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Abstract

Satellite attitude reorientation has been of significant interest in the field of astro-

nautical engineering, and being able to reorient in a time-optimal manner has been

of exceeding interest since the 1970s. Satellite reorientations are used for a variety

of mission sets, including on-orbit servicing and sensor pointing. Ensuring a mission

set can be conducted within a certain amount of time raises the question of whether

or not a certain maneuver can be completed with a bounded control. This thesis an-

swers that question by using the concept of reachability to provide reachable sets for

different spacecraft scenarios. The reachable sets generated provide a range of initial

states that guarantee a satellite will reach a desired end orientation given a certain

time constraint. Being able to validate that a certain end state can be reached before

a maneuver is attempted can save both time and energy expended by a spacecraft.

Prior research providing a formal approach of applying reachability to spacecraft at-

titude maneuvers has not been found. The analysis of the reachable sets yields the

insight that using Modified Rodriguez Parameters (MRPs) to generate reachable sets

is more time efficient than other attitude parameterizations. It was also found that

the linearized MRP dynamics provide a valid time optimal solution for the nonlinear

dynamics of medium angle attitude maneuvers. This linearized version of the dynam-

ics was used to formulate an optimal control policy for spacecraft reorientations with

bounded controls.
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APPLIED REACHABILITY ANALYSIS FOR TIME-OPTIMAL SPACECRAFT

ATTITUDE REORIENTATIONS

I. Introduction

Satellite attitude reorientation in a time-optimal manner is a problem of significant

interest in the field of astronautical engineering. There are several applications for

satellite reorientation, including sensor pointing, satellite servicing, and spacecraft or

unknown object inspection. Being able to complete reorientations in a timely manner

is essential to being able to conduct mission requirements. Being able to complete

the mission must first start with the question: Is it even possible to complete a

reorientation given certain physical constraints in an allowable time period? The

concept of reachability answers this question, providing a range of initial states that

guarantee a satellite reach a desired end orientation given a certain control and time

constraint. Being able to validate that a certain end state can be reached before a

maneuver is attempted can save both time and energy expended by a spacecraft. By

not attempting an infeasible maneuver, the spacecraft can save its fuel and dedicate

that time towards completing feasible tasks.

1.1 Motivation and Background

Time optimal control of dynamic systems has different applications across many

research areas. The specific problem of spacecraft reorientation maneuvers, or atti-

tude pointing, has been extensively studied by many researchers, with the objective

of minimizing the maneuver time, amount of control required, or the vibration en-

countered when applying the control [1, 2, 3, 4, 5]. Many military and civilian space
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missions require efficient and accurate attitude reorientation capabilities. Since satel-

lites often have significant demand for collecting data, slewing based on that data,

and disseminating data, the timeline to slew can heavily constrain the mission. This

is especially true for satellites that are in lower Earth orbits, traveling at faster speeds,

that do not have the luxury of being able to monitor the same section of Earth like

satellites in geostationary orbits [3]. This highlights the necessity for spacecraft to

achieve attitude changes in a time-optimal manner.

Another recent area of interest requiring time sensitive attitude changes is the

field of satellite servicing. On February 25, 2020, Northrup Grumman successfully

completed the first commercial spacecraft servicing mission with Mission Extension

Vehicle 1 [6]. MEV-1 is intended to provide support to a telecommunication’s satellite

for five years, and then can be used to move on to other customer’s satellites. This

event ushers in an era where spacecraft servicing will become more prevalent, being

able to refuel and repair existing satellites. Robotic servicers can also be used to

conduct inspections of other spacecraft or unknown objects. Robotic inspection is a

capability that enables a large number of proximity operations, including spacecraft

supply and servicing [7]. In order to conduct complete object inspections, time op-

timal attitude reorientation becomes essential, especially if the inspection period is

short due to the relative velocity of the inspecting spacecraft and object of interest.

Completing spacecraft attitude reorientations in a safe manner is paramount due

to limited on orbit resources and high launch costs. Efficiency in conducting reori-

entations is also critical due to the limited amount of energy able to be stored and

utilized by a given spacecraft for completing reorientations. The concept of reachabil-

ity helps make this task of maneuvering safely and efficiently a reality. Reachability,

which is related to controllability, has played a central role in the history of modern

control theory [8]. The general concept of reachability is fairly simple, answering
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the question: Can a certain final desired state be reached from a given initial state?

Figure 1 helps to visualize this concept. Part (a) of Figure 1 visualizes the total ad-

Figure 1. Illustration of Forward and Backward Reachable Sets

missible final states given a single starting initial condition, which is described as the

concept of “forward” reachability. Part (b) of Figure 1 visualizes the total admissible

initial states given a single desired final state, which is described as the concept of

“backward” reachability. The research conducted in this thesis investigates backward

reachability for spacecraft reorientation maneuvers. The goal is to find an initial set

of conditions that, given certain constraints and an admissible amount of control, will

be able to reach a desired end state.

1.2 Problem Statement

The focus of this research is to compute and visualize reachable sets for different

spacecraft attitude reorientations. While the concept of reachability is fairly sim-

ple, the computation and visualization of reachable sets is fairly complex. Reachable

sets have been exactly computed using Hamilton-Jacobi formulations, but are com-
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putationally expensive, and problems with approximately 4 or greater dimensions

become intractable [9]. However, geometric approximations of reachable sets provide

estimates of reachable sets in significantly reduced computational time.

Due to the relationship between reachability and time-optimal control [10], the

reachable sets will be generated from the solutions of time-optimal reorientation prob-

lems. This research focuses on utilizing GPOPS-II, an optimization problem solver

used for a multitude of time-optimal control problems. The solutions to these op-

timization problems are then used to visually depict the reachable sets in the form

of time-correlated contours related to the starting orientation of a spacecraft. Once

these reachable sets are generated and depicted in a visually beneficial manner, the

problem of formulating an optimal control policy will be investigated.

1.3 Research Questions

In order to provide answers to the problem, the research is divided into three

different questions defined below that will be answered in this thesis:

1. Given a desired end state and bounded control input, what are the possible

initial conditions (reachable sets) for successfully completing a reorientation

maneuver in a given amount of time?

2. How do the linearized equations of rotational motion match the nonlinear dy-

namics?

3. Assuming the end state is reachable, what is the optimal control required to

achieve the desired end state?

The first research question will utilize GPOPS-II to provide reachable sets with both

quaternion and MRP nonlinear and linearized dynamics of the spacecraft reorienta-

tion as the basis of the solver. The second research question uses analysis of the
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reachable sets to determine the validity of the linearized dynamics compared to the

nonlinear dynamics. The final research question uses the knowledge of the linearized

dynamics to provide the basis of the derivation of an optimal control policy.

1.4 Organization of the Thesis

Chapter II includes relevant previous research in the areas of time-optimal reori-

entation, reachability analysis, and previous work in applying reachability analysis to

spacecraft maneuvering. Methods of generating reachable sets specifically applied to

attitude reorientation, as well as the optimal control problem formulation for a time-

optimal reorientation are presented in Chapter III. The results and analysis of the

reachable sets generated, as well as the development of an optimal control policy, are

detailed in Chapter IV. Finally, Chapter V summarizes the findings of the research,

and includes recommendations for further work.
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II. Background

2.1 Introduction

The work presented in this thesis is the generation of reachable sets for a spacecraft

attitude reorientation and use of these reachable sets to generate an optimal control

for the reorientation. This chapter surveys the relevant literature in the areas re-

quired to conduct this research. The review begins with the fundamentals of attitude

parameterization as well as the kinematics and dynamics involved with spacecraft

reorientation. An overview of spacecraft optimal reorientation is presented to provide

a basis for finding an optimal control for a desired attitude slewing maneuver. Next,

the theory of reachability and its application to spacecraft maneuvering is discussed

to provide the foundation of the motivation behind this research.

2.2 Fundamentals of Spacecraft Attitude Kinematics and Dynamics

2.2.1 Attitude Parameters and Kinematics

Attitude parameters are a set of values that describe the orientation of a rigid

body relative to a certain reference frame. There are an infinite number of ways to

represent the attitude of a rigid body, similarly to how there is an infinite number

of ways to describe the translational coordinates of a body (ex. Cartesian, polar,

etc.). However, the translational difference between two points can approach infinity,

whereas the difference between two different attitudes is at most 360◦ [4]. Choos-

ing how to express a reorientation is essential in avoiding complicated mathematical

formulations or singularities in those formulations. To help determine which set of

parameters should be chosen, the following list containing rules about rigid body

attitude coordinates is provided from [4].
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1. A minimum of three coordinates is required to describe the relative angular

displacement between two reference frames F1 and F2.

2. Any minimal set of three attitude coordinates will contain at least one geo-

metrical orientation where the coordinates are singular, namely at least two

coordinates are undefined or not unique.

3. At or near such a geometric singularity, the corresponding kinematic differential

equations are also singular.

4. The geometric singularities and associated numerical difficulties can be avoided

altogether through a regularization. Redundant sets of four or more coordinates

exist which are universally determined and contain no geometric singularities.

One of the most fundamental formulations of attitude parameters is the Principal

Rotation Vector, commonly referred to as Euler’s principal rotation. This stems from

Euler’s Eigenaxis Rotation Theorem, which states the general rotational displacement

of a rigid body with a fixed point is a rotation about an axis (ê) through that point and

particular angle (φ), which makes it one of the simplest ways to describe a rotation.

This theorem is depicted in Figure 2.

Euler’s eigenaxis and angle is a non-minimum representation of a reorientation due

to having four parameters (e1, e2, e3, φ). The disadvantages of using Euler’s Principal

Rotation are that the parameters are not independent since the vector components

of ê must abide by the unit norm constraint, and each representation is a non-unique

representation. One representation (ê, φ) can be represented either with (−ê,−φ) or

with the original ê and φ± 2kπ for all k = 0, 1, 2, ... [4].

One of the most common ways to represent a reorientation stems from the Euler

axis and angle, and are referred to as Euler parameters, or commonly called quater-

nions. Quaternions provide a redundant, non-singular attitude parameterization, and
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Figure 2. Illustration of Euler’s Principal Rotation Theorem

are well suited for large rotations. Another representation rising in popular use are

the Modified Rodriguez Parameters, which are a minimum representation set, and are

well suited for attitude reorientations less than 360◦ [4]. Quaternions and Modified

Rodriguez Parameters are the representations used in this thesis, the formulations of

which are discussed in more detail below.

Quaternions are used for their computational efficiency and freedom from singu-

larities. MRPs are used because of their ability to linearize well up to approximately

60 degrees of rotation, because they are a minimum representation of attitude, and

because they have a singularity at 2π radians as opposed to other representations

such as Euler angles or the classical Rodrigues parameters which have singularities at

smaller angles of rotation. The spacecraft will only be subjected to attitude reorien-

tations at or below π radians for all of the simulations which avoids this singularity.

Quaternions are composed of a vector and scalar part. This thesis will represent

quaternions as q = [q1 q2 q3 q4]
T = [q̄ q4]

T where q̄ is the vector part and q4 is the

scalar part. Each element is defined in terms of the Euler axis and angle:
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q1 = e1 sin
φ

2
(1)

q2 = e2 sin
φ

2
(2)

q3 = e3 sin
φ

2
(3)

q4 = cos
φ

2
(4)

where ê is the Euler axis of rotation, and φ is the rotation angle. Given a certain

attitude, there are actually two sets of quaternions that describe the same attitude,

q and − q. This is due to the non-uniqueness of the principal rotation elements,

where switching between (ê, φ) and (−ê,−φ) will yield the same quaternion [4]. This

dual representation can be avoided by ensuring the q4 parameter is non-negative, and

therefore the shortest reorientation is described by the chosen quaternion.

Quaternions avoid the presence of singularities by using a fourth parameter.

The addition of a parameter, however, makes the quaternion representation a non-

minimum representation. This requires the unit norm constraint depicted in Equation

5: √
q21 + q22 + q23 + q24 = 1 (5)

The equation describing the quaternion kinematics of a rotating body reference frame,

B, with respect to an inertial reference frame, N , is given by [4]:
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q̇ =
1

2
QωBN (6)

where

Q =



q4 −q3 q2 q1

q3 q4 −q1 q2

−q2 q1 q4 q3

−q1 −q2 −q3 q4


(7)

and ωBN is the angular velocity vector of the B reference frame with respect to the

N reference frame.

In order to have a minimum representation of the attitude, MRPs are used as an

alternative to quaternions. MRPs are a stereographic projection of the set of unit

quaternions (a four-dimensional unit sphere) onto a three-dimensional hyperplane

[5]. The MRP vector in this thesis is represented as σ = [σ1 σ2 σ3]
T , where the three

parameters are defined by σi = qi
1+q4

for i = 1, 2, 3. MRPs can also be defined in terms

of the Euler axis and angle:

σ = ê tan
φ

4
(8)

It is apparent in Equation 8 that a singularity occurs at φ = ±2π.

Similar to quaternions, two different MRPs can correspond to the same reorienta-

tion. The second MRP is referred to as the “shadow” MRP, σS, and corresponds to

the orientation given by −q. This “shadow” MRP is a distinct set of MRPs, separate

from the traditional MRP set (σ 6= σS). The existence of the shadow MRP allows

for a switch to occur between σ and σS at φ = π (i.e. orientations where φ ≤ π

are represented by σ, and orientations where φ ≥ π are represented by σS). One

can arbitrarily switch between the original and shadow set of MRPs on the switching

surface σTσ = 1, which provides a non-singular (at 180◦), bounded, minimum atti-

tude description [4]. The equation describing the MRP kinematics of a rotating body
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reference frame, B, with respect to an inertial frame, N , is given [4]:

σ̇ =
1

4
BωBN (9)

where

B =


1− σ2 + 2σ2

1 2(σ1σ2 − σ3) 2(σ1σ3 + σ2)

2(σ2σ1 + σ3) 1− σ2 + 2σ2
2 2(σ2σ3 − σ1)

2(σ3σ1 − σ3) 2(σ3σ2 + σ1) 1− σ2 + 2σ2
3

 (10)

and σ2 is σTσ.

2.2.2 Rigid Body Dynamics

The previous section described the rotational kinematic equations for a rigid space-

craft, defining how the attitude will evolve without considering the cause of the mo-

tion. Of course, most spacecraft need some sort of outside force in the form of an

active control to be able to change the attitude of a spacecraft in order to complete

its mission. There are several different methods of actively maneuvering a space-

craft, including: thrusters, momentum-exchange devices (i.e. momentum wheels,

reaction wheels, control moment gyros, etc.), or magnetorquers. This research re-

mains actuator-agnostic and assumes that torques are available along the primary

axes of the spacecraft.

The fundamental equation of dynamics is the total torque (τ acting on a body

about the center of mass) is related to the time derivative of the total angular mo-

mentum Ḣ about the center of mass, i.e. Ḣ = τ . If there are no torques applied

to the body, then angular momentum is conserved. Taking the time derivative of the

total angular momentum with respect to an inertial reference frame, N , and applying

the transport theorem to resolve the equations in the body reference frame, B, results
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in:

Ḣ =
Nd

dt
H =

Bd

dt
H + ωBN ×H (11)

Wie [11] derives the expression for the total angular momentum using the inertia

matrix of a rigid body, J , resolved in the body reference frame, to be H = JωBN .

Plugging this expression into Equation 11, assuming rigid body motion, and recog-

nizing that
Bd
dt
J = 0 and

Bd
dt
ωBN =

Nd
dt
ωBN = ω̇BN , we get the equation for the

rotational dynamics for a rigid body resolved in the B reference frame:

Jω̇BN +
[
ω×
BN

]
(JωBN) = τ (12)

where,

[
ω×
BN

]
=


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (13)

This fundamental equation of rotational dynamics paired with the kinematic expres-

sions for the quaternion and MRP equations of motion provide the basis for the

dynamics used in this thesis.

2.3 Optimal Reorientation

Large-angle attitude maneuvers of spacecraft have been of great interest since the

1960’s, with the testing of attitude determination and control [12]. Research in large-

angle attitude maneuvers then gained significant traction in the area of executing

such maneuvers optimally [13, 14, 15]. Rapid retargeting may be a part of a given

spacecraft’s mission set, or it may be needed to correct or calibrate the guidance and

navigation sensors of the spacecraft.

As discussed previously, one of the simplest ways to reorient a spacecraft is via a
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single rotation about the required Euler axis as laid out in [16] according to Euler’s

Eigenaxis Rotation Theorem. In fact, the Apollo Command and Service Modules

were both reoriented with single rotations about an Euler axis [17]. However, such

maneuvers, especially for non-spherically symmetric spacecraft, are not necessarily

control or time optimal. Dixon et al. [18] showed that single axis maneuvers for

an axisymmetric spacecraft are not fuel optimal. Bilimoria and Wie show that for

non-spherically symmetric spacecraft, and for spherically symmetric spacecraft with

independent control constraints, the eigenaxis maneuver is not time-optimal [1].

Junkins et al. [14] were the first to formally present a non-singular formulation of

the necessary conditions for optimal large-angle rotational maneuvers for an asym-

metric, generally tumbling spacecraft. Junkins and Turner went on to write a book

on Optimal Spacecraft Rotational Maneuvers, wherein they present the elements of

optimal control theory and their relation to spacecraft reorientation maneuvers, as

well as the formulation of an optimal control policy for large angle maneuvers of a

single rigid body while minimizing the total control effort [19]. Several authors have

further delved into the research of providing optimal control policies for spacecraft,

either optimizing the control effort or time to complete a reorientation. However, to

the author’s knowledge, no time-optimal control policy has been presented which is

applicable to all symmetries of a rigid body spacecraft. This thesis seeks to fill this

gap using the knowledge of the reachable sets, maneuvering trajectories, and rela-

tionship between the nonlinear and linearized rotational dynamics explored in the

author’s research.

In order to solve for the optimal control of a reorientation, the optimal control

problem must first be formulated. The general optimal control problem formulation
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without path constraints is given as:

J = φ (x(tf ), tf ) +

∫ tf

t0

L (x(t),u(t), t) dt (14)

where J is the cost functional in the Bolza form, and is constrained by the dynamics:

ẋ(t) = f (x(t),u(t), t) (15)

with path constraints:

k (x(t),u(t), t) ≤ 0 (16)

where [t0, tf ] is the time interval of interest, x : [to, tf ] ⇒ Rnx is the state vector,

u : [to, tf ]⇒ Rnu is the control vector, J is the cost functional, φ is the terminal cost,

L is the Lagrange function (or running cost), and k is the general expression for an

algebraically constrained parameter.

The two major areas of optimal control for reorientations are in regards to mini-

mizing the control effort spent on completing the maneuver, or minimizing the time

taken to complete the maneuver. The latter of the two is the focus for this research,

thereby making time the performance measure the optimal control problem seeks to

minimize. This makes the formulation for the simple cost functional:

J =

∫ tf

t0

1dt (17)

where there is no terminal cost included in the optimization, and the Lagrange func-

tion, L, is equal to 1. However, the dynamics of the reorientation of a rigid body are

nonlinear, making the problem difficult to solve, and formulation of an optimal con-

trol policy even more difficult. There are various ways to solve nonlinear optimization

problems. In particular, “Direct Methods” approximate the optimal control problem
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through some form of discretization, and transcribe it to a nonlinear programming

(NLP) problem [20]. One such method is called direct collocation, which is a method

that parameterizes both the states and the control, allowing for flexibility with con-

straints on the control path. Direct collocation can yield a sparse nonlinear program,

which is ideal, because several solvers already exist for sparse NLPs.

One prevalent optimization tool available is GPOPS-II: a commercially available,

variable-order Gaussian quadrature collocation software [21]. Collocation points are

placed as the roots to orthogonal Legendre polynomials, and Lagrange interpolating

polynomials are used to approximate the state and control trajectories where Gaussian

quadrature is used for numerical integration [21]. SNOPT [22], which stands for

sparse nonlinear optimizer and is used for large scale nonlinear optimization problems,

was used for all scenarios. This tool is ideal for solving the reorientation problems

needed in this research quickly, because the dynamics are nonlinear, and there are not

constraints besides the dynamics on the path of the reorientation, which slow down

the computation of the optimal solution.

However, as will be shown in Chapter IV, there is an opportunity to use the

linearized rotational dynamics for derivation of an optimal control policy. Since the

dynamics are linear, it is not necessary to use direct methods to help derive this policy.

Instead, the traditional, indirect methods for solving an optimal control problem can

be used. Indirect methods develop first-order necessary conditions for an optimal

solution through the calculus of variations laid out by Kirk in [20]. In his book, Kirk

defines the necessary conditions of optimality as shown in Equations 18-20:
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ẋ(t) =
∂H
∂λ

(18)

λ̇(t) = −∂H
∂x

(19)

0 =
∂H
∂u

(20)

where the Hamiltonian (H) is defined by H = L+ λTf , the states are denoted by x,

the costates are denoted with λ (which deviates from Kirk’s notation of using p for

the costates), and the control is denoted with u. The problem also has the boundary

conditions:

[
∂φ

∂x
(x∗(tf ), tf )− λ∗(tf )

]T
δxf +[

H(x∗(tf ),u
∗(tf ),λ

∗(tf ), tf ) +
∂φ

∂t
(x∗(tf ), tf )

]
δtf = 0

(21)

These necessary conditions along with the boundary conditions of the optimal con-

trol problem provide the basis of the formulation of the optimal control problem in

Chapter IV.

2.4 Reachability Theory and Application

2.4.1 Reachability Theory

While there is extensive research in controlling spacecraft attitude via various dif-

ferent methods, almost no work has been done on characterizing the initial conditions

from which attitude maneuvers can be accomplished safely. Spacecraft are typically

very complex systems, which increases the need to determine whether they will per-

form according to expectation and specification. As a result, verification becomes

essential in developing spacecraft and determining the spacecraft’s maneuverability.

Since all possible system behaviors must be accounted for, most simulation methods
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are insufficient due to the typical drawback of requiring significant computational re-

sources of simulating the entire space of interest [23]. This leads to the requirement of

a more formal verification method [24, 25]. Reachability provides a formal verification

method for guaranteeing performance and safety for a given maneuver.

Reachability has its roots in optimal control theory, and has been studied ex-

tensively for discrete time systems, motivated by the importance for control in the

presence of constraints [26, 27]. In reachability analyses, a reach-avoid set is cal-

culated. This reach-avoid set contains the admissible states from which a system

can reach a final end state, while adhering to constraints on the system. Outside of

these constraints is the “inadmissible” or “unsafe” state space region. Traditionally,

reachability analysis involves solving a Hamilton-Jacobi partial differential equation.

Hamilton-Jacobi reachability is applicable to general non-linear systems, it easily han-

dles control and disturbance variables, and is able to represent sets of arbitrary shapes

[24]. However, solving Hamilton-Jacobi partial differential equations is very complex

computationally, and limited to low-dimensional systems [9]. To avoid this compu-

tational complexity, a second major category of methods has been implemented in

research to generate reachable sets: geometric approximations.

Geometric approximation involves approximating a convex set with a geometric

shape, typically depicted in the form of ellipsoids, polytopes or zonotopes, and then

propagating this set according to the systems dynamics [28]. The use of ellipsoids

has been extensively used in the approximation of reachable sets, and is a desirable

option since it is requires less computational complexity compared to generating sets

comprised of polytopes or zonotopes (centrally symmetric polytopes) [29]. While

geometric approximations may not be able to visually produce the full reachable set,

specifically for systems with more than 2 dimensions, taking slices of these sets are

still helpful in visualizing the reachable set of a system.
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The author takes a slightly different approach to generating reachable sets than the

previously discussed methods. Instead of computing the complete reachable set via

solving the Hamilton-Jacobi equations, or by approximating the sets geometrically, a

hybrid approach is introduced. This approach uses a method utilizing the relationship

between optimal control and reachability.

Reachability analysis shows if a given desired state, xf , is reachable from an

initial state, x0, then at least one admissible trajectory exists [10]. It is very likely for

reorientations that more than one admissible trajectory exists. If multiple admissible

trajectories do exist, it follows that one of these trajectories minimizes a certain

performance index. The performance index of interest in this research is time. This

leads to the requirement of the existence of a time-optimal trajectory, highlighting

the relationship between optimal control and reachability. The control solution that

results in this time-optimal trajectory is defined as the time-optimal control solution.

GPOPS-II is used to solve these time-optimal trajectories and control solutions.

The reachability analysis conducted herein utilizes these time-optimal control so-

lutions applied to a variety of initial conditions. Each initial condition is then cor-

related to the time generated from its optimal reorientation solution. This creates

a grid of solutions from which all initial conditions can be interpolated to generate

time-optimal contours. These time-optimal contours depict the reachable sets of atti-

tude reorientations. The goal behind generating these time optimal reachable sets is

to produce a visual product that operators can use. For a given spacecraft symmetry,

desired angle of rotation, and limited control, an operator could tell how long it would

take to complete a reorientation, which would inform the decision of whether or not

to even attempt it. In future autonomous applications, the spacecraft itself could

either store the time to complete a reorientation on-board, or quickly compute the

feasibility of a reorientation, and decide whether or not to complete the maneuver.
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2.4.2 Reachability Application to Spacecraft Maneuvering

There have been several applications of reachability to spacecraft mission sets.

Holzinger and Scheeres [30] use reachability to validate the safety of general spacecraft

proximity operations in Low Earth Orbit (LEO) and Geostationary Orbit (GEO).

Lesser et al. [31] examine the calculation of stochastic reachable sets, and apply that

to the specific problem of rendezvous and docking. Lee and Hwang [32] compute ellip-

soidal reachable set approximations for spacecraft formations to validate the safety of

formation flying. Chen et al. [33] apply the concept of forward-reachability to solving

for the reachable domain of a spacecraft with a single impulse. Hess and Zagaris [34]

used ellipsoidal approximations of reachable sets applied to spacecraft single impulse

maneuvers. Chernick et al. [35] use reachable set theory to minimize the delta-v cost

of impulsive control maneuvers for use in spacecraft relative orbit reconfiguration.

Zagaris and Romano [28, 36] generated polytopic sets for a spacecraft docking with a

rotating body in close proximity, and then extended this to computing the reachable

sets for a rendezvous with a tumbling object. Bayadi et al. [37] explore calculating

reachable sets of a spacecraft with two rotors by looking at the possible angular ve-

locities that can be achieved. However, as mentioned in Section 2.3.1, no work to

the author’s knowledge has been done on formally characterizing the time-optimal

reachable sets for attitude reorientations of a satellite.

2.4.3 Summary

This chapter discussed the relevant literature on the topics of spacecraft reorien-

tation, optimization, and reachability. The foundational mathematics were provided

that will be used to generate the reachable sets for spacecraft attitude reorienta-

tions, as well as the framework for the development of an optimal control policy for

reorientation maneuvers.
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III. Methodology

This chapter outlines the methodology used to formulate reachable sets for a

spacecraft reorientation. The rotational motion of the spacecraft is described both

in terms of quaternions and modified Rodrigues parameters (MRPs). To set up the

time-optimal reorientation problem that is the basis for constructing the reachable

sets, the cost functional and constraints are derived from the dynamics the spacecraft

is subject to. Finally, the starting conditions for the formulation of an optimal control

policy from the linearized MRP dynamics is developed.

3.1 Rotational Dynamics

3.1.1 Spacecraft Model

Three different symmetries of rigid body spacecraft are examined to study the

differences in reachable sets: spherically symmetric, axially symmetric, and asym-

metric/triaxial. A spherically symmetric body has the same symmetry about all

principal axes, i.e. Jxx = Jyy = Jzz. An axially symmetric body has the same sym-

metry about one of the axes, i.e. Jxx = Jyy, Jxx = Jzz, or Jyy = Jzz. Asymmetric, or

triaxial, bodies exhibit no symmetry, i.e. Jxx 6= Jyy 6= Jzz. The inertia matrix J , and

its inverse J−1, in a principal body frame are defined as:

J =


Jxx 0 0

0 Jyy 0

0 0 Jzz

 , J−1 =


1
Jxx

0 0

0 1
Jyy

0

0 0 1
Jzz

 (22)

Each model has the same mass, 200kg, and volume, 9m3, to keep the densities

the same. The mass is assumed to be equally distributed throughout the body. The

symmetric body is a cube with a length, width, and height of 3 meters. The axially
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symmetric body is a parallelepiped with a length of 6.75 meters, and width and height

of 2 meters. The asymmetric body has a length of 4.5 meters, width of 3 meters, and

height of 2 meters. The boresight of the spacecraft is arbitrarily defined to be along

the x-axis of the body, or down the middle of the longest side of the spacecraft. The

models of each of the spacecraft are depicted in Figure 3.

Figure 3. Models: Symmetric (left), Axially Symmetric (center), Asymmetric (right)

3.1.2 Dynamics Formulation

The two parameterizations used to compute the reachable sets are taken from

the quaternion and MRP kinematics (Eq. 6, 9) in conjunction with the standard

rotational dynamics used for a rigid body (Eq. 12). MRPs linearize fairly well below

90 degrees of rotation as discussed in [38]. In order to linearize the MRP dynamics

listed in Equations 9 and 10, the region near an equilibrium point is investigated.

The quaternion dynamics are also linearized for comparison according to the same

process. The dynamics given in Equations 6, 7, 9 and 10 are in the form:

ẋ = f(x) (23)

where x = [ω σ].

Suppose that x∗ is an equilibrium point such that f(x∗) = 0. Expanding the right
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side of Equation 23 via a Taylor series expansion about x∗ yields:

ẋ = f(x∗) +
∂f

∂x

∣∣∣∣
x∗

(x− x∗) + ... (24)

=
∂f

∂x

∣∣∣∣
x∗

(x− x∗) + ... (25)

The partial derivative in Equation 25 is in this case the Jacobian matrix. To linearize

the dynamics, the Jacobian of the dynamics is determined, and evaluated at an equi-

librium point. If the state vector x is defined as x1, x2, ..., xn, and the vector f is

defined as the derivatives f1, f2, ..., fn, the Jacobian matrix of a system of equations

is defined as:

Jac =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


(26)

When applied to the MRP kinematics and dynamics, the Jacobian becomes:

JacMRP =



∂ω̇1

∂ω1

∂ω̇1

∂ω2

∂ω̇1

∂ω3

∂ω̇1

∂σ1

∂ω̇1

∂σ2

∂ω̇1

∂σ3

∂ω̇2

∂ω1

∂ω̇2

∂ω2

∂ω̇2

∂ω3

∂ω̇2

∂σ1

∂ω̇2

∂σ2

∂ω̇2

∂σ3

∂ω̇3

∂ω1

∂ω̇3

∂ω2

∂ω̇3

∂ω3

∂ω̇3

∂σ1

∂ω̇3

∂σ2

∂ω̇3

∂σ3

∂σ̇1
∂ω1

∂σ̇1
∂ω2

∂σ̇1
∂ω3

∂σ̇1
∂σ1

∂σ̇1
∂σ2

∂σ̇1
∂σ3

∂σ̇2
∂ω1

∂σ̇2
∂ω2

∂σ̇2
∂ω3

∂σ̇2
∂σ1

∂σ̇2
∂σ2

∂σ̇2
∂σ3

∂σ̇3
∂ω1

∂σ̇3
∂ω2

∂σ̇3
∂ω3

∂σ̇3
∂σ1

∂σ̇3
∂σ2

∂σ̇3
∂σ3


(27)

The quaternion version, which follows the same method but adds an additional state,

is not be displayed for brevity. When evaluated at an equilibrium point, x∗, chosen
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to be,

x∗ =



ω∗
1

ω∗
2

ω∗
3

q∗1

q∗2

q∗3


or



ω∗
1

ω∗
2

ω∗
3

σ∗
1

σ∗
2

σ∗
3


=



0

0

0

0

0

0


(28)

where q4 can be computed from q1, q2, and q3 using the fact that q4 =
√

1− q21 − q22 − q23

[39]. This results in:

Jac∗quat =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
2

0 0 0 0 0

0 1
2

0 0 0 0

0 0 1
2

0 0 0


or, Jac∗MRP =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
4

0 0 0 0 0

0 1
4

0 0 0 0

0 0 1
4

0 0 0


(29)

Where Jac∗ signifies the Jacobian evaluated at an equilibrium point, x∗. When there

is no input to the system, this yields:

ω̇ = zeros(1, 3) (30)

q̇ =
1

2
I3ω (31)

σ̇ =
1

4
I3ω (32)

Where I3 is defined as a 3x3 identity matrix. The result of the linearized quaternion

dynamics are validated in [39]. When there is input to the system, as will be the case
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for the maneuvers conducted, the angular velocity dynamics become:

ω̇ = J−1u (33)

These equations are used to generate reachable sets for comparisons to the reachable

sets generated with the nonlinear dynamics. The insights provided by this comparison

are discussed in Chapter IV.

3.2 Optimal Control and Reachable Sets

3.2.1 Optimal Control Formulation

An optimal control problem is formulated for completing the minimum time reori-

entation. The formulation for this optimal control problem is given for the nonlinear

and linear dynamics:

min
tf

J =

∫ tf

t0

dt (34)

s.t. ω̇BN = J−1
[
−[ω×

BN ](JωBN) + τ
]

(35)

q̇ =
1

2
QωBN , or σ̇ =

1

4
BωBN (36)

or ω̇BN = J−1u (37)

q̇ =
1

2
I3ωBN , or σ̇ =

1

4
I3ωBN (38)

and qTq = 1 (39)

ui ≤ 1, i = 1, 2, 3 (40)

or ||u|| ≤ 1 (41)

where tf is the final time, and the control has either a cubic (ui ≤ 1, i = 1, 2, 3) or

spherical (||u|| ≤ 1) constraint.
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3.2.2 Optimal Control Policy Development

Because the linearized dynamics are much simpler than the nonlinear dynamics,

it is much easier to make a control law that is applicable universally for spherically

symmetric, axisymmetric, and asymmetric rigid body spacecraft. Consider a series of

rest-to-rest reorientations, where the initial and final angular velocities are both equal

to zero in the inertial frame, and the final orientation of the spacecraft’s boresight is

aligned with the inertial Îx axis as depicted in Figure 4.

(a) Starting Attitude (b) Final Attitude

Figure 4. Example Attitude Reorientation of Spacecraft: Asymmetric Body

The boundary conditions for this two-point boundary value problem are given:

ω1(t0) = ω2(t0) = ω3(t0) = 0 (42)

σ(t0) = σ0 (43)

ω1(tf ) = ω2(tf ) = ω3(tf ) = 0 (44)

σ1(tf ) = σ2(tf ) = σ3(tf ) = 0 (45)

where it assumed the initial time is 0 and the final time is tf , and the MRP at
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t0 (σ0) defines the initial orientation. Using MRPs instead of quaternions to solve

the two-point boundary problem has the advantage of reducing the total number of

states from 7 to 6, and therefore reducing the dimension of the problem including the

costates from 14 to 12.

The initial MRPs are chosen from a set of points such that the angle between the

initial attitude and final attitude is less than or equal to 90 degrees. The starting

orientations are depicted as a section of the unit sphere in Figure 5, where x, y, and

z are aligned with the inertial frame Îx, Îy, and Îz. The goal of each reorientation

Figure 5. Depiction of Starting Conditions

maneuver, and the goal of the optimal control policy, is to start with the boresight

pointed to a blue dot and perform a maneuver to point the boresight to the black dot

depicted in Figure 5.
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3.2.3 Optimal Control Solution

As seen in the cost functional J formulated in Equation 34, this optimal control

problem seeks to complete the objective in the minimum amount of time from a given

initial condition. The constraints that this problem is subject to are the dynamics

of the system described in Section 2.2. The reorientation optimization problems are

then solved using a GPOPS-II.

GPOPS-II requires an initial guess for the starting and final states, control, and

time to complete the reorientation. Two different methods are used to provide an

initial guess to GPOPS-II. The first method involved an iterative approach which is

used to complete batches of optimization problems. Each batch has a certain set of

dynamics (ex. nonlinear MRP, etc.). The first iteration uses an “educated guess” of

the states and control at the initial and final times supplied to GPOPS-II, but every

subsequent iteration uses the previous problem’s solution as the initial guess. Since

the previous solution is based off a very similar starting orientation to the current

optimization problem, the guess provided to GPOPS-II is fairly accurate to the real

solution. The second method is to generate an eigenaxis reorientation from each

initial condition. This solution is determined using an eigenaxis quaternion feedback

control law, derived in [40], as shown in Equation 46.

τ = −Kq̄e − Cω +
[
ω×] Jω, (46)

where τ is the required torque to perform the maneuver, which is then limited between

−umax and umax. K and C are weighting matrices for tuning of the control. The

parameter q̄e is the quaternion error between the actual quaternion and the desired
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quaternion, and ω = ωBN since ωdes = [0 0 0]T . The quaternion error is given by:

qe =



q4c q3c −q2c −q1c

−q3c q4c q1c −q2c

q2c −q1c q4c −q3c

q1c q2c q3c q4c





q1

q2

q3

q4


(47)

where qc is the commanded (desired) quaternion [4].

Both of these methods speed up the time it takes to complete the optimization

problems, which is essential for reducing the computation time when thousands of

optimization problems are to be solved in generation of the reachable sets. It was

determined that the approach of using the previous solution as the guess for the

subsequent iteration is slightly faster computationally, and yielded approximately the

same results for the optimal solution as the eigenaxis reorientation solution method.

This method is therefore used for all of the guesses of the optimal control solutions.

3.2.4 Reachable Set Generation

Following an iterative comparison process, different combinations of optimization

problems are organized in batches according to dynamic equations used, symmetry

of spacecraft, and control constraint. As discussed earlier in this chapter, there are

four different types of dynamics, two types of control constraints, and three types of

spacecraft symmetries, resulting in 24 different combinations to be compared. This

translates to 43,920 optimization problems to be solved as depicted in Figure 6. All

24 reachable sets are displayed in Appendix A for reference, and certain ones will

be depicted throughout the following chapters to highlight key findings and com-

parisons. In order to provide the most intuitive depiction of the reachable sets, the

3-dimensional state of MRPs is mapped onto a 2-dimensional plane of azimuth and el-
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Figure 6. Reachable Set Organization Diagram

evation. Reorientations up to 90 degrees are depicted because, as will be shown later,

the linearized dynamics become increasingly invalid at angles beyond approximately

60 degrees.

3.3 Summary

The objective of the outlined scenarios is to generate reachable sets for reorienta-

tion maneuvers. These sets will be produced for different spacecraft symmetries, and

will be based off of the minimum time solutions to complete a reorientation given a

set of initial conditions. The goal is to visually depict these reachable sets in a manner

that is useful to operators in determining how long it will take to perform a reori-

entation from a given starting condition. It is also a goal to investigate a potential

control law derived from linearized MRP dynamics and principles of optimality.
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(a) Nonlinear Quaternion Dynamics (b) Linearized Quaternion Dynamics

Figure 53. Reachable Set Depicted as Time Optimal Contours: Asymmetric Body,
Cubic Control Constraint

(a) Nonlinear Quaternion Dynamics
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Figure 54. Reachable Set Depicted as Time Optimal Contours: Asymmetric Body,
Spherical Control Constraint
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