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Abstract

Space has always been a domain requiring a high degree of autonomy. The challenges

presented by the required autonomy have made it difficult to accomplish complex

tasks and operations with short response windows. With the growing use of multi-

agent systems to enhance old and demonstrate new capabilities in the aerial domain,

the need for development in multi-agent operations on orbit and in proximity opera-

tions has never been greater. A decentralized, cooperative multi-agent optimal control

framework is presented to offer a solution to the assignment and control problems as-

sociated with performing multi-agent tasks in a proximity operations environment.

However, the framework developed may be applied to a variety domains such as air,

space, and sea. The solution presented takes advantage of a second price auction

assignment algorithm to optimally task each satellite, while model predictive control

is implemented to control the agents optimally while adhering to safety and mission

constraints. The solution is compared to a direct orthogonal collocation method, and

a study on tuning parameters is included. Results demonstrate the proposed tech-

nique allows the user to optimize control beyond phase horizons with Model Predictive

Control and achieve a formation rendezvous with three tuning parameters. This bet-

ter approximates phase transition in collocation techniques compared to traditional

multi-phase MPC.
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Ū control input vector

Ulb input lower bounds

Uub input upper bounds

V keep out zone ellipsoid semi-axis

v̂Ä Sun vector

X state vector

XB state vector of centroid of patrol formation

XR state vector of centroid of target formation

Xd state vector of partrol vertecies

x radial relative distance

y in-track relative distance

z cross-track relative distance

Γ reference trajectory of an agent

γ half angle of keep in zone cone

ε complementary slackness

θ angle of chief from inertial hati

μ gravitational constant of Earth

ρ relative vector of deputy with respect to chief

Φ plant prediction matrix

Ω input prediction matrix

xii



List of Acronyms

APF Artificial Potential Function

DoD Department of Defense

GEO Geostationary Orbit

GNC Guidance, Navigation, and Controls

GPOPS General Purpose Optimal Control Software

HCW Hill-Clohessy-Wiltshire

HEO Highly Elliptical Orbit

KIZ Keep In Zone

KOZ Keep Out Zone

LEO Low Earth Orbit

LQG Linear Quadratic Gaussian

LQR Linear Quadratic Regulator

LVLH Local Vertical Local Horizontal

MPC Model Predictive Control

NERM Nonlinear Equations of Relative Motion

NASA National Aeronautics and Space Agency

PQP Parallel Quadratic Program

QP Quadratic Program

USAF United States Air Force

USSF United States Space Force

DoF Degree of Freedom

xiii



A Framework for Autonomous Cooperative Optimal Assignment and Control of

Multi-Agent Systems

I. Introduction

1.1 Motivation

Today multi-agent systems are growing in popularity. Traditionally, assets act

alone or in small groups operated by many human actors. With the advances in

autonomy and control, autonomous systems are beginning to supplement and replace

these human actors leading to more robust systems that accomplish the same task

with greater than or equal performance. Simultaneously, autonomous systems mini-

mize the human exposure and risk of operator error in performing these tasks. This

thesis offers an implementation of an optimal assignment algorithm to optimize the

objectives of a mission while model predictive control minimizes the control effort

to preform satellite rendezvous and proximity operations in a non-cooperative multi-

agent environment. The resultant of these combined methods is a control framework

useful for accomplishing cooperative formation rendezvous to minimize the fuel and

control effort costs to the system while adhering to relevant mission and safety con-

straints.

Optimal formation rendezvous is of great importance to the Department of Defense

due to the growing congested and contested nature of the space environment [1]. As

space develops into a more congested and contested environment risk accumulates,

posing a threat to the diverse network of satellite constellations operated by the DoD
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[2]. In order to mitigate this risk, cutting edge autonomy must be introduced to new

systems. The goal of the research herein is to develop an autonomous control frame-

work viable for implementation on multi-agent systems in space. However, other

domains such as air, sea, and land would also be able to take advantage of the result-

ing optimal assignment and control framework.

Space, as a domain, requires high degrees of autonomy due to the difficulty involved

in operations. The National Aeronautics and Space Agency has outlined many of the

environmental challenges autonomous technology in space must solve. This study

attempts to investigate methods for solving the difficulties associated with commu-

nication delays, relative guidance, rendezvous, and docking. NASA’s focus in these

areas comes down to three measures: real-time implementability, optimality, and

verfiability [3]. Autonomous satellite navigation is especially important due to the

restrictions ground-in-the-loop operations place onto missions. The time delay asso-

ciated with the vast distances in space greatly impacts the ability to preform precise

tasks in orbits higher than low Earth orbit. Autonomy is a necessity to continue to

improve mission frequency, robustness, and reliability.

The need for autonomy is clear, however, multi-agent systems in space would re-

quire a greater focus due to the significant loss to mission capability and high cost

associated with needs to communicate with multiple satellites. Without autonomy,

multi-agent satellite systems could be at risk of colliding, possibly resulting in catas-

trophic and nearly irreversible damage to the mission. The financial risk associated

with a lack of autonomy is also significant due to the high cost of launching and

operating even simple satellites. A complex system, such as the one described herein,

would be costly to maintain, and need a large support network on the ground for de-
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conflicting and executing the mission if a high degree of autonomy were not achieved.

For these reasons, the degree of autonomy used in traditional satellites is not viable.

The system must assign tasks, plan burns, and execute collections free of constant

interaction and detailed planning from a ground station to allow for a small multi-

agent system to have the flexibility necessary to accomplish the mission. Users on

the ground would be responsible for assigning an area of interest and analyzing the

collections. This will reduce the need for a large support network and allow the DoD

to have a capability necessary to stay competitive in this contested environment. The

framework poses to fulfill the DoD’s position on autonomous space systems expressed

in a report by the Defense Science Board [4]. The DoD’s mission to maintain space

domain awareness and dominance will be dependent on being able to leverage new

technology in autonomy to alleviate the demand on operators while increasing capa-

bility to its users.

1.2 Approach

Multi-agent systems are of interest, rather than a single satellite, because they

can be smaller and therefore cheaper and more agile. Additionally, this decrease in

size provides ease of replacement should a satellite run out of fuel or become damaged

while performing its mission. The quick development cycle of smaller satellites also

allows the users to update the hardware and adapt the software as new models are

produced. This will result in better performance as computation time is a limiting

factor when using model predictive control. To summarize, multi-agent systems offer

a resiliency and robustness not achievable by a singular spacecraft. This thesis takes

advantage of developments in auction theory to handle the assignment problem. In

3



proximity operations involving a formation of satellites, it may be necessary to per-

form maneuvers such that the formation’s states match a predetermined condition to

achieve a desirable configuration. As in all space operations it is important to consider

the cost of a maneuver in terms of fuel use, so an optimal control that minimizes the

required control is desirable. Additionally, maintaining the formation throughout the

maneuver ensures the formation is able to perform its mission while undergoing the

reconfiguration maneuver. Model predictive control (MPC), also known as receding

horizon optimal control, is used to balance staying in formation and performing the

rendezvous mission while maintaining favorable lighting conditions, control limits,

and implementing collision avoidance. The proposed method provides a near optimal

control framework capable of reacting to a dynamic target structure in real time on

hardware.

Traditionally, Hungarian Assignment is used to formulate a one-to-one assignment

given a weighted cost matrix [5]. This thesis uses a second-price auction to optimally

assign tasks quickly. In doing this, it becomes necessary to discretize the position and

velocities of the targets. However, this is also done when using MPC. Once the agents

are assigned, this data is passed to the agents’ respective controllers. Each agents’

control system then solves an optimal control problem that accounts for potential

collisions in the various trajectories as well as the direction of approach. For exam-

ple, a satellite may want to approach from the direction of the sun vector in order

to achieve favorable illumination conditions. Model Predictive Control does this by

using a receding finite horizon. Traditional optimal control typically uses an infinite

time horizon to accomplish its task. However, with a moving horizon, computation

time can be greatly reduced and changes in the task can be enforced. This allows

updates after a fixed duration increasing the resiliency of the multi-agent system.

4



In this work, MPC solves two distinct problems. The first problem considers the

control of the centroid of the agents’ formation towards the targets’ formation. The

outer-loop MPC solves this problem while adhering to a keep-in-zone (KIZ) con-

straint. A second-order cone is approximated by a number of planes to form the

KIZ. The second inner-loop MPC performs a reconfiguration of the formation to the

target structure while each agent is considered a keep-out-zone (KOZ). An ellipsoid

is used to approximate each of the other members of the formation to accomplish col-

lision avoidance. The pre-maneuver formation, or “patrol formation”, is user-defined

while the targets define the terminal structure. The transition between these two

formations is balanced using a logistic function. As a result, the user gains several

parameters used for tuning the maneuver to achieve desired performance. The op-

timality of the framework is assessed by comparing the resulting trajectory to the

solution found using commercially available optimal control software (GPOPS-II) [6].

Figure 1 overviews the formation maneuver problem.

Figure 1. Multi-Agent Control Scenario; formation center translates from blue dot to
red dot while agents achieve desired relative formation.

5



1.3 Assumptions and Limitations

The reservation towards adoption of highly autonomous systems in the DoD is

attributed to three factors according to the Defense Advanced Research Projects

Agency: reliability, complexity, and unpredictability [7]. This approach attempts to

compile commonly used modern methods into an autonomous system to alleviate

these reservations. The auction assignment algorithm and model predictive control

are well established and understood. The research described in this thesis hopes to

demonstrate a system, being comprised of several well understood reliable and rela-

tively simple parts, can successfully execute complex missions [8].

This study makes the assumptions that position information of the target structure

is known and perfect. Additionally, full state information is being passed between

the agent structure and is also without error. The target structure may vary to sim-

ulate dynamic changes to the target structure. In other words, the target structure

is passively dynamic and does not make decisions about its structural changes. Each

agent in the simulation is modeled as a point mass and the translational dynamics

are predicted with MPC using linearized Hill-Clohessy-Wiltshire equations of motion

[9]. The control will be implemented with 3 degrees of freedom and will be bounded

to ensure realistic inputs are used to track the desired reference signal. Models for

individual subsystems of the agents (i.e. sensors, actuators, etc.) are ignored, but

saturation values for applied forces are limited to realistic values for these satellite

subsystems. This problem shares a similar form to Linear Quadratic Regulator (LQR)

control modified to handle the formation mechanics.

The research accomplished in this thesis is wholly reliant on simulations. No ex-

perimental investigation is conducted. While this provides a sterile environment to

6



test the methods outlined, this benefit is also a limitation. The difficulty involved

in replicating a space environment on a large enough scale to test control algorithms

poses a risk to new and experimental methods. For this reason, it is important to

analyze the system using high-fidelity models that represent the true motion of the

agents. The Nonlinear Equations of Relative Motion are chosen to do this [9]. How-

ever, this model poses challenges that will be further discussed in later sections of

this study. The goal of this research is to provide a proof of concept that will allow

for higher fidelity models that consider multi-body gravity, oblate Earth, as well as

other perturbations and complexities.

1.4 Thesis Overview

The topics and research described in this thesis can serve as a foundation for the

DoD on the use of multi-agent systems in space. Taking advantage of autonomous

multi-agents space systems has the potential to decrease mission costs and operator

workload while increasing mission effectiveness. Multi-Agents systems pose an answer

to the problems of a congested and contested modern space environment. New and

innovative methods must be used to increase the capabilities of an aging fleet of

DoD space assets. Autonomy needs to be a significant player in the future systems

of the DoD to assure space superiority. Chapter 2 takes a deeper dive into the

individual fields that this research investigates to provide the reader with a more

detailed understanding of the aspects of the problem. After the background, the

methodology of the solution is described in detail in Chapter 3 to allow the reader

to replicate the optimal assignment algorithm and control formulation. The results

of this study follow in Chapter 4 before the conclusion in Chapter 5, which expresses

the significance of the findings and the next steps to be taken.
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II. Literature Review

In this chapter the major aspects of the formation rendezvous and reconfiguration

problem are discussed. This complex problem is not limited to the basis reviewed in

this chapter, however, the focus on dynamics, multi-agent systems, and optimization

are meant to give the reader the necessary knowledge to be able to replicate the work

described in this thesis.

2.1 Rendezvous and Proximity Operations

Rendezvous and Proximity Operations has been of great interest in the space com-

munity for almost as long as satellites have been launched. The first ever rendezvous

occurred only nine short years after the launch of the first satellite, Sputnik, in 1957.

The Gemini program accomplished this feat on 16 March 1966 in order to develop

techniques that would be necessary to put a man on the Moon [10].

2.1.1 Nonlinear Equations of Relative Motion

The Nonlinear Equations of Relative Motion (NERMs) describe how a satellite,

generally referred to as the deputy, behaves with respect to some reference orbit, or

chief. As a result, a relative frame must be developed to describe this motion. The

common choice is the Local Vertical Local Horizontal (LVLH) frame. In the LVLH

frame the chief is placed at the origin and the frame rotates around the Earth as the

chief would in orbit (see Figure 2).
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Figure 2. Chief and Deputy in Local Vertical Local Horizontal(LVLH) Frame.

In the unperturbed case, the equations of motion are developed from two body

Keplerian motion. Earth is treated as a point mass with a uniform gravitational

potential field; other perturbations such as solar radiation pressure and atmospheric

drag are ignored. However, in the NERMs differential gravity is considered. This

accounts for the differences in attractive potential at different orbital altitudes. The

unperturbed NERMs can be derived from the difference of two satellites exhibiting

two body Keplerian motion to develop the following second-order differential equa-
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tions shown in Eq. 2.2-2.5 [9]:

:x = :θy + 2 9θ 9y + 9θ2x -
μ

r3
d

(rc + x) +
μ

r2
c

(2.1)

:y = -:θx - 2 9θ 9x + 9θ2y -
μ

r3
d

y (2.2)

:z = -
μ

r3
d

z (2.3)

:θ = -
2 9rc 9θ

rc
(2.4)

:rc = rc 9θ2 -
μ

r2
c

. (2.5)

The variables x, y, z, and their derivatives 9x, 9y, 9z represent relative displacements and

velocities in the radial, in-track, and cross track directions respectively. The remaining

four states in this ten state model apply to the chief’s orbit. The argument of latitude

and its derivative θ and 9θ make up the seventh and eighth terms, while the chief’s

radius and its derivative rc and 9rc make up the ninth and tenth states. With the state

vector constructed as in Eq. 2.6 these equations can be expanded into ten first-order

differential equations to describe the motion of each state.

X̄ =

[
x y z 9x 9y 9z θ 9θ rc 9rc

]T

(2.6)

The nonlinearities are clear in each equation which have a multitude of state products,

states raised to a power, or both. The only equilibrium point that exists in the NERMs

is,

ρ
˚ =

[
x y z

]T

=

[
0 0 0

]T

. (2.7)

The equilibrium point ρ˚ implies the only location where the relative motion between

two orbiting bodies vanishes occurs when the bodies are co-located. The stability

of this equilibrium point can be calculated by first calculating the Jacobian of the
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system, then supplying the equilibrium point while truncating the higher-order terms,

and finally by determining the eigenvalues of the resulting matrix (Eq. 2.9-2.11).

9̄X = f(X̄) (2.8)

=

(
Bf(X̄)

X̄

)
X̄=ρ˚

+���:
0

h.o.t (2.9)

= AX̄ (2.10)

eig(A) ě 0 (2.11)

When attempting this, an eighth order polynomial is found that represents the char-

acteristic equation of the ten state system. The order of this polynomial implies that

there are repeated eigenvalues at the origin, and as a result the system is unsta-

ble. Additionally, the coefficients of the polynomial change signs and contain states

in them. According to Routh stability criteria [11] this is further evidence of the

instability of the system. The instability found through the process of Lyapunov’s

Indirect method implies that Lyapunov’s Direct method cannot be used to find a sta-

ble Lyapunov Candidate function for the system [12], and as a result controls must

be developed to achieve stability within the system.

2.1.2 Hill-Clohessy-Wiltshire Equations of Motion

The Hill-Clohessy-Wiltshire equations of motion are a linearized model of the

dynamics of relative motion [9]. The linerization is accomplished by making the

assumption that the chief inhabits a circular orbit. The unforced motion can be

modeled as in Eqs. 2.12-2.14, and an applied force (T) can be added to give control

to each satellite with Eq. 2.15 -2.17. After converting to first order form, develop

the plant matrix, A, from Eqs. 2.12-2.14, and the input matrix, B, from Eqs. 2.15

-2.17 to arrive at a simple model for a satellite with 3 DoF control. In this model,
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n represents the mean motion of a circular orbit for a desired altitude, T represents

the thrust of the satellite, and m the mass. A linear differential equation can then be

constructed as in Eq. 2.18 to model the satellite.

:x = 3n2x + 2n 9y (2.12)

:y = -2n 9x (2.13)

:z = -n2z (2.14)

:x =
T

m
u1 (2.15)

:y =
T

m
u2 (2.16)

:z =
T

m
u3 (2.17)

9Xi = AXi + BUi (2.18)

The state vector of in Eq. 2.18 is a decatenated form of the state vector in Eq. 2.6

where only the first six states are used.

2.2 Multi-Agent Control Strategies

Multi-agent control can take many forms. Virtual structures, artificial potential

functions, and behavior based strategies are some of the most common [13]. These

different strategies deal with how an agent defines the error between its current state

and its desired state. However, there are other aspects of navigation unique to multi-

agent systems. One of these is communication topologies. This concerns how, and

how much, information is being shared within members of the formation [13]. For

this study, communication topologies will not be investigated, and all information is

assumed to be shared within the formation. This is done to allow focus on the control

development of a working framework for accomplishing the reconfiguration mission.

Behavior-based strategies are also not considered as they tend to rely heavily on
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machine learning which currently does not promote the simplicity or predictability

outlined by DARPA as a necessity for a highly autonomous system [7].

2.2.1 Virtual Structure Based Control

There has been some development in the field of multi-agent control of satellites

performing proximity operations. The most common technique involves virtual struc-

tures. Virtual structures fix an agent’s location relative to a pre-defined center. The

agents involved in the formation define their error states with respect to this relative

position as done by Ren [14]. Proportional-Derivative control is then used to keep

the members of the formation at their respective coordinates relative to the center.

Another method in virtual structure control is to define a constraint function that

represents the formation as demonstrated by Egerstedt [15]. The constraint function

is then parameterized along a path and the agents of the formation follow this path.

However, to the author’s knowledge none of these works expanded on the nature of

multi-agent optimal control. Work done by Palacios et al. [16] introduces optimal

control into the problem with a solution that results in a multi-agent rendezvous

through the use of LQR control. Error states are calculated by differencing the cur-

rent and desired states of the agents within the formation, but formation keeping is

not considered in the formulation of the LQR. When performing formation proximity

operations it may be important to consider the formation shape to ensure mission

requirements are met as Egerstedt [15] and Ren [14] enforce throughout their works.

At the same time, the operator may find it necessary to change the profile of the

formation, and do so in a way that minimizes fuel costs. These constrained opti-

mization problems cannot be solved with a traditional LQR formulation. Therefore,

an optimal control problem that allows for formation reconfiguration fills a perceived

research gap.
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2.2.2 Artificial Potential Function Based Control

Artificial potential functions also accomplish the multi-agent control and path

following problems, but instead of relative positions for the agents to track, an indi-

vidual agent seeks to minimize its potential function [17]. APF-based control relies

heavily on Lyapunov theory. This leads to a gradient-based control approach which

has been proven to be effective because it also allows for obstacle avoidance through

the use of repulsive potential functions [13]. However, because constraints are gen-

erally parameters in this manner they are typically considered “soft” constraints, as

there is no guarantee that it will not be violated. “Soft” constraints are not viable

for this problem so another method must be employed.

2.3 Optimal Assignment

Assignment problems are combinatorial optimization problems involving several

tasks and a number of parties. The parties have some value associated with each

task involved. The goal is to determine, in an optimal manner, which party should

perform which task [18]. Figure 3 gives the reader a visual aid to the nature of the

assignment problem.
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Figure 3. The Assignment Problem from the perspective of Rendezvous and Proximity
Operations. Each blue satellite is assigned a task to rendezvous with a red satellite.
The center of each formation is collocated.

2.3.1 Hungarian Method of Assignment

Assignment problems stem from logistics and began being analyzed by mathe-

maticians in the mid-1950s [5]. Kuhn’s Hungarian algorithm for linear assignment

was the first major breakthrough in this area of research. The Hungarian algorithm

prescribed a method for assigning these tasks in an optimal way [5]. The computa-

tional complexity of this algorithm is O(n4) and Kuhn initially limited the algorithm

to having an equal number of parties and tasks. Kuhn later modified his algorithm

to handle the general assignment problem which allows for unbalanced assignments

by including dummy variables. Mathmetician Lester Ford looked at the problem

through the lens of flows through a network. As a result, the Ford-Fulkerson algo-

rithm was developed [19].In the early 1970s additional variants were able to optimize

the Hungarian algorithm to have a computational complexity of O(n3) [20].
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2.3.2 Auction Based Assignment

The same assignment problem can be analyzed through this lens in the form of

auction algorithms [21]. There are several ways to hold auctions, but the basis in

analyzing these algorithms holds in that the final cost to the system is measured by

the sum of each parties assigned tasks. The task is to analyze techniques and con-

ditions that promote the highest utility. Utility can be taken from the perspective

of the buyer, seller, or both. In first price auctions, the most traditional auction

style, the highest bidder pays the price he or she bids for an object. In second price

auctions, the highest bidder pays the price of the second highest price instead. This

promotes truthful bidding and as a result a Nash Equilibrium [22] forms where the

bidder maximizes their utility by bidding what they consider the true value of the

object or task to be.

While both the Hungarian and the Second Price Auction algorithms provide the op-

timal solution to the assignment problem, in practice the auction algorithm is more

common. This is because of the speed, O(n2logn), and recursive nature of auction

algorithms. This allows the program to return the best solution after a user defined

number of iterations which is desirable because the computational time of the pro-

gram can be adjusted to suit the user’s needs. The returned assignment’s utility

monotonically increases or decreases, depending on the nature of the problem, with

each iteration. As with the Hungarian algorithm, the problem is deconstructed into

a bipartite graph which the auction algorithm is designed to solve with the added

flexibility that partitions of the graph need not have the same order. This allows for

arbitrary number of agents on either team. A cost matrix can be formed by having

rows represent the parties interested in completing tasks and the columns represent-

ing the tasks to be performed.
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With the cost matrix formed, an auction can be held to assign tasks to the agents

responsible for maneuvering. The algorithm for accomplishing this follows [23] [21]:

1. Start with a set U of all bidders. U denotes the set of all unassigned bidders.

Also maintain a set of prices which are all initialized to 0, and any structure

that stores the current tentative (partial) assignment.

2. Pick any bidder i from U. Search for the item j that gives the bidder the highest

net payoff Cij - pj, and also an item k that gives them the second highest net

payoff.

3. The price pj of item j is updated to be pj = pj + (Cij - pj) - (Cik - pk) + ε. This

update simply says that pj is raised to the level at which bidder i is different(in

terms of net payoff) between item j and item k.

4. Now assign item j to bidder i. If item j was previously assigned to another

bidder S, then remove that assignment and add S to U .

5. If U becomes empty, the algorithm is over; otherwise, go back to Step (2).

An example of the implementation of this algorithm follows with Table 3 for reference.

Begin with a cost matrix, W; due to the algorithm being optimal for maximization

problems we multiply the matrix by negative one to turn it into a minimization

problem.

W =



-14 -5 -8 -7

-2 -12 -6 -5

-7 -8 -3 -9

-2 -4 -6 -10


(2.19)
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Table 3. Auction Algorithm Example

Iteration Prices Assignments Bidder Task Bid

1 (0,0,0,0) 1 2 2.2

2 (0,2.2,0,0) (1,2) 2 1 3.2

3 (3.2,2.2,0,0) (1,2),(2,1) 3 3 6.2

4 (3.2,2.2,6.2,0) (1,2),(2,1),(3,3) 4 1 4.4

5 (4.4,2.2,6.2,0) (1,2),(3,3),(4,1) 2 4 1.6

6 (4.4,2.2,6.2,1.6) (1,2),(3,3),(4,1),(2,4)

W˚ = W12 + W33 + W41 + W24 = -15 (2.20)

Calculating the payoff for bidder 1 can be done by subtracting the vector of prices

from the first row of the cost matrix. The two tasks that maximize payoff become

task 2 and task 4 at -5 and -7 respectively. The bid for task 2 is calculated with a

complementary slackness of ε = 0.2. Finally, task 2 is assigned to bidder 1. This pro-

cess repeats until iteration 3. In this iteration we can see maximizing payoff results

in picking task 3 and 4. This is the first instance where the tasks chosen are not the

largest values of in the bidder’s row of the cost matrix. This occurs because the price

of objects 2 and 1 have gone up as a result of the bids from bidders 1 and 2. Bidder 3

makes a large bid on object 3 because there is a large difference between the payoff of

this object and the next best task. Iteration 4 shows that despite the increased price

of objects one through three the payoff is still maximized by bidder 4 choosing tasks

1 and 2. As a result, bidder 4 outbids bidder 2 for task 1. Bidder 2 then returns to

the set of unassigned bidders. In iteration 6 the payoffs of each task have changed

from the last instance bidder two was involved, and this time it is in bidder 2’s best

interest to select task 4. This concludes the auction, and an optimal assignment has
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formed. This means there does not exist an assignment that will have a cost lower

than the sum of the elements chosen.

To demonstrate that bidding honestly is a dominant strategy in this auction, assume

that the other agents will bid arbitrarily, and consider the two possible outcomes for

bidder i. A visual representation of this can be seen in Figure 4.

Figure 4. Payoff of different bids for bidder i. A Nash Equilibrium forms when the
bidder bids at the true value maximizing utility.

Consider first outcomes where bidder i wins. For any object that may be bid upon

imagine a price πk that represents the true value of that object k. If bidder i bids at

this price, and wins than they pay the next highest price. If bidder i bids higher than

πk than they still win and again pay the next highest price. If bidder i bids slightly

lower than πk and still wins they will again pay the next highest price. In all these

scenarios, assuming the next highest price is constant, the bidder i has no increase in

utility for raising or lowering its price any higher than the true value of the object.

Now consider the situation where bidder i bids lower than the others price, as a result

bidder i gains no utility because they lose the auction. As a result, the best strategy

for bidder i is to bid their perceived value of object k because any lower or higher

results in no benefit to the bidder. Therefore, a Nash Equilibrium is reached among

the bidders in the auction if they follow this dominant strategy and the algorithm
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above takes advantage of this dominant strategy by assigning objects to the bidders

accordingly to maximize the utility to all agents.

2.4 Optimal Control

Classical control techniques aim to stabilize a system to perform either regulation

or tracking to a target state. However, these techniques do not inherently optimize

performance. To address this problem, optimal control techniques were developed

to determine the best control according to some performance measure. For linear

control systems, the most prevalent of these techniques are Linear Quadratic Regu-

lator (LQR) and Linear Quadratic Guassian (LQG) control. LQR and LQG control

allow the user to tune the performance of the system according to some weighting

matrices while guaranteeing closed-loop stability. However, constraints on the tra-

jectory or control are not generally enforced. As a result, more general techniques,

such as pseudospectral methods and model predictive control, were developed to find

solutions to increasingly difficult control problems [24].

2.4.1 Linear Quadratic Regulator Control

LQR control is a common technique in linear systems to provide an optimal control

law [25]. The standard form of the cost functional when using LQR control is shown

in Eq. 2.21.

J = XT
f HXf +

ż tf

t0

XTQX + UTRUdt (2.21)

Using the algebraic Riccati equation a constant optimal gain matrix can be solved

for resulting in a desired response for the system. The use of this steady-state LQR

assumes that the control system will operate for long time periods compared to the

transient of the solution to the Riccati equation [26]. Defining a stable LQR requires
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the state weighting matrix Q to be positive semi-definite and the control weighting

matrix R is required to be positive definite. LQR offers the user two tunable pa-

rameters that will alter the weighting of the state error and control use. However,

as the name describes, this technique requires a linear system. If using a nonlinear

system a linear model must be developed in order to use this technique. In doing

this, limits on the states are likely to develop to describe a viable region where the

linearization holds. However, these and any necessary control boundaries are not able

to be enforced using this technique. As a result, solving the problem with a different

approach would be more appropriate.

2.4.2 Numerical Methods for Optimal Control

Dynamic programming is one of the most widely used approaches for constrained

optimal control. For the majority of the history of mathematics, problems of this class

were considered unsolvable. However, the relatively recent developments in computa-

tion power unlocked new capabilities allowing accurate solutions to some of the most

complex problems to be determined [27]. The basis for determining optimal control

through these methods stems from the principle of optimality developed by Bellman:

“An optimal policy has the property that whatever the initial state and initial deci-

sion are, the remaining decisions must constitute an optimal policy with regard to the

state resulting from the first decision [28].” The problem is deconstructed into a two

point boundary value problem and is solved at a number of decision points recursively

until a solution is found [24]. In doing this, the initial trajectory may not satisfy all

constraints, however, as the program continues the weight of unsatisfied constraints

increases to attempt to find a solution that satisfies all constraints while minimizing

the performance measure. Pseudospectral methods are often used to determine which

decision points a program selects to determine the solution.

21



Numerical methods of optimization are extremely powerful, and can result in solutions

to a predetermined accuracy. Once solved, the entire control profile is available to the

user. However, this means open-loop control must be implemented which does not

guarantee stability outside the bounds of the problem initially solved. Additionally,

if disturbances and uncertainty are present in the system, the control may not result

in the desired performance or trajectory demanded by the system. One idea may be

to continuously use these numerical methods to update the problem as disturbances

occur effectively closing the loop on the system. However, due to the iterative nature

of the program and the complexity of the problems these programs can take extremely

long to solve, and are not guaranteed to converge to a solution. Therefore, in highly

dynamic systems this technique will likely not be viable and another solution must

be found.

2.4.3 Model Predictive Control

Due to the highly dynamic nature of the environments, the aerospace industry has

been reluctant to use iterative computational methods to determine control in real

time for its systems. However, with the significant increase in computational power

over the past decades, a move towards computational guidance algorithms should be

the focus of future endeavors [29]. Model Predictive Control (MPC) is the prescribed

solution to this problem. MPC has been growing in popularity in recent years. The

goal of MPC is to utilize the developments in computational speed to make predic-

tions on how a system will behave in the future, and use this information to make

forward thinking control inputs to increase performance. MPC takes aspects from

both LQR and numerical methods in that closed loop feedback is used to generate

robust control strategies while optimization routines are used to determine the best
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control action. Additionally, constraints may be levied on the system to ensure safe

and viable trajectories are taken to accomplish the mission.

By limiting the horizon of the optimization problem a solution can be found for a seg-

ment of the trajectory in the immediate future. Controls can be implemented within

this horizon, and the horizon can then be shifted forward with the updated informa-

tion gained about the present conditions. This process is repeated, and knowledge

from previous solutions can be levied to increase the speed of the optimization rou-

tines. This has successfully been implemented for a wide range of problems including

formation reconfiguration of spacecraft [30]. Wahl suggests next steps for formation

reconfiguration missions on orbit include a focus in ensuring on-board implementa-

tion, alternative structures in the formulation of the cost function, and distributing

computation across members of the formation. This thesis aims to develop a solution

to these problems.

2.5 Summary

The NERMs are used to model ”truthful” dynamics to agents acting in the re-

gion of space around a chief. An alternative linear model for these dynamics is the

HCW model. In this linear model the user assumes the chief’s orbit is circular. The

assumption of a circular chief orbit is valid because with the exception of HEO orbits

like Molnyia, the majority of orbits have very small eccentricities.

There are a multitude of factors when considering multi-agent systems. A virtual

structure approach is chosen over an APF or behavior based approach due to sim-

plicity. Factors related to inter-formation communication including topology, false

information, and rate of transmission are not considered. This thesis focuses on the
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dynamics and relative positioning of the members of a formation so collision avoid-

ance is a factor.

Assignment algorithms are used to distribute tasks to a group in an optimal man-

ner. The Hungarian algorithm was the first method used to perform this, however,

with time auction based algorithms became more widely used due to their computa-

tional complexity. The second price auction algorithm encourages the bidders to bid

according to their perceived value of a task, and as a result, a Nash Equilibrium forms.

Optimal control techniques differ from classical techniques in that a performance

measure is considered. LQR control is common for linear systems, but constraints

are generally not enforced when using this technique. Dynamic programming allows

for more complex problems to be solved. This includes, but is not limited to, non-

linear and constrained problems. However, numerical methods are not guaranteed

to converge, and as a result the computation time can be long. This does not allow

for the use of these techniques in highly dynamic environments or scenarios where

quick reaction time is key. MPC instead solves a portion of the problem, and this

horizon is shifted as the mission develops. As a result, MPC allows for quick near

optimal solutions to complex problems, and is guaranteed to be closed-loop stable.

This makes MPC a desirable technique for use in scenarios with complex constraints

or dynamics where a quick reaction time is necessary.
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III. Methodology

The aim of this work is to advance research in the development of on-board com-

putational guidance for formations of spacecraft on orbit performing rendezvous and

proximity operations missions. This is accomplished by compiling thoroughly re-

searched solutions to the problems of task dispersal and constrained optimal control

of satellites in close proximity into a tunable framework capable of handling for-

mation rendezvous and reconfiguration missions. The NERMs are used to enforce

“truthful” dynamics to members of two separate formations. An auction algorithm

is used to distribute tasks to the members of one formation that minimizes the cost

of the maneuver to the formation as a whole. With an individualized task the agents

in the formation use the HCW model with MPC to predict the future states of itself

and its target. Control actions are determined through numerical optimization rou-

tines limited to accomplish “real-time” solutions to minimize a performance measure.

Constraints are included to ensure collision avoidance, appropriate approaches, and

realistic controls are maintained throughout the completion of the mission.

3.1 Optimal Assignment

As previously described, the goal of this work is to develop a framework capable

of performing formation rendezvous and reconfiguration missions potentially in real

time on flight hardware. The first aspect of this framework is the optimal assignment

program. To develop the cost matrix associated with the problem a scalar repre-

sentation of the state vectors of both the agent and target being inspected must be

determined. To do this, begin by taking the state difference of the i-th agent and the

j-th target. Secondly, formulate the quadratic form of the state difference weighted

with the terminal cost matrix. (Eq. 3.1) If the optimal control problem is formulated
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in a similar manner to an LQR the terminal cost matrix can be found by finding a

solution to the algebraic Riccati equation. (Eq. 3.2)

Wij = (Xi - Xj)
TP(Xi - Xj) (3.1)

0 = ATP + PA - PBR-1BTP + Q (3.2)

It is important to note that because the MPC controller will be working in the discrete

domain, the matrices A and B in Eq 3.2 must also be in the discrete domain. Addi-

tionally, (Q ě 0) and (R ą 0) should represent the weighting associated to matching

the j-th target’s state while using the i-th agent’s control respectively. Finally, the

terminal cost matrix is constant across the maneuver, so this matrix can be calculated

once and stored in memory to increase computational efficiency.

With the cost matrix formulated, an optimal assignment can be determined to assign

each agent in the formation to a target using MATLAB’s assignauction function.

A cost of non-assignment of 105 is selected. The cost of non-assignment allows the

user to exclude targets from assignment if the cost is sufficiently large, so making

this value large ensures that all targets are assigned. The built-in MATLAB function

does not contain a iteration limiter, however, this function could be implemented on

flight hardware to ensure the program is run within a specified interval of time. The

decision to use MATLAB’s function over a custom built program was made after

determining that the program was sufficiently fast for the problem involving the ren-

dezvous of four agents and four targets without the need for an iteration limiter.

The optimal assignment program can be placed in the framework as described in

Figure 5. This framework represents the control loop of an individual in the agent

formation. A target’s control loop is assumed to contain only the plant. The plant,

as previously discussed, uses the NERMs to determine the states of a given agent or
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Figure 5. Optimal Assignment Program and Plant in Control Framework.

target. The box described as “Agents” represents the information of each agent in the

formation. The box described as “Targets” represents the states of all targets in the

opposing formation. The circle in Figure 5 represents the communication between the

agents of the formation. The communication is without errors or delay, and relays the

information of each agent’s state and predicted control profile to all other members

of the formation. The input of the assignment program requires knowledge of both

the agent and target states, and results in an optimal assignment. The output of the

assignment algorithm is then passed to the MPC controller.

3.2 Optimal Control Problem

3.2.1 Cost Function

Before adapting the problem for MPC, the optimization problem is formulated

in a manner similar to a LQR. The traditional formulation considers only states and

control, however, the proposed formulation considers the patrol formation and the
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desired configuration as well as control. The patrol formation represents state error

with respect to the virtual center of the formation. This is used to enforce a desired

structure on the agents as they maneuver towards the target formation. A desired

formation may be desirable to the user to ensure proper spacing, enforce lighting

constraints, or take advantage of stereo-vision in order to develop state estimates of

targets. In order to accomplish the transition from the patrol formation to the desired

rendezvous configuration a logistic function is used to change the weighting of each

of the error terms throughout the mission. Begin with a cost function in the form of

Eq. 3.3,

J =
ştf
t0

J1 + J2 + J3 + J4 dt, (3.3)

where : (3.4)

J1 = (X̄B - X̄R)TQ(X̄B - X̄R), (3.5)

J2 = (X̄i - X̄d)TQf(X̄i - X̄d), (3.6)

J3 = (X̄i - X̄j)
TQr(X̄i - X̄j), (3.7)

J4 = ŪTRŪ. (3.8)

(3.9)

In the above equations X̄ represents the six state vector described in Eq. 2.18. The

subscripts B and R represent the centroid of the agent and target formation re-

spectively. The subscripts i and j represent any given agent and its assigned target

respectively. Ū represents the vector of controls for the agent i, while Q, Qf , Qr, and

R represent weighting matrices the user defines.

With this cost function an agent will seek to co-locate the the centroids of each

formation (Eq. 3.5), while maintaining its position relative to the centroid (Eq. 3.6)
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and simultaneously seeking to rendezvous with its target (Eq. 3.7) all the while con-

sidering the control necessary to complete the maneuver (Eq. 3.8). It is clear that

the term J2 will inhibit the agent from performing the task in term J3 and vice versa,

so a scheme must be developed in order to properly weight these terms throughout

the mission.

To properly weight the terms responsible for the patrol and desired formation con-

figurations, Qf and Qr, respectively a logistic function is used to scale the weighting

terms between zero and one according to the magnitude of the difference between the

two centroid vectors, (Eq. 3.10)

s =
1

1 + e-k((X̄B-X̄R)T(X̄B-X̄R)-S2)
, (3.10)

Q = sQf + (1 - s)Qr. (3.11)

The parameter, k, allows the user to determine the aggressiveness of the switch be-

tween profiles, and S allows the user to develop a spherical switching surface around

the target formation that once passed, signals the formation to transfer from the

patrol formation to the desired configuration. If the state weighting matrices are

assumed to be identity, Eq. 3.11 can be used to determine the weighting matrices

if the scaling term, s, is calculated. Choosing the scaling this way results in three

tunable parameters for the optimization problem in Eq. 3.3: scale rate (k), scale cen-

tering (S), and control weighting (R). Figure 6 demonstrates how the scale of these

matrices changes throughout the mission. If the patrol formation starts at a range

from the target formation the weighting of error with respect to the patrol formation

will dominate, and as a result be minimized. However, as the formation maneuvers

towards its target the weights balance at the centering value S before the term Qr

begins to dominate the state weighting.
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Figure 6. Scaling of Qf and Qr throughout the mission.

3.2.2 Constraints

In addition to the cost function there are multiple constraints used in developing

the optimization problem. These constraints include: collision avoidance, favorable

lighting conditions, control bounds, and state bounds. Levying these constraints

onto the system will ensure the agents keep safe separation and remain in areas that

will promote a successful mission while ensuring that realistic inputs are used to

accomplish the tasks. Collision avoidance constraints are developed using only the

relative positions to form a keep out zone (KOZ) for the agent (Eq. 3.12). The other

members of the formation determine where the KOZs are located and in order to

meet the constraint the agent must not enter the various KOZs at any point in the

trajectory.

1 ď (Xi - Xkoz)TV(Xi - Xkoz) (3.12)
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If a KOZ is violated a collision is assumed and the mission is considered a catastrophic

failure. The KOZs are modeled as ellipsoids with the semi-axes’ represented by the

diagonal positive definite matrix V. However, the nature of this formulation creates

a nonlinear non-convex constraint. While optimal control software, such as GPOPS,

can handle constraints in this form, linear solvers such as the quadratic program (QP)

solver used in MPC cannot. Therefore, a direct linearization is used to develop planes

tangent to the KOZ surface. [31] This keeps the constraint convex allowing for use

in convex optimization solvers. The constraint in Eq. 3.12, again using only position

state information, is replaced with the form in Eq. 3.14

f = (Xi - Xkoz)TV(Xi - Xkoz) (3.13)

1 ď f(X0) +
Bf

BX

T

(Xi - X0) (3.14)

In this form X0 represents the points in the trajectory about which the constraints are

linearized. When the problem is adapted to MPC these linearization points represent

each timestep within the prediction horizon. This is demonstrated visually in Figure

7.
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Figure 7. Direct Linearization of the Keep Out Zone about an obstacle.

The lighting condition constraint is a keep in zone (KIZ) in the shape of a second-

order cone. This represents a region where the Sun will be at the back of the for-

mation. This ensures that the target formation is always lit and that the agents will

be masked by the Sun on approach. The Sun vector will be aligned with the axial

vector of the cone, so the constraint can be represented in the form of Eq. 3.15 where

X represents the positions of agent and target formation, and γ represents the half

angle of the constraint cone.

v̂T
d(XB - XR) ď ||XB - XR||cosγ (3.15)

However, due to the Euclidian norm in this form, the constraint is again nonlinear.

To linearize this constraint the cone can be represented as n planes. An algorithm to

develop the n planes follows:

1. Begin with the first normal vector n̂ =

[
0 0 1

]T
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2. Rotate the normal vector n̂ about the two axis by the half angle γ

3. For the n-1 additional planes rotate the previously found normal vector n̂ about

the one axis by 2π
n

4. Determine the rotation that will map the assumed axial vector of the cone,[
1 0 0

]T

, to the Sun vector v̂d and rotate the previously found n planes by

this rotation.

This algorithm determines n planes to represent the surface of the cone. The con-

straint in Eq. 3.15 can then take the form in Eq. 3.16

-n̂T(Xi - Xj) ď 0 (3.16)

Figure 8. A 4 plane approximation of a second-order cone.

The final constraints are used to bound the relative position and velocities of

the target orbit (Eq. 3.17). This ensures the linear HCW model used in the MPC
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controller is accurate. Additionally constraints are placed onto the control to limit

the magnitude of thrust in any principal direction an agent can supply at a given

time (Eq. 3.18).

Xlb ď Xi ď Xub (3.17)

Ulb ď Ui ď Uub (3.18)

3.3 Adapting the Problem to MPC

The problem above can be solved using any optimal control solver. GPOPS II is

used by the author [6]. However, to allow for real-time solutions the problem can be

adapted for use in a convex QP solver to take advantage of MPC. MATLABs quad-

prog is used to solve the problem once Eq. 3.3 is adapted in the form of a quadratic

program.

The first challenge the cost function (Eq. 3.3) poses is the desired position relative

to the centroid, Xd, is dependent on the location of the centroid (XB). To alleviate

this dependency, break the problem into an outer and an inner loop. The outer loop

will determine a trajectory that the centroid should follow that will minimize control

and the inner loop will add the prescribed offset to the centroid. This results in two

optimization problems, a regulation problem for the centroids of the formations and a

tracking problem for individual agents. The bounding constraints are levied on each

problem, but the KIZ is supplied solely to the outer loop while the KOZ is supplied

solely to the inner loop. The result is the following outer (Eq. 3.19-Eq. 3.25) and
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inner loop problems (Eq. 3.26-Eq. 3.32).

Jouter =

ż tf

t0

(X̄B - X̄R)TQ(X̄B - X̄R) + ŪTRŪdt (3.19)

s.t. : (3.20)

9XB = AXB + BUB (3.21)

9XR = AXR (3.22)

Xlb ď XB ď Xub (3.23)

Ulb ď UB ď Uub (3.24)

v̂T
d(XB - XR) ď ||XB - XR||cosγ (3.25)

Jinner =

ż tf

t0

(X̄i - X̄d)TQf(X̄i - X̄d) + (X̄i - X̄j)
TQr(X̄i - X̄j) + ŪTRŪdt(3.26)

s.t. : (3.27)

9Xi = AXi + BUi (3.28)

9Xj = AXj (3.29)

Xlb ď Xi ď Xub (3.30)

Ulb ď Ui ď Uub (3.31)

1 ď f(X0) +
Bf

BX

T

(Xi - Xkoz) (3.32)

With the problem broken up into two loops the user is ready to convert it into a

discrete quadratic form. Begin by performing a discrete transform on the continuous

forced dynamics of the system. Using the HCW dynamics previously discussed (Eq.

2.18) a future state can be predicted using the current state, a prescribed input, and
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a difference in time (Eq. 3.35),

Ad = eA(t-t0) (3.33)

Bd =

ż t

t0

eAτB dτ (3.34)

xk+1 = Ad(Δt)xk + Bd(Δt)uk. (3.35)

To predict forward after successive unique inputs from a current position arrange

the discrete dynamics and input matrices in the following form (Eq. 3.36). It is

important to note the difference in time (t - t0 ” Δt)shown in Eq. 3.35 is implied and

kept constant in the following equations.

X̄k+1,k+p = Φxk + ΩŪ (3.36)

Φ =



Ad

A2
d
...

A
p
d


Ω =



Bd ¨ ¨ ¨ 0

AdBd
. . .

...

...
...

A
p
dBd AdBd Bd


(3.37)

Assuming that the target formation is not maneuvering the error between the two

formations can be predicted by finding the difference between the current states of

each and adding the input of the agents’ formation (Eq. 3.44). Following the process

outlined by Brand [32] the quadratic form of the outer loop optimization problem can

be derived.
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Jouter =
1

2
ŪTHŪ + fTŪ (3.38)

s.t.: (3.39)

AconŪ ď bcon (3.40)

where: (3.41)

H = 2(ΩTL1Ω+ L2) (3.42)

fT = 2(ĒT
kΦ

TL1Ω) (3.43)

Ēk+1,k+p = Φ(X̄Bk
- X̄Rk

) + ΩŪ (3.44)

L1 =


Q ¨ ¨ ¨ 0

...
. . .

...

0 ¨ ¨ ¨ P

L2 =


R ¨ ¨ ¨ 0

...
. . .

...

0 ¨ ¨ ¨ R

 (3.45)

Acon =



Ω

-Ω

I

-I

-NΩ


bcon =



Xub - ΦXBk

-Xlb + ΦXBk

Uub

-Ulb

NΦĒk


(3.46)

To find the terminal weighting matrix, P, in Eq. 3.45, use the positive definite

solution to the algebraic Riccati equation (Eq. 3.2). This ensures that the solution to

the optimization problem in Eq. 3.38 is asymptotically stable even if the rendezvous

occurs outside the prediction horizon. The matrix, N, holds the normal vectors of the

n planes used to construct the KIZ. This matrix can be developed by predicting where

the Sun vector will be in the future at each discrete timestep, using the previously

described algorithm to find the normal vectors, and constructing a block diagonal
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matrix of the transposed vectors (Eq. 3.48). The future position of the Sun vector

can be predicted by using a rotation about the third axis by the product of the mean

motion, n, of the chief’s orbit and the difference between the future and present time

(Eq. 3.47).

v̂dk+1 =


cos(nΔt) sin(nΔt) 0

-sin(nΔt) cos(nΔt) 0

0 0 1

 v̂dk (3.47)

N =


-n̂T

k+1 ¨ ¨ ¨ 0

0
. . . 0

0 0 -n̂T
k+p

 (3.48)

This completes the conversion of the outer loop into the discrete quadratic form

used by MATLAB’s interior point solver quadprog. Supplying the centroid of the

agent and target formations will result in a control that will guide the members

of the formation towards the target formation while minimizing the total control

of the agents according to Eq. 3.52. Additionally, agents adhere to state bounds,

control bounds, and remain within the KIZ to ensures favorable lighting conditions.

This control can be used to generate reference trajectories for each of the agents in

the formation (Eq. 3.49). The inner loop will minimize each agent’s control while

balancing the tracking of this reference trajectory with the rendezvous of the target

supplied to the agent by the assignment algorithm.

Γ̄ = ΦX̄Bk
+ ΩŪ˚ + X̄d (3.49)

The reference trajectory, Γ̄ can be thought to contain two parts. The homogeneous

part built from the formation’s centroid and the optimal control, and the unique part
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dependent on an agent’s desired offset from the virtual center. It is important the

user characterizes the patrol formation’s virtual structure in a manner that ensures

the centroid is the origin. For example, in the studies completed in this work the

desired offsets of the agents are:

X̄d =

$
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’

’
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(3.50)

Before adapting the inner loop of the optimal control problem to the discrete quadratic

form the user should use the homogeneous portion of the reference trajectory to

determine the scaling at each prediction step in the horizon using Eq. 3.10. In doing

this, Kronecker products (Eq. 3.51) may be used to create the time variant weighting

matrices used to formulate the discrete quadratic form (Eq. 3.60 - 3.62). Again, by

following the process outlined in [32] the user can develop the discrete quadratic form

of the inner loop MPC controller (Eq. 3.52).

A
â

b =


A11b ¨ ¨ ¨ A1nb

...
. . .

...

Am1b ¨ ¨ ¨ Amnb

 (3.51)
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Jinner =
1

2
ŪTHŪ + fTŪ (3.52)

s.t.: (3.53)

AconŪ ď bcon (3.54)

where: (3.55)

H = 2(ΩT(L2 + L3)Ω+ L1) (3.56)

fT = 2(X̄T
ik
Φ

T(L2 + L3)Ω - ΓTL2Ω - X̄T
jk
Φ

TL3Ω) (3.57)

X̄ik+1,k+p
= ΦX̄ik + ΩŪ (3.58)

X̄jk+1,k+p
= ΦX̄jk (3.59)

L1 = I
â

R (3.60)

L2 =

s̄k+1,k+p-1
Â

CTQC 0

0 sk+pCTPC

 (3.61)

L3 =

(1 - s̄k+1,k+p-1)
Â

Q 0

0 (1 - sk+p)P

 (3.62)

Acon =



Ω

-Ω

I

-I

NΩ


bcon =



Xub - ΦXBk

-Xlb + ΦXBk

Uub

-Ulb

-d - NΦX̄ik


(3.63)

The matrix, C, is used to exclude the velocity states of the reference trajectory. This

is necessary because the agent is meant to rendezvous with the target, so all states

must be considered. However, the agent is only attempting to track the trajectory.

The difference in the constraint matrix and vector, Acon and bcon respectively, is a

result of the KOZ constructed around the other members of the formation. Beginning

with the previously described constraint (Eq. 3.12), the user does a Taylor series ex-
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pansion of the right side to arrive at the convex version of the constraint (Eq. 3.14).

Using knowledge of the previously found control solutions predict forward the posi-

tions of the agent and the desired obstacle and develop the relative vectors (Eq. 3.64).

Determine the linearization points by finding where the KOZ’s ellipsoid this rela-

tive vector intersects (Eq. 3.65). Since f(X0) = 1 by definition in Eq. 3.14 the

constraint can be rewritten (Eq. 3.66). The normal vector of the constraint plane

can then be solved with Eq. 3.67. After distributing the normal vector and isolating

the input, the constraint takes the form in Eq. 3.54.

r0k+1,k+p
= (ΦX̄ik + ΩŪik) - (ΦX̄jk + ΩŪjk) (3.64)

X0k = Xjk +

(
1

r̂T
0k

Vr̂0k

)1/2

r̂0k (3.65)

-n̂T(X̄i - X̄0) ď 0 (3.66)

n̂k =
2V(X0k - Xjk)

||2V(X0k - Xjk)||
(3.67)

dk = -n̂T
k X0k (3.68)

N =


-n̂T

k+1 ¨ ¨ ¨ 0

0
. . . 0

0 0 -n̂T
k+p

 (3.69)

3.4 Summary

With each aspect of the optimal control problem adapted to MPC the user is

able to perform formation rendezvous and reconfiguration missions. The presented

framework yields the user several tunable parameters. For simplicity assume that

state weighting matrix, Q, is identity. This implies that the control weighting matrix,

R, will be the parameter used for shaping the response of the formations. The scale
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rate, k, allows the user to adjust how aggressive the formation switches from one

profile to the next. The scale centering, S, will shift the range at which the forma-

tion makes the transition from the patrol formation to the reconfigured rendezvous

formation. The agents communicate their present states, and most updated control

solution. With this information and the states of the targets the auction assignment

algorithm allocates each agent a target. The MPC controller uses the centroid of

each formation to first determine the optimal trajectory for the formation to take to

rendezvous with the target formation while maintaining the Sun at its back. Each

agent then tracks an offset to this virtual trajectory while avoiding the other mem-

bers of the formation. As the range between the formations closes, the agents in the

formation begin to prioritize their rendezvous scenario over the formation keeping

task. The problem has been formulated to ensure real-time solutions can be found

using quadratic program optimization software. Figure 9 shows the framework, now

including the MPC controller.

Figure 9. MPC in Control Framework.
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IV. Results and Analysis

The following chapter describes the findings of the aforementioned method used

to accomplish a formation rendezvous and reconfiguration. A random day in the year

2020 is selected and converted to the Julian date; this date is used to determine the

Sun vector (v̂Ä). The initial position of the formation is chosen from the truncated

conical region described by the parameters ψ = 15˝, l = [.95 , 1.05]km. A visual rep-

resentation can be seen in Figure 10. The result is a toroidal region around the origin

from which initial conditions are chosen at random. One hundred randomly initial-

ized simulations are ran with scale rate (k = 100 1
km2 ), scale centering (S =

?
.1km),

and control weighting (R = 106I). The approach corridor constraint is described by

the half angle (γ = 20˝), and the collision avoidance constraint is parameterized by

an ellipsoid with semi-axes 1 meter in each direction. Control bounds are imposed

at ˘10cm
s2

in each principal direction. The relative position and velocity bounds are

˘100km and ˘10m
s respectively.

Figure 10. Truncated conical region to choose initial conditions at random
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4.1 Solution Time

In order for the framework to be viable for use on flight hardware both the as-

signment algorithm and the MPC optimization problem must be completed before

the opportunity to administer a controlling action has passed. The duration of both

the auction algorithm and the QP solver is recorded during the simulations. These

solution times are displayed in Figure 11. The controller is executing both algorithms

at a frequency of 0.1 Hz, therefore the controller has 10 seconds to determine the

assignment and control for an agent. Figure 11 is made up of box and whisker plots

from all agents across the one hundred simulations, so each box and whisker plot

represents 400 data points for a given time step in the simulation. The bull’s-eye

represents the median solution time, while the solid blue box represents the lower

and upper bounds of the 25th and 50th percentile. The whiskers illustrate the range

of solution times across the simulations. It is clear that the auction algorithm is

consistent throughout the mission profile, while the MPC solver decreases as the for-

mation approaches its target. There is a noticeable bump approximately 100 seconds

into the mission. This is likely the result of differences in the approach profile of the

formation in order to take advantage of the natural dynamics as much as possible.

Additionally, the problem becomes more difficult to solve as the formation balances

between the two profiles rather than solely focusing on one.

The simulations are ran on a MacBook Pro with a 2.6 GHz 6-Core Intel Core

i7 processor and 16 GB of RAM, however, it is unlikely the satellite will have sim-

ilar computational specifications. Assuming the satellite does have the previously

described computational power the user could confidently run the existing program

which predicts 75 10-second time-steps into the future at a higher frequency near 1 Hz

according to the whiskers in Figure 11. However, the user may also elect to increase
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Figure 11. Solution time of Auction Algorithm and MPC QP solver.

the prediction horizon, or decrease the discretization interval in an effort to develop

a more considerate prediction. Additionally, if an outlier occurs and the program

has not completed in the allotted solution time, the controller has knowledge of the

previous prediction. This can be used to ensure a control is delivered in the event

that the controller could not solve the problem in the allotted time. The process

of determining the hyper-parameters of the MPC controller to account for real time

solutions is extremely specialized based on the user’s hardware, software, and mis-

sion needs, so no additional detail pertaining to this matter is described in this thesis.

The auction algorithm successfully achieves optimal task assignment. In a trial of

ten thousand randomized cost matrices the auction was compared to the Hungarian
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algorithm. The auction algorithm found the correct assignment 99.81% of the time.

Additionally, the duration of the auction compared to the duration of the Hungarian

assignment was significantly less. This can be seen in Figure 12 and Table 4. Re-

gardless of the size of the cost matrix, the time of the auction algorithm is outside

of six standard deviations of the Hungarian algorithm’s duration. This is a result of

the computational complexity of the two algorithms. The Hungarian algorithm was

originally O(n4), however, over the years it has been optimized to be O(n3)[5]. This

is still significantly slower than the auction algorithm’s O(n2logn)

Table 4. Computation Time Mean and Variance of 100 Random Cost Matrices of Size
nxn

Comparison of Algorithms

Auction Hungarian

size mean, μs std, σ mean, μs std, σ

4 142.8 0.1993 327.14 0.0054

10 262.5 0.4061 1,004.5 0.0331

20 577.0 0.7035 2,217.2 0.1944

50 1,823.4 2.4600 6,001.8 1.2850

100 6,589 13.3900 14,969 6.7725
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Figure 12. A Comparison of Auction and Hungarian Assignment Algorithms with 6σ
Errorbars

4.2 Transition Between Profiles

When representing a complex problem in the form of several tuning parameters

it is important that the tuning parameters represent independent variables. This

suggests that regardless of initial conditions, the tuning parameters should represent

similar resulting trajectories. Figure 13 shows how the scale, s, changes throughout

the simulations. Again each time-step is represented by a box and whisker plot. It

is clear that there is very little variation in the trajectories. The transition between

the “patrol” and “target” profile can be determined regardless of initial condition

to be within a period of ten seconds. This is shown in Figure 13 by the box and

whisker plot at the 130 second interval. Considering the definition of the transition

function (Eq. 3.10) and that the initial conditions place formations at a similar range

from the target formation, Figure 13 implies that the transition occurs consistently

at the surface of a sphere around the target formation defined by the scale centering

47



parameter (S).

Figure 13. Scales of Agents vs Simulation Time.

With knowledge of approximately where the transition occurs, the performance of

the agents with respect to the patrol formation can be assessed by determining the

Euclidean distance between an agent and their prescribed location in the patrol for-

mation for times between the beginning of the simulation and the transition point

illustrated in Figure 13. The error with respect to the “patrol” formation is only

dependent on position and is calculated according to Eq. 4.1.

ep = ||X̄i - X̄d||2 (4.1)
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Figure 14 shows the distribution of error an agent experiences throughout the first

phase of the mission approaching the transition. Taken out of context any controls

Figure 14. Euclidean Distance from Xd of an agent prior to phase transition.

engineer would find the trend in Figure 14 unsettling. However, there are two impor-

tant subtleties depicted in this plot. As the time approaches zero the error approaches

zero, and until approximately 60 seconds there is no variance in the error with respect

to the “patrol” formation. This implies that if the formation is at sufficiently large

ranges from its target, all members can inhabit the patrol formation without error.

Finally, and of the most importance, the formation is able to predict forward and

optimize past the transition horizon. The error increase with respect to the “patrol”

formation is the result of the MPC controller understanding the transition must be-

gin prior to the switch in order to account for the transition to rendezvous with the
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assigned target. This becomes clear when the error is analyzed after the transition

occurs. Figure 15 demonstrates the agents accomplish the rendezvous after the phase

transition. The error with respect to the target formation includes both position and

velocity. The majority of the error is eliminated by approximately 210 seconds into

the simulation before a slight overshoot by the agents. The entirety of the maneuver

is complete by approximately 330 seconds. By concatenating the two figures a visual

representation is achieved, and the three distinct parts of the two-phase maneuver

can be distinguished. In Figure 16, the user can distinguish the patrol formation

(the time period from the start to 70s), the transition ( 80- 210s), and the target

formation( 220s to the end of the simulation). Table 5 parameters the distribution

of the error in the terminal state of the agents with respect to their targets. The

Euclidian norm of the difference between the agent and target positions and velocity

is used.

Figure 15. Euclidean distance from the assigned target of an agent after phase transi-
tion.
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Figure 16. Euclidean distance from the dominating state of an agent throughout mis-
sion.

Table 5. Tracking Error and Percent Error of each agent’s MPC trajectory compared
to GPOPS trajectory.

Terminal Error of Agents
Agent Tracking Error, cm Standard Deviation, σ

1 10.78 2.93
2 10.59 2.93
3 8.56 2.98
4 8.65 2.99

4.3 Satisfaction of Constraints

To visualize the collision avoidance constraint the relative range of an agent is di-

vided from the magnitude of the relative range vectors intersection with the constraint

51



surface (Eq. 4.2).

ρN =
ρcon

||X̄i - X̄j||2
(4.2)

As previously described the constraint surface in the simulations is a sphere with a

radius of 1 m, so if an agent is closer than this they would be considered inside the

KOZ and the constraint is considered violated. This would present itself visually in

the form of a data point greater than 1 on Figure 17 which has neglected data points

after the transition as the relative ranges become large with the rendezvous of the

formations. However, if a different target formation was used the data points may

become relevant. There are no such points in Figure 17, and in fact, the user can de-

termine that the majority of the agents inhabit a normalized relative range of 0.0707

m/m. When considering the structure of the “patrol” formation (Eq. 3.6) this is the

range of two adjacent members of the formation. Occasionally, the agents do come

in closer proximity with one another; the closest approach in all simulations is 10.7 m.
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Figure 17. Constraint normalized relative range of an agent to other members of the
formation.

The approach corridor constraint uses Vallado’s script [33] to determine the Sun

vector at each time in the simulation. This is then used with the agent formation’s

centroid to determine the angle between the Sun and the formation’s relative position.

Figure 18 shows how this angle evolves throughout the simulations. The black line

represents the half angle which bounds the constraint, and it is clear the formation

does not satisfy this constraint for the entirety of the trajectory in all simulations. In

13% of simulations a trajectory exceeds the half angle of the cone, and therefore does

not satisfy the constraint. The constraint is generally not satisfied in the last two to

three time-steps prior to the transition.
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This is the result of the way the outer loop of the controller is setup, the centroid

of the formation is a virtual state, and as a result, an individual agent has no con-

trol over it. The individual’s reference trajectories are built to propagate the virtual

centroid in a cooperative manner, however, the virtual state is extremely sensitive to

an agent’s error relative to the “patrol” formation reference trajectories. As a result,

the centroid may not satisfy the constraint as the weighting shifts between phases of

the mission. A solution to this problem may be to include a factor of safety when

determining the half-angle for the constraint. Figure 18 shows that the constraint is

violated, but by adding a factor of safety to the constraint a fewer percentage of tra-

jectories may violate the constraint. Enforcing the constraint on both the inner and

outer control loop increased computation time by a large factor, making the problem

infeasible for use in real-time systems. Further research is needed into developing a

more sophisticated way to ensure the constraint is met at all times.
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Figure 18. Formation’s angle from the Sun vector on approach.

4.4 Comparison to Collocation Technique

To gauge the optimality of the MPC’s solution to the optimal control problem

the solution is compared to commercial optimal control software; the author’s choice

is GPOPS which uses a Gaussian quadrature collocation technique [6]. To properly

compare the proposed framework to the solution found using GPOPS, the scenario

is modified slightly. First, optimal assignment of agents to their respective targets is

programmed into the problem. Second the target states are static offsets from the

origin, and third the path constraints such as collision avoidance and an approach

corridor are neglected. As previously discussed, numerical methods for optimal con-

trol do not implement feedback, so the target states are fixed, and if they were to
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change the problem would need to be resolved. Formulating the problem this way

provides the simplest case of an optimal formation reconfiguration, and represents a

problem that MPC may be expected to solve every time-step. To emulate the process

outlined in this work, the optimal control software first solves for the regulation of the

centroid of the agent formation to the target’s centroid. This solution is then used

as an initial guess for the full multi-agent system, and agents must track trajectories

offset from this centroid-to-centroid maneuver until the switching conditions are met.

A cubic spline interpolation of the centroid trajectory is used to provide the proper

scaling to the full agent system at any given collocation point.

The solution found using GPOPS is compared to the solution found using MPC using

three metrics: control effort, tracking error, and solution time. The control of each

solution is integrated over the entire maneuver; trapezoidal numerical integration is

done for the GPOPS solution, and due to the zero-order hold of the MPC solution

simple rectangular integration is used. The results are shown in Table 6 and Figure 19.

Table 6. Comparision between control effort of GPOPS and MPC framework with
percent error of MPC framework when compared to the optimal solution.

Comparison of Control Effort

MPC GPOPS Percent Increase

Agent Control Effort m/s Control Effort m/s Percent Error %

1 12.2987 12.0411 2.1391

2 12.2494 12.0944 1.2815

3 12.2472 12.1404 0.8790

4 12.3114 12.0878 1.8500
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It is clear from the table that the MPC solution is sub-optimal, however, this is

expected. By definition, MPC is sub-optimal, and in the scenario used to compare

the two solutions the shape of the control signals, shown in Figure 19 are similar. The

difference in control effort is on the order of a percent or two, so MPC represents a

good approximation of the optimal control. The trajectories exhibit a similar shape

as shown in 20, however, there are slight differences in the control in Figure 19 and

these differences result in different trajectories. This can be seen in the tracking error

Figure 21.

Figure 19. Comparison of control signals between GPOPS an MPC.

There is a pattern in the tracking error, the error is the same across the in-track

direction for all agents. Given that the bulk of the maneuver occurs in this direction,

as shown in both Figure 19 and 20 this is likely the result of error in the centroid-
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to-centroid aspect of the problem. There are also small differences in the radial and

cross-track directions. This is a result of the optimization weighting; because control

is heavily penalized, GPOPS results in some error with respect to the patrol forma-

tion to use slightly less control compared to MPC.

Figure 20. Comparison of trajectories between GPOPS an MPC.

The solution time is the greatest difference between the two methods. As previ-

ously discussed the solution time of the MPC framework is approximately one second,

and this is conducted at a frequency of 0.1 Hz so feedback control can be implemented.

The solution time for the GPOPS program is approximately 140 seconds. Addition-

ally, it is important to note that this simplified version of the problem contains no

path constraints and is solving for the entire maneuver which is conducted over the
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Figure 21. Trajectory errors between GPOPS and MPC.

course of approximately 550 seconds. The prediction horizon of the MPC controller is

750 seconds, so it is effectively determining the course of action for the entire maneu-

ver as well, with additional constraints to maintain safety and promote a successful

reconfiguration in less than 1% of the time. This is accomplished with the added

benefit of maintaining approximately 98% of the optimal solution.

The control signal of the GPOPS and MPC solutions are interpolated using a cu-

bic spline, and this information is used to verify the system using MATLAB’s lsim.

The error of the solutions, shown in Table 7, are negligible. The error is determined

by using the interpolated control with a numerical integration of the dynamics. When

the simulation is complete the difference in the terminal states of the GPOPS and
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MPCs solutions compared to the desired terminal condition is taken, a Euclidian

norm is used to represent this vector as a scalar.

Table 7. Terminal Error of each agent’s MPC and GPOPS trajectory.

Terminal Error of Agents
Agent MPC Error, cm GPOPs Error, cm

1 24.79 16.35
2 24.80 17.59
3 8.26 18.11
4 8.26 15.84

4.5 Summary

One hundred simulations are performed. In these simulations it is determined

that the optimal assignment and MPC controller are able to run the program in a

time period fast enough to meet the 0.1 Hz update requirement. In fact, the update

frequency could be increased to closer to 1 Hz according to simulations. The transition

between profiles is successful, as shown in Figure 22, and the MPC controller is able

to optimize beyond the phase horizon successfully to conduct the maneuver in a

manner that recovers approximately 98% of the optimal solution in less than 1% of

the time. This is accomplished with the added benefit of imposing collision avoidance

constraints and an approach corridor constraint. However, the approach corridor

constraint is not satisfied in 13% of simulations due to the manner in which it is

formulated. More research needs to be conducted to determine a more sophisticated

way to satisfy this constraint, but a simple solution proposed in this research allows

for some factor of safety when selecting the defining parameters of the constraint.
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V. Conclusions and Recommendations

This thesis presented a control framework for a formation of satellites. The pro-

posed algorithm provided a solution to optimally task the members of the formation,

and provide near optimal controls for each agent which maintains a formation struc-

ture before transitioning to a desired configuration. To be successful, the maneu-

ver must be capable of determining the actions of each member at a given update

frequency that promotes reactivity to dynamic changes in the target formation in

real time. Additionally, safety measures must be enforced to prevent collisions and

approach from proper directions. This formation reconfiguration mission is accom-

plished using a logistic function to change the penalties within the optimization’s cost

function as the formation approaches the target formation. One hundred simulations

of the framework were conducted with randomized initial conditions to determine the

performance of the framework in a range of similar scenarios. Chapter 4 described

the results of such simulations, and compared a single case to the solution determined

through the commercial optimal control software GPOPS.

5.1 Conclusion

The viability of the framework is demonstrated, and results suggest that there is a

strong possibility that the framework could be used on hardware to supply control ac-

tions to a small formation of satellites. The second-price auction algorithm provides

speed advantages over the Hungarian Assignment algorithm, while supplying near

optimal assignments, and the MPC controller can determine near optimal control in

significantly less time than collocation techniques. The duration of the calculations

for a given moment in time suggests that an update frequency of 0.1 Hz could be

accomplished with time to spare should the hardware on orbit need additional time
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to perform other tasks, and should the user find it necessary, the update frequency

could likely be increased to closer to 1 Hz if measures are put in place to ensure

a previous solution could be used in the event a calculation takes more time than

permitted to determine the next action.

The user can use this framework with the confidence that the resulting control

recovers approximately 98% of the optimal solution if the control were compared to

other options for determining the optimal control. Additionally, in using this frame-

work the user gains several tuning parameters that allow them to change the profile

of the maneuver in a way that suits their specific mission. The scale rate, k, allows

the user to change how quickly the weighting switches from the patrol formation to

the desired configuration. This will influence the transition period between the two

formation profiles. The scale centering parameter, S, gives the user control on where

the transition occurs with respect to the target formation. The control weighting, R,

will promote a more aggressive maneuver when small, and a maneuver that is more

conscious of control effort as the parameter becomes large. The framework is capable

of achieving these controls while considering constraints that may effect the mission

in reality such as collision avoidance and proper approaches. However, the approach

corridor constraint may need some additional effort on the part of the reader to ensure

that conditions are met in their desired scenario.

The significance of these findings is that through the use of this formulation the

user gains the benefit, in multi-phase optimization scenarios, of being able to optimize

past the phase horizon. This alleviates the harsh transitions that occur in traditional

multi-phase scenarios, and results in controls that better approximate the solutions

found using collocation techniques without the added computation time. As for spe-
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cific relevance to the United States Space Force, and other DoD assets in need of

GNC strategies, Appendix A provides the reader with factors that may influence the

decisions in what these parameters might be, and how to pick them.

Future work includes a more sophisticated study on the approach corridor con-

straint, and how it might be parameterized differently to promote a higher success rate

in the framework. Other areas of interest would be the introduction of uncertainty to

the states of both the agents and targets. Due to the formation aspects of this prob-

lem, an estimation scheme that takes advantage of the properties of stereo-vision and

angles only navigation would be suggested. In doing this, an optimization problem

could be developed to determine the shape characteristics of the patrol formation that

may promote the maximum observability of the target formation. Accomplishing this

would likely require the inclusion of attitude dynamics to the framework, and this

would pose new challenges as well as constraints that must be considered. Addition-

ally, the strengths of machine-learning could be levied to provide the user with the

tunable parameters through logistic regression. This would enhance the autonomy

of the system by allowing for the tuning parameters to change in reaction to differ-

ing behaviors in the target formation. For example, if the target formation is static

and tightly clustered the best scale rate, and scale centering may be different than

a dynamic or widely distributed formation. In conclusion, the framework outlined

in this thesis advances the efforts of others to open the space domain to the recent

developments of multi-agent operations, and in doing so poses new challenges that

must be solved as the world takes steps to develop autonomous solutions to space

operations. This framework suggests an option that would likely be suited for use

on-board hardware, and considers the mission constraints that may be present.
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