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Abstract

The goal of Automated Aerial Refueling (AAR) is to control the tanker boom to

safely refuel a receiving aircraft with no input or aid from the boom operator. To

move the boom into the refueling receptacle, the position and orientation (pose) of

the receiver relative to the tanker must be known. In computer vision and robotics,

point set registration is a fundamental issue used to estimate the relative pose of

an object in an environment. In a rapidly changing scene, this method must be exe-

cuted frequently and in a timely fashion, or the pose becomes outdated. One problem

in AAR is the point registration method is currently a computational bottleneck of

the vision processing pipeline. In addition, the matching of each sensed point with

a closest truth point, nearest neighbor matching, is the most costly portion of the

point set registration process. For this reason, this research focuses on speeding

up a widely used point registration method, the Iterative Closest Point (ICP) algo-

rithm and related nearest neighbor algorithms. This research lays out novel nearest

neighbor matching algorithms based on the Delaunay Structure with a reduced cost

compared to conventional nearest neighbor matching algorithms. Additionally, the

ICP algorithm is transformed into a massively parallel algorithm and mapped onto a

vector processor to realize a speedup of approximately 2 orders of magnitude. Lastly,

this thesis presents algorithmic and runtime analysis with synthetic, virtual, and real

experiments.
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Accelerating Point Set Registration for Automated Aerial Refueling

I. Introduction

1.1 Problem Background

Automated Aerial Refueling (AAR) intends to supplement United States Air Force

(USAF) refueling missions by achieving the capability to control the boom and safely

refuel, independent of input from the boom operator. Using the tanker’s stereo-vision

cameras and a computer vision processing pipeline, the receiving aircraft’s relative

position and orientation (pose) can be estimated. From this information, the tanker’s

boom can be safely moved into the receiver’s refueling receptacle.

Biological systems provide the ability for humans to rapidly process imagery, de-

tect objects, and determine their pose relative to the scene. These biological systems

contribute to a human’s perception. This process happens quickly, enabling humans

to make responsive decisions in a rapidly changing environment. In contrast, with

respect to robotics, self-driving vehicles, and autonomous systems, these biological

systems must be replaced by hardware and software using computer vision. This pro-

cess utilizes image and vision processing algorithms to enable these inorganic systems

to sense their surroundings in dynamic environments.

One method employed in vision systems is to capture images of the environment

and generate sensed point clouds through feature detection and stereo block matching

[2] between pairs of images. These sensed points must then be processed to create a

semantic interpretation of an environment. Point set registration [3, 4] is a method

that can extrapolate information from these sensed points. Point set registration
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aligns point sets via a rigid transformation [5]. This rigid transformation gives relative

pose information. It enables the autonomous system to align these sensed points with

a known truth model. In this fashion, the autonomous system can estimate the sensed

object’s pose from the camera.

The human retina has a higher concentration of cells at the center of the retina

called the fovea [6]. Thus, humans have a higher resolution at center of their field

of view, as more detail provides more information for perception. This same concept

can be seen in computer vision systems. Higher resolution images provide a more

accurate representation of objects. However, this comes at the cost of an exponen-

tial computational growth based on pixel density. Thus, processing times increase

when the point set registration method saturates or uses all available hardware pro-

cessors. This issue inhibits the autonomous system from rapidly processing imagery

and quickly making decisions or actions on it. For this reason, either reducing the

number of sensed points or accelerating the point registration method is required to

achieve real-time object registration. However, reducing the number of sensed points

reduces the information gained from the imagery, leading to a less accurate percep-

tion of objects’ classification and pose. This concept illuminates the value and the

problem solved by a parallel point set registration method.

In the Iterative Closest Point (ICP) [1] registration method, nearest neighbor

matching is the first and most costly step. In order to accelerate ICP, the near-

est neighbor matching must also be accelerated. Nearest neighbor matching refers to

assigning the most similar points based on a criterion [7]. Practically, it’s assigning

a closest point for each point between the two point clouds. In addition to ICP, the

nearest neighbor algorithm is used in machine learning [8], robotics [9] and pattern

recognition [10]. For this reason and real-time capabilities, this research focuses on

accelerating the Euclidian distance pairwise point set registration method of ICP as a
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whole. Additionally, specifically in ICP, the nearest neighbor matching process is ac-

celerated by leveraging previous nearest neighbor matches. Lastly, these accelerations

can be applied in any application which utilizes the nearest neighbor algorithm.

1.2 Research Objectives

Currently in the Air Force Institute of Technology (AFIT) AAR computer vision

processing pipeline, the point set registration process is a bottleneck. This research

aims to accelerate the point set registration in the computer vision processing pipeline

to calculate the pose of the receiving aircraft in AAR. This research contributes the

following.

1. The point set registration method of the ICP algorithm is transformed from a

serial algorithm to a massively parallel algorithm that executes efficiently on a

vector processor such as a graphics processing unit (GPU).

2. The parallel and novel algorithms are analyzed and theoretical and real runtimes

are compared.

3. A novel algorithm for nearest neighbor matching is introduced based on the

Delaunay triangulation.

4. Additionally, this research implements and tests different combinations of near-

est neighbor matching algorithms in the ICP algorithm to realize a speedup of

approximately 2 orders of magnitude.

5. Registration of augmented, virtual, and real sensed points are compared for

robustness.

6. Lastly, the AAR aspects of the tanker and receiver trajectory are simulated in

a virtual 3D world and a real-world Vicon 3D motion capture system [11].
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1.3 Document Overview

Chapter II presents a literature review and background on ICP, accelerating point

set registration, and the aspects to the novel nearest neighbor algorithm. Chapter III

presents the methodology and includes: the definition of the accelerated ICP algo-

rithm, target parallel platforms, decomposition of the algorithm, optimizations, anal-

ysis of the algorithm, the Delaunay nearest neighbor algorithm, and experiments.

In Chapter IV, results are presented. Lastly, Chapter V concludes this research.

Portions of this thesis have been submitted as journal papers that are under review

[12, 13].
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II. Background and Literature Review

This chapter provides the background and related work for this thesis. Section

2.1 covers the Iterative Closest Point (ICP) algorithm and other point set registra-

tion methods. Section 2.2 discusses various accelerated point set registration methods.

Section 2.3 overviews Compute Unified Device Architecture (CUDA) and GPUs. Sec-

tion 2.4 outlines background on the nearest neighbor problem. Finally, Section 2.4.1

introduces the Delaunay trianglution.

2.1 Iterative Closest Point Algorithm

As originally discussed in [12], the ICP algorithm registers a sensed 3-D point

cloud onto a reference truth 3-D point cloud. In Automated Aerial Refueling (AAR)

and this research, ICP is used to transform a truth model onto a sensed point cloud

to recover a rotation and translation from the stereo-vision cameras on the tanker air-

craft. ICP can be used to align a plethora of shapes as long as they are approximated

as point sets. Besl [1] discusses the parameters to which the ICP algorithm can be

applied: “1) sets of points, 2) sets of line segments, 3) sets of parametric curves, 4)

sets of implicit curves, 5) sets of triangles, 6) sets of parametric surfaces, and 7) sets

of implicit surfaces.” Besl refers to the shape the ICP algorithm is trying to align as

P . In the real world, P inherently comes from a sensor like a high definition camera.

To align P , ICP must have prior knowledge of the known truth model. Besl refers to

this truth model as X. In this fashion, the ICP algorithm aligns P onto X.

The following list explains the ICP algorithm from Besl [1].

1. Assign nearest neighbor correspondences between P and X and assign the cor-

respondences to Y .
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2. Compute the registration or the rotation and translation that transforms P

onto X.

3. Apply the registration to P and calculate the error between P and X.

4. If the error is lower than a set threshold, the algorithm exits returning the

rotation and translation. Otherwise, the algorithm iterates again to find a more

accurate rotation and translation by minimizing this error.

Figure 1 shows these steps from Besl [1].

Several variants exist for each of these steps to improve accuracy and speed, par-

ticularly the second step. Where Besl utilized point-to-point correspondences, Chen

modifies the algorithm by generating point normals for the truth model and match-

ing the query point to the plane defined by the truth point and its normal vector,

typically cited as “point-to-plane” [14]. Since this method registers source points to

the area around the target point instead of the target point itself, the algorithm’s

sensitivity to noise can be reduced [15]. A downside of point-to-plane is the corre-

spondence calculation will cause each iteration to take longer than the point-to-point

approach; however, point-to-plane converges in fewer iterations, thus the timing for

each algorithm ends up being nearly equal [16]. Extending point-to-plane, general-

ized ICP describes a plane-to-plane method [17]. In plane-to-plane, normal vectors

are calculated on both target and source point clouds. This method can be shown to

be more robust; however, since surface normals need to be calculated, point-to-plane

is typically not utilized for real-time ICP applications.

Whereas the methods in [14, 17] focus on the accuracy of the second step of Besl’s

ICP, these components of the algorithm execute relatively quickly when compared to

the nearest neighbor step. As seen in Figure 2, a large portion of an ICP iteration’s

runtime is spent generating nearest neighbor correspondences. An approach to speed-

ing up the nearest neighbor phase of ICP is to cache the correspondences found in the
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Figure 1: Steps in each ICP iteration directly from Besl’s paper A Method for Regis-
tration of 3-D Shapes [1].

previous iteration. A cached kd tree, which executes in constant time, is presented in

[18], where a pointer to the node within the tree is utilized as the starting node of the

kd tree search after the first iteration. In [19], a similar approach is utilized where

the previous correspondence is utilized as an estimated neighbor, and the neighbor

calculation is expedited if this estimation matches certain geometric constraints.

The accelerated ICP algorithm described in this thesis is based on the “classic”

point-to-point ICP algorithm by Besl. A method which utilizes a point-to-point cor-

respondence is generally more accurate but can be time consuming because of the

nearest neighbor search task [20]. If the nearest neighbor search is accelerated, this

approach’s accuracy and timeliness makes it a viable candidate for real-time applica-

tions like AAR.

In contrast to the previous methods, the point-to-projection registration approach

eliminates the need for finding the closest point or correspondences but generally

gives a less accurate pose estimation [20]. From Park [20]: “...searching the closest

point in the ICP algorithm is a computationally expensive task.” Park explains how

this task is replaced by point-to-projection [20]: “...point-to-projection approach finds
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Nearest Neighbor 97.45%
73.89ms

Trans Estimation
1.22%
0.92ms

Trans Application1.34%
1.01ms

Total Time: 75.82ms

ICP with KD Tree NN Breakdown by Steps

Figure 2: This shows ICP broken down by steps when executing CPU KD Tree on
the Aircraft A model with 5k points. The nearest neighbor portion of ICP is taking
over 97% of the total runtime.
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the correspondence of a source control point by projecting the source point onto a

destination surface...”

Point-to-(tangent)-plane [21] is the most accurate approach but most computa-

tionally expensive [20]. In this approach, both the nearest neighbor correspondences

and the intersection surface needs to be found [20]. An approach of brute force [22],

kd tree [23][24][25], Delaunay traversal [26][13], or some other variation can be used

to execute nearest neighbor [27] correspondences. Presented in this thesis, the same

parallel mapping and optimizations strategies can be used as a guidelines regardless

the preferred ICP variation or nearest neighbor approach.

2.2 Accelerated Point Set Registration

2.2.1 Parallel ICP

Langis [28] implemented a parallel ICP algorithm in a parent-child model [29]. The

parent process spawns child processes to compute nearest neighbor correspondences.

The children report these correspondences to the parent. The parent then calculates

the rotation and translation based on these correspondences and applies the rotation

and translation to P . From Langis on explaining the parallel iterations [28]: “Each

child concurrently computes the correspondences between points in If , and the points

of Ir. The resulting correspondences are then sent back to the parent process.” If

and Ir represent the sensed and truth model in this example. The parent process

becomes the bottleneck in this model with potentially many children attempting to

report concurrently.

2.2.2 GPU Point-Cloud Registration

Rahman [30] implemented a fast graphics processing unit (GPU) point-cloud reg-

istration algorithm mapped into 4 blocks on the GPU. In this example, a block is
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a separate process mapped on a GPU. The first block finds the centers of mass of

the point clouds. The second block transforms the point clouds to the origin. The

third block executes the Singular Value Decomposition (SVD) [31] technique, a very

small computational process. The fourth block finds the rotation and translation.

In contrast to Rahman’s algorithm based on SVD to align two point clouds, the

implementation presented in this thesis utilizes Besl’s ICP algorithm.

2.2.3 Softassign EM-ICP

Tamaki [32] implemented an accelerated Softassign [33] Expectation-Maximization

(EM)-ICP [34] algorithm based in CUDA. The algorithm accelerations were predi-

cated on assigning estimated nearest neighbor correspondences. Based on these es-

timated correspondences, an estimated rotation and translation was calculated. In

contrast, the accelerated ICP algorithm in this thesis computes exact nearest neighbor

correspondence and thus gives a more accurate rotation and translation transforma-

tion.

2.3 CUDA and GPUs

GPUs were originally made for computer graphics processing to concurrently exe-

cute vertex and pixel pipelines. Thus, GPUs have many cores for processing. For this

reason, developers aimed to utilize these cores for not just graphics, but also general

purpose computing. Nvidia introduced CUDA for developers to do just that through

one application programming interface (API).

Nvidia released the first version of CUDA, 1.0, on 23 June 2007 [35]. CUDA

presents a single program multiple data (SPMD) [29] model to the GPU. CUDA is

specifically designed for Nvidia GPU architectures [35]. As of writing this thesis,

the current version of CUDA is 11.2. As Nvidia GPU architectures advanced, various
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features have been added to CUDA. The compute capability of an Nvidia architecture

correlates to the supported features of CUDA on said architecture [36].

Oden [37] goes over an interesting discussion of Python packages that utilize pre-

compiled and just-in-time compiled C-CUDA for GPU implementations. Numba-

CUDA [38] is a Python package that utilizes just-in-time compiled C-CUDA. In every

practical sense, the CUDA presented in this thesis is native C-CUDA. Oden explains

that using Python for GPU implementations is not a preferable avenue for perfor-

mance because the user is limited to these libraries. Oden covers metrics that show

C-CUDA libraries are faster than Numba-CUDA libraries. Oden shows C-CUDA

Python packages reaching 85% performance and Numba-CUDA Python packages

reaching 50% performance [37]. With this in mind, using the lowest level of native C-

CUDA programming language directly yields the best performance increases because

the most control is given to the user. For this reason, native C-CUDA will be used

in this research to implement an accelerated ICP algorithm.

In terms of utilizing a GPU to accelerate nearest neighbor searches, many methods

take advantage of the massive parallelism available. For example, [39] utilizes the

CUDA and CUBLAS libraries to do high dimensional feature matching. One method

utilizing the GPU loads the point data into texture memory and shader programs

calculate distances and determine nearest neighbor [40]. Another method runs two

brute force searches in parallel along lists where each element owns a subset of the

search space, proven to work O(√n) [41].

2.4 Nearest Neighbor

The search for the most similar matches between sets of vectors or points is nearest

neighbor matching [42]. Research into the nearest neighbor problem has spanned

numerous fields, including pattern recognition [10], machine learning [8], and robotics
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[9]. Some of these require an ordered list of similar data, while others only require

a closest point. Depending on the metric used for similarity, the closest point may

or may not be unique. Typically, some distance metric such as Euclidean distance,

Manhattan distance, or squared distance is utilized depending on the application. For

this research, Euclidian distance-based pairwise nearest neighbor matching is used in

ICP and assigns a closest point for each point between the two point clouds.

The generic method for determining nearest neighbors is commonly referred to

as brute force. With this method, the distance between the source point and every

other point in the target set is computed and the closest point is returned. If multiple

nearest neighbors are required, the algorithm can be modified such that the distance

from source to each target point is stored, then the target points are sorted based on

that distance. Assuming equal size point sets, the nearest neighbor algorithm results

in a time complexity of O(n) to match a single point and O(n2) to match all points.

In order to reduce the time complexity for a nearest neighbor search, applications

typically utilize a kd tree structure. A kd tree is a space partitioning k-dimensional

binary tree that organizes a data set into k dimensions [43]. A kd tree is built by

splitting the space into a hyperplane created at the median of the given dimension.

The points are split along this partition and are subsequently divided based on the

other dimensions. To query the kd tree for the nearest neighbor to a given point, the

algorithm begins at the root node and traverses down the tree choosing which child

node to visit based on which side of the hyperplane the query point exists [44]. After

reaching a leaf, the algorithm back-traces back through the tree checking the distance

to each hyperplane to determine if the adjacent space needs to be checked for a closer

point. Since a binary tree has log2(n) levels, the average query time is proportional

to O(log(n)) with a worst cast of having to search the entire tree being O(n).
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2.4.1 Delaunay Triangulation

As originally discussed in [13], Delaunay triangulation has shown promising as-

pects to accelerate nearest neighbor searches. In two-dimensions, a Delaunay tri-

angulation of a set of points is a set of triangles such that no points are located

within the circumcircles created by the vertices of each triangle. When extended to

three-dimensions, the triangles become tetrahedrons, and the circumcircles become

circum-spheres, and the condition of no points being located in each circum-sphere

holds. The concept can be extended to d-dimensions [45]; however, the work presented

in this thesis is limited to three-dimensions.

The creation of the Delaunay triangulation structure can be completed offline. Lee

[46] goes over a divide-and-conquer and an iterative algorithm to create the Delaunay

triangulation structure. In this thesis, the Open3D library [47] is used to create the

Delaunay Triangulation. Open3D uses the Qhull library [48] to compute the convex

hull of the model and then stores the triangulation as a series of tetrahedrons.

Delaunay triangulations allow for many applications including path planning [49,

50, 51] and surface reconstruction [52, 53, 54]. Here is an application uses Delaunay

triangulation to generate nearest neighbors within a data set with the goal of calcu-

lating strain [55]. Mulchrone removes the edges that form the convex hull and the

remaining edges connect the nearest neighbors. Similarly, in [56] Delaunay triangula-

tions are utilized to cluster points by removing undesired and redundant edges. These

examples show Delaunay triangulation can be used to efficiently assign a variety of

point correspondences.

While these methods identify neighbors within a data set, the Full Delaunay Hi-

erarchies (FDH) [57] algorithm utilizes a Delaunay traversal to determine the nearest

neighbor of a source point to a target dataset. The traversal in FDH only moves

from vertices of lower index to higher index, disallowing traversal in both directions.
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This detail increases the complexity of implementing the algorithm. Additionally, the

authors state their method cannot directly extend to greater than two dimensions.

Another method for searching a dataset for nearest neighbors is an octree con-

structed utilizing Voronoi cells. Since a Delaunay triangulation is the mathematical

dual of a Voronoi diagram [45], this structure [58] is intrinsically connected to a De-

launay triangulation. The octree described in [58] is built not on the individual points

of the dataset, but on the Voronoi cells computed from the original points. Voxels

of the tree contain at most Mmax intersecting Voronoi cells. These voxels are then

accessed through a hash table where each entry is indexed through its level in the

tree.

While some applications require an exact nearest neighbor, some only require

an approximate match. Typically, an approximate neighbor search returns a result

quicker than an exact search. A straightforward approach utilizing a kd tree is to

simply traverse to the leaf node corresponding to the query point [19]. Additionally,

this method lessens the space complexity for storing the data structure, as only the

leaf nodes and median values for each hyperplane axis needs to be stored. In [59], a

method is presented that can configure itself to the desired degree of accuracy required

for the application, allowing the user to balance between precision and speed. In

[60], the k-nearest approximate neighbors are calculated in constant time by utilizing

locally sensitive hashing to partition datasets into clusters.

14



Figure 3: This shows the point cloud of a bunny model and the corresponding De-
launay triangulation connections for a single point.
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III. Methodology

3.1 Preamble

This thesis aims to accelerate point set registration for Automated Aerial Refu-

eling (AAR). This is accomplished by accelerating the Iterative Closest Point (ICP)

algorithm. Additionally, a fast nearest neighbor search is implemented in ICP based

on the Delaunay triangulation.

Section 3.2 defines, decomposes, and maps the accelerated ICP algorithm. Section

3.5 analyzes the algorithm. Section 3.6 covers the Delaunay triangulation creation,

notation, and traversal. Section 3.7 presents the novel Delaunay walk variations.

Section 3.9 outlines experiments to compare a central processing unit (CPU) and

graphics processing unit (GPU) ICP implementation as well as various nearest neigh-

bor algorithms.

3.2 Definition of Algorithm

As originally discussed in [12], the goal of this research is to accelerate the ICP

algorithm through parallelism to quickly align sensed points to a known reference

model via a rotation and translation that minimizes the absolute pairwise Euclidean

distance, or error, between these sets. Thus, the steps in Figure 1 are parallelized by

the accelerated ICP algorithm. Figure 4 shows the task dependency graph. Figure 5

shows the task interaction graph. This graph shows privatization [29, 61] will work as

an optimization strategy by replicating data and reducing data contention amongst

tasks.

The accelerated ICP algorithm must execute sequentially through adjacent tasks

in the solid red loop in Figure 4. This solid red loop represents the critical path of

the accelerated ICP algorithm. In this way, the critical path is the combination of
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the critical paths of each ordered task. Supertasks 2. Calculate Centers of Mass and

3. Calculate Σpx may be executed in parallel, but 3. Calculate Σpx is in the critical

path. Besides tasks with all-to-one reductions, the critical path within each task is

similar. In tasks with reductions, the critical path is log2(n), which is the number of

steps or levels in the reduction.

For the remainder of the thesis, the following symbols and rules are used. X is

the reference or truth model. P0 represents the original sensed points. Pk is the

kth iteration of the registration applied to P0. Y is the list of nearest neighbors

or correspondences of Pk and X. The sets: X, P0, Pk, and Y contain 3x1 column

vectors of 3-D points. Σpx is a cross-covariance matrix generated between P0 and Y .

Q is a 4x4 symmetric matrix from which the unit eigenvector corresponding to the

maximum eigenvalue represents the axis of rotation. Matrices are column-major and

indexed by a (row, column) subscript in the algorithms. Lastly, the optimal rotation

and translation are represented by R and ~t respectively.

In the sections and ideas that follow the accelerated ICP algorithm has been

implemented via Compute Unified Device Architecture (CUDA). Because the single

processing units in CUDA are threads, the term thread is used throughout this thesis.

However, thread and process [29] encapsulate the same idea of a single processing unit.

3.2.1 Target Parallel Platform

In the first set of experiments, the target parallel platform in this research is an

Nvidia Titan V GPU. This is compared against the target platform for the serial

implementation of ICP, which is a machine with an Intel Xeon CPU with 3.10 GHz

clock speed and 128 GB of RAM.

The Nvidia Titan V GPU has 5120 CUDA cores and delivers up to 110 teraflops

[62]. The Titan V has a core clock speed of 1200 MHz and a memory clock speed of
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Figure 4: Task dependency graph of accelerated ICP Steps from Figure 1 with critical
path in solid red.
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supertask 5 consolidated.
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850 MHz. The memory bandwidth is 652.8 GB/s and the L2 Cache Size is 4608K

[62]. The Titan V has an Nvidia Volta architecture with a compute capability of 7.0

[63]. The Volta boasts the NVLink, an interconnect between GPUs with a bandwidth

of 300GB/s [63]. However, this feature is only active when multiple GPUs are used

in an application.

In the second set of experiments, the CPU being used in these experiments is

the AMD Ryzen Threadripper 3970X 32-Core processor [64] at 3.9 GHz with 64 Gb

of RAM. The GPU is the Nvidia GeForce RTX 3080 [65]. Both of these pieces of

hardware are relatively top-of the-line per the time of writing this thesis.

The control structure used through CUDA is the single program multiple data

(SPMD) [36]. CUDA version 11.2 is used in this accelerated ICP algorithm imple-

mentation [36]. In this fashion, one program is compiled and executed on the GPU,

but each CUDA core has a specific control sequence mapped to it by the program.

CUDA cores in the same block can communicate via shared memory. CUDA cores in

different blocks communicate via global memory in distributed memory.

The accelerated ICP algorithm employs the data-parallel model [29]. The tasks

are decomposed and mapped in such a way to take advantage of data-parallelism at

the thread level inside CUDA kernels in the GPU. Each task takes advantage of block

distributions of the data into the thread blocks, increasing the locality of interaction

within the thread block and splitting the computation between threads. The CPU-

GPU CUDA setup can be thought of as a manager-worker setup. Here, the CPU

is the manager and the GPU is the worker. In this setup, multiple GPUs could be

added as workers. However, in this research, only one GPU is working.
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3.3 Algorithm Decomposition and Mapping

The data decomposition technique [29] is used throughout the accelerated ICP

algorithm. The nature of CUDA enables for a very fine-grain task decomposition. For

this reason, the granularity of the decomposition leverages any possible parallelism

in the algorithm amongst threads.

3.3.1 Decomposition

The following list contains the supertasks from the decomposition of the acceler-

ated ICP algorithm.

1. Find Correspondences

2. Calculate Centers of Mass

3. Calculate Σpx

4. Calculate Q

5. (5.1) Find Eigenvalues and Eigenvectors and (5.2) Calculate R and ~t

6. Apply R and ~t

7. Calculate Error

1. Find Correspondences This is the first supertask in the algorithm and

it finds the nearest neighbor matches between the sensed points and the reference

model. Algorithm 1 shows the pseudo code for each thread. Squared Euclidean

distance is used to eliminate the expensive computational need of a square root.

Each thread i takes in X and Pk and assigns Y [i] to the point in X closest to Pk[i].

In this manner, a thread is launched for each member in Pk. In the real world,

Pk can vary from a couple hundred points to thousands of points. The number of

21



points depends on sensor configuration and the accuracy needed. The accelerated

ICP implementation has been tested on point cloud sizes from 1k to 40k and usually

iterates about 30 times to achieve an error below 1× 10−6. Figure 6 shows the task

dependency graph for tasks inside 1. Find Correspondences. Because this is a one-

to-one mapping, this supertask has a degree of concurrency equal to the number of

sensed points.

Algorithm 1 Supertask: 1. Find Correspondences pseudo code.

1: function NearestNeighbor(Pk[i], X, Y [i])
2: dmin = max (float)
3: j = −1
4: counter = 0
5: for each x ∈ X do
6: if squaredDistance(x, Pk[i]) < dmin then
7: j = counter

8: dmin = squaredDistance(x, Pk[i])
9: end if
10: counter = counter + 1
11: end for
12: Y [i] = X[j]
13: end function

2. Calculate Centers of Mass This step maps to the beginning of Besl’s

“Compute the registration” [1]. This step computes the estimated rotation (R) and

translation (~t) between the sensed points and the reference model. The centers of mass

Find point
in 

closest to 

Each Thread 
 Executing Task  in Supertask 1. Find Correspondences

Figure 6: Task dependency graph of supertask 1. Find Correspondences outlined in
Algorithm 1.
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of Y and P0 are calculated in this supertask. Algorithm 2 shows the pseudo code for

this supertask. In this example, µY is the center of mass of Y . µP0 is the center of

mass of P0. This supertask consists of two all-to-one reductions. Figure 7 shows the

task dependency graph of a single reduction for tasks inside 2. Calculate Centers of

Mass. Because this is a binary tree reduction, this supertask has a maximum degree

of concurrency of half the number of sensed points. However, this supertask has an

average degree of concurrency of the number of threads active throughout the binary

tree reduction divided by the number of levels in the tree. Let n be the number of

sensed points. The average degree of concurrency is 2n−1
log2(n)+1

.

Algorithm 2 Supertask: 2. Calculate Centers of Mass of P0 and Y pseudo code.

1: function CenterOfMass(C, µ)

2: µ =
∑

C
|C|

3: end function
4: CenterOfMass(P0, µP0)
5: CenterOfMass(Y, µY)

3. Calculate Σpx In this supertask a Σpx, a 3x3 matrix, is generated from

the point correspondences. Algorithm 3 shows the pseudo code to calculate Σpx.

In this algorithm, I3 represents a 3x3 identity matrix. Figure 8 demonstrates the

first step of this supertask is a one-to-one map where each thread computes a dot

product. The degree of concurrency of the map is the number of sensed points. In

the final portion of this supertask, summing the dot products is an all-to-one binary

tree reduction. As stated previously, if n is the number of sensed points, the average

degree of concurrency for this supertask is 2n−1
log2(n)+1

.

4. Calculate Q This supertask generates Q, a 4x4 matrix, from which R

and ~t will eventually be calculated. Algorithm 4 shows the pseudo code for 4. Calcu-

late Q. The centers of mass and Σpx were calculated in the previous two supertasks.

23



Task 1

Tasks in Supertask 2. Calculate Center of Masses

Task 2 Task 3 Task 4

Task 5 Task 6

Task 7

Reduction

Figure 7: Task dependency graph of supertask 2. Calculate Centers of Mass 8 point
reduction example outlined in Algorithm 2.

Task intermediate[ ]

Each Thread  Executing Task  in
Supertask 3. Calculate 

Reduction of intermediate  arrays

Figure 8: Task dependency graph of each task in supertask 3. Calculate Σpx, a 1
to 1 map and then a reduction for each of the 9 values in the Σpx matrix used in
Algorithm 3.
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Algorithm 3 Supertask: 3. Calculate Σpx pseudo code.

1: function Dot Σpx(P0, Y , Σpx)
2: F = I3
3: for each x,y ∈ P0, Y do
4: B = x⊺ · y
5: F = F+B
6: end for
7: Σpx = F

|P0|

8: end function

Figure 9 shows the task dependency graph for the tasks within 4. Calculate Q. The

maximum degree of concurrency for this supertask is 16.

Algorithm 4 Supertask: 4. Calculate Q pseudo code.

1: function Calc Q(Σpx, µP0, µY, Q)
2: M = µP0 · µY

3: D = Σpx −M
4: E = D⊺

5: A = D− E
6: ∆ =

[

a2,3 a3,1 a1,2
]

7: traceD = tr(D)
8: S = D+ E
9: s1,1 = s1,1 − traceD
10: s2,2 = s2,2 − traceD
11: s3,3 = s3,3 − traceD

12: Q =









traceD ∆1 ∆2 ∆3

∆1 s1,1 s1,2 s1,3
∆2 s2,1 s2,2 s2,3
∆3 s3,1 s3,2 s3,3









13: end function

5. Find Eigenvalues and Eigenvectors and Calculate R and ~t In this

supertask, R and ~t are calculated based on the eigenvalues and eigenvectors of Q and

both point clouds’ centers of mass. Q was calculated in the previous supertask, and

the centers of mass were generated in supertask 2. Calculate Centers of Mass. After

finding the eigenvalues and eigenvectors of Q in supertask 5.1 Find Eigenvalues and

Eigenvectors, the eigenvector corresponding to the max eigenvalue is assigned to the
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Task 1
(Statement 2)

Task 2
(Statement 3)

Task 3
(Statement 4)

Task 4
(Statement 5)

Task 5
(Statement 6)

Task 7
(Statement 7)

Task 6
(Statement 8)

Task 9
(Statement 12)

Task 8
(Statements 9-

11)

Figure 9: Task dependency graph of supertask 4. Calculate Q with critical path in
solid red outlined in Algorithm 4.
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quaternion q̂. From this quaternion, supertask 5.2 Calculate R and ~t builds R and

~t. Figure 10 shows the supertask dependency graph for the tasks within 5. Find

Eigenvalues and Eigenvectors and Calculate R and ~t. Algorithm 5 shows the pseudo

code for this supertask. The maximum degree of concurrency for this supertask is

again 16.

Algorithm 5 Supertask: 5. Find Eigenvalues and Eigenvectors and Calculate R and
~t pseudo code.

1: function Calc RT(Q, µP0, µY, R, ~t)
2: W = eigenV alues(Q),V = eigenV ectors(Q)
3: j = 0
4: wmax = W [0]
5: jmax = 0
6: for each value ∈ W do
7: if value > wmax then
8: wmax = value

9: jmax = j

10: end if
11: j = j + 1
12: end for
13: q = V [jmax]
14: q̂ = normalize(q)
15: R = rotationFromQuaternion(q̂)
16: ~t = µY −R · µP0

17: end function

6. Apply R and ~t This supertask applies the estimated rotation and trans-

lation to the sensed points. Algorithm 6 shows the pseudo code for this supertask. Pk

is assigned with the points from P0 with R and ~t applied. Figure 11 shows the task

dependency graph for the tasks within 6. Apply R and ~t. Because this is a one-to-one

mapping, the degree of concurrency for this supertask is the number of sensed points.

7. Calculate Error This is the final supertask that calculates the error

between Pk and X. Algorithm 7 shows the pseudo code for this supertask. Figure
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Task 1
(Statement 2)

Task 2
(Satements 3-14)

Task 3
Create 

Task 4
Create 

Task 11
Create ........

Task 12
Create 

Task 13
Create 

Task 14
Create 

(Statement 15)

(Statement 16)

Figure 10: Task dependency graph of supertask 5. Find Eigenvalues and Eigenvectors
and Calculate R and ~t outlined in Algorithm 5.

Algorithm 6 Supertask: 6. Apply R and ~t pseudo code.

1: function Apply RT(P0, R, ~t, Pk)
2: for each p0,pk ∈ P0, Pk do
3: pk = R · p0 + ~t

4: end for
5: end function

Task 

Each Thread  Executing Task  in
Supertask 6. Apply  and 

Figure 11: Task dependency graph of 6. Apply R and ~t outlined in Algorithm 6.
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12 shows the task dependency graph for the tasks within 7. Calculate Error. The

one-to-one mapping part of this supertask has a degree of concurrency of the number

of sensed points. The average degree of concurrency of the binary tree reduction is

again 2n−1
log2(n)+1

with n as the number of sensed points.

Algorithm 7 Supertask: 7. Calculate Error pseudo code.

1: function Calc Error(Pk, Y , errorrms)
2: errorrms = 0
3: for each pk,y ∈ Pk, Y do
4: errorrms = errorrms + |(pk − y)|2
5: end for
6: errorrms =

errorrms

|Pk|

7: end function

The ICP algorithm then iterates through this process until error drops lower than

a set threshold. The user can set the error threshold to a desired value. The larger

the error threshold, the faster the algorithm converges with a less accurate estimated

pose. The smaller the error threshold, the longer the algorithm will take to converge,

but will typically yield a more accurate pose.

Task intermediate[ ]

Each Thread  Executing Task  in
Supertask 7. Calculate Error

Reduction of intermediate error array

Figure 12: Task dependency graph of 7. Calculate Error outlined in Algorithm 7.
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3.3.2 Mapping

Each supertask is statically mapped with respect to mapping the ICP algorithm

onto the GPU with CUDA. The ICP algorithm is inherently decomposed to reduce

thread interaction and idleness inside supertasks.

1. Find Correspondences This supertask is statically mapped to a kernel

[66] launching with n threads. Again, n is the number of sensed points. Each thread

is completing a part of this task. Algorithm 1 and Figure 6 shows how each thread

i calculates the associated nearest neighbor of Pk[i] to X. A mapping based on a

data partitioning works best for 1. Find Correspondences. Because each thread reads

X, X is partitioned in a block distribution to take advantage of shared memory and

the locality of interaction. This mapping reduces the amount of time each thread

spends reading X. Loading X into shared memory requires each thread to interact

and synchronize after loading X from global to shared memory. This process reduces

the contention on global memory banks and minimizes the size of global data ex-

change. Lastly, this organization completely eliminates interaction between threads

and idleness within threads.

2. Calculate Centers of Mass This supertask is statically mapped to

reduction kernel, launching with n
2
threads. This calculates a single centers of mass.

This kernel is executed twice and the instances can be run in parallel to calculate the

centers of mass of P0 and Y . However, the center of mass of P0 only needs to be run

the first (k = 0th) iteration of the accelerated ICP algorithm. In this kernel, threads

in each block reduce the data associated with that thread block to a block sum. Then,

each block sum is summed and the final sum is divided by the number of elements of

the array. This must take advantage of a block distribution and utilization of shared

memory.
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3. Calculate Σpx This supertask is first statically mapped to a kernel,

launched with n threads. Each thread calculates each dot product of the Pk and Y

pair. This is then stored in 9 intermediate arrays. These intermediate arrays are

summed in reduction kernels launched with n
2
threads, which can be run in parallel.

These are then averaged into Σpx. This mapping substantially reduces interaction

and idleness between threads in the supertask.

4. Calculate Q This supertask is statically mapped to a kernel which

spawns 16 warps of 32 threads. To differentiate execution of statements, the SPMD

is written in multiple branch statements. However, this introduces the problem of

branch divergence amongst threads in the same warp [67]. To fix this problem,

each statement that can be executed in parallel is assigned to a warp that executes

independently with an independent instruction scheduler. Additionally, threads use

shared memory to interact. In Algorithm 4 and Figure 9, statements 2 and 3 can be

mapped to warp 1. Once those finish and synchronize, warp 1 can execute statements

4 and 5. Concurrently, warp 2 can execute statement 7. After both those end and

synchronize, statement 6 can execute on warp 1 and statement 8 on warp 2. After

those finish and synchronize, warp 1 can execute statements 9-11. Finally after those

finish and synchronize, all 16 warps can execute statement 12. This supertask does not

map very well but using shared memory for interaction reduces the communication

overhead. Unavoidably, because a single warp contains 32 threads, each warp may

have idle threads throughout the supertask.

5. Find Eigenvalues and Eigenvectors and Calculate R and ~t The

eigenvalues and eigenvectors portion is statically mapped to a cuSolver [36] kernel

launched with Q. After this, the rest of the supertask is statically mapped to a single

kernel with 9 warps of 32 threads each. The quaternion, q̂, is calculated by warps 0-3
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and placed into shared memory. After synchronization, warps 0-8 assign R. Then

after synchronization, warps 0-2 assign ~t. This supertask also does not map well

because some threads in the warps are idle. However, shared memory interaction is

used for working threads.

6. Apply R and ~t This supertask is statically mapped to a kernel, launching

with n threads. A mapping based on data partitioning works best for this supertask.

Each thread i inside the kernel calculates its own Pk[i] based on itsR, ~t, and P0[i]. Be-

sides memory bank contention, this mapping prohibits thread interaction and thread

idleness.

7. Calculate Error The supertask is statically mapped to a kernel, launch-

ing with n threads. A mapping based on a data partitioning works best for this

supertask. Additionally, a block distribution works for shared memory interactions

between threads during the reduction phase of this supertask. Each thread i inside

the kernel calculates an intermediate error based on Pk[i] and X[i]. These interme-

diate errors are placed into shared memory and then summed in a reduction kernel.

This mapping reduces interaction and idleness in threads.

3.3.2.1 Supertask Breakdowns

All tasks in a single ICP iteration are static in nature. It is known which tasks

must be executed to complete each iteration. What is not known, however, is how

many iterations must be executed to converge to the error threshold. Because error

is not computed until the end of an iteration, the number of iterations executed in

the ICP algorithm is dynamic in nature. The iterative part of the algorithm leads

to dynamic task generation. The ICP algorithm has non-uniform tasks. 1. Find

Correspondences takes the most amount of time to complete and usually takes up
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over 90% of the computational time [13].

A discussion follows about each task required in each supertask, because each

supertask executes in sequence. In the ICP algorithm, supertask interactions are

irregular[29], static[29], and one-way[29]. However, each supertask has threads that

exhibit inter-task interactions that are regular[29].

1. Find Correspondences This supertask is split perfectly between each

thread. Each thread is doing the same amount of work to find the nearest neighbor

associated with their thread index. Because of this partitioning, this supertask is

split into uniform tasks between the threads. This supertask does have a large data

size associated with it. Each thread needs to access X, single member of Pk, and a

write in Y .

In this supertask, the interaction is static and Pk and X are read-only. Y is read-

write. Because threads do not interact besides memory bank conflicts, interactions

are regular.

2. Calculate Centers of Mass This supertask is split into a multitude

of non-uniform tasks. In the first part, the task of calculating both centers of mass

could be mapped uniformly amongst threads. However, inside calculating each center

of mass, the distribution of work is non-uniform amongst threads because it is an all-

to-one reduction. The all-to-one reduction is mapped such that at the end of the

reduction a single thread is reporting the sum and all the other threads are idle. The

data size associated with this supertask is also large as it includes Pk and Y .

In this supertask, Pk and Y are read-only. The centers of mass’ intermediate

arrays reduction is read-write. Because this supertask includes all-to-one reductions,

it inherently has threads interacting.
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3. Calculate Σpx In this supertask, the dot product is mapped to threads

uniformly in a kernel, and the reduction can be mapped to threads non-uniformly.

The data size associated with this supertask is also large as it includes P0 and Y .

In this supertask, the interaction is static and P0 and Y are read-only. The

intermediate arrays are read-write. The reduction aspect of this supertask inherently

has threads interacting.

4. Calculate Q This supertask can be mapped non-uniformly to threads in

a kernel. There are many mini-tasks happening in this supertask that each require

different amounts of time. The data size for this supertask is small as it only takes

in Σpx and the centers of mass and only outputs Q, a 4x4 matrix.

In this supertask, the interaction is static andΣpx and the centers of mass are read-

only. Q matrix is read-write. Interactions between threads are regular, but require

finesse to mask with helpful computations. Interactions between threads should be

timed so synchronization does not come at a high price.

5. Find Eigenvalues and Eigenvectors and Calculate R and ~t This

supertask is a smaller task in the accelerated ICP algorithm. Its data size is small as

it only takes in a 4x4 matrix and outputs a 3x3 matrix R and a 3x1 vector ~t.

In this supertask, the interaction is static andQ read-only. R and ~t are read-write.

Interactions between threads are regular, but require finesse to mask. Interactions

between threads should be timed so synchronization does not come at a high price.

6. Apply R and ~t This supertask is mapped uniformly to threads in a

kernel. Each thread i applies R and ~t to P0[i] and assigns it to PK [i]. The data size

for this supertask is small as each thread only takes in a 3x3 matrix and a 3x1 vector

and outputs to a single member in Pk.
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In this supertask, the interaction is static and P0, R, and ~t are read-only. PK is

read-write. Because threads do not interact besides memory bank conflicts, interac-

tions are regular.

7. Calculate Error This supertask is mapped non-uniformly to threads in

a kernel as the last part of finding error is an all-to-one reduction. The data size for

this supertask is large as it takes in both Pk and X but only outputs a single value.

In this supertask, the interaction is static and Pk and X are read-only. The

reported error is read-write. Interactions between threads are again regular. The

reduction aspect of this supertask has the highest thread interaction.

3.3.2.2 Processing Models

The way the accelerated ICP algorithm is decomposed into tasks is very similar

to the pipeline model [29]. However, this pipeline is not being preemptively filled

until the error is found. For this reason, the accelerated ICP algorithm employs

the manager-worker model [29]. Where the CPU is the manager and the GPU is

the worker. After each iteration the CPU receives the error from the GPU and

dynamically decides whether to run another iteration. Additional worker GPUs can

be added to the model. Because the Nvidia Titan V GPU has 5120 CUDA cores,

each CUDA core can be considered a worker. Like stated previously, in this research,

only one GPU is considered. However, each step within the ICP algorithm exhibits

its own model.

Supertasks 1. Find Correspondences and 6. Apply R and ~t exhibit the data-

parallel model [29]. Figure 6 shows how each thread i is performing the same set of

code to calculate the nearest neighbor of X for their respective Pk[i]. Figure 11 shows

this same idea.

Supertask 2. Calculate Centers of Mass exhibits a task graph model [29] and a
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data-parallel model. Threads run in parallel based on data, but are also dependent

on the reduction process between threads in shared memory space.

A task graph model describes supertasks: 3. Calculate Σpx, 4. Calculate Q, 5.1

Find Eigenvalues and Eigenvectors, and 5.2 Calculate R and ~t. These supertasks

have many dependencies between threads. However, these supertasks allow for some

data-level parallelism between threads.

Supertask 7. Calculate Error exhibits the data-parallel model. Each thread i

within the kernel is performing the code on its own P0[i]. This supertask also exhibits

a data-parallel model where each thread calculates the error associated with each

point between X and Pk. However, the reduction part of this task is more of a task

graph model where a multitude of threads are reducing down to a single thread at

the end.

3.4 Optimization

3.4.1 Find Correspondences

The nearest neighbor kernel completing the supertask of 1. Find Correspondences

utilizes the privatization optimization. All threads inside each thread block need

to read the same global memory many times. To avoid this, this global memory

is replicated amongst all thread blocks through privatization. From Stratton [61]:

“Privatization is the transformation of taking some data that was once common or

shared among parallel tasks and duplicating it such that different parallel tasks have a

private copy on which to operate.” In this manner, global memory reads are reduced

and transformed into shared memory reads. The timing hit from a shared memory

access is less than a global memory access. This optimization reduces the runtime of

the nearest neighbor kernel in the accelerated ICP algorithm implementation.
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3.4.2 Reduction

The all-to-one reduction [29] kernel that uses a binary tree-type reduction is used

12 times throughout the accelerated ICP algorithm. For this reason, optimization of

this kernel is of the utmost importance. The implementation of the reduction kernel

is based on Ritcher’s reduction kernel optimizations ideas [68].

First, each thread in the reduction kernel reads 2 elements from global memory,

adds them together, and assigns them to shared memory in the thread block. Thread

blocks then perform the remaining reduction in shared memory. This method reduces

future memory access times in the reduction process. Threads out of bounds of the

array assign a zero into shared memory. Additionally shared memory bank conflicts

are reduced through special indexing. From Ritcher [68]: “Zero padding reduces

thread divergence by allowing all the threads to participate in calculations. Shared

memory indexing was implemented in a way to reduce shared memory bank conflicts

and also reducing thread divergence.” The final 32 threads of the reduction can

reduce without memory bank conflicts by taking advantage of warp properties on

the GPU. Ritcher [68] also explains unrolling any additional loops left over in the

reduction to achieve maximum performance. This reduces the instruction count of

the kernel by removing the loop check and loop iterator. Ritcher’s ideas exemplify

many CUDA optimization techniques that have been applied to the reduction kernel

and other kernels in accelerated ICP algorithm.

3.5 Algorithm Analysis

3.5.1 Thread Communication

All-to-one reductions frequently appear in the design of this accelerated ICP. Re-

ductions occur inside supertasks 2. Calculate Centers of Mass, 3. Calculate Σpx, and
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7. Calculate Error. With respect to the GPU, because these communication patterns

are implemented with threads communicating with each other, utilizing shared thread

block memory presents opportunities for optimization. However, reduction is a chal-

lenging communication pattern with the bottleneck of a single thread reporting the

result at the end of each supertask.

For this research, the assumption is made that every multiprocessor on the Titan

V is involved in the all-to-one reduction. This research exploits several aspects of

GPU architecture in the implementation of all-to-one reductions, including utilizing

shared-memory amongst thread blocks, taking advantage of thread behavior within

warps, and optimizing cache hits. From Grama, the cost for the all-to-one reduction

is T (p) = (ts+ twm) log(p). T represents the time to run an all-to-one reduction with

ts as the startup time or overhead, tw as the transfer time or bandwidth, m as the

size of the message, and p as the number of processors or elements in the reduction

[29]. This can be mapped to the Nvidia Titan V GPU. Again, the Nvidia Titan V

has 5120 CUDA Cores and a memory bandwidth of 652.8 GB/s [62]. These can be

substituted for a more accurate cost:

T (5120) = (ts+
1

652.8GB/s
m) log(5120). To get a precisely accurate ts, a profiling would

need to be conducted. For this analysis, it is assumed that ts is greater than GPU

clock rate of 1200 MHz. This gives us our final equation of:

T (5120) = ( 1
1200MHz

+ 1
652.8GB/s

m) log(5120) for a lower bound execution runtime.

3.5.2 Interaction Overheads

In the supertask of 1. Find Correspondences, an interaction overhead is the con-

tention for X. Each thread may need all members of X. To reduce this overhead,

each thread block can initially load a copy of X into shared memory. Then threads

can pull from shared memory inside the thread block throughout the rest of the ker-
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nel. This approach reduces the global reads of each X member to only the number

of blocks. This method is also called privatization or the replication of data to take

advantage of a “private copy” [61] amongst threads.

In the supertask of 2. Calculate Centers of Mass, interaction overheads are the

synchronization of threads during the reduction process as well as contention for the

input array. The contention is reduced again replicating the input array into shared

memory inside the thread blocks and also using memory accesses with striding. The

synchronization overhead between threads can be reduced by taking advantage of

warp synchronization amongst threads in the same warp.

In the supertask of 4. Calculate Q, interaction overheads are waiting for data-

exchange and contention for data. The contention is reduced by loading thread data

to shared memory. The data-exchange is masked with useful computations.

In the supertask of 5. Find Eigenvalues and Eigenvectors and Calculate R and

~t, interaction overheads are data contention and waiting for data-exchange. For in-

stance, many threads need the max eigenvalue. Because of this, each thread calculates

the max eigenvalue. This method replaces interactions with computations. Addition-

ally, shared memory is used for the quaternion, eigenvalues, eigenvectors, and centers

of mass. This technique reduces data contention in global memory banks.

For supertask 6. Apply R and ~t, an interaction overhead is the contention for P0,

R, and ~t. P0, R, and ~t are replicated amongst each thread block to reduce global

memory bank contention.

In the supertask of 7. Calculate Error, an interaction overhead is the contention

for Pk and X during the reduction phase. This can be mitigated by reducing in shared

memory and also using striding in memory accesses.
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3.5.3 Isoefficiency Function

When building the isoefficiency function, it is assumed that m ≥ p and n ≥ p.

Here m is the number of truth points, n is the number of sensed points, and p is

the number of processors. Because the accelerated ICP implementation and a serial

ICP implementation run the same number of iterations, only a single ICP iteration

is considered for the runtime for simplification purposes.

The parallel runtime of supertask 1. Find Correspondences is

nlog2(m)

p
(1)

The parallel runtime of the supertask 2. Calculate Centers of Mass is

2n

p
log2(n) (2)

The parallel runtime of supertask 3. Calculate Σpx is

n
p
+ 9n

p
log2(n). Assuming p is significantly greater than 16, the parallel runtime of

the portion containing the supertasks 4. Calculate Q and 5. Find Eigenvalues and

Eigenvectors and Calculate R and ~t is a constant C because the maximum degree of

concurrency is 16. However, for the serial implementation, this needs to be a runtime

of 16C. The supertask of 6. Apply R and ~t has a parallel runtime of n
p
. Lastly, the

supertask 7. Calculate Error has a parallel runtime of n
p
log2(n).

This leads to a parallel runtime of:

nlog2(m)
p

+ 2n
p
+ 12nlog2(n)

p
+C which also leads to a serial runtime of: nlog2(m) + 2n+

12nlog2(n) + 16C. However, an ideal serial algorithm does a single reduction in n.

This makes our serial runtime now:

nlog2(m) + 2n+ 12n+ 16C or nlog2(m) + 14n+ 16C.

For the following analysis, it is assumed the runtime C adds is negligible compared
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to nlog2(m), n, and log2(n) weighted terms. From Grama [29], the expected speedup

by analysis is the serial runtime divided by the parallel runtime. With C = 0, this

gives a speedup of:

p(nlog2(m) + 14n)

nlog2(m) + 2n+ 12nlog2(n)
(3)

Using Grama’s isoefficiency equation of speedup
p

[29], this gives an isoefficiency function

of (nlog2(m)+14n)
nlog2(m)+2n+12nlog2(n)

. Assuming like-weighted terms scale about the same with

increased point sizes, there is an extra nlog2(n) term in the denominator. This term is

a remnant of the serial reduction being more efficient than the parallel in a reduction.

3.5.4 Scalability

From the speedup function previously stated in Eq. (3), an increased number of

sensed and truth points allows for more processors to be used. Consequently, larger

point clouds generally achieve a larger speedup. Additionally, increasing the number

of processors past the number of sensed points produces diminishing performance

results. The reason for this effect is the maximum degree of concurrency mapped

is equal to the number of sensed points, as found in many supertasks like 1. Find

Correspondences.

The accelerated ICP algorithm scales well with the number of processors as long as

processors is less than the number of sensed and truth points. The number of sensed

points has the most effect on the runtime and speedup of the algorithm. Increasing

both the number of processors and the number of points achieves a justified speedup.

For instance, a setup with 5k processors and 30k truth and sensed points is expected

to achieve a speedup of 739.02x.
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3.6 Delaunay Traversal

Now, the novel Delaunay nearest neighbor algorithms will be presented. These

Delaunay algorithms and variations are implemented and used in the accelerated ICP

algorithm in 1. Find Correspondences.

3.6.1 Delaunay Creation

As originally discussed in [13], When registering an object with a known model,

the Delaunay triangulation of points is pre-calculated offline. This step is done uti-

lizing the Open3D library [47] discussed in subsection 2.4.1. In order to prepare the

Delaunay graph for the nearest neighbor traversal, the edges of each tetrahedron are

extracted and grouped according to the starting point. Thus, each edge is represented

twice. Although this factor increases required memory space, the graph becomes bi-

directional allowing for an arbitrary start-point.

3.6.2 Notation

As stated previously, given a point set X = {x1, ...,xn} of n points of m dimen-

sions, the nearest neighbor of a point p ∈ P is

NN (p, X) = argminx∈X |p− xi|2. (4)

Because multiple points withinX may be equidistant to p, the result of the nearest

neighbor function might not be unique.

A Delaunay triangulation of a point set is a graph G = (1..k, E) consisting of edges

from each point xi to the Delaunay neighbors xj 6=i. To find the nearest neighbor of

a source point within the target point set utilizing the Delaunay triangulation, the

algorithm can start with an arbitrary start point, x0.
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To store the full Delaunay triangulation, for each point xi in the data set there is

a corresponding list of values:

~ei,j =
xj − xi

|xj − xi|
(5)

mi,j =
1

2
|xj − xi| (6)

coref = j (7)

In equation 5, is the Delaunay edge from point xi to one of its Delaunay neighbors

xj which has been normalized to a unit vector. Equation 6 gives mi,j as half the

distance, or the midpoint, between xi and xj. The final item in equation 7 is the

reference index of where point xj is stored in the data set.

3.6.3 Traversal

To find the nearest neighbor of a source point p within point set X utilizing the

Delaunay graph, a series of traversals, or walks are taken from a point x0 to point x,

where x satisfies equation 4. The first step in the algorithm is calculating

~u = p− xi (8)

where ~u is the vector from xi to p. Next, the dot product

c = ~u · ~ei,j (9)

between ~u and ~ei,j is determined. Since ~ei,j is a unit vector, this dot product is

the scalar component of ~u in the direction of ~ei,j. The dot product c can then be

compared to the midpoint mi,j from equation 6. If the dot product is greater than

mi,j, p is closer to xj than xi. Since the algorithm is seeking the point closest to

p, the point xj corresponding to the largest c is the next node in the graph to visit.
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Thus, xi is replaced by point xj, and the algorithm continues. However, if no c is

greater than mi,j, the algorithm stops and returns the current point xi as the nearest

neighbor. The pseudocode for the Delaunay traversal is shown in algorithm 8.

Algorithm 8 Delaunay Traversal Pseudocode

Require: X := Model Point Cloud
Require: p := Source Point
Require: si := Index to begin search
Require: dedges := List of Delaunay edges
Require: dmid := List of edge midpoints
1: function DelaunayTraversal(X, p, si, dedges, dmid)
2: prevmax ← si
3: currmax ← si
4: repeat
5: ~u← p− xi

6: foundNN ← TRUE

7: cmax ← 0.0
8: for each ~e,m ∈ dedges[prevmax], dmid[prevmax] do
9: c← DotProduct(~u,~e)
10: if c > m then
11: foundNN ← FALSE

12: if c > cmax then
13: cmax ← c

14: currmax ← ~e.index()
15: end if
16: end if
17: end for
18: prevmax ← currmax

19: until foundNN == TRUE||prevmax == currmax

20: return X[prevmax]
21: end function

3.6.4 Space and Time Complexity

For each vertex in a Delaunay graph, there are on average
√
n edges [69]. Thus,

the space complexity for the Delaunay triangulation of a dataset is on the order of

O(n√n). In terms of time complexity to find the nearest neighbor of point p utilizing

the Delaunay traversal algorithm, since each vertex connects to on average
√
n other
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vertices, and all but one of those are rejected at each step of the traversal, by the time

√
n vertices have been visited,

√
n(
√
n − 1) = n − √n vertices have been rejected,

meaning the entire dataset has been visited. Thus, in the worst case, the algorithm

will need to visit
√
n vertices. However, because with each step of the traversal, the

algorithm advances toward the neighbor and away from farther vertices, this case will

rarely occur. In fact, there are heuristics, presented in section 3.7 that can greatly

reduce the number of traversals required.

3.7 Delaunay Walk Variations

In this subsection, a plethora of Delaunay Walk variations and implementations

are explored. The difference in these variations is the starting node or point to begin

the Delaunay walk. In this thesis, the closest nearest neighbor is found, which intends

k = 1 in kNN. However, the same Delaunay Walk variations presented can be used

in applications with expanded k.

3.7.1 Zero Delaunay Walk

In the Zero Delaunay Walk variation, the walk is started from a the same node

each iteration. This starts the walk immediately and removes a search for a best start

node. The static starting node can be either the node closest to the center of mass,

the most traveled node, or an arbitrary node.

3.7.2 KD Approximate Delaunay Walk

In the KD Approximate (KD-ANN) Delaunay Walk variation, the walk is started

from the KD-ANN nearest neighbor node [70]. This node is found by conducting a

depth first search of the KD Tree without back tracing. This approximate nearest

neighbor returned is usually a very close neighbor, but in many cases it can return the
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exact nearest neighbor. By starting the walk from a very close neighbor, the number

of nodes in the walk are decreased substantially. Since this algorithm monotonically

converges, a close starting point can significantly shorten the Delaunay Walk.

3.7.3 Previous Nearest Neighbor Delaunay Walk

In the Previous Nearest Neighbor (PNN) Delaunay Walk variation, the walk is

started from the previous ICP iteration’s nearest neighbor. The transformation of the

fitted point cloud happens slowly over many iterations. In this manner, the previous

nearest neighbor is extremely close to the current nearest neighbor. Because the

previous nearest neighbor was already calculated, it does not add any computational

complexity to the algorithm. Instead, it leverages the previous ICP iteration’s work

to make the current iteration more efficient.

3.7.4 PNN Optimized Delaunay Walk

In the PNN Optimized Delaunay Walk variation, the KD-ANN Delaunay Walk is

used the first iteration and PNN Delaunay Walk is used in succeeding iterations. By

combining aspects of these variations, this walk variation is the most efficient and has

the highest performance.

3.8 ICP Filter

A GPU ICP filter was designed to aid with accuracy and filter out outlier sensed

points. While finding the root mean square (RMS) error in ICP, it also finds the

standard deviation of the error. It then is able to filter out outlier sensed points from

the ICP solution based on the point’s error and the number of standard deviations

away from the average error. The user is able to set which iteration the filter starts

and how many standard deviations to filter. Once this filter is turned on, it decides
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which sensed points to use every iteration in ICP. It is possible for a point to be

filtered out in an early iteration and rejoin the solution, if its error decreases bellow

the filter threshold.

3.9 Experimental Design

In this first set of experiments, it shows this research against the current state

of AAR. A CPU ICP implementation is tested against the accelerated ICP GPU

implementation. Each implementation is tested for a plethora of number of different

truth point and sensed point sets. However, the sets are identical for the tests between

the CPU and GPU implementation respectively.

The object being sensed is the Aircraft A model. Figure 13 shows this object.

The data sets used are different fidelities of this object ranging from 5053 to 40424

truth points. Figure 14 shows a 5053 point truth model example of the Aircraft A

model. The specific fidelity used is closest to the number of sensed points. However,

it also ensured the number of truth points are greater than or equal to the number

of sensed points. The sensed points are generated by the OpenCV C++ library [71]

from images of two calibrated virtual stereo cameras through stereo block matching.

Figure 15 shows the left and right images of the stereo cameras. Figure 16 shows

accelerated ICP running on the yellow sensed points generated from stereo block

matching on these images.

Nvidia’s profiling tool nvprof [72] is used to measure kernel timings on the GPU.

Additionally, the C++ timing library of std::chrono [73] is used to time each imple-

mentation’s overall elapsed real-time, also known as wall-clock time. This wall-clock

time is reported as an average of all the runs for the particular point sets. Each

ICP implementation runs continuously for 100 times until convergence with an error

threshold of 1E − 6. It is noted, the implementations have identical output but dif-
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Figure 13: Virtual Aircraft A sensed object

Figure 14: Virtual Aircraft A red 5053 point truth model based on sensed object

Figure 15: Left and right virtual stereo cameras images showing sensed object
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Figure 16: ICP running on yellow sensed points and red truth model points

fer in speed. The average ICP wall-clock time is reported. The profiler nvprof also

reports the percent portion each kernel took in the overall accelerated ICP runtime.

This output can be used to gain knowledge on how differing the point totals has on

the GPU kernel’s runtimes.

3.9.1 3D Models

In this experiment, every nearest neighbor matching algorithm was implemented

in ICP with five different models with two different fidelities. The nearest neighbor

algorithms compared are: Brute Force, KD Tree, Zero Delaunay, KD-ANN Delaunay,

PNN Delaunay, and PNN Optimized Delaunay. The models are: a teapot as seen

in Figure 17, an Aircraft A, an Aircraft B, a sports car as seen in Figure 18, and a

dragon as seen in Figure 19. The experiments are conducted on both the CPU and

GPU. The walk frequency of the Delaunay walk variations will be explored to explain

efficiency.

ICP is executed with a maximum iteration count of 100 and an error of 1E − 11.

The sensed points are placed on the models and the models go through a series of
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rotations ranging from −20 to 20 degrees in roll, pitch, and yaw. This deterministi-

cally guarantees each algorithm receives the same exact experiments. Lastly, noise is

added to the sensed points, as seen in Figure 20. The noise added is random from a

normal distribution with a standard deviation ranging from 10−4 to 10−2.

3.9.2 Virtual and Real Stereo Block Matching

In this section, the most efficient nearest neighbor algorithms, CPU PNN Delaunay

and GPU PNN Optimized Delaunay, found in section 3.9.1 are used in ICP to register

a model to points generated from opencv stereo block matching [74]. Two image

sources are utilized: virtual and real. For the virtual cameras, the parameters such

as resolution (4096×3000) and field of view (28.7 degrees) were set to match the real

cameras as close as possible.

The Aircraft B model was used in an approach towards the cameras. The approach

was captured with truth data recorded from a real-world Vicon 3D motion capture

system [11]. Thus, the accuracy of ICP is able to be tested against the truth from the

motion capture. Additionally, recordings of motion capture sessions are able to be

replayed within a virtual 3D environment, and the accuracy of stereo block matching

on real images can be verified against virtual images with the same sensed objects in

a controlled environment. To mimic a real-time AAR scenario, ICP is executed with

a maximum iteration count of 30 and an error of 1E − 8. Lastly, a GPU ICP filter

is tested for increased accuracy starting on iteration 15 filtering out points further

than 15 standard deviations. Iteration 15 was chosen because it’s the halfway mark

to iteration 30. By this iteration, ICP has converged substantially close to the final

transformation and outlier sensed points are clear.

Figure 21 shows the virtual images in the lower left and right and the real images

in the upper left and right, the sensed points in yellow, and the truth points in red
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Figure 17: This shows ICP running on the teapot model point cloud with 8k points.

being fitted. The sensed points are displayed in yellow on top of the model of the

aircraft, and the truth points appear in red. In the left and middle of Figure 21 depicts

the location of the cameras in the real environment, with the red tubes depicting the

view direction.
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Figure 18: This shows ICP running on the sports car model with 27k points.
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Figure 19: This shows ICP running on the dragon model with 31k points.
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Figure 20: This shows the Aircraft B(21k) model with noise added to the yellow
sensed points. The truth model in red is being fitted to the yellow points with ICP.

Figure 21: This shows ICP executed with real and virtual and real stereo block
matching. ICP is fitting the red truth model to the sensed points. The real images
are in the upper right and left. The virtual images are in the lower right and left.
The model being fitted is Aircraft B(21k).
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IV. Results and Analysis

4.1 Preamble

In Section 4.2 the first set of experiments are presented using the Nvidia Titan V

graphics processing unit (GPU) and the Intel Xeon central processing unit (CPU).

In Sections 4.3 and 4.4 the second set of experiments are presented using the Nvidia

RTX 3080 GPU and the AMD Ryzen Threadripper 3970X 32-Core processor CPU.

4.2 Performance

As originally discussed in [12], Figure 22 shows an Automated Aerial Refueling

(AAR) scenario in which the receiving aircraft is an Aircraft A and it is approaching

the tanker. The two virtual images in the lower left and right are from the virtual

cameras on the tanker. Stereo block matching is executed on these images and re-

projected to produce the yellow sensed points. Then Iterative Closest Point (ICP) is

executed to fit the red truth model to the yellow points. In return, the position and

orientation (pose) of Aircraft A relative to the tanker is produced.

Table 2 shows the runtimes of the CPU and GPU ICP implementations while

varying the number of truth and sensed points. The GPU implementation’s runtime

starts at an average of 32ms with 5053 truth and 1915 sensed points. The GPU’s

average runtime ends up at 42ms with 40424 truth and 30696 sensed points. Com-

paring these results with the CPU implementation, the CPU’s average runtimes are

72ms and 4074ms for the same respective point clouds.

Figure 23 shows a graph of the GPU vs CPU implementation runtimes. As seen

in Table 2 and Figure 23, as the number of points increases, the GPU vastly outper-

forms the CPU. The GPU’s runtime is stable, while the CPU’s runtime is increasing

at a greater rate. Interestingly, with lower point totals, the CPU and GPU runtimes
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are close. This similarity can be attributed to the processor the CPU implementation

is using has a faster clock rate than the GPU processors. Additionally, the GPU

has more overheads with memory transfers, kernel invocations, and thread synchro-

nizations. However, these hardware differences and overheads become negligible with

larger point totals.

Table 3 shows the GPU speedup over the CPU with respect to the number of truth

and sensed points. The GPU only starts with a 2.25x speedup but ends with a 97.00x

speedup. It should be noted that increasing the point totals past 40424 truth points

becomes unreasonable for the CPU implementation runtime. A higher speedup may

be achieved with higher point totals and more optimizations to the nearest neighbor

and reduction kernels. Figure 24 shows a graph of the speedups with respect to the

number of sensed points.

Table 1 shows the portion of runtime the Compute Unified Device Architecture

(CUDA) kernels took as well as the runtime of those kernels with respect to the num-

ber of points. The nearest neighbor kernel starts with 42.47% and ends with 47.26%

of the total time. The reduction kernel starts with 37.76% and ends with 34.61%

of the total time. As shown here, the nearest neighbor kernel is taking the largest

portion of the GPU runtime. This portion is closely followed by the reduction kernel.

An interesting observation is as the truth and sensed point sizes become equivalent,

the portion the nearest neighbor kernel takes is less than when the point differentials

are greater. This decrease can be attributed to increased memory contention for truth

points during the matching process. Lastly, it can be seen that future optimizations

to the accelerated ICP implementation should be focused on the nearest neighbor and

reduction kernels.

Table 4 shows the nearest neighbor kernel’s real versus theoretical runtimes. Fig-

ure 25 shows the graph of this data. The theoretical runtime was calculated from Eq.
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(1) and divided by the Titan V’s clock rate of 1200 MHz. Table 5 shows the reduc-

tion kernel’s real versus theoretical runtimes. Figure 26 shows the graph of this data.

The theoretical runtime was calculated from Eq. (2) and divided by the Titan V’s

clock rate of 1200 MHz and by 2 to account for a single reduction. For both kernels,

the overhead was calculated from real runtime minus theoretical runtime. Then, the

minimum overhead was used to shift the real runtimes to account for overhead.

When accounting for overhead in the nearest neighbor kernel, the trend of real

runtimes closely matches the trend of the theoretical runtimes. However, the first

few points do not match this trend. The reason for this could be because the Titan

V’s 5120 cores were not saturated until 5120 or more points. The data point with

5053 sensed points is very close to core saturation. Additionally, non-deterministic

instruction and warp scheduling could factor into this anomaly. Lastly, the theoretical

runtime serves as a lower bound for real runtime.

In the reduction kernel, the trend of real runtimes closely matches the trend

theoretical runtimes when accounting for overhead. The first few data points do

not follow the theoretical trend as much as the data points with higher point totals.

The first few data points from the nearest neighbor kernel show a similar anomaly.

The same reasons for this anomaly hold true here. Higher point totals verify the

theoretical trend lower bound of real runtime.
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Figure 22: This shows an AAR scenario in which the receiving aircraft is Aircraft A
and it is approaching the tanker. The two virtual images in the lower left and right
are from the virtual cameras on the tanker. Stereo block matching is being run on
these images to produce the yellow sensed points. Then ICP is executed to fit the
red truth model to the yellow points. In return, the pose of Aircraft A relative to the
tanker is produced.
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Figure 23: Graph of CPU versus GPU ICP overall runtimes versus number of sensed
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Figure 24: Graph of GPU speedup over CPU versus number of sensed points.
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Table 1: Kernel portion of runtime and kernel runtimes reported by nvprof .
Number Truth Points (m) Number Sensed Points (n) Nearest Neighbor Portion Nearest Neighbor Average Run Time (us) Reduction Portion Reduction Average Runtime (us)
5053 1915 42.47% 97.064 37.76% 2.696
5053 2507 42.08% 95.139 38.19% 2.698
5053 3445 41.28% 91.938 38.85% 2.703
5053 4941 40.74% 90.630 38.90% 2.704
10106 7681 41.95% 94.530 38.41% 2.704
15159 13703 44.34% 105.560 36.56% 2.719
40424 30696 47.26% 123.370 34.61% 2.823

Table 2: CPU and GPU runtimes and number of points.
Number Truth Points (m) Number Sensed Points (n) Average CPU Runtime (ms) Average Titan V Runtime (ms)
5053 1915 72 32
5053 2507 91 32
5053 3445 136 33
5053 4941 168 34
10106 7681 386 36
15159 13703 947 38
40424 30696 4074 42

Table 3: GPU speedup over CPU and number of points.
Number Truth Points (m) Number Sensed Points (n) Speedup
5053 1915 2.25x
5053 2507 2.84x
5053 3445 4.12x
5053 4941 4.94x
10106 7681 10.72x
15159 13703 34.92x
40424 30696 97.00x

Table 4: Nearest neighbor kernel real and theoretical runtimes versus number of
sensed points.
Number Truth Points (m) Number Sensed Points (n) Real (us) Theoretical (us) Overhead (us) Real - [Minimum Overhead] (us)
5053 1915 97.06400 0.00383 97.06017 6.44389
5053 2507 95.13900 0.00502 95.13398 4.51889
5053 3445 91.93800 0.00690 91.93110 1.31789
5053 4941 90.63000 0.00989 90.62011 0.00989
10106 7681 94.53000 0.01663 94.51337 3.90989
15159 13703 105.56000 0.03097 105.52903 14.93989
40424 30696 123.37000 0.07645 123.29355 32.74989

Table 5: Reduction kernel real and theoretical runtimes versus number of sensed
points.
Number Sensed Points (n) Real (us) Theoretical (us) Overhead (us) Real - [Minimum Overhead] (us)
1915 2.69600 0.00340 2.69260 0.00814
2507 2.69800 0.00461 2.69339 0.01014
3445 2.70300 0.00659 2.69641 0.01514
4941 2.70400 0.00987 2.69413 0.01614
7681 2.70400 0.01614 2.68786 0.01614
13703 2.71900 0.03065 2.68835 0.03114
30696 2.82300 0.07447 2.74853 0.13514
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4.3 3D Models

As originally discussed in [13], Figure 27 shows the time taken per nearest neigh-

bor algorithm and model executed on the CPU. This shows the Previous Nearest

Neighbor (PNN) Delaunay nearest neighbor variation executed the fastest on all the

models on the CPU. Figure 28 shows the time taken per nearest neighbor algorithm

and model executed on the GPU. This shows the PNN Optimized Delaunay nearest

neighbor variation executed the fastest on average on all the models on the GPU. The

experiments show the most efficient algorithms are the PNN Delaunay on the CPU

and PNN Optimized Delaunay on the GPU. For this reason, these algorithms will be

compared against each other to show the hardware acceleration from using a GPU

over a CPU. Because PNN Delaunay nearest neighbor leverages the prior iteration’s

nearest neighbor it makes these nearest neighbor variations performed best. Hard-

ware differences like cache size could explain the difference between PNN Delaunay

and PNN Optimized Delaunay on the CPU and GPU respectively.

Figure 29 shows a runtime comparison of the CPU PNN Delaunay algorithm and

the GPU PNN Optimized Delaunay nearest neighbor algorithms. This shows the

GPU runtime is about an order of magnitude faster than the CPU. Figure 30 shows

the GPU speedup over the CPU for these algorithms. It is seen the GPU achieves just

under a 140x speedup on the Dragon(62k) model. Figure 33 shows the overall total

ICP runtime and Figure 34 shows the speedup. The GPU achieves about a whole

order of magnitude in runtime and 25x speedup when comparing the most efficient

implementations.

Figure 31 shows the teapot(8k) model can by the CPU PNN Delaunay algorithm.

Figure 32 shows the teapot(8k) model can by the GPU PNN Optimized Delaunay

algorithm. Both of these examples show how the PNN Delaunay variants leverage the

prior iteration’s nearest neighbor. These algorithms increase in efficiency as iterations
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deepen. This can be seen by the negative slope.

With respect to the number of traversals required to determine the nearest neigh-

bor, Figs. 39, 40, 41, and 42 depict the mean frequency for the four traversal varia-

tions on two sizes of two different models. As seen in these graphs, the Zero Delaunay

method has the largest variance and highest mean. When utilizing an approximate

neighbor as the starting point, the mean and variance decrease significantly. Finally,

when using the previous result of the neighbor search, the mean is close to two walks

with little variance meaning there are few searches that take more than two traversals

of the graph. Additionally, it can be seen that regardless of the number of points in

the model, the number of traversals for each algorithm changes very little. Although

the number of points are doubled from the Teapot 4k to 8k, the mean number of

traversals for the Zero Delaunay only increases from 8.89 to 11.99.

Again, Figs. 39, 40, 41, and 42 show PNN Delaunay and PNN Optimized Delau-

nay have the lowest average walks. PNN Optimized Delaunay has a lower average

walk distance and variance than PNN Delaunay because the first iteration executes

KD Approximate (KD-ANN) Delaunay to find a preferable starting location. Walk

variance is important when executing on the GPU. If a single thread has a long walk

distance, the whole thread block and possibly kernel will wait for the slowest thread to

finish executing. This could also explain why the PNN Optimized Delaunay performs

best on the GPU.

Figure 35 shows the time breakdown of the ICP algorithm when using CPU PNN

Delaunay nearest neighbor on the Aircraft A(5k) model. Figure 36 shows the time

breakdown of the ICP algorithm when using GPU PNN Optimized Delaunay nearest

neighbor on the Aircraft A(5k) model. This shows the nearest neighbor portion of the

algorithm on the CPU takes 92.12% of the total ICP time. In contrast, the nearest

neighbor portion only takes 11.75% of the total time. It can be seen the hardware
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acceleration from the GPU is in the nearest neighbor portion of ICP.

Figure 37 shows the time breakdown of the ICP algorithm when using CPU PNN

Delaunay nearest neighbor on the Aircraft A(63k) model. Figure 38 shows the time

breakdown of the ICP algorithm when using GPU PNN Optimized Delaunay nearest

neighbor on the Aircraft A(63k) model. These figures show as the number of points

increase, every portion of ICP is benefitting from the hardware acceleration of the

GPU.

In these experiments, each nearest neighbor algorithm variant returned identical

results. The nearest algorithms are all logically equivalent but vary in speed. For

this reason the resulting ICP rotations and translations returned are identical. These

experiments executed with little to no error.

Figure 44 shows the ICP total runtime with adding noise, using virtual, and using

real images. This shows a dirty sensed point cloud does not negatively affect the

runtime. This proves the robustness of the ICP and nearest neighbor algorithms.
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Figure 28: GPU Nearest Neighbor Algorithm Runtime vs Model
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Figure 29: ICP Runtime CPU PNN Delaunay vs GPU PNN Optimized Delaunay
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Figure 30: ICP GPU PNN Optimized Delaunay Speedup over CPU PNN Delaunay
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Figure 31: This graph shows an nearest neighbor algorithmic comparison of the
runtime per iteration on the CPU running ICP on the Teapot(8k) model.
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Figure 32: This graph shows an nearest neighbor algorithmic comparison of the
runtime per iteration on the GPU running ICP on the Teapot(8k) model.
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Figure 33: This shows the total ICP runtime when using the CPU PNN Delaunay
and GPU PNN Optimized Delaunay nearest neighbor algorithms.
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Figure 34: This shows the ICP speedup when using GPU PNN Optimized Delaunay
nearest neighbor algorithms over CPU PNN Delaunay and GPU PNN Optimized
Delaunay nearest neighbor algorithms.
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Figure 35: CPU ICP with PNN Delaunay nearest neighbor algorithm breakdown by
steps on the Aircraft A(5k) model.
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Figure 36: GPU ICP with PNN Optimized Delaunay nearest neighbor algorithm
breakdown by steps on the Aircraft A(5k) model.
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Figure 37: CPU ICP with PNN Delaunay nearest neighbor algorithm breakdown by
steps on the Aircraft A(63k) model.
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Figure 38: GPU ICP with PNN Optimized Delaunay nearest neighbor algorithm
breakdown by steps on the Aircraft A(63k) model.
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Figure 39: This shows the frequency of how many walks are taken by the algorithms
for the 4k Teapot model.
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Figure 40: This shows the frequency of how many walks are taken by the algorithms
for the 8k Teapot model.
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Figure 41: This shows the frequency of how many walks are taken by the algorithms
for the 31k Dragon model.
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Figure 42: This shows the frequency of how many walks are taken by the algorithms
for the 62k Dragon model.
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Figure 43: This shows the nearest neighbor runtime between CPU PNN Delaunay
and GPU PNN Optimized Delaunay with noise, virtual images, and real images all
on the Aircraft B(21k) model.
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Figure 44: This shows the total ICP runtime when using the CPU PNN Delaunay
and GPU PNN Optimized Delaunay nearest neighbor algorithms with noise, virtual
images, and real images all on the Aircraft B(21k) model.
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4.4 Virtual and Real Stereo Block Matching

From processing the reprojected points from real and virtual stereo block match-

ing, it can be determined that the CPU and GPU implementation’s of the Delaunay

traversal and ICP perform with the same accuracy. As seen in Figs. 45 and 46, when

registering points generated from virtual images, the CPU and GPU implementations

perform with the same accuracy. Furthermore, when the virtual images are replaced

with real images, and the points generated from stereo block matching contain more

error, both CPU and GPU implementation still perform with the exact same level of

accuracy, as is demonstrated in Figs. 47 and 48. Figure 49 shows error vs distance on

real imagery with the GPU ICP filter applied. This shows a slightly tighter bounded

error range than without the filter. This means the error is more consistent than

without the filter.

Tables 6 and 7 show the positional and rotational mean magnitude error of ICP

when using real images experiments. This shows the CPU and GPU have a very close

error and the minor difference is due to hardware differences that may cause rounding

differences. The CPU reports a slightly more accurate position and the GPU reports

a slightly more accurate rotation. Overall, there’s less than an average magnitude of

7.3 centimeters in positional error and a magnitude of 1.3 degrees of rotational error.

The GPU ICP filter increases the rotational accuracy of the GPU. However, it

resulted in a slightly less accurate position. The filter reduced the size of the confi-

dence interval for both position and rotation. The filter increased the consistency of

the error. Overall, the filter did increase the accuracy and consistency of ICP on the

GPU.

Figure 50 shows the AAR vision pipeline runtime breakdown when using Region

of Interest (ROI) on real 4k images. ROI allows stereo block matching to search only

the portion of the images where the sensed model is located, to reduce runtime. This
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shows ICP is no longer the computational bottleneck of the AAR vision pipeline.

Table 8 shows the stereo block matching and reprojection runtimes. This shows ROI

does reduce the runtime.

Table 6: This shows the positional mean magnitude error in meters as well as the
99.5% confidence interval.

Method
Positional Mean Magnitude
Error (Meters)

99.5% Confidence Interval (Meters)
(+/-)

CPU 0.016 0.0002
GPU 0.016 0.0009
GPU
Filter

0.016 0.0004
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Figure 45: Errors in translation and rotation from ICP on virtual imagery on the
CPU

Table 7: This shows the rotational mean magnitude error in degrees as well as the
99.5% confidence interval.

Method
Rotational Mean Magnitude
Error (Degrees)

99.5% Confidence Interval (Degrees)
(+/-)

CPU 1.29 0.018
GPU 1.27 0.070
GPU
Filter

1.26 0.041

Table 8: This shows the SBM/Reprojection mean magnitude runtime in seconds as
well as the 99.5% confidence interval.

Method
Runtime Mean Magnitude
(ms)

99.5% Confidence Interval (ms)
(+/-)

4k Images 302.10 0.411
4k Images ROI 266.89 0.417
2k Images 53.42 0.023
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Figure 46: Errors in translation and rotation from ICP on virtual imagery on the
GPU
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Figure 47: Errors in translation and rotation from ICP on real imagery on the CPU
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Figure 48: Errors in translation and rotation from ICP on real imagery on the GPU
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Figure 49: Errors in translation and rotation from ICP on real imagery on the GPU
with filter
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Figure 50: This shows the AAR vision processing pipeline runtime from image ac-
quisition with real 4k images using ROI and ICP with with GPU PNN Optimized
Delaunay on the Aircraft B(21k) model.
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V. Conclusions

In this study, the Iterative Closest Point (ICP) algorithm was expressed as a

massively parallel algorithm and implemented and mapped to an Nvidia Titan V

graphics processing unit (GPU) and an Nvidida RTX 3080 GPU. Highly efficient and

novel nearest neighbor matching algorithms were introduced and implemented based

on the Delaunay triangulation. The algorithmic analysis and runtime experiments

showed Previous Nearest Neighbor (PNN) Delaunay is the most efficient on the central

processing unit (CPU) and PNN Delaunay Optimized on the GPU. The algorithm,

implementation, and parallelization approaches for each step of the algorithm were

discussed. The runtime and speedup with respect to the CPU implementation were

compared to realize a speedup of approximately 2 orders of magnitude. Additionally,

the specific portion and runtime of the Compute Unified Device Architecture (CUDA)

kernels were profiled. Also, an algorithmic analysis and comparison was conducted

of the parallel algorithm between theoretical and real runtimes. Lastly, Registration

of simulated and real sensed points was presented with a low error tolerance to show

robustness. Automated Aerial Refueling (AAR) will be able to use this research to

accelerate the point registration block of the vision processing pipeline and rapidly

calculate the receiving aircraft’s position and orientation (pose).

5.1 Future Work

Future work will execute experiments with higher point totals and also more real-

time experiments with different models. It is planned to execute the experiments

with different CPUs and GPUs. This includes an application using the NVLink

interconnect with multiple GPUs. Additionally, it is planned to integrate the nearest

neighbor algorithms into other applications like point-to-plane ICP. To enable real-
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time AAR, future work should include accelerating stereo block matching and point

reprojection portions of the vision processing pipeline. Lastly, an ideal comparison

between the serial and parallel algorithms would compare identical processors for the

serial and parallel implementations respectively.
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Appendix A. Additional Results
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Figure 51: This shows the CPU KD Tree and GPU PNN Optimized Delaunay nearest
neighbor runtimes.
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Figure 52: This shows GPU PNN Optimized Delaunay over CPU KD Tree nearest
neighbor speedup.
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Figure 53: This shows the CPU KD Tree and GPU PNN Optimized Delaunay total
ICP runtimes.
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Figure 54: This shows GPU PNN Optimized Delaunay over CPU KD Tree total ICP
speedup.
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Figure 55: This shows the AAR vision processing pipeline runtime from image ac-
quisition with real 4k images using ROI and ICP with with CPU KD Tree on the
Aircraft B(21k) model.
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Figure 56: This shows the AAR vision processing pipeline runtime from image ac-
quisition with real 4k images without ROI and ICP with with GPU PNN Optimized
Delaunay on the Aircraft B(21k) model.
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Figure 57: This shows the AAR vision processing pipeline runtime from image ac-
quisition with real 2k images without ROI and ICP with with GPU PNN Optimized
Delaunay on the Aircraft B(21k) model.
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Appendix B. Code Implementation

For code to implement this project and research please go to the git repository:

https://git.nykl.net/aar/aarviz_picp.git and checkout branch master.
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