
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2021 

Simulating a Mobile Wireless Sensor Network Monitoring the Air Simulating a Mobile Wireless Sensor Network Monitoring the Air 

Force Marathon Force Marathon 

Matthew D. Eilertson 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Digital Communications and Networking Commons, and the Signal Processing Commons 

Recommended Citation Recommended Citation 
Eilertson, Matthew D., "Simulating a Mobile Wireless Sensor Network Monitoring the Air Force Marathon" 
(2021). Theses and Dissertations. 4988. 
https://scholar.afit.edu/etd/4988 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Fetd%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=scholar.afit.edu%2Fetd%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4988?utm_source=scholar.afit.edu%2Fetd%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


SIMULATING A MOBILE WIRELESS
SENSOR NETWORK MONITORING THE

AIR FORCE MARATHON

THESIS

Matthew D. Eilertson, Captain, USAF

AFIT-ENG-MS-21-M-031

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENG-MS-21-M-031

SIMULATING A MOBILE WIRELESS SENSOR NETWORK MONITORING

THE AIR FORCE MARATHON

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Matthew D. Eilertson, B.S. E.C.E.

Captain, USAF

March 2021

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENG-MS-21-M-031

SIMULATING A MOBILE WIRELESS SENSOR NETWORK MONITORING

THE AIR FORCE MARATHON

THESIS

Matthew D. Eilertson, B.S. E.C.E.
Captain, USAF

Committee Membership:

Barry E. Mullins, Ph.D., P.E.
Chair

Scott R. Graham, Ph.D.
Member

Ted D. Harmer
Member



AFIT-ENG-MS-21-M-031

Abstract

This thesis explores the feasibility of deploying a mobile Wireless Sensor Networks

(WSN) to the Air Force (AF) Marathon in support of Air Force Research Labora-

tory (AFRL) research of sensor and networking infrastructure in denied or degraded

environments. The marathon is a unique opportunity where large crowds, limited

infrastructure, and emergency response teams intersect for a chaotic and contested

environment. It is anticipated that if runners are equipped with wirelessly networked

sensor devices, then sensor data can be collected through a mesh network and a

limited number of gateways.

WSNs contain hundreds of devices called motes requiring significant investment

to build and deploy. Therefore, in this research, a simulation called MarathonSim is

developed in the Objective Modular Network Testbed in C++ (OMNeT++) Discrete

Event Simulator to test the performance of a mobile WSN without committing ex-

tensive resources. The simulation is similar to a previous work called MarathonNet,

but it includes IEEE 802.15.4 physical and link models and routing protocols. A

full factorial design using numbers of runners, transmission powers, and flood versus

Ad hoc On-Demand Distance Vector Routing (AODV) routing protocols is tested to

determine factor effects, interactions, and estimates for Packet Delivery Ratio (PDR)

to a central database, average end-to-end delay of application packets, and average

power consumed per mote through the marathon.

The experiment results show flood routing delivers >50% of packets for 7 out

of 15 trials and >75% for two trials. The AODV trials performed poorly due to a

flaw with the module implementation not handling link breakages. Average delay

varied from 0.11 to 7.2 seconds between 25 runners and 125 respectively but had no

iv



statistically significant changes due to transmission power. Finally, the average power

consumed per node increased across all three factors but appears especially sensitive

to additional runners due to increased receptions and transmissions.

By developing a modular simulation, this research assists other efforts into testing

and prototyping mobile WSNs in new applications and demonstrating the feasibility

of a runner-based WSN.

v



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Hypothesis and Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Thesis Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II. Background and Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Wireless Sensor Networks and Internet of Things . . . . . . . . . . . . . . . . . . . . 6

2.2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Mote Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Wireless Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 IEEE 802.15.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Alternative Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 General Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Ad Hoc On-demand Distance Vector . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Managed Flooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Background Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

III. MarathonSim Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 OMNeT and INET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 System Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 The MarathonSim Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 The Marathon Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Sensor Motes and Runners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



Page

3.4.3 Infrastructure Gateways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.4 EMS Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.5 Network Configurator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.6 Radio Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 MarathonSim Design Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

IV. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Overview and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 System Under Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7 Uncontrolled Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.8 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8.1 Mobility Trace Generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.8.2 INI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.8.3 Batch Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.10 Methodology Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

V. Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 MarathonSim Performance Metrics Analysis . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Packet Delivery Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 End-to-End Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.3 Average Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Overall Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

VI. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Research Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4 Limitations of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.5 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Appendix A. MarathonSim NED Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Appendix B. MarathonSim INI Config File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Appendix C. waypointScript.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vii



Page

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

viii



List of Figures

Figure Page

1 General Wireless Sensor Networks (WSN)
Architecture [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 General Mote Architecture [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Star and Peer Topology for IEEE 802.15.4 Networks [9] . . . . . . . . . . . . . . 15

4 Cluster Tree Topology [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Superframe Structure Used in Beacon-Enabled Mode [9] . . . . . . . . . . . . . 16

6 Slotted and Unslotted CSMA/CA Algorithm for
802.15.4 [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 OMNeT++ Simulation Architecture [38] . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 MarathonSim System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9 Full Marathon Route [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

10 Simulated Route with Gateways Co-located with
Marathon Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

11 Mote Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

12 Example Transmission Showing Proper Modeling of
Timing and Physical Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

13 Example BonnMotion Tuples from Trace File . . . . . . . . . . . . . . . . . . . . . . . 38

14 Address Abstraction from INET 48 bit Addressing to
802.15.4 Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

15 Gateway Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

16 Static Route Assigned in flat_network.xml . . . . . . . . . . . . . . . . . . . . . . . 47

17 Max Transmission Ranges for nRF52840 Resulting from
0, 4, and 8 dBm Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

18 System Under Test and Component Under Test Diagram . . . . . . . . . . . . 52

19 Placement of Mobility Trace Files within Project
Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

ix



Figure Page

20 Batch Run Configuration Tool and Execution . . . . . . . . . . . . . . . . . . . . . . 61

21 Packet Delivery Ratio by Protocol and Transmission
Power over Number of Runners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

22 Packet Delivery Ratio by Main Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

23 Mean End-to-End Delay by Protocol and Transmission
power over Number of Runners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

24 Mean End-to-End Delay by Main Effects over Number
of Runners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

25 Mean Power Consumption per Node by Protocol and
Transmission Power over Number of Runners . . . . . . . . . . . . . . . . . . . . . . . 74

26 Mean Power Consumption per Node by Main Effect . . . . . . . . . . . . . . . . . 76

x



List of Tables

Table Page

1 Nordic Semiconductors nRF52840 Operating Attributes . . . . . . . . . . . . . . 34

2 Running Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Estimated Sensor Payload Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Factor Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Selected System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 MarathonSim Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Results of ANOVA on PDR Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 ANOVA Assumption Tests for PDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9 Pairwise Runners Comparison for PDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

10 Pairwise Transmission Power Comparison for PDR . . . . . . . . . . . . . . . . . . 69

11 Results of ANOVA on End-to-End Delay Metric . . . . . . . . . . . . . . . . . . . . 72

12 ANOVA Assumption Tests for Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

13 Pairwise Runners Comparison for Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

14 Results of ANOVA on Mean Power Consumption Per
Node Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

15 ANOVA Assumption Tests for Average Power
Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

16 Pairwise Runners Comparison for Average Power
Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

17 Pairwise Transmission Power Comparison for Average
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xi



List of Acronyms

Abbreviation Page

6LoWPAN IPv6 over Low-Power Wireless Personal Area Network . . . . . . . . . . . . . . 44

AF Air Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv, 2

AFRL Air Force Research Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv, 2

ANOVA Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

AODV Ad hoc On-Demand Distance Vector Routing . . . . . . . . . . . . . . . . . . . . . iv, 4

BAN Body Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

BER Bit Error Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

BI Beacon Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

CAP Contention Access Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

CCA Clear Channel Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

CFP Contention Free Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

CSMA/CA Carrier-Sense Multiple Access with Collision Avoidance . . . . . . . . . . . . . 16

CSP Collaborative Sensor Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CTS Clear To Send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CUT Component Under Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

DARPA Defense Advanced Research Projects Agency . . . . . . . . . . . . . . . . . . . . . . . 13

DoD Department of Defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

DSDV Destination-Sequenced Distance Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

DSN Distributed Sensor Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

DSR Dynamic Source Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

DSSS Direct Sequence Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

EMS Emergency Medical Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

FFD Full Function Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

GIG Global Information Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

xii



Abbreviation Page

GTS Guaranteed Time Slot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

IDE Integrated Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

IEEE Institute of Electrical and Electronics Engineers. . . . . . . . . . . . . . . . . . . . . . 3

IETF Internet Engineering Task Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

INET Information Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

INI Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

IoT Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

IP Internet Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ISM Industrial, Scientific, and Medical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

LLN Low-power Lossy Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

LoRa LongRange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

LoRaWAN Long-Range Wide-Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

LR-

WPAN

Low-Rate Wireless Personal Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . 13

MAC Medium Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

MANET Mobile Ad hoc Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

MEMS Micro-Electro-Mechanical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

NED Network Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

OLSR Optimized Link State Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

O-QPSK Offset Quadrature Phase-Shift Keying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

OMNeT++ Objective Modular Network Testbed in C++ . . . . . . . . . . . . . . . . . . . . . iv, 3

OSI Open Systems Interconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

PAN Personal Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

PDR Packet Delivery Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv, 55

PER Packet Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xiii



Abbreviation Page

PSDU Physical Service Data Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

QoS Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

RERR Route Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

RF Radio Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

RFC Request For Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

RFD Reduced Function Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

RREP Route Reply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

RREP-

ACK

Route Reply Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

RREQ Route Request. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

RTS Request To Send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

SD Superframe Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

SFD Start of Frame Delimiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

SoC System on a Chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

SUN Smart Utility Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

SUT System Under Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

TTL Time To Live . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

UDP User Datagram Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

USAF United States Air Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

UWB Ultra-Wideband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

WLAN Wireless Local Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

WPAFB Wright-Patterson Air Force Base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

WSN Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv, ix

xiv



SIMULATING A MOBILE WIRELESS SENSOR NETWORK MONITORING

THE AIR FORCE MARATHON

I. Introduction

1.1 Motivation

The sounds of cheering at the starting line faded nearly an hour ago and squinting

into the distance, number 341 steadily grows beyond John’s reach. He had passed

John around mile five and proved a grueling pacer for the past fifteen minutes. Maybe

it is pride that pushes John to try to keep up during his first marathon but the effort is

exacting a terrible toll on his body. Each stride feels like his feet are dragging through

sand and the sound of his ragged breath and thunderous footfalls echo around the

nearly empty street. He gives a quick shake of his head to try to focus on his former

partner as 341 is seemingly enveloped in a welcoming shade up ahead. John wistfully

hopes it is a lone cloud passing through the clear blue sky, but it lingers too long and

continues to darken. The road itself seems to be disappearing in the unnatural gloom

and suddenly the world falls out from under him. The moment of panic washes away

with a wave of pain as he crashes against the pavement. Stars of red and blue fill his

vision as he struggle to catch his breath. Unable to stand or breathe, help is unlikely.

However, those blue and red stars were not his imagination. An ambulance is already

screaming up the road. Each flash of their lights met by a twin blinking from a sensor

device clipped to John’s runner bib.

While life-threatening events such as this are rare during a marathon, the sheer

number of participants results in numerous injuries requiring Emergency Medical

1



Services (EMS). The annual Chicago and Boston Marathons each receive more than

30,000 participants where 400-600 runners require treatment at medical tents and up

to 100 are transported to hospitals [1]. Recognizing injury, notifying, and dispatching

Emergency Medical Services (EMS) is critical to preventing a tragedy. WSNs offer

event coordinators the ability to monitor participant health and event security in

real-time by equipping runners with sensor devices connected in a mesh network.

1.2 Problem Statement

The Air Force (AF) Marathon at Wright-Patterson Air Force Base (WPAFB) is

an annual event where 10,000 athletes engage in a trek from the National Museum of

the United States Air Force (USAF) through the interior of the base [2]. It is a unique

opportunity to test emerging sensor and networking technologies while assisting par-

ticipant safety and installation security. For example, advances in smart wearable

technologies have led to smart shirts, shoes, watches, socks, and more becoming com-

mercially available to monitor the wearer’s health, location, and activities [3–6]. Ad-

ditionally, networking standards such as IEEE 802.15.4, Bluetooth Mesh, and Long-

Range Wide-Area Network (LoRaWAN) have simplified development of low-power

networked devices. Equipping marathon participants with networked sensors to form

a WSN can enable life-saving monitoring and simultaneously provide a test bed for

further mobile WSN research and applications.

Despite the opportunity presented and technology being available, no such WSN

application has been tested in a marathon scenario. In order to research move-

ment patterns and sensor data fusion techniques, the Air Force Research Laboratory

(AFRL) Sensor Directorate is exploring development of a WSN, or other infrastruc-

ture, to be deployed to the AF Marathon. However, WSNs are large-scale application-

specific systems requiring multidisciplinary development efforts. Supporting that ef-

2



fort, this work seeks to answer whether a mobile WSN is feasible for the marathon

scenario through simulating the performance of the network under varying parameters

such as number of runners, transmission range, and routing protocols.

1.3 Hypothesis and Research Goals

This work hypothesizes that if equipped with mesh networked sensors, there exists

a minimum quantity of runners such that the majority of sensor data can be delivered

to a central database using multi-hop routing and a limited number of stationary

gateways acting as data sinks.

The goals of this research are:

• Measure the capability of a marathon WSN to deliver sensor data to a central

database.

• Analyze the interaction between transmission range and quantity of devices on

network performance.

• Establish energy requirements of WSN devices.

• Evaluate routing protocols used in the WSN.

1.4 Approach

A simulation of the AF Marathon, called MarathonSim, is created in the Objective

Modular Network Testbed in C++ (OMNeT++) Discrete Event Simulator with the

INET Framework [7, 8]. Marathon runners are simulated to follow the actual route

using average marathon finish times. Each runner is equipped with a sensor device,

called a mote, to relay data throughout the course. Each mote contains an Institute

of Electrical and Electronics Engineers (IEEE) 802.15.4 Wireless Local Area Network

3



(WLAN) interface modeled after the Nordic Semiconductors nRF52840 System on

a Chip (SoC) [9, 10]. At existing marathon infrastructure points, 19 gateways are

deployed and act as data sinks for the WSN by transferring wireless communications

to a wired network. Data is generated by the motes at regular intervals and routed

using Ad hoc On-Demand Distance Vector Routing (AODV) and Managed Flooding.

The simulations are conducted in a full factorial design varying the number of run-

ners, mote transmission power, and routing protocol. Finally, the simulation data is

collected and analyzed for viability and performance.

1.5 Assumptions and Limitations

The following assumptions are used in designing this simulation:

• Marathon finish times approach a normal distribution, allowing approximation

of runner velocities.

• Motes are associated in a single IEEE 802.15.4 Personal Area Network (PAN)

before the start of the simulation.

• Internet infrastructure is available to connect gateways and introduces negligible

performance impact compared to wireless communications.

• Processing time and energy consumed by sensor and microprocessor operation

is negligible compared to radio operations.

The following limitations are placed to ensure manageable scope:

• The motes do not produce real sensor data, just payloads for transmission.

• All wireless communication takes place in a single channel in the 2.4 GHz range.

• Only IEEE 802.15.4 non-beacon mode is simulated.

4



1.6 Research Contributions

This research contributes to the field of WSN research, specifically through the

development of MarathonSim, a modular OMNeT++ simulation. MarathonSim tests

the feasibility of mesh networks in a mobile scenario through varying physical and

protocol factors. Additionally, MarathonSim promotes mote prototype development

by modeling performance based on commercial devices.

1.7 Thesis Overview

This thesis is organized into six chapters. Chapter 2 contains a background on

WSNs, a description of the IEEE 802.15.4 protocol and comparable protocols, a

highlight of two routing protocols utilized in this work, and a summary of related

research. Chapter 3 presents the simulation environment and modules used to de-

velop the marathon scenario. Chapter 4 specifies the parameters and metrics used to

conduct the marathon experiments. Chapter 5 analyzes the data collected from the

trials. Lastly, Chapter 6 concludes this work by summarizing the work conducted,

discussing the limitations of the simulation, and highlighting possibilities for future

work.

5



II. Background and Literature Review

2.1 Overview

This chapter provides a background on the fundamental concepts and technologies

used in this research. First, it introduces WSNs and Internet of Things (IoT) along

with example applications to set the stage for this work. Next, it provides infor-

mation on the physical and Medium Access Control (MAC) layers of IEEE 802.15.4

wireless protocol and briefly covers comparable standards. Then the following sec-

tion describes the AODV and managed flooding routing protocols for mesh networks.

Lastly, it summarizes research related to this thesis.

2.2 Wireless Sensor Networks and Internet of Things

2.2.1 General

WSNs are a class of Low-power Lossy Networks (LLN) defined by distributed

resource-constrained devices sensing their physical environment and collaborating

wirelessly with other nodes to maintain the network [11]. These networks originated

from a drive in technology to bridge the gap between the physical and digital realms.

In bridging the gap, the intent is to replace human-driven data input with an ”Am-

bient Intelligence” for human interaction [12,13]. This idea may remind the reader of

IoT and rightly so; a world filled with everyday items networked and exchanging data

over the Internet enhancing user experiences is the goal of IoT. While WSN predate

the concept of IoT by several decades, they are an integral part of current and future

IoT by providing physical sensing of, and interactions with, their environment [14].

Most WSNs tend to take on a similar form of many small, wireless, resource-

constrained devices, called motes, scattered around a physical environment and few

resource-rich data sinks. Figure 1 depicts this general WSN architecture. The motes

6



are scattered around a sensing field, collecting and relaying data back to the main-

powered data sink over low data rate networks. The data sink acts as a boundary

gateway, delivering the sensor data over the Internet to a server running various

applications. The end users can then access their applications, fueled by the data

collected by the WSN. Typically, the motes are homogeneous devices organized into a

star, mesh, or clustered-hierarchy structure depending on the application and number

from a handful to potentially thousands [15].

Figure 1: General WSN Architecture [16]

Motes, similar to embedded systems, are designed to be consumable, application

specific, physically small, low power, and low cost per device [17]. While the design

can vary greatly, the basic components are depicted in Figure 2. The five core ele-

ments are a controller, a sensor/actuator, a radio, memory, and a power supply. A

controller is necessary to process data and execute code. A sensor or actuator allows

interfacing with the physical world. The memory stores programs and data. The ra-

dio transmits and receives communication to and from the network. A power supply

enables operation away from power infrastructure.

7



Figure 2: General Mote Architecture [12]

2.2.2 Mote Design Considerations

Of the five main components of a sensor mote, wireless communication through the

radio and consumption of the power supply are focuses of most research. The trend

in Micro-Electro-Mechanical Systems (MEMS) towards cheaper, more powerful, and

efficient electronics relaxes the processing and memory constraints of motes. Instead,

the comparative inflexibility of transceiver performance and power supplies force these

two components to be brought to the forefront of mote design [18–20].

2.2.2.1 Power

While options exist for energy harvesting like solar panels, size and cost limita-

tions prohibit most motes from utilizing them. Without energy harvesting, the WSN

ceases to function when the network partitions due to failing motes. Simple solutions

such as adding larger batteries or supplying additional motes to replace depleted

motes are materially expensive. Therefore, WSN longevity depends on reducing the

consumption of energy through management of the motes’ operational states.

The basic functions of the mote are sensing, processing, and relaying data. Each of

8



these functions consume energy depending on the state of the operation. The sensor

module is usually either on, or off resulting in discrete states of energy consumption

expressed as

Esens = TonPon + ToffPoff (1)

where the total energy consumed by a sensor is the time spent in each state multiplied

by the power used in each state. Similarly, processors consume energy in running,

idling, sleeping, and other modes shown by

Eproc =
m∑
i=1

Pproc state(i)Tproc state(i) (2)

where for m total operating states of the processor, Pproc state(i) is the power con-

sumption in state i and Tproc state(i) is the time spent in that state. Maximizing time

spent in a sleeping or hibernating state is desired because a processor typically con-

sumes <10 µA of current versus tens or hundreds of milliamps in idling or running

states. Lastly, the energy cost of relaying data can be expressed as

Eradio =
n∑

j=1

Pradio state(j)Tradio state(j) (3)

where for n total operating states of the transceiver, Pradio state(j) and Tradio state(j)

represent the power consumption and time spent in state j. Combining (1), (2), and

(3) provides a general form of

Etotal = Esens + Eproc + Eradio (4)

representing the sum of energy usage in a single mote [21]. Overall consumption is

used to determine a motes efficiency by determining the joules-per-bit cost of per-

forming tasks. Energy costs can be reduced by maximizing time in low consumption

9



states, but the cost of receiving and transmitting, Erelay, is the largest contributor to

overall energy costs by three orders of magnitude [21].

A key mechanism in reducing communication costs is synchronizing neighboring

motes to relay communications and minimize time spent receiving and transmitting

unnecessarily [22]. The percentage of time in active radio states to inactive states

is known as the duty cycle of the radio; in some references only transmissions are

considered active, but this work considers both receiving and transmitting to be

active states. Without synchronization, the duty cycle of the mote is close to 100%

because the transceiver must remain on to receive all communications from neighbors

in order to maintain network connectivity. In a perfectly synchronized network, motes

can maintain reliable communications and achieve low duty cycles by transmitting

and receiving only during allotted times and powering down otherwise.

2.2.2.2 Wireless Communication

While designing custom Radio Frequency (RF) transceivers for an application is

an option, most requirements are serviceable by modern commercial RF transceiver

modules. Mote design then comes down to selecting a transceiver that meets the

specifications of the application such as transmission range, data rate, carrier fre-

quency, modulation methods, or energy efficiency. These design factors can impact

the others; for example, limited power supplies necessitate lower transmission power

resulting in reduced range.

A useful tool in estimating communication range is a simplified link budget ex-

pression

PRx = PTx +GTx +GRx − LPL (5)

where received power PRx is equal to the transmitted power PRx, plus antenna gains

GX , minus path-loss LPL. Transmitted and received power are measured as dBm

10



(decibel-milliwatts), which is power relative to 1mW. Path loss, measured in dB, is

the loss of power as the waveform propagates over distance [12]. The ITU Recom-

mendation P.1411-9 for short-range outdoor line-of-sight path loss is

LLoS = Lbp +


20 log10

(
d

Rbp

)
for d ≤ Rbp

40 log10

(
d

Rbp

)
for d > Rbp

(6)

where d is propagation distance in meters, and Rbp is the break point distance in

meters given by

Rbp =
4h1h2
λ

(7)

where h1 and h2 are the heights of the transmitter and receiver in meters, and λ is the

wavelength in meters. Also, from (6), Lbp is the path loss at the break point defined

as

Lbp =

∣∣∣∣20 log10

(
λ2

8πh1h2

)∣∣∣∣ (8)

with the same parameters as (7) [23].

Using (5) and (6), an estimate can be made on transmission range between two

transceivers. If, for a projected distance and transmission power, the received power

exceeds a receiver’s sensitivity, then the transmission may be successful.

More sophisticated link budget expressions can account for more physical phenom-

ena, but the general rule with transmission range is in order to double the range, four

times the transmission power is needed [12]. When the energy cost of increasing range

may be considered too high for power-limited motes, a designer may opt for multiple

intermediary motes with shorter transmission ranges for each device. This method,

called Minimum Transmission Energy routing, has been shown to not always be effi-

cient. Reception costs are not negligible. For each intermediary node, a flat reception

cost is incurred and can outweigh the cost of a single long-range transmission [20].

11



2.2.3 Applications

As a technology envisioned to supplement existing application areas, WSNs are

used wherever sensors are useful but difficult to permanently install. Interestingly,

the surge in IoT interest has enveloped the field of WSN, causing the term to be

used almost interchangeably, especially in commercial settings. Until recently, WSNs

required proprietary communication protocols on custom hardware resulting in slow

adoption of the technology focused on industrial uses. However, new network pro-

tocols like Thread, Bluetooth Mesh, and LoRaWAN have reduced the development

burden, bringing sensor network capabilities to the consumer market.

2.2.3.1 Disaster Management

Disaster management operations are commonly cited as an application area for

WSN as both predictors of events and supporting relief responses. As a predictor,

sensors embedded in areas prone to fires, floods, earthquakes, and others work to

detect disasters as part of an early warning system. Additionally, when disasters

do occur, fixed infrastructure may become inoperable and limit emergency response.

Sensor networks, attached to responders or deployed by them, can enable monitoring

of assets in the disaster zone independent of existing infrastructure [24,25].

2.2.3.2 Agriculture Monitoring

Agricultural monitoring through cellular IoT is predicted to improve crop yields

by enabling continuous data to be collected on weather effects, soil condition, and

presence of pests. The continuous monitoring allows farmers to make informed deci-

sions in the usage of limited resources such as water and fertilizers as well as reducing

wasted manpower by remotely monitoring crop health. Additionally, sensor data en-

ables the introduction of advanced automated farm equipment, reducing manpower

12



needs. Expensive all-in-one sensor suites have been available for years, but recently,

amateur platforms using Arduino and Raspberry Pi are being utilized by small farm-

ers and in the developing world [26,27].

2.2.3.3 Military Surveillance

Battlefield monitoring and proximity defenses have been a continuous focus of

WSNs for nearly four decades. One of the earliest proposals suggested utilizing a

”Distributed Sensor Network (DSN)” of acoustic sensors in perimeter defense to alert

anti-aircraft systems to the presence of hostile low-flying aircraft [28]. The Defense

Advanced Research Projects Agency (DARPA), through the SenseIT program, in-

vestigated the challenges and feasibility of data fusion and Collaborative Sensor Pro-

cessing (CSP) with experiments in classification of troop and vehicle movements [29].

Military applications continue to be investigated in support of the expansion of the

Global Information Grid (GIG) with sensors integrating current and future systems.

2.3 Wireless Protocols

2.3.1 IEEE 802.15.4

2.3.1.1 General

The IEEE 802.15.4 standard, hereafter referred to as 802.15.4, defines the physi-

cal and link layer specifications for Low-Rate Wireless Personal Area Networks (LR-

WPANs). These networks are often referred to as LLNs and are characterized by

resource constrained devices communicating over a variety of links. The main objec-

tives for these networks are low complexity, low cost, reliable data transfer, reasonable

lifetime, and flexible protocols [30]. In 802.15.4, devices can be either Reduced Func-

tion Devices (RFDs) supporting bare minimum functions and single-hop routing or

13



Full Function Devices (FFDs) capable of additional network demands such as network

coordination and multi-hop routing.

The target of the standard is IoT connectivity, but the latest standard, IEEE

Std 802.15.4-2020, also includes modulation schemes and frequency bands for more

specific applications such as medical Body Area Networks (BANs), Smart Utility Net-

works (SUNs), and Ultra-Wideband (UWB) devices [9]. Most commercially available

802.15.4 transceivers operate on the 868/915/2450 MHz Industrial, Scientific, and

Medical (ISM) bands at rates up to 250 kbps with Direct Sequence Spread Spectrum

(DSSS) Offset Quadrature Phase-Shift Keying (O-QPSK) modulation, among others.

2.3.1.2 Topology

The flexible design of 802.15.4 allows networks to operate in many structures such

as star topology or peer-to-peer topology as shown in Figure 3. In both structures,

the network contains at least one FFD functioning as the PAN coordinator. In the

star network, all communication is between the PAN and members of the network.

In the peer-to-peer network, communication can occur between any FFD-FFD or

FFD-RFD pair in the network provided they are within radio range and previously

associated with the PAN coordinator.

The base topology can be extended through higher-layer functions to more com-

plex structures such as a tree or cluster tree in Figure 4. The trees are structured

using parent-child associations between FFD coordinators within the same PAN. In

this structure, communication only occurs between parents and children. A cluster-

tree allows FFDs to maintain their previous PAN association while establishing their

own independent PANs.

14



Figure 3: Star and Peer Topology for IEEE 802.15.4 Networks [9]

Figure 4: Cluster Tree Topology [9]

15



2.3.1.3 Medium Access Control

In addition to the topology, the PAN coordinator selects between beacon-enabled

and non-beacon operating modes. The selection of operating mode controls how the

devices associate with the PAN and share access to the medium for transmissions.

In the beacon-enabled mode, the coordinator broadcasts a superframe, enclosed

by beacon frames, shown in Figure 5. The beacon frame synchronizes member de-

vices, allows association of new devices, and describes the structure of the enclosed

superframe. Upon entering the Contention Access Period (CAP), nodes are able to

access the medium using slotted Carrier-Sense Multiple Access with Collision Avoid-

ance (CSMA/CA) for data transmission and association. Additionally, nodes can

request a Guaranteed Time Slot (GTS) to be reserved in the next superframe dur-

ing the Contention Free Period (CFP). The superframe ends with an inactive period

during which nodes can sleep to preserve power. The intervals for the Superframe

Duration (SD) and Beacon Interval (BI) periods are determined by the PAN values

of macBeaconOrder and macSuperframeOrder which are transmitted within the bea-

con. This mode is available for both star and peer-to-peer topologies, but peer-to-peer

topologies require advanced beacon scheduling from delegated coordinators.

Figure 5: Superframe Structure Used in Beacon-Enabled Mode [9]

In the non-beacon mode, the PAN coordinator does not broadcast beacons un-

16



less a beacon is requested for association purposes. Without beacons, the member

nodes must remain active at all times, draining power, unless lost transmissions are

tolerated to allow asynchronous sleep states. When transmitting, nodes access the

medium using unslotted CSMA/CA. Non-beacon mode in a peer-to-peer topology is

intended to support mobile devices and ad hoc networks where synchronization with

a coordinator is unreliable or unnecessary.

The algorithm for 802.15.4 CSMA/CA is shown in Figure 6. In both slotted

and unslotted, the algorithm initializes NB, number of backoffs, to 0 and BE, back-

off exponent, to macMinBe, minimum backoff. Slotted CSMA initializes CW, the

contention window, and locates the backoff period boundary within the current slot

before starting its randomly selected delay between [1, (2BE − 1)] backoff periods.

A backoff period is defined as 20 symbols of the utilized modulation method. Both

modes continue delay countdowns regardless of activity on the channel. At the end

of the delay, a Clear Channel Assessment (CCA) is performed, a success in the slot-

ted case decrements CW and repeats CCA until CW periods of open channel. In

the unslotted case, a successful CCA leads to an immediate transmission. Failure

in either case requires an increment of the BE, NB, and selection of a new delay.

Unlike other CSMA/CA implementations, failed acknowledgements do not trigger a

re-transmission and instead are left to the frame’s source service to handle.

17



Figure 6: Slotted and Unslotted CSMA/CA Algorithm for 802.15.4 [9]

18



2.3.2 Alternative Protocols

While this research focuses on 802.15.4, alternative wireless technologies such as

Bluetooth, LoRaWAN, and Wi-Fi were considered. Each technology is utilized in

various IoT applications such as smart homes, industrial monitoring, personal health

devices, and smart utilities. Bluetooth is most similar to 802.15.4 by providing short-

range, low-energy mesh modes, but it is a full protocol stack standard. WiFi is near

synonymous with wireless communication, but it provides higher data rates than

needed for WSNs at high energy costs. Admittedly, the new 802.11ah amendment,

referred to as ”Wi-Fi HaLow”, operates in the sub-GHz frequency band and boasts

>10 Mbps data rates with ranges of over 1 km and multi-year battery life; however,

commercial hardware is limited at this time [31]. Similarly, LoRaWAN, another sub-

GHz standard, operates with low energy over 10 km but at much lower data rates.

2.4 Routing Protocols

2.4.1 General Categories

Routing protocols determine the methods by which network devices share infor-

mation about the network in order route traffic between sources and destinations.

Protocols are categorized as using link-state or distance-vector algorithms. Addi-

tionally, in ad hoc networks, routing protocols can be further categorized as reactive

or proactive methods which determines whether routes are discovered as needed or

actively discovered and maintained respectively.

Link state protocols flood the network with their local connectivity information

for each router to construct their own table based on the received data. Each node

performs some form of Dijsktra’s shortest path algorithm and sends link updates when

changes are detected [32]. This method converges and responds to change quickly as

19



updates are sent to all nodes but can be more difficult to manage.

Distance vector protocols implement Bellman-Ford’s algorithm by iteratively dis-

tributing routing tables to neighbors [32]. Hop count is used as the metric for eval-

uating shortest paths to any particular destination. Iterative updates are slow to

converge and do not respond well to topology changes. However, implementation is

simple, requiring little expertise to manage.

2.4.2 Ad Hoc On-demand Distance Vector

AODV is a reactive distance-vector algorithm intended for use by mobile nodes

in an ad hoc network. The Internet Engineering Task Force (IETF) proposed AODV

as an experimental Request For Comments (RFC) in 2003 and the Zigbee Alliance’s

used it as the base for the Zigbee mesh routing protocol. The following is an abridged

description of the protocol, a full version is available on the IETF website [33].

AODV operates over User Datagram Protocol (UDP) and Internet Protocol (IP)

protocols using Route Request (RREQ), Route Reply (RREP), Route Error (RERR),

and Route Reply Acknowledgement (RREP-ACK) message types. When a route to

a new destination is needed or the current route in the routing table is no longer

valid, a RREQ message is broadcasted to nodes within range. If any receiving node

has a valid route more recent than indicated in the RREQ, then the node sends a

RREP unicasted back to the requestor. If the receivers do not have a route, they will

rebroadcast the RREQ while the Time To Live (TTL) is still valid. Nodes remember

RREQ and originator pairs in case the RREQ is rebroadcasted back to them, in this

case, the node will ignore the request.

Nodes monitor the links in their active routes to detect link breaks. When a

link break occurs, such as by a failure to receive an acknowledgement of a unicast

packet, a RERR message is generated and sent to nodes that have used the broken

20



link previously. All nodes affected by the link breakage invalidate the route if it is

still active.

Routes can also be invalidated if they have expired. When a RREP for a route is

being returned, and when RREQ are received, nodes immediately add or update the

current route to the sender in their routing table and set the Lifetime field of the route

to the ACTIVE ROUTE TIMEOUT parameter. This field, along with Destination

Sequence Number are used to maintain the freshness of routes. Once a route expires,

it is marked for deletion.

Additional proactive route maintenance functions using HELLO messages are not

used in this work.

2.4.3 Managed Flooding

Managed flooding is a basic broadcast routing method used by Bluetooth Mesh.

In multi-hop mesh networks, broadcast routing utilizes multi-paths to deliver packets

to the destination without predetermining a route as each receiving node relays the

packet if it is not the intended recipient. There are two methods to restrict message

rebroadcasting, the TTL of the message and node caching. The TTL of a message

decrements after each reception, guaranteeing the broadcast will eventually stop and

has a maximum value of 127. The node caching method adds messages to a list and

compares newly received messages to the list before rebroadcast. If the message has

been seen already, it is ignored, if not it will rebroadcast.

Wasted bandwidth from duplicated transmissions is directly related to the node

density, or neighborhood size, of a network segment. In the best case of a series of

N nodes connected in a chain, each node transmits a single packet per message but

receives a rebroadcast from each neighbor. In the worst case where all N nodes are

neighbors, each node receives the initial transmission then rebroadcasts for N trans-

21



missions and N receptions. For ad hoc networks, the performance costs introduced

by duplicate broadcasts and collisions is somewhat countered by multi-path routes

reaching the destination reliably without routing protocol overhead.

2.5 Related Research

This work builds on the MarathonNet system proposed by Pfisterer et al. in

2006 [34]. MarathonNet simulated a mesh network deployed to monitor runners at a

marathon. The marathon scenario used runner data from the Hamburg marathon in

2005 to develop an interpolation of times along the track. They placed between 4 and

20 base stations, incremented two at a time, at equidistant spaces through the race to

act as data sinks. A fixed quantity of 500 simulated runners carried networked sensors

with ranges between 50-300 meters and attempted to maintain connectivity between

data sinks. For trials with transmission ranges under 100 meters, less than 50% of

devices maintained connectivity throughout the race. Trials with transmission ranges

greater than 150 meters resulted in a majority of devices maintaining connectivity

for the majority of the course. In their recommendation, a transmission range of 200

meters and 8 base stations enables 80% connectivity for 80% of the race. Additionally,

they noted that transmission range affected connectivity more than additional base

stations beyond 10.

However, MarathonNet used a custom simulator called ’Shawn’ which is no longer

available and publications do not address several assumptions made by the authors.

First, the simulation does not model packet transmissions; it only monitors distance

between nodes as the factor of connectivity. Secondly, it does not consider routing

mechanisms required for an ad hoc network which could impact connectivity. Addi-

tionally, in predicting throughput capacity, the authors assume a Request To Send

(RTS) and Clear To Send (CTS) mechanism is available to guarantee packet delivery

22



which research has been shown to be unreliable in ad hoc networks and even increases

congestion [35].

In their thesis from the Naval Postgraduate School in 2004, Bach and Fickel per-

formed a feasibility analysis on 802.11 and 802.15.4 wireless networks within the con-

text of the Department of Defense (DoD) GIG [36]. While the definition has changed

over time, the GIG conceptually encompasses the interconnection of DoD information

systems collecting and processing data to control equipment or services and inform

warfighters or policy makers. The analysis included an overview of ad hoc routing

protocols, mesh architectures suitable to the GIG, and experiments to gauge maturity

of the technologies. In the overview of routing protocols, the authors concluded no

single protocol would be suitable for GIG applications, and instead, proposed a hybrid

implementation of several protocols for different parts of the GIG. They segmented

the GIG into fixed-mesh, mobile-mesh, and sensor-mesh architectures. The fixed-

mesh architecture represented a semi-permanent wireless infrastructure providing a

”last mile” connection to wired Internet. The mobile-mesh architecture represented

the idea of networked warriors operating outside of permanent wireless infrastructure.

The sensor-mesh architecture represented low data rate, low power, ubiquitous intel-

ligence informing other systems in the GIG. The experiments included trials of fixed

and mobile mesh Wi-Fi networks formed by between 5 and 10 laptops using AODV,

Optimized Link State Routing (OLSR), and other protocols. The distance between

laptops varied between 40 and 100 meters through the trials. To test reconfigura-

tion properties, latops walked out of range of their neighbors. OLSR proved to have

lower latency than AODV with similar reconfiguration performance, but its proac-

tive behavior decreased throughput. The authors concluded that the mesh networks

performed adequately during the trials, but the technology needed to mature due to

numerous failures during setup of the trials.

23



Kumar et al. conducted an analysis of several Mobile Ad hoc Network (MANET)

routing protocols under three different mobility models. The simulations tested

AODV, Dynamic Source Routing (DSR), and Destination-Sequenced Distance Vec-

tor (DSDV) routing protocols. Simulated nodes moved according to Random Group,

Manhattan Grid, and Freeway mobility models. Additionally, number of nodes and

node velocity varied across trials from between 10 and 50 nodes moving between 10

and 40 meters per second. The authors measured end-to-end delay and routing over-

head for each protocol; in nearly all cases, AODV outperformed the others as the size

of the network grew but performed poorly at high velocities [37].

2.6 Background Summary

This chapter introduces the concept of WSNs and IoT and some example appli-

cation areas. It provides information on the 802.15.4 protocol and briefly highlights

comparable standards. Then, an overview of AODV and managed flooding routing

protocols is described since they are used in this thesis. Finally, related research is

highlighted. However, outside of MarathonNet, very limited research has been con-

ducted in this area. This research proposes a WSN implementation using mobile

802.15.4 mesh motes.

24



III. MarathonSim Design

3.1 Overview

This research develops an OMNeT++ simulation, called MarathonSim, to test

the performance of a mesh LR-WPAN of sensor motes carried by runners during a

marathon. The simulation models the intended use case of sensors monitoring the

health and location of runners and transmitting the data through multi-hop routing

to an EMS Hub where event coordinators can observe the participants. This is

an extension of MarathonNet in Section 2.5 by modeling data transmission, power

consumption, and routing with 802.15.4 capable motes and gateways using AODV

and flooding protocols.

While MarathonNet concluded that marathon-wide mesh network connectivity is

feasible, it lacked predictions of any Quality of Service (QoS) metrics such as delays

and packet delivery reliability. Any attempt to develop a real marathon mesh network

needs to be informed by expected performance for a given a set of hardware param-

eters and protocols. Therefore, MarathonSim simulates data transmissions using the

802.15.4 protocol to account for contention access and collisions affecting performance.

Power consumed during transmissions and reception is measured to provide insight

into energy efficiency. AODV and flooding routing protocols are utilized to model

ad hoc network routing from two existing technologies, Zigbee and Bluetooth Mesh

respectively.

This chapter introduces the structure of an OMNeT++ simulation, and it then

describes the sensor motes, gateway, and marathon environment implementations of

MarathonSim.

25



3.2 OMNeT and INET

The simulation is implemented in the OMNeT++ simulator and uses models

from the Information Network (INET) framework [7, 8]. OMNeT++ is an open-

source discrete event simulator used for modeling communication networks and other

systems. The simulator can be extended by various frameworks and libraries. The

most common extension is the INET framework which implements, among other

things, the Open Systems Interconnection (OSI) stack, mobility models, and radio

wave propagation.

There are four main components of an OMNeT++ simulation shown in Figure 7.

At the lowest level is the simple module which describes a single functional component

in a Network Description (NED) file and implemented in accompanying C++ files.

The NED file uses the NED language to describe the module’s parameters, gates, and

event signals. These characteristics are used by the module’s C++ implementation

to define functionality such as the initialize() and handleMessage() behaviors. Simple

modules can be connected and grouped to form compound modules where gates are

connected through channels. Compound modules can use other compound modules

as submodules, allowing hierarchical nesting of arbitrary depth. At the highest level is

the system or network module which is a compound module itself. The last component

is the Initialization (INI) configuration file, named omnetpp.ini by default, which

defines runtime parameters and execution of the simulation.

26



Figure 7: OMNeT++ Simulation Architecture [38]

3.3 System Summary

An illustration of MarathonSim is provided in Figure 8. At the highest level,

the simulation consists of runners equipped with sensor motes producing data, a

marathon route the runners follow, and infrastructure gateways placed along the

route connected to an EMS Hub. As runners are moving through the course, the

data produced is relayed from runner to runner until a gateway is reached and sent

to the Hub. The simulation includes a radio medium model to describe the path loss

of the radio waves. The Internet infrastructure is assumed to be available and acts

as an ideal connection to the EMS Hub from the gateways.

27



Figure 8: MarathonSim System Diagram

3.4 The MarathonSim Network

The MarathonSim.ned network module in Appendix A describes the system sub-

modules and connections. The submodules reflect the entities shown in Figure 8 with

a few minor changes. The runners and motes are combined into host submodules.

The Internet infrastructure is modeled with idealized connections from each gateway

to a connectingSwitch submodule connected to the EMS Hub. Additionally, the

configurator submodule initializes IPv4 addresses and default routes necessary for

AODV.

Without an INI file, MarathonSim is incomplete because the configuration file

defines an instance of the network by specifying submodule types and parameters

of each instance such as number of hosts in the race. MarathonSim’s INI file in

Appendix B is organized to construct instances of the MarathonSim network through

composition of configuration sections. The following sections describe MarathonSim

in more detail.

28



3.4.1 The Marathon Environment

MarathonSim uses the route ran by participants in the AF Marathon at WPAFB.

The course, shown in Figure 9, is 42,195 meters long and includes 17 hydration

stations and 8 co-located medical tents with the exception of the standalone finish

line medical tent [2]. These points of temporary marathon infrastructure, plus one at

the starting line, are used as locations of the gateways. These locations are selected as

high likelihood placements in a real scenario while enjoying some degree of strategic

deployment covering multiple overlapping race segments. Future work may include

optimizing placement of gateways.

29



Figure 9: Full Marathon Route [2]

30



The simulated marathon route shown in Figure 10 is translated to the OMNeT++

environment by a Python script called waypointScript.py in Appendix C. First,

the course is manually traced using a photo editing tool called Krita [39]. From

the resulting trace, linear segments approximating the path are created by selecting

waypoints and recording the associated pixel coordinates. A total of 67 waypoints and

the 19 gateway positions are manually written to input text files marathon\_wapoints

.txt and gateways.txt respectively. The script takes the pixel coordinates and

calculates (X,Y) cartesian plane positions in meters. These positions are used in

the INI file under [Config LimitedGateways] to place the gateways and mobility

tracefiles to control mote mobility. The resulting route is 41,368 meters long, 0.5 miles

short of a full marathon, but it is sufficient for the simulation. The loss of accuracy

is due to approximating curves with straight lines. A more accurate representation

would require additional waypoints to better approximate curves. However, future

efforts should pivot to using mapping software to supply more exact route waypoints.

31



Figure 10: Simulated Route with Gateways Co-located with Marathon
Infrastructure

32



3.4.2 Sensor Motes and Runners

The sensor motes and runners are combined into a single compound model de-

picted in Figure 11. The model is defined in marathonSensorBase.ned and extends

existing INET models providing the layers shown by assigning the submodules of

each layer. At the physical layer, the mote consists of an 802.15.4 transceiver, power

submodules, and a runner mobility model. Above that is the link layer containing

the 802.15.4 MAC model running in non-beacon mode. The network layer allows a

modular assignment of either AODV or Managed Flood routing. The transport layer

is only used when the mote uses AODV as it requires UDP datagrams. Finally, the

application layer contains a data source application which emulates the production

of sensor data. The following sections describe the model in more detail.

Figure 11: Mote Architecture

33



3.4.2.1 Mote Physical Layer

The physical layer of the motes is responsible for signal transmission and reception,

power storage and consumption, and mobility. The performance of the radio is based

on the physical characteristics of the nRF52840 SoC in Table 1. The nRF52840 is

representative of modern SoCs available for LR-WPANs by supporting variable trans-

mission power, low power consumption, and multiple communication protocols such

as Bluetooth, Thread, 802.15.4, and proprietary 2.4 GHz protocols.

Table 1: Nordic Semiconductors nRF52840 Operating Attributes

Attribute Value Description

Transmission Power 0, 4, 8 dBm
The power output of the trans-
mitter signal

Transmission Current
Consumption

4.8, 9.6, 14.8 mA
Current consumed by the trans-
mitter during transmissions with
output powers 0, 4, 8 dBm

Receiver Sensitivity -100 dBm
Minimum power required for sig-
nals to possibly be received

Receiver Current Con-
sumption

4.6 mA
Current consumed by the receiver
during receptions

Transceiver The motes use the INET Ieee802154NarrowbandInterface.

ned module containing a Ieee802154NarrowbandScalarRadio.ned submodule which

defines the physical reception and transmission of data packets and transceiver states.

Through multiple levels of inheritance, this module contains a transmitter, a receiver,

and an antenna modeling 802.15.4 physical layer specifications. The majority of the

default parameters are not modified for this simulation.

The transmitter and receiver are set to Ieee802154NarrowbandScalarTransmitter

.ned and Ieee802154NarrowbandScalarReceiver.ned respectively. These modules

inherit from INET modules that implement dozens of convenience functions and pa-

rameters. They are set to operate on a single channel centered at 2450 MHz because

34



the INET model does not support channel scanning and selection. However, DSSS

O-QPSK modulation is implemented, allowing a 250 kbps data rate at a symbol rate

of 62.5 thousand symbols per second, or 62.5 kilobaud (kBd).

Figure 12 shows an example of a transmission by a mote in MarathonSim. When

the transmitter generates a transmission, it begins with a 4 byte preamble followed

by a 1 byte Start of Frame Delimiter (SFD), and then the 1 byte physical header; the

remainder of the transmission contains the payload, or Physical Service Data Unit

(PSDU), up to a maximum of 127 bytes. The example transmission also shows the

duration of the transmission of each component to be correct based on the 250 kbps

data rate. The preamble and SFD plus header complete in 128 microseconds and 64

microseconds respectively.

35



Figure 12: Example Transmission Showing Proper Modeling of Timing and Physical
Protocol

Receiver sensitivity and transmitter power are assigned according to the nRF52840

parameters in Table 1. Since these parameters represent a specific instance of a device,

they are assigned in the INI file described in Appendix B rather than the NED file.

36



The reception of a transmission is possible if the received power is greater than the

nRF52840 receiver sensitivity of -100 dBm. However, the reception is not guaranteed

to be successful. Every reception is processed through receiver’s error module to

calculate a Packet Error Rate (PER) based on the modulation scheme’s Bit Error

Rate (BER). A random number is then generated and compared against the PER to

determine a successful reception.

Power The mote module contains both power supply and power consumer

modules to represent battery capacity and consumption. As noted in Section 2.2.2.1,

operating the transceiver consumes more energy than any other mote operation.

Therefore, only transceiver power consumption is considered and uses the nRF52840

consumption characteristics in Table 1.

Battery capacity is fulfilled through the SimpleEpEnergyStorage.ned module.

At the start of a simulation, a nominalCapacity is assigned for maximum capacity,

in Joules, which is also the default initialCapacity. The CR2032 lithium coin cell

battery is an expected power source for small sensor motes and has a useful capacity

of 2400 Joules [40]. In the worst case, if a transceiver is constantly transmitting for

the 6 hour marathon, it is expected to consume only 0.0148 A ∗ 3.0 V ∗ 21, 600 sec =

959.04 Joules. Therefore, motes are not expected to become exhausted during the

marathon.

Power consumption is fulfilled through the StateBasedEpEnergyConsumer.ned

module. This module functions similar to the equations in Section 2.2.2.1. As

the transceiver transitions to sleep, idle, busy, transmitting, or receiving, a dif-

ferent energy consumption is applied for the duration of the state. The module

uses milliwatts rather than milliamps, so a conversion is needed from Table 1 using

Power = current∗voltage with the 3.0 V operating voltage of the nRF52840. Again,

as a specific instance of a device, these parameters are assigned in the INI file.

37



Mobility The mobility of the motes is controlled through the BonnMotion

.ned mobility module. BonnMotion describes the movement of an object through a

series of non-punctuated (T X Y) tuples in a text file. Each tuple shown in Figure

13 represents the arrival of an object to point (X,Y) at time T. Each line of the

file describes the motion of one object. Therefore, line 1 is assigned to mote 1, and

describes starting at coordinates (342,2226) in meters and moving to (342, 2101)

after 158 seconds. BonnMotion is based on the a mobility generation tool of the same

name that generates mobility scenario trace files, but the generator is not used in this

work [41].

Figure 13: Example BonnMotion Tuples from Trace File

Since the route is very specific, trace files are created using waypointScript.py.

The marathon route waypoints are used to generate a line in the trace file for each

mote depending on the runner’s randomly selected characteristics. As MarathonNet

observed, and is seen from other sources, marathon runner finish times are close to

normally distributed such that the random variable X ∼ N(266, 59) describes finish

time in minutes [42]. In the absence of access to sample runner data, a runner’s finish

time is selected from X in waypointScript.py and divides the route length to get a

velocity. However, a constant velocity for all runners is unrealistic; therefore, running

behaviors are assigned randomly according to Table 2. These four behaviors include

constant pace runners, interval runners, frequent walkers, and drop outs which are

not accounted for in finish times alone.

38



Table 2: Running Behaviors

Runner Behavior Percentage Assigned Description
WALK RUN 20 20% chance to walk segments

DROP OUT 7.5
0.5% chance to drop out at
each segment

WALKER 10
40% to walk after run, 80% to
run after walk

RUNNER 62.5
Consistent pace throughout
race

The behaviors in Table 2 adjust a runner’s state as segments are completed. For

each segment of the course, the segment distance and runner velocity are used to

calculate an arrival time at the end of the segment. All runners start in a running

state using their assigned velocities. Depending on their behavior, a runner changes

their state between running, walking, or dropped out after each segment. For a

WALK RUN runner, at each segment the runner has a 20% chance to walk the

segment, but it resumes running at the following segment. A DROP OUT runner

has a 0.5% at each segment to halt running and remain in place for the remainder

of the marathon. A WALKER has a 40% chance to walk after each segment, and

they return to running with an 80% chance at each segment. The RUNNER behavior

maintains their velocity throughout the race. At each segment, all runner velocity

varies by +/- 10% to introduce additional movement of runners in relation to each

other. The resulting (T X Y) tuples are written to a default output file and must

be copied to the omnetpp.ini configuration file. The number of runners generated is

configurable through command line arguments such as:

python waypoint_script.py --num_runners=X

39



3.4.2.2 Mote Link Layer

The link layer is responsible for the validation and acknowledgement of data

frames, PAN association, beacon operating mode, and the MAC protocol. The motes

utilize the non-beacon operating mode due to their constant mobility changing the

network structure especially when passing gateways. Additionally, as runners change

positions or move out of range of each other, the motes’ receivers must stay active to

receive and relay communications reliably.

IEEE 802.15.4 Interface The Ieee802154NarrowbandInterface.ned mod-

ule encapsulates the link and physical layers through the mac and radio submodules.

The mac submodule is assigned the Ieee802154NarrowbandMac.ned module type

to implement the unslotted CSMA/CA algorithm in Figure 6. Unfortunately, this

module does not perform PAN association, management, or addressing. The lack of

complete PAN management means the simulation must assume motes are associated

prior to the start of the marathon.

Despite the CSMA/CA mechanism, transmission collisions are a concern. The de-

fault backoff exponent is macMinBE=3, meaning only [0, 23 − 1] backoffs are available

for nodes to select for delays. For sufficiently high traffic or quantity of nodes, colli-

sions become likely. To decrease the likelihood of collisions, the macMinBE could be

increased at the cost of higher average delays. For this system, collisions are danger-

ous because both routing mechanisms discussed in Section 3.4.2.3 rely on broadcast

transmissions, which are not acknowledged under 802.15.4. The lack of acknowledg-

ment messages means if a broadcasted transmission collides, it is irrecoverable. Other

research has shown that to achieve a 90% probability of successful transmission under

CSMA/CA requires

n <
2BE

4
(9)

40



where n is the number of devices attempting to transmit and BE is the backoff

exponent [43]. For up to 125 motes attempting a transmission simultaneously, a

macMinBe=9 is necessary to achieve 90% success on the first attempt. However, a

high density of motes is only expected at the start of the marathon when runners

are together. Fast and slow runners move out of range within 5 minutes of the start

of the race, reducing device density. This minimum backoff exponent, macMinBE=9

, introduces an average single-hop delay of ((29−1)
2
∗ 16µsec ∗ 20symbols = 0.08176

seconds where 16µ and 20symbols are parameters of 802.15.4 MAC and bitrate. This

exponent could be reduced if collisions are infrequent.

Because motes are assumed to be associated before the simulation starts, addresses

are assumed to be known a priori. This abstraction is performed at the network

and link layers through the GlobalArp submodule allowing instantaneous simulation

time address resolution. The module allows traditional 48 bit hardware addressing

for destinations addressed by variable names, module names, or address protocol

such as IPv4. However, 802.15.4 allows long, 64 bit, or short, 16 bit, addressing

resulting in a header length between 9 and 25 bytes. Therefore, INET specifies

physical transmission of MAC headers separate from simulation logic. An example

is depicted in Figure 14 showing a transmission from host[23] to gateway[1]. The

source and destination addresses are using traditional 48 bit hardware addresses for

compatibility with simulation functions, but the actual transmitted header is specified

to be 9 bytes long. 802.15.4 MAC headers are a minimum size of 9 bytes for associated,

intra-PAN communication.

41



Figure 14: Address Abstraction from INET 48 bit Addressing to 802.15.4 Headers

3.4.2.3 Mote Network Layer

The network layer is responsible for packet forwarding and routing through the

network. The 802.15.4 standard does not include specifications for the network layer,

so MarathonSim uses methods from two other full stack LR-WPANs protocols, Zigbee

and Bluetooth Mesh. These protocols use AODV and managed flooding respectively

to route traffic to destinations.

AODV Routing In order to use AODV, the motes specify usage of IPv4 and

the Aodv.ned routing module. IPv4 has historically been considered impractical for

WSNs due to address limitations and protocol overhead, but it has been demonstrated

to not be the barrier previously thought as hardware improved [44]. IPv6 is even

used by modern IoT networks such as Thread protocol. However, IPv4 is required for

the INET implementation of AODV. IPv4 is a built-in layer of INET modules and

42



instantiated by default in the motes.

Within marathonSensorBase.ned, the appRoutingModule submodule is not de-

fined and requires the INI file to specify the Aodv.ned type which executes the AODV

protocol. Assigning the module and its parameters takes place within the [Config

AODVBase] option. While the majority of the operating parameters remain default

values, the INI file sets deletePeriod=1s to clear out inactive routes quickly. Exper-

iments with adjusting other parameters such as activeRouteTimeout, netDiameter,

and ttlThreshold failed to improve performance consistently.

Managed Flooding Similar to AODV, managed flooding is assigned through

the INI config file under [Config FloodingBase]. This section removes the IPv4 layer

from the motes and replaces it with a SimpleNetworkLayer.ned using the Flooding

.ned network protocol type functioning as described in Section 2.4.3. The INI file

configures flooding parameters. The max number of remembered message-origin pairs

and deletion times are set to n ∗m and 21600 sec respectively. Max entries is a vari-

able parameter based on the number of motes, n, in that instance of the network. It

is multiplied by the total messages sent by a mote, m, to remember every message

sent by every mote to prevent duplicates being sent to the EMS Hub. This is an

unrealistic expectation due to inefficient use of limited memory. However, it does not

affect simulated performance, and other methods to detect message duplications at

the destination failed.

3.4.2.4 Mote Transport Layer

When AODV routing is used, the transport layer is required to be instantiated

because the AODV module uses UDP datagrams. The datagrams introduce an 8

byte header penalty compared to just flooding, but the packet size remains under

the 127 octet requirement of 802.15.4. Since 802.15.4 does not include networking or

43



transport layer mechanisms, end-to-end transmissions in MarathonSim are unreliable.

The absence of end-to-end reliability illustrates the baseline network reliability and

whether further mechanisms are needed.

3.4.2.5 Mote Application Layer

The intended application of the motes is to collect sensor data on the runner’s

current health and position periodically and transmit it to the EMS Hub. Therefore,

each mote contains an IpvxTrafGen.ned submodule to generate sensor data during

the race. However, data generation is simulated only to test network performance;

meaning a payload is needed but not actual sensor data. An example data payload

is shown in Table 3 containing a total of 32 bytes across six data fields.

Table 3: Estimated Sensor Payload Size

Data Type Size
Runner ID int 4 bytes
Heartrate int 4 bytes

Temperature int 4 bytes
Position double 8 bytes
Seq No int 4 bytes

Timestamp double 8 bytes

As mentioned in Section 3.4.2.2, 802.15.4 sets a maximum frame size of 127 bytes

with between 9 and 25 bytes reserved for MAC headers. Therefore, a ’safe’ payload

must be less than 127 − 25 = 102 bytes, but devices using the newest standard

can handle 127 − 9 = 118 bytes. Fragmentation is not supported by 802.15.4, so

higher layer protocols such as IPv6 over Low-Power Wireless Personal Area Network

(6LoWPAN) must be used if larger payloads are needed. However, this work limits

payload size specifically to avoid fragmentation.

A mote simulates sending sensor data every 60 seconds. It collects one hypotheti-

cal sensor measurement every 30 seconds, resulting in 64 data bytes every one minute.

44



This payload, plus potentially 20 bytes from IP and 8 bytes from UDP, fits within

the ’safe’ payload size. Changes in runner status such as velocity and heart rate are

expected to be low, so the 60 second interval provides a regular update to the central

database and reduces the probability of collisions when accessing the medium.

3.4.3 Infrastructure Gateways

The gateways are primitive models of Thread and Zigbee Border Routers [45].

In MarathonSim, the gateways act as the border between the low-rate, low-power

802.15.4 wireless communication of the motes and high-speed Ethernet or fiber back-

bone of the Internet. For consistency and because the nRF52840 is utilized in Nordic

Semiconductors’ guide for DIY border routers, the gateways are designed similar to

the motes as shown in Figure 15. The physical layer has a transceiver for wireless

communication and Ethernet port for connecting to the Internet. The remainder of

the layers are the same except for the lack of an application layer.

Figure 15: Gateway Architecture

45



3.4.3.1 Gateway Physical Layer

Transceiver The gateway transceiver is identical to the mote transceiver

described in Section 3.4.2.1. It is assigned simultaneously in the INI file.

Ethernet The gateway Ethernet port is connected through a 100 Gbps Eth-

ernet connection to a switch that connects to all other gateways and the EMS Hub.

Additionally, the connection is simulated as only 1 meter long to minimize propaga-

tion delay. These unrealistic parameters isolate network performance metrics to the

wireless components.

Mobility Despite being stationary, the gateway positions are assigned using

the StationaryMobility.ned module through the INI file. When running waypointsScript

.py, another output file called omnetppini.txt is generated that contains the INI

parameters to assign all gateways to their positions when copied into the [Config

LimitedGateways] section.

3.4.3.2 Gateway Link Layer

IEEE 802.15.4 Interface The gateway link layer is identical to the mote

link layer described in Section 3.4.2.2. It is assigned simultaneously in the INI file.

3.4.3.3 Gateway Network Layer

The gateway network layer retains an IPv4 layer in both routing methods for

transmissions to the EMS Hub, but it utilizes the same modules as the mote network

layer described in Section 3.4.2.3. The key difference is the assignment of a static route

through the MarathonSim configurator submodule. The configurator is assigned

flat_network.xml within the INI that sets the subnets and the static route. All

46



gateways are assigned a static route shown in Figure 16 for transmissions destined

for the EMS Hub to be directed out onto the Ethernet interface.

Figure 16: Static Route Assigned in flat_network.xml

For AODV operations, the gateways act as intermediary nodes with permanent

connections to the EMS Hub. Any mote within range of a gateway should be able

to contact the gateway with a RREQ message and receive a RREP with the gateway

as the next hop due to the static route. Additionally, the static route cannot be

invalidated, so if a mote fails transmissions due to collisions and tries to invalidate

the route, the gateway ignores the attempt to invalidate the route.

Flooding operations similarly relies on the static route as a method of moving

the transmission from the WLAN interface onto the Ethernet interface. Without the

static route and presence of IPv4, the gateway simply rebroadcasts over the WLAN

interface. It is expected that a proper border gateway implementation handles the

relaying between interfaces.

3.4.4 EMS Hub

The EMS Hub represents the database from which observers access the data pro-

duced by the participants’ sensors. It is implemented as a StandardHost.ned module

and connected to the gateways through the connectingSwitch with identical chan-

nels. The Hub includes a dataSink submodule of type IpvxTrafSink.ned to collect

data transmitted from the motes but has no other function. The EMS Hub is as-

signed the 10.10.10.10 static IP address through the configurator submodule for

mote applications and static routes to target.

47



3.4.5 Network Configurator

The MarathonSim configurator uses a network configuration file to manually

assign subnets to the wireless interfaces, the Ethernet interfaces, and a specific address

to the EMS Hub. As mentioned in Section 3.4.3.3, the configurator also assigns

a static route used to ensure translation from wireless communication to the wired

interface connected to the EMS Hub. In addition to the static route, Figure 16 also

shows the assignment of subnets with a corresponding metric used to determine cost

of a route. Wireless interfaces are assigned an arbitrarily high metric to force the

gateways to respond to RREQ messages with the low metric, static, wired interface

route rather than any wireless routes to the EMS Hub.

3.4.6 Radio Medium

The radioMedium submodule manages the propagation and delivery of signals to

receivers within range of detecting the transmission. The submodule is assigned the

Ieee802154NarrowbandScalarRadioMedium.ned type to match the radios used by

the devices in the network. This model accounts for background noise interference,

path loss calculations, and filtering of transmissions to help with runtime complexity.

The radioMedium submodule uses BreakpointPathLoss.ned to model path loss.

This module uses the same path loss formula recommended in Section 2.2.2.2, but it

simplifies Equation (8) to just Free-Space Path Loss at the break point distance. The

break point distance is calculated from (7) as 32 meters with a break point path loss

Lbp = 70.33 dB. Path loss coefficients of 2 and 4 are used from (6).

Motes available to possibly receive a transmission are calculated as those within

a maximum interference range. The maximum communication range is shorter and

essentially a link budget using the transmission power, receiver sensitivity, and path

loss over distance. For the lowest transmission power of the nRF52840, a 0 dBm

48



output power results in a link budget equation of

− 100dBm = 0dBm− LPL (10)

where LPL is the path loss meaning up to -100 dBm can be tolerated. Interference

range accounts for transmissions being outside of communication range but still af-

fecting the reception of other transmissions. The INET framework commonly used

sensitivity minus 6 dBm as a guideline because there is no rule.

With clear line of sight, the nRF52840 has been reported to successfully transmit

196, 231, and 280 meters at 0, 4, and 8 dBm transmission power respectively using

the Zigbee protocol [46]. Simulation trials using marathonSensorBase.ned and the

Ieee802154ScalarRadioMedium.ned resulted in similar, but shorter, ranges shown

in Figure 17. The simulated ranges of 176, 222, and 280 meters indicate the INET

models or the assigned path loss coefficient parameters underestimate transmission

range performance.

49



Figure 17: Max Transmission Ranges for nRF52840 Resulting from 0, 4, and 8 dBm
Output Power

3.5 MarathonSim Design Summary

This chapter introduces the basic structure of an OMNeT++ simulation and INET

capabilities. Additionally, Section 3.4 presents the components and parameters of

MarathonSim. Limited demonstrations illustrate the verification of the functionality

of the utilized models.

50



IV. Methodology

4.1 Overview and Objectives

The simulations conducted in this research test the performance of a mobile

WSN in a marathon scenario. The economic burden of testing a prototype WSN

of hundreds of motes is too large without performance data to support development.

While MarathonNet provided connectivity estimates, it did not simulate full devices.

MarathonSim models full-stack motes and gateways to achieve the following objec-

tives:

• Measure the capability of the network to deliver sensor data.

• Analyze the interaction between transmission ranges and quantity of devices.

• Examine energy requirements of mote devices.

• Evaluate performance of AODV and Managed Flooding routing protocols.

The outcomes of these objectives guide development of a prototype WSN by esti-

mating performance and demonstrating possible limitations of the technologies.

4.2 System Under Test

Figure 18 illustrates the System Under Test (SUT) and Component Under Test

(CUT). The output metrics, or response variables, include packets delivered to the

EMS Hub, end-to-end delay of those packets, and the power consumed by the motes

through the marathon. The factors are the inputs intended to affect a change in

the response variables, such as the transmission power, routing protocol, and number

of motes in the marathon. Constant parameters are the variables that could affect

performance but kept constant throughout the trials.

51



Figure 18: System Under Test and Component Under Test Diagram

4.3 Assumptions and Limitations

The following assumptions are used in executing this experiment:

• Marathon finish times approach a normal distribution, allowing approximation

of runner velocities.

• Motes are associated in a single 802.15.4 PAN before the start of the simulation.

• Internet infrastructure is available to connect gateways and introduces negligible

performance impact compared to wireless communications.

• Processing time and energy consumed by sensor and microprocessor operation

is negligible compared to radio operations.

The following limitations are placed to ensure manageable scope:

• All wireless communication takes place in a single channel in the 2.4 GHz range.

52



• Only 802.15.4 non-beacon mode is simulated.

4.4 Factors

The trials of this experiment execute a full factorial design by running a trial of

each combination of the factor levels listed in Table 4. Transmission power, number

of motes, and routing protocol are varied between each trial to induce changes in

network performance.

Table 4: Factor Levels

Factor Level Description

Transmission Power 1, 2.5, 6.3 mW
Transceiver output power based
on the nRF52840

Number of Runners 25, 50, 75, 100, 125
Quantity of runners equipped
with motes running the marathon

Routing Protocol AODV, Flooding
The method of routing packets
throughout the network

The transmission power is the power output from the mote and gateway transceivers

during data transmissions. It is a critical design metric for motes in a WSN that im-

pacts network structure and general performance, as well as mote lifetime. Higher

power allows greater coverage with fewer devices, but it increases consumption of

limited power supplies. The selected levels represent the operating characteristics of

the nRF52840 on which the models are based. The change of units from Table 1 is

required by the implementation in MarathonSim. The equation to change from dBm

to mW is

PmW = 1mW ∗ 10
PdBm

10 (11)

where PdBm represents the dBm being changed to mW and PmW is the result.

The number of motes in each trial represent both runners and sensors participat-

ing in the mesh network. Similar to transmission power, greater quantities of motes

53



increases coverage potential but introduces additional material cost, bandwidth us-

age, and network density. Previous work by MarathonNet tested a fixed quantity of

500 motes, but that would require a significant commitment of resources to deploy.

Instead, this experiment explores lower numbers of motes from 25 to 125 in order to

establish network performance at lower device densities.

The routing protocols of AODV and managed flooding are an approximation of

routing used by commercial technologies. Zigbee and Bluetooth mesh are both LR-

WPANs with similar physical layer performance such as data rates and communica-

tion ranges but utilize different routing protocols.

4.5 System Parameters

Throughout the experiments, some factors are held constant to prevent them from

influencing results between trials. These system parameters include both default

parameters of INET models used in MarathonSim and configurations set through

the INI file. Parameters unique to MarathonSim are shown in Table 5. Default

parameters of the INET models such as 802.15.4 protocol parameters are not included.

54



Table 5: Selected System Parameters

System Parameter Value Description
Number of Gateways 19 19 gateways distributed according to Figure 10

Gateway Positions See Figure 10
Gateways placed alongside marathon infrastruc-
ture

Receiver Sensitivity -100 dBm nRF52840 receiver sensitivity
backgroundNoise.power -110 dBm Estimated background noise [47]

pathLoss.breakpointDistance 32 m Distance at which path loss changes based on (7)
pathLoss.l02 70.33 dB Free Space Path Loss at breakpoint distance

pathLoss.alpha2 4 Recommended path loss coefficient from (6)
receiverReceivingPowerConsumption 13.8 mW nRF52840 receiver power consumption

wlan.macMinBE 9 Minimum backoff exponent
wlan.macMaxBE 12 Maximum backoff exponent

dataGen Start Time uniform(1,60) s Time the application begins producing data
dataGen Packet Length 64 B Size of the sensor application packet payload

dataGen Interval 60 s Time between packet generations

AODV Active Route Timeout 3 s
Lifespan of an AODV route before expiring if not
used

4.6 Performance Metrics

The metrics are the responses measured from the trials to support the objectives

of this experiment and are listed in Table 6.

Table 6: MarathonSim Performance Metrics

Metric Unit Description

Packet Delivery Ratio %
The ratio of packets sent from all motes
to the packets received at the EMS Hub.

End-to-End Delay seconds
The delay experienced from packet trans-
mission to packet reception at the EMS
Hub.

Mean Power Consump-
tion per Node

J
Average power consumed by motes during
the marathon.

Packet Delivery Ratio The Packet Delivery Ratio (PDR) is a measure of

the ratio of total packets delivered to the EMS Hub and total packets sent by the

motes. The ratio is both an indicator of connectivity and congestion. Network seg-

55



ments with high congestion experience collisions and dropped transmissions. Without

an application or transport layer mechanism, the PDR represents the best effort pro-

vided by the lower layers. Depending on the deployed application, additional QoS

services may be needed.

For N runners in a simulation, the PDR is calculated simply as

PDR =
Qreceived

360 ∗N
(12)

where Qreceived is the number of packets received at the EMS Hub. The number

of runners is multiplied by 360 because each mote produces a data packet every 60

seconds, for the 6 hour marathon.

Mean End-to-End Delay The mean end-to-end delay measures the aver-

age duration of time from creation to delivery to the EMS Hub. This QoS metric

provides insight into network congestion as motes enter exponential backoff delays

when sensing the channel is active. Long delays are indicative of frequent backoffs or

many intermediate hops. Mean delay is calculated as

meanDelayE,E =
1

Qreceived

Qreceived∑
i=1

(Treceived(i)− Tgenerated(i)) (13)

where Tgenerated(i) is the sim time the packet was generated and Treceived(i) is the time

it was received at the EMS Hub.

Mean Power Consumption per Mote The average power consumption

of a mote is a classic WSN performance metric measuring the energy efficiency of the

battery-powered motes. Most WSN applications are expected to operate for days,

weeks, or even years. As shown in Section 3.4.2.1, a CR2032 lithium coin cell battery

is more than enough to supply a mote for the duration of a 6 hour marathon. However,

56



the usefulness of this technology to other applications depends on this metric. Mean

power consumed per node is calculated as

P̄mote =
1

N

N∑
i=1

(Ptimeavg(i) ∗ 21600s) (14)

where for N motes P̄mote is the average power consumed per mote and Ptimeavg(i) is

the time average power consumed by mote i as it transitions from different states

over time. It is multiplied by the duration of the marathon to estimate consumption

throughout the simulation.

4.7 Uncontrolled Variable

One factor remains uncontrolled in this experiment, the mote mobility. The mo-

bility is described in Section 3.4.2.1 and uses a normally distributed random variable

to generate runner velocities that approximate human movement. However, as the

number of motes increases between trials, a new set of mobility traces are generated

for the new set of motes. The movement of motes through the marathon affects the

connectivity of the network and there exists a chance that one trace file has a more

clustered group of runners than another set. A larger cluster potentially allows higher

connectivity in between gateways. This variable could be eliminated by accessing a

database with more granular distance and time data on marathon participants that

can also remain constant between trials.

4.8 Experimental Design

This section describes the design of this experiment and the steps performed in its

execution. The experiment is a full factorial design to explore the interactions between

the selected factors and determine levels that appear to optimize performance. With

57



the factors shown in Table 4, a total of (3 ∗ 5 ∗ 2) = 30 trials are conducted without

replication. The lack of replication is due to the runtimes of MarathonSim trials with

more than 100 runners exceeding 7 days each. The consequences of this is discussed

further in Section 4.9.

As a simulation for a proposed system, MarathonSim cannot be validated against

an operational system or experimental data. The only similar system is the Marathon-

Net simulation, but the tool is no longer available and uses different parameters and

marathon route. Instead, face validity is established from using components model-

ing existing protocols and devices, inspecting the analytical models for accuracy, and

examining animation behaviors mentioned throughout Section 3.4. Face validity is

a weak validation, so simulated results should not be taken as predictions of a real

marathon WSN. However, the changes in metrics due to factor levels are expected to

be representative of the real marathon.

4.8.1 Mobility Trace Generations

The first step in executing the experiment is generating the mobility traces for each

number of motes factor level. Using waypointsScript.py, trace files are generated

by running the command

python waypoint_script.py --num_runners=X

for each number of motes. The script generates a runners_X.txt file that must be

copied into the MarathonSim project directory in the OMNeT++ Integrated Devel-

opment Environment (IDE). All mobility trace files are placed into the marathonsim

/simulations/runner_speeds directory as shown in Figure 19.

58



Figure 19: Placement of Mobility Trace Files within Project Directory

4.8.2 INI Configuration

The INI file defines the instances of MarathonSim.ned with default values and

configurations shown in Appendix B. No changes should be necessary to it, but for

executing factors unique to this experiment, the following lines are used

*. numHosts = ${n=25, 50, 75, 100, 125}

**. transmitter.power = ${power =1 ,2.5 ,6.3}mW

where the first line sets an iterative variable for the number of runners. The second

line sets an iterative variable for transmitter power.

59



4.8.3 Batch Execution

The execution of the trials occurs in batches within the OMNeT++ IDE. Fig-

ure 20 shows the interface for setting up a batched run configuration. Clicking

the arrow next to the green play button brings up the dialog box to allow a cus-

tomized batch. The first section under ”Simulation” contains the ”Config name”

and ”Run(s)” options. The ”Config Name” drop-down box allows selection of the

configurations enumerated in the INI file. The first batch using the AODV proto-

col is set by selecting ”LimitedGatewaysAODVMinRecording” and setting ”Run(s)”

to 0..14. This executes every number of runners and transmission power combina-

tion using the AODV protocol. The second batch is executed similarly by selecting

”LimitedGatewaysFloodMinRecording” and setting ”Run(s)” to 0..14.

Additionally, under the ”Execution” parameters, the ”User interface” is set to

”Cmdenv” for shell execution. Due to limited hardware, only 4 CPU cores are used

to execute parallel simulations.

Clicking ”Run” begins the batch execution and takes up to 10 days. Progress can

be monitored through the command terminals. Each trial’s results are written to a

scalar and a vector file for single values and timestamped vectors of values respectively.

60



Figure 20: Batch Run Configuration Tool and Execution

61



4.9 Statistical Analysis

In support of the objectives listed in Section 4.1, the metrics in Table 6 are

recorded by OMNeT++ for each trial and analyzed using a series of tests in MAT-

LAB. The goals of evaluating network performance, interaction between transmission

power and number of runners, and protocol differences are evaluated through sta-

tistical comparisons. However, assessment of energy consumption is limited by the

assumptions of the simulation and small sample size.

As mentioned in Section 4.8, the experiment trials are conducted without repli-

cation due to runtimes exceeding 7 days each for trials with more than 100 runners.

MarathonSim includes computationally expensive modeling of signal propagation re-

sulting in longer runtimes as the number of devices increases. As a consequence,

the lack of replicates reduces the statistical power of tests conducted. A low power

means there is a higher probability of a Type II error which is a failure to reject a

false null hypothesis. Incidentally, smaller factor effects are more difficult to detect

than if more samples were available as the null hypothesis is more likely to not be re-

jected. Additionally, with a single observation per factor combination, the predicted

performance is vulnerable to being misrepresented by variance and outliers.

Keeping in mind the lack of replicates, a three-way Analysis of Variance (ANOVA)

test is conducted for each metric to determine significant factors among transmission

power, number of runners, and routing protocol. The higher-order interaction of all

three factors is pooled to estimate error, otherwise the degrees of freedom for error

would be zero and invalidate the test. The main factors are maintained as well as the

second-order interactions.

Results of the ANOVA must be verified by ensuring its standard assumptions

are not violated: independence of observations, normality of residuals or errors, and

equal variance between factor levels. The independence of observations is evident from

62



simulation trials being isolated. Normal distribution of residuals is tested using the

Anderson-Darling test where a non-significant result against a threshold of α = 0.05

indicates normality. The equality or homogeneity of variance is verified through the

Levene’s test where a non-significant result against a threshold of α = 0.05 indicates

homogeneity.

Following verification of a significant ANOVA result, a post hoc multiple com-

parison Tukey test is conducted to determine which factor level proved statistically

different from the others. The post hoc tests require the same assumptions to be

met as ANOVA. All tests are conducted against the null hypothesis of no difference

in means with an alternative hypothesis of a difference. A significant difference re-

quires a p-value to be reported between groups such that it is less than a threshold

of α = 0.05.

While the trials provide weak support for estimating specific levels of performance,

they capture statistically significant factors and levels. The predicted performances

can guide development of future devices, but they should not inform specific design

choices until the simulation is validated through small prototypes.

4.10 Methodology Summary

Chapter 4 provides a breakdown of the methodology for the experiment in this re-

search. A full factorial experiment evaluates WSN performance metrics under varying

levels of transmission power, quantity of runners, and routing protocol. Section 4.8

shows necessary commands to set up and execute the experiment in the OMNeT++

IDE. Finally, Section 4.9 specifies how the results are analyzed for significance.

63



V. Results and Analysis

5.1 Overview

This chapter describes the results of the MarathonSim experiment detailed in

Chapter 4. The results are presented in Section 5.2 along with analysis before being

summarized in Section 5.3.

5.2 MarathonSim Performance Metrics Analysis

This section presents the results of the data collected on the performance metrics

of Section 4.6. Each metric is presented with graphs and statistical analysis. As

noted in Chapter 4, the lack of replicates reduce the usefulness of the experiment

in predicting performance values. Specifically, the results are vulnerable to Type

II errors of failing to reject a false null hypothesis due to low power. Therefore,

the bulk of this analysis focuses on trends and effects rather than specific predicted

performance data.

5.2.1 Packet Delivery Ratio

The PDR metric serves as a multipurpose measurement of overall network perfor-

mance. As runners move through the course, the motes lose and regain access to the

network depending on available peers and gateways to relay data. A high PDR is de-

sirable and indicates a well-connected network with low congestion allowing continual

updates at the EMS Hub. The measurements of PDRs across all trials is shown in

Figure 21. Each line represents a combination of routing protocol and transmission

power charted over increasing numbers of runners. The AODV trials are printed with

dashed lines, while flood trials use a dotted lines.

64



Figure 21: Packet Delivery Ratio by Protocol and Transmission Power
over Number of Runners

Before analyzing the results, a minimum level of connectivity is estimated for a

single mote running through the course. The minimum connectivity expected can be

calculated as percentage of time a single mote is within range of a gateway. Using

the simulated route length of 41,368 meters and simulated transmission ranges of

176, 222, and 280 meters, the percentage of time a mote is in range of a gateway is

calculated by

(2R) ∗Gcourse +R ∗Gstart

41368m
= Conbase

where R is the transmission range for 18 course gateways, Gcourse, and one starting

line gateway Gstart. The baseline connectivity, Conbase, is the percentage of the course

covered under a given transmission range R. At the starting line gateway, runners

move away from the gateway rather than into it so only the radius is used while the

65



remaining 18 gateways, Gcourse, use their full transmission diameters. For 0, 4, and 8

dBm output power, the baseline connectivity is 15.5%, 19.8%, and 25.0% respectively.

As seen in Figure 21, each trial of 0, 4, and 8 dBm exceeds the baseline connectivity for

the corresponding output power. Each increase in transmission power increases flood

protocol PDR by between 10-20% which exceeds the increases in base connectivity

between 15.5%, 19.8%, and 25.0%. The highest PDR of 78.7% occurred under 100

runners with 6.3 mW transmission power motes running the flood protocol, more

than triple the baseline connectivity of 25.0% for 8 dBm output power.

Unexpectedly, nearly every AODV trial resulted in a PDR less than the corre-

sponding flood trial with the exception of trials with 25 runners. In fact, AODV

PDR remained constant, or decreased, as the number of runners increased while the

flood trials exhibited consistent growth. With flood trials doubling PDRs between

25 and 125 runners, the lack of improvement in AODV is concerning for a MANET

protocol. Upon further inspection, link breakages between motes and gateways failed

to trigger a RERR message broadcast. A function within Aodv.ned when creating a

RERR message calls to route->getProtocolData(), which returned static IP route

data rather than an AodvRouteData unit. This caused RERRs to fail to propagate

the network and invalidate routes when moving beyond the range of a gateway.

Additionally, for the AODV trials with 100 runners, the PDRs converged rather

than improving and erased the benefits of longer transmission ranges seen in other

trials. The results potentially indicate influence from the uncontrolled mote mobility

mentioned in Section 4.7; however, the absence of a performance hit in the flood trials

means the problem is unique to AODV.

The ANOVA results in Table 7 indicate significant effects from all factors. The

p-value for each main factor is less than the significance threshold of α = 0.05 which

rejects the null hypothesis. The effects from routing protocol may not be as strong

66



as indicated due to the flaws discovered in the AODV implementation, but the trans-

mission power and number of runners effects are statistically significant. The second-

order terms of routing protocol and the other factors are also undermined by the

results of AODV. However, the second-order interaction of number of runners and

transmission power are statistically significant with a p-value of 0.0253.

Table 7: Results of ANOVA on PDR Metric

Source Sum Sq. DF Mean Sq. F-stat P
NumberRunners 0.3759 4 0.0940 16.5496 0.0006
TransmissionPower 1.7212 2 0.8606 151.5594 0.0000
RoutingProtocol 1.5355 1 1.5355 270.4110 0.0000
NumberRunners*
TransmissionPower

0.2007 8 0.0251 4.4174 0.0253

NumberRunners*
RoutingProtocol

0.5573 4 0.1393 24.5362 0.0002

TransmissionPower*
RoutingProtocol

0.1314 2 0.0657 11.5733 0.0044

Error 0.0454 8 0.0057
Total 4.5673 29

Testing of the assumptions of ANOVA is shown in Table 8. With no p-value less

than the significance threshold of α = 0.05, the assumptions of normal distribution

and equal variances are not rejected.

Table 8: ANOVA Assumption Tests for PDR

Test Type Metric P-Value
Anderson-Darling (Normality) N/A 0.9670
Levene’s (Variance) Number of Runners 0.8944
Levene’s (Variance) Transmission Power 0.4114

The PDR, averaged by factor levels, are shown in Figure 22. The isolated averages

exhibit an increased PDR as the level of runners and transmission power increases as

expected. With such limited samples, averaging across groups assists to visualize the

impact of the increasing factor. Unfortunately, the AODV factor misleads partially

due its flawed performance.

67



Figure 22: Packet Delivery Ratio by Main Effects

The post hoc Tukey test for the factor levels of runners is shown in Table 9. The

p-values that are less than the threshold of α = 0.05 represent statistically significant

factor levels. Of note, 25 runners is significantly different than all but 50 runners,

while only 50 and 125 are different. However, the lack of significant differences among

higher numbers of runners implies diminishing returns of PDR. Figure 22 graphically

demonstrates the diminishing returns from increased runners.

68



Table 9: Pairwise Runners Comparison for PDR

Paired Runners P-Val
25-50 0.0865
25-75 0.0024
25-100 0.0015
25-125 0.0009
50-75 0.1126
50-100 0.0646
50-125 0.0320
75-100 0.9931
75-125 0.8802
100-125 0.9831

The post hoc Tukey test for the factor levels of transmission power is shown in

Table 10. All the p-values are less than the threshold of α = 0.05 demonstrating each

level is statistically significant. Unlike the number of runners, increasing transmission

power demonstrates no visible diminishing returns. While this experiment focused

on the nRF52840, other hardware may provide even higher transmission power, and

therefore, range that would enable closer to 100% PDR.

Table 10: Pairwise Transmission Power Comparison for PDR

Paired Transmission Powers P-Val
0 dBm - 4 dBm 0.0001
0 dBm - 8 dBm 0.0000
4 dBm - 8 dBm 0.0001

5.2.2 End-to-End Delay

The mean end-to-end delay metric intends to capture congestion and latency

effects especially due to density. At the start of the race, runners are densely packed

causing contention congestion, but as the race continues, the space between runners

expands. While contention decreases with distance, more intermediate transmissions

are needed to relay data which increases overall traffic. The results of the measured

69



delays are shown in Figure 23. Unlike PDR, statistically significant factors are not

immediately visually evident.

As a consequence of the high initial minimum backoff exponent for the CSMA/CA

protocol mentioned in Section 3.4.2.2, average delay for a single-hop transmission is

expected to be dominated by backoff delays. For example, a 127 byte packet would

require

Tdelay = Ttrans + TBE + Tprop + Tproc

Tdelay =
127bytes

250kbps
+ 0.08sec

Tdelay = 0.0040sec+ 0.08sec

Tdelay = 0.0840sec

where TBE = 0.08 seconds is the average backoff delay derived in Section 3.4.2.2 and

assuming propagation, Tprop, and processing delays, Tproc, are negligible. However,

the results suggest multiple seconds of delay across most treatments and even more

under AODV. The flooding protocols appear to report lower average delays despite

the likelihood of greater medium access contention.

Despite the error in the AODV protocol execution, part of the increased delay

can be explained by functions of the protocol. Whenever a mote originates a RREQ

message, the duration it waits for a RREP is dependent on the size of the network.

If a RREP is not received, the mote will attempt a RREQ again twice while delaying

the data packet in a queue. As seen in Figure 23, the larger networks with more

runners increase the AODV trials delays more than flood trials.

It should be noted, two measurements are missing from Figure 23 for trials with

100 runners. Two flood trials with 100 runners, 2.5 and 6.3 mW, reported average

delays of 18 and 24 seconds which were deemed outliers and removed. Unfortunately,

the simulations with more than 100 motes take 7-9 days with inconsistent completions

70



and so could not be replaced.

Figure 23: Mean End-to-End Delay by Protocol and Transmission power
over Number of Runners

The ANOVA results shown in Table 11 indicate two statistically significant ef-

fects, the number of runners and the routing protocol with p-values less than the

threshold with 0.0031 and 0.0069 respectively. However, as discussed previously, the

routing protocol factor is inconclusive due to the AODV flaws. With more runners

participating in the network, more collisions and contention backoff delays occur as

more motes try to send their sensor data as well as more traffic is being relayed from

peers, therefore increasing the time the channel is busy. While transmission power did

trend upwards, it closely failed to achieve statistical significant effects. The failure of

significance could be a Type II error where the null hypothesis is not rejected despite

the means between groups being different.

71



Table 11: Results of ANOVA on End-to-End Delay Metric

Source Sum Sq. DF Mean Sq. F-stat P
NumberRunners 5.3980 4 1.3495 14.38 0.0031
TransmissionPower 0.9175 2 0.4588 4.89 0.0570
RoutingProtocol 1.5192 1 1.5192 16.19 0.0069
NumberRunners*
TransmissionPower

1.1975 8 0.1497 1.60 0.2931

NumberRunners*
RoutingProtocol

0.3403 4 0.0851 0.91 0.5157

TransmissionPower*
RoutingProtocol

0.0111 2 0.0056 0.06 0.9431

Error 0.5630 6 0.09383
Total 12.0903 27

Testing of the assumptions of ANOVA is shown in Table 12. Neither normality

nor equal variance for significant effects are violated due to p-values greater than

α = 0.05. However, the assumption of equal variance between runner levels is risked

due to the removal of outliers.

Table 12: ANOVA Assumption Tests for Delays

Test Type Metric P-Value
Anderson-Darling (Normality) N/A 0.2685
Levene’s (Variance) Number of Runners 0.8969

The averaged delays by factor levels are shown in Figure 24. The peak in delay at

100 runners is due to the two outliers being removed and overemphasizing the effect

of the AODV results.

72



Figure 24: Mean End-to-End Delay by Main Effects
over Number of Runners

The post hoc Tukey test for factor levels of runners is shown in Table 13. Similar

to the PDR results, 25 runners is significantly different from all except 50 runners

and 100. However, the 100 runners not being significant could be due to the removal

of outliers.

Table 13: Pairwise Runners Comparison for Delay

Paired Runners P-Val
25-50 0.2065
25-75 0.0402
25-100 0.0983
25-125 0.0082
50-75 1.0000
50-100 1.0000
50-125 0.2202
75-100 1.0000
75-125 1.0000
100-125 1.0000

73



5.2.3 Average Power Consumption

The average power consumption per node measures the expected lifespan of motes

used in the marathon. Energy exhaustion is not a problem in this scenario, but it may

in longer duration operations or after repeated uses. The average energy consumed

per mote is shown in Figure 25. The graph shows consistently increasing power

consumption as number of runners and transmission power increases as expected.

Figure 25: Mean Power Consumption per Node by Protocol and Transmission Power
over Number of Runners

Transmission power appears to have less of an effect on power consumption than

increased numbers of runners. This is consistent with Sections 2.2.2.1 and 2.2.2.2

which highlighted the energy cost of receiving transmissions and how multi-hop trans-

mission costs can exceed single long-range transmissions. With more motes partic-

ipating in the network, more devices are transmitting their own data and inflicting

reception costs on all neighbors. The reason AODV appears to consume more energy

74



is due to allowing multiple RREQ and uni-cast transmission attempts; motes using

flooding only transmit a packet once each.

The ANOVA results for power consumption are shown in Table 14. Given the near

linear increase in power consumption over number of runners and discrete separation

between transmission powers, it is unsurprising that the factors are statistically signif-

icant. The p-values are all near zero, which reject the null hypothesis of no difference

between factor levels.

Table 14: Results of ANOVA on Mean Power Consumption Per Node Metric

Source Sum Sq. DF Mean Sq. F-stat P
NumberRunners 11233.8 4 2808.45 354.62 0.0000
TransmissionPower 954.4 2 477.21 60.26 0.0000
RoutingProtocol 2917.1 1 2917.06 368.33 0.0000
NumberRunners*
TransmissionPower

428.2 8 53.53 6.76 0.0070

NumberRunners*
RoutingProtocol

624.3 4 156.08 19.71 0.0003

TransmissionPower*
RoutingProtocol

134 2 66.99 8.46 0.0106

Error 63.4 8 7.92
Total 16355.2 29

Testing of the assumptions of ANOVA is shown in Table 15. Since the p-values

are not less than the threshold of α = 0.05, it appears the assumptions remain intact.

Table 15: ANOVA Assumption Tests for Average Power Consumption

Test Type Metric P-Value
Anderson-Darling (Normality) N/A 0.5040
Levene’s (Variance) Number of Runners 0.1330
Levene’s (Variance) Transmission Power 0.80016

The average power consumption by factor levels is shown in Figure 26. As ex-

pected, with more devices participating in the network, power consumption increases

due to the higher amount of traffic regardless of protocol and transmission power.

75



Figure 26: Mean Power Consumption per Node by Main Effect

The post hoc Tukey test for factor levels of runners is shown in Table 16. Each

factor level is significant except for 100 runners to 125 runners. This reinforces a

trend seen previously where differences in performance between 100 and 125 runners

is less pronounced than other factor levels.

76



Table 16: Pairwise Runners Comparison for Average Power Consumption

Paired Runners P-Val
25-50 0.0003
25-75 0.0000
25-100 0.0000
25-125 0.0000
50-75 0.0001
50-100 0.0000
50-125 0.0000
75-100 0.0000
75-125 0.0000
100-125 0.2325

The post hoc Tukey test for factor levels of transmission power is shown in Table

17. Each level of transmission power is statistically significant from the other which

is expected for a metric measuring power consumption. Any advantages of increased

range come at the expense of greater power or more expensive hardware.

Table 17: Pairwise Transmission Power Comparison for Average Power
Consumption

Paired Transmission Powers P-Val
0 dBm - 4 dBm 0.0110
0 dBm - 8 dBm 0.0000
4 dBm - 8 dBm 0.0003

5.3 Overall Analysis

Unfortunately, the critical flaw discovered in the Aodv.ned module potentially

invalidates half of the trials conducted. As runners move towards a gateway, data

is passed forward through peers to the gateway. However, after a runner passes the

gateway and moves out of transmission range, the link breaks, but the mote fails to

broadcast the RERR message. Without the RERR message, motes continue to send

data through a broken route even though another path to the gateway may exist.

77



This error affects the results of each metric and undermines the reported statistical

significance of routing protocols.

The AODV trials remained in the analysis as the levels of transmission power

and number of runners still affected a change in the metrics. While the AODV trials

fail to report representative performance of the protocol, factor effects from increased

transmission power and number of runners are salvageable in an already small sample

experiment.

Despite the flaws of the AODV trials, the results of this experiment are still

promising. The flooding protocol proved to be successful at delivering more than

50% of packets in 7 out of 15 trials, and more than 75% in trials with 100 and 125

runners using 6.3 mW transmission power. The results show despite the inefficiencies

from duplicated broadcasts; the simulated sensor traffic generated by the motes is

light enough that the network is not overburdened.

Additionally, the results show that the performance of the prospective nRF52840

in transmission range and energy consumption is capable of supporting a scenario like

the marathon. The 75% PDR attained under flood routing trials averaged between

2.5 and 3.5 seconds of delay. This suggests collisions are infrequent or negligible for

delivery, but congestion due to medium access contention may be high from motes

entering multiple backoffs when attempting transmissions.

5.4 Results Summary

This chapter presents and analyzes the data collected during the execution of

the simulations. Each performance metric is shown and analyzed before an overall

assessment of the experiment is presented.

78



VI. Conclusion

6.1 Overview

This chapter summarizes this work and the results discovered during development

of MarathonSim and execution of the experiment. Section 6.2 highlights the conclu-

sions from the experiment results. Section 6.3 restates the contributions made by

this work. Section 6.4 discusses the limitations of this work. Finally, Section 6.5

recommends future work to extend upon this effort.

This research succeeded in demonstrating several cases in which the mesh net-

work of motes and gateways can maintain a majority of connectivity throughout a

marathon. However, a major flaw in the implementation of the Aodv.ned module

meant motes did not correctly break links and route RERR messages.

6.2 Research Conclusions

As hypothesized, this research successfully showed that under the conditions of

MarathonSim’s environment, a minimum of 50 motes equipped with an nRF52840

SoC running 802.15.4 and maximum output power can deliver more than 50% of data

through the mesh network. The previous work by MarathonNet showed that using

only 6 gateways but 500 runners established a similar connectivity.

The experiment partially fulfilled the goals of this research. The successful hy-

pothesis, and other measurements of PDR and delay demonstrate an ability to predict

general capabilities of the WSN to transport data. While both increased transmis-

sion power and number of runners led to improved PDRs, the number of runners

experienced diminishing returns but affected power consumption more than other

factors. Unfortunately, the failure of the AODV trials negate any attempt at evalu-

ating the routing protocols against each other. Additionally, the small samples force

79



performance predictions to be general comparisons between factor levels instead of

estimates of potential system performance. It would require larger samples, as well

as limited prototypes, to be able to predict specific performance.

Still, the results assist the development of a future WSN. The flood protocol

demonstrated no obvious faults which suggests the Bluetooth Mesh protocol to be

suitable for development. Average power consumption per node, no matter the con-

figuration, never exceeded the capacity of a simple coin cell battery. As for connec-

tivity, transmission power improved PDR similar to increased runners but at less cost

to power consumption and delay. This suggests increasing the number of devices is

less helpful with data transport than fewer devices with longer ranges.

6.3 Research Contributions

This research builds upon MarathonNet by redeveloping the proposed marathon

mesh network within an OMNeT++ simulation including data transmission modeling,

propagation, and MAC. The simulation is also moderately modular by allowing new

physical devices to be modelled instead of the nRF52840 to assist with prototype

development. By modeling the nRF52840 first, this research provides evidence of the

suitability of the nRF52840 or similar device to a WSN application.

6.4 Limitations of Research

MarathonSim in its current state underperforms in a number of ways. The long

runtime of large simulations limited experimental runs and, by extension, the statis-

tical analysis. The lack of an existing system to use observational data to validate

MarathonSim’s performance means estimates cannot suggest exact performance. Ad-

ditionally, the failure of Aodv.ned module left a research goal unfulfilled.

The validation of MarathonSim is based on face validation where valid analytical

80



models and conceptually correct interactions are reviewed rather than tested against

true sample data. The uncertainty with face validation is how non-functional modules

end up in experimental trials. If even a small prototype existed, then the results could

be compared to the simulation to confirm behaviors and allow informed predictions.

The failure of the Aodv.ned module undermined the analysis of results. Half of the

results came from trials using AODV with true performance metrics likely different

than those measured as well as throwing off the estimated overall mean performances.

Despite testing for the exact situation on a small scale simulation, the introduction

of gateways with static routes caused an error in the module. Fixing the module

would require adjustment or translation of an INET static, manual IP route to an

AodvRouteData type.

6.5 Recommendations for Future Work

• The Aodv.ned module should be corrected and retested in the experiments pro-

posed in this work. The flawed functionality of the routing module undermined

half of the experiment and failed to compare routing protocols.

• MarathonSim in its current state is very inefficient as evidenced by long run-

time and bulk data. If it is to continue being used, the code base should be

reevaluated for bloat and reimplement only necessary components.

• Currently, INET does not have a full network stack for MANETs or WSNs.

A new full-network stack should be developed for INET alongside a prototype

mote to validate the simulation properly.

• This research only simulated 802.15.4, but there are several other competitive

wireless technologies. An effort should be made to test a new wireless technology

to the scenario to highlight differences. LongRange (LoRa) appears especially

81



promising due to the 10x range potential and the sensors requiring only limited

data rates.

82



Appendix A. MarathonSim NED Files

MarathonSim.ned This file describes the top-level modules and connec-

tions of the marathon environment.

1 package marathonsim . s imu la t i on s ;

2

3 import i n e t . network layer . c o n f i g u r a t o r . ipv4 . Ipv4NetworkConfigurator ;

4 import i n e t . node . e the rne t . EtherSwitch ;

5 import i n e t . node . e the rne t . Eth100G ;

6 import i n e t . v i s u a l i z e r . i n t e g r a t e d . I n t e g r a t e d M u l t i V i s u a l i z e r ;

7 import i n e t . p h y s i c a l l a y e r . cont rac t . p a c k e t l e v e l . IRadioMedium ;

8 import marathonsim . ∗ ;

9

10 network MarathonSim

11 {

12 parameters :

13 int numHosts ; //number o f runners in the marathon , s e t in INI

14 int numGateways ; //number o f gateways in the marathon , s e t in

INI

15 //@disp lay (” bgb =1247.2416 ,2494.4832; b g i=background/

marathon route , s ”) ; // g r aph i c a l d i s p l a y

16 @display ( ”bgb =4988.9664 ,9977 .9328 ; bg i=background/ marathon route ,

s ” ) ; // g r aph i c a l d i s p l a y

17 // S t a t i s t i c c o l l e c t i n g the r a t i o o f packe t s r e c e i v ed at Hub to

packe t s sen t by a l l nodes

18 @ s t a t i s t i c [ packetDe l ive ryRat io ] ( t i t l e=”PDR” ; source=count (

appPacketReceived ) / count ( appPacketSent ) ; r ecord=l a s t ) ;

19 // S t a t i s t i c c o l l e c t i n g the packe t error ra t e as a func t i on o f

SNIR and ASPK error ra t e during r e cep t i on

20 @ s t a t i s t i c [ packetErrorRate ] ( t i t l e=”Packet e r r o r ra t e ” ; source=

packetErrorRate ( packetSentToUpper ) ; r ecord=vector , mean ,

histogram ) ;

83



21 // S t a t i s t i c c o l l e c t i n g the t o t a l packe t t ransmis s ions by

w i r e l e s s i n t e r f a c e s

22 @ s t a t i s t i c [ t ransmitPacket ] ( source=(packetBytes ( transmitPacket ) ) ;

r ecord=sum) ;

23

24 submodules :

25 host [ numHosts ] : marathonSensorBase {

26 @display ( ” i=dev i ce /palm2 ; i s=s ; p=358.6022 ,2215.6494 ” ) ;

27 }

28 gateway [ numGateways ] : Ieee802154gateway {

29 @display ( ”p =465.32904 ,2322 .3762 ; i s=m” ) ;

30

31 }

32 EMSHub: EmsHub {

33 @display ( ” i=dev i ce /pc ; p =1011.7705 ,2305 .2998 ; i s=s ” ) ;

34 mob i l i ty . typename = ” Stat i onaryMob i l i ty ” ;

35 }

36 connect ingSwitch : EtherSwitch {

37 @display ( ”p=1007.50146 ,2002.1957 ” ) ;

38 }

39 c o n f i g u r a t o r : Ipv4NetworkConfigurator {

40 @display ( ”p =1099 .12 ,314 .748 ; i s=s ” ) ;

41 }

42 radioMedium : <default ( ” Ieee802154NarrowbandScalarRadioMedium” )>

l i k e IRadioMedium {

43 @display ( ”p =1144 .1118 ,76 .84333 ; i s=s ” ) ;

44

45 }

46 v i s u a l i z e r : I n t e g r a t e d M u l t i V i s u a l i z e r {

47 @display ( ”p =829 .336 ,64 .948 ; i s=s ” ) ;

48 }

49

84



50 connect i ons al lowunconnected :

51 EMSHub. ethg++ <−−> Eth100G { l ength = 1m; } <−−>

connect ingSwitch . ethg++;

52 for i =0. . numGateways−1 {

53 gateway [ i ] . ethg++ <−−> Eth100G { l ength = 1m; } <−−>

connect ingSwitch . ethg++;

54 }

55 }

56

57 @l i c ense (LGPL) ;

MarathonSensorBase.ned The sensor base allows modular assignment to

flood or AODV routing method.

1 package marathonsim ;

2

3

4 import i n e t . node . base . ApplicationLayerNodeBase ;

5 import i n e t . a p p l i c a t i o n s . g e n e r i c . I IpvxTra f f i cGene ra to r ;

6 import i n e t . a p p l i c a t i o n s . cont rac t . IApp ;

7

8 module marathonSensorBase extends i n e t . node . base .

ApplicationLayerNodeBase

9 {

10 parameters :

11 @display ( ” i=misc / sensor2 ” ) ;

12 @f igure [ submodules ] ;

13 // S i gna l to c o l l e c t power consumed

14 @ s t a t i s t i c [ powerConsumption ] ( t i t l e=”Power Consumption” ; source=

powerConsumptionChanged ; record=l a s t ( timeavg ) ∗21600) ;

15

16 // App l i ca t i on Layer :

85



17 int numGens = default (1 ) ; //Number o f data genera tor

a p p l i c a t i o n s

18

19 //Network Layer :

20 hasIpv6 = fa l se ;

21 forwarding = default ( true ) ; //Al lows node to forward o ther

packe t s

22 ipv4 . arp . proxyArpInter faces = default ( ”” ) ; // proxy arp i s

d i s a b l e d on hos t s by d e f a u l t

23

24 // Phys i ca l+Link Layers

25 wlan [ ∗ ] . r ad io . energyConsumer . typename = default ( ”

StateBasedEpEnergyConsumer” ) ;

26 energyStorage . typename = default ( ” SimpleEpEnergyStorage ” ) ; //

Simple energy source

27 numWlanInterfaces = default (1 ) ;

28 wlan [ ∗ ] . typename = default ( ” Ieee802154NarrowbandInter face ” ) ; //

Se t s both 802 .15 .4 t r an s c e i v e r and mac a t t r i b u t e s

29 hasStatus = default ( true ) ; //Used f o r l i f e c y l e shutdown/ s t a r t up

power management

30

31 submodules :

32 // App l i ca t i on Layer Submodules :

33 dataGen [ numGens ] : <> l i k e I IpvxTra f f i cGene ra to r {

34 @display ( ”p=751.27496 ,74.024994 ” ) ;

35 }

36 // Implements the AODV rou t ing module when s p e c i f i e d by the

runtime parameters

37 appRoutingModule : <default ( ”” )> l i k e IApp i f typename != ”” {

38 parameters :

39 @display ( ”p=924.3 ,75 .4 ” ) ;

40 }

86



41

42 connect i ons al lowunconnected :

43 for i =0. .numGens−1 {

44 dataGen [ i ] . ipOut −−> tn . in++;

45 dataGen [ i ] . i p In <−− tn . out++;

46 }

47 appRoutingModule . socketOut −−> at . in++ i f e x i s t s (

appRoutingModule ) ;

48 appRoutingModule . socke t In <−− at . out++ i f e x i s t s (

appRoutingModule ) ;

49 }

Ieee802154gateway.ned Similar to the sensor base, allows modular assign-

ment to flood or AODV routing

1 package marathonsim ;

2 import i n e t . node . i n e t . Wire lessHost ;

3 import i n e t . a p p l i c a t i o n s . cont rac t . IApp ;

4

5 module Ieee802154gateway extends Wire lessHost

6 {

7 parameters :

8 @display ( ” i=dev i ce / w i f i l a p t o p ” ) ;

9

10 //Networking Layer

11 forwarding = default ( true ) ;

12

13 // Phys i ca l and Link Layers

14 numWlanInterfaces = default (1 ) ;

15 numEthInterfaces = default (1 ) ;

16 wlan [ ∗ ] . typename = default ( ” Ieee802154NarrowbandInter face ” ) ;

17

87



18

19 submodules :

20 // Implements the AODV rou t ing module when s p e c i f i e d by the

runtime parameters

21 appRoutingModule : <default ( ”” )> l i k e IApp i f typename != ”” {

22 parameters :

23 @display ( ”p=924.3 ,75 .4 ” ) ;

24 }

25

26 connect i ons al lowunconnected :

27 appRoutingModule . socketOut −−> at . in++ i f e x i s t s (

appRoutingModule ) ;

28 appRoutingModule . socke t In <−− at . out++ i f e x i s t s (

appRoutingModule ) ;

29

30 }

88



Appendix B. MarathonSim INI Config File

omnetpp.ini The INI file sets runtime parameters and instances of objects

make during simulation.

1 [ General ]

2 network = MarathonSim

3

4 # Limit s imu la t i on to 6h marathon

5 sim−time−l i m i t = 21600 s

6

7 # Limits t r a n sm i s s i o n s to only nodes with in i n t e r f e r e n c e or

communication range

8 # I n t e r f e r e n c e Range − Max d i s t anc e s imultaneous t r a n s m i s s i on s i n t e r f e r e

at the r e c e i v e r

9 # Communication Range − Max d i s t anc e that r e c e i v e d power exceeds

s e n s i t i v i t y o f r e c e i v e r

10 ∗ . radioMedium . r a n g e F i l t e r = ” in te r f e r enceRange ”

11 #∗ . radioMedium . r a n g e F i l t e r = ”communicationRange”

12

13 # Transmiss ions are not sent to i n a c t i v e t r a n s c e i v e r s

14 ∗ . radioMedium . rad ioModeFi l te r = true

15

16 # Background Noise − s e t to thermal background no i s e for 2 MHz BW

channel

17 # −174 + 10 log (2MHz)

18 ∗ . radioMedium . backgroundNoise . power = −110dBm

19

20 # Rbp breakpo int d i s t ance (4∗h1∗h2 /( wavelength =12.5cm) )

21 ∗ . radioMedium . pathLoss . breakpo intDis tance = 32m

22 # Free Space Path Loss @ 32m

23 ∗ . radioMedium . pathLoss . l 02 = 70.33

24 # Loss c o e f f i c i e n t

89



25 ∗ . radioMedium . pathLoss . alpha2 = 4

26

27 # General −− Factors

28 ∗ . numHosts = ${n=25, 50 , 75 , 100 , 125}

29

30 # Factors : Phys i ca l − Transmiss ion Power

31 # Communication Range Sca l i ng :

32 # 1mW => 176m =(25%)=> 44m

33 # 2 .5mW => 222m =(25%)=> 55 .5m

34 # 6 .3mW => 280m =(25%)=> 70m

35 # Pre−s c a l e d t ransmi s s i on power . To meet 25% s c a l i ng , t ransmi s s i on power

i s reduced using the breakpo int d i s t ance formula .

36 #∗∗ . t r an smi t t e r . power = ${power =1 ,2 .5 ,6 .3}mW # nord ic nRF52840 0dBm, 4dBm

, 8dBm 1 , 2 . 5 , 6 . 3

37 ∗∗ . t r an smi t t e r . power = ${power =0.00384173 , 0 .00937923 , 0 .0241444}mW #

nord ic nRF52840 0dBm, 4dBm, 8dBm 1 , 2 . 5 , 6 . 3

38 # Power consumed by the t r an smi t t e r i s not s c a l e d as i t i s not d i s t anc e

dependent .

39 ∗∗ . transmitterTransmittingPowerConsumption = $ {14 .4 , 28 . 8 , 44 .4 ! power}

mW #4.8mA( 1 4 . 4mW) , 9 .6mA( 2 8 . 8 ) , 14 .8mA(44 .40 v ) for 0 ,4 ,8dbm, 3V∗ i mA

= p mW

40

41 # Parameters : Phys i ca l − Power

42 ∗∗ . nominalCapacity = 2400J #Arbi t rary high capac i ty to avoid shutdown

e r r o r s

43 ∗∗ . offPowerConsumption = 0mW

44 ∗∗ . sleepPowerConsumption = 0.001mW

45 ∗∗ . switchingPowerConsumption = 0mW

46 ∗∗ . rece iverIdlePowerConsumption = 0.005mW

47 ∗∗ . receiverBusyPowerConsumption = 0 .1mW

48 ∗∗ . rece iverReceivingPowerConsumption = 13 .8mW #4.6mA − nRF52840

49 ∗∗ . transmitterIdlePowerConsumption = 5mW

90



50

51 # Parameters : Phys i ca l − Mobi l i ty

52 ∗ . host [ ∗ ] . mob i l i ty . typename = ”BonnMotionMobility”

53 ∗ . host [ ∗ ] . mob i l i ty . t r a c e F i l e = ${” . / runner speeds / runners 25 . txt ” , ” . /

runner speeds / runners 50 . txt ” , ” . / runner speeds / runners 75 . txt ” , ” . /

runner speeds / runners 100 . txt ” , ” . / runner speeds / runners 125 . txt ” !

n}

54 ∗ . host [ ∗ ] . mob i l i ty . is3D = fa l se

55 ∗ . host [ ∗ ] . mob i l i ty . nodeId = −1 # Ass igns each node ID to Line Number in

t r a c e f i l e (0 −> 0 , 1 −> 1 e tc )

56 ∗ . host [ ∗ ] . mob i l i ty . update In te rva l = 10 s #

57

58 # Parameters : Phys i ca l − Rece iver S e n s i t i v i t y

59 ∗∗ . s e n s i t i v i t y = −100dBm # nord ic nRF52840

60

61 # Parameters : Link Conf igurat ion

62 #ach i ev ing 90% s u c c e s s f u l t r ansmi s s i on r e q u i r e s n < BE/4 ; BE=2ˆx−1

63 ∗ . host [ ∗ ] . wlan [ ∗ ] . mac . macMinBE = 9

64 ∗ . host [ ∗ ] . wlan [ ∗ ] . mac .macMaxBE = 12

65

66 # Parameters : Network Conf igurat ion

67 ∗ . c o n f i g u r a t o r . addStat icRoutes = fa l se

68 ∗∗ . netmaskRoutes = ””

69 ∗ . c o n f i g u r a t o r . c o n f i g = xmldoc ( ” . / network topology / f l a t n e t w o r k . xml” )

70 ∗∗ . arp . typename = ”GlobalArp”

71

72 # General −− Appl i ca t i ons Setup

73 # Appl i ca t ion : Mobile Nodes

74 ∗ . host [ ∗ ] . numGens = 1

75 ∗ . host [ ∗ ] . dataGen [ 0 ] . typename = ”IpvxTrafGen”

76 ∗ . host [ ∗ ] . dataGen [ 0 ] . startTime = uniform (1 s , 60 s )

77 ∗ . host [ ∗ ] . dataGen [ 0 ] . destAddresses = ”EMSHub”

91



78 ∗ . host [ ∗ ] . dataGen [ 0 ] . p r o to co l = 200

79 ∗ . host [ ∗ ] . dataGen [ 0 ] . packetLength = 64B #2x [ ID , hear t ra te , temp , Seq ,

timestamp ]=2x32B=64B

80 ∗ . host [ ∗ ] . dataGen [ 0 ] . s en d In t e r v a l = 60 s

81

82 # Appl i ca t ion : Centra l Sink

83 ∗ .EMSHub. numSinks = 1

84 ∗ .EMSHub. dataSink [ 0 ] . typename = ” IpvxTrafSink ”

85 ∗ .EMSHub. dataSink [ 0 ] . p r o to co l = 200

86

87 # Recording Conf igs

88 # Turns o f f a number o f default recorded s t a t i s t i c s to reduce runtime .

89 ∗∗ . vector−record−eventnumbers = fa l se #Turns o f f eventnumber record ing ,

only used for sequence char t s

90 #∗∗ . s c a l a r−r e co rd ing = fa l se

91 ∗∗ . packetErrorRate : vec to r . vector−r e co rd ing = true

92 ∗∗ . endToEndDelay : vec to r . vector−r e co rd ing = true

93 ∗∗ . packetDropIncorrec t lyRece ived : vec to r . vector−r e co rd ing = true

94 ∗∗ . packetRece ived : vec to r . vector−r e co rd ing = true

95 ∗∗ . wlan [ ∗ ] . mac . queue . queueingTime : vec to r . vector−r e co rd ing = true

96 ∗∗ energyConsumer . powerConsumption : vec to r . vector−r e co rd ing = fa l se

97 ∗∗ energyStorage . powerConsumption : vec to r . vector−r e co rd ing = fa l se

98 ∗∗ energyStorage . res idua lEnergyCapac i ty : vec to r . vector−r e co rd ing = fa l se

99 ∗∗ . r ad io . radioMode : vec to r . vector−r e co rd ing = fa l se

100 ∗∗ . r e c e p t i o n S t a t e : vec to r . vector−r e co rd ing = fa l se

101 ∗∗ . t r an smi s s i onS ta t e : vec to r . vector−r e co rd ing = fa l se

102 ∗∗ . eth [ ∗ ] ∗ ∗ . s t a t i s t i c −r e co rd ing = fa l se

103 ∗∗ . connect ingSwitch ∗∗ . s t a t i s t i c −r e co rd ing = fa l se

104 ∗∗ . wlan [ ∗ ] . mac . queue . packetPopped : vec to r ( packetBytes ) . vector−r e co rd ing =

fa l se

105 ∗∗ . wlan [ ∗ ] . mac . queue . packetPushed : vec to r ( packetBytes ) . vector−r e co rd ing =

fa l se

92



106 ∗∗ . wlan [ ∗ ] . mac . queue . queueLength : vec to r . vector−r e co rd ing = fa l se

107 ∗∗ . wlan [ ∗ ] . mac . packetDropIncorrec t lyRece ived : vec to r ( packetBytes ) . vector−

r e co rd ing = fa l se

108 ∗∗ . dataGen [ ∗ ] . packetSent : vec to r ( packetBytes ) . vector−r e co rd ing = fa l se

109 ∗∗ . b i tErrorRate . s t a t i s t i c −r e co rd ing = fa l se

110 ∗∗ . minSnir . s t a t i s t i c −r e co rd ing = fa l se

111 ∗∗ . queueingTime : histogram . bin−r e co rd ing = fa l se

112 #∗∗ . endToEndDelay : histogram . bin−r e co rd ing = fa l se

113 ∗∗ . packetErrorRate : histogram . bin−r e co rd ing = fa l se

114

115 [ Conf ig MinRecording ]

116 # Completely turns o f f vec to r r e co rd ing .

117 # MinRecording REQUIRED for f u l l durat ion t e s t s with >25 nodes . Result

f i l e s >10GB per t r i a l

118 ∗∗ . vector−r e co rd ing = fa l se

119 ∗∗ . hasTcp = fa l se

120 ∗∗ energyConsumer . powerConsumption . s t a t i s t i c −r e co rd ing = fa l se

121 ∗∗ energyStorage . powerConsumption . s t a t i s t i c −r e co rd ing = fa l se

122 ∗∗ energyStorage . res idua lEnergyCapac i ty . s t a t i s t i c −r e co rd ing = fa l se

123 ∗∗ . r ad io . radioMode . s t a t i s t i c −r e co rd ing = fa l se

124 ∗∗ . r e c e p t i o n S t a t e . s t a t i s t i c −r e co rd ing = fa l se

125 ∗∗ . t r an smi s s i onS ta t e . s t a t i s t i c −r e co rd ing = fa l se

126 ∗∗ . eth [ ∗ ] ∗ ∗ . s t a t i s t i c −r e co rd ing = fa l se

127 ∗∗ . connect ingSwitch ∗∗ . s t a t i s t i c −r e co rd ing = fa l se

128 ∗∗ . wlan [ ∗ ] . mac . queue . packetPopped . s t a t i s t i c −r e co rd ing = fa l se

129 ∗∗ . wlan [ ∗ ] . mac . queue . packetPushed . s t a t i s t i c −r e co rd ing = fa l se

130 ∗∗ . wlan [ ∗ ] . mac . queue . queueLength . s t a t i s t i c −r e co rd ing = fa l se

131 ∗∗ . wlan [ ∗ ] . mac . packetDropNotAddressedToUs . s t a t i s t i c −r e co rd ing = fa l se

132 ∗∗ . wlan [ ∗ ] . mac . packetDropRetryLimitReached . s t a t i s t i c −r e co rd ing = fa l se

133 ∗∗ . wlan [ ∗ ] . mac . packetDropIncorrec t lyRece ived . s t a t i s t i c −r e co rd ing = fa l se

134 ∗∗ . udp . packetReceived . s t a t i s t i c −r e co rd ing = fa l se

135 ∗∗ . udp . passedUpPk . s t a t i s t i c −r e co rd ing = fa l se

93



136 ∗∗udp ∗∗ . s t a t i s t i c −r e co rd ing = fa l se

137 ∗∗ ip ∗∗ . s t a t i s t i c −r e co rd ing = fa l se

138 ∗∗gateway [ ∗ ] ∗ ∗ . s t a t i s t i c −r e co rd ing = fa l se

139 #∗∗ . dataGen [ ∗ ] . appPacketSent . s t a t i s t i c −r e co rd ing = fa l se

140 ∗∗ . queueingTime . s t a t i s t i c −r e co rd ing = fa l se

141 ∗∗ . b i tErrorRate . s t a t i s t i c −r e co rd ing = fa l se

142 ∗∗ . symbolErrorRate . s t a t i s t i c −r e co rd ing = fa l se

143 ∗∗ . minSnir . s t a t i s t i c −r e co rd ing = fa l se

144 ∗∗ . endToEndDelay : histogram . bin−r e co rd ing = fa l se

145 #∗∗ . packetErrorRate : histogram . bin−r e co rd ing = fa l se

146 ∗∗ . l o ∗∗ . s t a t i s t i c −r e co rd ing = fa l se

147

148 [ Conf ig AODVBase ]

149 # Parameters : AODV

150 # Sets the IEEEGateway modules to use AODV rout ing

151 ∗ . gateway [ ∗ ] . appRoutingModule . typename = ” i n e t . rout ing . aodv . Aodv”

152 # Sets the motes to use AODV

153 ∗ . host [ ∗ ] . ∗ . routingTableModule = ” ˆ . ipv4 . rout ingTable ”

154 ∗ . host [ ∗ ] . appRoutingModule . typename = ” i n e t . rout ing . aodv . Aodv”

155 # Defau l t AODV Recommendations

156 ∗ . ∗ . aodv . activeRouteTimeout = 3 s

157 ∗ . ∗ . aodv . de l e t ePe r i od = 1 s

158 # Net diameter i s recommended to be the l o n g e s t path in the network .

159 # However , l a r g e netDiameters de lays repeat RREQs when d i s cove ry f a i l s

and

160 # paths are not expected to be l onge r than 12 hops . Use default .

161 ∗ . ∗ . aodv . netDiameter = 35

162

163 [ Conf ig FloodingBase ]

164 ## Parameters : Flooding

165 # Sets the motes and gateways to use f l o o d i n g p ro to co l

166 ∗∗ . hasGn = true

94



167 ∗ . host [ ∗ ] . hasIpv4 = fa l se

168 ∗ . host [ ∗ ] . hasIpv6 = fa l se

169 ∗∗ . g e n e r i c . typename = ”SimpleNetworkLayer”

170 ∗∗ . np . typename = ” Flooding ”

171

172 # Adjust p ro to co l header for a p p l i c a t i o n packets . Attaches ’ f l o o d ’

header in s t ead o f IP .

173 ∗ . host [ ∗ ] . dataGen [ ∗ ] . networkProtocol = ” f l o o d i n g ”

174 # Sets the max e n t r i e s in the message h i s t o r y to num of nodes ∗ 360 (

Every message sent )

175 ∗ . ∗ . g e n e r i c . np . bcMaxEntries = $ {( $n ) ∗360}

176 # DelTime does not come in to e f f e c t . Only when h i s t o r y reaches max .

177 ∗ . ∗ . g e n e r i c . np . bcDelTime = 21600 s

178

179 [ Conf ig LimitedGateways ]

180 # LimitedGateways −− Parameters

181 # Sets the number o f gateways and the p o s i t i o n s . Generated from

waypo intsScr ipt . py

182 ∗ . numGateways = 19

183 ∗ . gateway [ ∗ ] . mob i l i ty . typename = ” Stat i onaryMob i l i ty ”

184 ∗ . gateway [ ∗ ] . mob i l i ty . in i tFromDisp layStr ing = fa l se

185 ∗ . gateway [ ∗ ] . mob i l i ty . i n i t i a l Z = 0m

186 ∗ . gateway [ 0 ] . mob i l i ty . i n i t i a l X = 342m

187 ∗ . gateway [ 0 ] . mob i l i ty . i n i t i a l Y = 2226m

188 ∗ . gateway [ 1 ] . mob i l i ty . i n i t i a l X = 416m

189 ∗ . gateway [ 1 ] . mob i l i ty . i n i t i a l Y = 1777m

190 ∗ . gateway [ 2 ] . mob i l i ty . i n i t i a l X = 623m

191 ∗ . gateway [ 2 ] . mob i l i ty . i n i t i a l Y = 1434m

192 ∗ . gateway [ 3 ] . mob i l i ty . i n i t i a l X = 336m

193 ∗ . gateway [ 3 ] . mob i l i ty . i n i t i a l Y = 1390m

194 ∗ . gateway [ 4 ] . mob i l i ty . i n i t i a l X = 249m

195 ∗ . gateway [ 4 ] . mob i l i ty . i n i t i a l Y = 1097m

95



196 ∗ . gateway [ 5 ] . mob i l i ty . i n i t i a l X = 99m

197 ∗ . gateway [ 5 ] . mob i l i ty . i n i t i a l Y = 530m

198 ∗ . gateway [ 6 ] . mob i l i ty . i n i t i a l X = 311m

199 ∗ . gateway [ 6 ] . mob i l i ty . i n i t i a l Y = 168m

200 ∗ . gateway [ 7 ] . mob i l i ty . i n i t i a l X = 673m

201 ∗ . gateway [ 7 ] . mob i l i ty . i n i t i a l Y = 392m

202 ∗ . gateway [ 8 ] . mob i l i ty . i n i t i a l X = 708m

203 ∗ . gateway [ 8 ] . mob i l i ty . i n i t i a l Y = 628m

204 ∗ . gateway [ 9 ] . mob i l i ty . i n i t i a l X = 954m

205 ∗ . gateway [ 9 ] . mob i l i ty . i n i t i a l Y = 748m

206 ∗ . gateway [ 1 0 ] . mob i l i ty . i n i t i a l X = 779m

207 ∗ . gateway [ 1 0 ] . mob i l i ty . i n i t i a l Y = 405m

208 ∗ . gateway [ 1 1 ] . mob i l i ty . i n i t i a l X = 910m

209 ∗ . gateway [ 1 1 ] . mob i l i ty . i n i t i a l Y = 467m

210 ∗ . gateway [ 1 2 ] . mob i l i ty . i n i t i a l X = 929m

211 ∗ . gateway [ 1 2 ] . mob i l i ty . i n i t i a l Y = 873m

212 ∗ . gateway [ 1 3 ] . mob i l i ty . i n i t i a l X = 769m

213 ∗ . gateway [ 1 3 ] . mob i l i ty . i n i t i a l Y = 757m

214 ∗ . gateway [ 1 4 ] . mob i l i ty . i n i t i a l X = 767m

215 ∗ . gateway [ 1 4 ] . mob i l i ty . i n i t i a l Y = 1320m

216 ∗ . gateway [ 1 5 ] . mob i l i ty . i n i t i a l X = 1010m

217 ∗ . gateway [ 1 5 ] . mob i l i ty . i n i t i a l Y = 1415m

218 ∗ . gateway [ 1 6 ] . mob i l i ty . i n i t i a l X = 604m

219 ∗ . gateway [ 1 6 ] . mob i l i ty . i n i t i a l Y = 1714m

220 ∗ . gateway [ 1 7 ] . mob i l i ty . i n i t i a l X = 261m

221 ∗ . gateway [ 1 7 ] . mob i l i ty . i n i t i a l Y = 2139m

222 ∗ . gateway [ 1 8 ] . mob i l i ty . i n i t i a l X = 340m

223 ∗ . gateway [ 1 8 ] . mob i l i ty . i n i t i a l Y = 2400m

224

225

226 [ Conf ig LimitedGatewaysAODV ]

227 extends = AODVBase, LimitedGateways

96



228 # LimitedGatewayAODV −− V i s u a l i z a t i o n

229 # V i s u a l i z a t i o n : I n t e r f a c e s

230 #∗ . v i s u a l i z e r . ∗ . i n t e r f a c e T a b l e V i s u a l i z e r [ ∗ ] . d i s p l a y I n t e r f a c e T a b l e s =

true

231 # V i s u a l i z a t i o n : Network

232 #∗ . v i s u a l i z e r . ∗ . r o u t i n g T a b l e V i s u a l i z e r [ ∗ ] . d i sp layRout ingTables = fa l se

233 #∗ . v i s u a l i z e r . ∗ . r o u t i n g T a b l e V i s u a l i z e r [ ∗ ] . d e s t i n a t i o n F i l t e r = ”

d e s t i n a t i o n ”

234 ## V i s u a l i z a t i o n : In f o

235 #∗ . v i s u a l i z e r . ∗ . i n f o V i s u a l i z e r [ ∗ ] . modules = ” ∗ .EMSHub. dataSink [ 0 ] ”

236 #∗ . v i s u a l i z e r . ∗ . i n f o V i s u a l i z e r [ ∗ ] . format = ”%t ”

237 #∗ . v i s u a l i z e r . ∗ . i n f o V i s u a l i z e r [ ∗ ] . placementHint = ” topCenter ”

238 ## V i s u a l i z a t i o n : T r a f f i c

239 ∗ . v i s u a l i z e r . ∗ . networkRouteVisua l i zer [ ∗ ] . d i sp layRoutes = true

240 ∗ . v i s u a l i z e r . ∗ . networkRouteVisua l i zer [ ∗ ] . p a c k e t F i l t e r = ”∗∗appData∗∗”

241 ∗ . v i s u a l i z e r . ∗ . networkRouteVisua l i zer [ ∗ ] . fadeOutMode = ” simulationTime ”

242 ∗ . v i s u a l i z e r . ∗ . networkRouteVisua l i zer [ ∗ ] . fadeOutTime = 10 s

243

244 [ Conf ig LimitedGatewaysAODVMinRecording ]

245 extends = LimitedGatewaysAODV , MinRecording

246

247 [ Conf ig LimitedGatewaysFlood ]

248 extends = LimitedGateways , FloodingBase

249 ∗ . v i s u a l i z e r . ∗ . networkRouteVisua l i zer [ ∗ ] . d i sp layRoutes = true

250 ∗ . v i s u a l i z e r . ∗ . networkRouteVisua l i zer [ ∗ ] . p a c k e t F i l t e r = ”∗”

251 ∗ . v i s u a l i z e r . ∗ . networkRouteVisua l i zer [ ∗ ] . fadeOutMode = ” simulationTime ”

252 ∗ . v i s u a l i z e r . ∗ . networkRouteVisua l i zer [ ∗ ] . fadeOutTime = 10 s

253

254 [ Conf ig LimitedGatewaysFloodMinRecording ]

255 extends = LimitedGatewaysFlood , MinRecording

97



Appendix C. waypointScript.py

waypointScript.py This script is responsible for making the mobility trace

files for motes and stationary mobility/distribution for the gateways.

1 import sys

2 import getopt

3 import math

4 import numpy as np

5 import random

6 import s c ipy . s t a t s

7 import argparse

8 from enum import Enum

9

10 #Map s c a l i n g a l l ows ph y s i c a l dimensions and runner v e l o c i t i e s to be

reduced or increased

11 MAP SCALING = 1

12

13 #imported p i x e l coord ina t e s based on 1000 x2000 r e s o l u t i o n marathon map

14 X PIXELS = 1000

15 X MILES = 3.1∗MAP SCALING

16

17 Y PIXELS = 2000

18 Y MILES = 6.2∗MAP SCALING

19

20 x m e t e r s p e r p i x e l = (X MILES ∗ 1609.344 ) / X PIXELS # meters per p i x e l

− 1mi=1609.344m

21 y m e t e r s p e r p i x e l = (Y MILES ∗ 1609.344 ) / Y PIXELS # meters per p i x e l

22

23 waypoints = [ ]

24 ga t eways s t a t i on s = [ ]

25 runners = [ ]

26

98



27 class Runner Type (Enum) :

28 WALKER = 1

29 WALK RUN = 2

30 RUNNER = 3

31 DROP OUT = 4

32 class Runner Status (Enum) :

33 STARTING LINE = 1

34 WALKING = 2

35 RUNNING = 3

36 DROPPED OUT = 4

37 FINISH LINE = 5

38

39 class Runner :

40 def i n i t ( s e l f ) :

41 s e l f . runner type = Runner Type .WALKER

42 s e l f . r unne r s t a tu s = Runner Status .STARTING LINE

43 s e l f . runner t ime = 0

44

45 @classmethod

46 def f rom type ( c l s , runner type , time ) :

47 runner = c l s ( )

48 runner . runner type = runner type

49 runner . runner t ime = time

50 runner . runne r s t a tu s = Runner Status .RUNNING

51 return runner

52

53

54 class Marathon :

55 def i n i t ( s e l f , w a y p o i n t f i l e , num runners ) :

56 s e l f . w a y p o i n t f i l e = w a y p o i n t f i l e

57 s e l f . g a t e w a y s f i l e = ” gateways . txt ”

58 s e l f . waypoints = [ ]

99



59 s e l f . g a t eways s t a t i on s = [ ]

60 s e l f . mean time = 266 #minutes −− 4 hours 26 minutes

61 s e l f . s td t ime = 59 #minutes −− 59 minutes

62 s e l f . num runners = num runners

63 s e l f . runners = [ ]

64 #Semi ar b i t r a r y , mu l t i p l e on l ine r e f e r enc e s regard ing marathon ’

t ype s ’

65 s e l f . d rop out ra t e = 0.17 # 17%

66 s e l f . no walk = 0.65 # 65%

67 s e l f . walkers = 0 .20 # 20%

68 s e l f . pace wa lker s = 0 .15 # 15%

69

70 #in g e s t s ( x , y ) p i x e l t u p l e s from t e x t f i l e s and re turns them as ( x , y

) meters

71 def read waypoints ( s e l f , waypoints , f i l e n a m e ) :

72 try :

73 with open( f i l e name , ” r ” ) as w a y p o i n t f i l e :

74 data = w a y p o i n t f i l e . r e a d l i n e s ( )

75 l i n e s = [ x . s t r i p ( ) for x in data ]

76 p a i r s = [ l i n e . s p l i t ( ’ , ’ ) for l i n e in l i n e s ]

77 waypoints = [ tuple ( [ f loat ( int ( x ) ∗ x m e t e r s p e r p i x e l ) ,

f loat ( int ( y ) ∗ y m e t e r s p e r p i x e l ) ] ) for x , y in p a i r s

]

78 #pr in t ( waypoints )

79 return waypoints

80 except :

81 print ( ’ Error read ing f i l e : ’ , w a y p o i n t f i l e )

82 e x i t ( )

83

84 #uses the waypoints to c a l c u l a t e l e n g t h o f segments between

waypoints

85 def g e n d i s t a n c e s ( s e l f , waypoints ) :

100



86 d i s t a n c e s = [ math . hypot ( i [0]− j [ 0 ] , i [1]− j [ 1 ] ) for i , j in zip (

waypoints [ : −1 ] , waypoints [ 1 : ] ) ]

87 #pr in t ( d i s t an c e s )

88 return [ 0 ] + d i s t a n c e s

89

90 #Randomly a s s i gn s runner behav io r s

91 def popu la te runner s ( s e l f , num runners ) :

92 #genera te random runner t imes

93 runner t imes = sc ipy . s t a t s . norm . rvs ( l o c=s e l f . mean time , s c a l e=

s e l f . s td t ime , s i z e=num runners )

94

95 for i , time in enumerate( runner t imes ) :

96 #typ e d e c i d e r = np . random . uniform ()

97

98 i f i /num runners <= 0 . 2 0 :

99 runner type = Runner Type .WALK RUN

100 e l i f i /num runners <= 0 . 2 7 5 :

101 runner type = Runner Type .DROP OUT

102 e l i f i /num runners <= 0 . 3 7 5 :

103 runner type = Runner Type .WALKER

104 else :

105 runner type = Runner Type .RUNNER

106

107 s e l f . runners . append ( Runner . f rom type ( runner type , time ) )

108

109 #Takes a runner and ’ runs ’ them through the course . Each segment i s

110 #di v i d ed by runner ’ s v e l o c i t y based on f i n i s h time and behav ior .

111 #a l s o t r a n s i t i o n s runner to d i f f e r e n t speeds ( walk /run ) or dropout .

112 def b u i l d r o u t e ( s e l f , runner ) :

113 waypoints = s e l f . waypoints

114 d i s t a n c e s = s e l f . g e n d i s t a n c e s ( waypoints )

115 running t ime = 0

101



116 t imes = [ ]

117 route = [ ]

118 i f runner . runner t ime :

119 runner mps = sum( d i s t a n c e s ) /( runner . runner t ime ∗60)

120 #runner mps = mph to mps ( runner mph )

121 walking = mph to mps (4 ) ∗MAP SCALING

122 else :

123 print ( ”Runner t imes not populated ” )

124 return

125 for i , ( segment , waypoint ) in enumerate( zip ( d i s tance s , waypoints ) )

:

126

127 i f runner . runne r s t a tu s == Runner Status .DROPPED OUT:

128 route . append ( drop out po in t )

129 segment time = 0

130 running t ime = running t ime + segment time

131 t imes . append ( running t ime )

132 e l i f runner . runne r s t a tu s == Runner Status .WALKING:

133 route . append ( waypoint )

134 segment time = segment /(sum( [ walking , runner mps ] ) /2)

135 running t ime = running t ime + segment time

136 t imes . append ( running t ime )

137 e l i f runner . runne r s t a tu s == Runner Status .RUNNING:

138 route . append ( waypoint )

139 segment time = segment/np . random . uniform ( runner mps ∗ . 9 ,

runner mps ∗1 . 1 )

140 running t ime = running t ime + segment time

141 t imes . append ( running t ime )

142 else :

143 print ( ”Runner s t a t u s unknown” )

144 return

145

102



146 i f runner . runner type == Runner Type .WALKER:

147 i f runner . runne r s t a tu s == Runner Status .RUNNING:

148 i f np . random . uniform ( ) <= . 4 0 :

149 runner . runne r s t a tu s = Runner Status .WALKING

150 e l i f runner . runne r s t a tu s == Runner Status .WALKING:

151 i f np . random . uniform ( ) <= . 8 0 :

152 runner . runne r s t a tu s = Runner Status .RUNNING

153

154 i f runner . runner type == Runner Type .RUNNER:

155 pass #Runners w i l l a lways run

156 i f runner . runner type == Runner Type .WALK RUN:

157 i f runner . runne r s t a tu s == Runner Status .RUNNING:

158 i f np . random . uniform ( ) <= . 2 0 :

159 runner . runne r s t a tu s = Runner Status .WALKING

160 e l i f runner . runne r s t a tu s == Runner Status .WALKING:

161 runner . runne r s t a tu s = Runner Status .RUNNING

162

163 i f runner . runner type == Runner Type .DROP OUT:

164 i f runner . runne r s t a tu s == Runner Status .DROPPED OUT:

165 pass

166 else :

167 i f np . random . uniform ( ) <= ( i ∗ . 0 05 ) :

168 print ( ” Forc ing Dropout at segment : ” , i )

169 runner . runne r s t a tu s = Runner Status .DROPPED OUT

170 drop out po in t = waypoint

171 runner . t ime po in t s = times

172 runner . route = l i s t ( zip ( times , route ) )

173

174 def b u i l d r o u t e s ( s e l f ) :

175 for runner in s e l f . runners :

176 s e l f . b u i l d r o u t e ( runner )

177

103



178 def w r i t e r o u t e t o f i l e ( s e l f , o u t p u t f i l e=” de f au l t ou tpu t . txt ” ) :

179 r o u t e s t r i n g = ””

180 try :

181 with open( o u t p u t f i l e , ”w” ) as out :

182 for runner in s e l f . runners :

183 #for time , coords in z i p ( runner . t ime po in t s , s e l f .

waypoints ) :

184 for time , coords in runner . route :

185 r o u t e s t r i n g = r o u t e s t r i n g + str ( time ) + ” ” +

str ( coords [ 0 ] ) + ” ” + str ( coords [ 1 ] ) + ” ”

186 r o u t e s t r i n g = r o u t e s t r i n g + ”\n”

187 out . wr i t e ( r o u t e s t r i n g )

188 r o u t e s t r i n g = ””

189 except :

190 print ( ” Error wr i t i ng to output f i l e ” )

191 out . c l o s e ( )

192

193 #Uses runner speed and segment d i s t anc e s to ca l c time to run/walk the

segment

194 def c a l c t i m e s ( marathon waypoints , speed , d i s t a n c e s ) :

195 t im e l a p s e = [ ]

196 running t ime = 0

197 for segment in d i s t a n c e s :

198 segment time = segment / speed

199 running t ime = running t ime + segment time

200 t im e l a p s e . append ( running t ime )

201 #pr in t ( t ime l ap s e )

202 return t i me l a p s e

203 # mph to mps :

204 # conver t s a s i n g l e argument , mi l e s per hour (mph) , i n t o meters per

second .

205 def mph to mps (mph) :

104



206 meter s per hour = mph∗1609.344

207 mete r s per second = meter s per hour / 3600 #3600 seconds per hour

208 return meter s per second

209

210 # minute mi les to mps :

211 # conver t s a s i n g l e argument f o r a pace , minutes per mile , i n t o meters

per second .

212 def minute mi les to mps ( pace ) :

213 s e c o n d s p e r m i l e = pace ∗60

214 m i l e s p e r s e c o n d = 1/ s e c o n d s p e r m i l e

215 mete r s per second = 1609.344∗ m i l e s p e r s e c o n d

216 return meter s per second

217

218

219 def main ( ) :

220 par s e r = argparse . ArgumentParser ( )

221 par s e r . add argument ( ”−n” , ”−−num runners” , help=”number o f runners

in marathon s c e n a r i o ” , type=int )

222 par s e r . add argument ( ”−−c o n f i g ” , help=”one or more s t r i n g s f o r

waypoint inputs to be generated f o r the i n i f i l e ” , nargs=”+” )

223 args = par s e r . p a r s e a r g s ( )

224

225 myMarathon = Marathon ( ’ marathon waypoints . txt ’ , a rgs . num runners )

226

227 myMarathon . waypoints = myMarathon . read waypoints (myMarathon .

waypoints , ’ marathon waypoints . txt ’ )

228 myMarathon . ga t eways s t a t i on s = myMarathon . read waypoints (myMarathon .

gateways s ta t i ons , ’ gateways . txt ’ )

229

230 myMarathon . popu la te runner s (myMarathon . num runners )

231

232 myMarathon . b u i l d r o u t e s ( )

105



233

234 myMarathon . w r i t e r o u t e t o f i l e ( ” runner s ”+str ( args . num runners )+” .

txt ” )

235

236 ga t eways s t a t i on s = [ ]

237 for i , gateways po int in enumerate(myMarathon . ga t eways s t a t i on s ) :

238 ga t eways s t a t i on s . append ( f ” ∗ . gateway [{ i } ] . mob i l i ty . i n i t i a l X = {

math . f l o o r ( gateways po int [ 0 ] ) }m\n” )

239 ga t eways s t a t i on s . append ( f ” ∗ . gateway [{ i } ] . mob i l i ty . i n i t i a l Y = {

math . f l o o r ( gateways po int [ 1 ] ) }m\n” )

240 try :

241 with open( ” gateways in i . txt ” , ”w” ) as omnet out :

242 for l i n e in ga t eways s t a t i on s :

243 omnet out . wr i t e ( l i n e )

244 except :

245 print ( ” Error wr i t i ng omnetconf ig : ga t eways in i . txt ” )

246 omnet out . c l o s e ( )

247

248

249 myMarathon . waypo int d i s tance s = myMarathon . g e n d i s t a n c e s (myMarathon .

waypoints )

250

251 #pr in t (”sum of d i s t anc e s ” , sum(myMarathon . waypo in t d i s t ance s ) )

252

253 i f name == ’ ma in ’ :

254 main ( )

106



Bibliography

1. G. Chiampas, “Emergency Preparedness in Mass Events,” 2012. Accessed 22
Jun 2020, [Online], Available: http://aims-worldrunning.org/symposium/
7th AIMS Symposium George Chiampas ppt.pdf.

2. “Air Force Marathon.” Accessed 21 July 2020, [Online], Available:
https://www.usafmarathon.com/.

3. “Hexoskin Smart Shirts.” https://www.hexoskin.com/. Accessed 13 Aug 2020,
[Online], Available: https://www.usafmarathon.com/.

4. A. Christian and J. Healey, “Gathering Motion Data Using Featherweight
Sensors and TCP / IP,” in IEEE International Symposium on Wearable
Computing, Workshop on On-body Sensing, (Osaka, Japan), 18-21 October
2005.

5. B. M. Eskofier, S. I. Lee, M. Baron, A. Simon, C. F. Martindale, H. Gaßner,
and J. Klucken, “An Overview of Smart Shoes in the Internet of Health Things:
Gait and Mobility Assessment in Health Promotion and Disease Monitoring,”
Applied Sciences (Switzerland), vol. 7, no. 10, p. 986, 2017.

6. B. Reeder and A. David, “Health at hand: A systematic review of smart watch
uses for health and wellness,” Journal of Biomedical Informatics, vol. 63,
pp. 269–276, 2016.

7. “Omnet++.” accessed 1 Feb 2020, [Online], Available: https://omnetpp.org/.

8. “Inet framework.” accessed 1 Feb 2020, [Online], Available:
https://inet.omnetpp.org/.

9. IEEE Standard for Low-Rate Wireless Networks. IEEE Std 802.15.4-2020.

10. Nordic Semiconductors, “Nordic nRF52840 Product Specification v.1.1,” 2019.
Accessed 20 Aug 2020, [Online], Available: https://infocenter.nordicsemi.com/
index.jsp?topic=%2Fps nrf52840%2Fkeyfeatures html5.html.

11. S. Yinbiao, K. Lee, P. Lanctot, F. Juanbin, H. Hao, B. Chow, J.-P. Desbenoit,
G. Stephan, L. Hui, X. Guodong, S. Chen, D. Faulk, T. Kaiser, H. Satoh,
O. Jinsong, W. Shou, Z. Yan, S. Junping, Y. Haibin, Z. Peng, L. Dong, and
W. Qui, “Internet of Things: Wireless Sensor Networks,” Tech. Rep. December,
International Electrotechnical Commission, 2014. Accessed 18 May 2020,
[Online], Available:
http://www.iec.ch/whitepaper/pdf/iecWP-internetofthings-LR-en.pdf.

12. H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor
Networks. John Wiley and Sons Inc., 2005.

107

http://aims-worldrunning.org/symposium/7th_AIMS_Symposium_George_Chiampas_ppt.pdf
http://aims-worldrunning.org/symposium/7th_AIMS_Symposium_George_Chiampas_ppt.pdf
https://www.usafmarathon.com/
https://www.hexoskin.com/
https://www.usafmarathon.com/
https://omnetpp.org/
https://inet.omnetpp.org/
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fps_nrf52840%2Fkeyfeatures_html5.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fps_nrf52840%2Fkeyfeatures_html5.html
http://www.iec.ch/whitepaper/pdf/iecWP-internetofthings-LR-en.pdf


13. C. S. Raghavendra, K. Sivalingam, and T. Znati, Wireless Sensor Networks.
Massachusetts: Kluwer Academic Publishers, 2004.

14. J. A. Manrique, J. S. Rueda-Rueda, and J. M. Portocarrero, “Contrasting
Internet of Things and Wireless Sensor Network from a Conceptual Overview,”
in 2016 IEEE International Conference on Internet of Things, pp. 252–257,
Institute of Electrical and Electronics Engineers Inc., Dec 2016.

15. E. Callaway, Wireless Sensor Networks: Architectures and Protocols. Boca
Raton: Auerbach Publications, 2004.

16. M. Miller, “Evolution of Industrial Wireless Sensor Networks,” Nov 2017.
Accessed 18 May 2020, [Online], Available: https://www.mwee.com/design-
center/evolution-industrial-wireless-sensor-networks.

17. M. May, “Design of a Wireless Sensor Node Platform,” Master’s thesis,
University of Waikato, 2012. Accessed 18 May 2020, [Online], Available:
https://wand.net.nz/sites/default/files/mm236%20COMP520%20Report.pdf.

18. J. Hill, System Architecture for Wireless Sensor Networks. PhD thesis,
University of California Berkeley, Berkeley, 2003. Accessed 18 May 2020,
[Online], Available: http://www.jlhlabs.com/jhill cs/jhill thesis.pdf.

19. N. Kamyab Pour, Energy Efficiency in Wireless Sensor Networks. PhD thesis,
University of Technology, Sidney, 2015. Accessed 22 May 2020, [Online],
Available: https://arxiv.org/abs/1605.02393.

20. W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient
Communication Protocol for Wireless Microsensor Networks,” in Hawaii
International Conference on System Sciences, pp. 1–10, IEEE, 2000.

21. H.-Y. Zhou, D.-Y. Luo, Y. Gao, and D.-C. Zuo, “Modeling of Node Energy
Consumption for Wireless Sensor Networks,” Wireless Sensor Network, vol. 03,
no. 01, pp. 18–23, 2011. Accessed 10 May 2020, [Online], Available:
https://www.scirp.org/journal/paperinformation.aspx?paperid=3803.

22. C. H. S. Oliveira, Y. Ghamri-Doudane, and S. Lohier, “A Duty Cycle
Self-Adaptation Algorithm for the 802.15.4 Wireless Sensor Networks,” in
Global Information Infrastructure and Networking Symposium, (Trente, Italy),
pp. 1–7, 2013.

23. Recommendation ITU-R P.1411-9, “Propagation Data and Prediction Methods
for the Planning of Short-range Outdoor Radiocommunication Systems and
Radio Local Area Networks in the Frequency Range 300 MHz to 100 GHz,”
Tech. Rep. 1411-9, International Telecommunication Union, 2017.

108

https://www.mwee.com/design-center/evolution-industrial-wireless-sensor-networks
https://www.mwee.com/design-center/evolution-industrial-wireless-sensor-networks
https://wand.net.nz/sites/default/files/mm236%20COMP520%20Report.pdf
http://www.jlhlabs.com/jhill_cs/jhill_thesis.pdf
https://arxiv.org/abs/1605.02393
https://www.scirp.org/journal/paperinformation.aspx?paperid=3803


24. D. Chen, Z. Liu, L. Wang, M. Dou, J. Chen, and H. Li, “Natural disaster
monitoring with wireless sensor networks: A case study of data-intensive
applications upon low-cost scalable systems,” Mobile Networks and
Applications, vol. 18, pp. 651–663, Oct 2013.

25. K.-T. Kim and J.-G. Han, “Design and Implementation of a Real-time Slope
Monitoring System based on Uqiquitous Sensor Network,” in 25th International
Symposium on Automation and Robotics in Construction, (Vilnius, Lithuania),
pp. 330–336, 2008.

26. M. Ryu, S. Choi, J. Kim, J. Yun, T. Miao, I.-Y. Ahn, and S.-C. Choi, “Design
and Implementation of a Connected Farm for Smart Farming System,” in IEEE
Sensors, pp. 1–4, 2015.

27. A. Mondal, I. S. Misra, and S. Bose, “Building a low cost solution using wireless
sensor network for agriculture application,” in Proceedings of 2017 International
Conference on Innovations in Electronics, Signal Processing and
Communication, IESC 2017, pp. 61–65, Institute of Electrical and Electronics
Engineers Inc., Oct 2017.

28. R. Lacoss and R. Walton, “Strawman Design of a DSN to Detect and Track
Low Flying Aircraft,” 1978.

29. G. Mitchell, “Data in a Wireless Sensor Network: A View from the Field,” tech.
rep., BBN Technologies. Accessed 3 Sep 2020, [Online], Available:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.7640&rep=
rep1&type=pdf.

30. J. Vasseur, “RFC 7102 - Terms Used in Routing for Low-Power and Lossy
Networks,” 2014. Accessed 12 Sep 2020, [Online], Available:
https://tools.ietf.org/html/rfc7102.

31. C. Hetting, “White Papers: Wi-Fi HaLow best IoT tech for range, battery life,
& breadth of applicability,” 2020. Accessed 12 Sep 2020, [Online], Available:
https://wifinowglobal.com/news-and-blog/white-papers-wi-fi-halow-best-iot-
tech-for-range-battery-life-breadth-of-applicability/.

32. J. Kurose and K. Ross, Computer Networking: A Top-Down Approach. Pearson,
6th ed., 2013.

33. C. Perkins, E. Belding-Royer, and S. Das, “RFC 3561 - Ad hoc On-Demand
Distance Vector (AODV) Routing,” 2003. Accessed 18 May 2020, [Online],
Available: https://tools.ietf.org/html/rfc3561.

34. D. Pfisterer, M. Lipphardt, G. Buschmann, H. Hellbrueck, S. Fischer, and J. H.
Sauselin, “MarathonNet: Adding value to large scale sport events - A
Connectivity Analysis,” Proceedings of the First International Conference on
Integrated Internet Ad hoc and Sensor Networks, InterSense ’06, p. 12, 2006.

109

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.7640&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.7640&rep=rep1&type=pdf
https://tools.ietf.org/html/rfc7102
https://wifinowglobal.com/news-and-blog/white-papers-wi-fi-halow-best-iot-tech-for-range-battery-life-breadth-of-applicability/
https://wifinowglobal.com/news-and-blog/white-papers-wi-fi-halow-best-iot-tech-for-range-battery-life-breadth-of-applicability/
https://tools.ietf.org/html/rfc3561


35. S. Ray, J. B. Carruthers, and D. Starobinski, “RTS/CTS-induced congestion in
ad hoc wireless LANs,” IEEE Wireless Communications and Networking
Conference, WCNC, vol. 3, pp. 1516–1521, 2003.

36. E. J. Bach and M. G. Fickel, An Analysis of the Feasibility and Applicability of
IEEE 802.x Wireless Mesh Networks within the Global Information Grid. PhD
thesis, Naval Postgraduate School, 2004. Accessed 4 Jun 2020, [Online],
Available: https://apps.dtic.mil/sti/citations/ADA427228.

37. G. Santhosh Kumar, V. Paul, and K. Poulose Jacob, “Impact of Node Mobility
on Routing Protocols for Wireless Sensor Networks,” in International
Conference on Sensors and Related Networks, pp. 480–485, 2007.

38. A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” 2008.

39. “Krita.” Accessed 1 Apr 2020, [Online], Available: https://krita.org/en/.

40. K. Furset and P. Hoffman, “High Pulse Drain Impact on CR2032 Coin Cell
Battery Capacity,” tech. rep., Nordic Semiconductor, Sep 2011. Accessed 27
Jun 2020, [Online], Available: https://www.dmcinfo.com/Portals/
0/Blog%20Files/High%20pulse%20drain%20impact%20on%20CR2032%20coin%
20cell%20battery%20capacity.pdf.

41. N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and M. Schwamborn,
“BonnMotion-A Mobility Scenario Generation and Analysis Tool,” 2010.
Accessed 1 May 2020, [Online], Available: http://sys.cs.uos.de/bonnmotion/.

42. E. J. Allen, P. M. Dechow, D. G. Pope, and G. Wu, “Reference-Dependent
Preferences: Evidence from Marathon Runners,” Management Science, vol. 63,
no. 6, pp. 1657–1672, 2017.

43. P. Veeraraghavan, G. Khomami, and F. P. Fontan, “The relation between the
probability of collision-free broadcast transmission in a wireless network and the
stirling number of the second kind,” Mathematics, vol. 6, no. 7, pp. 1–17, 2018.

44. J. W. Hui and D. E. Culler, “IP is dead, long live IP for wireless sensor
networks,” in SenSys’08 - Proceedings of the 6th ACM Conference on Embedded
Networked Sensor Systems, pp. 15–28, ACM, 2008.

45. “Thread Border Router – Kirale.” https://www.kirale.com/products/ktbrn1/.
Accessed: 2020-10-12.

46. Notsane0, “nRF52840-DK Range Testing With BLE, ZigBee and Thread
Protocols at 0, 4 and 8dBm Transmit Power Settings.”
https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/nrf52840-dk-
range-testing-with-ble-zigbee-and-thread-protocols-at-0-4-and-8dbm-transmit-
power-settings, Dec 2018. Accessed: 2020-11-01.

110

https://apps.dtic.mil/sti/citations/ADA427228
https://krita.org/en/
https://www.dmcinfo.com/Portals/
0/Blog%20Files/High%20pulse%20drain%20impact
%20on%20CR2032%20coin%20cell%20battery%20capacity.pdf
%20on%20CR2032%20coin%20cell%20battery%20capacity.pdf
http://sys.cs.uos.de/bonnmotion/
https://www.kirale.com/products/ktbrn1/
https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/nrf52840-dk-range-testing-with-ble-zigbee-and-thread-protocols-at-0-4-and-8dbm-transmit-power-settings
https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/nrf52840-dk-range-testing-with-ble-zigbee-and-thread-protocols-at-0-4-and-8dbm-transmit-power-settings
https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/nrf52840-dk-range-testing-with-ble-zigbee-and-thread-protocols-at-0-4-and-8dbm-transmit-power-settings


47. “Thermal noise formulas & calculator.” Electronics Notes. Accessed 2 Oct 2020,
[Online], Available: https://www.electronics-notes.com/articles/
basic concepts/electronic-rf-noise/thermal-noise-calculations-calculator-
formulas.php.

111

https://www.electronics-notes.com/articles/
basic_concepts/electronic-rf-noise/thermal-noise-calculations-calculator-formulas.php
basic_concepts/electronic-rf-noise/thermal-noise-calculations-calculator-formulas.php


REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

25–03–2021 Master’s Thesis Sept 2019 — Mar 2021

SIMULATING A MOBILE WIRELESS SENSOR NETWORK
MONITORING THE AIR FORCE MARATHON

21G532A

Eilertson, Matthew D, Capt

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-21-M-031

AFRL/RYAA
2241 Avionic Cir
WPAFB OH 45433-7765
COMM 937-713-8573
Email: Eric.Lam.3@us.af.mil

AFRL/RYAA

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

This thesis explores the feasibility of deploying a mobile Wireless Sensor Networks (WSN) to the Air Force (AF)
Marathon in support of Air Force Research Laboratory (AFRL) research of sensor and networking infrastructure in
denied or degraded environments. A simulation called MarathonSim is developed in the Objective Modular Network
Testbed in C++ (OMNeT++) Discrete Event Simulator to test the performance of a mobile WSN. A full factorial design
using numbers of runners, transmission powers, and routing protocols is executed to measure Packet Delivery Ratio
(PDR) to a central database, average end-to-end delay of application packets, and average power consumed per mote
through the marathon. The experiment results show flood routing delivers >50% of packets for 7 out of 15 trials and
>75% for two trials. Average delay varied from 0.11 to 7.2 seconds between 25 runners and 125 respectively. Average
power consumed per node increased across all three factors but appears especially sensitive to additional runners. The
experiments show it is feasible to deploy a WSN to a marathon under the simulated conditions.

Wireless Sensor Network, IEEE 802.15.4, Flood, Ad hoc On-Demand Distance Vector, Mobile Mesh Network

U U U UU 127

Dr. Barry E. Mullins, AFIT/ENG

(937) 255-3636, ext 7979; barry.mullins@afit.edu


	Simulating a Mobile Wireless Sensor Network Monitoring the Air Force Marathon
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Problem Statement
	Hypothesis and Research Goals
	Approach
	Assumptions and Limitations
	Research Contributions
	Thesis Overview

	Background and Literature Review
	Overview
	Wireless Sensor Networks and Internet of Things
	General
	Mote Design Considerations
	Applications

	Wireless Protocols
	IEEE 802.15.4
	Alternative Protocols

	Routing Protocols
	General Categories
	Ad Hoc On-demand Distance Vector
	Managed Flooding

	Related Research
	Background Summary

	MarathonSim Design
	Overview
	OMNeT and INET
	System Summary
	The MarathonSim Network
	The Marathon Environment
	Sensor Motes and Runners
	Infrastructure Gateways
	EMS Hub
	Network Configurator
	Radio Medium

	MarathonSim Design Summary

	Methodology
	Overview and Objectives
	System Under Test
	Assumptions and Limitations
	Factors
	System Parameters
	Performance Metrics
	Uncontrolled Variable
	Experimental Design
	Mobility Trace Generations
	INI Configuration
	Batch Execution

	Statistical Analysis
	Methodology Summary

	Results and Analysis
	Overview
	MarathonSim Performance Metrics Analysis
	Packet Delivery Ratio
	End-to-End Delay
	Average Power Consumption

	Overall Analysis
	Results Summary

	Conclusion
	Overview
	Research Conclusions
	Research Contributions
	Limitations of Research
	Recommendations for Future Work

	MarathonSim NED Files
	MarathonSim INI Config File
	waypointScript.py
	Bibliography

