedance probe design and experiments for decades. 

Currently, the NRL has the Space PlasmA Diagnostic suitE (SPADE) onboard the 

International Space Station (ISS). SPADE includes an impedance probe that provides 

spacecraft charging and ambient plasma parameter measurements for the ISS. It consists 

of a driven biasable dipole and a passive, receiving dipole antenna. SPADE has been 

operational on the ISS since May 2019 and has two main operational modes. One is to 

sweep AC frequencies with a constant DC bias voltage. This is similar to how the ThinSat 

will operate. The second operational mode is to sweep DC bias voltage with constant AC 

frequency. By sweeping the DC bias SPADE is able to measure additional plasma 

parameters. 

4



 

Also onboard the ISS is the Integrated Miniaturized Electrostatic Analyzer 

(iMESA). iMESA is part of a space weather constellation being designed and built by the 

Space Physics and Atmospheric Research Center (SPARC) at USAFA (Maldonado et al., 

2020). Once completed the space weather constellation will be embedded on four separate 

DoD small satellites where they will measure several different plasma parameters 

(Maldonado et al., 2020). The iMESA uses a laminated electrostatic plasma analyzer to 

measure plasma density, temperature, and spacecraft charging.  

1.5 Research Focus and document organization 

 This research effort has three main phases. First, the physics and engineering 

required to design, build, and operate an impedance probe will be research. Second, a 

plasma chamber will be used to test the antenna and impedance probe hardware in a similar 

plasma environment to LEO. Third, we will collaborate with the SPADE and iMESA teams 

to understand how to successfully retrieve raw data from a spacecraft and perform data 

analysis. 

 The remainder of this document is organized as follows: Chapter II contains the 

background physics and engineering required to make impedance measurements with a 

ThinSat. Additionally, it will contain details how an impedance probe is capable of 

measuring plasma parameters. Chapter III contains research methodology and testing 

parameters for this project. Chapter IV contains results from testing the antenna and 

impedance probe. SPADE data will be analyzed and presented. Chapter V lists conclusions 

and recommendations. 
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II. Theory and physics behind impedance measuring concept 

 In this chapter some targeted principles of plasma physics and the impedance 

measurement concept are explored. The sheaths of a plasma and probe form an equivalent 

circuit. Measuring the impedance of the equivalent circuit provides resonant frequency 

information about the plasma and probe. These resonant frequencies can provide accurate 

real-time measurements of electron temperature and density. Additionally, in this chapter 

the physics of the highly compact novel dual strap dipole antenna for the impedance probe 

is discussed.       

2.1 Fluid behavior of plasma 

 When the ions in a plasma move they create charge separation which leads to 

electric currents. The electric currents produce magnetic fields that will affect distant ions 

in the plasma. The long distant influence of charged particles combined with local 

collisional effects define collective behavior. A fundamental property of a plasma is its 

ability to shield out applied electric potentials (Chen, 2015). This shielding is known as 

Debye shielding and is defined by 𝜆𝜆𝐷𝐷 ≡ �𝜀𝜀0𝐾𝐾𝑇𝑇𝑒𝑒
𝑛𝑛𝑒𝑒2

�
1/2

 where  𝑛𝑛 is electron density, 𝐾𝐾𝑇𝑇𝑒𝑒  is the 

thermal energy of the electrons, 𝜀𝜀0 is vacuum permittivity, and 𝑒𝑒 is the fundamental charge 

of an electron. 𝜆𝜆𝐷𝐷 is known as the Debye length is the shielding distance or sheath 

thickness.  

 There are two main models used when working with plasmas. First there is the fluid 

model which is significantly simpler to work with and describes a much larger percentage 

of plasmas (Chen, 2015). In the fluid model individual particles are ignored and fluid 

dynamics can be used to describe the plasma. This enables us to simplify any dependent 
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variable and treat the plasma as three spatial dimensions rather than six phase space 

dimensions. Treating the plasma as a single fluid is called magnetohydrodynamics (MHD). 

The MHD model will fail and require a more complicated approach when a Maxwellian 

distribution cannot be maintained (Goldston, 1995). This occurs when local collisions 

occur infrequently enough to maintain control of the plasma.  The second model used to 

describe a plasma is kinetic theory and often used when the simpler MHD model fails. 

When kinetic theory is used the velocity distribution function 𝑓𝑓(𝑥𝑥,𝑣𝑣, 𝑡𝑡) of each species in 

the plasma is needed. Kinetic theory is mostly required for low density or collisionless 

plasmas as explored for this topic. Table 1 below lists the major features of both MHD and 

kinetic modeling of a plasma. A description of Kinetic theory is presented in Appendix A. 

 

Table 1. Two methods for modeling plasma behavior. 

 Magnetohydrodynamics Kinetic 

Description 

Single fluid model combines 
Navier-Stokes and Maxwell 

equations. Only need four dependent 
variables. 

Track velocity and location of individual 
plasma particles. Need seven dependent 

variables. Use Vlasov and Maxwell 
equations. 

Strengths Easy to solve and simplest of the 
plasma models. 

Captures much more of the plasma 
particle behavior than the fluid model. 

Mathematically more complex with less 
approximations. 

Weaknesses 

Misses a lot of the plasma 
properties. Will fail when there are 
instabilities, infrequent collisions, 
non-Maxwellian distribution, and 

several more factors. 

Complex and rigorous to solve. Still does 
not capture everything. 

When to 
use 

Collision frequency is sufficient, 
Maxwellian distribution, or when 

high detail in not needed. 

Low density plasmas, non-Maxwellian 
distribution, high temperatures, when 

more detail is needed. 
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2.2 Electron density calculated from plasma frequency 

 In a uniform homogeneous plasma, plasma frequency 𝜔𝜔𝑝𝑝 is one the most 

fundamental properties in determining electron density by inspecting impedance. In a 

plasma, electrons get displaced from some equilibrium point with an ion, resulting in a 

charge separation. This charge separation creates an electric field and both ion and electron 

undergo a restoring Coulomb force to reestablish equilibrium. The electron being much 

less massive than the ion will be pulled towards the ion, overshoot, and oscillate about the 

ion in attempt to find the equilibrium position. This oscillatory motion resembles harmonic 

oscillator motion known as the plasma’s electron frequency, 

𝜔𝜔𝑝𝑝𝑒𝑒 = �𝑛𝑛𝑒𝑒𝑒𝑒
2

𝜖𝜖0𝑚𝑚
�
1 2⁄

. (1)
   

Plasma frequency is the key to calculating the electron density through resonant frequency 

impedance explorations. From Equation 1, if the plasma frequency is known then the 

electron density 𝑛𝑛𝑒𝑒 can be calculated since the remaining variables are constants. 

Numerically, Equation 1 can be approximated by, 

𝜔𝜔𝑝𝑝𝑒𝑒
2𝜋𝜋 = 𝑓𝑓𝑝𝑝 ≈ 9�𝑛𝑛𝑒𝑒, (2) 

where the electron density 𝑛𝑛𝑒𝑒 is in 𝑚𝑚−3. This linear relationship provides a relatively 

straightforward method to measuring the electron density once the plasma frequency is 

known.    

2.3 Plasma Impedance Measurement Concept 

 Impedance measurements of a plasma is one method used to measure plasma 

frequency. It has been an active area of research for decades with most work completed 
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prior to 1980 (Blackwell et al., 2007). With significant increases in computer technology 

and space access, impedance measurement research for plasma diagnostics has become a 

much more active area of research. A Radio Frequency (RF) probe immersed in a uniform 

plasma can make impedance measurements between the probe and the surrounding plasma. 

This measurement between the impedance of probe’s antenna and the impedance of plasma 

provides information we can use to derive important plasma parameters (Balmain, 1964).  

 

Both space and laboratory plasma have been investigated with AC impedance 

measurements using a RF antenna probes (Balmain 1964; Blackwell et al., 2007). Typical 

impedance probes (IP) emit RF waves swept through a frequency range while measuring 

the reflected power. The measured reflected power will exhibit resistive behavior between 

Figure 1. (a) A dipole antenna probe in submerged in plasma with sheath a formed 
around probe tip. AC voltage sweeps through RF frequencies on the antenna into the 
plasma. (b) A typical resonant plot with magnitude of the impedance at a maximum 
and a zero-crossing of the phase. The maximum magnitude occurs at the normalized 
resonant frequency that matches the plasma frequency. 
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the plasma and antenna. In an AC circuit paradigm, resistive behavior is impedance and 

contains both magnitude and phase information as a complex variable. Repeatedly 

sweeping through a frequency range will generate an impedance spectrum between the 

probe’s antenna and surrounding plasma. Impedance measured as a function of frequency 

will have resonant regions that characterize the plasma frequency (Patra and Spencer, 

2013). At these resonant frequencies, the probe is in resonance with the plasma and the 

reflected power will be at either maximum or minimum. Figure 1 shows an idealized 

impedance measurement where the resonant frequencies occur when the phase or 

imaginary part of the impedance goes to zero. The zero crossing of the phase means the 

impedance is entirely real and is indictive of a resonant frequency. 

Originally it was assumed that IP resonance occurred at the electron frequency of 

the plasma under inspection. It was not until 1963 when Levitskii and Shashurin (1963) 

demonstrated that resonance was actually between the plasma and a sheath that forms 

around the antenna (Ku et al., 1998). Leviskii and Shashurin introduced an equivalent 

circuit similar to the one shown in Figure 2 to represent the plasma-sheath system. It has 

been shown that treating the plasma-sheath system as an equivalent resistor, inductor, and 

capacitor (RLC) circuit provides a decent approximation of the plasma impedance 

(Blackwell, et al., 2015). 
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 Resonant frequencies are derived by treating the plasma-sheath system as 

equivalent parallel and series circuit. A sheath will form around the antenna surface when 

the electrical potential between the antenna and plasma differs. The impedance of the 

sheath is almost entirely capacitive, and this capacitance can be used to express the total 

impedance of the sheath (Blackwell et al., 2005). From Figure 2 the plasma and antenna 

equivalent circuit components that represent the circuit are the sheath capacitance 𝐶𝐶𝑠𝑠ℎ in 

series with a tank circuit. The tank circuit or 𝐿𝐿𝐶𝐶 circuit contains the plasma resistance 𝑅𝑅𝑃𝑃 

and inductance 𝐿𝐿𝑃𝑃, and the initial vacuum capacitance 𝐶𝐶0. Series resonance occurs when 

the frequency is matched for the two sheaths of the equivalent circuit, producing a 

maximum amount of transmitted energy deposited into the plasma. This series frequency 

(positioned below the plasma frequency, 𝜔𝜔𝑝𝑝) behaves inductively. Consequently, the 

maximum energy transmission is represented by a minimum in the impedance magnitude 

which can be observed and compared to its phase (Ku et al., 1998). Parallel resonance, 

Figure 2. Equivalent circuit model of a plasma and RF probe. Csh is the sheath 
capacitance, C0 is the vacuum capacitance, Lp and Rp are the inductance and 
resistance of the plasma. Inside a plasma chamber a second Csh forms between 
chamber wall and plasma. 
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where transmitted and plasma frequencies are equal, occurs when the capacitance and 

inductance of the plasma resonate together (Bilen et al., 1999) where the capacitive 

reactance is  𝑋𝑋𝐶𝐶 = 1
𝜔𝜔𝐶𝐶�  and inductive reactance is 𝑋𝑋𝐿𝐿 = 𝜔𝜔𝐿𝐿 respectively. Parallel 

resonance is straightforward to determine once an impedance spectrum for the swept 

frequency range is produced. When a tank circuit is in resonance, the inductor and capacitor 

on opposite sides of the circuit are equal and opposite. They will cancel each other out to 

minimize the current deposited into the plasma and drive the impedance to a maximum. A 

minimum in the impedance (series resonance) closely followed by a maximum (parallel 

resonance) over a swept frequency range, directly determines the plasma frequency via 

transmitted frequency equivalence.  

Deriving the relationship between the two resonant frequencies and the plasma 

frequency begins with the equivalent circuit in Figure 2. The expected impedance spectrum 

of a probe in an unmagnetized plasma can be visualized as the tank circuit previously 

mentioned with Csh as the sheath capacitance created between the plasma and the vacuum 

chamber walls (Blackwell et al., 2005).  For a spherical capacitor example with radius 𝜌𝜌, 

in a uniform cold collisionless plasma, and plasma potential of 𝑉𝑉𝑃𝑃 has a capacitance of 

𝐶𝐶 = 4𝜋𝜋𝜀𝜀0𝜀𝜀𝑟𝑟𝜌𝜌,              (3) 

where the relative permittivity 

  𝜀𝜀𝑟𝑟 = 1−
𝜔𝜔𝑝𝑝𝑒𝑒2

𝜔𝜔(𝜔𝜔 − 𝑗𝑗𝑗𝑗),            (4) 

𝜀𝜀0 is the vacuum permittivity, and 𝑗𝑗 is the collision frequency (Blackwell et al., 2005). 

Permittivity describes how easily a dielectric will become polarized by introducing an 

electric field. Since this is a RF driven antenna, the circuit model dictates the polarization 
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is best described as a relative measurement in this case. Other aspects of the plasma 

represented as circuit elements are,  

𝐶𝐶0 = 4𝜋𝜋𝜀𝜀0𝜌𝜌,          (5) 
      

𝐿𝐿𝑝𝑝 = 𝜔𝜔𝑝𝑝𝑒𝑒−2𝐶𝐶0−1,       (6) 
 

𝑅𝑅𝑝𝑝 = 𝑗𝑗𝐿𝐿𝑝𝑝,          (7) 
 

where, as previously stated,  𝐶𝐶0 is the vacuum capacitance, 𝐿𝐿𝑝𝑝 is the plasma inductance, 

and 𝑅𝑅𝑝𝑝 is the plasma resistance. For an alternating current electrical impedance 𝑍𝑍 is the 

measurement of the magnitude and phase of the resistive nature of a circuit. For a direct 

current there is only magnitude called resistance. Impedance has units in Ohms (Ω) and its 

three 𝑅𝑅𝐿𝐿𝐶𝐶 components are expressed as, 

𝑍𝑍𝑅𝑅 = 𝑅𝑅,      𝑍𝑍𝐶𝐶0 =
1

𝑗𝑗𝜔𝜔𝐶𝐶0
,      𝑍𝑍𝐶𝐶𝑠𝑠ℎ =

1
𝑗𝑗𝜔𝜔𝐶𝐶𝑠𝑠ℎ

,    𝑍𝑍𝐿𝐿 = 𝑗𝑗𝜔𝜔𝐿𝐿, (8) 

 

where 𝑗𝑗𝜔𝜔 is the complex frequency. Combining the elements of the equivalent circuit found 

in Figure 2 and Equation 8 in series and parallel, the total impedance of the probe and 

plasma can be expressed as, 

𝑍𝑍 =
1

𝑗𝑗𝜔𝜔𝐶𝐶𝑠𝑠ℎ
+

1

𝑗𝑗𝜔𝜔𝐶𝐶0 + 1
𝑅𝑅𝑝𝑝 + 𝑗𝑗𝜔𝜔𝐿𝐿𝑝𝑝

. (9) 

Now by substituting in the values for 𝐿𝐿𝑝𝑝 and 𝑅𝑅𝑝𝑝 Equation 9 can be written as, 

𝑍𝑍 =
1

𝑗𝑗𝜔𝜔𝐶𝐶𝑠𝑠ℎ
+

1

𝑗𝑗𝜔𝜔𝐶𝐶0 + 1
𝑗𝑗𝜔𝜔𝑝𝑝𝑒𝑒−2𝐶𝐶0−1 + 𝑗𝑗𝜔𝜔𝜔𝜔𝑝𝑝𝑒𝑒−2𝐶𝐶0−1

. (10)
 

 

13



 

Borrowing the derivation from Blackwell et al., (2005), the real and imaginary impedance 

can be separated and reduced by introducing 𝛾𝛾 = 𝜔𝜔 𝜔𝜔𝑝𝑝𝑒𝑒�  and 𝛿𝛿 = 𝜈𝜈 𝜔𝜔𝑝𝑝𝑒𝑒� .  The solution has 

two resulting resonance points (series and parallel) for the impedance where the reactance 

is zero in frequency space, 

𝜔𝜔1 = 𝜔𝜔𝑝𝑝𝑒𝑒�
𝐶𝐶0

𝐶𝐶𝑠𝑠ℎ + 𝐶𝐶0
, (11) 

 

𝜔𝜔2 = 𝜔𝜔𝑝𝑝𝑒𝑒 , (12) 
 

where 𝜔𝜔1 is the series resonance and 𝜔𝜔2 is the parallel resonance. Additional terms would 

need to be considered if a magnetic field were to be introduced. Consequently, for 

simplicity, the external magnetic field was not included since the AFRL plasma chamber’s 

high density helicon mode was exactly the opposite of our sparse space plasma 

requirement. 

 Orbits where our impedance probe is expected to operate will have an appreciable 

magnetic field, on the order of 0.5 Gauss. Without a magnetic field, plasma oscillations 

follow the description in Section 2.2. A magnetic field will alter the motion of charged 

particles to create plasma waves either parallel or perpendicular relative to the external 

field. This changes the behavior of the plasma and alters the resonant frequency for both 

weakly magnetized plasmas 𝜔𝜔𝑐𝑐𝑒𝑒 <  𝜔𝜔𝑝𝑝𝑒𝑒  and strongly magnetized plasmas 𝜔𝜔𝑐𝑐𝑒𝑒 >  𝜔𝜔𝑝𝑝𝑒𝑒  

(Blackwell et al., 2007). With a magnetic field, the resonant frequencies will exist between 

the cyclotron frequency 𝜔𝜔𝑐𝑐𝑒𝑒  and the upper hybrid frequency 𝜔𝜔𝑢𝑢ℎ in a weakly magnetized 

plasma. Subsequently, the parallel resonance becomes the upper hybrid frequency 

𝜔𝜔𝑢𝑢ℎ
2 = 𝜔𝜔𝑐𝑐𝑒𝑒2 + 𝜔𝜔𝑝𝑝𝑒𝑒2 , (13) 
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and the series resonance shifts to 𝜔𝜔𝑟𝑟2 = 𝜔𝜔𝑐𝑐𝑒𝑒2 + 𝜔𝜔𝑠𝑠ℎ
2 , where 𝜔𝜔𝑠𝑠ℎ is the unmagnetized series 

resonance (Blackwell et al., 2007). 

2.4 Langmuir Probe verifies impedance probe measurements 

 Langmuir Probes are another important plasma diagnostic tool popular in 

laboratory and space plasma experiments likely due to their straightforward construction 

and ability to measure a wide classification of plasmas. A Langmuir probe consists of a 

bare wire or metal disk electrically biased with a reference electrode and placed in a plasma, 

to stimulate electron or ion current collection (Merlino, 2007). Plasma parameters are 

calculated when the probe is inserted into the plasma and potential of the plasma 𝑉𝑉𝑝𝑝  at the 

probe tip is measured relative to a reference electrode. Care is taken to directly measure 

the floating potential 𝑉𝑉𝑓𝑓  of the probe, which is not the same as the plasma potential. The 

potential of an electrically floating probe will increase or decrease as needed to maintain 

net zero current or equal flux of positive and negative particles (Merlino, 2007).  
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As previously mentioned, electrons have smaller masses and much greater thermal 

speeds than positive ions. Despite electrons and ions in plasma having relatively the same 

density, the faster electrons will reach the floating probe first (Merlino, 2007). Since a 

floating potential has zero net current, the probe will float to a negative potential less than 

the plasma’s potential. 𝑉𝑉𝑝𝑝 will be slightly positive due to the faster electrons escaping to 

the walls of the plasma chamber, leaving a net positive charge. Understanding and 

resolving the differences between 𝑉𝑉𝑝𝑝 and 𝑉𝑉𝑓𝑓  is done by measuring the current-voltage (I-

V) of the Langmuir probe as we apply a bias voltage 𝑉𝑉𝐵𝐵  (Chen, 2003). The 𝑉𝑉𝐵𝐵  is swept 

from negative to positive voltage and the I-V characteristics of a plasma provide 

measurements of the plasma parameters. The curve in Figure 3 is described by the equation 

Figure 3. Idealized I-V curve of a Langmuir probe (Zechar, 2017). Ie is electron 
current, Ies is the electron saturation current, Vs is the space or plasma potential, and 
the “knee of curve” is when the electrons stop being repelled by a negative potential. 
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𝐼𝐼𝑒𝑒 = 𝐼𝐼𝑒𝑒𝑠𝑠𝑒𝑒𝑥𝑥𝑒𝑒 �
𝑒𝑒(𝑉𝑉𝑝𝑝 − 𝑉𝑉𝑠𝑠)

𝐾𝐾𝑇𝑇𝑒𝑒
� , (14) 

 with 

I𝑒𝑒𝑠𝑠 = 𝑒𝑒𝑛𝑛𝑒𝑒𝐴𝐴 �
𝐾𝐾𝑇𝑇𝑒𝑒
2𝜋𝜋𝑚𝑚�

1
2�

. (15) 

Here Ies is the electron saturation current, m is the electron mass, and 𝐴𝐴 is the area of the 

probe tip submerged in the plasma. The electron temperature 𝑇𝑇𝑒𝑒 is obtained by taking the 

inverse slope of the curve in Figure 3. Once the temperature is known Equation 15 is used 

to solve for the electron density 𝑛𝑛𝑒𝑒. 

2.5 Additional Plasma Parameters 

 Electron temperature is the measurement of the kinetic energy in a plasma. It is an 

important plasma parameter that determines the type of collisions and reactions that can 

occur and is often inversely related to electron density.  Temperature is the indicator used 

as a threshold to determine the fluid or magnetohydrodynamic (MHD) to kinetic theory 

plasma description. To measure electron temperature our impedance probe would need an 

onboard direct current (DC) source (James et al., 2020). Having a DC source enables a 

probe to bias its sheath relative to the plasma. An onboard DC source will not be used for 

these impedance probe experiments but will be included in the CubeSat’s sensor payload.  

Once the probe is immersed in a plasma, a sheath will form around the antenna. The sheath 

will either be electron rich or depleted of electrons depending on the plasma potential 

between the probe and the background plasma. If the probe is negatively biased compared 

to the plasma then a depleted electron (ion) sheath will form with a thickness of  𝑆𝑆(𝜙𝜙) =
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�2.5− 1.87𝑒𝑒�−0.39 𝜌𝜌
𝜆𝜆𝐷𝐷
�� � 𝑒𝑒𝑒𝑒

𝐾𝐾𝑇𝑇𝑒𝑒
�
2
5 𝜆𝜆𝐷𝐷  (Blackwell et al., 2005). S(𝜙𝜙) is a modified form of the 

Child-Langmuir Law where 𝜙𝜙 is the sheath thickness as a function of the electric potential, 

𝜌𝜌 is the sphere’s radius, and 𝜆𝜆𝐷𝐷 is the Debye Length.  

2.6 ThinSat frame with Short Dipole Antenna 

 NRL’s SPADE sensor was the basis for the design of the IP built for this research 

effort. We have devised a much more compact version of the SPADE and will use an 

innovative surface-mounted dipole antenna to provide the required plasma sheath and 

resonance information. Preliminary research suggests that this is the first ever dual-strap 

dipole antenna impedance probe successfully tested in the laboratory or deployed into 

space. The probe will determine plasma density from the resonant impedance frequencies 

from the gathered phase data described in section 2.3. In the spacecraft sensor framework, 

impedance probe measurements will be converted from analog to digital and transmitted 

from low earth orbit (LEO) to a ground terminal via the ThinSat bus.  
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 A ThinSat is a compact small satellite that requires specific modifications from 

other space-based impedance probes due to a small size, minimal power budget, and 

surface mounted dipole antenna configuration requirements. The IP onboard the ThinSat 

will make measurements of the antenna and ionospheric plasma system impedance, which 

has two resonant points, at the sheath resonance and at the upper hybrid frequency. 

The shape of the antenna plays a key role in the behavior of how the plasma 

interacts with the impedance probe and has been extensively studied for several decades 

(Ward et al., 2005). The ThinSat IP will include an electrically short dipole antenna. An 

Figure 4. Cartoon of ThinSat frame with dimensions in millimeters. The antennas will 
attach the yellow section and all electronics must fit inside the case. 
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electrically short antenna means the physical dimensions of the antenna are small compared 

to the free space wavelength at the operating frequency (Ward et al., 2005). A short antenna 

has several advantages over a long antenna and most research is focused on the short region 

(Blackwell et al., 2007). Calculating impedance of a dipole antenna begins with the 

integral 𝑍𝑍 = ∫ 𝐽𝐽 ̅ ∙ 𝐸𝐸�𝑑𝑑𝑆𝑆 
𝑆𝑆 , where S is the antenna surface, 𝐽𝐽 ̅ is the surface current on the 

antenna, and 𝐸𝐸� is the electric field at the surface if the antenna is removed (Balmain, 1964). 

It is a mathematically complex process to solve for the impedance of a short dipole antenna. 

The most often cited and complete solution for the impedance of a short dipole antenna 

comes from Balmain (Balmain, 1964). After the derivation from Balmain’s paper the 

analytical expression for the impedance of a short cylindrical dipole antenna in a 

magnetized plasma is, 

Ztot = Zsh + Zp, (16)
  

where Zsh is the sheath impedance and Zp is the bulk plasma region impedance. The 

sheath and plasma impedance can be written as, 

𝑍𝑍𝑠𝑠ℎ =
𝐹𝐹 �𝛽𝛽 = 𝑟𝑟

𝐿𝐿�
𝑖𝑖𝜋𝜋𝜔𝜔𝜖𝜖0𝐿𝐿

−
𝐹𝐹 �𝛽𝛽 = 𝑟𝑟 + 𝑆𝑆

𝐿𝐿 �
𝑖𝑖𝜋𝜋𝜔𝜔𝜖𝜖0𝐿𝐿

, (17) 

  

𝑍𝑍𝑝𝑝 =
�𝐾𝐾′ 𝐾𝐾0⁄

𝑖𝑖𝜔𝜔2𝜋𝜋𝜖𝜖0𝐾𝐾′𝐿𝐿
�𝑙𝑙𝑙𝑙𝑙𝑙

𝐿𝐿
𝑟𝑟 − 1 − 𝑙𝑙𝑙𝑙𝑙𝑙

�𝐾𝐾′ 𝐾𝐾0⁄ + 1
2

� , (18) 

 

 where 𝑟𝑟 and 𝐿𝐿 are the radius and length of one antenna element. 𝐾𝐾′ and 𝐾𝐾0 are elements 

in the relative permittivity matrix and contain multiple variables which can be found in the 

1964 Balmain paper. Balmain’s derivation is for a cylindrical dipole antenna while the 

ThinSat will feature a flat rectangular antenna. Fortunately, the rectangular antenna can be 
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approximated using Balmain’s derivation simply by changing the radius to the width of the 

antenna. From the sheath impedance in Equation 17 the cylindrical radius of the antenna 𝑟𝑟 

is converted to rectangular width 𝑊𝑊 = 2 ∗ 𝑟𝑟. Simply multiplying the radius by two 

provides a close enough approximation needed to accurately use Balmain’s derivation.   
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III. Engineering and Testing the Impedance Probe 

 In this chapter the engineering process for the impedance probe throughout this 

research effort is discussed. It covers the hardware and electronics used to test the antenna 

and impedance probe. Also covered is the experimental setup for testing the hardware in a 

plasma chamber using a network analyzer. The calibration process to eliminate stray 

capacitance from our system will be covered. 

3.1 ThinSat Bus  

The ThinSat that contains the IP was supposed to launch on the next Antares NG-

15 mission. The roughly 10 cm x 10 cm x 2 cm payload platform is modified from the 

ThinSat platform provided by Virginia Commercial Space Flight Authority (Virginia 

Space) through a partnership with the USCGA. The mission was going to be launched by 

Virginia Space at the Mid-Atlantic Regional Spaceport (MARS). Unfortunately, due to 

engineering setbacks our payload will not be ready for launch. However, the USCGA and 

Virginia Space partnership will continue with a CubeSat launch in late 2021. The CubeSat 

will contain all the hardware of the ThinSat IP as a key part of its payload.  
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 VaSpace includes a standard bus for all ThinSats so power, telemetry and 

communications are provided through it (James et al., 2020). ThinSats are designed to use 

a sensor board. This board connects to the bus and captures light intensity, temperature, 

and pressure. The data is communicated through the bus, packetized, and broadcast back 

to Earth over the 5-day life of the ThinSat mission (James et al., 2020).  The IP connects 

into the bus using the same connector as the Twiggs Spacelab Primary Board (TSLBD) 

circuit board. The connector is surface-mounted and snap-fits to the bus. Due to the layout 

of the ThinSat frame, the bus and sensors are within a few millimeters of each other. A 

custom cable was designed that enables the connectors to connect the sensor and bus.  

3.2 Dual strap dipole antenna design 

Using impedance matching to determine electron density in a plasma is not a new 

concept and has been an active area of research for several decades. Impedance 

measurements work by finding resonance of a plasma and a probe antenna. Therefore, 

Figure 5. Image of ThinSat bus block diagram. 
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understanding the design and characteristics of the antenna is essential. Due to the size and 

shape of the ThinSat our team chose to use a dual strap dipole antenna.   

Our payload will be the first ever surface mounted dipole impedance probe to be 

tested in space when launched on the CubeSat. The ThinSat antenna consists of two strips 

of aluminum attached to opposite sides as seen in Figure 6. Each antenna is approximately 

80 mm x 10 mm x .20 mm. The back on the antenna that attaches to the metallic surface of 

the ThinSat from Figure 4. The back section is electrically insulated to prevent the entire 

frame acting as an antenna. Engineering requirements set by VaSpace require any external 

mounted components to be less than 0.5 mm in thickness. The extra thickness from 

attaching an antenna on each side of the ThinSat frame is within acceptable limits.  

 

 

Figure 6. Image of the antenna used to measure impedance. Each antenna is 
approximately 80 mm x 10 mm x .20 mm. The back section peels off and the adhesive 
material attaches to the ThinSat frame. 
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3.3 Experimental setup 

 Testing of the IP is split into two phases based on their functional sophistication 

and mission goals. First, the surface mounted antenna design needs to be tested to ensure 

it operate properly during impedance measurements. Second, the impedance circuit board 

will be tested on the bench to verify it can make impedance measurements without a 

network analyzer. Both testing phases are discussed in detail later in this chapter. 

Testing the antenna and IP in an environment representative to the ionosphere 

requires the use of a plasma chamber. We partnered with the Air Force Research Labs 

(AFRL) Sensor Directorate to use their plasma chamber at Wright Patterson Air Force Base 

(WPAFB). AFRL has a Kurt Lesker stainless steel cylindrical vacuum chamber to contain 

the plasma environment. The chamber’s dimensions are 100 cm in length by 50 cm in 

diameter. The chamber has several ports of various sizes which provided us to position our 

testing equipment as needed. The chamber has an Edwards B723-01-000 vacuum pumping 

station which contains both a roughing pump and a turbo molecular pump. This vacuum 

system enables the chamber to achieve pressures as low as 100 nTorr.      

Argon gas is used to create the plasma and constant pressure is maintained from the 

computer terminal. A N9923A FieldFox Handheld Network Analyzer is used to generate 

the complex impedance spectrum for the antenna test only. Data processing software 

captures the raw impedance data. 
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The plasma chamber uses a 27.12 MHz Helicon plasma source to generate the 

plasma. Helicon plasma contains neutrals, ionized particles, and a magnetic field. Helicon 

waves ionize the particles to create the plasma and can achieve both high and low densities 

(Chen, 2015). The RF noise generated at 27.12 MHz by the helicon heating antenna will 

be present while the plasma is operating in steady state. To account for this noise, there is 

a DC block at 27.12 MHz which ignores this frequency. The alternative is to operate in the 

plasma afterglow which occurs briefly right after the plasma is shut off. The afterglow 

exists in the millisecond range. The network analyzer is not capable of accepting an 

external timing trigger which prevented operating in the afterglow due to the lack of proper 

timing.  

Figure 7. Plasma chamber drawing used to test the surface mounted antenna and 
impedance probe in a plasma environment. 
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3.4 Generation of magnetic field 

 To properly explore the environment the impedance probe will operate in, 

electromagnets are used to generate a magnetic field. Recall from Equation 13 the upper 

hybrid frequency depends on the cyclotron frequency which is controlled by the 

background magnetic field. Therefore, the upper hybrid frequency changes as the strength 

of the magnetic field surrounding the chamber is varied. Electromagnets supply a uniform 

magnetic field 𝐵𝐵𝑍𝑍 along the axis of the 100 cm chamber. The chamber consists of four coils 

of electromagnets and was configured by AFRL. Figure 9 below shows the four 

electromagnets in blue that surround the vacuum chamber. 

Figure 8. Image of a quad helicon source similar to the one used in the AFRL plasma 
chamber. 
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3.5 RF I-V measurement technique  

 Impedance spectrum measured by the RF I-V method is used by our impedance 

probe circuit board. This method provides better accuracy and can cover a wider impedance 

range than the reflection coefficient method of a network analyzer (Agilent Handbook, 

2013). The impedance probe circuit board completes the RV I-V technique without the 

need of the network analyzer. The microcontroller is the signal source that generates and 

sets the output frequency of the RF and local oscillator (LO). It also sets the phase of the 

LO direct digital synthesizer (DDS), either 0° or 90° relative to the RF DDS which allows 

us to measure the real and imaginary parts of the current and voltage. The detection 

transformer picks off the RF voltage (RFV) and RF current (RFI) signals in the circuit and 

routes them back to the two mixers. Each signal is mixed with the LO signal and low pass 

filtered. Then the microcontroller sets a new output frequency, and the process repeats until 

Figure 9. Cartoon of a plasma chamber with electromagnets surrounding the 
chamber. The spacing and size of the electromagnets was determined to provide a 
uniform magnetic field throughout the entire chamber. 
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the frequency sweep is complete. The frequency will continuously sweep over a selected 

frequency range and output the RFI and RFV measurements to a serial monitor through a 

mini-USB cable.  

 

 

 

 

 

 

 

 

 

 

 

 

  

  

The RF-IV measurements are made using a mixer chip that produces the product of the LO 

signal and the RFV and RFI signal. The output mixer can be written as: 

𝑋𝑋 = 𝐴𝐴 cos(𝜔𝜔𝑡𝑡 + 𝑎𝑎) × 𝐵𝐵 cos(𝜔𝜔𝑡𝑡 + 𝑏𝑏) , (19) 

𝑋𝑋 =
𝐴𝐴𝐵𝐵
2

[cos(2𝜔𝜔𝑡𝑡 + 𝑎𝑎 + 𝑏𝑏) + cos(𝑎𝑎 − 𝑏𝑏)], (20) 

Figure 10. RF-IV dipole antenna schematic that will be used to make impedance 
measurements. The RFI and RFV impedance matching transformers are 1:1 so the 
impedances will be equal. We designed the transformers for 50 Ohms and care was 
taken to have the measurement circuit for RFI and RFV be matched to 50 Ohms. This 
allows for estimates of the voltage measured at RFI and RFV to be made by replacing 
the RFI and RFV transformers with 50 Ohm resistors and the antenna transformer 
can be replaced by the impedance between the plasma and antenna. 
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where 𝐴𝐴 is the amplitude of either RFI or RFV, 𝐵𝐵 is the LO amplitude, and a and b are the 

phase of each signal respectively when they enter the mixer. The output of the mixer is low 

pass filtered to remove the 2𝜔𝜔𝑡𝑡 term. Remaining is the DC component that is proportional 

to the amplitude of the RFI or RFV and its phase relative to the LO. This DC value is 

recorded by the Analog-to-Digital Convertor (ADC). Because this output could be bipolar 

and the ADCs on the ThinSat needed unidirectional signals, there is a circuit to invert the 

signal if it is negative. The appropriate sign needs to be reintroduced to the measured 

amplitudes. Assuming the signs are fixed, we can write 𝑋𝑋0 = 𝐴𝐴𝐵𝐵
2

cos(𝑎𝑎 − 𝑏𝑏) and 𝑋𝑋90 =

𝐴𝐴𝐵𝐵
2

sin(𝑎𝑎 − 𝑏𝑏). The LO is set to 90 degrees phase which can also be written compactly in 

complex notation: 

𝑋𝑋 = 𝑋𝑋0 + 𝑖𝑖𝑋𝑋90 = 𝐴𝐴𝐵𝐵
2
𝑒𝑒𝑖𝑖(𝑎𝑎−𝑏𝑏) (21)

  

Since X represents either RFI or RFV and it is expected that the LO amplitude and phase 

to be the same for both, the impedance of a given frequency can be express as, 

𝑍𝑍 = 𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅

= 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟
𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟

𝑒𝑒𝑖𝑖�𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟−𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟�. (22)

  

We repeat this process for each frequency to generate the complex, uncalibrated impedance 

spectrum. 

3.6 Impedance probe custom circuit board  

 The impedance probe will produce both AC and DC voltages and currents through 

an Arduino Pro Mini. While the impedance probe components can produce and transmit 

positive and negative voltages and currents, the Arduino Pro Mini is not capable of reading 

negative voltages and currents. Reading a negative voltage or current can damage the ADC 
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on the Arduino and potentially damage the AT328MEGA processor in the Arduino. Since 

the Arduino is mission-critical, eliminating potential problems is necessary. 

 To eliminate this problem, we created a subcircuit using comparators, invertors and 

multiplexers. This subcircuit compares the output of the AD9834 to Ground and inverts 

the output. If the output of the AD9834 is less than Ground, then the inverted output is 

passed through a 2:1 Multiplexer to the Arduino. If the output of the AD9834 is positive, 

it is passed through the 2:1 Multiplexer to the Arduino. The Comparator and Inverters are 

built using LM398 Operational Amplifiers (Op Amps). The initial tests were done with 

LM741 Op Amps. The LM741 is a general-purpose Op Amp that has heavy use in designs. 

This Op Amp needs 5 V to operate. Since the Impedance Probe operates at 3.3 V, the 

LM741 would require a 5 V line to it, or a Voltage Divider would be necessary to provide 

3.3 V to the rest of the IP. The LM398n is a low power Op Amp that operates at 3.3 V. The 

LM398n, in testing, proved to be a better choice. A single dual dip LM398n package 

provides two Op Amps which are required to create the Comparator and Invertor for the 

subcircuit, required for each output.  

 As the AD9834 DDS is a signal generator. As the DDS-generated signal interacts 

with the Plasma, the response is received by the antenna. The 1:1 transformers are used to 

measure the current and voltage of the signal response. Using 1:1 transformers will 

attenuate transient noise with very little signal loss. With voltage limitations in the 

processor, it becomes very important to limit losses in transforming signal current to 

voltage. 

 Biasing the signal presented an interesting challenge. The acceptable input voltage 

range for the Arduino Pro Mini is 0 – 3.3 V.  We can correct for the voltage bias with a 
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series capacitor. While this reduces the output voltage, it can be mapped to a higher known 

value.  

 

3.7 Antenna test with Network Analyzer 

The first test conducted in the plasma chamber was verifying the functionality of 

the dual strap antenna. The antenna was tested to see if it is capable of operating in a plasma 

environment similar to the ionosphere. The device tested consists of a dual-strap antenna 

surface mounted to a ThinSat frame connected to a network analyzer, through a 

transformer. Figure 11 contains a cartoon of the antenna device and hardware used for this 

test. The network analyzer produces the frequency sweep, transmits the RF signal through 

an SMA cable to the antenna device, and measures the reflection coefficient. Few 

electronic components are used for this test in order to minimize sources of error to 

generate an impedance spectrum. The antenna device connects to the network analyzer via 

a rigid SMA feedthrough into the plasma chamber. The antenna connects to the transformer 

through a SMB-mini connector. For the calibration process the antennas are disconnected 

and replaced with custom made calibration standards to measure the standard resistance, 

capacitance, and inductance. The calibration process is explained in Section 3.8. 
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Before testing the antenna, the network analyzer must be calibrated to exclude all 

impedances of all cables. This way the network analyzer will ignore everything up the 

SMA connector where we attach our antenna. The next step is to verify that the antenna 

deposits power in a plasma as the AC frequency is swept. A 3D printed plastic ThinSat 

frame with the 80 mm x 10 mm antennas fixed to the sides of the frame was used for this 

test. Figure 12 contains a sideview image of the ThinSat frame with the dimensions of the 

frame and antenna. 

Figure 11. Cartoon of antenna attached to the ThinSat frame, network analyzer, and 
calibration standards needed to test the antenna. The lab computer (1) initiates the 
network analyzer to measure the impedance. The calibration standards (7) 
individually plug into the SMB-mini connectors (5) for the calibration process only. 
After calibration, the antennas (6) plug into the SMB-mini connectors (5) while 
measuring impedance. 
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The antennas were each connected to a mini-SMB connector that were wired to a 

transformer. An SMA bulkhead was attached to the ThinSat frame and wired to a surface 

mount RF transformer. Inside the plasma chamber the ThinSat antenna device is attached 

to a rigid SMA cable with the antennas oriented parallel to the plasma stream. The SMA 

cable connects via a feedthrough to the network analyzer. The network analyzer was 

connected in an S11 configuration where it swept the desired frequency range and measured 

the complex reflection coefficient Γ,  

Γ =
𝑍𝑍 − 𝑍𝑍0
𝑍𝑍 + 𝑍𝑍0

. (23) 

Figure 12. Side view of ThinSat where the antenna will attach. The wire from the 
antenna is curled to increase its surface area. This reduces the chance of the antenna 
being pulled out. 
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 After verifying the antenna was depositing power by observing a decrease in the 

reflected signal during frequency sweeps, the device was tested in a plasma by closing the 

chamber and pumping pressure down to a few millitorr of pressure. Then the Argon gas is 

pumped in at a steady flow to maintain a desired pressure. The pressure can be adjusted 

from the lab computer between each data set. Next the plasma is turned on and the network 

analyzer is triggered from the lab computer to sweep a frequency range and measure the 

reflection coefficient. After each experimental run the magnetic field, chamber pressure, 

and voltage used to trigger the plasma were varied to try and produce resonant frequencies 

within our frequency range. Increasing the RF power in the chamber causes more neutrals 

to ionize which produces a more dense plasma. Increasing the magnetic field creates a more 

tightly focused plasma stream as the plasma particles orbit around the magnetic field lines. 

Increasing the chamber pressure increases the neutral particle density. This provides more 

particles to ionize when the plasma ignites as well as more neutrals for the ions to collide 

with. A high collision rate inside the chamber may prevent the plasma from reaching the 

back of the chamber where our antenna device is placed. Decreasing the collision rate 

should have the opposite effect. Once a resonant frequency is observed, simply adjusting 

the RF power level should result in the resonant frequency shifting. Less RF power 

produces less plasma and the resonant frequency should drop. Increasing the RF power 

produces more plasma and the resonant frequency should increase. This understanding is 

used to verify correct observations of an impedance spectrum as the RF power is adjusted.   

 3.8 Impedance Probe Calibration 

One of the most important steps to the testing phase is the calibration procedure. 

Calibration attempts to account for the effects of all the parasitic impedances in the circuit, 
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leaving only effects beyond the calibration plane. The process we used was borrowed from 

the four terminal circuit model in the Agilent Impedance Measurement Handbook. 

 

 

The four terminal circuit model is the same as the open/short/load compensation and is 

expressed by the following matrix equation, �𝑉𝑉1𝐼𝐼1
� = �𝐴𝐴 𝐵𝐵

𝐶𝐶 𝐷𝐷� �
𝑉𝑉2
𝐼𝐼2
�,  where we need to solve 

for 𝑉𝑉2 and 𝐼𝐼2 after measuring 𝑉𝑉1 and 𝐼𝐼1. Multiplying the matrix equation and solving for 

impedance we get,             

𝑍𝑍𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠 = 𝑅𝑅1
𝑅𝑅1

= 𝐴𝐴𝑅𝑅2+𝐵𝐵𝑅𝑅2
𝐶𝐶𝑅𝑅2+𝐷𝐷𝑅𝑅2

(24)
    

where 𝑍𝑍𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠 is the measured impedance of the device under test (DUT), and the true value 

of the DUT is, 

𝑍𝑍𝐷𝐷𝐷𝐷𝑇𝑇 =
𝑉𝑉2
𝐼𝐼2

(25) 

Figure 13. 4-terminal circuit from the Agilent Impedance Measurement Handbook 
(Agilent Technologies, 2013). 
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The number of unknown coefficients can be reduced from four to three by factoring out 

𝐷𝐷𝐼𝐼2 from Equation 25, 

𝑍𝑍𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠 = 𝑅𝑅1
𝑅𝑅1

= 𝐷𝐷𝑅𝑅2
𝐷𝐷𝑅𝑅2

𝐴𝐴
𝐷𝐷�
𝑅𝑅2

𝑅𝑅2� +𝐵𝐵 𝐷𝐷�

𝐶𝐶
𝐷𝐷�
𝑅𝑅2

𝑅𝑅2� +1
= 𝐴𝐴′𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷+𝐵𝐵′

𝐶𝐶′𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷+1
(26)

  

Manipulating  𝑍𝑍𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠 to Equation 26 leads to the expression for the measured impedance 

as a function of three coefficients of the model circuit and the actual 𝑍𝑍𝐷𝐷𝐷𝐷𝑇𝑇. Three standards 

are required to determine the three unknown coefficients. Writing the three equations, 

where 𝑍𝑍𝑚𝑚𝑖𝑖 is the measured impedance of the i-th standard 𝑍𝑍𝑠𝑠𝑖𝑖, 

𝑍𝑍𝑠𝑠1𝐴𝐴′ + 𝐵𝐵′ − 𝑍𝑍𝑚𝑚1𝑍𝑍𝑠𝑠1𝐶𝐶′ = 𝑍𝑍𝑚𝑚1
𝑍𝑍𝑠𝑠2𝐴𝐴′ + 𝐵𝐵′ − 𝑍𝑍𝑚𝑚2𝑍𝑍𝑠𝑠2𝐶𝐶′ = 𝑍𝑍𝑚𝑚2
𝑍𝑍𝑠𝑠3𝐴𝐴′ + 𝐵𝐵′ − 𝑍𝑍𝑚𝑚3𝑍𝑍𝑠𝑠3𝐶𝐶′ = 𝑍𝑍𝑚𝑚3

(27) 

Next a solution is needed for the system of equations for 𝐴𝐴′, 𝐵𝐵′, and C′. Solving the top 

equation and substituting for these coefficients, expression for the calibrated measurement 

is: 

𝑍𝑍𝐷𝐷𝐷𝐷𝑇𝑇 = 𝑍𝑍𝑚𝑚𝑒𝑒𝑚𝑚𝑠𝑠−𝐵𝐵′

𝐴𝐴′−𝐶𝐶′𝑍𝑍𝑚𝑚𝑒𝑒𝑚𝑚𝑠𝑠
. (28)

  

 To implement the calibration process, either calibration standards 𝑍𝑍𝑠𝑠𝑖𝑖 that would be 

well represented by the ideal measurements are chosen or measure their impedance as a 

function of frequency on a calibrated network analyzer. Next, measure the impedance 𝑍𝑍𝑚𝑚𝑖𝑖 

of the three standards (resistor, capacitor, and inductor) using the IP board over the same 

frequency range. With 𝑍𝑍𝑠𝑠𝑖𝑖 and 𝑍𝑍𝑚𝑚𝑖𝑖 calculate the calibration coefficients A’, B’, and C’ in 

Equation 27 for each frequency. Once the calibration coefficients are calculated measure 

two tank circuits whose values are chosen to place the resonant frequency in the low and 
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high end of our sweep range with the impedance probe board. Lastly, we calculate the 

calibrated impedance using Equation 28 for 𝑍𝑍𝐷𝐷𝐷𝐷𝑇𝑇 and the calculate calibration coefficients.   

3.9 Impedance Circuit Board Test 

To test the impedance probe circuit board, the experimental setup was adjusted. 

The goal is to see if the custom-made circuit board is capable of replacing the network 

analyzer and produce an impedance spectrum. The IP circuit board is attached to a ThinSat 

frame with the same antenna used in the previous tests. Female SMA connectors are wired 

to test point one (TP1) and test point two (TP2). TP1 and TP2 connect to the antenna when 

testing and can be switched to the resistor, capacitor, and inductor calibration standards 

similar to the previous test. To operate the IP the circuit board is connected to an Arduino 

programmed to trigger RF I-V measurements in the IP. The Arduino is connected via USB-

mini to a computer that provides power and performs as a serial monitor. The Arduino is 

preprogrammed to initiate the impedance circuit board and pass the data to the serial 

monitor. The computer records the frequency and RF-IV measurements made by the IP. 

The raw uncalibrated impedance spectrum undergoes the same calibration process as the 

previous test.  
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First, the IP was tested on the bench to verify the functionality of all hardware prior 

to using a plasma chamber. Figure 14 contains a schematic of components used to test the 

IP. The SMB-mini connectors were difficult to use in the previous test and were replaced 

with SMA connectors. After the bench test verifies that we can measure RF I-V data from 

the IP and Arduino the hardware will be tested in the plasma chamber. A USB-mini 

feedthrough adaptor for the plasma chamber was made. For calibration, the 𝑍𝑍𝑚𝑚𝑖𝑖 of the three 

standards will be individually connected to the SMA connectors and measured. Next the 

standards will be disconnected and the dual-strap antennas will be attached. The ThinSat 

will be placed in the plasma chamber and connected to the USB-mini feedthrough. The 

Figure 14. Cartoon of the ThinSat frame, serial monitor, and calibration standards 
needed to test the impedance probe circuit board attached to the antennas. The 
Arduino (8) triggers the IP (4) to perform RF-IV measurements. The calibration 
standards (7) plug into the SMA connectors (5) for the calibration process only. The 
antennas (6) plug into the connectors (5) while measuring impedance. 
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plasma chamber will set to similar conditions as the antenna device test. The computer with 

the serial monitor will trigger the Arduino and begin the frequency sweep.    

 

 

3.10 Scaling process for expected ionosphere plasma densities 

 The AFRL plasma chamber managed to produce plasma densities that are expected 

in ionosphere where our impedance probe will operate after multiple months of 

experimenting. According to SPADE data we expect to operate in plasma densities of 

n≈105 cm-3. However, this density is a couple orders of magnitude lower than what the 

chamber typically produced. While developing SPADE, the NRL created a scaling process 

Figure 15. Impedance probe circuit board schematic. The pins located at the bottom 
left of the schematic is where the Arduino connects to the IP. 
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that attempts to predict the currents that will be measured by an impedance probe during 

normal operations in the ionosphere. In the interim, values from the scaling process were 

used to determine the impedance circuit components in order to set the appropriate ranges 

for these current measurements. The scaling code from the NRL needed only minor 

adjustments to account for the surface mounted antenna geometry. After converting the 

scaling code it was determined that the range of frequencies our impedance probe will need 

to measure is 2 MHz to 10.2 MHz. The expected impedance values within this frequency 

range varied from 5. 0 × 103 Ω to 7.0 × 107 Ω. Using Ohm’s Law with the maximum 

impedances and the probe’s output voltage of 5.5 V, we can estimate the RFI values that 

we expect to measure while operating in the ionosphere. The minimum and maximum RFI 

values the probe will need to measure are estimated to be between 0.0785 𝜇𝜇𝐴𝐴 and 

1000 𝜇𝜇𝐴𝐴. An amplifier will likely be needed for the final IP payload in order to measure 

the lower end of the RFI range. Additionally, due to impedances within the circuit the 

supplied voltage will be less than 5.5 V. Therefore, we should expect less current than the 

scaling code estimates.    
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IV Results 

 In this chapter the results are provided from testing the antenna and the impedance 

probe. The details about electronic components used will be discussed. SPADE data from 

onboard the ISS during operations is also included. The SPADE data will be used to verify 

our expected plasma densities of the ionosphere.     

4.1 Dual strap dipole antenna with network analyzer 

Measuring the impedance begins with AFRL python code which triggers the 

network analyzer. The network analyzer saved the data traces containing the complex 

impedance over a frequency range we are testing. Raw impedance data from the network 

analyzer is combined with the calibration standards of the RLC components in the 

LabVIEW calibration code. The LabVIEW code calculates the calibrated impedance 

spectrum. The calibrated impedance data is then plotted in MATLAB. After several data 

runs, it was discovered that 7.5 mTorr of Argon gas was the ideal pressure for creating a 

weakly ionized plasma over the frequency range selected. Table 2 contains the input values 

for this experiment. 
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Table 2. Antenna Test Input Values 

Chamber pressure 7.5 mTorr & 5 mTorr 

Magnetic field strength 0 G 

RF power range 70 W-200 W 

Measured resistor 50 Ω 

Measured capacitor 1.8 pF 

Measured inductor 1 𝜇𝜇𝜇𝜇 

Frequency range 30 MHz – 100 MHz 

Number of data points in each frequency sweep 210 

 

The frequency range was selected to begin after 27.12 MHz to avoid the DC block at that 

frequency and produce noise in our data. The RF power that ionized the gas in the chamber 

was varied in order to examine a shifting resonant frequency. 70 Watts is the lowest power 

the plasma chamber could generate while anything greater than 200 Watts put the resonant 

frequency outside our sweep range. The measured RLC components for calibration and the 

number of points per sweep were selected due to previous NRL experiments with a similar 

setup. For our experiment the chamber pressure capable of producing impedance 

measurements maxed out at 7.5 mTorr. Anything greater was not capable of measuring an 

impedance spectrum likely due to an excess number of neutrals inside the chamber. All 

data sets taken in the AFRL plasma chamber contained a spike at 54 MHz. At 54 MHz 

there is a notch filter to block the second harmonic of the helicon plasma. 
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The vacuum trace is where the plasma is not turned on. With no plasma the vacuum 

trace measures the free space capacitance of the antenna in parallel with the chamber wall. 

The plasma impedance in Figure 16 would ideally be the impedance between the plasma 

and our antenna. However, there will still be extra parasitic capacitance in parallel with the 

dipole antenna. A decent approximation for the impedance is to subtract off the vacuum 

impedance from the plasma. This technique was borrowed from the NRL SPADE team. 

Figure 16. Measured magnitude and phase of the antenna-plasma impedance. The 
chamber pressure was set to 7.5 mTorr of Argon and the plasma was triggered with 
150 W of power. The sharp spike at 54 MHz is from the notch filter. 
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Figure 17 is the calibrated impedance spectrum after subtracting off the vacuum 

impedance. From the maximum of the magnitude in Figure 17 a parallel resonance of 75 

MHz was measured. Using Equation 2 the plasma electron density was calculated to be 

𝑛𝑛𝑒𝑒 = 7.1 × 107𝑐𝑐𝑚𝑚−3. 

Figure 17. Magnitude and phase of antenna-plasma impedance after calibration. The 
maximum of the magnitude at 75 MHz is the parallel resonance between the plasma 
and antenna. 
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Next the pressure was held constant at 7.5 mTorr of Argon gas and the RF plasma source 

power was varied. Figure 18 clearly shows parallel resonance shift to higher frequencies 

as the RF power increases. This is likely due to the increased power causing more neutrals 

inside the chamber to become ionized. This creates a more dense plasma which causes the 

resonant frequencies also increase. 

Figure 18.  Magnitude and phase of antenna-plasma impedance after calibration with 
several different RF powers. Chamber pressure was 7.5 mTorr. Increasing the RF 
power causes the parallel resonant frequency to increase.   
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As the parallel resonant frequency increased the electron density increased as well. 

Equation 2 was used to calculate the electron densities. While these densities are higher 

than expected in the ionosphere, it is important that this test verified the antenna is capable 

of impedance measurements.  

Figure 19. Electron density obtained from plasma frequency impedance 
measurements. The densities were calculated from the parallel resonant frequencies 
from Figure 18. 
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For the next test scenario, the chamber pressure was reduced to 5 mTorr of Argon 

gas and the process of increasing the RF power to trigger the plasma was repeated. Any 

RF power higher than 100 Watts was above the selected frequency range and therefore not 

measured by the network analyzer. As with the previous experiment the parallel resonance 

increased as the RF power is increased.   

 Interestingly, the data sets with less pressure in the chamber produced more dense 

plasmas when the RF power was equal. The 70 W and 100 W results from the 5 mTorr 

data set compared to the 7.5 mTorr data set clearly show a higher resonant frequency when 

Figure 20. Magnitude and phase of antenna-plasma impedance after calibration with 
two different RF powers. Chamber pressure was 5 mTorr. 
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the RF power was matched. It is believed that this is due the amount on neutrals present in 

the chamber and mean free path of the electrons. Less Argon gas in the chamber will 

decrease the number of ion-neutral collisions and increase the mean free path of the plasma 

particles. Our impedance probe is placed in the rear most part of the plasma chamber and 

having a greater mean free path means more plasma reached our probe. When the chamber 

pressure was set to 10 mTorr, no resonant frequencies were observed due to the excessive 

number of ion-neutral collisions. Not enough plasma was able to reach the back of the 

chamber where the probe was located.   

4.2 SPADE and iMESA results 

 SPADE operational impedance data was shared with us by the NRL. The SPADE 

data was analyzed in order to understand what range of plasma densities expected for the 

impedance payload in operation. The impedance payload will operate at an altitude 

comparable to the ISS. SPADE data collected on 15 September 2020 was analyzed. 

SPADE measured the impedance using the RF-IV method, similar to how our impedance 

probe operates. The raw data included frequency, RF voltage, quadrature voltage, RF 

current, and quadrature RF current. Using Equation 22 the data is converted into an 

uncalibrated impedance spectrum. Then the calibration process was performed and the data 

analyzed. 

 iMESA data was collected over a similar timeframe as SPADE on the same day 15 

September 2020. iMESA is an electrostatic plasma analyzer while the SPADE is an 

impedance probe. Plasma density was analyzed with two separate sources using two 

different techniques. Showing that both iMESA and SPADE produced similar results while 
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both operating on the ISS provides us with the confidence that the measured densities were 

accurate.   

 

 

 

Figure 21. Calibrated magnitude and phase of plasma-SPADE impedance 
measured from the ISS on 15 September 2020. The legend lists the time in UTC of 
each measurement and represents a roughly 90-minute timeframe or one ISS orbit. 
12:31:45 UTC shows the largest impedance measurement.      
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   The ISS takes about 90 minutes to orbit the Earth. The roughly 90-minute 

timeframe with approximately 10 minutes per data set represent an average range in 

densities the ISS experiences. The SPADE data showed plasma electron densities at the 

ISS ranging from 2.50 × 104 𝑐𝑐𝑚𝑚−3 in the full night side of the Earth to 2.23 × 105 𝑐𝑐𝑚𝑚−3 

Figure 22. SPADE Electron density measured from plasma frequency impedance 
measurements. These densities were measured from 11:47:01 UTC to 13:08:21 UTC 
on 15 September 2020. 
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in the daylight side. Therefore, we should expect to see similar plasma density ranges for 

our impedance payload during operations.  

 

 

 

 

Figure 23. Normalized and smoothed plot of iMESA plasma density measurements 
and a sample of SPADE data. Both data sets are from onboard the ISS over a similar 
timeframe in UTC. These plots represent roughly one ISS orbit around Earth to 
provide a decent range of densities at that altitude of the ISS.   
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4.3 Impedance circuit board bench test 

 After verifying the antenna connected to a network analyzer is capable of 

impedance measurements the IP circuit board was tested using the procedures outlined in 

Section 3.9. Table 3 contains the input parameters for this experiment. 

Table 3. Impedance Probe Bench Test Input Values 

Measured resistor 50 Ω 

Measured capacitor 1.8 pF 

Measured inductor 1 𝜇𝜇𝜇𝜇 

Frequency range 1 MHz – 10 MHz 

Number of data points in each frequency sweep 150 

 

The Arduino was programmed to sweep the frequency with the number of points listed in 

Table 3. Arduino IDE software was used as the serial monitor and the Arduino was plugged 

in a laptop using a USB-mirco cable to supply power. The Arduino pins were soldered to 

the connector that attaches to the IP circuit board. The laptop initiated the serial monitor 

software and the IP started RF I-V measurements. After several iterations with the code 

and verifying the cable connections we have not been successful in producing RF I-V data. 

The error is believed to be a coding issue and not a limitation of our hardware and efforts 

to correct the issue are ongoing.   

 Despite being currently unable measure impedance using the IP we are confident 

the probe will work as intended. The antenna test using a network analyzer demonstrates 

the functionality of the dual-strap antenna over a large frequency range. Our results on 

Figure 19 demonstrate our antenna is capable of measuring resonant frequencies with a 

maximum resolution of 16 MHz and minimum resolution of 11 MHz. Looking at just a 
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small sample of SPADE data Figure 21 shows the IP will need to measure resonant 

frequencies with a minimum resolution of around 0.13 MHz to a maximum resolution of 

2.2 MHz. There is no hardware or circuitry limitation that should prevent the IP from 

measuring lower frequencies with the range and sensitivity needed to accurately sample 

typical ionospheric plasma densities 105 cm-3 which correspond to 1-5 Mhz. 

  Figure 23 shows two separate methods of measuring the plasma density onboard 

the ISS. Over a similar timeframe both SPADE and iMESA measured very similar results 

which gives us confidence in the accuracy of their results.  Coupling the accuracy of their 

plasma density measurements with our ability to measure resonant frequencies to a 

sensitivity on par with SPADE provides us with the trust that our IP will be successful in 

future work.  
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V. Conclusions 

 The primary efforts for this research can be summarized as follows: design and 

build an impedance probe with a unique dual strap dipole antenna, test the antenna and 

impedance probe in a scaled ionospheric plasma chamber, analyze SPADE data to 

determine the plasma density at the region our future CubeSat will operate in. The 

experiments offered a proof of concept for a never before used antenna design and showed 

us that our impedance probe will be capable of measuring plasma densities in the 

ionosphere. 

 The results from this research effort confirm that the dual strap antenna proof of 

concept is a success. The antenna can perform impedance measurements in a plasma 

environment and demonstrated the ability to accurately measure plasma densities. SPADE 

and iMESA both measured comparable plasma densities at the same ISS orbit which 

provides us with expected densities our impedance probe will operate in. We are confident 

our impedance probe with the dual strap antenna is capable of measuring plasma densities 

with the sensitivity on par with SPADE.  

 Future work for this effort will involve the RF-IV measurement of the IP in a 

plasma chamber with densities comparable to the ionosphere. Once the Arduino code is 

completed the IP will be tested at the AFRL plasma chamber. Lab personnel at AFRL 

recently found a method to reduce the chamber density by two orders of magnitude 

providing near ionospheric levels.  

Additional future work for this effort will focus on the USCGA CubeSat mission 

for 2021. The CubeSat will contain the impedance circuit board and dual strap dipole 

antenna that was used in this experiment. The CubeSat will have a different bus than the 
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ThinSat. Testing and engineering the impedance payload with the new bus will be needed 

for the CubeSat. If the CubeSat successfully measures electron densities in the ionosphere 

with the impedance payload then additional impedance spacecraft should be considered. 

We will have demonstrated how a small payload with minimal power and weight 

requirements can provide accurate real-time in-situ plasma density measurements. This 

will provide the space weather community with better modeling data to increase our space 

weather forecasting. 
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Appendix A 

Collisionless energy transfer due to Kinetic Theory  

One of the most significant discoveries from studying the kinetic effects on plasma 

waves is that in a collisionless plasma there is damping effect known as Landau’s damping 

(Goldston, 1995). Landau’s damping was mathematically proven by doing a Laplace 

transformation of the linearized Vlasov equation for electrons in an unmagnetized plasma. 

In order to linearize Vlasov’s equation we are assuming small amplitude waves. Large 

amplitude waves will lead to nonlinear effects. The linearized Vlasov’s equation is 

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑡𝑡 + 𝑣𝑣

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥 −

𝑒𝑒
𝑚𝑚𝐸𝐸

𝜕𝜕𝑓𝑓0
𝜕𝜕𝑣𝑣 = 0, (29) 

   

where 𝑓𝑓0 and 𝑓𝑓1 are the unperturbed and perturbed Maxwellian distribution function 

respectively. The Laplace transform of 𝑓𝑓1(𝑣𝑣, 𝑡𝑡) is 

𝑓𝑓1� (𝑣𝑣, 𝑠𝑠) = � 𝑓𝑓1(𝑣𝑣, 𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡.
∞

0
(30) 

  

Equation 30 converts some perturbed distribution from temporal to an arbitrary complex 

frequency 𝑠𝑠. Substitute 𝑖𝑖𝜔𝜔 for 𝜕𝜕
𝜕𝜕𝑠𝑠

 and 𝑖𝑖𝑡𝑡 for 𝜕𝜕
𝜕𝜕𝜕𝜕

  in Equation 29 then take the Laplace 

transform of a time derivative to obtain, 

(𝑠𝑠 + 𝑖𝑖𝑖𝑖𝑣𝑣)𝑓𝑓1� (𝑣𝑣, 𝑠𝑠) − 𝑒𝑒
𝑚𝑚
𝐸𝐸� 𝜕𝜕𝑓𝑓0

𝜕𝜕𝜕𝜕
= 𝑓𝑓0(𝑣𝑣, 0). (31)

  

After a Laplace transform of the Poisson equation and some additional algebra, the 

dispersion function becomes, 
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D(k, s)E�(s) =
ie

k ∈0
�

f1(v, 0)
s + ikv dv

∞

−∞
(32) 

Equation 12 tells us how the electric field evolves in time given some initial perturbation 

𝑓𝑓1(𝑣𝑣, 0) (Goldston, 1995). In order to obtain an expression of the electric field as time 

progresses 𝐸𝐸(𝑡𝑡) then an inverse Laplace transform of  𝐸𝐸�(𝑠𝑠) in needed, 

𝐸𝐸(𝑡𝑡) = 1
2𝜋𝜋𝑖𝑖 ∫ 𝐸𝐸�(𝑠𝑠) 

𝐶𝐶 𝑒𝑒𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠. (33)
   

In order to complete Landau’s treatment, we must identify all possible singularities that 

may arise from Equation 32 when 𝑣𝑣 = 𝜔𝜔
𝑖𝑖� . Out of the three types of singularities that arise 

the only one of significant interest is the first zero 𝐷𝐷(𝑖𝑖, 𝑠𝑠) as we move the contour line 

from the real to imaginary axis. This first zero singularity explains weakly damped 

oscillations in the plasma waves which occur often (Goldston, 1995). 

 Next, we replace the arbitrary complex frequency 𝑠𝑠 with −𝑖𝑖𝜔𝜔 and include the 

integration around the pole. The dispersion function is then, 

𝐷𝐷 = 1 + 𝑖𝑖𝑒𝑒2

𝑚𝑚𝑚𝑚∈0
�𝑃𝑃𝑟𝑟 ∫

𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕�

𝜔𝜔−𝑚𝑚𝜕𝜕
𝑑𝑑𝑣𝑣 − 𝜋𝜋𝑖𝑖

𝑚𝑚
∞
−∞

𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕
�
𝜕𝜕=𝜔𝜔 𝑚𝑚�

� (34)

   

where Pr is the principle value of the integral, 

𝑃𝑃𝑟𝑟� = lim
∈→0

�� +�
∞

𝜔𝜔
𝑚𝑚� +∈

𝜔𝜔
𝑚𝑚� −∈

−∞
�

∞

−∞
. (35) 

  

The rightmost term in Equation 34 is the integration around the pole which is 𝜋𝜋𝑖𝑖 times the 

residue. In the limit 𝜔𝜔 ≫ 𝑖𝑖𝑣𝑣 the principle integral can be expanded, 
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∫
𝜕𝜕𝑓𝑓0

𝜕𝜕𝜕𝜕�

𝜔𝜔−𝑚𝑚𝜕𝜕
≈ −𝑛𝑛𝑚𝑚

𝜔𝜔2
∞
−∞ . (36)
   

Using a Maxwellian distribution for 𝑓𝑓0 the expanded dispersion function becomes, 

𝐷𝐷 = 1 −
𝜔𝜔𝑝𝑝2

𝜔𝜔2 + 𝑖𝑖 �
𝜋𝜋
2�

1
2 𝜔𝜔𝑝𝑝4

𝑖𝑖3𝑣𝑣𝑠𝑠3
𝑒𝑒
�−𝑖𝑖

𝜔𝜔𝑝𝑝4

𝑚𝑚3𝜕𝜕𝑡𝑡3
�
, (37) 

where 𝑣𝑣𝑠𝑠 = (𝑇𝑇/𝑚𝑚)1 2� . Setting the dispersion relation to zero we arrive at our final 

expression for the frequency 𝜔𝜔 of an electron plasma wave, 

𝜔𝜔 = 𝜔𝜔𝑝𝑝 −
𝑖𝑖
2 �
𝜋𝜋
2�

1
2 𝜔𝜔𝑝𝑝4

𝑖𝑖3𝑣𝑣𝑠𝑠3
𝑒𝑒
�−

𝜔𝜔𝑝𝑝2

2𝑚𝑚2𝜕𝜕𝑡𝑡2
�
. (38) 

By properly investigating plasma waves with Landau’s treatment, it shows that all plasma 

waves are slightly damped (Goldston, 1995). Damping in collisionless plasma is due to the 

particle-wave interaction as electrons near the phase velocity find resonance with the wave. 

Resonant electrons travel at approximately the same speed of the wave which enables them 

to effectively exchange energy with the plasma wave. If an electron is slightly slower than 

the phase velocity, then the wave will transfer energy to the particle causing the wave to 

slow down and become damped. If the electron is slightly faster than the phase velocity, 

then the opposite occurs where energy is transferred from particle wave causing the wave 

to grow. 
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Figure 24. Normalized Maxwellian distribution for the case vϕ≫vt 

 

For a Maxwellian distribution there are a greater number of electrons to the left of the phase 

velocity where 𝑣𝑣 < 𝑣𝑣𝑒𝑒. Therefore, there will be a net damping effect as more energy is 

transferred from the plasma wave (Chen, 2013).  

 Applying kinetic theory with Landau’s treatment captures more details about the 

plasma than using just MHD. However, kinetic theory significantly increases the difficulty 

in solving equations and requires much more computational power. While the ThinSat will 

not require a kinetic treatment of the ionospheric plasma to calculate the impedance, it will 

be important make sure any future impedance mission properly models the plasma.  
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