
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2021

Unsupervised Clustering of RF-Fingerprinting Features Derived Unsupervised Clustering of RF-Fingerprinting Features Derived

from Deep Learning Based Recognition Models from Deep Learning Based Recognition Models

Christian T. Potts

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Potts, Christian T., "Unsupervised Clustering of RF-Fingerprinting Features Derived from Deep Learning
Based Recognition Models" (2021). Theses and Dissertations. 5006.
https://scholar.afit.edu/etd/5006

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F5006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5006?utm_source=scholar.afit.edu%2Fetd%2F5006&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

Unsupervised Clustering of RF-Fingerprinting
Features Derived from Deep Learning Based

Recognition Models

THESIS

Christian T. Potts, B.S.E.E., Captain, USAF

AFIT-ENG-MS-21-M-074

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-21-M-074

Unsupervised Clustering of RF-Fingerprinting Features Derived from Deep Learning

Based Recognition Models

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Christian T. Potts, B.S.E.E., B.S.E.E.

Captain, USAF

March 19, 2021

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-21-M-074

Unsupervised Clustering of RF-Fingerprinting Features Derived from Deep Learning

Based Recognition Models

THESIS

Christian T. Potts, B.S.E.E., B.S.E.E.
Captain, USAF

Committee Membership:

James W. Dean, Ph.D
Chair

Michael A. Temple, Ph.D
Member

Gilbert L. Peterson, Ph.D
Member

AFIT-ENG-MS-21-M-074

Abstract

Radio Frequency (RF)-Fingerprinting is focus of machine learning research which

aims to characterize wireless communication devices based on their physical hardware

characteristics. It is a promising avenue for improving wireless communication secu-

rity in the Physical Layer (PHY) layer. The bulk of research presented to date in this

field is focused on the development of features and classifiers using both traditional

supervised machine learning models as well as deep learning. This research aims to

expand on existing RF-Fingerprinting work by approaching the problem through the

lens of an unsupervised clustering problem. To that end this research proposes a

deep learning model and training methodology to extract features from OFDM-based

IEEE 802.11a/g preamble waveforms to enhance performance with various cluster-

ing algorithms. The model architecture presented takes the form of a convolutional

autoencoder with an objective function that combines both autoencoder reconstruc-

tion loss as well as triplet loss to learn feature encodings. These features were then

clustered using the K-means, DBSCAN, and Mean Shift clustering algorithms.

The models proposed achieved highly effective clustering performance with the

K-means and Mean Shift clustering algorithms with average V-measure (VM) scores

of 0.978, 0.822, and 0.901 at SNR = 18db for the K-means, DBSCAN, and Mean

Shift clustering algorithms respectively. Additionally the models proposed were able

to achieve average VM scores of 0.789, 0.720, and 0.737 at SNR = 18db for the various

clustering methodologies on test datasets containing devices previously unseen to the

trained models.

iv

Table of Contents

Page

Abstract . iv

List of Figures . vii

List of Tables . ix

I. Introduction . 1

1.1 Problem Statement . 2
1.2 Motivation . 3
1.3 Approach . 5

II. Background and Literature Review . 7

2.1 WiFi protocol . 7
2.2 Deep Learning . 9

2.2.1 Dense Layers . 11
2.2.2 Convolutional Neural Networks . 11
2.2.3 Max Pooling . 15
2.2.4 Batch Normalization Layer . 16
2.2.5 Autoencoders . 17
2.2.6 Triplet Loss . 20

2.3 Clustering . 20
2.3.1 K-means Clustering . 21
2.3.2 DBSCAN . 23
2.3.3 Mean Shift Clustering . 26

2.4 RF-Fingerprinting . 27

III. Methodology . 30

3.1 Signal Collection Experimental Setup . 30
3.2 Signal Pre-processing . 32
3.3 Datasets . 36
3.4 Deep Learning Models . 37

3.4.1 Model Architecture . 38
3.4.2 Training Methodology . 41

3.5 Clustering Methods . 48
3.5.1 K-means Clustering . 48
3.5.2 DBSCAN Clustering . 49
3.5.3 Mean Shift Clustering . 50
3.5.4 Evaluation Metrics . 50

3.6 Experiments . 53

v

Page

IV. Results and Analysis . 57

4.1 Comparison to Conventional Dimensionality Reduction 58
4.2 Model Hyper-parameter Evaluation . 61
4.3 Comparison of Clustering Algorithms . 64
4.4 Model Generalization to New Devices . 68
4.5 Summary . 74

V. Conclusions . 75

5.1 Research Summary . 75
5.2 Research Findings . 76

5.2.1 Effect of Model Hyper-parameters . 76
5.2.2 Comparison of Clustering Algorithms . 77
5.2.3 Performance on Unseen Devices . 78

5.3 Future Research . 78

Appendix A. K-Means, DBSCAN, and Mean Shift Clustering
Results on Lab Test Set and Unseen Test Set 81

Appendix B. SNR Estimates for all Test Sets . 84

Bibliography . 86
Acronyms . 92

vi

List of Figures

Figure Page

1 IEEE 802.11 non-HT PPDU Format [1] . 8

2 IEEE 802.11 PLCP Preamble Structure [1] . 9

3 Graphical Depiction of Single Perceptron . 10

4 Visualization of feature representations at different
layers of CNN . 13

5 Max Pooling Operation . 15

6 Graphical Depiction of an Autoencoder Model . 19

7 Visualization of K-Means clustering . 22

8 Visualization of DBSCAN clustering with minpts = 3 ε
= 1. Red points represent core points of cluster. Yellow
points represent border points. Blue points represent
outliers/noise points . 25

9 Signal Capture Hardware Diagram . 31

10 Visualization of the total signal preprocessing procedure
for a single observation . 35

11 Block Diagram of Cluster Generation and Evaluation
Procedure . 55

12 VM Results of K-means Clustering Assignments on
Feautre Sets Produced by PCA Dimensionality
Reduction of Raw Signal Data . 59

13 VM Results of K-means Clustering Assignments on
Feautre Sets Produced by Pure Autoencoder Encoding
of Raw Signal Data . 60

14 VM Results of K-means Clustering Performed on
ClusterAE Model Feature Vectors for Hyper-parameter
values zdim = {32,64,128} and λ = {0.25,0.50,0.75,1.00} 62

15 Comparison of V-measure score of K-means, DBSCAN,
and Mean Shift clustering on ClusterAE Feature
Vectors w/ hyper-parameters zdim = 32 λ = 1.00 . 65

vii

Figure Page

16 Calculated DBSCAN ε Parameter as a Function of
Simulated SNR . 67

17 Comparison of K-means Clustering Results on Lab Test
Set vs. Unseen Test Set vs. Wild Test Set . 71

18 Comparison of DBSCAN Clustering Results on Lab
Test Set vs. Unseen Test Set vs. Wild Test Set . 72

19 Comparison of DBSCAN Clustering Results on Lab
Test Set vs. Unseen Test Set vs. Wild Test Set . 73

20 VM vs. SNR for K-means Clustering . 81

21 VM vs. SNR for DBSCAN Clustering . 82

22 VM vs. SNR for Mean Shift Clustering . 83

viii

List of Tables

Table Page

1 Dataset Descriptions . 37

2 ClusterAE Model Architecture . 42

3 SNR Measurements by Device for Training Set . 84

4 SNR Estimates by Device for Lab Test Set . 84

5 SNR Estimates by Device for Unseen Test Set . 85

6 SNR Measurements by Device for Wild Test Set . 85

ix

Unsupervised Clustering of RF-Fingerprinting Features Derived from Deep Learning

Based Recognition Models

I. Introduction

It is difficult to overstate the impact that internet communications has had on

all aspects of society in the modern age. According to the most recent Cisco Annual

Internet Report [2], in North America alone, there is projected to be 5 billion unique

devices connected to the internet by 2023. Along with the adoption of the internet as

one of the primary means of communication and transference of information, the world

has seen the proliferation of the Wireless Local Area Network (WLAN) as a primary

medium by which users access the internet. An inherent trade-off of using a wireless

communication scheme as opposed to a wired connection is that wireless connections

are exposed to more security risk than their wired counterparts in exchange for more

flexibility and mobility.

For a user to communicate with a wireless access point, they must transmit an

electromagnetic signal outward from the device to be interpreted by the receiver.

This also means that all communication signals are potentially visible to any par-

ties geographically collocated with the user and thus security measures must be put

in place such that transmitted information is only decipherable to the intended re-

cipients. The realization of this security is typically achieved in the Data Link and

Network layers of the internet protocol stack via a combination of encryption tech-

niques as well as device specific passwords and identifying labels. The rapid increase

in available computing power and the emergence of quantum computing pose sig-

nificant threats to such bit level credentials as a means to establish secure wireless

1

connections by enabling previously infeasible means of subverting such protections

[3]. Additionally, such methods are susceptible to insider threats and theft of cre-

dentials. The intersection of maturating WLAN technologies and machine learning

methodologies provides a clear need for Physical Layer (PHY) security in the form of

RF-Fingerprinting/Specific Emitter Identification (SEI).

RF-Fingerprinting refers to a specific focus of machine learning research that aims

to categorize RF waveforms according to the specific device that transmitted said

waveform. Similar to human fingerprints from which the name of the technique is

derived, RF-Fingerprinting attempts to capture the expressions of physical uniqueness

of a specific RF transmitter’s hardware that are present in the waveforms emitted

from that device. These unique characteristics arise from minute variations in each

devices individual circuit elements that, when aggregated, are significant enough to

be distinguished via machine learning methods. The bulk of existing research in

this field falls into the broad category of supervised learning which aims to train a

model to accurately classify signal observations based on a known device label for

each observation. The research presented in this thesis takes the prior research done

in this field and applies the concepts therein to the task of unsupervised learning.

Unsupervised learning refers to a machine learning domain in which unlabeled data

is processed and analyzed in order to discover latent structures present within the

pool of data. These structures are then used to express meaningful characteristics of

the data such as clusters of similar observations.

1.1 Problem Statement

The specific goal of the research presented within this thesis is to address the fol-

lowing question: Given a data-set of unlabeled RF signal collections, how can a com-

bination of feature extraction methods, RF-Fingerprinting techniques, and clustering

2

algorithms be best used to ascertain meaningful information about the data-set? For

the purposes of this research, the term “ascertain meaningful information” will be

quantified based on how well the different methodologies are able to group together

clusters of observations such that the clusters reflect known device labels for a given

data-set. To clarify this point, the data-set being examined has such labels associated

with each observation, however, these labels are not to be used in the clustering pro-

cess but rather are used after clustering is done as a means to measure performance.

Feature extraction methods refers to various known methods for reducing the dimen-

sionality of raw input data for use in machine learning tasks. Specific methods will

be explained in detail in Chapter III. RF-Fingerprinting techniques refers to the pre-

processing techniques that have been researched previously to achieve good results in

RF-Fingerprinting/SEI efforts.

1.2 Motivation

Existing research in the domain of RF-fingerprinting has utilized unsupervised

learning methods for feature extraction [4]. However it’s use in the RF-Fingerprinting

literature up to this point exists mainly as a preprocessing step that is ultimately used

in a supervised learning problem. There has been significantly less research done

in the domain of unsupervised clustering applied to the RF-Fingerprinting problem.

Unsupervised learning is a vital arm in the machine learning discipline. In the modern

day, the capabilities to collect vast pools of data is ever growing and accurately

labeling all observations for use in supervised machine learning tasks is not always

feasible. Clustering refers to a category of unsupervised learning research that aims to

group together a collection of observations algorithmically according to some measure

of similarity such that observations within a given cluster are characteristically similar

based on said criteria. Clustering is a useful application of machine learning under

3

circumstances where there aren’t intended classes known prior to the machine learning

process but there is value in the grouping of similar observations as is the case in

problems such as designing recommendation algorithms or market segmentation for

targeted advertisements. Clustering is also often used to deal with the issue of large

quantities of unlabeled data by developing a clustering model for a data set such

that the clusters formed represent some natural grouping that is desirable for a given

machine learning problem. Such clustering algorithms are typically evaluated with a

small dataset with true labels corresponding to a desired grouping of observations.

Using such labels as a reference can give an insight into how the clustering observations

will respond to datasets without known labels.

The research presented in this thesis aims to utilize unsupervised deep feature-

learning models and various clustering algorithms to ascertain information about the

active transmitters (i.e. how many transmitters are present, which transmissions

came from the same device, etc.) for a given WLAN. This type of information is

typically easy to obtain via aspects of the data link layer such as MAC address. One

of the main underlying assumptions and motivations for RF-Fingerprinting, however,

is that these types of device identifiers are susceptible to manipulation via techniques

such as MAC spoofing and packet sniffing [5] and therefore potentially unreliable.

RF-Fingerprinting them aims to recognize impersonation attempts via characteristics

present in the PHY layer using machine learning. The motivation behind clustering

in RF-Fingerprinting is then to develop a machine learning framework that is able to

reliably group together signal transmissions from the same physical device despite not

being trained on examples from that specific device. This overcomes a downside of

supervised classification problems that typically dominate RF-Fingerprinting research

in that the usefulness of models produced are limited to those devices used during the

training process. In a scenario where the active emitters in a particular WLAN change

4

frequently, as is often the case, such models need to be re-trained to accommodate

new devices which can be very time consuming depending on the type of machine

learning model.

1.3 Approach

For any given machine learning problem, there are many degrees of freedom with

respect to the design of models and experiments that developing a clear picture of

how every decision interacts with each other becomes intractable. Therefore, when

conducting machine learning research, it is typical to select a smaller portion of the

overall process to evaluate how those aspects of the process can affect the overall

goal of the machine learning problem. This thesis focuses on several aspects of the

RF-Fingerprint clustering problem, to include:

• Can a single machine learning model be trained to extract features from RF

waveforms such that the feature’s tend to cluster well across different Signal to

Noise Ratios (SNR)?

• Can a machine learning model be trained to extract features from RF waveforms

that cluster well using devices not used to train the model?

• How does the number of features extracted by machine learning models affect

its ability to effectively cluster observations by emitter?

• What is the most effective clustering algorithm for the feature vectors produced

by such a model?

The research in this thesis is conducted first by performing an extensive literature

review of the prevailing research in the area of RF-Fingerprinting problems to observe

existing methodologies known to perform well. After the literature has been reviewed,

5

a machine learning model is designed in order to address the main research questions

presented above. These models take the form of Convolutional Autoencoder style

neural networks with the addition of the triplet loss objective function to learn device

separable features from WiFi emitters. Once the model design is decided implemen-

tations of the model will be created and trained using various configurations of model

parameters. These models are then used to generate feature vectors from individual

signal observations to be used in various clustering algorithms. The resulting cluster

labels are then compared to the true device labels for the signal observations using

the external cluster validity measure known as the VM .

6

II. Background and Literature Review

This chapter provides an overview of the machine learning concepts and back-

ground information necessary to fully describe the research presented within this

thesis. Section 2.1 provides a description of WiFi packet and preamble structure.

Section 2.2 provides an overview on the topic of deep learning as well as elaborate

on specific topics therein to fully contextualize the research presented in this thesis.

Section 2.3 provides an explanation of selected clustering methodologies. Lastly, Sec-

tion 2.4 provides an overview on the topic of RF-fingerprinting and previous research

conducted on the topic

2.1 WiFi protocol

WiFi is the colloquial name for the wireless communications protocol described

in Institute of Electrical and Electronics Engineers (IEEE) standard 802.11 [1] for

WLANs. The standard provides PHY and Medium Access Control (MAC) specifica-

tions to enable wireless communications between devices over short distances. The

specifics of the specifications presented in IEEE 802.11 vary depending on the specific

iteration of the standard being used (i.e. 802.11a, 802.11b, 802.11g, etc.).

Different iterations of the IEEE 802.11 standard have different a different PHY

Protocol Data Unit (PPDU) format. All versions prior to IEEE 802.11n (or WiFi 4)

use the non-HT PPDU format. The structure of an IEEE 802.11 non-High Through-

put (HT) PPDU can be seen in Figure 1. As with most wireless communications

protocols, WiFi transmissions begin with a preamble sequence (denoted in Figure 1

as ”PLCP Preamble”) used to perform frequency and timing adjustments prior to de-

modulation of the transmitted signal. Preamble signals have been shown to be useful

for RF-Fingerprinting tasks in the past due to the fact that the preamble waveform

7

is independent from the data payload and therefore variations in a transmission’s

preamble can reasonably be assumed to be characteristic of the transmitting device

hardware and not bit level information.

IEEE 802.11a/g uses Orthogonal Frequency Division Multiplexing (OFDM) as the

primary modulation scheme for RF transmissions. OFDM is a modulation scheme in

which transmitted information is split among some number of orthogonally spaced

sub-carries each being modulated with some other modulation scheme such as Binary

Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), or Quadrature

Amplitude Modulation (QAM). The underlying modulation scheme for each sub-

carrier in the data payload of an 802.11 PPDU varies depending on the intended data

rate of the transmission. The Physical Layer Convergence Protocol (PLCP) preamble

of a non-HT PPDU consists of ten repetitions of a short (0.8µs) OFDM symbol called

the Short Training Field (STF) followed by two repetitions of a long (3.2µs) OFDM

symbol called the Long Training Field (LTF).

Figure 1: IEEE 802.11 non-HT PPDU Format [1]

8

Figure 2: IEEE 802.11 PLCP Preamble Structure [1]

2.2 Deep Learning

Deep learning is a category of machine learning that is characterized by modelling

numerous non-linear relationships between independent features of some observed

data. Deep learning models are often referred to as artificial neural networks (ANNs)

or just simply neural networks due to the inspiration drawn from the biological learn-

ing process of the human brain. The basic building block of a neural network is the

perceptron leading to another common term for deep learning models, the multi layer

perceptron (MLP). The perceptron is intended to be analogous to a neuron within

the human nervous system. A single perceptron operates by taking in a weighted sum

of some set of feature information connected to the input of the perceptron adding a

bias value and applying some activation function to this weighted sum. The output

of a single perceptron with input xi=0,...,N , weights wi=0,...,N , bias b and, activation

function σ is:

y = σ(
N∑
i=0

[wi ∗ xi] + b) (1)

The activation function of a perceptron is some nonlinear function, such as the

hyperbolic tangent function, which allows a perceptron to represent nonlinear rela-

tionships between the input features. The weight and bias values are the trainable

parameters of the model that allow the perceptron to learn function mappings from

the input values to the desired output. Perceptrons can be combined and organized in

9

Figure 3: Graphical Depiction of Single Perceptron

x0

x1

x2

x3

x4

Σ

w0

w1

w2

w3

w4

σ Output
+bias

countless ways to represent more complicated nonlinear relationships present within

high dimensional input data and the architecture of an ANN is defined by how these

perceptrons are arranged and connected. Most ANNs are constructed as a sequence

of successive layers of perceptrons in which the output of one layer is connected to

the input of the next layer.

One of the principal advantages of deep learning models when compared to other

machine learning models is the high adaptability of these models to different machine

learning problems. The universal approximation theorem presented in [6] states that

a feed forward neural network can sufficiently represent any function mapping some

set of input measurements to some desired output given that the network has enough

hidden units (i.e. perceptrons). Due to this universal nature of ANNs, they have

been applied to nearly every conceivable type of machine learning problem to in-

clude supervised classification, generation of new data, and unsupervised learning of

features.

10

2.2.1 Dense Layers

The Dense layer is the most basic form of neural network layer. In a dense layer

there is an individual connection between each input value to the layer and each

perceptron that makes up that layer. The total number of connections that are

present in a single dense layer is then the number of inputs nin multiplied by the

number of perceptrons in that layer nout. These weights are typically represented as

an nout by nin weight matrix W where wi,j represents the weight of the connection

between the ith input to the jth perceptron. The output of a dense layer with input

x and bias values b can be expressed then as:

y = σ(xW + b) (2)

The high degree of connectivity present within dense neural network layers allow

them to learn highly complex non-linear function mappings. This however, comes at

the expense of high memory and computational costs which are important practical

concerns when it comes to training deep learning models. Additionally, the high

number of trainable parameters means that dense neural networks have a higher

variance than other neural network layer types. This high variance contributes to a

tendency to over-fit to training data meaning that a very large pool of training data

is typically required to achieve good results.

2.2.2 Convolutional Neural Networks

The drawbacks of dense network layers become particularly apparent when de-

signing larger, more complicated neural network architectures. As the name would

imply, dense layers have a very high number of individual connections. As stated

previously, this leads to concerns in regards to the memory and computation time

requirements for dense layers. A second limitation of dense layers is that they do

11

not explicitly preserve the intrinsic relationships between certain input features for

spatially and temporally organized data such as images, audio waveforms, etc. While

these relationships can be captured by dense layers, other layer types are better at

prioritizing these characteristics. Convolutional layers address both of these issues

and Convolutional Neural Networks (CNN) (referring to neural networks which im-

plement convolutional layers) have become very popular in the realm of modern deep

learning research.

Convolutional layers apply the concept of kernels and the convolution operation

(denoted by the * operator shown in Equation (3)) between matrices that is common

within image processing applications to deep learning models. A convolutional oper-

ation between two dimensional matrices X and Y both with dimensions m by n is

defined as follows [7]:

X ∗ Y =
∑
m

∑
n

X(m,n)Y (m,n) (3)

Kernels (also referred to as filters) are matrices that when convolved with an

image, produce some type of desirable representation of that image. The total convo-

lution process for an image involves applying the kernel to each possible position on

the image where the two completely overlap. Kernels used in image processing are

typically explicitly designed in such a way as to apply specific transformations such

as highlighting horizontal and vertical edges or applying specific blurring effects to an

image. The effect of a kernel is determined by the individual values that make up the

kernel matrix. In a CNN layer these kernel matrix values are the trainable parame-

ters of the network taking the place of connections between individual perceptrons as

seen in dense layers. Using this concept of trainable kernels, convolutional layers are

able to learn features that are more applicable to data in which spatial relationships

between features are important. In order to visualize the features learned by a CNN,

12

a basic CNN classifier was trained on the CIFAR 10 dataset described in [8]. The

output of the kernel convolutions for the first two layers of this layer on a single input

image is shown in Figure 4.

Convolutional layers are also able to learn structures across multiple “channels”

of data. Channels in the context of CNNs refers to different pieces of information

that can describe a single point in a given spatial or temporal position. Common

examples of channels for two dimensional images would be RGB color channels as

well as depth. The presence of different channels for input data means that input

data will always have one more dimension than the dimension of the convolution

operation (i.e. dimensions for a two dimensional convolution input would be height

× width × number of channels). At the output of a convolutional layer, channels

refer to the distinct output of each of the different kernels applied to the image.

The kernel based structure of convolutional layers introduces new parameters con-

trol how the convolution operation is applied to the input data. The primary convo-

(a) Base Image

(b) Features Learned by First Convolutional Layer

(c) Features Learned by Second Convolutional Layer

Figure 4: Visualization of feature representations at different layers of CNN

13

lution specific parameters include:

• Number of Kernels - The number of unique kernels convolved with the input

features.

• Kernel Size - The dimensions of each kernel matrix

• Padding - The amount of additional data appended to the borders of the input

data.

• Stride - The amount that the sliding kernel is shifted after each convolution

operation.

A single convolutional layer can have any number of individual kernel matrices.

More kernels in a layer equates to more unique spatial characteristics that can be

potentially represented by the layer’s output. Each individual kernel matrix is con-

volved with the layer’s input and the output for each kernel makes up one channel of

the layers output.

Kernel size refers to the dimensions of each kernel matrix in a convolutional layer.

Optimal kernel size varies depending on the nature of the problem. Larger kernels are

generally better at capturing large simple patterns whereas smaller kernels are more

suited to distinguishing finer intricate details. Smaller odd numbered kernel sizes are

generally preferred for most machine learning problems.

A large kernel size results in fewer total positions in which the kernel and the input

data will totally overlap. The result is that the output of a convolutional layer will

always result in a reduction of dimension in its output for kernels of size > 1. Padding

is a way to preserve the dimensionality between input and output of a convolutional

layer by appending data to the borders of the input before performing convolution.

The most common choice is zero padding in which zeroes are added to the borders

however other types of padding also exist.

14

Stride refers to how far the kernel is shifted after each convolution operation. The

stride typically defaults to one. Higher strides can be used to achieve a down-sampling

type of effect.

2.2.3 Max Pooling

Pooling layers are a type of neural network layer that are incredibly common in

the design of CNN architectures. The use of pooling layers is so prevalent in CNN

architectures that their use is often simply assumed when stating that a convolutional

layer is present within a network. The use of pooling layers is so universally associated

with convolutional layers because the effects of the pooling process aligns so closely

with the common motivations for choosing a convolutional architecture.

Pooling is a kind of down-sampling process that is applied to some input. Pooling

involves a sliding window being applied to the input of the layer and for each position

of the pooling window over the input a single output value is created similar to

the convolution process. As the process of pooling is so similar to the convolution

process, many of the same parameters are applied to pooling layers such as stride,

kernel size, and padding. While the output from a convolutional layer is the result

of the convolution operation between the windowed input and the kernel, the output

of a pooling layer can be any function applied to the windowed input values. The

most common of these is the maximum value of the window but others include the

1 6 8 7

5 6 3 1

5 9 8 7

5 3 2 1

9 8

6 8

Figure 5: Max Pooling Operation

15

minimum value or the average value.

One of the main benefits of pooling layers is the size reduction that the down-

sampling effect provides. This results in lower memory and computational burdens

which is also one of the benefits for using a CNN. Additionally, pooling layers provide

a degree of translational in-variance to the network [7] meaning there is a reduction

in the change to the network output in response to minor translations of the input

data. This is often helpful as it preserves the general organization of features in the

input while being robust to more variable datasets.

2.2.4 Batch Normalization Layer

Normalization of data is a fundamental concept within the field of machine learn-

ing. It is an important pre-processing step often used before training of virtually

every type of machine learning model. Normalization counteracts a problem within

machine learning in which differences and scale and variability between different in-

put features causes certain features to dominate and others to become negligible in

affecting model output. Batch normalization is a related concept specific to neural

networks, originally introduced in [9], that performs normalization steps at different

points within the model.

The training process of neural networks operates by descending the gradient of

the cost function and updating each trainable parameter within the network at the

same time. This results in a phenomenon known as covariate shift in which changes

to early layers in the network characteristically change the layer’s output distribution

and make changes in the later portions of the network ineffective. Batch normalization

is a means of addressing the problem of covariate shift by normalizing the output of

layers within the network over each minibatch being trained on. In addition to the

normalization applied to the output layer, additional scaling and shifting parameters γ

16

and β are learned by the batch normalization layer to preserve the full scope of possible

representations learned by the incoming layer. The effect of this is a significant

reduction in training time, regularization of the model, and a lowered sensitivity to

network hyper-parameters such as learning rate.

The batch normalized output y for a minibatch output X = {x1...m} of some layer

is then achieved as such:

• Calculate the mean of the minibatch output:

µ =
1

m

m∑
i=1

xi (4)

• Calculate the variance of the minibatch output:

σ2 =
1

m

m∑
i=1

(xi − µ)2 (5)

• Normalize the minibatch output:

x̂i =
xi − µ√
σ2 + ε

(6)

• Apply scaling and shifting parameters:

yi = x̂iγ + β (7)

2.2.5 Autoencoders

A key benefit of deep learning models when compared to traditional machine

learning models is their ability to learn useful hierarchical feature representations

from high dimensional data during the training process. This feature learning is

17

a natural occurrence of the neural network training process for many supervised

learning problems and will typical manifest itself within the hidden layers of the

network. Latent variable models, by contrast, make this ability of neural networks

to learn feature representations from high dimensional data the primary focus of the

machine learning task.

Autoencoders are one of the most common types of latent variable models due to

their intuitive nature and ease of construction. A general description of an autoen-

coder neural network would be a symmetrical feed forward neural network in which

the input features and output features have the same dimensionality. In addition,

there are some number of hidden layers between the input and the output however

the number and type of these hidden layers are chosen based on the nature of the

training data and the machine learning task. Feature extraction and dimensionality

reduction are very popular applications of autoencoders [10, 11] however this type

of neural network architecture has also commonly been used for other tasks such as

removing noise from input data [12].

An autoencoder can be thought of as two separate neural network models trained

in tandem with one another. These two sub-models are referred to as the encoder

model and decoder model. The encoder model consists of all layers from the input

to the center-most layer of the autoencoder which is typically referred to as the

bottleneck because it is often the layer with the smallest dimension. The decoder

model is made up of all layers from the bottleneck to the output. The distinction

between encoder and decoder models is visualized in Figure 6. The output of the

encoder model is a smaller dimensional representation of the input data and this

output is typically referred to as the latent encoding of the input represented by the

variable z.

Autoencoders are able to learn to produce these encodings of high dimensional

18

Figure 6: Graphical Depiction of an Autoencoder Model

Input
Layer

Output
Layer

Bottleneck
Layer

Encoder Model Decoder Model

input data through the process of gradient decent via back-propagation as with any

other neural network architecture. Autoencoders are trained using an objective func-

tion that minimizes the dissimilarity between the input (x) and output (y) of the

model. A common choice for this objective function is the Mean Squared Error

(MSE). With N being the dimensionality of the output, the MSE loss for an autoen-

coder model is defined as [7]

MSE(x, y) =
1

N

N∑
i=1

(yi − xi)2 (8)

19

2.2.6 Triplet Loss

Triplet loss is an objective function detailed in [13] used to train neural network

models specifically to maximize distance between output feature vectors for inputs of

different classes while simultaneously minimizing distance between outputs for inputs

of the same class. The triplet loss function is not calculated on a single training

datapoint along with some desired output value as is the case with many neural

network objective functions. Triplet loss is calculated using the outputs of a group

of three different training points called a triplet. Each triplet consists of an anchor

point (a), a positive point (p) being another datapoint from the same class as a, and

a negative point (n) coming from a different class than a and p. Letting f(x) be the

function representing passing an input x through some neural network, the triplet

loss is calculated as follows [13]:

L(a, p, n) = ||f(a)− f(p)||2 − ||f(a)− f(n)||2 + α (9)

The α term in the triplet loss function is a tunable hyper-parameter affecting the

enforced margin between positive and negative classes.

2.3 Clustering

Clustering refers to a fundamental unsupervised machine learning task in which

the goal is to find natural groupings of observations within a dataset in order to

obtain meaningful insights into the nature of the data. Clustering has been widely

studied and some of its most notable applications can be seen in the form of mar-

ket segmentation algorithms to provide effective targeted advertising[14] as well as

recommendation algorithms for e-commerce services [15].

Clustering algorithms come in many different varieties that utilize different math-

20

ematic principles to produce groupings. Different clustering algorithms typically rely

on a different set of assumptions of the overall structure of the data and properties

of clusters therein meaning that there is not an objectively superior algorithm for all

clustering problems or datasets.

2.3.1 K-means Clustering

The K-means clustering algorithm is one of the most widely used and fundamental

methodologies used within the domain of unsupervised clustering problems[16]. The

algorithm is fairly computationally inexpensive and simple to implement hence its

widespread use for clustering based research. Much like many clustering methods, K-

means uses some distance/similarity metric (most often Euclidean distance) between

datapoints as a means by which to produce clusters. Cluster assignments are given

to datapoints based on closest proximity of said datapoint to the centroid (geometric

average of all points within a cluster) of all available clusters. At the beginning of

the K-means clustering process, all datapoints are randomly assigned to one of the K

possible clusters and the centroids for each cluster are calculated. Cluster assignments

are updated based on the closest centroid to each datapoint and then centroids are

recalculated. This process continues until cluster assignments no longer change or

some maximum number of iterations has been reached.

One weakness of the K-means clustering algorithm that makes the method unsuit-

able for certain clustering problems is that it requires a specified number of desired

resulting clusters. This is not a problem for certain clustering problems in which there

is a pre-conceived notion of the expected clusters within a data-set however, this is

not always the case for clustering problems. Alternatively, number of clusters can be

determined without known class labels via visual inspection of the data as well as

other procedural methods. One other drawback to the K-means algorithm is that the

21

Algorithm 1 K-means Clustering

function K-means(data,k)
Rand(x,y): choose random integer between x and y
CalcCentroids(x): Calculate cluster centroids from dataset x
AssignLabel(x,c): Assign point x cluster label of closest centroid in c
for i = 0,. . . ,data.size do

data[i].label ← rand(1, k)
end for
centroids ← CalcCentroids(data)
oldCentroids ← null
while Centroids 6= oldCentroids do

oldCentroids ← centroids
for i = 0,. . . ,data.size do

data[i].label ← AssignLabel(data[i],centroids)
end for
centroids ← CalcCentroids(data)

end while
return data.labels

end function

Figure 7: Visualization of K-Means clustering

cluster assignments produced are not deterministic. Due to the stochastic nature of

the initial cluster assignments, running the K-means algorithm multiple times on the

same dataset is not guaranteed to produce the same cluster assignments. There has

been a significant amount of research into more informed cluster initialization pro-

cedures to improve K-means performance. Some of the more notable methodologies

have been summarized in [17]. Lastly, the underlying assumption of the K-means

22

algorithm is that clusters within a dataset tend to take the form of a distinct number

of gaussian distributions. If the data doesn’t comform to such a structure, the efficacy

of the K-means algorithm is limited.

2.3.2 DBSCAN

Density Based Spatial Clustering of applications with Noise (DBSCAN) is a clus-

tering algorithm described in [18] that operates in a fundamentally different way to

the K-means algorithm. Similarly to K-means, however, it also uses a distance metric

such as euclidean distance with which to make cluster assignments. DBSCAN is based

on the premise that clusters can be defined as groups of densely packed datapoints

that are well separated by areas with a low density of datapoints.

The DBSCAN algorithm begins with the definition of two hyper-parameters: ε

and minpts. The ε term defines how close two points need to be together to fall within

the “ε-neighborhood” of each other. The minpts term refers to how many datapoints

need to be in the ε-neighborhood of some other point x for x to be a “core point”.

The DBSCAN algorithm defines three different categories for points within a dataset:

• Core Points - Points that have ≥ minpts datapoints within their neighborhood

• Border Points - Points that do not meet the criteria of a core point but are

have a distance ≤ ε (i.e. is in the ε-neighborhood) from a core point

• Noise Point - A point that neither meets the criteria of a core point nor is

reachable from a core point. These points are assigned no cluster label

The DBSCAN algorithm for producing cluster assignments is fully described in

Algorithm 2.

One of the principal benefits of the DBSCAN algorithm is its ability to handle

more complex cluster geometries within feature space. Many clustering algorithms

23

Algorithm 2 DBSCAN Algorithm

function DBSCAN(data,ε,minpts)
GetNeighbors(x,ε): return set of points ≤ ε from x
CurrentLabel ← 0
for i = 1,. . . , data.size do

point ← data[i]
if point.label = unclassified then

if GetNeighbors(point,ε).size ≥ minpts then
ExpandClusters(point,CurrentLabel)
CurrentLabel += 1

end if
else

point.label = noise
end if

end for
return data.labels

end function

Algorithm 3 Expand Cluster: Helper function for main DBSCAN algorithm

function ExpandClusters(point,CurrentLabel,ε,minpts)
InCluster ← GetNeighbors(point,ε)
while InCluster.empty == False do

CurrentPoint ← InCluster.front
InCluster.delete(CurrentPoint)
if CurrentPoint.label == unclassified then

CurrentPoint.label ← CurrentLabel
Result ← GetNeighbors(CurrentPoint,ε)
if Result.size ≥ minpts then

InCluster ← InCluster ∪ Result
end if

end if
end while

end function

24

Figure 8: Visualization of DBSCAN clustering with minpts = 3 ε = 1. Red points
represent core points of cluster. Yellow points represent border points. Blue points
represent outliers/noise points

such as K-means operates on strong assumptions about the shape and distribution

of clusters within a dataset. DBSCAN however does not have this assumption about

the geometry of clusters. DBSCAN is also useful as it does not rely on a specified

number of resulting clusters. The DBSCAN algorithm will produce as many clusters

as there are densely packed regions of datapoints. This makes the algorithm more

suitable to problems in which there is less known about the dataset and the potential

clusters within. Lastly, a notable property of the DBSCAN algorithm is that not

all datapoints are guaranteed to be assigned to any cluster at all. This may or not

be a downside to the algorithm depending on the nature of the intended clustering

problem. A notable property of the DBSCAN algorithm is that the effectiveness of

the clustering is highly sensitive to the ε value chosen. Choosing a poor value for

this parameter can result in extreme situations in which either all observations are

grouped into a single cluster or all observations are labeled as outliers/noise points.

25

2.3.3 Mean Shift Clustering

Mean Shift is a clustering algorithm proposed in [19] that is similar in approach to

the K-means algorithm relying on iterative calculation of cluster centroids. This algo-

rithm however also addresses one of the primary downsides to the K-means algorithm,

the need to specify a number of desired clusters.

The Mean Shift algorithm assigns cluster labels to points within a dataset by

ascending the gradient of the density of the dataset in space to identify the different

modes of the dataset. It does this process by going through each observation of

the dataset and iteratively moving in the direction of its mean shift vector until it

converges/ stops changing(i.e. the mean shift vector approaches zero). All data points

converge to a mode of the dataset and points which converge to the same (or very

nearly the same) point are given the same cluster label. The mean shift vector v(p)

for a given position p in n-dimensional space with datapoints X = xi=1...n within a

specified distance/bandwidth bw of p is calculated as shown in Equation (10). The

distance bw is the main tunable parameter for the mean shift algorithm and effects

the number of resulting clusters of the algorithm.

v(p) =
ΣxiεX(xi − p)xi
ΣxiεX(xi − p)

(10)

The Mean Shift algorithm has some similarity to the DBSCAN clustering algo-

rithm in that clusters are assigned according to a datapoint’s relationship to some

area of high density within the overall dataset. The Mean Shift algorithm doesn’t

have the assumption that clusters are well separated by areas of low density that

DBSCAN does which results in labeling datapoints as outliers. This makes mean

shift more appropriate in feature spaces in which there is a more gradual transition

between regions of high density.

26

Algorithm 4 Mean Shift Clustering

function MeanShift(data,bw,max iter)
ShiftVector(x,bw): Returns meanshift vector for point x and bandwidth bw
for i = 0,. . . ,data.size do

Center ← data[i].position
while V != 0 and n < max iter do

V ← ShiftVector(Center,bw)
Center ← Center + V
max iter+ = 1

end while
data[i].clusterCenter ← Center

end for
Prune all cluster centers retaining local maxima
Each datapoint with the same cluster center is given the same cluster label
return data.labels

end function

2.4 RF-Fingerprinting

RF-Fingerprinting refers to the task of mathematically characterizing RF wave-

forms transmitted by wireless communications devices typically for the purposes of

machine learning research. The key assumption of RF-fingerprinting research is that

there are unavoidable slight variations in RF hardware that, in aggregate, manifest

in the physical transmissions from that device. A detailed mathematical analysis of

how these variations can manifest themselves within an RF waveform can be seen

in [20]. The goal of the bulk of RF-fingerprinting research is to leverage modern

machine learning techniques to improve the security of wireless communications sys-

tems [21] however, the field has also been applied to other tasks such as counterfeit

detection for embedded circuit devices [22]. The existing research into the domain of

RF-Fingerprinting covers a broad scope of known machine learning methodologies.

The existing RF fingerprinting literature can be generally divided into two major cat-

egories: those utilizing manual feature engineering with traditional machine learning

models [23] and those utilizing deep learning [24].

27

The use of manually defined feature information within machine learning research

is a common practice as it leverages the domain knowledge of experts within a given

field. An experienced researcher within the realm of RF-Fingerprinting will have

a good intuition of which features are most applicable to a given machine learning

task and knowledge of how different aspects of the collection environments, commu-

nications protocol, etc. may affect such features. Radio Frequency Distinct Native

Attribute (RF-DNA) fingerprinting is one example of a feature extraction methodol-

ogy used for RF-fingerprinting research that is primarily researched at the Air Force

Institute of Technology (AFIT)[25]. This methodology operates by dividing signal

observations into a number of equally sized subsections and calculating statistical

measurements on the instantaneous amplitude, frequency, and phase of these sub-

sections. These statistical measurements often consist of skewness, variance, and

kurtosis and these measurements constitute the feature vectors used for machine

learning problems. The RF-DNA process is an effective example of traditional RF-

fingerprinting techniques which are typically performed by calculating some specified

measurements from RF signals deemed to have discriminate value to machine learning

models. These features are often put through feature selection and projection steps

before being used in different types of classification models such as Multiple Discrimi-

nant Analysis / Maximum Likelihood (MDA/ML) [26], Random Forrest (RndF) [27],

and Learning Vector Quantization (LVQ) [28].

Deep learning has been applied to RF-fingerprinting to forego the process of man-

ually extracting feature information from RF waveforms by leveraging deep learn-

ing’s ability to learn features from complex non-linear information present in raw

data. A variety of different deep learning techniques have been applied to the RF-

fingerprinting problem with some commonalities present among the majority of the

existing literature. A common design choice in deep learning based RF-fingerprinting

28

is the incorporation of convolutional layers in some capacity in neural nets used. The

network architecture proposed in [29] is a good example of the application of CNNs

to RF-fingerprinting in such a way that is intended to be protocol agnostic. The net-

work proposed in [30] by contrast, utilizes convolutional layers in conjunction with

Long Short Term Memory (LSTM) layers, a popular newtwork layer used in Recur-

rent Nerual Networks (RNN) for time series data to perform binary same vs. not

same classification for ZigBee emitters. Yu et al. propose in [31], a RF-fingerprinting

classification model which combines a traditional classification network with a con-

volutional autoencoder and observed that the presence of autoencoder reconstruction

loss was able to achieve better performance compared a typical CNN for the same

classification problem.

29

III. Methodology

This chapter provides a description of the design and implementation of the ex-

periments performed to evaluate the research questions proposed in Chapter I for

this research. In summary, these experiments are designed to evaluate if an RF-

fingerprinting model can be used to extract feature vectors from waveforms that form

clusters using various clustering algorithms that are highly representative of the de-

vice of origin for said waveforms. The resulting models are evaluated on various test

data sets to determine how well models can perform in different scenarios. The dif-

ferent datasets evaluate how models perform on both devices used in the training

process as well as devices unseen to the model. Finally different algorithms are used

to compare the clustering performance and determine the most effective algorithm

for these feature vectors.

First, the signal collection procedures as well as the descriptions of the training

and evaluation data-sets will be discussed. The pre-processing and data preparation

steps will then be presented. Next, the various feature extraction model architectures

and training processes will be provided. Finally the clustering methodologies used

will be explained as well as the metrics used to evaluate resulting performance of the

overall clustering process.

3.1 Signal Collection Experimental Setup

The data being used to perform the experiments presented in this thesis consist

of two separate datasets containing characteristically different signal collections. The

first dataset, that will henceforth be referred to as the lab dataset, consists of IEEE

802.11a/g WiFi transmissions from 19 different emitters of the same manufacturer

and model number. Each of the signal observations in this dataset were recorded in

30

a controlled laboratory environment and contain bit-wise identical data (to include

identical MAC addresses). The purpose of this dataset is to act as the ideal RF-

Fingerprinting scenario in which the only possible differences between classes must

be those characteristic to the device hardware itself. The second dataset,is the wild

dataset that consists of IEEE 802.11a/g signal collections observed in various public

locations both indoor and outdoor. The wild dataset contains observations from

> 53k different devices and the number of signal observations per device varies. Each

observation in this dataset is given a label associated with the specific transmitting

device as well as the manufacturer of the transmitter both based on the MAC ad-

dress associated with the observation. The purpose of this dataset is to provide a

dataset representative of a real collection scenario to evaluate the performance of

RF-Fingerprinting models on.

The hardware configuration used in the signal capture process for both datasets

can be seen in Figure 9. The primary hardware used to perform the signal capture and

Figure 9: Signal Capture Hardware Diagram

31

recordings are the Tektronix 5016B Real Time Spectrum Analyser (RTSA) and the

XCOM IQC5000A RF signal recorder. The RTSA samples the incoming waveforms

at a frequency of Fsamp = 200MHz and a capture bandwidth of BWcapture = 165MHz.

Durring capture, 1.25µs of recording is appended to the front and back of the detected

signal to capture transient behavior for devices. After the signals are collected and

recorded, they are processed and saved in the sigmf file format. Sigmf is a JSON

based file format created by the GNU Radio Foundation to facilitate and standardize

the recordings of RF data. Each sigmf file is composed of a meta-data file containing

important information about the signal collections (i.e. sampling frequency, recording

hardware, collection bandwidth, etc.) as well as a data file containing the raw binary

of the signal collections. In this dataset, the RF collections are recorded as 16-bit

quadrature samples meaning each sample consists of a 16 bit integer representing the

I channel value followed by a 16 bit integer representing the Q channel value.

3.2 Signal Pre-processing

The signal processing steps for all data used in these experiments consists of

obtaining the baseband signal for each observation, isolating the preamble for each

observation, and converting the observation into the PyTorch tensor data structure

that can be used to train and evaluate neural networks. The preamble is chosen

as the signal Region of Interest (ROI) as it contains no coded information about the

transmitting device or the data payload of the transmission. The decision to utilize the

preamble portion of each transmission is inspired by the RF-DNA RF-Fingerprinting

technique with likewise calculates feature information from this portion of a collected

signal. The motivation behind this is to limit machine learning models from latching

onto discriminatory information present in the signal that is not resultant of the

physical characteristics of the emitter hardware. For example, the encoded data or

32

MAC addresses in signal transmissions can be used by machine learning models to

discriminate signals without consideration for the hardware characteristics which is

contrary to the aim of RF-Fingerprinting.

For all training and testing collections, the first step of pre-processing is down-

converting the signal to baseband frequency. The metadata file for each signal con-

tains the center frequency (fcent) of the acquisition as well as the upper (fu) and lower

(fl) edge frequencies of the channel being transmitted on for each observation. The

signal is then down-converted by centering the specified frequency channel at f = 0.

The base-band conversion process performed here is based on the edge frequencies

of the WiFi channel being used by a given transmission. This does not correct for

minor frequency variations that can result from the transmission process. Performing

fine frequency and phase adjustment can be done via comparison to a generated ideal

preamble sequence as is the intended purpose for this portion of the signal. This is

a crucial step in performing software based demodulation of communications signals

however, further research is needed to determine the impact of such fine adjustments

on performance of the RF-Fingerprinting models presented in this thesis.

After conversion of signals to base-band frequency, filtering is applied to remove

frequency content from the signal not belonging to the frequency channel of interest.

According to the WiFi standard, a WiFi transmission channel has a bandwidth of

BWchannel = 20MHz. A baseband signal centered at 0Hz can then have it’s frequency

content isolated by applying a Low Pass Filter (LPF) with a cutoff frequency fcutoff =

10MHz. This filter is implemented here as a fifth order Butterworth filter using the

scipy.signal python library.

As described in Section 2.1 the non-HT preamble sequence consists of 10 repeti-

tions of a short training symbol followed by 2 repetitions of a long training symbol for

a total duration of 16µs. At a sampling rate of Fsamp = 200MSps, the preamble ROI

33

for each signal has a size of 3200 samples. Since there are 1.25µs appended before

the signal for each collection, the preamble can then be isolated by selecting samples

[250,3450] for each observation. Once the preamble is isolated for each observation,

the signal is normalized by dividing by its maximum amplitude resulting in signals

whose amplitude ranges from zero to one.

At this point, the observations are converted into a Pytorch tensor with dimen-

sions Nobs ×Nchannels ×Nsamples. The Nobs corresponds to the total number of signal

observations in a given training or testing dataset. This value is different for different

training and testing sets. The Nchannels dimension corresponds to the number of chan-

nels used for one dimensional convolution operations. In this case two channels are

used one corresponding to the I component of a sample and the other corresponding

to the Q component. The Nsamples dimension is the total number of quadrature sam-

ples for a given observation which in this case is 3200. The overall size of a dataset

tensor would then be Nobs × 2× 3200.

34

Figure 10: Visualization of the total signal preprocessing procedure for a single ob-
servation

35

3.3 Datasets

Although all observations being used in the performance of the experiments de-

tailed in this thesis are pulled from the aforementioned lab and wild datasets, the

observations from these datasets are gathered into smaller datasets used for differ-

ent purposes in the training and evaluation process of models. All datasets are used

for one of three main purposes; training, validation, and testing. Training datasets

consist of observations used to train models. Validation datasets consist of a small

selection of observations not present within a training dataset to evaluate model per-

formance during the training process to aid in the fine tuning and design of models.

It is generally considered bad practice in machine learning to report performance on

a validation set as it is explicitly used in the design of the model. Test datasets con-

sist of observations present in neither validation or training sets. These consists of

observations not used in any way in the model construction or training process and

thus represent an objective measure of performance.

For this research, a single training and validation dataset is created to create the

various models to be evaluated. There are however multiple testing sets created to

evaluate model performance on various RF-Fingerprinting scenarios. The specific

details of the various datasets can be seen in Table 1. Estimates for the average

estimated SNR per device and for the total datasets can be seen in Appendix B.

The three different testing datasets created with the same number of devices (ND)

are intended to evaluate different aspects of the models performance. The Lab Test

dataset is the most representative of the data used to train the model and thus per-

formance on this dataset is somewhat analogous to an n-class classification problem.

The Unseen test dataset is meant to evaluate how a model’s performance generalizes

to observations from devices previously unseen to the network in a collection environ-

ment identical to the training data. The Wild Test Set is meant to evaluate how well

36

Table 1: Dataset Descriptions

Name ND Obs/Dev Description Dev #

Training 9 5000
Observations from 9 different
devices taken from the lab dataset

0-8

Validation 9 100
Different observations from the
same 9 devices in the Training set

0-8

Lab Test Set 9 1000
Different observations from the
same 9 devices in the Training set

0-8

Unseen Test Set 9 1000
Observations from 9 devices not
present in the Training set taken
from the lab dataset

9-17

Wild Test Set 9 1000
Observations taken from 9 devices
selected from wild dataset

18-26

the model generalizes to observations from devices that are characteristically different

from the Training set. In this test set both the collection environments are different

from the training set as well as the model and manufacturer of devices being tested.

This test set provides the most significant measure of a model’s ability to generalize

to a more realistic collection environment.

3.4 Deep Learning Models

The design of neural network architectures to achieve some machine learning task

is a significantly nuanced and complicated discipline. There are many different types

of neural network structures such as autoencoders, Generative Adversarial Networks

(GAN), and RNNs as well as combinations thereof which are all suited to different

problem domains. Additionally, the specific architecture (i.e. number and size of

layers, parameters of layers, etc.) can all be tuned to great impact on overall model

performance. Due to the long training times typically required to produce a deep

learning model, there is a small number total number of model permutations that are

feasible to train and evaluate in a timely fashion. Therefore a typical choice is to adopt

an existing model architecture for a related problem area and make modifications to

37

suit the specific problem being researched.

3.4.1 Model Architecture

When choosing a model architecture, it is important to consider both the objective

of the machine learning problem being performed as well as the nature of the data

being used as the input to the network. Each of these will inform the design choices

made in the network architecture. When evaluating these considerations for the

problem being proposed in this thesis, this can be done as such:

• Machine Learning Objectives:

– Extract feature information from input data

– Ensure that features extracted are well seperated based on class

• Input Data Properties:

– Temporally organized data

– Each individual time point contains multiple pieces of information (I/Q

value, magnitude, phase, etc.)

– Each observation is composed of the same sequence of data symbols (WiFI

preamble sequence)

– There is only minor variation between observations of different classes

Observing the machine learning objectives will lead toward a choice for overall

style of neural network being used. For this problem the primary function of the neural

network model is to extract feature information. Extraction of feature information is

an implicit aspect in many deep learning models however the extraction of features

is made most explicit as the objective of Autoencoder neural networks. Therefore

an autoencoder style model is the natural choice for this problem. Autoencoder

38

models do not however, address the second machine learning objective as there is

no guarantee that the encoded output is well seperated by class, particularly for the

input data being used which has only subtle variations between classes. This aspect

of the machine learning objective will be accomplished via use of the triplet loss

function described in Section 2.2.6. The specific implementation of the triplet loss

will be described in Section 3.4.2.

The characteristics of the model input data will determine the specific architecture

implementation details. In particular, the fact that the input data being used in this

case is temporally organized will guide the architecture decisions. Three of the most

common types of neural network layers for most applications include dense layers,

convolutional layers, and recurrent layers. The general use case for these three kinds

of layers can be described as such:

• Dense Layers - A collection of related feature information without any natural

ordering

• Convolutional Layers - Data that has an ordering such that the characteristic

of groups nearby features contains important information about input data

• Recurrent Layers - Data which is defined by the sequence of and relation

between a set of discrete possible values

The two of these layers that are the most appropriate for the type of data be-

ing used in these models would be convolutional and recurrent layers as they are

both commonly used for temporally organized data. For this research however, con-

volutional layers were deemed to be the more appropriate option. Recurrent layers

perform well in instances where the ordering of distinct shapes/symbols within a

waveform is of primary importance. The input data being used in this case consists

of only preamble signals which is guaranteed to have the same sequence of OFDM

39

symbols. This research is more focused on the variations in the shape of a waveform

that are characterstic of physical device hardware. To compare the two approaches,

a recurrent network can be thought of as analogous to identifying a speaker based

on their diction. A convolutional type network can by contrast be thought of as

identifying a speaker based on the tone of voice while speaking an identical phrase.

With the choice of a convolutional autoencoder model made, the next step is to

define the makeup of a single convolutional block in this network. The choice of a one

dimensional convolutional layer is made using PyTorch’s Conv1d layer as the signal

varies primarily with respect to one dimension that being time. Another possible

choice in this case is to use a two dimensional convolutional layer with one dimension

corresponding to time and the other corresponding to the I and Q channel. The I

and Q channel were instead represented as multiple channels of the one dimensional

convolution to make explicit that each I/Q value is associated with a single point

in time. Each convolutional layer was given a stride and dilation factor equal to 1

and the kernel size lk, padding p, and number of filters Nf parameters were varied at

different depths of the model. The kernel size k for the first layer is chosen to be 9

and is decreased by two for each successive layer of the model. The number of filters

for the first convolutional layer is set to 10 and is increased by 5 for each successive

layer. Each convolutional layer is then given a zero padding value p equal to:

p =
k − 1

2
(11)

The padding is given this value to preserve the dimension from input to output of

the convolutional layer. The choice of increasing the number of filters and decreasing

kernel size is consistent with proven effective CNN architectures such as AlexNet

[32] and LeNet-5 [33]. The Rectified Linear Unit (ReLU) activation function is then

applied to the output of each convolutional layer to introduce non-linearity. The

40

ReLU function is defined as such:

ReLU(x) = max(0, x) (12)

Next the output is fed through a batch normalization layer as described in sec-

tion 2.2.4. The batch normalization layers are implemented using PyTorch’s Batch-

Norm1d layer. The final component of a convolutional block in this model is a maxi-

mum pooling layer with a window size of 2 implemented with PyTorch’s MaxPool1d

layer.

After four convolutional blocks as described above, the resulting tensor is flattened

and fed through a single dense layer with a linear activation function in order to

achieve the desired latent dimension zdim for the feature encoding. This layer is

referred to as the bottleneck layer and its output is the encoding of the input data.

The encoding is then fed through another dense layer with the ReLU activation

function applied and reshaped to the same dimension as the output of the fourth

convolutional block. The output is finally fed through four more convolutional blocks

in reverse order to achieve the original input dimension. The overall model structure

can be seen in Table 2. This model architecture will be referred to as the ClusterAE

model.

3.4.2 Training Methodology

With a fully realized model architecture conceived the final step is to clearly define

the training process. With deep learning models the key decisions to be made here

include choice of loss function, optimization algorithm, number of epochs (full passes

through the training data), and batch size (size of chunks the training data is divided

into for each gradient step). Of these considerations, the most significant is choice of

loss function. The loss function determines how progress toward the objective of the

41

Table 2: ClusterAE Model Architecture

Layer Type lk Nf p Output Dim Activation
Convolutional Block 1

Conv1d 9 10 4 10 x 3200 ReLU
BatchNorm1d - - - 10 x 3200 None
MaxPool1d 2 - 0 10 x 1600 None

Convolutional Block 2
Conv1d 7 15 3 15 x 1600 ReLU
BatchNorm1d - - - 15 x 1600 None
MaxPool1d 2 - 0 15 x 800 None

Convolutional Block 3
Conv1d 5 20 2 20 x 800 ReLU
BatchNorm1d - - - 20 x 800 None
MaxPool1d 2 - 0 20 x 400 None

Convolutional Block 4
Conv1d 3 25 1 25 x 400 ReLU
BatchNorm1d - - - 25 x 400 None
MaxPool1d 2 - 0 25 x 200 None

Latent Dimension Conversion
Name Input Size - - Output Dim Activation
Flatten - - - 5000 None
Dense 5000 - - zdim None
Dense zdim - - 5000 ReLU
Reshape 5000 - - 25 x 200 None
Layer Type lk Nf p Output Dim Activation

Convolutional Block 5
BatchNorm1d - - - 25 x 200 None
Upsample 2 - 0 25 x 400 None
Conv1d 3 20 1 20 x 400 ReLU

Convolutional Block 6
BatchNorm1d - - - 20 x 400 None
Upsample 2 - 0 20 x 800 None
Conv1d 5 15 2 15 x 800 ReLU

Convolutional Block 7
BatchNorm1d - - - 15 x 800 None
Upsample 2 - 0 15 x 1600 None
Conv1d 7 10 3 10 x 1600 ReLU

Convolutional Block 8
BatchNorm1d - - - 10 x 1600 None
Upsample 2 - 0 10 x 3200 None
Conv1d 9 2 4 2 x 3200 None

42

model is quantified and all trainable parameters in the model are trained to achieve

a better result for this metric.

3.4.2.1 Loss Function

The loss function used to train this model consists of two components corre-

sponding to the two main objectives of the machine learning model described in

Section 3.4.1. The first component of the loss is the MSE between the input and out-

put of the model (see Section 2.2.5 for details) and is the most common choice of loss

function for an autoencoder. This portion of the loss will henceforth be referred to

as Autoencoder loss. The objective of the Autoencoder loss is to ensure that features

learned in the bottleneck layer of the network contain sufficient feature information

to fully represent the input data. The second component of the loss function is the

triplet loss function described in Section 2.2.6. The triplet loss function is applied to

the output of the encoding portion of the model. This portion of the loss function

is intended to ensure that the learned features have good separation between obser-

vations from different devices in the encoding layer of the model. This means that

any one training example must be composed of three separate signal observations: an

anchor observation a, a different observation from the same device p, and an obser-

vation from a different device p. The two components of the loss function are then

given a weighting value λ that allows different levels of emphasis to be placed on the

two loss components. Let the output of the encoding layer of the model for an input

x be xe and the output of the total model be x̂. The overall loss function for a single

training triplet a, p, n is then defined as:

L(a, p, n) = (1− λ) ∗MSE(a, â) + λ ∗ TripletLoss(ae, pe, ne) (13)

43

3.4.2.2 Triplet Generation

With the incorporation of triplet loss the process for how triplet pairs are made

must be defined. There are multiple methods for making informed triplet pairs from

training data detailed in [13]. These methods include choosing the valid triplet groups

within the training set that perform the worst on the triplet loss function. Such meth-

ods for generating triplet pairs help to increase the speed at which models converge to

acceptable performance. These methods however can take a large computation time

and can decrease the overall time it takes to train models for large datasets. For this

reason triplet pairs are generated without the use of a metric of triplet performance.

See Algorithm 5 for the triplet generation process. New triplet pairs are generated at

the beginning of each training epoch. This is intended to prevent overfitting of the

model as it is being constantly exposed to new triplet pairs for the entirety of the

training process.

Algorithm 5 Triplet Generation process

Same(x): all other observations in the same class as x
Diff(x): all observations from all other classes than x
RandomChoice(x): chose an element from x at random
for i = 0, . . . N do

a ← dataset[i]
p ← randomchoice(Same(x))
n ← randomchoice(Diff(x))
triplets[i] ← [a,p,n]

end for
return triplets

3.4.2.3 Optimization

The next important decision in the definition of the training process is the choice

of optimization algorithm. In general, neural networks are trained by iteratively

updating each of its trainable parameters(weights, biases, etc.) in accordance with

44

the gradient of its loss function. At each update step, the parameters of the model are

updated with the gradient calculated via the back-propagation algorithm multiplied

by the learning rate (a scaling factor applied to each gradient update step). The

optimization algorithm is a way of controlling the learning rate for each step to

alleviate certain problems that arise for non convex loss functions. This can take the

form of a pre-defined learning rate schedule for each training epoch as well as methods

that continuously re-calculate the learning rate based on previous gradient steps. For

this model the Adam optimization algorithm [34] was chosen as it is a common choice

within modern deep learning research and has shown to be effective for many deep

learning models. The initial learning rate for the Adam optimizer was chosen to be

lr = .001 as it was empirically shown to work well in preliminary experimentation for

this model architecture.

The last step to fully define the training process is to decide on the number of

training epochs as well as the batch size. There are multiple ways to decide the

number of epochs to use when training a neural network model. A common choice

is to use early stopping criteria to halt the training of a model after the loss on the

training and validation sets indicate that the model is no longer improving after new

passes through the training data. This is an effective method to ensure that models

don’t become over-fit to the training data. For this research, however, the choice

was made to have a consistent number of training epochs over the multiple models

trained to remove it as a variable that might affect comparative performance between

models. The choice was made to halt training after NE = 300 epochs after preliminary

experimentation showed that this was a point at which all models stagnate in terms

of training and validation loss. Finally, the batch size was chosen to be NB = 50

examples per batch. Multiple factors can affect choice of batch size when training a

neural network model not least of which being the available computational resources

45

required to store large batches in memory. In general large batches mean that there

is a shorter total time to make a complete pass through the training data. Larger

batch sizes do however tend to result in a slower overall convergence of the model and

thus smaller batches are often preferred.

3.4.2.4 Data Augmentation

Data augmentation is a common practice in machine learning which involves in-

troducing distortions/modifications to training data to increase the resulting model’s

ability to generalize to new unseen data. For this research, the application of Additive

White Gaussian Noise (AWGN) to the training data prior to training was used for

data augmentation. The use of AWGN was chosen as it is a common practice within

RF-Fingerprinting research to simulate noisy channel effects. At the beginning of

each training epoch, each observation within the clean training data was augmented

with AWGN to achieve an SNR value chosen from a uniform distribution between

15db and the SNR of the unmodified signal.The SNR for each observation is calcu-

lated by comparing the average power of the preamble signal and the noise appended

to the beginning of each observation. The SNR calculation and AWGN formation

procedure for a single observation is as follows:

• Calculate the average power of the preamble signal xsignal[t] and the 1.25µs of

noise appended to the beginning xnoise[t]:

Pnoise =
1

N

N∑
t=0

|xnoise[t]|2 (14)

Psignal = (
1

N

N∑
t=0

|xsignal[t]|2)− Pnoise (15)

46

• Calculate SNR for observation in db

SNR = 10 log10(
Psignal
Pnoise

) (16)

• Choose desired SNR value SNRnew from uniform distribution between 15db

and calculated SNR of observation

• Calculate additional noise power Padded required to achieve desired SNR

Padded =
Psignal

10
SNRnew

10

− Pnoise (17)

• Generate AWGN signal a[t] = N (0,1)+N (0,1)i

• Scale a[t] to achieve Padded and add to original signal

xAWGN [t] = x[t] + a[t]
√
Padded (18)

The overall training process for each network model is described in Algorithm 6.

Each model is trained using the Training Set of observations described in Table 1.

47

Algorithm 6 Model Training Process

function TrainModel(data,NB,NE,λ)
AE(x): Output of autoencoder model for input x
E(x): Encoding of autoencoder model for input x
for i = 0,. . . , NE do

tensor ← AddNoise(data)
triplets ← GenerateTriplets(tensor)
for j = 0,. . . ,tensor.size/NB do

a, p, n← triplets[j*NB:(j+1)*NB]
â ← AE(a)
ae, pe, ne ← E(a), E(p), E(a)
loss ← (1− λ)*MSE(a, â)+λ*TripletLoss(ae, pe, ne)
Calculate loss gradient
Update network parameters using Adam optimizer algorithm

end for
end for

end function

3.5 Clustering Methods

After all models are trained, the performance of each model is evaluated on the

different clustering methodologies detailed in Section 2.3. First the observations in

the test set being evaluated are fed through the encoding portion of the model being

tested. Then the clustering method being tested is performed on the resulting feature

vectors to obtain cluster assignments for each observation within the test set. Finally

the cluster assignments are compared to the true device labels using the metrics

described in Section 3.5.4.

3.5.1 K-means Clustering

The implementation of the K-means clustering algorithm is fairly straight forward

in this case as the true number of devices is known which constitutes the only major

parameter involved with this algorithm. The K-means clustering assignments are

created using the module provided in the sklearn python package using the parameters

nclusters = 9 because there are nine devices present in each test dataset and maxiter

48

= 1000.

3.5.2 DBSCAN Clustering

The implementation of DBSCAN clustering is not as intuitive as that of the K-

means clustering algorithm. The ε and minpts parameters can drastically effect the

quality of the resulting cluster assignments and values for these parameters that are

effective for one dataset do not necessarily translate to others. Factors such as the

number of features being used to cluster observations as well as the total number

of observations in a given cluster can effect clustering performance. This calls for

the need of a more procedural method for selecting the parameters being used to

reasonably compare performance across different models. Shubert et al. provide an

analysis of practical concerns regarding the DBSCAN clustering algorithm in [35].

The analysis provides a heuristic that will be used to select parameters for these

experiments as described below.

The min pts parameter for each model under consideration is chosen to be equal

to the twice the dimension of the latent space zdim. The choice of the ε parameter

does not have as exact of a method for calculating an appropriate value but there is a

helpful heuristic to determine range of effective values. The heuristic operates by first

calculating the distance from every observation in the dataset of interest to its kth

neighbor where k = min pts. Next all calculated distances are sorted in descending

order and are plotted. The distance value at the most dramatic inflection point of

the resulting graph (or the knee of the curve) corresponds to an effective choice for

ε for the given dataset. The “knee” of a curve does not have a single mathematical

definition and thus the method being used to determine the knee point will be that

described in [36]. The DBSCAN module from sklearn is used to generate clustering

assignments using ε and min pts parameters chosen in this way for each model and

49

dataset. The ε parameter calculation is performed directly after obtaining features

from the trained models.

3.5.3 Mean Shift Clustering

The Mean Shift clustering algorithm has only one major parameter affecting per-

formance that being the bandwidth. The foundational paper on the Mean Shift

algorithm [19] provides heuristics to determine an appropriate value for this param-

eter. These methods however, are often ineffective for higher dimensional data or

require sweeping over a large range of bandwidth values and observing the resulting

clustering performance which is computationally expensive. The bandwidth param-

eter used in the mean shift algorithm is qualitatively similar to the ε parameter used

in the DBSCAN algorithm and thus the bandwidth parameter will be determined

using the same procedure for calculating ε described in Section 3.5.2. The mean shift

module from sklearn is used with the bandwidth parameter chosen in this way to

generate mean shift clustering assignments. The bandwidth parameter calculation

is performed directly after obtaining features from the trained models. Preliminary

experimentation showed behavior of the Mean Shift clustering algorithm where many

(≥ 100) small clusters begin to form at low noise levels. These small clusters in gen-

eral have roughly uniform distributions among true device label and thus provide no

significant clustering benefit. Due to this behavior, the choice was made to prune clus-

ters with size < 50 observations with the observations in such clusters being labeled

instead as outlier points.

3.5.4 Evaluation Metrics

The quantification of performance of a clustering algorithm is not as straight-

forward a process as a typical supervised classification problem. Despite prior knowl-

50

edge of the known labels of the data being clustered, the differences in the qualitative

nature of clusters being produced by different algorithms makes objective evaluation

more complex. Evaluation is further complicated in the case of clustering algorithms

without a specified number of cluster labels as the number of clusters produced isn’t

guaranteed to equal the true number of classes. Therefore, multiple evaluation metrics

will be used to evaluate clustering performance for these experiments.

The metrics being used for this research are those proposed in [37]. The eval-

uation metric proposed is called V-measure (VM) and is calculated by taking the

weighted harmonic mean of two other metrics called homogeneity and completeness.

Homogeneity(h) and completeness(c) measures are calculated based on the condi-

tional entropy of the dataset between the known device labels and the clustering

labels generated. Let N be the number of datapoints in a dataset, C be the set of

true device labels, K be the set of cluster assignment labels, and ac,k be the number of

datapoints from the cth device in the kth cluster. The exact mathematical definition

of homogeneity and completeness is then defined as follows [37]:

h =


1 if H(C,K) = 0

1− H(C|K)
H(C)

else

(19)

H(C|K) = −
|K|∑
k=1

|C|∑
c=1

ac,k
N

log
ac,k∑|C|
c=1 ac,k

(20)

H(C) = −
|C|∑
c=1

∑|K|
k=1 ac,k
N

log

∑|K|
k=1 ac,k
N

(21)

c =


1 if H(K,C) = 0

1− H(K|C)
H(K)

else

(22)

51

H(K|C) = −
|C|∑
c=1

|K|∑
k=1

ac,k
N

log
ac,k∑|K|
k=1 ac,k

(23)

H(K) = −
|K|∑
k=1

∑|C|
c=1 ac,k
N

log

∑|C|
c=1 ac,k
N

(24)

The two h and c metrics are symmetric and range from [0,1] with a value of one

being the best possible score and a value of zero representing a clustering functionally

equivalent to random chance. Homogeneity is a measurement of the degree to which

observations within a given clustering assignment belong to the same true class label.

Completeness conversely is a measure of the degree to which observations within the

same class label are assigned to the same cluster. Two extreme possibilities exist for

clustering results those being

• All observations are given a different cluster assignments such that there is a

single observation in each cluster. In this case Homogeneity h = 1 and Com-

pleteness is very poor

• All observations are assigned to the same cluster. In this case Completeness c

= 1 and Homogeneity is very poor.

While the two measures tend to respond inversely to one another in such extreme

circumstances, the two measures both evaluate to be close to one in cases in which the

clustering very nearly matches the true device labels. The VM is then a way of giving a

single performance metric to directly measure clustering performance based on the two

desirable clustering properties of homogeneity and completeness. Unlike performance

measures typically used to evaluate supervised classification problems, VM doesn’t

have a simple interpretation such as the percentage of observations assigned to the

correct cluster. This is because there is not necessarily a “correct” cluster associated

with every class label especially in clustering results where the number of unique

52

cluster assignments does not match the number of unique class labels. VM can be

interpreted as the degree of certainty with which one set of labels (cluster assignments

or true device labels) can be predicted given knowledge of the other set. A value VM

= 1 then means that given either the cluster assignments or the class labels, the other

set can be predicted with 100% certainty. A value VM = 0 means that the knowledge

of one set of labels gives no benefit at all at predicting the other set of labels. The

definition of the VM for a given clustering assignment is given by [37]:

V =
(1 + β) ∗ h ∗ c

(β ∗ h) + c
(25)

The β parameter is a way of adjusting the VM score to place more emphasis on

either the homogeneity of the completeness. When β > 1 more emphasisis put on

completeness score and a value β < 1 puts more emphasis on homogeneity. For this

research, a β = 1 parameter value was chosen.

3.6 Experiments

The experiments presented within this thesis will evaluate how variations in the

parameters of the ClusterAE model architecture defined above affect the resulting

model’s clustering performance. The novel design decision of the ClusterAE architec-

ture is the use of the objective function that combines the autoencoder reconstruction

loss with triplet loss applied to the encoding layer. The case in which the λ hyper-

parameter is chosen to be λ = 0 is then simply a standard convolutional autoencoder

(referred to here as a “pure” autoencoder). The clustering results achieved by these

pure autoencoder models are presented in Section 4.1 separate from the remaining

ClusterAE models incorporating a combined loss function. The two model parame-

ters under consideration include the λ parameter of the loss function and the size of

the latent dimension zdim of the model. The λ parameter affects the relative emphasis

53

of the two components of the loss function for the model and the variation of this

parameter evaluates how the interaction between the loss components affects cluster-

ing performance. The zdim parameter controls the total number of features that are

extracted from the raw data. Variations in this parameter provides insight into the

number of features required to characterize the differences between emitters. In order

to evaluate the effect of these two parameters, four different λ and three different zdim

values are chosen and twelve different model are trained for each possible combination

of the values for the two parameters. The values evaluated for the two parameters

are:

• λ = {.25, .50, .75, 1.00}

• zdim = {32, 64, 128}

These experiments are intended to evaluate the ClusterAE architecture as a means

of recognizing features from RF-waveforms such that the feature vectors can be clus-

tered in such a way that the clusters are highly representative of the signals device of

origin. In order to provide a point of comparison for the performance of the ClusterAE

models proposed in this thesis, the Principal Component Analysis (PCA) dimension-

ality reduction method is performed on the raw quadrature samples as an alternate

feature extraction method. Three different PCA implementations were done on the

Lab Test Set with a number of output features feats = [32,64,128] to correspond to the

three values chosen for the zdim parameter in the ClusterAE models. PCA dimension-

ality reduction is performed using the PCA module provided in the sklearn python

package. Additionally pure autoencoder models (ClusterAE models with λ = 0) were

also evaluated to compare how the features learned by a normal convolutional autoen-

coder compare to those learned via the ClusterAE model with a combined objective

function. The procedure for producing each individual VM calculation is depicted

graphically in Figure 11 and is as follows:

54

• Select a test set to evaluate from [Lab Test Set, Unseen Test Set, Wild Test

Set] at desired simulated SNR level SNR = [-3,0,...,18]

• Generate feature vectors from waveforms using one of the following methods

[ClusterAE model, Pure Autoencoder Model, PCA]

• Choose clustering algorithm from [K-means, DBSCAN, Mean Shift] to perform

clustering on feature vectors to produce cluster assignment labels for each ob-

servation

• Calculate VM using cluster assignment labels and true device labels for the

dataset

For the Lab Test Set and Unseen Test sets, AWGN was applied across the range

of SNR = [-3db,18db] in increments of 3db. A single copy of both the Lab Test Set

and Unseen Test Set was created at each of the simulated noise values for model

evaluation. The simulated SNR values are generated using the same methodology

as described in Section 3.4.2.4. This is a common practice within RF-Fingerprinting

research as it demonstrates how fingerprinting models respond to noisy environments.

Figure 11: Block Diagram of Cluster Generation and Evaluation Procedure

55

This was not done for the Wild Test Set as the measure SNR values of the observations

in this test set was much more variable and thus achieving a range of usable SNR

values is infeasible.

56

IV. Results and Analysis

This section presents the results of the RF-Fingerprint clustering experiments as

described in Chapter III on various datasets of IEEE 802.11a/g transmissions. The

RF-fingerprint feature vectors for each observation were generated using the encoder

portion of the ClusterAE models described in Section 3.4.1. These feature vectors are

then used as the input to various clustering algorithms and cluster assignments are

returned for each observation. These cluster assignments are then compared to the

known device labels and a measure of performance is calculated using the V-measure

(VM) metric described in Section 3.5.4.

The presentation of the results in this section is organized as follows. First, con-

ventional dimensionality reduction methods are used to produce feature vectors for

clustering and the results of the clustering performance on these feature vectors will be

presented as a performance baseline for comparison to the ClusterAE models. Next,

a model hyper-parameter sweep is performed in order to evaluate how the size of the

latent dimension (zdim) of the models and the λ parameter of the objective function

effect clustering performance. The performance of the three clustering algorithms

described in Section 3.5 on the feature vectors produced by the ClusterAE models is

then presented and compared. Finally, a comparison of model performance on the

Lab Test Set, Unseen Test Set, and Wild Test Set is presented in order to evaluate

how ClusterAE models generalize to new devices.

In situations where different clustering algorithms are not being directly compared,

the K-means clustering algorithm is used to compare model performance. This is

chosen because the number of clusters produced is controlled with this algorithm and

thus the results have more predictable behavior compared to the other two algorithms

evaluated. Additionally, in situations where the different test sets are not being

compared the Lab Test Set is used as the input dataset.

57

4.1 Comparison to Conventional Dimensionality Reduction

As there has been minimal work presented on the clustering of RF-fingerprinting

feature vectors there is not a foundation of typical expected performance to compare

the results of this thesis to. Previously researched RF-fingerprinting techniques not

based in deep learning typically rely on some form of feature projection based on

knowledge of the device labels (e.g. Multiple Discriminant Analysis (MDA)) in or-

der to produce feature vectors suitable for machine learning models. A core goal of

this research is to develop an RF-Fingerprinting methodology that produces feature

vectors without an assumption of a set of known devices and thus these previous

RF-fingerprinting methods do not provide a suitable comparison to the methodology

presented here. Additionally, previous deep learning based fingerprinting methods

require a lengthy design and training process that is outside of the scope of this

research. For that reason, feature vectors produced by the conventional dimensional-

ity reduction methods Principal Component Analysis (PCA) and pure autoencoder

models (ClusterAE models without the addition of triplet loss) are used as a basis of

comparison for the models proposed in this thesis.

The clustering results of the PCA derived feature vectors can be seen in Figure 12.

The results show a performance score well below VM = 0.01 across all SNR regard-

less of the number of output features used. These results indicate that such linear

projections on raw quadrature sample data is not sufficient to perform clustering on

these signal observations.

The clustering results of the pure Autoencoder derived features can be seen in

Figure 13. As with the PCA derived features, the pure autoencoder derived features

also achieved performance well below VM = 0.01 for all SNRs evaluated. These results

show that the features learned by a convolutional autoencoder model trained with

reconstruction loss alone are not sufficient to produce suitable feature vectors for

58

Figure 12: VM Results of K-means Clustering Assignments on Feautre Sets Produced
by PCA Dimensionality Reduction of Raw Signal Data

59

clustering applications.

Figure 13: VM Results of K-means Clustering Assignments on Feautre Sets Produced
by Pure Autoencoder Encoding of Raw Signal Data

60

The results here show that neither linear projections such as PCA nor deep learn-

ing based dimensionality reductions such as autoencoder models are sufficient to pro-

duce feature vectors suitable for use in unsupervised clustering algorithms. The fol-

lowing results presented in this chapter demonstrates how the models described in

Section 3.4.1 are able to produce effective feature vectors for unsupervised clustering

through the incorporation of triplet loss into the training objective function.

4.2 Model Hyper-parameter Evaluation

This section provides an examination of how two key model hyper-parameters ef-

fect the clustering performance of feature vectors generated by the ClusterAE models

described in Section 3.6. The first parameter that is being evaluated is the size of the

latent dimension zdim of the models. The value of this parameter controls the total

number of features being used to represent each observation. The second parameter

being evaluated is the λ parameter of the objective function used to train the various

models. This parameter controls the relative weighting between the reconstruction

loss and triplet loss portion of the objective function. A value of λ = 0 indicates the

use of only autoencoder reconstruction loss (as seen in Section 4.1) and a value λ =

1 indicates the use of only triplet loss to train the model. A value in between these

two varies the amount of emphasis placed on each loss component. The results in

this section evaluates clustering performance on the feature vectors produced by the

various models from the Lab Test Set over a range of simulated SNRs.

The results shown in Figure 14 show how the clustering performance of the Clus-

terAE models is affected by variations in the λ parameter at various sizes of latent

dimension. The first observation to be made from these results is that all models

evaluated were able to achieve a VM ≥ 0.9 at highest simulated SNR = 18db. A VM

score in this range indicates that the cluster assignment labels produced for these

61

(a) ClusterAE Models with zdim = 32

(b) ClusterAE Models with zdim = 64

(c) ClusterAE Models with zdim = 128

Figure 14: VM Results of K-means Clustering Performed on ClusterAE Model Feature
Vectors for Hyper-parameter values zdim = {32,64,128} and λ = {0.25,0.50,0.75,1.00}

62

feature vectors allow for the prediction of true device labels with a high degree of

certainty. This suggests that the application of triplet loss in the ClusterAE archi-

tecture provides a high degree of class separability in RF-fingerprint feature vectors

compared to the use of solely autoencoder reconstruction loss as seen in Figure 13.

Additionally, those models trained using only triplet loss training (i.e. λ = 1.00) were

able to achieve comparable performance to those models using a combination of the

two loss metrics at all values of zdim evaluated. This suggests that the use of triplet

loss on the output feature vectors of the model was the more important of the two

components of the objective function for enabling feature vectors to perform well in

clustering applications.

When observing the clustering results of the various models in response to the λ

parameter, the response varies with the size of the latent dimension of the model zdim.

At the lowest latent dimension size zdim = 32, the model performance continues to de-

crease as the λ parameter decreases therefore placing more emphasis on autoencoder

reconstruction loss compared to triplet loss. At the intermediate latent dimension

size zdim = 64, the models with more emphasis placed on triplet loss again outper-

form those placing more emphasis on autoencoder reconstruction loss at the highest

simulated SNR values. This relationship reverses at the lower simulated SNRs in

which the models with lower λ values are the highest performers. This suggests that

the addition of autoencoder loss provides benefit to a model’s ability to learn feature

vectors that are robust to noisy environments at this value of zdim = 64. Lastly at

the largest latent dimension evaluated zdim = 128, the model with λ = 0.50 placing

equal emphasis on the two loss components performs the best at the highest simu-

lated SNRs and is overtaken in performance by the triplet loss only model at lower

SNRs. The λ = 0.50 model still outperforms the other two models incorporating a

combination of the two loss components across all simulated SNRs evaluated. Again

63

the results for this value of zdim = 128 show that there is some performance benefit

added by the combination of the two loss components.

In summary the results of this section show that the incorporation of the triplet

loss in the objective function used to train the ClusterAE model architecture is able

to produce feature vectors from IEEE 802.11a/g waveforms that perform well in un-

supervised clustering applications. Additionally, the results showed that, while the

use of only triplet loss to train these models provided effective clustering results, the

combination of triplet loss and autoencoder reconstruction loss provides performance

benefit for models with latent dimensions zdim ≥ 64. The performance characteris-

tics in relation to these model hyper-parameters remains consistent over the other

clustering algorithms evaluated in this research and the performance curves for all

models on the various clustering algorithms can be seen in Appendix A. In order to

fully characterize the performance benefit of this combination of objective functions,

a higher fidelity sweep across these two model hyper-parameters is necessary.

4.3 Comparison of Clustering Algorithms

This section presents a comparison of the results achieved by various clustering

algorithms on the feature vectors produced by the ClusterAE models described in

Section 3.6. For the sake of visual clarity, Figure 15 shows the results of the various

clustering algorithms on the best performing model from Section 4.2 with hyper-

parameter values zdim = 32 and λ = 1.00. The discussion of the results in this

section will however addresses the performance of models using all combinations of

hyper-parameters to observe general trends associated with the various clustering al-

gorithms. The individual performance of all models on these clustering algorithms

can be seen in Appendix A. The results in this section evaluates clustering perfor-

mance on the feature vectors produced by the various models from the Lab Test Set

64

over a range of simulated SNRs.

The results shown in Figure 15 show that overall the highest performing clustering

algorithm of those evaluated was the K-means algorithm. This was expected to be the

case as this is the only clustering algorithm of those evaluated in which the number of

clusters to be produced is specified prior to performing clustering. As this parameter is

set to be equal to the number of devices present in the test set ND = 9, this clustering

algorithm is provided a significant degree of knowledge of the dataset not provided

to the other clustering algorithms. Overall, this clustering algorithm performed very

well on the Lab Test Set with an average VM = 0.978 across all models at the highest

simulated SNR = 18db. Additionally, this clustering algorithm displayed clustering

performance that was asymptotic with relation to simulated SNR with VM levelling

out at SNR ≈ 12db for all models. These results indicate that the cluster assignments

Figure 15: Comparison of V-measure score of K-means, DBSCAN, and Mean Shift
clustering on ClusterAE Feature Vectors w/ hyper-parameters zdim = 32 λ = 1.00

65

produced at the highest simulated SNRs are nearly exactly correlated with the true

device labels. As the simulated SNR decreases, the set of true device labels within

any given cluster approaches a roughly uniform distribution. This indicates that the

cluster assignments provide no statistical advantage in predicting true device label

and therefore the VM approaches VM ≈ 0 at the lowest simulated SNR for all models.

The results of the DBSCAN clustering algorithm show that this was overall the

worst performing clustering methodology for the feature vectors produced by the

ClusterAE models. The average VM achieved across all models evaluated at the

highest simulated SNR = 18db was VM = 0.822. This is an overall drop in average VM

of 0.156 at SNR = 18db between from the K-means clustering algorithm. A drop in

performance was to be expected from this algorithm as there is no information given to

the algorithm about the number of clusters present within the dataset. Additionally

this algorithm exhibited a behavior in which the VM drops off quickly to VM ≈ 0

at SNR = 6-9db for all models evaluated. As the simulated SNR decreases, the

clusters produced by the DBSCAN algorithm begin to combine together such that

each cluster contains nearly all observations from a set of multiple devices. When

the simulated SNR becomes low enough, all clusters combine into a single cluster

containing nearly all observations in the dataset with a small set of observations being

labeled as outliers. In this scenario, the cluster labels provide no statistical advantage

at predicting true device label and thus the VM approaches 0. This behavior is likely

largely due to the way in which the ε parameter is chosen for each clustering result.

As the simulated SNR becomes lower, the ε parameter increases exponentially as show

in Figure 16 which gives the algorithm a tendency to group all observations into a

single cluster.

Finally the results of the Mean Shift algorithm showed that it was the better

performing clustering method of the methods evaluated that did not have a specified

66

Figure 16: Calculated DBSCAN ε Parameter as a Function of Simulated SNR

number of clusters. The average model performance was found to be VM = 0.901

across all models at simulated SNR = 18db. This results shows that the Mean Shift

clustering algorithm was able to produce clusters highly representative of device of

origin on these feature vectors without knowledge of the number of devices within

the test set. Additionally this clustering methodology displayed a more gradual per-

formance response to simulated SNR compared to the DBSCAN algorithm. As the

simulated SNR was decreased, much like the DBSCAN algorithm, the clusters formed

by the Mean Shift algorithm began to coalesce into a single cluster containing the

majority of observations in the dataset. this process however occurred more gradually

in the Mean Shift algorithm compared to the DBSCAN algorithm. Additionally, as

the simulated SNR was decreased, many small clusters with ≈ 10-50 observations per

cluster began to from using the Mean Shift algorithm. The distribution of true device

labels within these clusters was roughly uniform and therefore had a limited impact

on VM calculated for this algorithm. Lastly, the phenomenon observed with the cal-

culated ε parameter shown in Figure 16 likely had a similar effect on the clustering

67

performance observed with Mean Shift clustering as the bandwidth parameter used

for this method used the same calculated values.

4.4 Model Generalization to New Devices

This section presents the results of the trained ClusterAE models clustering per-

formance on the Lab Test Set, Unseen Test Set, and Wild Test Sets described in

Section 3.3. The clustering results of the feature vectors produced by these models

on the various test sets is intended to evaluate how well they tend to remain class

separable for devices previously unseen to the models. The Lab Test Set contains

observations from the same set of devices used to train the ClusterAE models (not

the same observations in the Training Set but new observations from the same set

of devices). The Unseen Test Set contains observations from nine of the remaining

devices in the lab dataset described in Section 3.1. The results on this dataset rep-

resent how robust the features learned by the ClusterAE are to new devices of the

same model recorded under identical environmental conditions. The Wild Test Set

contains observations from nine devices selected from the wild dataset described in

Section 3.1. The results on this dataset represent how robust the features learned by

the ClusterAE models are to new models of devices and varied propagation environ-

ments. The results presented in this section for the Lab Test Set and Unseen Test

Set were performed at a simulated SNR = 18db. The results of the Wild Test Set

were performed without any AWGN applied. The results across all simulated SNRs

for the Unseen Test Set can be seen in Appendix A. The results on each of the test

sets was performed on a new instance of the clustering algorithm without knowledge

of the cluster assignments produced for the other test sets.

The results show in Figure 17, Figure 18, and Figure 19 show an overall decrease

in clustering performance across all models from the Lab Test Set to the Unseen Test

68

Set. The average performance across all models observed on the Unseen Test Set

is 0.789, 0.720, and 0.737 for the K-means, DBSCAN, and Mean Shift algorithms

respectively. This equates to a decrease in average performance across all models at

the simulated SNR = 18db in VM of 0.189, 0.102, and 0.164. The overall performance

on the Unseen Test Set is less variable than that observed on the Lab Test Set and thus

the largest decrease in performance equates to the clustering methodology with the

best performance on the Lab Test Set. Despite the overall decrease in performance

observed on the results on the Unseen Test Set, the VM achieved on this test set

at a simulated SNR = 18db ranges [0.635, 0.925] across all models and clustering

algorithms. These results indicate that there is still a strong correlation between the

cluster assignments produced and the true device labels and therefore the ClusterAE

models do tend to generalize well to new devices of the same model transmitting

under similar conditions.

The results shown in Figure 17, Figure 18, and Figure 19 show a large decrease in

performance of all models on the Wild Test Set compared to the other two test sets

evaluated. The K-means clustering algorithm achieved the best performance on the

Wild Test Set of all clustering algorithms evaluated as is to be expected as this algo-

rithm was shown to perform the best overall in Section 4.3. The Wild Test Set results

on the K-means clustering algorithm showed an average VM = 0.237 with a range of

[0.096,0.412] across all models. While these results are generally poor when compared

to the other test sets evaluated, these results still show a significant degree of statisti-

cal correlation between cluster assignments especially when taking into account that

the significant differences of this dataset. The Wild Test Set results on the DBSCAN

algorithm show overall very poor performance with an average VM across all models

of 0.024. These results show that the feature vectors produced by the ClusterAE

models on the Wild Test Set are entirely ineffective for DBSCAN clustering. Finally

69

the Wild Test Set results using the Mean Shift Clustering algorithm again show poor

performance with an average VM = 0.092 across all models. The exception to this

overall poor performance was the model with hyper-parameter values zdim = 32 λ =

1.00 with a VM = 0.316 comparable to the better performing models’ performance

on the K-means clustering algorithm. This indicates that the Mean Shift algorithm

can achieve comparable performance to the K-means algorithm on the Wild Test Set

given a proper choice of model hyper-parameters.

70

Figure 17: Comparison of K-means Clustering Results on Lab Test Set vs. Unseen
Test Set vs. Wild Test Set

71

Figure 18: Comparison of DBSCAN Clustering Results on Lab Test Set vs. Unseen
Test Set vs. Wild Test Set

72

Figure 19: Comparison of DBSCAN Clustering Results on Lab Test Set vs. Unseen
Test Set vs. Wild Test Set

73

4.5 Summary

Overall the results presented in this section demonstrate that the ClusterAE RF-

Fingerprinting model proposed is an effective means of extracting feature vectors

from IEEE 802.11a/g for use in unsupervised clustering algorithms. In particular

this model architecture is shown to succeed in producing effective feature vectors for

clustering where conventional dimensionality reduction methods such as PCA and

pure convolutional autoencoder models fail to do so as shown in Section 4.1. It is also

shown that using a loss function which combines autoencoder reconstruction loss and

triplet loss provides a performance benefit over solely the use of triplet loss to train the

ClusterAE architecture when the size of the latent dimension is ≥ 64. Additionally,

the results show that the K-means clustering algorithm is more effective than the

Mean Shift clustering algorithm for the feature vectors produced by these models

which is in turn more effective than the DBSCAN algorithm. Finally it showed that

the features learned by the ClusterAE model architecture tend to generalize well to

new devices of the same model as those used to train the model while struggling to

achieve good clustering performance on observations from different device models and

different environmental conditions.

74

V. Conclusions

5.1 Research Summary

The research presented within this thesis examined the machine learning problem

of RF-Fingerprinting/SEI through the lens of an unsupervised clustering problem.

The application of modern machine learning techniques to identify the originating

device for wireless communications remains a promising avenue to bolstering security

in the PHY layer. Clustering research provides a useful counterpoint to the more

prevalent research in supervised classification problems by showing how learned fin-

gerprint features generalize to new devices. Much of the RF-Fingerprinting literature

is focused on developing a classifier that can effectively determine device of origin

from a pre-defined set of devices used in the training process. Such classifiers have

limited usefulness in a communication scenario with a dynamic set of client devices.

This research effort was intended to address this problem by presenting a method to

produce fingerprint features that effectively group together observations from devices

previously unseen in the machine learning process.

The methodology used to generate these fingerprint feature sets was based on a

convolutional autoencoder deep learning model. The model was trained using a novel

objective function utilizing a combination of autoencoder reconstruction loss as well

as triplet loss to learn characteristic features from RF waveforms that tend to separate

well based on device. The models were trained using a range of relative weightings

between the two components of the objective function to evaluate the effect of its

two loss components. All models were trained on IEEE 802.11a/g preamble signals

from 9 different emitters collected in a controlled laboratory environment grouped into

randomly generated triplet pairs. The models were then all evaluated by the clustering

performance of its generated features on various clustering methods over a range of

75

SNR values. Three different test sets were used to evaluate model performance:

• Lab Test Set: Test set of reserved transmissions from devices used in the training

process

• Unseen Test Set: Test set of laboratory collected transmissions from a set of

devices unseen to trained models

• Wild Test Set: Test set of transmissions collected in public areas in various

physical environments.

Three different clustering methodologies were used to evaluate performance of each

models’ learned features: K-means, DBSCAN, and Mean Shift Clustering. Accuracy

of each clustering algorithm was evaluated using the homogeneity, completeness, and

VM metrics using the produced cluster assignments and the known true device labels.

5.2 Research Findings

The findings of this research, as presented in Chapter IV, can broadly be grouped

into three primary categories: effect of model hyper-parameters on model perfor-

mance, effectiveness of different clustering algorithms on generated feature sets, and

ability for models to generalize to unseen devices.

5.2.1 Effect of Model Hyper-parameters

The results of this research show a significant interaction between the latent di-

mension zdim and objective function weighting λ model hyper-parameters. The results

show that placing additional emphasis on autoencoder reconstruction loss tends to

provide a performance benefit at higher latent dimensions. The performance benefit

of autoencoder reconstruction loss does not appear to be present at the lower dimen-

sion zdim = 32 in which the models which place the least emphasis on reconstruction

76

loss λ = 0.75, 1.00 are the top performers. This relationship between zdim and λ is

seen across all test datasets and clustering algorithms evaluated. These results sug-

gest that the features learned via autoencoder reconstruction loss provide meaningful

benefit to a models ability to cluster. Additionally the results suggests a threshold

at which latent dimension becomes to low to produce an effective autoencoder recon-

struction and thus this loss components begins to act mostly as noise in the objective

function.

5.2.2 Comparison of Clustering Algorithms

The results presented here show that K-means was the highest performing clus-

tering methodology of those evaluated. This is an expected result as it is the only

clustering algorithm of those evaluated that is given the prior knowledge of a known

number of clusters within the dataset. The K-means clustering algorithm was able

to achieve an average VM across all models > 0.9 for SNR ≥ 12 on the Lab Test Set.

The worst performing clustering algorithm for this research was found to be DBSCAN

with a maximum average VM of 0.822 with a steep drop off in average VM of < 0.01

at SNR = 6db as all observations collapse into a single cluster. The Mean Shift al-

gorithm was found to be the better performing of the clustering algorithms without

a provided number of clusters. The Mean Shift algorithm achieved an average VM

of > 0.9 at SNR = 18db with a more gradual decline in performance in comparison

to DBSCAN clustering. Neither of the clustering methodologies without a provided

number of clusters was able to accurately identify the true number of clusters present

within the dataset however the Mean Shift clustering algorithm performed better in

this regard.

77

5.2.3 Performance on Unseen Devices

Clustering performance for all models was found to be best on the Lab Test Set

which is to be expected as this is the test set containing the devices used to train the

various models. The average VM score on the Lab Test Set at SNR = 18db for all

models evaluated was found to be 0.978, 0.822, and 0.901 for the K-means, DBSCAN,

and Mean Shift clustering algorithms respectively. While the VM score metric is

not as intuitively interpretable as the percent classification accuracy metric used for

supervised classification, a VM of greater than 0.9 can reasonably be considered a

very effective clustering. These average VM scores drop to 0.789, 0.720, and 0.737

on the Unseen Test set. This equates to a drop in VM of 0.1-0.2 for the different

clustering methodologies between seen and unseen devices. The VM on the Unseen

Test set remains above 0.7 for all clustering methodologies on completely unseen

devices indicating the cluster labels still provide significant statistical advantage in

predicting true device labels. The results on the Wild Test Set across all clustering

methodologies and models was found to be generally lacking with an average VM

across all models of 0.237, 0.024, and 0.092 for K-means, DBSCAN, and Mean Shift

clustering respectively. The results show that the features learned from the laboratory

collected data were not sufficient to effectively cluster transmissions collected in an

uncontrolled environment. Despite the generally poor performance on this dataset,

several models were able to achieve VM scores of > 0.3 indicating some degree of

statistical advantage in clustering assignments for certain models. This methodology

may then be useful as a pre-training step to be used in a transfer learning process.

5.3 Future Research

The results shown here indicate that there is merit to the application of the

novel combined objective function presented to RF-Fingerprinting applications. Ad-

78

ditionally there is further work to be done on the unsupervised clustering problem

for RF-Fingerprinting/SEI. Some avenues of future research to expand on the work

presented here include the following:

• Evaluating the effects of more in depth pre-processing steps on this method-

ology: The pre-processing steps used for this research do not perform fine

frequency and phase adjustment as would typically be the case in signal de-

modulation. The inclusion of these signal processing steps may have significant

impact on clustering performance particularly on the wild collected data

• More exhaustive analysis of the effects of model hyper-parameters: Due to

timing considerations in the training of neural networks, only a small selection

of values for the λ and zdim parameters were evaluated. A higher fidelity sweep

over these parameters may provide a clearer picture of how the two parameters

interact.

• Dimensionality Reduction Analysis of produced fingerprint features: The num-

ber of features was controlled in these experiments by the latent dimension of

the models before training, however a dimensionality reduction step may be

able to retain the features learned by a larger latent dimension without having

dimension effect clustering performance across models.

• Evaluating other clustering algorithms: A clustering algorithm that was not

presented in this thesis may be able to achieve better performance on the fea-

ture sets produced by these models. Additionally, there may be a more effective

method for selecting hyper-parameters for the DBSCAN and Mean Shift clus-

tering algorithms than those used here.

• Diversity of Training Set: The dataset used to train models for these experi-

ments consisted of WiFi emitter devices of identical make and model collected

79

under ideal laboratory conditions. This likely has a significant impact on the

types of differences the learned features encapsulated between devices. A train-

ing dataset that contained a range of device models may result in improved

ability to generalize to new devices. Additionally, incorporation of several chan-

nel models instead of solely AWGN for data augmentation may result in better

clustering performance on unseen datasets.

80

Appendix A. K-Means, DBSCAN, and Mean Shift
Clustering Results on Lab Test Set and Unseen Test Set

(a) Lab Test Set

(b) Unseen Test Set

Figure 20: VM vs. SNR for K-means Clustering

81

(a) Lab Test Set

(b) Unseen Test Set

Figure 21: VM vs. SNR for DBSCAN Clustering

82

(a) Lab Test Set

(b) Unseen Test Set

Figure 22: VM vs. SNR for Mean Shift Clustering

83

Appendix B. SNR Estimates for all Test Sets

Table 3: SNR Measurements by Device for Training Set

Device Number Min SNR(db) Max SNR(db) Avg SNR(db)
0 48.38 56.24 51.94
1 44.54 56.33 49.87
2 48.66 57.22 52.24
3 48.42 57.37 52.16
4 48.42 57.80 52.00
5 48.26 56.94 52.03
6 48.64 57.43 52.02
7 48.52 58.29 52.15
8 48.75 56.66 52.11
Total 44.54 58.29 51.84

Table 4: SNR Estimates by Device for Lab Test Set

Device Number Min SNR(db) Max SNR(db) Avg SNR(db)
0 48.79 56.21 51.63
1 49.06 56.38 51.94
2 49.19 56.66 52.45
3 48.71 56.89 52.15
4 48.52 56.68 51.99
5 48.11 56.93 52.03
6 49.17 57.94 52.83
7 49.40 56.48 52.09
8 49.11 55.95 51.73
Total 48.11 57.94 52.09

84

Table 5: SNR Estimates by Device for Unseen Test Set

Device Number Min SNR(db) Max SNR(db) Avg SNR(db)
9 49.25 56.58 51.85
10 44.99 54.05 50.45
11 48.84 57.10 52.13
12 49.22 56.06 52.07
13 48.98 56.19 51.79
14 48.92 57.38 51.91
15 48.77 56.01 51.86
16 48.93 57.16 52.04
17 49.38 55.83 52.10
Total 44.99 57.38 51.80

Table 6: SNR Measurements by Device for Wild Test Set

Device Number Min SNR(db) Max SNR(db) Avg SNR(db)
18 24.58 43.06 33.19
19 29.60 35.04 31.18
20 26.30 38.75 31.97
21 25.11 32.06 27.02
22 24.32 46.97 30.46
23 26.91 33.01 28.39
24 31.07 38.39 33.00
25 20.03 30.59 22.88
26 28.52 33.64 29.73
Total 20.03 46.97 29.76

85

Bibliography

1. IEEE Standard for Telecommunications and Information Exchange Between Sys-

tems - LAN/MAN Specific Requirements - Part 11: Wireless Medium Access

Control (MAC) and physical layer (PHY) specifications: High Speed Physical

Layer in the 5 GHz band. IEEE Std 802.11a-1999, pages 1–102, 1999.

2. Cisco. Cisco Annual Internet Report (2018–2023). Cisco, pages 1–41,

2020. https://www.cisco.com/c/en/us/solutions/collateral/executive-

perspectives/annual-internet-report/white-paper-c11-741490.html.

3. Vasileios Mavroeidis, Kamer Vishi, Mateusz D. Zych, and Audun Jøsang. The

Impact of Quantum Computing on Present Cryptography. International Journal

of Advanced Computer Science and Applications, 9(3):405–414, 2018.

4. Enrico Mattei, Cass Dalton, Andrew Draganov, Brent Marin, Michael Tinston,

Greg Harrison, Bob Smarrelli, and Marc Harlacher. Feature learning for Enhanced

Security in the Internet of Things. GlobalSIP 2019 - 7th IEEE Global Conference

on Signal and Information Processing, Proceedings, 2019.

5. Nathalie Domingo, Bryan Pearson, and Yier Jin. Exploitations of Wireless In-

terfaces via Network Scanning. 2017 International Conference on Computing,

Networking and Communications, ICNC 2017, pages 937–941, 2017.

6. Kurt Hornik. Approximation Capabilities of Multilayer Neural Network. Neural

Networks, 4(1991):251–257, 1991.

7. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

86

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
http://www.deeplearningbook.org

8. Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Uni-

versity of Toronto, 05 2012.

9. Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift. 32nd International Con-

ference on Machine Learning, ICML 2015, 1:448–456, 2015.

10. Reyhan Kevser Keser and Behcet Ugur Toreyin. Autoencoder Based Dimension-

ality Reduction of Feature Vectors for Object Recognition. Proceedings - 15th

International Conference on Signal Image Technology and Internet Based Sys-

tems, SISITS 2019, pages 577–584, 2019.

11. Quentin Fournier and Daniel Aloise. Empirical Comparison between Autoen-

coders and Traditional Dimensionality Reduction Methods. Proceedings - IEEE

2nd International Conference on Artificial Intelligence and Knowledge Engineer-

ing, AIKE 2019, pages 211–214, 2019.

12. Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre An-

toine Manzagol. Stacked Denoising Autoencoders: Learning Useful Representa-

tions in a Deep Network with a Local Denoising Criterion. Journal of Machine

Learning Research, 11:3371–3408, 2010.

13. Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A Uni-

fied Embedding for Face Recognition and Clustering. Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 07-

12-June:815–823, 2015.

14. T. Kansal, S. Bahuguna, V. Singh, and T. Choudhury. Customer Segmentation

using K-means Clustering. In 2018 International Conference on Computational

Techniques, Electronics and Mechanical Systems (CTEMS), pages 135–139, 2018.

87

15. J. Mai, Y. Fan, and Y. Shen. A Neural Networks-Based Clustering Collaborative

Filtering Algorithm in E-Commerce Recommendation System. In 2009 Inter-

national Conference on Web Information Systems and Mining, pages 616–619,

2009.

16. Arpita Nagpal, Arnan Jatain, and Deepti Gaur. Review Based on Data Clus-

tering Algorithms. 2013 IEEE Conference on Information and Communication

Technologies, ICT 2013, (April):298–303, 2013.

17. Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subra-

manian, João Felipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio,

and Christopher J. Pal. Deep Complex Networks. 6th International Conference on

Learning Representations, ICLR 2018 - Conference Track Proceedings, (2016):1–

19, 2018.

18. Anant Ram, Jalal Sunita, Anand Jalal, and Kumar Manoj. A Density Based

Algorithm for Discovering Density Varied Clusters in Large Spatial Databases.

International Journal of Computer Applications, 3, 06 2010.

19. Dorin Comaniciu and Peter Meer. Mean Shift: A Robust Approach Toward

Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 24(5):603–619, 2002.

20. Wang Xu, Wu, Daneshmand, Liu. Theoretical Performance Analysis of Radio

Frequency Fingerprinting Under Receiver Distortions. Wireless Communications

and Mobile Computing, (February 2015):421–430, 2015.

21. Oktay Ureten and Nur Serinken. Wireless Security Through RF Fingerprinting.

Canadian Journal of Electrical and Computer Engineering, 32(1):1–8, 2007.

88

22. William E. Cobb, Eric W. Garcia, Michael A. Temple, Rusty O. Baldwin, and

Yong C. Kim. Physical Layer Identification of Embedded Devices Using RF-

DNA Fingerprinting. Proceedings - IEEE Military Communications Conference

MILCOM, pages 2168–2173, 2010.

23. N. Soltanieh, Y. Norouzi, Y. Yang, and N. C. Karmakar. A Review of Radio

Frequency Fingerprinting Techniques. IEEE Journal of Radio Frequency Identi-

fication, 4(3):222–233, 2020.

24. Tong Jian, Bruno Costa Rendon, Emmanual Ojuba, Nasim Soltani, Zifeng Wang,

and Kunal Sankhe. Deep Learning for RF Fingerprinting: a Massive Experimen-

tal Study. IEEE Internet of Things Magazine, (March):50–57, 2020.

25. Mathew W Lukacs, Angela J. Zeqolari, Peter J. Collins, and Michael A. Tem-

ple. “RF-DNA” Fingerprinting for Antenna Classification. IEEE Antennas and

Wireless Propagation Letters, 14:1455–1458, 2015.

26. Christopher Talbot, Michael Temple, Timothy Carbino, and J. Betances. De-

tecting rogue attacks on commercial wireless Insteon home automation systems.

Computers Security, 74, 10 2017.

27. J. Lopez, N. C. Liefer, C. R. Busho, and M. A. Temple. Enhancing critical infras-

tructure and key resources (cikr) level-0 physical process security using field device

distinct native attribute features. IEEE Transactions on Information Forensics

and Security, 13(5):1215–1229, 2018.

28. D. R. Reising, M. A. Temple, and J. A. Jackson. Authorized and Rogue De-

vice Discrimination Using Dimensionally Reduced RF-DNA Fingerprints. IEEE

Transactions on Information Forensics and Security, 10(6):1180–1192, 2015.

89

29. Timothy J. O’Shea, Johnathan Corgan, and T. Charles Clancy. Convolutional

Radio Modulation Recognition Networks. Communications in Computer and

Information Science, 629:213–226, 2016.

30. Kevin Merchant and Bryan Nousain. Enhanced RF Fingerprinting for IoT Devices

with Recurrent Neural Networks. Proceedings - IEEE Military Communications

Conference MILCOM, 2019-Novem:590–597, 2019.

31. Jiabao Yu, Aiqun Hu, Fen Zhou, Yuexiu Xing, Yi Yu, Guyue Li, and Linning

Peng. Radio Frequency Fingerprint Identification Based on Denoising Autoen-

coders. International Conference on Wireless and Mobile Computing, Networking

and Communications, 2019-Octob, 2019.

32. Yicheng Zhang, Jipeng Gao, and Haolin Zhou. Breeds Classification with Deep

Convolutional Neural Network. ACM International Conference Proceeding Series,

pages 145–151, 2020.

33. Yann Lecun, Le’on Bottou, Yoshua Bengio, and Parick Haffner. Gradient-Based

Learning Applied to Document Recognition. Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 1998.

34. Diederik P. Kingma and Jimmy Lei Ba. Adam: A Method for Stochastic Opti-

mization. 3rd International Conference on Learning Representations, ICLR 2015

- Conference Track Proceedings, pages 1–15, 2015.

35. Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei

Xu. DBSCAN Revisited, Revisited. ACM Transactions on Database Systems,

42(3):1–21, 2017.

36. Ville Satopää, Jeannie Albrecht, David Irwin, and Barath Raghavan. Finding a

”kneedle” in a Haystack: Detecting Knee Points in System Behavior. Proceedings

90

- International Conference on Distributed Computing Systems, pages 166–171,

2011.

37. Andrew Rosenberg and Julia Hirschberg. V-Measure : A Conditional Entropy-

Based External Cluster Evaluation Measure. Proceedings of the 2007 Joint Con-

ference on Empirical Methods in Natural Language Processing and Computational

Natural Language Learning, (June):410–420, 2007.

91

Acronyms

AFIT Air Force Institute of Technology. 28

AWGN Additive White Gaussian Noise. 46

BPSK Binary Phase Shift Keying. 8

CNN Convolutional Neural Networks. 12

DBSCAN Density Based Spatial Clustering of applications with Noise. 23

GAN Generative Adversarial Networks. 37

HT High Throughput. 7

IEEE Institute of Electrical and Electronics Engineers. 7

LPF Low Pass Filter. 33

LSTM Long Short Term Memory. 29

LTF Long Training Field. 8

LVQ Learning Vector Quantization. 28

MAC Medium Access Control. 7

MDA Multiple Discriminant Analysis. 58

MDA/ML Multiple Discriminant Analysis / Maximum Likelihood. 28

MSE Mean Squared Error. 19

92

OFDM Orthogonal Frequency Division Multiplexing. 8

PCA Principal Component Analysis. 54, 58

PHY Physical Layer. iv, 2

PLCP Physical Layer Convergence Protocol. 8

PPDU PHY Protocol Data Unit. 7

QAM Quadrature Amplitude Modulation. 8

QPSK Quadrature Phase Shift Keying. 8

ReLU Rectified Linear Unit. 40

RF Radio Frequency. iv

RF-DNA Radio Frequency Distinct Native Attribute. 28

RndF Random Forrest. 28

RNN Recurrent Nerual Networks. 29

ROI Region of Interest. 32

RTSA Real Time Spectrum Analyser. 32

SEI Specific Emitter Identification. 2

SNR Signal to Noise Ratios. 5

STF Short Training Field. 8

V-measure. iv, 51, 57

WLAN Wireless Local Area Network. 1

93

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

25–03–2021 Master’s Thesis Sept 2019 — Mar 2021

Unsupervised Clustering of RF-Fingerprinting Features Derived from
Deep Learning Based Recognition Models

Potts, Christian T, Capt

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-21-M-074

Intentionally Left Blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

RF-Fingerprinting is focus of machine learning research which aims to characterize wireless communication devices based
on their physical hardware characteristics. It is a promising avenue for improving wireless communication security in the
PHY layer. The bulk of research presented to date in this field is focused on the development of features and classifiers
using both traditional supervised machine learning models as well as deep learning. This research aims to expand on
existing RF-Fingerprinting work by approaching the problem through the lens of an unsupervised clustering problem. To
that end this research proposes a deep learning model and training methodology to extract features from IEEE 802.11a/g
preamble waveforms to enhance performance with various clustering algorithms. The model architecture presented takes
the form of convolutional autoencoder with an objective function that combines both autoencoder reconstruction loss as
well as triplet loss to learn feature encodings. These features were then clustered using the K-means, DBSCAN, and
Mean Shift clustering algorithms.

RF-Fingerprinting, Machine Learning, Deep Learning, Neural Networks, Wireless Communications

U U U UU 104

LtCol James W. Dean, ENG

(937) 255-3636; James.Dean@afit.edu

	Unsupervised Clustering of RF-Fingerprinting Features Derived from Deep Learning Based Recognition Models
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Motivation
	Approach

	Background and Literature Review
	WiFi protocol
	Deep Learning
	Dense Layers
	Convolutional Neural Networks
	Max Pooling
	Batch Normalization Layer
	Autoencoders
	Triplet Loss

	Clustering
	K-means Clustering
	DBSCAN
	Mean Shift Clustering

	RF-Fingerprinting

	Methodology
	Signal Collection Experimental Setup
	Signal Pre-processing
	Datasets
	Deep Learning Models
	Model Architecture
	Training Methodology

	Clustering Methods
	K-means Clustering
	DBSCAN Clustering
	Mean Shift Clustering
	Evaluation Metrics

	Experiments

	Results and Analysis
	Comparison to Conventional Dimensionality Reduction
	Model Hyper-parameter Evaluation
	Comparison of Clustering Algorithms
	Model Generalization to New Devices
	Summary

	Conclusions
	Research Summary
	Research Findings
	Effect of Model Hyper-parameters
	Comparison of Clustering Algorithms
	Performance on Unseen Devices

	Future Research

	K-Means, DBSCAN, and Mean Shift Clustering Results on Lab Test Set and Unseen Test Set
	SNR Estimates for all Test Sets
	Bibliography
	Acronyms

