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Abstract

On orbit, there are situations where the inertia of a spacecraft may be unknown.

For example, if a spacecraft were to dock with an object of unknown mass, the

combined inertia could be unknown. Because typical methods of spacecraft attitude

control require accurate models of the spacecraft, having unknown inertia can make

attitude control difficult. This study investigated two distinct problems related to

unknown spacecraft inertia where the proposed solution to both problems is machine

learning. The first problem explored the use of a recurrent neural network to estimate

spacecraft moments of inertia using angular velocity measurements. Initial results

showed that, for the configuration examined, the neural network can estimate the

moments of inertia when there is a known external torque. The second problem

trained a reinforcement learning agent, via proximal policy optimization, to control

the attitude of a spacecraft, where the agent had no knowledge of the underlying

dynamics or spacecraft model. The results demonstrated that reinforcement learning

may be a viable option for guidance and control solutions where the spacecraft model

may be unknown. The trained agents displayed a degree of autonomy with their

ability to recover from events never experienced in training. These proof-of-concept

machine-learning solutions provide a potential path forward for creating autonomous

space systems.
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DEEP REINFORCEMENT LEARNING APPLIED TO SPACECRAFT

ATTITUDE CONTROL AND MOMENT OF INERTIA ESTIMATION VIA

RECURRENT NEURAL NETWORKS

I. Introduction

1.1 Motivation

As the United States Space Force establishes itself as the sixth service branch,

it will continue to pursue the advancement of space technologies as laid out in the

Space Force doctrine [5]. These advancements span a wide range of diverse fields,

one of which is autonomy. In accordance with both the National Security Strategy

(NSS) [6] and the National Defense Strategy (NDS) [7], the United States will “invest

broadly in . . . autonomy, artificial intelligence, and machine learning” [7]. According

to the U.S. Air Force 2030 Science and Technology Strategy, “to realize the potential

of artificial intelligence, the Air Force scientific and technical enterprise must push

well beyond developed commercial applications” [8].

Russell and Norvig describe autonomy as the ability of an agent to learn what it

can to compensate for partial or incorrect prior knowledge [9]. Alternatively, an agent

that lacks autonomy would rely on the prior knowledge of its designer rather than on

its own perceptions [9]. The key concepts at play are learning, and adaptation. An

autonomous agent can learn from its current perceptions and adapt to environments

it has never seen before without ever being explicitly instructed how to behave. The

difference between the often conflated concepts of autonomy and automation is that
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automation does not require learning and adaptation, although an automated agent

may still be able to operate without human input (see [10] for a thorough distinction).

Because autonomy deals with learning, it is no surprise that the field of machine

learning is deeply intertwined with the field of autonomy. There are many examples of

autonomous systems being developed from self-driving cars, to autonomous pilots. In

August of 2020, an artificial intelligence (AI) algorithm controlling an F-16 defeated

a human US Air Force pilot 5-0 in a simulated dogfight for DARPA’s Alpha Dogfight

Trials [11]. Another DARPA project called Physics of Artificial Intelligence (PAI)

aims to incorporate physics, mathematics, and prior knowledge relevent to DoD ap-

plication domains with sparse data into artificial intelligence systems [12]. A third

DARPA project called Techniques for Machine Vision Disruption (TMVD) is investi-

gating the disruption of machine vision systems without detailed knowledge of their

internal architecture or how they were trained [13]. These DARPA projects highlight

the progress made in autonomy thus far and the motivation behind why autonomy is

desirable in the first place: to intelligently perform complex missions in challenging

environments with greatly reduced need for human intervention [14].

Another domain where autonomy can be applied is in spacecraft attitude control,

which deals with controlling the orientation of a spacecraft. Most of spacecraft at-

titude control is already automated in the sense that there is an algorithm telling

the actuators how much torque to generate to achieve a specific orientation with

no human input other than perhaps the desired orientation. These automated al-

gorithms are often not autonomous because they rely on pre-determined models of

the spacecraft. If there are large enough deviations from the spacecraft model that

were unaccounted for, then the spacecraft may no longer be controllable. However, a

greater degree of autonomy could be more robust to changes because the spacecraft

could adapt to changes in the model or dynamics and still function.
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1.2 Research Overview

In line with the US Air Force’s 2030 Science and Technology Strategy, the NSS,

the NDS, and national calls for research into autonomy, this thesis aims to investigate

the use of machine learning to allow for a greater degree of autonomy in spacecraft

attitude control. When controlling a spacecraft’s orientation, or attitude, most con-

trol techniques require an accurate model of the spacecraft being controlled, with a

few techniques allowing for some uncertainty in model parameters. One set of pa-

rameters that must be modeled is the inertia matrix of the spacecraft, which is a

measure of how the mass of a spacecraft is distributed. On orbit, there are situations

where the inertia of a spacecraft may be unknown. For example, if a spacecraft were

to dock with an object of unknown mass, the combined inertia may be unknown.

Because most methods of spacecraft attitude control require accurate models of the

spacecraft, having unknown inertia can make attitude control difficult. This study

investigated two distinct problems related to unknown spacecraft inertia where the

proposed solution to both problems is machine learning. These two problems will be

referred to as Problem A and Problem B.

1.2.1 Problem A: Inertia Estimation via Neural Networks.

One possible solution to controlling a spacecraft with an unknown inertia matrix

is to estimate the inertia and then use typical control solutions such as a linear

quadratic regulator (LQR), proportional integral derivative (PID) control, or model

predictive control (MPC). Depending on the scenario, it may be possible to use an

adaptive control technique, or an estimation technique like a Kalman filter. However,

the solution proposed in this thesis is to use machine learning to estimate the inertia

matrix of a spacecraft. Using recurrent neural networks may be a viable inertia

estimation technique for some scenarios.
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1.2.2 Problem B: Attitude Control via Reinforcement Learning.

Besides estimating the inertia values, another possible solution to control a space-

craft with unknown inertia is to use machine learning to control the spacecraft with

no knowledge of the spacecraft model or dynamics. The goal of Problem B is to use

deep reinforcement learning, a type of machine learning, to control the attitude of a

spacecraft. One possible benefit of using reinforcement learning is the potential of

achieving a generalized agent that can control a wide range of spacecraft with dif-

ferent values for inertia and maximum torque outputs. The implication is that the

same algorithm could potentially control a spacecraft both before and after a collision

event where the spacecraft either gained or lost an unknown amount of mass. Because

the algorithm does not require knowledge of the underlying model of the spacecraft,

the reinforcement learning agent could potentially control the spacecraft regardless

of what the model is and whether or not the model is changing. In addition to a

collision event, other scenarios may also benefit from having a reinforcement learning

agent as a controller. For example, spacecraft with articulated appendages or robotic

arms could have varying inertia, and the change in inertia from fuel use could also

warrant a reinforcement learning controller.

1.3 Assumptions and Limitations

For Problem A, the inertia matrix being estimated and governing the dynamics

is always expressed in the principal frame, meaning there are three nonzero moments

of inertia, and three products of inertia equal to zero. The first part of Problem A

uses data generated with no external torques. The second and third parts of Problem

A use data which only considers a gravity gradient torque and a magnetic torque.

There is no consideration of aerodynamic drag, solar radiation pressure, third-body
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effects, etc. Problem A also assumes perfect sensors, resulting in perfect knowledge

of the angular velocity and torques (when present).

Problem B uses randomly generated inertia matrices which are also always ex-

pressed in the principal frame instead of in a general body frame. There are no

external disturbance torques considered in any part of Problem B. It also assumed

the maximum allowable angular velocity requested by the algorithm is a function of

the average of the moments of inertia, as explained in Section 3.5.1.2. Problem B also

assumes perfect sensors, meaning there is no noise present in the state information.

1.4 Summary of Results

The results of Problem A show that a recurrent neural network can be trained

to estimate the moments of inertia of a spacecraft when there is an external torque

acting on the spacecraft. Additionally, the neural networks were able to estimate the

relative moment of inertia ratios with high accuracy regardless of external torque or

knowledge thereof.

Problem B investigated the use of a reinforcement learning algorithm to control

the attitude of a spacecraft. The resulting agents were able to successfully control

the spacecraft to the desired orientations. The agents were successful despite having

no knowledge of the spacecraft inertia or attitude dynamics. One additional finding

was the agents were able to control the spacecraft when subject to a random change

in inertia and angular velocity halfway through the simulation. This finding is very

promising because the agents were never trained to handle abrupt changes to inertia

and angular velocity. The ability of the agents to handle unseen scenarios suggests

that the agents have achieved some degree of autonomy.
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1.5 Thesis Overview

The remainder of this thesis consists of four chapters. Chapter II explains much of

the information required to understand the solutions to Problems A and B. Chapter II

also covers previous work related to inertia estimation and to reinforcement learning

applied to aerospace. Chapter III covers the problems in more detail along with

the hardware and software used to solve the problems. Chapter III also details the

methodology used to solve Problems A and B. Chapter IV presents and discusses the

results for Problems A and B, and Chapter V draws some conclusions based on the

results.
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II. Background

2.1 Overview

In order to answer the questions presented in the Introduction, some background

is required in a few different subjects. The first is attitude kinematics, dynamics, and

control, which describes the orientation of a body, how the orientation changes over

time, and how to control the orientation. The next subject is machine learning and

neural networks, which are techniques for making a program able to learn from data.

Building on top of machine learning is reinforcement learning, which is a process for

a program to learn how to interact with an environment. Next, a literature review

is presented, showing related research in estimating spacecraft moments of inertia

(MOI) and in the use of reinforcement learning for attitude control problems.

2.2 Attitude Kinematics, Dynamics, and Control

The attitude of a body describes the orientation of that body in three-dimensional

space [15]. When dealing with spacecraft, there must be a way to both describe and

control where the spacecraft is pointing. There are several different parameterizations

for a spacecraft’s attitude, and there are also many different ways of controlling a

spacecraft’s attitude.

2.2.1 Attitude Kinematics.

Kinematics is the study of motion, and attitude kinematics provides a method for

describing the rotational motion of a rigid body [16]. There are several different ways

to parameterize attitude such as a direction cosine matrix (DCM), Euler axis/angle,

Euler angles, quaternions (or Euler parameters), Rodrigues parameters, and modi-

fied Rodrigues parameters. The DCM, Euler’s eigenaxis rotation theorem, and the
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quaternion will be discussed in more detail. The SO(3) configuration space is the

set of all orthogonal 3 × 3 matrices whose determinant is +1 [17]. All attitudes are

contained within the SO(3) configuration space and have three degrees of freedom.

A DCM can be defined as a 3× 3 orthonormal matrix whose inverse is its transpose

[18]. The notation for a DCM is shown in Equation (2.1),

CBA =


C11 C12 C13

C21 C22 C23

C31 C32 C33

 (2.1)

which describes the orientation of reference frame B relative to reference frame A [19].

A DCM is the most fundamental way of describing an orientation, but six of the nine

parameters are redundant because only three parameters are required to describe a

reference frame orientation [20].

Another attitude parameterization comes from Euler’s eigenaxis (or principal)

rotation theorem. In essence, this theorem states that the transformation from any

initial orientation to any final orientation can be described as a single rotation of a

principal angle, α, about the principal axis, ê [20]. While Euler’s eigenaxis attitude

parameterization has fewer parameters than a DCM, it comes at the cost of non-

uniqueness because the sets (ê, α) and (−ê, −α) describe the same orientation [20].

Euler’s eigenaxis attitude parameterization also contains singularities where the angle,

α, is equal to α = 0, ±180o, ±360o, . . . [19]. With four parameters describing the

attitude, the one constraint is that the axis must be a unit vector [19].

A third attitude parameterization consists of the four Euler parameters or unit

quaternion. Equation (2.2) shows the notation for the unit quaternion, where q̄

represents the vector component of the quaternion and consists of the first three
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components, and q4 represents the scalar part of the quaternion.

q =



q1

q2

q3

q4


=

 q̄
q4

 (2.2)

This parameterization is nonsingular but also not unique because the attitude de-

scribed by the quaternion, q, is equivalent to the attitude described by the quater-

nion, −q [20]. It is also important to note that the unit quaternion is constrained by

the following relationship:

||q|| = q21 + q22 + q23 + q24 = q̄T q̄ + q24 = 1 (2.3)

The quaternion described by a positive q4 represents the orientation through the

shortest single axis rotation, while the quaternion with a negative q4 represents the

orientation through the longest single axis rotation [20].

Some algorithms make use of an error quaternion to represent the difference be-

tween one orientation and a desired orientation. The error quaternion between two

unit quaternions must also maintain a unit norm constraint, so the two quaternions

cannot simply be subtracted. Instead, the error quaternion, qe, between some quater-

nion, q, and the desired quaternion, qd, is given by Equation (2.4),

qe = q ⊗ q∗d (2.4)
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where the operator ⊗ denotes quaternion multiplication [17]. The conjugate of the

desired quaternion, q∗d, can be expressed as in Equation (2.5) [17].

q∗d =

−q̄d
qd4

 (2.5)

The quaternion multiplication can be performed using matrix multiplication as shown

in Equation (2.6)

qe =

q4I3 − [q̄×] q̄

−q̄T q4


−q̄d
qd4

 (2.6)

where [q̄×] is the skew-symmetric matrix made up of the vector part of the quaternion,

and I3 is a 3× 3 identity matrix [17].

[q̄×] =


0 −q3 q2

q3 0 −q1

−q2 q1 0

 (2.7)

2.2.2 Attitude Dynamics.

Whereas attitude kinematics is concerned with describing a body’s orientation,

attitude dynamics describes how a body’s orientation changes over time [19]. Equa-

tion (2.8) shows the general attitude dynamics equation in the body-fixed Cartesian

coordinate system (CCS),

J~̇ω + [~ω×]J~ω = ~τ (2.8)

where J is the inertia matrix, ~ω is the angular velocity, ~̇ω is the angular acceleration,

and ~τ is the torque [20]. The matrix, [~ω×] is a skew-symmetric matrix composed of
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the angular velocity components:

[~ω×] =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.9)

If the body-fixed reference frame is aligned with the spacecraft’s principal-axis

frame, then Euler’s rotational equations of motion become

Jxω̇x − (Jy − Jz)ωyωz = τx (2.10a)

Jyω̇y − (Jz − Jx)ωzωx = τy (2.10b)

Jzω̇z − (Jx − Jy)ωxωy = τz (2.10c)

where Jx, Jy, Jz are the principal moments of inertia, and τx, τy, and τz are the

torques about each of the principal axes [19].

There are several environmental sources of torque that can affect a spacecraft’s

attitude, including gravitational, aerodynamic, radiation, and magnetic torques [18].

One example of an external disturbance torque is the gravity gradient torque, which

results from a nonuniform gravitational field causing a torque about a spacecraft’s

center of mass [18]. Equation (2.11) shows the expression for gravity gradient torque,

~τgg,

~τgg =
3µ⊕

Rc
5
~Rc × J ~Rc (2.11)

where µ⊕ is the gravitational parameter of the Earth, ~Rc is the vector originating at

the center of the Earth and pointing to the spacecraft center of mass, and J is the

spacecraft inertia matrix [18].

Another environmental disturbance torque comes from the interaction of Earth’s

magnetic field with the spacecraft’s magnetic moment [18]. Equation (2.12) shows
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the expression for magnetic torque, ~τm,

~τm = ~mm × ~B (2.12)

where ~mm is the net magnetic moment of the spacecraft, and ~B is the external

magnetic flux density [18].

2.2.3 Attitude Control.

Once the orientation of a spacecraft and how the orientation changes can be

described, the next logical step would be to describe how to control the orientation

of the spacecraft. In essence, the general torque term found in Euler’s rotational

equations of motion changes from the general torque, ~τ , to the sum of control torques,

~τc, and disturbance torques, ~τd. The general rotational equation of motion then

becomes:

J~̇ω + [~ω×]J~ω = ~τc + ~τd (2.13)

The control torque, ~τc, comes from on-board actuators, such as reaction wheels or

control moment gyroscopes, that exchange momentum with the spacecraft to change

or maintain the orientation of the spacecraft. The challenge is in determining how

much torque is required about each axis at any given time, and this is solved by a

control algorithm, such as LQR, MPC, PID, etc.

Most control algorithms are based on the idea of feedback [21]. Figure 2.1 shows

a generic control system without feedback [21].
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Controller Plant
reference outputs
r (t ) y( t )

control effort
u (t)

external disturbances
w(t )

Figure 2.1. Generic open loop block diagram

The controller receives a reference signal (or desired state), r(t), and determines

the appropriate control effort, u(t). The plant, or system, then takes the control

effort and external disturbances, w(t), and produces an output. Because there is no

feedback, the system has no way of correcting its behavior if the output does not

match the reference. By taking the output of the plant and using it as an input to

the controller, the system can better track the reference. Figure 2.2 shows the same

system as Figure 2.1, but with feedback [1].

Controller Plant

reference outputs

measurementsmeasurements

r (t )

m (t ) m (t )

y( t )
control effort

u (t)

external disturbances
w(t )

Figure 2.2. Generic closed loop block diagram [1]

In some cases instead of controlling the state to match the reference directly,

the control algorithm will instead regulate the error between the reference and the

measurements to zero. In other words, the error, e(t) = r(t) −m(t), will be driven

to zero instead of driving the measurements to the reference. The effect is often the

same, but it can be easier to interpret.
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Whichever control algorithm is used will need to calculate the appropriate control

effort, u(t), and to do this, a control law is needed. One example is the PID controller,

which is made up of a combination of a proportional, integral, and derivative control

components [22]. The PID controller can be expressed in the time domain as a

function of the error, e(t), as shown in Equation (2.14).

u(t) = Kpe(t) +Ki

∫ tf

t0

e(t) dt+Kdė(t) (2.14)

where Kp is the proportional gain, Ki is the integral gain, and Kd is the derivative

gain [22]. The amount of control calculated in Equation (2.14) is proportional to the

error, e(t), proportional to the total error over time,
∫ tf
t0
e(t) dt, and proportional to

the change in error, ė(t). When the model of the system being controlled is known,

the values of the gains can often be calculated to meet the desired specifications, but

when the system model is unknown, the gains often require manual tuning [22]. It is

also possible to use a subset of the gains to create either a proportional integral (PI),

proportional derivative (PD), or just a proportional controller [22].

In some cases, instead of tracking a particular trajectory, a control algorithm may

be used to reduce a spacecraft’s absolute angular velocity, also known as detumbling.

One method for detumbling a spacecraft is to use magnetic torquers along with the

“B-dot” steering law. Equation (2.15) shows this steering law,

~m = − k

|| ~B||
~̇B (2.15)

where ~m is the magnetic dipole, k is some positive gain that can be tuned, and ~̇B is

the time rate of change of the magnetic flux density [17]. To calculate the resulting

torque produced using this steering law, Equation (2.12) can be used.
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2.3 Machine Learning and Neural Networks

Artificial intelligence (AI) is a broad field with a diverse set of subfields such

as search and knowledge representation as well as perception and machine learning

[9]. At the heart of an intelligent system is an agent. Russell and Norvig define

an intelligent agent as one that takes the best possible action in a given situation,

where the definition of “best” is dependent on the situation [9]. This definition shares

similarities with optimal control theory, where the goal is often to find a solution which

both satisfies constraints and minimizes some cost [23]. Although optimal control and

AI share similar goals, AI is a much broader field, applying to problems which are

more difficult to formulate mathematically such as speech or vision [9].

2.3.1 Machine Learning Overview.

Figure 2.3 shows the basic relationship among artificial intelligence, machine learn-

ing, and deep learning. In general, machine learning requires input data, expected

outputs, and a measurement of the performance of the algorithm [2]. With enough

input data, the model will learn a way to map the input to the expected output

while minimizing or maximizing the performance measure. Linear regression is one

of the simplest machine learning algorithms because the only parameters that must

be learned are the slope, β1, and the intercept, β0, of the equation Y ≈ β0 + β1X.

With a large enough dataset, better values for β0 and β1 can be determined, which

yield more accurate predictions for the output, Y , within the range of the training

set [24].
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Artificial Intelligence

Machine Learning

Deep 
Learning

Deep
Reinforcement

Learning

Reinforcement
Learning

Figure 2.3. Deep learning is a subset of machine learning, which itself is a subset of
artificial intelligence [2]

2.3.2 Neural Network Architecture.

Practitioners in the field of machine learning (ML) employ a variety of techniques

ranging from linear regression to neural networks. Although many ML tasks can be

solved with simpler methods like linear regression, the complexity of some problems

require more powerful techniques, such as neural networks. The purpose of neural

networks is often described as being a nonlinear function approximator [25]. In fact,

a neural network with a single sufficiently large hidden layer can approximate any

continuous function [26]. However, in practice, the universal approximation property

of neural networks is achieved much more easily by composing many smaller layers

rather than a single large layer [3]. Figure 2.4 shows a simplified graph layout of a

fully-connected feedforward neural network.
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Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 2.4. A generic example of a feedforward neural network [3]

This example consists of four layers: an input layer, two hidden layers, and an

output layer. Each layer contains a set of units or nodes, and for the input layer,

each node represents a different input. This example has only a single output node,

which means that for a set of five measurements, xi, the neural network is predicting

a single output, y. This neural network is described as fully-connected because each

unit is connected to every unit in the next layer. The “width” of the network refers

to the number of units in each layer, while the “depth” of the network refers to the

number of layers in the network.

The units of each layer can be represented as a vector, so the input layer can

be represented by the vector ~x. The values for the ~x vector come directly from the

inputs. The values for the units in the first hidden layer come from Equation (2.16),

~h = g(W T~x+~b) (2.16)

which contains the previous layer’s values, ~x, a weighting matrix, W , a bias vector,

~b, and a nonlinear activation function, g [25].
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Each line connecting one node to another node in Figure 2.4 represents a weight,

which appears in the weighting matrix W . The value h
(j)
i represents the value of the

i-th unit of the j-th hidden layer. To calculate the value for h
(1)
1 , the first calculation

is to take the sum of each input multiplied by its corresponding weight, and the next

calculation is to add a bias term to this new sum. The new value is put into the

activation function, g, such as the rectified linear unit (ReLU) function shown in

Equation (2.17) [25]

g(x) = max(0, x) (2.17)

where x = W T~x + ~b. Although the ReLU function is one of the most commonly

used activation functions, there are many other activation functions used for neural

networks such as the sigmoid function and the hyperbolic tangent function, shown in

Figure 2.5 [2].

3 2 1 0 1 2 3
input

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ou
tp

ut

ReLU max(0, x)
tanh tanh(x)
sigmoid 1

1 + e x

Figure 2.5. Common activation functions for neural networks
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The output of this activation function is the value contained in the node h
(1)
1 .

Equation (2.16) shows the calculation for the entire layer rather than a single unit,

which makes calculation much more efficient. Similar calculations are performed for

the second hidden layer and for the output layer in this example.

Figure 2.4 shows a fully-connected feedforward neural network, which is one of

the simplest architectures for neural networks. There is a large variety of other archi-

tectures, two of which are convolutional neural networks (CNNs), which work with

grid-like data, and recurrent neural networks (RNNs), which work with sequential

data [25]. Regardless of architecture, a neural network used in a deep learning model

will have more than one layer, where the number of layers determines the depth of

the model [25].

For the neural network to learn the best way to map the inputs to the output, it

must adjust the weights and biases to appropriate values. Like many other machine

learning algorithms, the method by which neural networks adjust their parameters is

typically through some form of gradient descent [25].

2.3.3 Recurrent Neural Networks.

The network shown in Figure 2.4 is an example of a feedforward neural network,

where the entirety of a sample is used as an input to the neural network and processed

all at once [2]. When working with sequence data, it may be beneficial to process

each element in the sequence in order and maintain a state containing information

about what the network has seen so far [2]. This state is reset after processing each

independent sequence. A neural network that contains state information, or memory,

is called a recurrent neural network (RNN). Figure 2.6 shows the main idea behind

RNNs, that is, a neural network with a loop.
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recurrent
connection

RNN
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Figure 2.6. A simple recurrent network [2]

While RNNs may work well with sequence data, in their simplest forms, they

often suffer from a vanishing or exploding gradient [27]. One remedy for this problem

is to use the long short-term memory (LSTM) architecture, which can handle input

sequences of up to 1,000 steps [27]. Figure 2.7 shows the anatomy of an LSTM

network [2].
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Figure 2.7. Anatomy of an LSTM [2]

At each timestep, the LSTM cell takes as input the current element of the se-

quence, the recurrent state, and information carried across timesteps, and the cell

outputs a corresponding value [2]. The carry track is part of the difference between

LSTMs and simple RNNs. The carry track allows past information to be processed
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at a later step, which helps limit the vanishing gradient problem [2]. To compute the

new carry, three transformations must be performed, each with their own weighting

matrices, W and F , and bias vector, b, denoted by i, f , and k [2].

it = activation(Ui · statet +Wi · inputt + bi) (2.18a)

ft = activation(Uf · statet +Wf · inputt + bf ) (2.18b)

kt = activation(Uk · statet +Wk · inputt + bk) (2.18c)

ct+1 = it · kt + ct · ft (2.18d)

2.4 Reinforcement Learning

As shown in Figure 2.3, reinforcement learning (RL) can be considered another

sub-domain of ML. While deep learning is a type of supervised learning where the

dataset consists of inputs and labeled outputs, the data for reinforcement learning is

generated as the agent interacts with the environment.

RL problems are typically formulated as Markov decision processes (MDPs) [3].

Figure 2.8 shows how an agent interacts with the environment in an MDP. The states

in an MDP must have the Markov property, which means that the previous state

contains all information necessary to transition to the next state [3]. For example, in

the simple case of a ball falling to the Earth in a vacuum, the only state information

needed to transition from one time step to the next would be the ball’s position and

velocity, assuming the acceleration due to gravity and the time step are defined in

the environment. Figure 2.8 shows that the reinforcement learning agent chooses an

action based on the current state and reward. This action is used to update the

environment, which will update the state and reward for the next time step.
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Figure 2.8. Agent-environment interaction in a Markov decision process [3]

The state, St, in an MDP is usually expressed as a vector or matrix, and contains

all relevant information about the environment [4]. The reward signal, Rt, comes

from the environment and is a measure of how “good” or “bad” the current state

of the environment is [4]. The action, At, is the decision made by the agent that

transitions the environment from one time step to the next [4]. The action is chosen

which maximizes the reward, or typically the discounted future reward. The series

of time steps until the terminal state is reached defines the length of an episode. An

episode is a self-contained subsequence of agent-environment interaction, which could

be a single game of chess, a trip through a maze, or any repeated interaction [3].

Each episode ends with a terminal state, and then resets to either a standard starting

state or one drawn from a distribution of states [3]. Importantly, each episode begins

independently of how the previous episode ended [3].

Two other fundamental components of a reinforcement learning agent are the

policy and value functions, which are both found inside the “Agent” block in Figure

2.8. The policy is the set of rules used by the agent to determine which action to take

next [4]. For example, the policy could be to take the same action at each time step,

or it could be to sample the action from some normal distribution. The value function

estimates the expected return starting from a given state and operating based on a
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particular policy until the end of the episode, where the return is the sum of all future

rewards (typically discounted) [4].

For problems with small enough state and action spaces, the value and policy

functions can be stored in tables or arrays, and as such, the solutions for these types

of problems are called tabular solution methods [3]. Tabular solution methods include

dynamic programming, Monte Carlo methods, and temporal difference (TD) learning.

These methods may even result in the optimal solution or policy [3].

For problems with larger state and action spaces, it may not be possible to store

the value or policy functions as lookup tables. Instead, approximations for these

functions are needed. While there are many ways to approximate these functions, one

of the most commonly used function approximators is the neural network [3]. The

combination of deep learning and reinforcement learning is called deep reinforcement

learning.

2.4.1 Deep Reinforcement Learning.

Deep reinforcement learning takes advantage of the power of deep learning by

using neural networks to approximate the policy and value functions. To give an idea

of the types of deep reinforcement learning algorithms commonly in use, OpenAI’s

Spinning Up in Deep RL created a non-exhaustive taxonomy of RL algorithms shown

in Figure 2.9 [4].
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AlphaZero

Figure 2.9. Taxonomy of reinforcement learning algorithms [4]

The first split in the RL taxonomy in Figure 2.9 is between model-free and model-

based RL. The agent in model-based RL has access to the underlying model of the

system, so the agent is better informed and may be able to plan ahead [4]. The agent

in model-free RL has no knowledge of the underlying model, and these algorithms

are typically easier to implement because they are not specific to a given problem

[4]. Regardless of whether the algorithm is model-based or model-free, reinforcement

learning algorithms can be very difficult to tune.

The next split for the model-free RL algorithms is between policy optimization

and Q-learning. In policy optimization, the agent optimizes the parameters, θ, for

the policy πθ(a|s) by performing gradient ascent on the performance objective J(πθ)

or on a surrogate objective [4]. The policy, π, is parameterized by the values θ and

returns an action, a, given the state, s. In Q-learning, the agent learns the action-

value function, Qθ(a, s), where the action, a, taken by the agent for any given state,

s, will be the action with the largest Q value [4].

24



One common implementation for a variety of algorithms is called the actor-critic

method. Actor-critic methods are those which learn to approximate both the policy

and value functions [3]. The “actor” refers to the learned policy, and the “critic”

refers to the learned value function [3]. Put more simply, the actor takes the action

according to the policy, and the critic criticizes that action [3].

Another important distinction to make is between on-policy and off-policy algo-

rithms. On-policy algorithms update the policy being used to take actions, whereas

off-policy algorithms update a policy different from the one choosing the actions [3].

Figure 2.10 illustrates the difference between on-policy and off-policy algorithms and

also shows how the actor-critic method is implemented for both.

Policy

Actor

Value
Function

Environment Environment

Value
Function

Target
Policy

state

Critic

reward

TD
error

reward

Critic

Actor

TD
error

state

action action

Behavioral
Policy

AgentAgent

Figure 2.10. Example actor-critic architecture for on-policy (left) and off-policy
(right) algorithms [3]

The left diagram in Figure 2.10 shows an on-policy algorithm. There is only one

policy, and it is both choosing actions and being updated by the value function. The

diagram on the right shows an off-policy algorithm where there are two policies: a

behavioral policy and a target policy. The target policy is what the agent is learning

and is being updated by the value function, while the behavioral policy is taking

the actions and generating data for the agent to learn. One advantage of off-policy
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learning is that it can be more sample efficient because it can reuse past experiences

to speed up learning [4]. However, off-policy methods tend to be less stable and

more brittle, meaning they are less likely to converge on a usable policy and are

more sensitive to hyperparameters. While on-policy methods may not be as sample

efficient, they do tend to be more stable, and less brittle [4].

2.4.2 Proximal Policy Optimization.

One popular and state-of-the-art deep reinforcement learning algorithm is called

proximal policy optimization (PPO) [28]. This algorithm is model-free, on-policy, and

works with continuous state and action spaces. PPO has been used successfully to

win the world championships for a competitive video game called Dota 2 [29]. PPO

has also been used to train an agent to solve a Rubik’s cube in the real world with a

robotic hand [30]. The PPO algorithm implemented in actor-critic style is shown in

Algorithm 1.

Algorithm 1: PPO, Actor-Critic Style from [28]

for iteration = 1, 2,... do

for actor = 1, 2, ..., N do

Run policy πθold in environment for T timesteps

Compute advantage estimates Â1, ..., ÂT

end

Minimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT

θold ← θ

end

Like most deep reinforcement learning algorithms, PPO can run for as long as

desired, and usually stops after a certain amount of time or steps, or after a certain

performance threshold is met. Algorithm 1 begins with an infinite loop, but will

terminate when one of the previously stated conditions are met. Like some other RL
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algorithms, one benefit of PPO is that it can be run in parallel environments, with N

actors. The next step in the algorithm is for each of theN actors to collect T timesteps

of data from the environment using the policy parameterized by the old values, πθold .

As each actor generates data from the environment, it will compute how much better

the action is than expected, also known as the advantage, Â [31]. After the N ·T

timesteps of data and advantage estimates are generated, the agent will optimize the

surrogate loss function, L, for K epochs [28]. The new policy parameters then replace

the old parameters, and the process repeats. Overall, the main idea behind the PPO

algorithm is that there is a limit on how different new actions are compared to the

old actions [28].

2.5 Reinforcement Learning Applications to Attitude Control

Artificial intelligence has been applied in many different fields with varying lev-

els of success, and aerospace is no exception, with applications including planning,

control, fault detection, and task allocation. Little and Frueh compare traditional

algorithms, like the greedy algorithm, with machine learning algorithms, such as

ant colony optimization and distributed Q-learning, with space situational awareness

(SSA) sensor tasking [32]. Youmans and Lutze use supervised learning and linearized

Clohessy-Wiltshire equations for both open-loop and closed-loop control of a satellite

[33]. Coulter and Moncayo use support vector regression and principle component

analysis, both machine learning techniques, for threat detection, isolation, and recov-

ery for a spacecraft power system [34]. Chen and Cruz use a genetic algorithm, which

is another field of AI, to allocate tasks to multiple unmanned aerial vehicles (UAVs)

[35].

Another field of research in aerospace engineering is spacecraft MOI estimation.

Hess uses a two-step optimization process exploiting the polhode curve to estimate
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the MOI given the angular velocity measurements under the presence of stochastic

measurement noise [36]. Keim et al. show that a constrained least squares approach

to estimating spacecraft MOI can yield a more accurate solution than unconstrained

least squares solutions [37]. Thienel et al. make use of a nonlinear passivity adaptive

control scheme to estimate the six inertia parameters of a rigid spacecraft [38].

There have been many highly publicized examples of reinforcement learning being

used to play games against humans like DeepMind’s AlphaZero with Go and Chess

[39], and OpenAI Five with Dota 2 [29]. These examples demonstrate the power of

reinforcement learning, but they are not representative of all the problems that can

make use of reinforcement learning. One application area is attitude control for both

aircraft and spacecraft because of the complex and nonlinear dynamics involved.

Koch et al. use a variety of reinforcement learning algorithms to control the at-

titude of an UAV [40]. The authors compare PPO, trust region policy optimization

(TRPO), and deep deterministic policy gradient (DDPG) algorithms, and also in-

clude a PID controller. They found that PPO overwhelmingly performs the best out

of the algorithms tested for their specific scenario in simulation. Not only did the

agent trained with the PPO algorithm converge to a solution more quickly, but it also

converged to a higher average reward than agents trained with the other algorithms.

Focusing on just one algorithm, Bøhn et al. use the PPO algorithm for UAV

attitude control, citing the work done by Koch et al. as the reasoning for choosing

PPO [41]. Starting from a randomized initial condition, the RL agent is tasked with

returning the UAV to a reference roll, pitch, and airspeed. The authors compare the

RL agent to a PID controller and find similar results, but the RL agent appears to

be more robust to turbulence disturbance in simulation.

Moving quite a bit higher in altitude, Wang et al. use the DDPG algorithm for

autonomous spacecraft rendezvous guidance [42]. The authors formulate a planar,
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2-degree-of-freedom (DOF) docking scenario, where a chaser spacecraft begins 10 km

from the target spacecraft, and must reach a point 500 m from the target. This

scenario does not include attitude dynamics, but the agent did achieve similar per-

formance in the 2-DOF scenario to a PD controller.

Increasing the degrees of freedom by one, Hovell and Ulrich train a reinforcement

learning agent to dock with a rotating target spacecraft in a 3-DOF scenario [43].

The authors used the distributed distributional deep deterministic policy gradient

(D4PG), which is also an actor-critic algorithm. They use the term Deep Guidance

to clarify that the RL agent is providing guidance commands that are tracked by a

conventional controller. To test the agent during training, a proportional velocity

controller is used. The agent outputs the desired velocity, feeds it into the controller,

and the controller then outputs the control effort. The reward function is calculated

by generating a reward field which is zero at the goal, and becomes more negative

linearly as the distance increases. The reward for each timestep is then the difference

in reward field between the current timestep and the previous timestep. This means

that the reward will be positive if the agent moves towards the target, and negative

if it moves away. The agents achieved promising results for docking with both a

stationary target and a rotating target. The authors even experimentally validated

the agent in the real world on two air-bearing spacecraft platforms.

The works cited above investigate attitude control and rendezvous maneuvers from

the air all the way to Earth orbit. However, to the extent of the author’s knowledge,

the literature is lacking in RL based 3-DOF attitude control of a spacecraft. Both [40]

and [41] investigate attitude control of aircraft, which operate under a different set

of dynamics from spacecraft. The study in [42] does not have a spacecraft attitude

component, and the study in [43] only considers 1-DOF for the spacecraft attitude.
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Training an RL agent to control a spacecraft’s attitude in a 3-DOF environment opens

the possibility of easily controlling a pair of spacecraft in a post-docking scenario.
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III. Methodology

Chapter III introduces the two problems investigated in this thesis in more detail

and then lists the hardware and software components used in this research. This

chapter also explains the methodology behind generating random MOI and random

quaternions. Next, the methodology for estimating MOI using recurrent neural net-

works is explained. Finally, the process used for training a reinforcement learning

agent to control the attitude of a spacecraft is explained.

3.1 Problems Overview

There are two main topics investigated in this thesis, each with their own set

of problems, which will be referred to as Problem A and Problem B. Both problems

make use of machine learning. Problem A uses a recurrent neural network to estimate

spacecraft MOI. Problem B uses RL to control spacecraft attitude.

3.1.1 Problem A: Moment of Inertia Estimation via Recurrent Neural

Networks.

Problem A will make use of an LSTM neural network to estimate spacecraft MOI

given a time history of angular velocity data and two subproblems will have external

torques. Problem A will involve two datasets: one with no torques, and one with a

gravity-gradient torque and a magnetic torque.

The first subproblem, A1, will investigate estimating the principal moments of

inertia and will include three scenarios. In the first scenario, the neural network will

receive the angular velocity data, generated from simulating torque-free motion, and

the neural network will output the predicted principal MOI. The second scenario

will make use of the second dataset, and the neural network will be given angular

31



velocity, orbital position, and magnetic torque as inputs, and will predict the principal

MOI. There is a gravity-gradient torque present in the second scenario, but it will be

unknown to the neural network. The third scenario will also make use of the second

dataset, but the only information the neural network will be given is the angular

velocity data, meaning the torques and orbital position will be unknown.

The second subproblem, A2, will include the same scenarios as in subproblem A1,

but instead of estimating the principal MOI, the neural network will be estimating

the relative MOI ratios, or Smelt parameters.

3.1.2 Problem B: Deep Reinforcement Learning Applied to Spacecraft

Attitude Control.

Problem B will use the PPO algorithm to control the attitude of a spacecraft and

will include three distinct subproblems.

The first subproblem, B1, for Problem B will have the agent start from an arbitrary

attitude and learn to achieve a particular attitude. During training the initial attitude

and MOI will be randomized, but the desired orientation will remain the same across

episodes, so the agent will only ever be able to point to the same attitude.

The second subproblem, B2, builds on the subproblem B1, and instead of achieving

the same orientation each time, the agent will learn to achieve arbitrary attitudes.

During training, the desired orientation is now also randomized for each episode,

meaning the agent will be able to point to any desired orientation.

The final subproblem, B3, will consist of two parts: B3-1 and B3-2. For both

parts, the goal is to have the agent experience a simulated collision resulting in a

change in MOI and angular velocity. The agents in subproblem B3 are not newly

trained. Instead, subproblem B3-1 uses the agent trained for subproblem B1, and

subproblem B3-2 uses the agent trained for subproblem B2. Subproblem B3 is more
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of a test of generality and robustness for Agent B1 and Agent B2. In subproblem

B3-1, the MOI and angular velocity are randomized halfway through the episode. In

subproblem B3-2, the MOI, angular velocity, and desired quaternion are randomized

halfway through the episode.

3.2 Hardware and Software

This section, 3.2, details the hardware used to run the algorithms and train the

models and agents for both Problem A, MOI estimation, and Problem B, RL attitude

control. The same hardware was used for both problems. The processor used was an

Intel Core i7-9850H at 2.60 GHz (6 cores, 12 threads). The computer used had 32

GB RAM, and an NVIDIA Quadro T2000 (4 GB GDDR5) graphics card.

For both problems, the operating system used was Ubuntu 20.04 LTS. For Problem

A, the two datasets were generated using MATLAB 2020a [44]. The neural network

setup and training, as well as the plotting of results was accomplished using Python

3.6 [45]. The Python library used for working with neural networks was Keras [46],

which used the Tensorflow library as a backend [47].

Problem B was accomplished using Python 3.6 [45]. The reinforcement learning

environment was created using the OpenAI Gym Python library [48]. Environment

numerical integration was done using the SciPy Python library [49]. The reinforce-

ment learning agent was created based on the Stable Baselines Python library [50].

3.3 Generating Random Samples

Because neural networks, and therefore deep reinforcement learning, require a

large number of samples that span some desired range of operation, a method to
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generate these samples must be implemented. This section explains methods for

generating random moments of inertia and random quaternions.

3.3.1 Random Moments of Inertia.

The MOI of a rigid body describe how the mass of the body is distributed about

the axes of a body-fixed reference frame [16]. A rigid body’s products of inertia are a

measure of how the mass is distributed about the three planes formed by the body-

fixed reference frame [16]. The reference coordinate system can be oriented in such a

way that all of the products of inertia are zero. In this orientation, the MOI and the

reference frame axes are called the principal MOI and the principal axes respectively

[16]. All physically realizable inertia matrices must obey the following constraints

[51]:

• The inertia matrix J , when rotated by the matrix A via ATJA, must have

positive MOI, regardless of the matrix A [51]

• The inertia matrix must obey the triangle inequality principle, which states

that the sum of any two MOI (principal or not) must be greater than or equal

to the third MOI [51]

• The products of inertia are limited by the simultaneous application of both the

above constraints [51]

In [51], Peck describes a process for generating physically realizable, random MOI.

First, three numbers must be randomly sampled from a normal distribution with a

mean of zero, µ, and a desired standard deviation, σ: X ∼ N (0, σ2). Each of the

three randomly sampled numbers will be referred to as Ki. Each number will then be

squared, so the resulting distribution of each Ki random variable is χ2 because it is

the square of a normal distribution [52]. Equation (3.1) produces the principal MOI,
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ensuring the triangle inequality holds. The MOI can also be sorted from largest to

smallest. 
Jx

Jy

Jz

 =


0 1 1

1 0 1

1 1 0



K2

1

K2
2

K2
3

 (3.1)

The resulting inertia matrix is constructed using Equation (3.2). Because this

matrix represents the principal MOI, there are no products of inertia, which are the

off-diagonal terms [19].

J =


Jx 0 0

0 Jy 0

0 0 Jz

 (3.2)

For simplicity, these steps are consolidated into the following algorithm:

Algorithm 2: Generate random moments of inertia [51]

1. Ki ∼ N (µ, σ2), i = 1, 2, 3

2.


Jx

Jy

Jz

 =


0 1 1

1 0 1

1 1 0



K2

1

K2
2

K2
3



3. J =


Jx 0 0

0 Jy 0

0 0 Jz


Using Algorithm 2 with µ = 0 and σ = 3, 10,000 samples of MOI were randomly

generated, and the histograms for each principal MOI are shown in Figure 3.1. The
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histograms show that the vast majority of samples fall within a lower range, with a

smaller number of samples having larger values of MOI.
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Figure 3.1. Distribution of randomly generated MOI

Sometimes, it is also useful to calculate the relative MOI ratios, which are known

as the Smelt parameters [36]. The Smelt parameters are given by Equation (3.3) [53].

k1 =
Jy − Jz
Jx

(3.3a)

k2 =
Jz − Jx
Jy

(3.3b)

k3 =
Jx − Jy
Jz

(3.3c)

These parameters are not independent, but instead must satisfy the constraint in

Equation (3.4) [53].

k1 + k2 + k3 + k1k2k3 = 0 (3.4)
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The result of this constraint is that all Smelt parameters must be found on the surface

of the “petal” shape shown in Figure 3.2.
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Figure 3.2. Smelt parameter constraint “petal”

When there are no torques acting on the spacecraft, Euler’s equations of motion

become those shown in Equation (3.5).

ω̇x = k1ωyωz (3.5a)

ω̇y = k2ωzωx (3.5b)

ω̇z = k3ωxωy (3.5c)

3.3.2 Random Quaternions.

In [54], Shoemake describes a process for generating uniform random rotations.

The first step is to sample three values, x0, x1, and x2, from a standard uniform
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distribution X ∼ U(0, 1). From these random variables, two uniformly distributed

angles can be computed, which are shown in Equation (3.6).

θ1 = 2πx1 (3.6a)

θ2 = 2πx2 (3.6b)

The resulting quaternion, which maintains a unit norm, can be expressed as shown

in Equation (3.7)

q =



q1

q2

q3

q4


=



sin(θ1)
√

1− x0

cos(θ1)
√

1− x0

sin(θ2)
√
x0

cos(θ2)
√
x0


(3.7)

The steps for generating a random quaternion are consolidated into the following

algorithm:

Algorithm 3: Generate random quaternion [54]

xi ∼ U(0, 1), i = 0, 1, 2

θi = 2πxi, i = 1, 2

q =



q1

q2

q3

q4


=



sin(θ1)
√

1− x0

cos(θ1)
√

1− x0

sin(θ2)
√
x0

cos(θ2)
√
x0


∗if q4 < 0 then

q = −q

end

∗Use if only shortest rotation desired
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To ensure the randomly generated quaternions are indeed uniformly distributed,

a large number of samples can be generated and converted to their corresponding

Euler axis, ê, and Euler angle, α [18]. Equations (3.8) and (3.9) first calculate the

Euler rotation angle, and then use that angle along with the vector component of the

quaternion to calculate the Euler axis [20].

α = 2 cos−1(q4) (3.8)

ê =
1

sin(α/2)


q1

q2

q3

 ; α 6= 0, ±2π . . . (3.9)

Singularities occur at α = 0, ±2π, . . . , which correspond to orientations where

q4 = 1, or q4 = −1. Because this conversion is used only for visualization purposes,

orientations that cause a singularity are not included in Figure 3.3. With the equa-

tions for converting a quaternion to an Euler axis and angle, the Euler axis of each

randomly generated quaternion can be plotted as a point in a scatter plot. Figure 3.3

shows Euler axes from 2,000 randomly generated quaternions plotted as points. The

scatter plot on the left shows that the attitudes are uniformly distributed about the

unit sphere. There is no apparent “bunching” around certain attitudes. The scatter

plot on the right shows that specific sections of the unit sphere can be chosen by

changing the range of values from which x0, x1, and x2 in Algorithm 3 are chosen.
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Figure 3.3. Distribution of 2000 randomly generated quaternions. The left figure
shows the quaternions uniformly distributed about the entire unit sphere, while the
figure on the right shows the samples concentrated on a smaller region of the unit

sphere.

3.4 Problem A: Moment of Inertia Estimation via Recurrent Neural Net-

works

The work regarding MOI estimation shown in this section was presented at the

2020 AIAA / AAS Astrodynamics Specialist Conference [55]. For this problem, two

datasets were generated using MATLAB and Simulink [44], each containing 25,000

samples. Each sample contains 30 seconds of data with 0.1 second timesteps, for a

total of 300 steps per sample.

First, a random set of MOI is generated according to Algorithm 2, and the inertia

values are sorted from largest to smallest. The initial angular velocities in each direc-

tion are set arbitrarily to ~ω0 = [0.2, 0.15, −0.18]T rad
s

for each sample. By keeping

the initial angular velocities the same for each sample, the neural networks have a

smaller space to search. If the neural network is unable to learn a useful mapping,

when the initial angular velocity is always the same, then it would be unlikely to learn

when the initial angular velocity is randomized. With the MOI and initial angular
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velocity defined, Euler’s equations of motion found in Equation (2.10) are used, with

zero torque, to propagate the angular velocity for 30 seconds.

Whereas the first dataset contains only MOI and angular velocity with zero

torques, the second dataset contains two external torques. The first is a gravity gra-

dient torque, calculated using Equation (2.11). Because the gravity gradient torque

includes the vector ~Rc, which is the vector originating at the center of the Earth and

pointing to the spacecraft center of mass, the orbit of the spacecraft must also be

accounted for. The inertial position and velocity vectors are propagated using the

two-body equation of motion shown in Equation (3.10) [19].

~̈Rc + µ
~Rc

R3
c

= 0 (3.10)

The inertial position vector must then be transformed to the body frame by pre-

multiplying the vector by a transformation matrix or DCM. For a more in-depth

discussion on reference frames, see [20]. The second dataset also includes a com-

manded magnetic torque, calculated using Equations (2.15) and (2.12), where the

gain for the “B-dot” steering law is set to k = 100.

3.4.1 Subproblem A1: Estimate Principal Moments of Inertia.

Three scenarios were developed based on the two datasets. The first scenario uses

the first dataset, where the neural network is attempting to estimate the MOI given

only the angular velocity data, with no external torques present. The second scenario

uses the second dataset, and the neural network receives the angular velocity and

the magnetic torques as inputs, and it attempts to estimate the MOI. The gravity

gradient torque remains unknown to the neural network for Scenario Two. The third

scenario also uses the second dataset, so there are external torques present, but the
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neural network only has knowledge of the angular velocity, and both torques are

unknown.

To estimate the MOI, a neural network is constructed consisting of five LSTM

layers, each with 512 units. For each sample that the neural network sees, the output

of the neural network is compared to the actual MOI, and the mean squared error

(MSE) is calculated as the loss function. The neural network attempts to minimize

the MSE between the estimated MOI and the actual MOI. The equation for MSE is

shown in Equation (3.11), and represents the loss function, which the neural network

attempts to minimize.

MSEloss =
1

3

[
(Jx,est − Jx,truth)2 + (Jy,est − Jy,truth)2 + (Jz,est − Jz,truth)2

]
(3.11)

Equation (3.11) shows the loss function used by the neural network. However,

when evaluating the results of the trained network, it may be more useful to calculate

the mean squared error about each of the three axes separately. Once trained, if the

neural network is given n samples to evaluate, then the equation used to calculate

mean squared error is given by Equation (3.12). Alternative calculations are shown

in Equations (3.13) and (3.14), which represent the mean absolute error (MAE) and

the mean absolute percentage error (MAPE).

MSE =
1

n

n∑
j=1


(Jxn,est − Jxn,truth)2

(Jyn,est − Jyn,truth)2

(Jzn,est − Jzn,truth)2

 (3.12)

MAE =
1

n

n∑
j=1


|Jxn,truth − Jxn,est|

|Jyn,truth − Jyn,est|

|Jzn,truth − Jzn,est|

 (3.13)
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MAPE =
1

n

n∑
j=1


∣∣∣Jxn,truth−Jxn,est

Jxn,truth

∣∣∣∣∣∣Jyn,truth−Jyn,est

Jyn,truth

∣∣∣∣∣∣Jzn,truth−Jzn,est

Jzn,truth

∣∣∣

 · 100 (3.14)

3.4.2 Subproblem A2: Estimate Smelt Parameters.

Whereas subproblem A1 predicts the MOI for three different scenarios, subprob-

lem A2 predicts the Smelt parameters for those same scenarios. The same datasets

are used for subproblem A2, but instead of the neural network estimating MOI, it

estimates the Smelt parameters, and compares the estimates to the actual Smelt pa-

rameters, which are calculated when loading the data. The neural network uses the

same loss function of MSE as in subproblem A1. The architecture and hyperparam-

eters of the neural network are the same for both subproblems A1 and A2 and for all

three scenarios within each problem.

3.4.3 Architecture and Hyperparameters.

The neural network used for Problem A consists of five LSTM layers of 512 units

each, and ends with a dense, or fully-connected, layer of 3 units, corresponding to the

three outputs: MOI for subproblem A1, and Smelt parameters for subproblem A2.

Figure (3.4) shows the neural network architecture for the first scenario in subproblem

A1, where the other scenarios and subproblem A2 would have different inputs and

outputs.
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Figure 3.4. Neural network architecture for subproblem A1

There is no regularization because there were no signs of the neural network over-

fitting to the data. The network used a batch size of 128, and a learning rate of 0.001.

The neural network uses the Adam optimizer, which is a stochastic gradient descent

method based on adaptive estimation of first-order and second-order statistical mo-

ments [46]. The dataset is split into three parts: training, validation, and testing.

The training dataset contains 18,000 samples, the validation set has 2,000 samples,

and the test set has 5,000 samples.

3.5 Problem B: Spacecraft Attitude Control via Reinforcement Learning

Typical attitude control involves creating a model of the spacecraft being con-

trolled, and deriving a control law for the spacecraft [19]. Some techniques, such as

adaptive control and MPC, allow for some uncertainty in the system model, but they

still require a model of the system. Many reinforcement learning techniques, on the

other hand, are model-free and can learn a control policy with no knowledge of the

underlying model of the system. Problem B applies model-free reinforcement learning

to control the attitude of a spacecraft. The first subproblem involves starting from

an arbitrary attitude, with an arbitrary MOI, but always ending in the same orienta-

tion. The second subproblem expands on the first part, and instead learns to achieve
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any desired orientation. The final subproblem expands on the first two subproblems,

testing the response of the agents to an abrupt change in MOI.

To accomplish these tasks, a few common open-source software packages are used.

The first is OpenAI Gym, which is a toolkit for developing reinforcement learning en-

vironments [48]. OpenAI Gym allows the user to create a reinforcement learning

environment, which defines observations, rewards, and how actions change the ob-

servations at each time step. The other piece of software is Stable Baselines, which

is a set of RL algorithm implementations and is made to work with OpenAI Gym

environments [50]. The Stable Baselines library has several algorithms available to

choose as a starting point, which can then be modified to fit the user’s needs.

3.5.1 Reinforcement Learning Environment.

This section details the OpenAI Gym environment created to solve Problem B.

There are three functions that are required to create an environment: initialization,

reset, and step. The reward function can either be its own separate function, or it

can be calculated inside the step function.

3.5.1.1 Initialization.

This function defines what happens anytime a new instance of this environment

is created. One of the first steps is to determine what the actions and observations

will be, and define both the action and observations spaces, which will determine

the maximum range of values the actions and observations can take. The actions

and observations are defined in Equations (3.15) and (3.16) along with the maximum

value for each.

~a =


ω̂x

ω̂y

ω̂z

 ; ~amax = ±


1

1

1

 (3.15)
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For this problem, the action corresponds to the requested angular velocity about

each of the three axes. The “hat” character denotes that these angular velocity

values are normalized and will always fall between ± 1. The reason the action is

limited to be between ± 1 is to make it easier for the neural network to learn to

map the action space. The actual maximum value of the requested angular velocity

is ωmax = 0.1 rad
s

, and the actions will be scaled by this value in the step function.

Equation (3.16) represents the observation vector, ~x, consisting of 17 components.

~x =



q

~ω

~τ

qd

~ωd


(3.16)

The first seven components of the observation vector in Equation (3.16) corre-

spond to the spacecraft’s attitude, q, and its angular velocity, ~ω. The next three

components correspond to the requested torque, ~τ , and although the agent does not

require knowledge of the torque at any time, it makes plotting the control history

much easier. The final seven components correspond to the desired attitude, qd, and

the desired angular velocity, ~ωd, for the spacecraft. These values are included so that

the agent knows where it should be pointing. It gives the agent more direct feedback

than just a reward function would, and it allows the desired attitude and angular

velocity to be updated more easily. The maximum values for q and qd are both ±1

because they are both unit quaternions. The maximum values for ~ω and ~ωd were cho-

sen to be ±100 rad
s

and ±100 Nm because these values are well outside the arbitrarily

chosen range of normal operations.

The remainder of the initialization process involves setting the initial values for

the rest of the variables. The time step is set to dt= 0.2 seconds. The maximum
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number of steps for each episode is set to max_steps = 1000/dt. The MOI values are

all set to 10 kg ·m2, but they will be randomized at the start of each episode. The

average MOI is calculated by adding the three MOI values and dividing by three, and

this average value will be used later to determine the maximum allowable requested

angular velocity. A random number generator must be initialized. All 17 states are

set to zero. The current step in the environment is set to t = 0. The Boolean value

specifying whether the episode is over is set to done = False, and the current reward

is set to zero.

3.5.1.2 Reset.

The next function for the Gym environment that must be defined is the reset

function, which determines what happens to the environment when it is reset for the

next episode. First, a random quaternion is generated using Algorithm 3 and the

initial attitude is set to this new quaternion. Next, the initial angular velocities are

randomly sampled from a normal distribution parameterized by µ = 0 and σ = 10deg
s

.

The initial torques are all set to zero because no control has been requested yet. Next,

a new set of MOI are generated using Algorithm 2 parameterized by µ = 0 and σ = 3.

The average MOI is then calculated, and the maximum allowed requested angular

velocity in each axis is set to ωmax = avg_moi/100. The desired quaternion will

depend on which problem is being solved. For subproblems B1 and B3-1, this value

does not change over the course of all training and testing. For subproblems B2 and

B3-2, the desired quaternion is randomized for each episode according to Algorithm

3. Finally, the timestep and reward are set to zero, and the done flag is set to False.
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3.5.1.3 Reward Function.

The methodology behind the reward function used in this environment is a mod-

ified version of the reward function used by Hovell and Ulrich [43]. First, a field of

values is defined that is zero at the goal, and becomes more negative further from

the goal. This field of values is called the reward field. To calculate the reward field,

the error quaternion between the current quaternion and the desired quaternion is

calculated using Equation (2.6). There are then four values that must be calculated.

The first value, r0, is the negative sum of the absolute values of the vector components

of the error quaternion, scaled by some value, α.

r0 = −α(|qe1|+ |qe2|+ |qe3|) (3.17)

The next three values are the negative absolute values of the difference between the

desired angular velocity and the current angular velocity, scaled by some value, β.

~r1:3 = −β


|ωd,x − ωx|

|ωd,y − ωy|

|ωd,z − ωz|

 (3.18)

The value of the reward field, rf , is then the sum of each component.

rf = r0 + r1 + r2 + r3 (3.19)

This process showed the calculation of the reward field, but the value of the reward

function will be calculated in the step function. In this problem, the reward field

is simply an intermediate value used for determining the actual reward at any given

time step.
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3.5.1.4 Step.

The next function that must be defined is the step function, which defines how the

agent steps through the environment at each timestep. This function takes an action

as the input, which in this case is the requested angular velocity from the RL agent.

First, the requested angular velocity is fed into a simple proportional controller of the

form shown in Equation (3.20)

~u = Kp(~a · ~wmax − ~ω) (3.20)

where ~u is the requested control, the proportional gain is notionally set to Kp= 2 for

this study, the normalized action is ~a, the maximum angular velocity is ~wmax, and

the current angular velocity is ~ω. Next, the sum of the control effort is calculated

using the 1-norm.

u =
3∑
i=1

|ui| = |u1|+ |u2|+ |u3| (3.21)

The next step is to calculate the reward reward field before stepping through the

environment. This value will be called r−, and it will be calculated using scaling

values of α = 3, and β = 1. Once this value is calculated, the environment will

be updated using the requested control. The only states that must be updated are

the four quaternion values, q, and the three angular velocity values, ~ω. However, to

update the states, the control effort, ~u, is also required. The system of differential

equations used for updating the states is shown in Equation (3.22).
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~y =



q1

q2

q3

q4

ωx

ωy

ωz



; ~̇y =



0.5(q4ωx − q3ωy + q2ωz)

0.5(q3ωx + q4ωy − q1ωz)

0.5(−q2ωx + q1ωy + q4ωz)

0.5(−q1ωx − q2ωy − q3ωz)
1
Jx

(u1 + (Jz − Jy)ωyωz)
1
Jy

(u2 + (Jx − Jz)ωzωx)
1
Jz

(u3 + (Jy − Jx)ωxωy)



(3.22)

The timestep of the environment is 0.2 seconds, which is long enough to have

the potential of discretization errors building up if the dynamics are not integrated

at a high enough frequency. To fix this issue, the SciPy library was used [49]. The

solve_ivp function was used with a relative tolerance of 10−3, an absolute tolerance

of 10−6, and with the default RK45 solver [56]. In essence, the solver takes the current

state as the initial condition, and propagates the trajectory forward in time by 0.2

seconds, where the control is constant over that time. The new state is then the final

set of values from the solver. With the new state calculated, the new reward field,

r+f , can also be calculated. A penalty, pc, which is proportional to the sum of the

control, u, and inversely proportional to the average MOI, Javg, will be added to the

final reward. The average MOI will always be Javg ≥ 1 because each MOI is kept to

be J ≥ 1.

pc = 0.5u
1

Javg
(3.23)

The final reward can be calculated as shown in Equation (3.24)

r = r+f − r
−
f − pc (3.24)

After the reward is calculated, the current step number of the environment must

be incremented by one. If the current step is greater than or equal to the max number
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of steps, then the Boolean flag, done, must be set to True. Finally, the step function

returns the current state, the reward, and the done flag.

3.5.2 Hyperparameters.

The other main component of the solution for Problem B is the RL algorithm,

which will be choosing actions and interacting with the environment. The RL agent

is made using the PPO algorithm from Algorithm 1. Because the PPO algorithm

calls for an actor-critic network, two neural networks will be created, although it is

possible to have one network with two outputs. The actor, or policy network, will

have three hidden layers of 16 units each. The critic, or value function network,

will also have three layers of 16 units. Both networks are multi-layer perceptron

networks, which is another way of saying fully-connected, feedforward networks. The

actor-critic network is defined as a custom policy in the baseline library.

The Gym environment is vectorized so that the PPO agent can interact with

four environments at the same time, and collect data in minibatches from all four

environments. Most of the hyperparameters were left as the default values [50].

However, the learning rate was manually tuned until it yielded promising results.

The hyperparameters are summarized in Table 3.1.
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Table 3.1. Problem B Hyperparameters

Description Value

Number of environments num_envs = 4

Discount factor gamma = 0.99

Number of steps per update n_steps = 64

Entropy coefficient ent_coef = 0.01

Learning rate learning_rate = 8× 10−5, 6× 10−5

Value function coefficient vf_coef = 0.5

Max value for gradient clipping max_grad_norm = 0.05

Factor for bias vs variance trade-off lam = 0.95

Number of minibatches nminibatches = 4

Number of epochs when optimizing the surrogate noptepochs = 4

Clipping parameter cliprange = 0.2

3.5.3 Subproblem B1: Start from Arbitrary Attitude.

The goal of subproblem B1 is to have the agent start from an arbitrary attitude,

with a randomized MOI, and achieve a specific orientation. This is the most basic

of the three problems and serves as a proof of concept. If the agent cannot learn

to achieve the same orientation each time, it is unlikely the agent would be able to

achieve an arbitrary orientation. The initial orientation for each episode is generated

according to Algorithm 3, and the MOI for each episode is randomized according

to Algorithm 2. Equation (3.25) shows the desired quaternion for every episode in

subproblem B1.

qd = [0, 0, 0, 1]T (3.25)
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Deep reinforcement learning can be difficult in part because of the large number

of parameters that can be tuned. Not only are there hyperparameters for the rein-

forcement learning algorithm, such as learning rate and discount factor, but there

are also a number of parameters for the environment, such as the reward function,

and number of time steps. The process of creating a useful agent becomes a game

of tuning hyperparameters. Apart from lowering the learning rate from the default

value, most of the tuning was done with the environment parameters, specifically the

reward function.

There is a trade off between penalizing quaternion error and angular velocity

error. If the quaternion error is penalized too much compared to the angular velocity,

then the agent will tend to oscillate around the desired quaternion. If the quaternion

error is penalized too little compared to the angular velocity, then the agent will stop

rotating as soon as possible, regardless of the orientation it ends in. While these two

values were being adjusted, with no penalty on the control effort, the agent used as

much as needed, which was often noisy and physically impossible. This means that

on top of balancing quaternion error and angular velocity penalties, the control effort

must also be penalized, which complicates the tuning of the other two penalties. If

the control effort penalty is too high, the agent will either take too much time to

achieve the desired attitude, or not move at all, and if too low, it will use too much

control.

Once the reward function values were tuned adequately, the agent trained for

5 million time steps. Each episode goes for 2,000 seconds with a time step of 0.2

seconds, thus each episode is 10,000 timesteps. Alternatively, the agent trained for

500 episodes. On the hardware used in this thesis, Agent B1 took 51 minutes to train.
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3.5.4 Subproblem B2: Achieve Arbitrary Attitude.

Subproblem B2 builds on subproblem B1, the only difference being that instead

of always ending at the same orientation, the desired orientation is randomized at

the start of each episode. This is a much more difficult problem for the agent to

learn a solution for because the search space is much larger. Instead of starting from

an infinite number of possible orientations and ending in one orientation, the agent

must now start from an infinite number of possible orientations and end in an infinite

number of possible orientations.

Agent B2 decreased the learning rate to 6.0 × 10−5, from the previous value of

8.0 × 10−5 used in subproblem B1. A lower learning rate was chosen because it

appeared to help the agent converge on a policy. The scaling factor on the control

penalty was increased from 0.5 to 0.6 to mitigate the large control effort observed

from previous iterations of Agent B2.

Subproblem B2 is a much more general problem than B1, which results in a much

longer training time. The agent in subproblem B2 trains for 20 million steps, with an

episode length of 1,500 seconds, resulting in 2,667 episodes. On the hardware used for

this thesis, Agent B2 took 3 hours and 23 minutes to train. The episode length is one

of the parameters that was tuned for this research. With a longer episode length, the

agent accumulated more control penalty, and seemed to respond slower after training.

By decreasing the episode length from 2,000 to 1,500 seconds, the agent seemed to

achieve a greater balance between control effort and response time.

3.5.5 Subproblem B3: Simulated Collision.

Subproblem B3 builds on subproblems B1 and B2 by including a change in MOI.

Subproblem B3 is split into two parts: B3-1 and B3-2. Subproblem B3-1 uses the

agent from subproblem B1, and subproblem B3-2 uses the agent from B2. In both
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cases, no new training takes place. Instead, the existing agents are evaluated in

scenarios where the MOI changes.

For subproblem B3-1, the MOI is randomized at the middle of the episode. So

for the 120 second episode, the MOI is randomized at 0 seconds and at 60 seconds.

However, a change in MOI alone may not change the trajectory if the agent is already

at rest. To ensure sufficient excitation in the response, the angular velocity is also

randomized according to a normal distribution parameterized by µ = 0 and σ =

10deg
s

. The combination of a change in MOI and a change in angular velocity could

simulate an external object making contact with and sticking to the spacecraft or a

loss of structural components. The goal of the agent remains unchanged, as it is still

attempting to achieve the desired quaternion from Equation (3.25).

Subproblem B3-2 is similar to B3-1, but it uses the agent trained for subproblem

B2, which learned to achieve arbitrary orientations. Because Agent B2 can take

longer to achieve orientations than Agent B1, the episode time was increase to 2,000

seconds, and the disturbances were introduced at 1,000 seconds. In addition to the

change in MOI and change in angular velocity, subproblem B3-2 also changes the

desired quaternion at the same time.
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IV. Results and Analysis

This section presents and discusses the results of Problems A and B. The goal

of Problem A is to predict the MOI and Smelt parameters of a spacecraft using a

recurrent neural network. The goal of Problem B is to control the attitude of a

spacecraft using the proximal policy optimization reinforcement learning algorithm.

4.1 Problem A

The goal of Problem A is to predict the MOI and Smelt parameters of a spacecraft

given some combination of angular velocity and torque data using a recurrent neural

network. The results of these predictions are shown in both tabular and graphical

formats. The tables show the median MSE, MAE, and MAPE between truth and

predicted MOI and Smelt parameters over all test samples about each axis.

One of the graphical representations of the results is in the form of three scatter

plots, showing MSE, MAE, and MAPE, respectively. On the x-axis is the value of

the inertia, and on the y-axis is the corresponding error value. The MOI values are

split into their own categories and plotted separately.

The other graphical representation is in the form of three histograms, each rep-

resenting Jx, Jy, and Jz, respectively. On the x-axis is the value of inertia, and on

the y-axis is the density, representing how often that value appears in the data. Each

plot has two histograms, one representing the distribution of the actual MOI and one

representing the predicted MOI.

4.1.1 Subproblem A1: Estimate Principal Moments of Inertia.

There were 5,000 samples used as the test set, and Table 4.1 shows the median

MSE, MAE, and MAPE values across all of the test samples about each axis.
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Table 4.1. Subproblem A1 results: median MOI prediction errors

MSE MAE MAPE

(kg ·m2)2 (kg ·m2) (percent)

Jx Jy Jz Jx Jy Jz Jx Jy Jz

Scenario 1 183.78 115.35 11.92 13.56 10.74 3.45 54.92 54.65 58.99

Scenario 2 0.58 0.61 0.22 0.76 0.78 0.47 4.10 5.26 9.82

Scenario 3 9.98 6.91 0.66 3.16 2.63 0.81 14.90 15.27 16.39

The median values were chosen instead of the mean values because of the outliers,

or large error values, that would skew the results. Table 4.1 shows that Scenario

1 had, by far, the largest errors of the three scenarios. This is expected because

of the ambiguity present during torque-free motion. Under torque-free motion, the

dynamics can be expressed using the Smelt parameters as shown in Equation (3.5).

This means that it is not the absolute MOI that determines the dynamics, but rather

the relative MOI ratios. For any given set of Smelt parameters, there are an infinite

number of combinations of absolute MOI that can result in those Smelt parameters,

when considering torque-free motion [36]. Because it is mathematically impossible

to estimate absolute MOI from torque-free motion, Scenario 1 makes a good upper

bound on the error values.

As expected, when there is a torque present, and the neural network has at least

partial knowledge of this torque, as in Scenario 2, the errors are much smaller, sug-

gesting that the neural network is able to predict the MOI. The errors in Scenario 3

fall somewhere between those of Scenario 1 and Scenario 2, although there are much

closer to the errors in Scenario 2. This suggests that the neural network did learn

a useful mapping between angular velocity and MOI, but it is not as accurate with-
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out knowledge of the torque. To gain more insight into the results, the errors are

presented in graphical format.

Figure 4.1 shows the results of Scenario 1 as three scatter plots each with logarith-

mic x and y axes. The scatter plots in Figure 4.1 show that as the value of the inertia

increases, the error also increases. At a certain point, close to where the inertia is

20 kg·m2, the absolute error between the estimated inertia and the truth inertia is

almost exactly equal to the truth inertia, indicated by the almost straight line after

this point. This observation, coupled with the large number of smaller errors at the

same point suggests that the neural network is always predicting that the MOI is

around 20 kg·m2.
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Figure 4.1. Subproblem A1, scenario 1 results

Figure 4.2 shows a histogram of the predicted distribution of inertia for Scenario

1 and the actual distribution of the inertia. These histograms confirm that the neural

network is only predicting a small range of values instead of the wider range found in

the actual distribution. The predicted distributions also appear to be bimodal, made

apparent by the two peaks in each histogram. The actual distribution should match

the MOI distribution shown in Figure 3.1.
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Figure 4.2. Subproblem A1, scenario 1 prediction distribution

Figure 4.3 shows that the errors for Scenario 2 are consistently smaller than for

Scenario 1. However, the Scenario 2 errors also appear to increase as the value of the

inertia increases. Unlike in Scenario 1, the errors for Scenario 2 seem more spread

out.
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Figure 4.3. Subproblem A1, scenario 2 results

Figure 4.4 shows that the predicted distribution for Scenario 2 almost exactly

matches the actual distribution. The matching of distributions suggests that the

neural network learned a useful mapping from inputs to MOI for Scenario 2.
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Figure 4.4. Subproblem A1, scenario 2 prediction distribution

Figure 4.5 shows that the errors for Scenario 3 are similar to those found in

Scenario 2, but the Scenario 3 errors appear to have a larger increase in variance as

the inertia values increase. The errors also appear to be larger than in Scenario 2.

This suggests that the neural network for Scenario 3 learned a useful mapping, but

not quite as useful as the Scenario 2 neural network. While not as prominent as in

Scenario 1, the errors for Scenario 3 also appear to show some structure towards the

larger MOI.

10 1 100 101 102

Inertia kg m2

10 6

10 4

10 2

100

102

104

M
SE

 , 
(k

g
m

2 )
2

Jx
Jy
Jz

10 1 100 101 102

Inertia kg m2

10 3

10 2

10 1

100

101

102

M
AE

 , 
kg

m
2

Jx
Jy
Jz

10 1 100 101 102

Inertia kg m2

10 2

10 1

100

101

102

103

104

105

M
AP

E 
, p

er
ce

nt

Jx
Jy
Jz

Figure 4.5. Subproblem A1, scenario 3 results
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Figure 4.6 shows the predicted and actual MOI distributions for Scenario 3. The

distributions appear similar, but not as similar as in Scenario 2. There also appears

to be multiple modes, or peaks, just as in Scenario 1. It is unclear whether the neural

network in Scenario 3 would converge to a similar level of error as Scenario 2 if there

is more data or if the hyperparameters or network architecture are adjusted.
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Figure 4.6. Subproblem A1, scenario 3 prediction distribution

4.1.2 Subproblem A2: Estimate Smelt Parameters.

The results for subproblem A2 are presented in the same format as in Problem

A1, the only difference being that Smelt parameters are predicted instead of absolute

MOI. Table 4.2 shows that all three scenarios have similar error values when predicting

Smelt parameters, but that Scenario 1 has the lowest error values across all measures.

This finding is the opposite of subproblem A1, potentially because there are fewer

features for which the neural network must account. Scenarios 2 and 3 yielded similar

errors suggesting knowledge of the torque is not required to predict Smelt parameters.
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Table 4.2. Subproblem A2 results: median Smelt parameter prediction errors

MSE MAE MAPE

(unitless) (unitless) (percent)

k1 k2 k3 k1 k2 k3 k1 k2 k3

Scenario 1 3.4× 10−7 1.9× 10−7 3.9× 10−7 0.00058 0.00044 0.00062 0.13 0.054 0.11

Scenario 2 8.1× 10−7 3.6× 10−7 1.2× 10−6 0.00090 0.00060 0.0011 0.18 0.75 0.22

Scenario 3 9.1× 10−7 5.7× 10−7 7.9× 10−7 0.00095 0.00076 0.00089 0.24 0.087 0.13

Figure 4.7 shows the scatter plots of the errors for Scenario 1. The difference

between the predicted and actual Smelt parameters is very small for most samples,

but just as for subproblem A1, it appears that the average error increases as the

inertia values increase. This is most likely because of the sparse number of samples

with large MOI, making it difficult for the neural network to learn how best work

with these inputs.
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Figure 4.7. Subproblem A2, scenario 1 results

Figure 4.8 tells a similar story for Scenario 1. The distributions for Smelt pa-

rameters align almost perfectly. The distributions are so similar that it is difficult

to distinguish the predicted from the actual distributions in Figure 4.8. The MOI

are sorted such that Jx ≥ Jy ≥ Jz, which means that the first and third Smelt pa-
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rameters, k1 and k3, are always positive, and the second, k2, is always negative. The

shapes of the distributions in Figure 4.8 are a result of the sorting of MOI and the

Smelt parameter constraint from Equation (3.4).
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Figure 4.8. Subproblem A2, scenario 1 prediction distribution

Figure 4.9 shows that the errors for Scenario 2 are also very small, but not quite

as small as in Scenario 1. The errors also appear to be larger when the inertia values

are smaller.
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Figure 4.9. Subproblem A2, scenario 2 results

While not quite as close as in Scenario 1, Figure 4.10 shows that the distributions

for Scenario 2 are very close, and difficult to distinguish.
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Figure 4.10. Subproblem A2, scenario 2 prediction distribution

The errors for Scenario 3 shown in Figure 4.11 are very similar to the errors in

Scenario 2. Overall, the errors are small, but are larger where the MOI values are

smaller.
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Figure 4.11. Subproblem A2, scenario 3 results

Finally, the histograms in Figure 4.12 for Scenario 3 are very similar to the his-

tograms for Scenario 2 in Figure 4.10. The distributions match very closely, but are

not quite as close as for Scenario 1.
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Figure 4.12. Subproblem A2, scenario 3 prediction distribution

Again, these larger errors for Scenarios 2 and 3 could be attributed to the extra

features (e.g., torques) that the neural network must take into account for Scenarios

2 and 3. These errors may be reduced if the samples are longer, or if they have

shorter timesteps. However, the errors for each of the three scenarios are very small,

indicating that the neural network was able to predict the Smelt parameters whether

or not there is a torque present, and whether or not the network has knowledge of

that torque.

4.1.3 Problem A Discussion.

Scenario 1 of subproblem A1 showed that the neural network is unable to predict

the MOI in torque-free motion. This is expected because the angular velocity depends

only on the relative MOI ratios, and not on the absolute MOI. Scenario 1 serves as

an upper bound on the errors from the neural network. Scenario 2 showed that, for

this scenario, when the neural network has at least partial knowledge of the torque,

it is able to estimate the MOI. This outcome is also expected because if the angular

velocities and torque are known, the only unknowns are the MOI. Scenario 2 serves as

a lower bound on the errors of the neural network. Scenario 3 is interesting because

65



although there is a torque present, the neural network has no knowledge of this torque

and must predict the MOI based solely on the angular velocity. The results clearly

show that the neural network performs better than in torque-free motion. The errors

for Scenario 3 are much closer to the errors of Scenario 2, which suggests that, with

further refinement, the neural network may be able to accurately estimate the MOI

of a spacecraft when there is an unknown external torque applied.

Subproblem A2 showed that for all three Scenarios, the neural network is able to

accurately estimate the Smelt parameters. This result suggests that the presence of

and knowledge of external torques is not required to estimate the Smelt parameters.

Interestingly, it was Scenario 1, with torque-free motion, where the neural network

performed the best. One possible explanation is that in torque-free motion, the Smelt

parameters are what determine the change in angular velocity, so the process of iden-

tifying the Smelt parameters was more straightforward. When there is torque present,

the absolute MOI and external torques determine the change in angular velocity, so

there is more information and mathematical relationships the neural network must

work out.

4.2 Problem B

Problem B consists of three parts. In the first part, B1, the agent begins from an

arbitrary orientation and attempts to achieve an orientation of qd = [0, 0, 0, 1]T . For

part B2, the agent both begins and ends at arbitrary orientations. A different agent

is trained for each part, and the reward history for each agent over the course of its

training history is shown in their corresponding sections. The results of a randomized

scenario for each agent are also shown. The third part, B3, involves using the same

agents as in B1 and B2, so no new training takes place. Each agent is then subjected

to a disturbance halfway through a randomized scenario.
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4.2.1 Subproblem B1: Start from Arbitrary Attitude.

For subproblem B1, the spacecraft begins at a randomized orientation with ran-

domized MOI. The agent must then control the spacecraft to achieve the orientation

of qd = [0, 0, 0, 1]T . The agent trained for 5 million steps in the environment,

resulting in the reward history shown in Figure 4.13.
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Figure 4.13. Subproblem B1 agent reward history

The large dip in the reward history between 2 and 3 million steps could be a result

of the agent choosing a bad policy, but the agent quickly recovered, and the dip did

not affect the overall reward history of the agent. It is also important to note that

this dip happened during training while the neural network choosing the action is

being tuned. When testing the agent on scenarios, no learning or adjusting of the

neural network is taking place. Agent B1’s reward history shows that it learned to

maximize the reward it was given, but the reward history alone does not indicate

whether the policy it learned allowed the agent to reach the desired orientation. To

help determine the usefulness of the learned policy, a random scenario was generated,

with values shown in Equation (4.1).
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q0 = [0.5897, 0.3791, −0.5618, 0.4392]T (4.1a)

qd = [0, 0, 0, 1]T (4.1b)

J =


14.24 0 0

0 11.84 0

0 0 3.76

 (4.1c)

This scenario was simulated for 120 seconds, and the state and control trajectories

of Agent B1 are shown in Figure 4.14.
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Figure 4.14. Subproblem B1 agent performance on random scenario

The agent is able to successfully control the states to the desired values, while

maintaining a relatively smooth control effort. Overall, the agent has no trouble

reaching the desired orientation despite having no knowledge of the MOI or of the

underlying dynamics of the spacecraft. Multiple randomized simulations were run

with Agent B1, and all showed very similar results, indicating that the agent learned
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a useful policy for achieving the quaternion qd = [0, 0, 0, 1]T starting from an

arbitrary orientation.

4.2.2 Subproblem B2: Achieve Arbitrary Attitude.

The reward history for Agent B2, shown in Figure 4.15, looks similar to that of

Agent B1, the main difference being that Agent B2 trained for 20 million steps rather

than 5 million. Another difference is that the initial reward values are lower than

the initial values for Agent B1. The initial gains in episode reward are large in the

beginning of the training, going from −175 to −25 in 2.5 million steps, but it takes

the remainder of the training to approach an episode reward of 0.
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Figure 4.15. Subproblem B2 agent reward history

Just as in subproblem B1, the reward history seems to indicate that the agent

converged on a policy attempting to maximize the reward function. The reward

history of Agent B2 does appear to vary more than that of Agent B1 as the average

episode reward begins to plateau. This is expected because the search space of the

agent is larger, with the agent both starting and ending in arbitrary orientations. To
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gauge whether the reward history corresponds to a useful policy, a random scenario

was simulated with the values shown in Equation (4.2).

q0 = [−0.7503, 0.0502, 0.0100, 0.6591]T (4.2a)

qd = [0.5395, −0.6981, −0.4194, 0.2138]T (4.2b)

J =


30.05 0 0

0 23.19 0

0 0 9.18

 (4.2c)

The scenario was propagated for 600 seconds, and the state and control histories

of Agent B2 are shown in Figure 4.16.
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Figure 4.16. Subproblem B2 agent performance on random scenario

Agent B2 successfully achieves the desired orientation, made apparent by the

error quaternion reaching qe = [0, 0, 0, 1]T . However, the response of the agent

is much slower compared to Agent B1. It seems that Agent B2 makes relatively
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large adjustments towards the beginning, and then slowly converges to the solution

over time. It also appears that the values of the vector part of the error quaternion

converge to a value slightly below zero instead of exactly zero. While Agent B2

achieves close to the desired orientation, it takes longer and is not as accurate as

Agent B1. To be fair, Agent B2 has a much more difficult problem to solve, so the

difference in performance is to be expected.

4.2.3 Subproblem B3: Simulated Collision.

In subproblem B3-1, the first agent, Agent B1, receives a new randomized MOI

and an angular velocity randomly sampled from a normal distribution parameterized

by µ = 0, and σ = 10deg
s

. A random scenario was generated with the values shown

in Equation (4.3), where there is an abrupt change at t = 100 seconds.

q0 = [0.2123, −0.2111, 0.9205, 0.2512]T (4.3a)

qd = [0, 0, 0, 1]T (4.3b)

J0 =


16.61 0 0

0 12.29 0

0 0 7.88

 → J100 =


26.84 0 0

0 18.46 0

0 0 11.53

 kg ·m2 (4.3c)

~ω−
100 =


0.00016

4.24× 10−6

2.32× 10−5

 → ~ω+
100 =


−0.25

0.35

0.088


rad

s
(4.3d)

Figure 4.17 shows the results of this scenario. There is an abrupt change in both

MOI and angular velocity at t = 100 seconds, but there is no abrupt change in

orientation, or in other words, the quaternion is continuous.
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Figure 4.17. Subproblem B3-1 discontinuous change in MOI and angular velocity

Despite the abrupt changes in MOI and angular velocity, Agent B1 successfully

controls the spacecraft to the desired orientation. This result is particularly inter-

esting because the agent has no knowledge of the MOI or dynamics at any point in

the episode, and at no point during training was there an abrupt change in MOI or

angular velocity. During training, the MOI and angular velocity were randomized

at the start of each episode, but never during the episode. Despite never training

with abrupt changes to MOI and angular velocity, the agent is able to achieve the de-

sired orientation both before and after the abrupt change. The ability of the trained

agent to maintain control in situations for which it was never trained indicates that

it learned a generalized policy that applies to more than the scenarios for which it

was trained. This outcome is one of the characteristics of autonomy, and highlights

the potential usefulness of model-free reinforcement learning.

A similarly randomized scenario was generated for Agent B2, but in addition to

the change in MOI and angular velocity, there is also a change in desired quaternion.
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While a collision event would be unlikely to change the desired quaternion, the desired

quaternion was randomized to investigate the robustness of the agent because not only

did Agent B2 never train with abrupt changes in MOI and angular velocity, but it

also never experienced abrupt changes in desired quaternion. The initial and changed

values for the randomized scenario are shown in Equation (4.4).

q0 = [0.1893, −0.3489, 0.7575, 0.5183]T (4.4a)

qd,0 = [0.5790, −0.0728, 0.4157, 0.6976]T (4.4b)

qd,900 = [−0.2653, −0.4877, −0.7121, 0.4298]T (4.4c)

J0 =


76.23 0 0

0 55.21 0

0 0 39.82

 → J900 =


31.95 0 0

0 21.01 0

0 0 11.95

 kg ·m2 (4.4d)

~ω−
900 =


0.0015

−0.00034

0.00043

 → ~ω+
900 =


−0.053

0.029

0.022


rad

s
(4.4e)

This scenario is simulated for 1800 seconds, and the abrupt change occurs at

t = 900 seconds. Just as for subproblem B3-1, the continuity of the attitude quater-

nion is maintained. However, the desired quaternion is discontinuous because it

abruptly changes halfway through the episode, but the attitude quaternion is con-

tinuous throughout the episode. The state and control histories of the randomized

scenario are shown in Figure 4.18.
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Figure 4.18. Subproblem B3-2 discontinuous change in MOI, angular velocity, and
desired attitude

Looking at the first half of the episode, the results for subproblem B3-2 are similar

to the results of subproblem B2. The agent is able to achieve close to the desired

orientation, but the agent does not reach the desired orientation exactly. At t =

900 seconds, the MOI, angular velocity, and desired quaternion change. Similar to

subproblem B3-1, the agent is able to control itself to reach the desired orientation

despite the abrupt changes, and the second half of the episode is very similar to the

first half in terms of error quaternion and control effort.

4.2.4 Problem B Discussion.

Subproblem B1 showed that a reinforcement learning agent can be trained to

control a simulated spacecraft attitude control system and achieve a particular ori-

entation. Subproblem B2 showed that an RL agent can learn to achieve an arbitrary

orientation, but it may require more tuning than in the simpler case of achieving a
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single orientation. Subproblem B3 showed that despite not being trained to handle

abrupt changes in MOI and angular velocity, the trained agents were still able to

reach their desired orientations. Not only did the agents perform well in scenarios

not specifically trained on, as shown in subproblems B1 and B2, but they also per-

formed well on an arguably different type of scenario, as shown in subproblems B3-1

and B3-2.

The main discrepancy between Agent B1 and Agent B2 is the difference in error

quaternion accuracy. The inaccuracy of the error quaternion for Agent B2 indicates

that the quaternion error is not penalized enough. The problem is that the error

quaternion penalty is at odds with the control effort penalty because an increase in

emphasis on one necessarily means a decrease in emphasis for the other. However, it

is possible that there is some combination of penalties that guides the agent to a small

control effort and an accurate error quaternion. There could also be a different reward

function that could resolve these errors. It could also be that the hyperparameters

of the policy network need to be adjusted, such as decreasing the learning rate or

discount factor. Finally, it may help to change the length of each episode, currently

set to 1,500 seconds, or the length of each time step, currently set to 0.2 seconds.
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V. Conclusions and Future Work

5.1 Review

In summary, the goal of this thesis was to investigate the use of machine learning to

help in scenarios where the model of the spacecraft may be unknown. This main idea

was divided into two problems. Problem A investigated the use of recurrent neural

networks to estimate the principal moments of inertia of a spacecraft given angular

velocity data and in one scenario, magnetic torque data. Problem A also involved

estimating the relative MOI ratios, or Smelt parameters given the same information.

The neural networks for Problem A were, as expected, unable to estimate the MOI

when there are no external torques acting on the spacecraft. The neural networks had

much better success when the spacecraft was both experiencing an external torque and

the neural network received the torque data as an input. Finally, when the spacecraft

was experiencing an external torque, but the neural network did not receive the torque

data as an input, the neural network did not perform as well as when the torque was

known.

Whereas Problem A involved estimation, Problem B involved directly controlling

the attitude of the spacecraft. In the first subproblem of Problem A, the reinforcement

learning agent attempts to reach the identity quaternion starting from an arbitrary

orientation. The second subproblem is similar to the first, but instead of attempting

to reach the identity quaternion, the agent could be given any desired orientation.

Finally, the third subproblem involved subjecting the first two agents to discontinuous

changes in MOI and angular velocity, and in the case of the second agent, the desired

orientation was also changed. For all scenarios, the agents were able to control the

spacecraft to the desired orientation. However, the agent attempting to reach an

arbitrary orientation slightly missed the desired orientation.
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5.2 Insights

The results collected in this thesis demonstrate the power of machine learning

techniques when applied to problems in astrodynamics. Using only data and no

model information, a recurrent neural network was able to estimate the MOI and

Smelt parameters of a spacecraft. This finding suggests that neural networks may be

a viable option for estimating spacecraft model parameters on orbit.

The benefits offered by reinforcement learning algorithms are enticing for a number

of reasons. If a reinforcement learning agent can operate without requiring knowledge

of the system it is controlling or of the dynamics governing its motion, then the result-

ing control solution would exhibit some degree of autonomy. The agent would have

the ability to react to situations it never experienced in training. As space systems

become more complex, there will be a need for more autonomy, and reinforcement

learning may be able to solve some of the hurdles associated with autonomous control.

Another potential benefit of training a reinforcement learning agent is that the

agent can be trained in simulation before ever launching to orbit. On the ground,

the agent could train on a wide variety of simulations encompassing different possible

scenarios, configurations, and parameters. If trained correctly, this single agent may

be generalized enough to control any number of different spacecraft configurations

and fulfill a wide variety of mission requirements. It is also possible to allow the

reinforcement learning agent to continue learning while on orbit in order to improve

or refine the algorithm further. Another possibility is that the agent can continue to

train on the ground in simulation after launch and periodically send updates to the

agent on orbit.
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5.3 Future Research

Generalized Body Frame. For both Problems A and B, a next logical step would

be to use a generalized body frame, with both the moments and products of inertia,

instead of only the principal frame. Using a generalized body frame would give a

better indication as to how generalized the neural networks and reinforcement learning

agents are. One possible way to create a generalized random inertia matrix would be

to generate a random principal inertia matrix, and rotate it via a randomly generated

quaternion. It would also be useful to study the sensitivity of the algorithms to

changes in the distribution of the randomized moments of inertia. For example, would

increasing the range of inertia values that could be generated decrease performance?

Noise and Gyro Bias. The data generated for Problems A and B did not include

any noise. Noise could be added to the angular velocity and torque data for Prob-

lem A. For Problem B, the same perfect information could be used to update the

environment, while the state information given to the reinforcement learning agent

could include noise and gyro bias. Before it can be said that these machine learning

techniques can be applied to real-world scenarios, the simulations the techniques are

used in must more closely resemble reality. Adding noise and gyro bias would be the

next logical step in increasing the fidelity of the simulations, which would then more

clearly show the usefulness of these machine learning algorithms.

Compare Results with Baselines. Another important area for future work would

be to directly compare the machine learning techniques to different baselines. For

example, the recurrent neural network estimation of MOI could be compared to a

least-squares or Kalman filter solution using the same scenario. The deep reinforce-

ment learning control algorithm could be compared to an LQR, PID, or MPC solution

for a scenario that includes an abrupt change in MOI and angular velocity. Without
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direct comparisons it is difficult to assess the usefulness of these algorithms in the

real world.

Automate Hyperparameter Tuning. Because both Problems A and B required a

significant amount of tuning, it is fair to say that the final hyperparameters that were

chosen are not at their ideal values. One possible remedy for this issue is to make use

of a software package that automates hyperparameter tuning. The chosen software

package would ideally be compatible with the software developed in this thesis, but

some adjustments will inevitably be required. By automating the process of tuning

hyperparameters, a better performing neural network or RL agent can much more

easily be found.

Real-Time Processing and Close the Loop. For Problem A specifically, instead of

processing data in batches of 30 seconds, it may be more beneficial to process the data

in real time. Not only would this be more realistic, but the change in estimated MOI

values over time may offer some insight into the neural network’s estimation process.

It would also be insightful to include the neural network estimator in a closed-loop

control system to determine whether its predictions enable the controller to function

properly and whether the resulting system would be stable.

Improve Accuracy. While the results for Problem B are very promising, orientation

accuracy for Agent B2 leaves much to be desired. Zeroing out the vector part of

the error quaternion would be the next step towards improving the performance of

Agent B2. The hyperparameter tuning software mentioned earlier may improve the

performance, but if not, the most likely cause of the performance issues is the reward

function. Changing the proportion of control penalty to error quaternion penalty may

simply need to be adjusted. However, fixing this issue may require reformatting the

way the penalties are calculated in the first place. For example, instead of penalizing

the sum of the control at each time step, it may be beneficial to penalize some
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combination of the derivative and integral of control. Also, instead of rewarding the

agent for moving towards the goal and penalizing for moving away, it may be useful

to instead penalize the magnitude of the error quaternion.

Add Keep-Out Zones. In some cases, there are certain attitudes that should be

avoided. For example, it may be prudent to keep a sensitive camera out of direct

sunlight. Incorporating keep-out zones would be another major step forward for

the reinforcement learning agent. The most likely solution would be to include steep

penalties for entering a keep-out zone. However, there are a few elements that require

some forethought. First, the agent must be aware of the current keep-out zone,

so finding a way to parameterize the keep-out zone that is easy for the agent to

understand is essential. Next, if arbitrary keep-out zones are desired, there must be

a way to randomly generate them so the agent can see a wide variety during training.

However, the randomly generated initial and desired orientations must not fall within

the keep-out zones. It may make sense to allow the initial orientation to fall within

the keep-out zone so the agent can learn the orientation is undesirable, but the desired

orientation cannot be in the keep-out zone or the agent may not learn how to deal

with the conflicting priorities. Adding more information for the agent to learn will

mean the agent will take longer to train and may have a more difficult time converging

to a useful policy.

Expand to 6-DOF Environment. One final thought for future work involves ex-

panding the environment from 3-DOF, rotation only, to a 6-DOF environment in-

cluding both rotation and translation. Problem B demonstrated the potential for

reinforcement learning to be useful for attitude control, so it may be useful to de-

termine whether reinforcement learning could also be useful for controlling orbital

motion. Having one agent control both the rotational and translational motion may

prove to be difficult, so one possible alternative would be train one agent to control
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the attitude and a second agent to control the orbit. If using coupled rotational

and translational dynamics, it would be interesting to study the difference between

training the agents together vs training the agents separately. Perhaps if trained in-

dependently, the agents would compete for control, whereas if trained together, the

agents may learn to efficiently work together.

5.4 Conclusion

This thesis developed two proof-of-concept machine learning solutions: one to esti-

mate spacecraft moments of inertia and another to control the attitude of a spacecraft.

A recurrent neural network was used for the first problem and was able to estimate

the moments of inertia for some scenarios, and the neural network was also able to

estimate the relative moment of inertia ratios for all the scenarios tested. A deep

reinforcement learning algorithm successfully controlled the attitude of a spacecraft

to reach the desired orientation. When tested on a few of the scenarios, the reinforce-

ment learning agent showed promising results, in some ways exhibiting behaviors

associated with autonomy. The reinforcement learning agent was able to generalize

its solution to situations in which it was never trained. The agent experienced abrupt

changes, and despite having no knowledge of the spacecraft parameters or attitude

dynamics, the agent still reached the desired orientation. These behaviors suggest

that some level of autonomy has been achieved on the part of the reinforcement

learning agent. Although this research shows promising results, there is still much

work that can be done to both improve the algorithms and demonstrate usability on

real-world systems. The novel approaches to MOI estimation and attitude control

presented in this research give confidence to the notion of using artificial intelligence

to tackle complex problems in astrodynamics.
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