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Abstract 

The Air Force Installation Mission Support Center (AFIMSC) completed a Mission 

Dependency Index (MDI) modernization in 2019 to support better risk-based decision-

making by utilizing tactical mission-owner knowledge to quantify the relationship between 

facilities and the missions they enable. The resulting facility-mission risk scores leave room 

for improvement for better use of their intended purposes, due to (1) the vulnerability of 

cognitive biases affecting survey responses due to the use of a traditional risk matrix, (2) 

the lack of resolution between scores from risk ties, and (3) the failure to include 

information from the operational and strategic organizational hierarchy level. This research 

addresses these concerns through the novel implementation of a fuzzy logic system that 

uses the existing assessment Interruptability and Replicability criteria. Fuzzy logic uses 

expert knowledge and logical rules, where insufficient or imprecise data is present, to 

produce meaningful results that are more precise and reliable than traditional risk matrices. 

The Air Force, and other similarly motivated organizations, can use the proposed 

framework to quantify a facility's MDI, prioritize projects, and authorize limited facility 

sustainment, maintenance, and restoration resources.  
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A FUZZY FRAMEWORK FOR THE AIR FORCE MISSION DEPENDENCY INDEX  
 

I. Introduction 

Background 

Innovation in data collection and analysis techniques have improved facility managers' 

opportunities to understand facility life-cycle costs and make data-driven decisions, which are 

arguably more efficient than those based on decision-maker preferences. Facility managers can 

use this data to optimize sustainment resources and extend facilities or real property asset 

longevity. Executive Order 13327 mandated using identified best practices of asset management 

for all Federal real property to increase efficiencies and improve economic return  (White House 

2004).  

 

When developing operational risk management strategies, the Navy identified the need for an 

objective process to compare and prioritize construction projects to mitigate consequences 

associated with facility failure. This process needed to ensure that leadership prioritized resources 

for facilities that support the Navy's most critical mission sets. The Navy researched the link 

between facilities and the missions they enable to develop the Mission Dependency Index (MDI) 

metric, which is used for decision support when prioritizing sustainment, restoration, and 

maintenance projects (Antelman et al. 2008). MDI was a novel concept within the Department of 

Defense. It was calculated through facility manager surveys using traditional risk matrices and 

quantifying the facility's Intra-Dependency, Inter-Dependency, and the number of subcomponents 

who depend on the facility for mission-critical support.  
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The MDI methodology was validated and deployed for naval facilities. Grussing et al. (2010) 

estimated that establishing a base's MDI values would cost between $40,000 and $75,000 and lead 

to an annual data maintenance cost between $2.5M and $6.9M for the Air Force (Grussing et al. 

2010; Nichols 2015). To avoid the initial and recurring costs associated with the Navy's model, 

the Air Force modified the Navy's process to assign MDI based on asset type category codes 

(CATCODE). This low-cost solution required less data collection and led the Air Force to develop 

a simple, CATCODE-to-MDI model (Nichols 2015). The CATCODE is a six-digit identifier 

classifying the facility type for the Federal government's Real Property Categorization System 

(ASD 2020). Facility owners identified issues with the Air Force's CATCODE-to-MDI 

methodology when mission-critical facilities had inaccurate scores because of their facility type, 

rather than the importance to the mission they supported. When used to make decisions about 

operational risk management strategies, these score mismatches lead to sub-optimal results. 

Inaccuracies disproportionately affected some Air Force Major Command's (MAJCOM), like Air 

Force Global Strike Command (AFGSC) and Air Education and Training Command (AETC), 

because of AFGSC's unique mission focus on nuclear deterrence and AETC's reliance on 

traditionally less critical facilities such as classrooms, auditoriums and administrative offices 

(Blaess 2017). These score mismatches occurred most frequently when the primary or active duty 

mission of an installation was not aviation-focused (Smith 2016). These instances were widespread 

and resulted in critical projects remaining unfunded and led to wasted resources for sub-optimal 

assets (Blaess 2017).  

 

To combat MDI score inaccuracy and disproportionality, the Air Force Civil Engineer Center 

(AFCEC) provided guidance for installations to adjudicate facility MDI scores (AFCEC 2015). 
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The adjudication process was complicated and required Air Force Civil Engineers at the base level 

to justify all identified discrepancies and manage approval coordination between six levels of 

authority. The additional human resources and management investments needed to assign a 

facility's MDI score accurately highlighted a significant inefficiency with AFCEC's process and 

further strained under-resourced base-level engineers (Smith 2016). Initially, AFCEC 

implemented a re-normalization of adjudicated MDI scores to keep the desired 100-point range 

for MDI. Eventually, the re-normalization process was abandoned and led to the MDI distribution 

shifting, becoming left-skewed due to bases only adjudicating facility MDI when scores were too 

low (Nichols 2015; Savatgy et al. 2019). Higher MDI scores were incentivized because a facility's 

MDI contributed to the final technical project score used to compete for funding against other 

sustainment, restoration, and maintenance facility projects. Because of these motivations, Air 

Force's MDI values became inflated, and the range of possible scores decreased by one-third, 

reducing the metric's decision-making value (Nichols 2015).  

 

Researchers have conducted graduate-level research previously about the MDI. Nichols (2015) 

investigated the history of the MDI and performed a Delphi Study with CE Senior Leaders to 

determine how AFCEC can create a useable MDI metric that is not vulnerable to score inflation 

over time. Next, Smith (2016) integrated MDI and machine learning with a Knowledge Discovery 

in Database process to minimize the manual MDI adjudication efforts and better quantify the 

relationship between facilities and the mission they support. Additionally, Blaess (2017) 

investigated deviations between portfolios that used the CATCODE, NAVFAC, and adjudicated 

MDI scores. Each study identified opportunities for the MDI to be more accurately quantified. The 
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researchers also identified issues with the existing adjudication process and the need to review 

scores to detect and prevent inflation periodically. 

 

AFIMSC has recently modernized the Air Force's MDI metric to ensure installations can 

accurately assign a facility's MDI with information about the mission it enables and the facility's 

consequences of failure. This methodology represents a departure from the CATCODE-based 

methods and uses operational risk management concepts within a traditional risk matrix (Figure 

1). Like the Navy's MDI, the Air Force uses survey responses from mission owners to identify a 

facility's Interruptability and Replicability to assign the MDI value. Interruptability gauges how 

quickly a facility failure would impact the installation's mission. Replicability determines how 

difficult it would be to relocate, replicate, or reconstitute the facility's mission-enabling 

functionality (Savatgy et al. 2019). Unlike the Navy, the Air Force's MDI does not consider the 

number of other missions dependent on the facility from within the installation level or across 

different functional levels of the Air Force mission sets. Additionally, the traditional risk matrix 

used does not incorporate operational or strategic level leadership opinions for a facility failure's 

consequence to the mission or capture uncertainties between the risk matrix categories. 

Furthermore, although a traditional risk matrix is easy to use and simple to produce, it is criticized 

for its mathematical analysis errors and sub-optimal results, along with their vulnerability to 

cognitive biases and subjective judgment (Cox 2008; Duijm 2015; International Electrotechnical 

Commission 2019; Li et al. 2018; Smith et al. 2009). 
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Figure 1. The tactical MDI risk matrix created by AFIMSC uses mission-owner responses of the 

facility's Interruptability and Replicability to determine the MDI score (Savatgy et al. 2019). 

 

Because AFIMSC completed the MDI re-baselining with a 4 × 4 categorical risk matrix, many 

instances of score ties were produced (Figure 2). This result, which is a function of the limited 

discrete outcomes from the matrix, does not enable leadership to analyze risks in rank order, as 

facilities could only have 14 possible raw MDI scores. Over 45% of facilities had a "Prolonged" 

Interruptability and "Possible" Replicability, which resulted in a raw score of MDI equal to 40. In 

these instances, the MDI business rules triggered a re-ranking scheme based on two-digit facility 

type codes. Base Civil Engineer Squadrons would determine a priority order of the facility codes, 

which were then used by AFIMSC to assign these facilities scores below 40. This practice fails to 

remedy the previously identified issues with a CATCODE-based MDI scoring process and reduces 

the metric's decision-making value (Nichols 2015).  
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Figure 2. The cumulative density of AFIMSC's MDI survey results with the raw matrix score 

and the re-scored "Prolonged" and "Possible" classified facilities. This approach produces the 

inconsistent "step" in the density function. 

 

Problem Statement 

The Air Force wants a simple, repeatable process to quantify the relationship between facilities 

and the missions they enable. Though the second version of MDI is an upgrade over historical 

versions, this new methodology leaves room for improvements. Currently, the MDI methodology 

does not provide enough resolution to create meaningful prioritizations, is susceptible to cognitive 

biases and human decision-making differences, and re-introduces the potential for score 

mismatches and the adjudication issues identified using CATCODE-based MDIs. The system must 
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be improved to include information from all management hierarchy levels and consider human 

decision-making differences to reduce bias. The system also needs to be easily adaptable to meet 

the Air Force's changing needs without additional complexities. These upgrades will result in a 

more accurate MDI methodology that the Air Force and similarly motivated organizations can use 

to make better risk-based decisions, prioritize limited resources, and avoid wasted efforts.  

 

Research Objectives 

This research demonstrates Fuzzy Logic's use to link the relationship between Air Force facilities 

and the missions they enable. This MDI metric can prioritize diverse project portfolios and help 

base leadership understand its’ overall risk profile. To facilitate this objective, the author 

developed three investigative questions to guide the research:  

 

1. Is fuzzy logic an appropriate methodology for calculating MDI?  

2. What is an appropriate framework for a Fuzzy Inference System (FIS) that could enable 

mission risk assessments? 

3. How can fuzzy logic be used to expand MDI to enable participation by stakeholders from 

all organizational hierarchy levels, e.g., operational and strategic level?  

 

Methodology Overview 

This research primarily focuses on using fuzzy logic as a methodology to determine MDI. It 

expands the system boundaries to include information from the operational and strategic levels of 

the Air Force. The use of value judgment and linguistics to categorize the likelihood and severity 

of events during a risk assessment introduces uncertainty due to fuzziness. Translating this 
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uncertainty into fuzzy sets can allow users to solve problems where sharp boundaries may not exist 

(Zadeh 1965). Fuzzy logic is essentially an expert knowledge-driven methodology comparable to 

computing with words (Zadeh 1999). Human linguistics and analytical knowledge can conclude 

without the use of mathematical numbers. For example, if you say: 

IF Justin lives near Steven. 

AND Steven lives near Chris. 

You can answer the following question imprecisely:  How far is Justin from Chris? 

THEN, Chris lives not far from Justin. 

When tolerance for imprecision can be exploited to achieve a result, computing with words can 

provide a low cost, realistic result that is easy to understand and provides a satisfactory conclusion 

(Zadeh 1999). Fuzzy logic and its beneficial substitution for traditional risk matrices have been 

researched for military operational planning in the past and adequately address common problems 

caused by knowledge uncertainties and linguistic inputs (Nelson 2019). Readers can learn more 

about the fuzzy logic in the literature review seen in Chapter 2.  

 

The framework proposed in this research follows the basic setup seen in Figure 3. Each fuzzy 

system uses crisp inputs for a facility and fuzzifies them to a degree of truth within the system. 

This fuzzy input is translated to a fuzzy output by set rules determined with expert knowledge. 

This fuzzy output is then defuzzified with a determined inference methodology of defuzzification 

to produce a crisp output used for decision support as described in Chapter 2.  
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Figure 3. The basic fuzzy inference system (Figure 3a, top) and its role within the MDI 

framework proposed (Figure 3b, bottom). Chapter 2's focus is the red text, and Chapter 3 is the 

blue text sections of the framework.  
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AFIMSC is the sponsor for this research and owns the new tactical MDI methodology and re-

baselining data. The authors used the tactical MDI re-baselining data from 13 January 2020 to 

simulate crisp input responses for the variables Interruptability and Replicability. These survey 

response distributions allow the simulated results to remain realistic but unspecific to protect any 

base or location's identities. 

 

Thesis Organization 

The remainder of this thesis follows the scholarly format. Chapters 2 and 3 serve as a stand-alone 

journal publication. Chapter 2, "Prioritizing Facilities Linked to Corporate Strategic Objectives 

Using a Fuzzy Logic Model," is a journal article submitted in January 2021 for publication in 

Emerald Publishing's Journal of Facilities Management. This publication builds the fuzzy 

inference system's foundation and integrates the existing AFIMSC tactical MDI matrix with fuzzy 

logic. These FIS results were used to create an ordinal list of projects to compete for project 

authorization and sustainment, maintenance, and restoration funding. A second journal article is 

prepared for submission in Chapter 3, "A Fuzzy Inference-Based Facility Prioritization Decision 

Support System for Complex Hierarchical Organizations," expands upon Chapter 2's foundation 

to include operational and strategic level inputs to the FIS. This manuscript also includes a 

sensitivity analysis to understand how risk attitude and cognitive biases in human decision-making 

for subjective inputs can affect the system's overall results. Prediction bounds were used to 

estimate expected outcomes and identify locations with extreme results. Sites with extreme results 

can be re-evaluated to validate scores and to mitigate inflation of the MDI metric. The literature 

review is dispersed between Chapters 2 and 3. Chapter 2 focuses on reviewing fuzzy logic 

applications with risk assessment and prioritization methodologies to determine if it is appropriate 
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to integrate with the MDI. Chapter 3 focuses its literature review on human decision-making and 

fuzzy logic's application to hierarchical organizations. Finally, Chapter 4 summarizes the 

research's limitations, conclusion, significance, and contributions, as well as recommended future 

research areas.  
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II. Prioritizing Facilities Linked to Corporate Strategic Objectives Using a Fuzzy Logic 

Model 

Devin DePalmer, Steven Schuldt, Justin Delorit 

Abstract 

A Mamdani fuzzy logic inference system is coupled with a traditional, categorical risk assessment 

framework to understand a facilities' consequence of failure and its effect on an organization's 

strategic objectives. Model performance is evaluated using the United States Air Force's facility 

portfolio, which has been previously assessed, treating facility Replicability and Interruptability 

as minimization objectives. The fuzzy logic inference system is built to account for these 

objectives, but as proof of ease-of-adaptation, facility Dependency is added as an additional risk 

assessment criterion. Limited facilities operating and modernization budgets require organizations 

to carefully identify, prioritize, and authorize projects to ensure allocated resources align with 

strategic objectives. Traditional facility prioritization methods using risk matrices can be improved 

to increase granularity in categorization and avoid mathematical error or human cognitive biases. 

These limitations restrict the utility of prioritizations, and if erroneously used to select projects for 

funding, they can lead to wasted resources. This paper proposes a novel facility prioritization 

methodology that corrects these assessment design and implementation issues. Results of the fuzzy 

logic-based approach show a high degree of consistency with the traditional approach, though the 

value of the information provided by the framework developed here is considerably higher, as it 

creates a continuous set of facility prioritizations that are unbiased. The fuzzy logic framework is 

likely suitable for implementation by diverse, spatially distributed organizations in which decision-

makers seek to balance risk assessment complexity with output value. 
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Introduction 

Portfolio and project management within facilities management departments are an important and 

complicated issue in the private and public sectors. Prioritization requires that companies identify, 

prioritize, and authorize projects that align with organizational objectives (Filho et al. 2018; 

Hannach et al. 2016). Large, geographically distributed organizations may require projects from 

subordinate locations or work centers to compete for centralized funding. Limited resources drive 

organizations to prioritize projects with the understanding that not all candidate projects submitted 

by subordinate locations will be selected for funding. Companies must, therefore, establish a 

standardized basis for comparing facilities to determine how each affects corporate objectives. The 

net effect of developing a prioritization framework has two beneficial outcomes. First, it ensures 

organizations can fund the right project at the right time and avoid funding a project for a facility 

when other facilities and projects could be more critical for satisfying strategic objectives. Second, 

it provides organizations with a translation of objectives to facilities, enabling the development of 

facility and organizational risk profiles. Each of these outcomes results in enhanced fiscal resource 

utilization and minimizes organization risk and decision-maker regret. However, a valuable 

methodology for prioritization should seek meaningful, robust results as simply as possible; 

decision-makers prefer this approach (Karlsson et al. 2006).  

 

In general, project prioritization methodologies are organization specific. However, they should 

emanate from a generalized methodological approach to ensure prioritization outputs are valid and 

can be post-processed to meet decision-maker use requirements. Three main steps exist for 

methodological prioritization: (1) identification of factors affecting decision making, (2) valuation 

of identified factors, and (3) ranking of projects (Akgun et al. 2010; Andres et al. 2016; Bowles 
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and Peláez 1995; Bozbura and Beskese 2007; Jamshidi et al. 2013; Markowski and Mannan 2008; 

Moazami et al. 2011; Shaygan and Testik 2019). Factors for prioritization should be identified that 

align with the organization's strategic objectives (Hannach et al. 2016), and the risk assessment 

performed should reflect how the loss of an asset places risk on these objectives.  

 

Facilities are an "enabler" for work processes that support organizational goals or productivity and 

link the facilities to the organization's objectives (National Research Council 2004). There is a 

literature gap concerning prioritization methods that link facilities to strategic organizational 

objectives, particularly within non-profit-seeking organizations. Akgun et al. (2010) conducted a 

highly stylized and single objective vulnerability assessment for a small municipal airport. 

Educational campuses, like Massachusetts Institute of Technology (MIT), have used analytical 

hierarchy process (AHP) and multi-attribute utility theory (MAUT) to prioritize facility renewal 

projects that align with identified impact categories, e.g., impact on health safety and the 

environment, economic impacts, and coordination with policies, programs, and operations 

(Karydas and Gifun 2006). This process allowed MIT's facilities managers to align projects with 

strategic objectives by understanding the consequence of not funding a project.  

 

Three significant limitations emerge from both the Akgun et al. and Karydas and Gifun analyses: 

1) they are applied to a single location, with a limited set of organizational objectives; 2) the 

methods of risk assessment require extensive amounts of data and deliberation to categorize the 

desired performance metrics, and 3) the methods do not make use of generalized approaches to 

risk. The DoD and NASA created the Mission Dependency Index (MDI) to link facilities to their 

organization's objectives (Antelman et al. 2008; Antelman and Miller 2002). This methodology 
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can be applied to diverse locations. It does not require extensive amounts of data or training for 

decision-makers, and the metric score produced is used to stratify and authorize facility projects. 

Antelman's research is the only large-scale application of this type of requirement; however, the 

mathematical transformation of ordinal results to calculate the MDI score leaves room for 

improvement to reduce errors, bias, and uncertainty (Kujawski and Miller 2009). This paper's 

research intends to integrate the Air Force's MDI methodology with fuzzy logic so that facilities 

can be linked to strategic objectives, and facility projects can be funded in an order that best 

supports the organization.  

 

Facility Risk Management 

Risk assessments require decision-makers to think strategically and to problem solve when 

comparing alternatives (Hertz and Thomas, 1982). Hertz and Thomas (1982) conclude risk 

assessments are "useful for understanding, formulating and resolving ill-structured, complex 

policy and planning problems." Private companies typically focus their risk assessments on 

identifying projects that maximize revenues using cost-benefit analysis (Hannach et al. 2016; 

National Research Council 2004). Although profits and losses may be a common metric of 

consequence for some private-sector organizations, organizational objectives cannot be measured 

monetarily for many public and private entities, e.g., education, healthcare, corporate, or 

government agencies (National Research Council 2004). Instead, these types of corporations often 

measure their utility through risk mitigation. Faber and Stewart (2003) defined risk as "the 

expected consequences associated with a given activity." Risk cannot be measured in nature and 

instead is a priori, and calculated by formulas of probability and consequence, most simply as the 

product of the two.  
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One way to establish a standard comparison for risk mitigation-oriented organizations is to 

measure facility failure by estimating the organization's consequence from reduced productivity. 

Estimating the consequence of failure is made difficult by the complex nature of comparing direct 

losses (building damage, production loss), indirect losses (inconvenience to users, unemployment, 

social perceptions, cascading failures), and non-monetary losses such as loss of life, injury to 

employees, environmental damage, or community disruption (Faber and Stewart 2003; Karydas 

and Gifun 2006; National Research Council 2004). Identifying and quantifying these losses can 

help portfolio managers mitigate the risks associated with facility failure.  

 

Markowski and Mannan (2008) suggest that there are qualitative, quantitative, and semi-

quantitative approaches to constructing risk assessment methodologies. Organizations must select 

the approach that provides the level of risk detail desired for decision making. Qualitative methods 

use only categorical values, such as low, medium, and high, to assign risk likelihood or severity 

levels. Qualitative methods are preferred for their simplicity and can be used when quantitative 

data is unavailable or inadequate, or under budget or time constraints (Radu 2009). Unfortunately, 

qualitative assessments frequently do not provide numerically robust outputs that enable advanced 

decision making, do not capture uncertainty at the edges of each category, and only produce 

relative measures of risk. Quantitative categorization gives numerical intervals to well-defined 

categories, such as "likely to interrupt operations," which might correspond to an interval of 

unfavorable events with a probability of [0.25, 0.4]. Similarly, a category of severity indicating 

"very high risk to operations" could result in economic losses between $4 and $5 million. These 

objective categories can be used to repeatably calculate precise risk assessments, but can be time 
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or budget consuming due to the requirement for accurate and available data, and require that 

organizations can quantify risk categories (Radu 2009). Semi-quantitative methods use categorical 

values, which may either added or multiplied to create a risk score. The categorical value on the 

matrix will indicate more severity or risk probability by assigning higher values, which increases 

the output risk score (Markowski and Mannan 2008). Semi-quantitative assessments have many 

of the same advantages as qualitative risk assessments in terms of ease of implementation, though 

these methods have the added bonus of creating an ordinal list of results that can be used for better 

prioritization (Radu 2009). Semi-quantitative results are not preferred when prioritization must 

occur through objective measures, like cost-benefit-analysis, but are less time and data-intensive 

than quantitative methods. In general, semi-quantitative approaches represent an attractive blend 

of qualitative and quantitative assessments and may be preferred by organizations seeking to 

minimize time spent thinking about facilities while still achieving a robust prioritization that will 

ensure limited budgets are applied to the most critical facilities. 

 

Risk matrices commonly use the basic properties of likelihood and severity, or variations such as 

probability and consequence of an event, to prioritize risks or aid in decision-making about 

accepting risk (Duijm 2015; International Electrotechnical Commission 2019). Despite their 

popularity, risk matrices are criticized for their design and mathematical analyses of risk (Cox 

2008; Duijm 2015; International Electrotechnical Commission 2019; Li et al. 2018; Nelson 2019; 

Smith et al. 2009). Because of their relatively simple design, matrices are subject to decision-

maker cognitive biases and subjectivity (International Electrotechnical Commission 2019). 

Hubbard and Evans (2010) reveal bias and subjectivity arise from individual experiences, 

optimism bias, confirmation bias, variability in understanding verbal descriptions, and subjective 
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assessment, among many nurtured and natural traits. Smith et al. (2009) goes on to document 

centering bias and prospect theory (Kahneman and Tversky 1979; Tversky and Kahneman 1992) 

and their effects on risk matrix results. Subjective probability causes individuals to overestimate 

small probabilities and underestimate large probabilities (Kahneman and Tversky 1979). Personal 

ownership causes individuals who have more attachment to the asset (i.e., managers or facility 

owners) to overestimate the severity of consequences (Smith et al. 2009).  

 

Qualitative and semi-quantitative categories, commonly seen in risk matrices, are primarily based 

on user experience and can result in subjective judgments rather than quantitative standards. 

Subjective judgment is when different survey participants assign the same situation to different 

risk categories (International Electrotechnical Commission 2019). Traditional risk matrices are not 

recommended for complex risk assessments because of the limitations associated with these 

methodologies (Cox 2008; Duijm 2015; International Electrotechnical Commission 2019; Nelson 

2019; Smith et al. 2009). Though matrices may still underly a risk assessment process, they should 

be designed or hidden to eliminate bias and subjectivity concerns. 

 

Large, multi-location and multi-objective organizations like the Department of Defense (DoD) and 

NASA have prioritized large project portfolios using traditional risk-based metrics to link facilities 

to strategic organizational objectives (Amekudzi and McNeil 2008). Each has chosen to implement 

semi-quantitative traditional risk matrices with discrete categories as a means of simplifying the 

complexity of consistently evaluating a large number of facilities across multiple operating 

locations with unique missions (Antelman and Miller 2002; Grussing et al. 2010; Savatgy et al. 

2019). Semi-quantitative risk matrices produce ordinal numbers, which the DoD and NASA have 
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arithmetically transformed to understand vulnerable facilities on their campuses and prioritize 

facility projects at multiple organizational levels (Amekudzi and McNeil 2008; Kujawski and 

Miller 2009). However, semi-quantitative ordinal outputs cannot be translated using parametric 

mathematical operations. Therefore, transformed consequence outputs for any subsequent use, 

e.g., prioritizations, are inaccurate. Furthermore, the discrete categories and verbal linguistics used 

to prioritize these facilities introduce uncertainty due to fuzziness, leading to missed opportunities 

and wasted resources.  

 

Fuzzy Logic and Risk Management  

Fuzzy logic can be used with semi-quantitative risk assessments to produce discrete ordinal outputs 

that can be used for prioritization (Akgun et al. 2010; Markowski and Mannan 2008; Moazami et 

al. 2011). Furthermore, this methodology also removes the confirmation bias associated with using 

a traditional risk matrix by obscuring the decision makers' view (Duijm 2015; Hubbard and Evans 

2010). Fuzzy logic and fuzzy sets may also be utilized when uncertainty due to fuzziness exists, 

such as between categories in a traditional risk matrix (Duijm 2015; Markowski and Mannan 

2008). The advantages of maximizing value for decision-makers while minimizing complexity 

make fuzzy logic an ideal choice for integration with risk assessments.  

 

Fuzzy logic is one of the only methodologies that enable decision-makers to compute with words 

(Zadeh 1999). Prioritization and risk assessment methodologies commonly use verbal linguistics 

to organize or categorize requirements making fuzzy logic a complementary synthesis. Analytical 

hierarchy process (AHP), a common technique used by decision-makers for analysis of 

alternatives, has been integrated with fuzzy logic to prioritize human capital measurement 
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indicators (Bozbura and Beskese 2007), pavement rehabilitation and maintenance projects 

(Moazami et al. 2011), and generalized project prioritization and selection (Shaygan and Testik 

2019). Fuzzy logic has been blended with failure mode, effects, and criticality analysis (FMECA) 

since FMECA typically uses imprecise information and verbal linguistics to assess criticality 

(Bowles and Peláez 1995). Fuzzy sets have been used to prioritize safety issues by developing a 

fuzzy risk matrix and were discovered to be more precise and reliable than traditional risk matrices 

(Markowski and Mannan 2008). Vulnerability assessments have used fuzzy logic to study facility 

risk against terrorist attacks, which specifically considered interdependencies among facilities for 

small-scale airports (Akgun et al. 2010). Fuzzy logic has been integrated with existing pipeline 

risk assessment methodologies to create a more precise and more robust model for controlling 

risks associated with pipelines (Jamshidi et al. 2013). An advantage of using fuzzy logic inference 

systems is that the system can be easily manipulated to add additional components without 

additional complexities to the modeler or decision-makers. 

 

Facilities Risk Management and Fuzzy Logic  

Despite the significant contributions of the aforementioned literature, no formalized prioritization 

method exists that links an organization's strategic objectives to its built assets. Decision-makers 

need a simple solution that limits data collection and deliberation time while providing actionable 

outputs without the use of a risk matrix. In this paper, a semi-quantitative risk assessment 

methodology used by the United States Air force to determine the consequence of failure for 

facilities, and as a component of capital improvement project prioritization, is adapted with a fuzzy 

logic inference system to improve the fidelity and granularity of facility prioritization process. The 

existing risk methodology used by the Air Force, which possesses many of the same risk-matrix 
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design and implementation flaws discussed above, is described in Section 2. A semi-quantitative 

method is used because of the ordinal nature of events and the desire for a simple, repeatable 

process that can be applied to large, diverse organizations with hierarchical structures (Antelman 

and Miller 2002; National Research Council 2004). Fuzzy logic has been widely used in asset and 

organizational prioritization methodologies (Akgun et al. 2010; Jamshidi et al. 2013; Markowski 

and Mannan 2008; Moazami et al. 2011), but this is the first application where it has been used for 

large-scale, diverse organizations with hierarchical structures to link facilities to an organization's 

strategic objectives. The flexible nature of fuzzy logic systems allows modelers to add components 

without adding complexity, making it a superior choice for integration with the Air Force's project 

prioritization method and consequence of failure calculations (Nelson 2019).  

 

Background Data and Methodology: Linking United States Air Force Objectives to Project 

and Facility Prioritization 

Diverse, spatially distributed organizations are plentiful and form the backbone of many industries. 

The United States Department of Defense (DoD) is one of the world's largest industrial complexes. 

Like many U.S. government agencies, which possess many of the same risk matrix design and 

implementation flaws discussed above, the DoD developed the Mission Dependency Index (MDI) 

as the risk-based metric to link facilities to an organization's strategic objectives (Antelman et al. 

2008; Antelman and Miller 2002). While each military service within the DoD uses a different 

methodology to calculate MDI, each version of MDI is calculated using some combination of 

Interruptability, Replicability, and Dependency as surrogates for organizational objectives 

(Antelman and Miller 2002; Nichols 2015). The Air Force Installation Mission Support Center 

(AFIMSC) focused its MDI on the tactical, or installation, level. AFIMSC implemented the 
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Tactical Mission Dependency Index (TMDI) to link local facilities or assets to local operational 

objectives in order to support risk-based decision making and provide leadership a risk profile 

view of their campus (Weniger 2020). The survey results categorized 54,000 facilities at 79 

campus locations across the globe. TMDI was calculated with a traditional risk matrix (Figure 4) 

and used the following Replicability and Interruptability survey questions to elicit facility-by-

facility responses from mission owners:  

1) Interruptability: How fast would the campus's mission capabilities be impacted if the 

functional capabilities in building #were interrupted? (Assumes complete unavailability 

due to long term deferred maintenance). 

2) Replicability: How difficult would it be for the campus to relocate or replicate functional 

capabilities if this facility's operations were interrupted? (Non-fixed equipment could be 

moved). 

 

Figure 4. Traditional TMDI Risk Matrix (Savatgy et al. 2019) 

Mission owners and facility occupants answered the survey questions to determine the risk of 

facility loss on strategic objectives (Savatgy et al. 2019). The traditional risk matrix implemented 

by the Air Force for the TMDI framework is problematic because it only allows for 14 unique 
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outcomes due to risk ties and discrete categories usage. These outcomes and ties can be seen by 

the large "stairs" or "step" results above TMDI = 40 in a cumulative density plot of the Air Force's 

facility portfolio (Figure 5). Assets that received a TMDI score less than 40 were automatically 

reassigned a score less than or equal to 40, based on the significant administrative function housed 

in the facility. This rescoring process affected nearly 45% of the Air Force's portfolio. It was 

mostly undertaken to quickly score assets that are unlikely to compete well for funds against those 

facilities with higher TMDI scores. However, rescoring in this way does not link specific facilities 

to strategic objectives. Instead, the rescoring linearly distributes scores based on facility type. By 

increasing the range of categories, portfolio managers and campus leadership can accurately 

capture campus risk profiles and prioritize projects by the organization's strategic objectives.  
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Figure 5. Cumulative density of AFIMSC's TMDI original survey results. Note, facilities with 

scores greater than 40 retain a matrix-based score. Those facilities receiving a matrix score of 40 

are rescored. This approach produces the inconsistent "step" in the density function. 

Furthermore, risk ties force prioritizations to be determined by the facility's probability of failure 

and do not provide campus leadership an accurate representation of their campus's risk profile. 

Another limitation of the current methodology is that Dependency was not used as a variable to 

determine consequences. Omitting Dependency is problematic when similar facility types exist at 

different campuses when multiple facilities with varying usage levels on a single campus are 

compared, or when a failure in one facility creates failure in others. Dependency should be 

evaluated to ensure cascading effects are considered when determining the consequence of failure. 

The coloring of the matrix in Figure 4 makes risk tolerance levels impossible to discern and adds 
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no value to the matrix due to its equivalence with a risk score. The linguistic variables used to 

categorize facilities invite subjective judgment from all survey participants, and the fuzzy identity 

between categories is not captured within the matrix.  

 

While TMDI is used primarily in the creation of installation and service-level risk profiles, Air 

Force civil engineers at each of the Air Force's 89 installations use a unique project scoring 

methodology to create an annual Integrated Priority List (IPL) of candidate facility improvement 

projects that compete for funding distributed by the Air Force Civil Engineer Center (AFCEC) 

(DoD 2017). The IPL is a list of projects prioritized by a technical score, which indicates a level 

of risk to the organization if the project goes unfunded. A project's technical score is calculated 

using TMDI. Because the Air Force's methodology to calculate TMDI is laden with substantive 

deficiencies in design and execution, project funding decisions are likely suboptimal. 

 

The subjective probability introduced by mission owners and facility occupants when answering 

TMDI questions adds bias to the results from their perceptions or personal ownership (Hubbard 

and Evans 2010; Kahneman and Tversky 1979; Smith et al. 2009). This bias affects the accuracy 

and utility of TMDI, which manifests itself in both risk profiles and project outcomes. While 

literature shows general risk assessment design and implementation issues are pervasive across 

organizations, the authors suspect these issues extend to facilities prioritization. This study 

provides a path forward, illustrating an adaptation methodology that integrates a fuzzy logic 

inference system for bias-reduced facilities prioritization. While the methodology is calibrated to 

the Air Force, any organization that can define its objectives can benefit from a fuzzy logic-based 

approach. 
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Methodology: Fuzzy Logic for Facility Risk Assessment 

 

Zadeh (1965) proposed classes of objects called fuzzy sets with "continuous grades of 

membership." Natural human linguistics is frequently used to describe fuzzy sets (Zadeh 1965). A 

fuzzy logic system takes a crisp input value from a decision-maker and fuzzifies it into a fuzzy 

input set (Figure 6). This facilities prioritization problem translates crisp inputs for Interruptability, 

Replicability, and Dependency to fuzzy inputs. The fuzzy input sets become a fuzzy output set 

based on a set of rules, which are discussed below. The fuzzy outputs from the inference system 

are defuzzified through weightings and averages of the outputs from all the rules, and a 

deterministic, crisp output is calculated. 

 

Figure 6. Generalized fuzzy inference system adapted from Larguech et al. 2015 

A fuzzy inference system can provide additional information with similar utility and meaningful 

results using less time and resources for analysis (Mitchell and Carter III 1993). Verbal linguistics' 

popularity provides fuzzy logic a seamless integration with established risk analysis methods, 

reducing bias, and capturing additional dimensionality. Although the initial system must be 
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constructed, the outputs are more valuable for decision-makers. They can easily be used to link 

facilities to organizational objectives for the allocation of prioritized resources.  

 

The fuzzy logic integration framework proposed here is adapted to the TMDI risk assessment and 

follows a four-step process: (1) membership functions are created to enable continuous input for 

Interruptability, Replicability, and Dependency; (2) membership functions are developed for 

outputs to calculate the Consequence of Failure, which produces a TMDI score; (3) rules for the 

risk-based-matrix and fuzzy system are established; (4) outputs are evaluated graphically to ensure 

the prioritization of facilities is consistent with decision maker priorities.  

 

Step 1. Establish membership functions for inputs  

The fuzzy logic system used Interruptability, Replicability, and Dependency as input categories. 

The TMDI survey established by AFIMSC previously defined Interruptability and Replicability, 

but Dependency was added to reflect the best practices identified by NASA, the DoD, and focused 

mission Dependency index Delphi studies (Antelman and Miller 2002; Nichols 2015). 

Dependency is defined here by the number of facilities, expressed as a percent of total operations 

on campus, that depend on the operation of the facility in question. Dependency was divided into 

three levels of high, medium, and low. Clearly, Dependency can be redefined by an organization, 

and it is kept purposefully simple here to maintain the interpretability of results.  

 

To overcome the rescoring requirement for facilities rated at TMDI = 40, and to achieve an output 

range of 0 to 100 for congruence with the Air Force's project scoring model, additional categories 

of likelihood and severity were added to the Air Force's basic matrix. Though this increases the 



39 

matrix's size, it adds little in the way of complexity for the decision-maker, as the matrix is not 

revealed. As mentioned above, the membership functions for inputs were determined to be 

triangular and trapezoidal. Replicability and Interruptability membership functions were set to 

have equal boundary size with the range of all crisp input values set from [0, 6]. The range was 

determined by aligning each category's peak such that equal spacing is achieved between each of 

the positive integers starting at 1. Dependency was divided into three trapezoidal membership 

functions and had a range of [0, 1]. The range for Dependency was set with the intent that there 

was a maximum value of 100 and a minimum value of 0. This range was set to indicate the 

percentage of other facilities on an installation that relied on the operations within a facility. The 

membership function limits for low, medium, and high were determined with realism and 

practicality in mind. Fuzzy degrees of truth had equal rates of change between Low - Medium and 

Medium - High Dependency levels. Input fuzzy set ranges and linguistic terms are summarized in 

Table 1. These membership function ranges and limits can be easily calibrated to match an 

organization's leadership or decision-maker opinions, and they allow the establishment of a clearly 

defined evaluation process with common terminology (National Research Council 2004). The 

cumulative effect reduces bias while maximizing the use of risk assessment best practices 

described in the previous sections. 

 

Step 2. Establish membership functions for outputs  

The fuzzy logic system used the consequence of failure as the output category. The output category 

was divided into five membership functions to match the commonly classified MDI risk categories 

established by the Navy and Army (Amekudzi and McNeil 2008; Grussing et al. 2010). The risk 

levels determined each category's boundaries, and the range of values was set from [0,100] to 
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match the existing TMDI score range. Triangular membership functions were used to simplify the 

model and for their effectiveness representing uncertainty between categories. All membership 

functions were equally spaced from 0 to 100 and can be calibrated to fit leadership and decision-

maker opinions. Table 1 displays the output fuzzy set ranges and established terms. 
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Table 1. Fuzzy Sets for Fuzzy Risk Matrix 

Linguistic 
Variable  

Linguistic Terms  
(Fuzzy Set) 

Description range Universe of 
Discourse 

Membership Function 

     
Replicability 
(Likelihood) 
L 

I: Impossible 
II: Extremely Difficult 
III: Difficult 
IV: Possible: 
V: Available 

(4 < I ≤ 6) 
(3 < II < 5) 
(2 < III ≤ 4) 
(1 < IV ≤ 3) 
(0 ≤ V ≤ 2) 

.! ∈ (0,6) 

 
Interruptability 
(Severity) 
S 
 

A: Immediate 
B: Brief 
C: Short 
D: Prolonged 
E: No Impact 

(4 < A ≤ 6) 
(3 < B < 5) 
(2 < C ≤ 4) 
(1 < D ≤ 3) 
(0 ≤ E ≤ 2) 

." ∈ (0,6) 

 
Dependency 
D 

Low 
Medium 
High 

(0 ≤ D ≤ 0.4) 
(0.2 ≤ D ≤ 0.8) 
(0.6 ≤ D ≤ 1) 

.# ∈ (0,1) 

 
Consequence 
of Failure 
C 

VH: Very High 
H: High 
M: Medium 
L: Low 
VL: Very Low 

(75 < VH ≤ 100) 
(50 < H < 100) 
(25 < M ≤ 75) 
(0 < L ≤ 50) 

(−25 ≤ VL ≤ 25) 

.$ ∈ (0,100) 
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Step 3. Establish rules for the fuzzy system 

The fuzzy inference system maps fuzzified Interruptability, Replicability, and Dependency inputs 

to outputs to create a crisp TMDI result. The rules established for the inference system determine 

the actions of the system and are presented simply:  

 

!"	$!	%&	'"!()*	$#	%&	'"#	()* …$$ 	%&	'"$ 	,-./	0	%&	1" 	(345	% = 1,2,3…;)	  (1) 
 

Where $" 	is the input variable; '"$ 	and 1" 	are linguistic terms; 	0 is the output variable; and ; is 

the number of rules. This structure is simple compared to other approaches, and it simulates the 

complexity of human decision making (Lee 1990).  

 

Rules for the fuzzy logic system were determined based on the risk levels (Figure 7). Seventy-five 

Boolean-logic rules were created that correspond to all the possible outcomes of Dependency, 

likelihood, and severity within the fuzzy system. Risk scores were created based on the semi-

quantitative methodology similar to the original TMDI matrix (Figure 4). Since the categories were 

determined to follow a logarithmic scale of classification, addition was used to combine the risk 

scores, which was a best practice identified by Duijm (2015). A Medium Dependency matrix was 

created first. This matrix is intended to most closely represent the original TMDI matrix and 

provides a point-of-departure for High and Low Dependency simulations. Beyond adding an extra 

category for Interruptability and Replicability, as discussed above, the score differences between 

each category were adjusted to achieve an even categorical distribution, which is consistent with 

the original TMDI matrix. In the original TMDI matrix, Interruptability and Replicability scores 

had a gradient of twelve and eight, respectively (Figure 4). The matrix proposed here is updated 

such that Replicability has a gradient of ten to avoid risk ties and expand the scores range. Rules 
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were determined by the prevailing membership function of the resulting score. The Low 

Dependency rules were created by subtracting six from both Interruptability and Replicability 

category values for medium Dependency. The High Dependency rules were created by adding six 

to both the Interruptability and Replicability values for Medium Dependency. The addition and 

subtraction presented here is arbitrary but is provided as an illustration of the ease with which 

additional dimensionality can be added to risk assessments through fuzzy logic and the degree to 

which TMDI scores are sensitive to a range of Dependency assumptions.  

 

Figure 7. Dependency levels (top row) and corresponding fuzzy rules (bottom row) 

Fuzzy inference requires a database of all possible linguistic control outcomes for the fuzzy 

system. Mamdani fuzzy models are the most widely used inference method in risk assessments 

(Jamshidi et al. 2013; Markowski and Mannan 2008). A Mamdani inference system uses each 

membership function combination triggered by crisp inputs to map the minimum degree of 

freedom to the output rule membership function. The Mamdani model applies the minimum 
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operator for the "AND" method and the maximum operator for the "OR" method of rules. The 

fuzzy output set was aggregated for each rule. The final step was the defuzzification of the result, 

which was calculated using the centroid method to produce a crisp consequence value. There are 

many defuzzification methods, and the most popular approach uses centroid defuzzification, which 

returns the center of gravity of the fuzzy set along the x-axis (Equation 2).  

 

$ = ∑ &((!)(!!
∑ &((!)!

       (2) 
 

Where >($") is the degree of truth for point $" on the universe of discourse ?. The advantage of 

using the centroid method is that all activated rules contribute to the defuzzification process 

(Jamshidi et al. 2013). The centroid method of defuzzification is used in this methodology due to 

its simplicity and widespread use for prioritization methods (Akgun et al. 2010; Jamshidi et al. 

2013; Moazami et al. 2011) 

 

The final fuzzy risk surface is produced to show the difference in consequence (TMDI) as 

Dependency, Interruptability, and Replicability change (Figure 8). The different Dependency 

levels allow for further understanding of consequence and better prioritization when the success 

or failure of facilities are linked.  
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Figure 8. Fuzzy risk surfaces  

Step 4. Evaluate outputs graphically 

The crisp inputs used for the fuzzy logic system were simulated using the original TMDI survey 

responses. A Gaussian distribution was used to approximate responses from survey takers and 

translate the discrete traditional risk matrix into the continuous, crisp input responses required for 

the fuzzy inference system (Smith et al. 2009). Crisp inputs for the categories of "Immediate," 

"Brief," "Short," "Impossible," "Extremely Difficult," and "Difficult," used the maximum degree 

of membership for each membership function as value >. The average value >	was shifted down 

by 0.2 to simulate crisp inputs for "Prolonged" and "Possible" responses. It was assumed that 

survey responders would have to pick between the "Prolonged – No Impact" and "Possible – 

Available" answer combinations, but that the responses would be skewed towards "Prolonged" 

and "Possible." This assumption reflects the likelihood that most assets are realistically unlikely 

to have "No Impact" or be immediately available for use. A standard deviation was determined, so 

less than 1% of the Gaussian-shaped, simulated crisp inputs would fall outside the selected survey 

category's membership function. For example, a survey taker who classified a facility to have 

"Possible" Replicability should have a crisp input value less than 2.5 or "Extremely Difficult" 

Replicability to have a crisp value within [3.5, 4.5]. Dependency was assumed to be higher at the 

campus (tactical) level due to similar geographic location and the intentional independent 
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operations of each campus location. Dependency was modeled using a Pearson distribution to 

translate the skew of the results (Table 2). These input parameters only show the additional 

dimensionality of the proposed methodology. The crisp inputs were translated into outputs using 

the fuzzy inference system, and the resulting cumulative distribution of the fuzzy inference 

system's outputs of consequence is shown in Figure 9. 
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Table 2. Simulated response distribution parameters 

Interruptability      
 

 

      ! " 
    Immediate 5 0.167 
    Brief 4 0.167 
    Short 3 0.167 
    Prolonged 1.75 0.25 

Replicability      
 

 

      ! " 
    Impossible 5 0.167 
    Extremely Difficult 4 0.167 
    Difficult 3 0.167 
    Possible 1.75 0.25 

Dependency  

 
 

  ! " kurtosis skew 
  1 0.167 3 -0.75 
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Results and Discussion 

The resulting consequence of failure scores in Figure 9 are more continuous than the 

previously seen "Steps" in Figure 5. The distribution of results allows campus leadership 

to effectively prioritize facilities due to fewer risk ties and ensures the funding limit falls 

between clear distinctions in facilities consequence of failure scores. That is, decision-

makers will now be able to distinguish between facilities close to the funding boundaries 

or create 1-! facility priority lists. The TMDI consequence scores from the fuzzy logic 

system are slightly higher than AFIMSC's results due to the Dependency metric's addition 

and the assumption that Dependency is higher at the local campus level. Still, the 

consistency between the original and modeled TMDI results suggests that the framework 

produces useful results that do not materially change the output but add dimensionality 

without increasing the decision maker's complexity. These similar results ensure a simple 

and repeatable process can be implemented to determine the consequence of failure that 

links facilities to the organization's strategic objectives.  
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Figure 9. Cumulative distribution waterfall of fuzzy results plotted with the original 

AFIMSC TMDI scores. 

 

A review of fictional facilities reveals the value of the proposed framework at the facility-

scale. Ten fictional example facilities were examined with the fuzzy logic inference 

system. The use of Dependency was identified as a necessary variable to determine TMDI. 

The need for Dependency is made clear by comparing scenarios A and B, which detail 

different campus Child Care Centers (Nichols 2015). Each example facility may support 

the needs of the larger organization similarly. Still, scenario A should have a higher 
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consequence of failure since over 60% of other campus operations depend on its services. 

This difference in score reflects lower availability or quality of childcare resources in the 

local economy, which drives users and the campus's mission to rely on uninterrupted 

childcare. Facilities that previously existed on the edges of the same category, such as those 

possessing an Interruptability of one day or six days, are both considered "Short." These 

were previously indistinguishable using the traditional risk matrix (Figure 4). Including the 

fuzzy logic framework clarifies scenarios A and C, which were previously treated as 

identical due to the Air Force TMDI matrix's categorical nature, and are now accurately 

distinguished within the membership functions. Utilizing Dependency also allows facilities 

to be accurately prioritized in extreme situations such as scenario F. This special use facility 

would have previously had the highest score using the traditional risk matrix but can now 

be accurately prioritized against similarly vulnerable and specialized operations. Even 

though the change (TMDI = 100 becomes 96.7), it provides the distinguishment necessary 

to make difficult funding or emergency response decisions. Dependency also enables 

positive TMDI change, specifically for facilities that may be identified as having lower 

Replicability or Interruptability. Such is the case for scenario H, which receives a higher 

prioritization post-fuzzy logic due to the inclusion of cascading failure in other facilities. 

Clearly, if a hospital becomes inoperable other facilities are affected, like fire stations and 

facilities 
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Table 3. Example Scenarios Fuzzy vs. Traditional Methodology 

Example Scenarios 

  
Inputs   Output Priority 
Traditional Fuzzy Traditional Fuzzy Risk Level Traditional Fuzzy 

L S D L S D      

A Child Care Center Brief Difficult  Medium 3.8 3.2 0.62 72 72.3 High-Medium 3 5 
B Child Care Center  Brief Difficult  Low 3.8 3.2 0.2 72 56 Medium-High 3 8 
C Family Housing Center Brief Difficult  Medium 3.1 3.8 0.62 72 69 High - Medium 3 6 
D Flight Simulator Short Impossible Medium 3.8 4.8 0.62 76 94 High - Medium 4 3 
E Passenger Terminal Immediate Possible Low 4.5 3.55 0.2 76 63.1 High - Medium 4 7 
F Special Use Facility Immediate Impossible Low 5 4.9 0.1 100 96.7 Very High- High 1 2 
G Religious facility Short Ex. Difficult Medium 3.8 3.2 0.62 68 72.3 High-Medium 5 5 
H Hospital Immediate Ex. Difficult High 5.5 4 0.85 92 100 Very High 2 1 
I Heritage Monument No Impact Impossible High 1 5.3 0.8 40 75 High 6 4 
J Secondary Runway Short Available Low 3.8 1 0.15 40 25 Very Low- Low 6 9 
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Score ties are seen in the traditional TMDI methodology for assets classified like scenario D; 

"Short" and "Impossible," or scenario E; "Immediate" and "Possible." These score ties make 

prioritization impossible and may result in wasted efforts and resources by portfolio managers. 

Using crisp inputs for Interruptability, Replicability, and Dependency reduces risk ties, and 

organizations can more accurately and more precisely prioritize their facilities based on their 

strategic objectives. When score ties do appear, such as scenario A and scenario G, it can be 

determined that there is no subjectivity due to the linguistic or discrete categories, and the risk 

associated with funding one or the other is equal.  

 

The requirement to prioritize facility types for assets with a TMDI less than 40 was an additional 

step implemented by the Air Force that did not link the specific facility with the organization's 

strategic objectives. Instead, the original methodology tied the facility type with the organization's 

strategic goals. Over 45% of the Air Force's facilities were initially scored below 40. Due to the 

limited resolution, both scenarios I and scenario J earned the same score of 40 and would need to 

be rescored when using the traditional risk matrix. Risk ties lead to inaccurate prioritization levels 

when two of the same facility types have different impacts on the organization's strategic 

objectives. A heritage monument (scenario I) may be seemingly unimportant to an organization's 

goals by its operations; however, when over 80% of the other organizations on campus use this 

location for events or promotions, it may have a social impact that needs to be considered when 

prioritizing funds. A redundant facility such as a secondary runway (scenario J) might seem 

extremely important for the Air Force. Still, when found in a location that does not have flying 

objectives or the risk of losing the primary runway is negligible, it should be given a low MDI 

score and identified as obsolete.  
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From a project funding perspective, TMDI is 30% of the Air Force's multiplicative facility project 

scoring model. Even though a majority of facility cases presented here have a minimal difference 

between original and fuzzy logic-based TMDI, centralized project funding decisions at the margin 

will benefit from this framework. For any large organization, capital improvement funds will be 

limited, and there will be a final project funded and a first project not selected for funding. Using 

a categorical approach, like the one the Air Force used, creates situations where many projects 

have the same priority, making these marginal decisions difficult. The fuzzy logic approach 

rectifies conflicts and makes it such that discerning between projects is simplified. 

 

The relative consistency between the original and fuzzy logic-based outputs should be viewed 

positively. The purpose of this study was not to meaningfully change the outcomes but to provide 

a framework that 1) eliminates biases and risk ties; 2) creates distinguishment between facilities; 

and 3) enables the addition of additional risk assessment parameters (Dependency) without adding 

significant complexity for the decision-maker. To that end, the framework presented here is simple 

and repeatable and can be used to link facilities to an organization's strategic objectives. The fuzzy 

inference system presented can be easily calibrated to an individual organization's leadership or 

decision-maker objectives.  

 

Still, the vast majority of the fuzzy logic inference system parameters for the triangular and 

Gaussian distributions are arbitrarily assigned, which is a significant limitation of this work. In the 

Air Force case, AFCEC would likely be responsible for defining and calibrating the number of 

risk categories, linguistic terms, distribution types, distribution interactions, and boundary 



54 

conditions for each objective-oriented question. While this up-front work is not simple, the value 

of the information contained in the outputs is significantly higher than that of a traditional 

approach.  

 

Another limitation of this work is that it only assesses local risk. Echelons within the organizational 

hierarchy between the installation and AFCEC have no input on TMDI scores. Although the 

installation is most familiar with local conditions and local Dependency, higher authority levels 

often have a broader perspective, which should also be included in a holistic, organizational-level 

facilities risk assessment. Future research should investigate the inclusion of a reassessment of risk 

at higher levels within the hierarchy.  

 

Conclusion 

Viewing facilities through the lens of organizational objectives is essential for portfolio managers 

to accurately prioritize facilities and projects when resources are limited. Traditional risk matrices 

can lead to ambiguous results, uncertainties, and inaccurate prioritizations, but they are commonly 

used due to their simplicity and ease (Cox 2008; Nelson 2019; Smith et al. 2009). The fuzzy logic-

based consequence of failure framework proposed in this work can be used by campus leadership 

to link facilities to an organization's objectives when success or failure is not necessarily measured 

monetarily. This framework is simple and repeatable and can be used to better prioritize resources, 

understand the risk profile of a diverse campus, and identify organizational objective 

vulnerabilities tied to facilities. While the framework presented here is calibrated to the United 

States Air Force, non-military, hierarchically equivalent organizations, like a spatially distributed 
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university or hospital campuses that are part of a more extensive system, could benefit from its 

implementation.  

 

A key benefit of the fuzzy logic approach is that objectives or assessment criteria can be added 

without precipitously compounding complexity for the decision-makers. Here, facility 

Dependency is added to Replicability and Interruptability as an example of expanding the risk 

assessment criterion. In the implementation, the Dependency is manifested as simply another 

question for a decision-maker to answer for each facility. However, the nature of the question is 

identical to that of Replicability and Interruptability.  

 

Decision-makers are likely to favor consistent and straightforward frameworks that expedite the 

prioritization process and limit the degree to which bias can influence results. Another benefit of 

a fuzzy logic-based approach is that the traditional risk matrix is absconded from the decision 

maker's view, limiting the degree to which the decision-maker can "game," or match, the desired 

score to their responses. While it is not addressed in this research, a user interface such as slider 

bars for each question could replace the matrix interface. Not only would an implementation such 

as this reduce gaming, but it would also expedite the facility risk assessment process.  

 

Lastly, the purpose of a facility risk assessment and prioritization effort is to distinguish between 

the importance or consequence of failure of facilities. The fuzzy logic-based approach reduces the 

occurrence of identical score outcomes that plague categorical risk matrices. Achieving a 

continuous order of merit for facilities enables decisive action concerning project funding at the 

margins, and emergency response decisions, both when resources are constrained.  
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Portfolio managers and campus leaders need to ensure limited resources are allocated 

appropriately to campus construction and sustainment projects. Decision-makers need to 

understand how facilities play a role in an organization's objectives while maximizing the value of 

information collected and minimizing the time, resources, and complexity required to compare 

and prioritize projects. This novel framework integrates fuzzy logic with a risk assessment 

methodology to produce a facility prioritization that meets the needs of decision-makers, portfolio 

managers, and campus leadership.  
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III. A Fuzzy Inference-Based Facility Prioritization Decision Support System for Complex 

Hierarchical Organizations    

Devin DePalmer, Steven Schuldt, Justin Delorit 

Abstract  

Safeguarding limited resources for an organization's most critical assets can be difficult when 

decision-makers at different corporate hierarchy levels have different objectives and needs. 

Prioritizing resources in a manner that aligns with the organization's strategic goals requires 

expertise and knowledge at all corporation levels. DePalmer et al. (2021) explored the opportunity 

to quantify the relationship between facilities and the operations they support using a Mamdani 

fuzzy inference system. This research extends the previous work by incorporating multi-level 

perspectives of the facilities and the operations they support outside of the tactical campus. 

Additionally, the authors simulated various risk attitudes to investigate how subjective inputs at 

the tactical level can affect strategic-level outputs. This research produces a framework that 

aggregates junior-level facility knowledge depth with the breadth of senior-level operational and 

strategic knowledge to support decision-making for facility project prioritization. An additional 

prediction boundary is created from the risk attitude variance and can give portfolio managers 

data-driven tools for quality control of risk profiles at individual campus locations.  

Introduction 

Authorizing facilities and infrastructure projects in a manner that aligns with organizational 

objectives can be difficult when the organization has a multi-level, hierarchical structure 

(Hafezalkotob and Hafezalkotob 2017). The leaders of these complex organizations are 

responsible for many dispersed operating locations and or facilities and face the arduous task of 

making decisions for a built asset portfolio for which they may rarely have physical oversight. To 
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ensure facility prioritizations reflect both the organizational objectives and local operational 

realities, company leadership should rely on a mixture of both local facility manager input and 

corporate influence. Regardless of the organization's hierarchical management structure, e.g., 

functional, divisional, or matrix, a multi-level framework that targets bottom-up prioritization 

could more accurately reflect the value generated by facilities, provided the organization clearly 

represents its objectives in the organizational framework (DePalmer et al. 2021). This research 

aims to expand previous research by DePalmer et al. (2021) to account for multi-level input in 

prioritizing facilities by assessing Dependency and analyzing various risk attitudes among 

decision-makers participating in the prioritization process. 

 

Corporate hierarchy refers to the layers of vertical authority within a company based on job 

function and status (Kenton 2020; Reitzig and Maciejovsky 2015). Typically pyramid shaped with 

the most influential positions located towards the top, a corporate hierarchy can represent a chain 

of command of decision-making authority and scope of responsibility for organizational goals 

(Kenton 2020). Each level of hierarchy may have different organizational objectives and expertise 

areas. For example, the corporation's strategic level sets the company's direction or goals but is 

blind to a single facility's operations at the tactical level. Conversely, a facility manager 

understands how the facility enables the operations at the tactical level, but not its role at the 

strategic level. The corporation's value of the facility is determined with information from all 

levels. When facilities must compete at higher levels of the organization for funding, their value 

must be accurate and comparable. The organization can represent these hierarchy levels in many 

ways such as local, regional, and national; tactical, operational, and strategic; city, county, and 

state; etc. Incorporating expert facility information from each hierarchy level ensures the 
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corporation can prioritize the most critical sustainment and maintenance projects within an 

extensive and diverse project portfolio.  

 

Facility project prioritization methodologies focus on three necessary steps for project 

prioritization: (1) identifying factors important to decision-making, (2) evaluating these factors, 

and (3) ranking the projects (Akgun et al. 2010; Andres et al. 2016; Bowles and Peláez 1995; 

Bozbura and Beskese 2007; Jamshidi et al. 2013; Markowski and Mannan 2008; Moazami et al. 

2011; Shaygan and Testik 2019). The essential factors used for project prioritization and their 

respective weighting should align with the organization's strategic objectives (Hannach et al. 

2016). However, this previous research identified by DePalmer et al. (2021) failed to incorporate 

information for corporations with an organizational hierarchy of decision-making for facility 

operation. It also fails to quantify how external influences of human decision-making from 

subjective inputs affect the results.  

 

Realistically, project prioritization methodologies can expand across multiple levels of the 

corporate hierarchy. Decision-maker input value may depend on the company's structure and the 

decision-makers' expertise level or position (Hafezalkotob and Hafezalkotob 2017; Yazdi et al. 

2020). Corporations may value junior-level decision-maker inputs equally to senior-level inputs, 

using a democratic-style decision-making process, or they could favor a more autocratic style, 

giving final judgment to the senior decision-maker. Few studies have incorporated hierarchical 

decision-making and the effect on final prioritizations. Hafezalkotob and Hafezalkotob (2017) was 

the first study focused on this topic by incorporating fuzzy best-worst method to create an optimal 

weighting system model for integrating senior and junior decision-maker opinions during decision 
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making. More recently, Yazdi et al. (2020) developed a model for prioritizing system failures for 

a supercritical water gasification system using Failure Mode Effects Analysis (FMEA), which is 

flexible for autocratic and democratic decision-making processes.  

 

Technology-oriented decision tools, such as decision support systems (DSS), are commonly used 

to enhance the quality of human decision-making, encourage rational thinking, reduce bias, and 

avoid errors (Phillips-Wren et al. 2019). Decision-making is useful when a proposed solution is 

related to desired goals and relevant to the decision in question (Power et al. 2019). However, 

cognitive biases, individual decision styles, and risk attitudes are all internal influences for human 

decision-making that allow decision-makers to believe their choices are rational when in reality, 

these factors influence them towards a sub-optimal decision (Phillips-Wren et al. 2019). Cognitive 

processing limitations cause people to rely on heuristics to reduce complexity when asked to 

determine subjective judgments (Tversky and Kahneman 1974). Tversky and Kahneman identified 

three significant heuristics commonly used in decision-making to predict values and assess 

probabilities: representativeness, availability, and anchoring. These heuristics can influence how 

individual decision styles and cognitive biases affect decision-makers and how they interact with 

the decision support tool. Additionally, the personal risk attitudes of the decision-makers can 

influence rational decision-making. Decision-makers are typically modeled as risk-taking, risk-

neutral, or risk-averse to determine the degree to which risk attitudes can impact the way agents 

will interact with the technology-based DSS (Delorit and Block 2020; Holt and Laury 2002; 

Phillips-Wren et al. 2019). Risk-averse individuals may overestimate subjective inputs, while risk-

taking attitudes may underestimate these same variables. Improving the quality of decisions can 

be accomplished when the DSS considers the influences seen on the decision-makers. System 
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architects should build tools with the constraints of human decision-making in mind (Kahneman 

and Tversky 2012; Phillips-Wren et al. 2019; Power et al. 2019; Tversky and Kahneman 1974). 

The researchers included a sensitivity analysis to understand how subjective input variance in 

human decision-making can affect the operational and strategic consequence of failure scores 

determined in this methodology. 

 

Rational decision-making for portfolio prioritization requires quantifying risk to understand 

alternative outcomes (Kaplan and Garrick 1981). Since the 1980s, researchers have studied risk. 

Researchers have yet to establish a standardized risk formula due to the diverse risk analysis 

applications and the complex relationships between identifying direct and indirect risk variables 

(Karimpour et al. 2016). The linguistic terms used to categorize and estimate risk invite 

uncertainty and bias into the risk assessment (Akgun et al. 2010; Jamshidi et al. 2013; Karimpour 

et al. 2016; Markowski and Mannan 2008; Nelson 2019). Many assessment methodologies like 

analytical hierarchy process (AHP) (Bozbura and Beskese 2007; Moazami et al. 2011; Shaygan 

and Testik 2019); failure mode, effects, and criticality analysis (FMECA) (Bowles and Peláez 

1995); risk matrices (Markowski and Mannan 2008); and vulnerability assessments (Akgun et al. 

2010) have used fuzzy logic to capture uncertainty in risk assessments. Karimpour et al. (2016) 

determined the benefits for integrating fuzzy logic with risk assessments include: expressing the 

possibility rather than the likelihood of an outcome; using logical rules rather than complex 

arithmetic formulas; using insufficient, vague, or imprecise data; and the ease for managers to 

understand results. Some of the disadvantages of fuzzy logic are the need for subjective inputs 

and the expert knowledge required to establish rules and calibrate membership functions 

(Karimpour et al. 2016; Zadeh 1965). These benefits suggest that fuzzy logic is a tool that DSS 
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designers can use to improve human decision-making quality with technology-oriented decision 

tools.  

 
Despite the significant contributions of the aforementioned topics, there are gaps in the literature 

about fuzzy prioritization methods for organizations with a hierarchical structure. This paper 

addresses those gaps by aggregating lower-level expert information of a system's Interruptability, 

Replicability, and Intra-Dependency with higher-level Inter-Dependency inputs utilizing a fuzzy 

inference system. This system architecture provides information for how a single facility failure 

can affect the corporation's overall strategic objectives by determining a consequence of failure 

metric at each hierarchical level of the company for prioritizing resources. The authors expanded 

DePalmer et al. (2021) 's research to the company's operational and strategic organizational 

hierarchy level. Organizations value senior-level expertise for its broader scope of responsibility 

and knowledge about the system in which each facility operates. Junior-level expertise is valued 

because of their in-depth understanding of the facility and its link to tactical objectives. A 

sensitivity analysis is performed on the junior-level results to show how subjective judgment can 

affect overall results. Corporate leadership can use this information to ensure a bias-reduced 

decision-making process is used to calculate the consequence of facility failure for corporate 

strategic objectives.  

 

Case Study and Background: The United States Air Force Mission Dependency Index 

The Air Force is a large, complex, and diverse corporation that could benefit from a repeatable 

risk assessment methodology to prioritize facility construction and sustainment projects. Like 

many other private and public corporations, the Air Force's strategic objectives are not profit-
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motivated and will need to assess risk and prioritize projects without using a cost-based analysis 

(Hannach et al. 2016; National Research Council 2004). Corporations with similar objectives and 

organizational structure of the Air Force also need a simple, repeatable process that can help them 

assess the consequence of failure across individually operated and spatially distributed campuses 

or assets. Additional operational and strategic decision-maker input is essential to organizations 

whose tactical operations are independently run to focus momentum and ensure proper direction 

towards its strategic objectives. The methodology currently used by the USAF to prioritize their 

portfolio is risk-based and can be integrated with fuzzy logic to improve decision-making and 

optimize resource allocation (DePalmer et al. 2021). The improvements to the methodology 

proposed in this paper apply to other hierarchical organizations that use a consequence of failure 

metric to make risk-based decisions or prioritizations.  

 

The Air Force Civil Engineer Center (AFCEC) currently requires Air Force Civil Engineers to 

create an annual Integrated Priority List (IPL) of candidate facility improvement projects that must 

compete for approval and funding (AFCEC 2020). The IPL is a list of facility projects ordered by 

highest to lowest technical score. The technical score indicates to decision-makers a level of risk 

to the organization if the project goes unfunded. Engineers calculate the technical score by 

multiplying the project's Probability of Failure (PoF) with its Consequence of Failure (CoF). PoF 

is determined using historical data from the Air Force's Sustainment Management System 

BUILDER. PoF represents the facility's condition on a scale of 1 to 100, with one being the best 

condition (lowest PoF) and 100 being the worst (highest PoF). The CoF is a measurement of 

facility importance and also measured on a scale of 1 to 100, with one being the least important 

and 100 being the most important (the highest consequence of failure). Engineers calculate the 
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CoF by combining the facility's Mission Dependency Index (MDI) and the project's priority 

ranking from senior-level decision-makers. MDI is a metric used by the DoD other similar 

government agencies like NASA to quantify the importance of the relationship between facilities 

and the mission they enable (Antelman et al. 2008; Antelman and Miller 2002; Savatgy et al. 

2019). The project's priority ranking by senior-level decision-makers is valuable to the Air Force 

to ensure leadership perspective remains an important factor in determining the final project 

approval scores. AFCEC combines all installation's IPL to make funding authorization decisions 

from highest to lowest technical project score. This order ensures the Air Force allocates funds to 

the highest-scoring projects across the enterprise first, due to limited resources available each year 

(AFCEC 2020). 

 

Presently, Air Force Civil Engineers calculate tactical MDI with a traditional risk matrix 

constituted by a likelihood and severity analysis of Replicability and Interruptability. Each variable 

is broken into four categories, producing a possibility of 16 combinational outcomes. Although 

traditional risk matrices are low-cost to assemble and simple to use, they are heavily criticized for 

their sub-optimal mathematical analysis and are easily prone to errors through user cognitive biases 

or subjective categories (Cox 2008; Duijm 2015; International Electrotechnical Commission 2019; 

Li et al. 2018; Siefert and Smith 2011). The logarithmic scale and additive scoring combination 

used for the MDI variables result in risk score ties, reducing granularity further, and providing 14 

unique MDI matrix scores between 100 and 40. To increase the range of possible MDI scores, the 

Air Force re-scores all assets with an MDI of 40 based on the facility type (Savatgy et al. 2019). 

This methodology is problematic because it inaccurately links the MDI score to the facility's type 
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rather than its function. The re-scoring process can lead to mismatched MDI scores and the need 

for an additional score adjudication process (Blaess 2017; Nichols 2015; Smith 2016).  

 

DePalmer et al. (2021) investigated the MDI  prioritization methodology. They integrated the 

process with a fuzzy logic inference system (FIS) that used the inputs of Interruptability, 

Replicability, and Dependency to output a CoF score, identified as tactical MDI (TMDI). This 

methodology builds upon the TMDI FIS to include senior-level Inter-Dependency information at 

the organization's operational and strategic levels. Senior-level decision-makers currently 

determine priority ranking points with only qualitative data. Qualitative data is simple and can be 

used when quantitative data is unavailable, inadequate, or under a limited budget and time 

constraints (Radu 2009). Unfortunately, qualitative assessments do not provide enough 

information for extensive evaluations, do not capture uncertainty, and are incredibly subjective 

data points (International Electrotechnical Commission et al. 2019). Senior-level decision-makers 

can use priority points to manipulate the final technical score of projects and tarnish the risk 

assessment's validity and objectivity, project prioritization methodology, and approval process. 

This research does not include changing the PoF metric. Instead, it focuses on integrating fuzzy 

logic as a risk-assessment methodology at all of the organization's hierarchy levels to eliminate the 

need for senior-level priority ranking in the CoF metric and simultaneously create a more accurate 

and less biased project prioritization methodology.  

 

The MDI's operational and strategic value goes beyond project prioritization for AFCEC's IPL. 

Corporate leadership and facility planning teams can use this metric to understand how specific 

facilities enable operations at their location and how each facility is linked to other critical 
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infrastructure or mission sets throughout the organization. Additionally, MDI can be used to 

differentiate between primary or secondary operations within a facility or installation, link 

operations to space needs, or model dynamic mission needs at the operational or strategic level 

(Heron et al. 2017). Every level of the organization can use the tactical, operational, or strategic 

level information this system produces to understand how a facility failure may have cascading 

effects, allowing decision-makers to make better choices for the organization as a whole. 

 

Methodology 

The authors expanded the fuzzy logic methodology used in DePalmer et al. (2021) to account for 

multi-level input for prioritizing facilities with an assessment of Inter-Dependency and an analysis 

of how a variety of risk attitudes from decision-makers can affect the prioritization process. The 

system is shown in Figure 2 and specifies this research's scope compared to DePalmer et al. (2021). 

This study makes use of the initial results from AFIMSC's TMDI re-baselining survey. For this 

survey, local facility managers used a traditional risk matrix to quantify their facility's Replicability 

and Interruptability for over 54,000 facilities at 79 installation (campus) locations worldwide.   
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Figure 10. Paper scope and methodology for Strategic Mission Dependency Index (SMDI) 

creation. The blue text is the focus of this research, and the red text indicates research completed 

by DePalmer et al. (2021). Fuzzy system boundaries and input variables are marked with a 

dashed line, while solid lines indicate a crisp input value.  

 

The tactical level MDI score provides information about the Interruptability, Replicability, and 

Intra-Dependency of a facility (DePalmer et al. 2021). Interruptability indicates how fast the 

impact to campus's overall operations would be if functional capabilities of the facility were 

interrupted. Survey responders assume the interrupted facility is completely unavailable due to 

some disruption caused by deferred preventative maintenance. Replicability indicates how 

difficult it would be for the campus to relocate or replicate its functional capabilities if the facility 

were interrupted (Savatgy et al. 2019). Intra-Dependency shows the percent of other mission sets 
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at the tactical level that relies on the facility's operations for success. This paper introduces 

additional hierarchy-levels and information about Inter-Dependency. Inter-Dependency is 

distinguished from Intra-Dependency as it indicates the percent of other mission sets at the 

operational and strategic level that rely on the facility's operations for mission success. The 

Operational Mission Dependency Index (OMDI) score and Strategic Mission Dependency Index 

(SMDI) score use the outputs of the score produced at the subordinate hierarchical level as crisp 

inputs to their fuzzy inference system (FIS). Each FIS runs in series to one another to provide 

separate output results at each hierarchy level. Information from each tier is independent of one 

another since the fuzzy system hides the fuzzified subordinate level's inputs. The resultant CoF 

outputs of TMDI, OMDI, and SMDI indicate the risk to different hierarchical levels from a 

facility's outage or failure.  

 

Building the Operational and Strategic Dependency FIS 

The FIS used in this work follows the same four-step process as the previous research of DePalmer 

et al. (2021): (1) membership functions are designed to enable continuous input; (2) membership 

functions are developed for outputs; (3) rules for the risk-based-matrix and fuzzy system are 

established; (4) outcomes are evaluated graphically to ensure the prioritization of facilities is 

consistent with decision-maker priorities. It is essential that the system designers accurately 

calibrate the membership functions to fit the expert's logical rules because each component of the 

fuzzy logic system influences the outcome.  
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Step 1. Establish membership functions for inputs  

The operational FIS used TMDI and operational Inter-Dependency as inputs. The Tactical FIS, 

previously established by DePalmer et al. (2021), output a crisp TMDI score is re-fuzzified into 

the Operational FIS. Inter-Dependency is defined here by the number of facilities, expressed as a 

percent of total missions at the operational level, that depends on the success of the facility in 

question. Inter-Dependency is divided into three membership functions of High, Medium, and 

Low, and is the other half of the input for OMDI. The Strategic FIS operates identically to the 

Operational FIS, though it uses OMDI and strategic Inter-Dependency as input categories.  

 

The authors determined membership functions for all inputs to be triangular and trapezoidal for 

the system's simplicity. Triangular membership functions were used to simplify the model and for 

their effectiveness representing uncertainty between categories. TMDI and OMDI were divided 

into five membership functions to simulate the commonly classified MDI risk categories 

established by the Navy and Army (Amekudzi and McNeil 2008; Grussing et al. 2010). The risk 

levels determined each category's boundaries, and the range of values was set from [0,100], similar 

to the existing MDI score range. All membership functions for TMDI and OMDI inputs were 

equally spaced from 0 to 100. System designers can calibrate these functions to fit leadership and 

decision-maker needs. The authors determined the membership function's range by aligning each 

category's peak with equal spacing between categories to achieve a maximum score of 100 and a 

minimum score of 0. Inter-Dependency was divided into three trapezoidal membership functions 

and had a range of [0, 1]. The Inter-Dependency range was set with the intent that there was a 

maximum value of 100% and a minimum value of 0%. This range was set to indicate the 

percentage of other facilities at the operational or strategic level that relied on a facility's success. 
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The authors determined Low, Medium, and High membership function limits with realism and 

practicality in mind. Fuzzy degrees of truth had equal rates of change between Low - Medium and 

Medium - High Dependency levels. Input fuzzy set ranges and linguistic terms are summarized in 

Table 4. These membership function ranges and limits can be easily calibrated to match an 

organization's leadership or decision-maker opinions. This fuzzy system establishes a clearly 

defined evaluation process with common terminology (National Research Council 2004). For 

additional detail on the construction and function of the FIS, readers are directed to DePalmer et 

al. (2021). 

 

It is important to note that a corporation's leadership can re-define Inter-Dependency, or set a 

different analysis metric based on organizational objectives. Inter-Dependency links tactical, 

operational, and strategic levels based on Air Force stakeholders' communications. It is 

purposefully simplified here to maintain the interpretability of results, aligning with the Air Force's 

strategic purpose for its MDI framework. Dependency assessment is modeled as independent at 

the tactical, operational, and strategic levels and is determined by an unbiased analysis of 

connections between facilities. That is, TMDI inputs and outputs are hidden from operational level 

assessors when assigning inter-dependencies, as well as OMDI, during the strategic assessment. 

This blind input system was intended to limit influence from the human decision-making biases 

but could be eliminated based on decision-maker preferences. 

 

Step 2. Establish membership functions for outputs  

The operational level FIS outputs the OMDI value, and the strategic level FIS outputs the SMDI 

value. The OMDI and SMDI fuzzy inference systems are identical in function and therefore are 
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described as one system in this section. The output was divided into five membership functions to 

match the commonly classified MDI risk categories established by the Navy and Army (Amekudzi 

and McNeil 2008; Grussing et al. 2010). The risk levels determined each category's boundaries, 

and the range of values was set from [0,100] to match the existing TMDI score range. Triangular 

membership functions were used to simplify the model and for their effectiveness representing 

uncertainty between categories. All membership functions were equally spaced from 0 to 100 and 

can be calibrated to fit leadership and decision-maker opinions. The output fuzzy set ranges and 

established terms are displayed in Table 4. For additional detail on the construction and function 

of the FIS, readers are directed to DePalmer et al. (2021). 
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Table 4. FIS Membership functions and input ranges for each hierarchy level MDI score 

     
Linguistic 
Variable 

Linguistic Terms 
(Fuzzy Set) Description range 

Universe of 
Discourse Membership Function 

     
Inter-Dependency 
(D) 
 

Low 
Medium 
High 

(0 ≤ D ≤ 0.4) 
(0.2 ≤ D ≤ 0.8) 
(0.6 ≤ D ≤ 1) 

,! ∈ (0,1) 

 
TMDI 
(T) 

VH: Very High 
H: High 
M: Medium 
L: Low 
VL: Very Low 

(75 < VH ≤ 100) 
(50 < H < 100) 
(25 < M ≤ 75) 
(0 < L ≤ 50) 

(−25 ≤ VL ≤ 25) 

," ∈ (0,100) 

 
OMDI 
(O) 

VH: Very High 
H: High 
M: Medium 
L: Low 
VL: Very Low 

(75 < VH ≤ 100) 
(50 < H < 100) 
(25 < M ≤ 75) 
(0 < L ≤ 50) 

(−25 ≤ VL ≤ 25) 
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Step 3. Establish rules for the fuzzy system 

The fuzzy inference system maps fuzzified hierarchy-level MDI and Inter-Dependency inputs to 

hierarchy level outputs to create a crisp CoF score. The rules established for the inference system 

determine the actions of the system and are presented simply as:  

 

!"	$!	%&	'"!()*	$#	%&	'"#	()* …$$ 	%&	'"$ 	,-./	0	%&	1" 	(345	% = 1,2,3…;)	  (3) 
 

Where $" 	is the input variable; '"$ 	and 1" 	are linguistic terms; 	0 is the output variable; and ; is 

the number of rules. This structure is simple compared to other approaches, and it simulates the 

complexity of human decision-making (Lee 1990).  

 

Rules for the fuzzy logic system were determined for applicability of the system and shown in 

Figure 11. The authors created 15 Boolean-logic rules for each department-level FIS to correspond 

to all the possible Inter-Dependency and department-level MDI outcomes within the fuzzy 

systems. The Medium Inter-Dependency level was used as the baseline for the operational-level 

FIS, and outputs were either increased or decreased for High and Low Inter-Dependency. The 

strategic-level FIS started with the Low Inter-Dependency as the expected baseline response and 

increased or decreased the final consequence output accordingly. These rules were set as examples 

for building the system architecture and need to be calibrated and established by the organization's 

correct asset management experts. The fuzzy system's rules link inputs and outputs and must reflect 

the system owner's needs.  
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Figure 11. Boolean logic rules established for the Operational (a, left) and Strategic (b, right) 

level FIS. 

This system continues the fuzzy inference methodology from DePalmer et al. (2021) using a 

Mamdani fuzzy model. This Mamdani model applies the minimum operator for the "AND" method 

and the maximum operator for the "OR" method of rules. The defuzzification method used for the 

operational and strategic level was the centroid method. Centroid defuzzification returns the center 

of gravity of the fuzzy set along the x-axis (Equation 4).  

 

$ =
∑ &((!)(!!
∑ &((!)!

       (4) 
 

Where >($") is the degree of truth for point $" on the universe of discourse ?. For additional detail 

on the construction and function of the FIS, readers are directed to DePalmer et al. (2021). 

 

Step 4. Evaluate outputs graphically 

The FIS's outputs for Operational MDI and Strategic MDI were evaluated by reviewing the surface 

plots produced. The final fuzzy risk surfaces show the difference in output consequence as the 

department-level MDI and Inter-Dependency change (Figure 12). As expected, the rules and 

membership functions of the system determine the final fuzzy surface. It is paramount that 

corporate experts choose the appropriate rules for each FIS's calibration to ensure the final surface 
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reflects the organizational objectives and the linkages between different organizational levels of 

input. For this research, both surfaces must have positive or zero slopes for the Z-axis. This slope 

ensures that as the inputs increase, the CoF at each department-level does not decrease as their 

inputs increase.  

 

 

Figure 12. Risk surface plot for a (left) Operational MDI, and b (right) Strategic MDI. 

 

Since the framework has each hierarchy in series, it is essential to recognize that the resulting 

outputs are re-fuzzified for inputs at the higher level and only reflect the department's crisp 

consequence score. For example, the OMDI will equal 100 when the TMDI is held at 100, and 

operational Inter-Dependency increases from Medium to High. A facility classified as [100, 0.5] 

at the Operational level will have the same OMDI score of 100 as a facility classified as [100, 

0.90]. When both of these output OMDI consequences are used in the Strategic FIS, they have an 

equal opportunity to change. The SMDI FIS does not see the Inter-Dependency difference at the 

operational level; it only sees the resulting OMDI score of 100. While the system's primary goal 

is to create an overall prioritization method, leadership can use CoF's crisp outputs at each level 
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for better strategic decision-making in other portfolio management areas besides competing for 

project authorization funds. Additional details are provided in the discussion.  

 

Sensitivity Analysis and Simulating Data 

Decision-makers at all levels can be tricked into believing they are making rational decisions when, 

in reality, they are influenced by their cognitive biases and personal risk attitudes (Kahneman and 

Tversky 2012; Phillips-Wren et al. 2019; Power et al. 2019; Siefert and Smith 2011). When 

resources are limited, these sub-optimal decisions lead to wasted efforts. System architects should 

analyze these influences and uncertainties and put protection measures in place to mitigate them. 

System architects can use fuzzy logic in semi-quantitative risk assessments to capture the 

uncertainty between classes of objects (Duijm 2015; Markowski and Mannan 2008; Zadeh 1965). 

Once this uncertainty is analyzed, acceptable tolerances can be determined by the organization's 

leadership to quality control the system. Additionally, the scaling or descriptions used for the 

universe of discourse for inputs can be adjusted and calibrated to avoid ambiguity or subjectivity 

of crisp inputs.  

 

A sensitivity analysis was performed with the subjective inputs of Replicability and 

Interruptability to analyze the effect of risk attitudes and cognitive biases on MDI. It was assumed 

that simulated crisp inputs would closely mirror the actual TMDI survey responses for all facilities, 

and simulated responses would have a degree of membership greater than 0.5 for the original 

category chosen. This range ensures the crisp inputs vary only between the uncertainty between 

categories. For example, if the TMDI survey response for Replicability was "Extremely Difficult", 

the distribution of simulated crisp inputs would range from [3.5, 4.5]. A triangular membership 
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function was used because of the simplicity of setting maximum, minimum, and peak location for 

each simulated response's crisp input. Figure 13 shows the simulated response ranges for results 

within the membership functions, and Table 5 identifies maximum and minimum values used for 

crisp input simulations. The maximum and minimum values of each triangular distribution were 

set for all survey responses, and the peak location varied between these limits. Because the 

Available and No Mission Impact categories were not part of the original TMDI survey, the authors 

assumed no more than 25% of assets would be identified to have Replicability or Interruptability 

crisp inputs of less than 1 (less than 0 degrees of membership of Prolonged or Possible). The range 

for the Prolonged and Possible responses between [0.75, 2.5] was set with this limit in mind. The 

triangular distributions were varied with Equation 5.  

 
@ = ( + 	B(%)(C − ()      (5) 

 

Where ( is the minimum limit to the triangular distribution, @ is the peak value of the triangular 

distribution, and C is the maximum limit to the triangular distribution. B represents the decision 

maker's personal attitudes and ranges from 0 to 1. A decision-maker's %,  risk attitude of B =

0	indicates the maximum level of risk-taking, and B	 = 	1 indicates the maximum level of risk-

aversion. A decision-maker with B	 = 	0.5 means a risk-neutral attitude. When decision-makers 

have a D = 0 value, the distributed results have a peak value (@) at the minimum value (() for the 

subjective input. This would indicate that the decision-makers have a risk-taking attitude, and the 

crisp inputs belong closer to the category below, reducing the crisp input of the subjective variable 

and potentially the final consequence of failure score.  
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Figure 13. How maximum and minimum limits for triangular distribution were established to 

simulate crisp inputs for TMDI survey results 

Table 5. Maximum and minimum values used for simulating triangular distributions for crisp 

inputs to TMDI survey responses of Interruptability and Replicability. 

Variable Category 
Minimum 

a 
Maximum 

b 
Interruptability Immediate 4.5 5.5 

Brief 3.5 4.5 
Short 2.5 3.5 

Prolonged 0.75 2.5 
    
Replicability Impossible 4.5 5.5 

Extremely Difficult 3.5 4.5 
Difficult 2.5 3.5 
Possible 0.75 2.5 
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The tactical, operational, and strategic level Dependency responses were simulated to validate the 

fuzzy logic system's architectural framework. Crisp input values of Dependency ranged from 0 to 

1 and were determined using a Pearson distribution. Each department level's distribution values 

can be seen in Table 6. The cumulative distribution of simulated Dependency inputs can be seen 

with the membership functions overlayed in Figure 14, showing the difference between the 

tactical, operational, and strategic level distributions. Other distributions would affect the overall 

results of the sensitivity analysis.  

Table 6. Simulated Dependency values for tactical, operational, and strategic level 

Department Level 
Mean 
H 

Standard 
Deviation 

I Skewness 
Kurtosis 

(Normal = 3) 
Tactical 0.6 0.166 -0.75 3 

Operational 0.5 0.166 0 3 
Strategic 0.4 0.166 0.75 3 

 

These values were determined with the assumption that facilities become less Inter-Dependent as 

they increase in managerial level. This assumption is because facilities should be highly Intra-

Dependent at the tactical level due to their geographic proximity and the need for entire operating 

locations to function independently. Conversely, as the hierarchy level increases, the facility is less 

likely to be unique or provide services across the entire department's responsibility scope. For 

example, each tactical-level location may have a facility that has a high Inter-Dependency at their 

campus. This facility is useful at the tactical level and commonly found at every location. Because 

this requirement is satisfied at multiple campuses, the operational level may not classify the need 

for a high Inter-Dependency between that specific facility and other campuses since their needs 

are being met locally.  
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Figure 14. Dependency Cumulative Distribution Function plot, describing the density of each 

department level's simulated crisp Dependency input 

Results  

The fuzzy system was successfully implemented to produce the consequence of failure scores at 

each department level with simulated response inputs. These results are specific to the simulation 

inputs, and true results will be dependent on the verified responses from decision-makers at the 

tactical, operational, and strategic department levels. Simulated results were used to determine the 

final fit parameters of the polynomial regression. Although stylized, this process can be repeated 

with true results, and multi-level influence can be analyzed at a low computational cost. This 

analysis can inform future investments and serve as quality control for locations with unacceptable 

risk tolerance.  
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The cumulative distribution function percentiles were plotted and fit with a polynomial regression 

line to quantify the effect of decision-maker risk attitudes on MDI variability across the range of 

possible scores. The polynomial regression coefficients and goodness of fit statistics can be seen 

in Table 7, and the results of the expected MDI and the 95% prediction bounds for each hierarchy 

level can be seen graphically in Figure 15. These results will change as the membership functions 

and rules are calibrated by decision-makers and serve the purpose of creating an acceptable risk 

attitude boundary for the proposed prioritization framework.  
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Table 7. Polynomial Regression Coefficients and Goodness of Fit Statistics for Tactical, 

Operational, and Strategic level Risk Attitudes 

Generalized Fit Model  3($) 	= 	J!$# 	+ 	J#$	 +	J* 
Department 

Level 
Coefficients 

(95% confidence bounds) 
R-

square 
Adj R-
Square SSE RMSE 

Tactical J! 	= −3.52 × 10+, 
(−4.19 × 10+,, −2.83 × 10+,) 

J# = 1.37 × 10+# 
(1.30 × 10+#, 1.45 × 10+#) 

J* 	= −7.04 × 10+# 
(−8.79 × 10+#, −5.29 × 10+#) 

0.96 0.96 1.60 0.06 

      
Operational J! 	= −2.64 × 10+, 

(−3.20 × 10+,, −2.09 × 10+,) 
J# = 1.28 × 10+# 

(1.22 × 10+#, 1.34 × 10+#) 
J* = −5.07 × 10+# 

(−6.46 × 10+#, −3.68 × 10+#) 
 

0.97 0.97 1.14 0.05 

      
Strategic J! 	= 				3.26 × 10+, 

(1.95 × 10+,, 4.57 × 10+,)	
J# 	= 1.20 × 10+# 

(1.06 × 10+#, 1.34 × 10+#)	
J* = −0.23 

(−0.27, −0.20) 

0.94 0.94 2.46 0.07 

 

Although specific to the assumptions made for this simulation, these types of quantifications give 

senior-level quality control managers data-driven tools to ensure responses fall within expected or 

acceptable ranges and can be used to identify outlier locations or assess whether categorical risk 

behavior exists within sections of the MDI range. Like upper and lower control limits, the 95% 

prediction bounds serve as the threshold for acceptable risk attitude behavior. The width of the 

bounds indicates the uncertainty associated with the fitted risk curve. Non-simultaneous 

observation bounds measure with 95% confidence that a new observation will lie within the 
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interval specified given the predicted inputs of CDF percentile and department-level MDI 

(MathWorks, Inc 2020). The prediction bounds are useful for a case-by-case analysis of a base's 

overall risk profile and for company leadership to understand the expected variance of results. If a 

campus's results are within the boundaries, their responses are within the expected risk tolerance 

threshold. If an operating location's risk profile is outside of these thresholds, the location's 

responses may require a manual review. This review can identify if locations need supplementary 

education about properly using the system or if there are assets that need redistribution or 

additional redundancies to ensure each portfolio has a balanced risk profile. Additionally, this 

review can reveal extreme risk attitudes that may warrant extreme risk-aversion due to security 

concerns at the campus location.  
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Figure 15. Cumulative Distribution Plot for tactical (a, top), operational (b, middle), and strategic 

(c, bottom) department levels showing the change in cumulative distribution as decision-maker 

attitude is altered. The blue dashed lines indicate the 95% prediction bounds for the fitted risk 

curve. 
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In the final results for SMDI (Figure 15c), there are two prominent vertical asymptotes at 

SMDI 50 and SMDI 75. These asymptotes are due to the large percentage of flat surface 

area on the FIS's produced risk surface (Figure 12b). The risk surface is a visual translation 

of the determined fuzzy rules for the FIS. These asymptotes can be avoided by adjusting 

the rules or adding more granularity to the framework through additional membership 

functions for possible outputs. These vertical asymptotes indicate MDI score ties and can 

make determining the order to fund facilities a challenge for leadership if the financial 

funding limit were to fall between multiple assets with equal SMDI. The rules and 

membership functions for the true system should be calibrated to minimize risk score ties. 

Discussion   

In addition to adding dimensionality, Inter-Dependency from the operational and strategic 

levels of a corporation can help facility management teams better understand a facility 

failure's overall impact. These inputs are valuable for facilities that enable organizational 

goals beyond the department-level. Figure 16 shows a Low-Medium TMDI score that is 

transformed into a High-Very High consequence score through the OMDI and SMDI 

evaluations due to a high degree of operational and strategic Dependency on the facility's 

mission. This example demonstrates how multiple department-level consequence scores 

should be taken into consideration during corporate facility prioritization. This example 

also demonstrates the limitation of the prioritization methodology if it only takes into 

account the tactical level of knowledge about a facility and the operations it enables. 

Creating crisp MDI outputs at each hierarchical level within the organization reveals how 

the risk value differentiation affects the score, enables better risk-based decisions, and 
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increases the understanding of the non-linear impact facility failure may have on the 

various levels of the organization. 

 

 

Figure 16. Example of how a facility's tactical MDI score changes when senior-level 

experts evaluate it. This may indicate the facility operations are secondary to other 

facilities at the tactical level but critically important to the organization as a whole. This 

information must be captured for decision-makers to effectively prioritize projects and 

analyze risk. 

The prediction bounds established in the risk attitude sensitivity analysis create a boundary 

of acceptable risk tolerance for department levels or responding groups. By establishing 

these boundaries, quality control managers can ensure users are interacting with the system 

appropriately and portfolio risk profiles are balanced to an acceptable level across 

operating location and facility type. The resulting prediction bounds were examined at the 

tactical level for five different Air Force Base locations seen in Figure 17. Base A's 

resulting cumulative distribution indicates that responses may be too risk-taking for the 

organization's risk preference, while Base B and Base C may be too risk-averse. The results 

suggest these three locations require additional review of their responses. After 
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investigation, it was found that Base A had the lowest average TMDI value of all 79 

locations in the survey. Base A may be under-valuing its facilities compared to other 

similar campus locations and may benefit from facility disposal or asset redistribution. For 

example, Base A is geographically located such that many of the community support 

functions, e.g., lodging, childcare, grocery, and gym facilities, are replicated off-base by 

private entities. Divesting these asset types could remedy the graphical result and lower the 

total operating costs of the base. 

  

Base B and Base C are located in geographically similar locations outside of the United 

States and require additional critical infrastructure due to their required independence from 

the local community and proximity to kinetic threat. These points alone may justify the 

categorial risk aversion, and decision-makers should look for opportunities to re-balance 

base B and C's risk profile with system redundancies or look to redistribute critical assets 

to locations within geographic proximity of Bases B and C to mitigate risk-aversion. Base 

D and E are both within the 95% prediction bounds and suggest that although Base D seems 

more risk-taking than Base A, the difference in risk attitude is acceptable given the 

organization's thresholds and the Bases' have a balanced risk profile.  
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Figure 17. Example of five unique bases TMDI results with the risk boundaries for the 

cumulative distribution function.  

This research's limitations are the multiple assumptions made to simulate data at different 

corporate hierarchy levels is a significant limitation of this work. Although the system's 

membership functions and rules were estimated with realism and simplicity in mind, it is 

the responsibility of the using organization to calibrate the system so results fit their need. 

These assumptions make it possible to create a consequence of failure risk assessment 

framework that considers higher hierarchical level objectives. Weighting each hierarchical 

level is possible to change leadership influence but was not investigated for this research 

due to the added complexity of inclusion and the formulation's theoretical nature. Future 

research is needed for different types of organizational hierarchy templates and democratic-

autocratic weighting changes.  
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Due to the application of this methodology within national defense, the protection of SMDI 

and OMDI data is a necessary requirement and limitation of this research. When directly 

linking specific assets to an operational or strategic priority, this information can be used 

not just for the benefit of the organization but also to the benefit of an adversary when 

looking for system vulnerabilities. This can cause additional costs from security measures 

needed to protect information and clear access to vetted individuals only.  

 

This framework can prioritize facility projects and identify risk profiles at the tactical, 

operational, or strategic level. This framework links facilities to the organizational 

objectives they enable without the use of monetary objectives or profits and can benefit 

similarly organized public and private entities who have a hierarchical structure, e.g., 

education, healthcare, corporate, or government agencies. An advantage of using fuzzy 

logic for the risk assessment is that the system can be easily manipulated to add or change 

components without additional complexities to the system architect or decision-makers.  

 

Conclusion 

Different department levels within a corporation provide valuable information needed to 

properly quantify a facility's consequence of failure (CoF). This CoF metric can be used to 

ensure organizations are funding the most critical projects to support their overall 

objectives (Savatgy et al. 2019). The fuzzy logic-based architecture proposed here is an 

extension of  DePalmer et al.'s framework and case study of the U.S. Air Force's Mission 
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Dependency Index (MDI) metric (DePalmer et al. 2021). This research is intended to 

improve the previous project prioritization methodology and aid with risk-based decision 

support. The inter-Dependency values added to the methodology create openings for the 

CoF score to change as risk information is aggregated from senior-level departments. These 

additions eliminate the need for the Air Force's subjective priority point ranking as part of 

the CoF metric while simultaneously improving the project prioritization methodology to 

be more accurate and less biased. 

 

Cognitive biases, individual decision styles, and risk attitude can all plague technology-

oriented methodologies used for decision support (Phillips-Wren et al. 2019; Power et al. 

2019; Tversky and Kahneman 1974, 1992). These individual influences can cause users to 

choose sub-optimal decisions, which lead to wasted resources or unnecessary facility 

failure of vulnerable, unfunded projects. The previous methodology was improved by 

considering these individual biases and determining the possible effects personal risk 

attitude can have on desired results. These results established acceptable risk thresholds 

that can identify increased education needs, flag extreme responses, or identify portfolio 

groups with unbalanced risk profiles.  

 

Portfolio managers and campus leaders need to ensure limited resources are allocated 

appropriately to campus construction and sustainment projects. Decision-makers need to 

understand how a facility plays a role in an organization's objectives at all department 

levels while maximizing the value of information collected and minimizing the time, 

resources, and complexity required to compare and prioritize projects. The tactical, 
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operational, and strategic MDI metric produced by this system is simple and repeatable 

and can be used for applications other than project prioritization like balancing the overall 

risk profile of a location. Decision support tools need to consider how personal biases and 

attitudes can affect the responses, and quality control specialists must create simple 

methods to quickly vet responses. This novel framework integrates senior-level department 

knowledge with a previously created risk assessment methodology to produce a facility 

prioritization method that meets the needs of decision-makers, portfolio managers, and 

campus leadership.  
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IV. Conclusions and Recommendations 

Assumptions/Limitations 

Fuzzy logic enables computing with words, and this methodology creates an algorithm that 

converts linguistic variables into realistic results with imprecise data and expert's logical 

inferences (Lee 1990; Zadeh 1999). Therefore, the FIS results are heavily dependent on the 

expert opinions used to calibrate the FIS. There is an assumption that the system, as 

parameterized in this thesis, is built to the organization's satisfaction (Nelson 2019). 

Although the authors designed the membership functions and risk levels of this framework 

with realism in mind, AFIMSC must determine the tactical, operational, and strategic level 

inputs needed to determine the MDI. An MDI focus group of stakeholders with various 

facility management, risk, and tactical, operational, or strategic mission experience can 

quickly validate assumptions and determine requirements for the system.  

Table 8 shows the steps needed to replace the assumptions made for this framework.  

Table 8. Table of Assumptions 

Framework Step Assumption AFIMSC Determines 
Establish membership 
functions for inputs  

Input Variables 
 

Linguistic Variable 
Linguistic Terms 
Universe of Discourse 

 Input Membership 
Functions 

Fuzzy Set Range 
Function Shape 

   
Establish membership 
functions for outputs  

Output Variables  Linguistic Variable 
Linguistic Terms 
Universe of Discourse 

 Output Membership 
Functions 

Fuzzy Set Range 
Function Shape 

   
Establish rules for the 
fuzzy system 

Rules Inference Type  
Expert Rules  
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Defuzzification Method 
   
Evaluate outputs 
graphically 

Validate Fuzzy Risk 
Surface 

System Surface Accurately 
Represents MDI   

 Validate Response  Responses Fit Required Need  
-True Responses/Data 
or Expected 
Distribution of 
Responses 

 

AFIMSC provided survey results from the four-by-four TMDI matrix (Figure 1); however, 

the actual crisp inputs used in the FIS are unknown, and chosen distributions were assumed 

to simulate risk attitude. In Chapter 2, a neutral risk attitude was assumed for the subjective 

inputs Interruptability and Replicability. These responses were varied in Chapter 3 using 

triangular distributions to show how different risk attitudes can affect system outputs. 

These assumptions could be limiting if the true responses do not match the simulated 

responses used to validate the outputs and build the system. Actual survey responses would 

be used as crisp inputs to and change the results of this research. AFIMSC's focus group 

can use these simulated responses or risk attitude distributions to test the system and ensure 

the outputs align with their objectives or identify unacceptable thresholds for their process.  

 

An additional limitation identified by this research is the need to protect SMDI and OMDI 

data for national security reasons. Directly linking specific assets to an operational or 

strategic priority may provide an adversary a list of critical nodes. This threat can incur 

additional costs from the added security needed to protect data and clear access to vetted 

individuals for use. A classified military information status may limit the MDI metric's 

wide-spread application and useability (AFIMSC 2020). 
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Conclusions of Research 

This research investigated the new tactical MDI re-baselining effort by AFIMSC and the 

opportunities for improvement by applying fuzzy logic. Three investigation questions were 

studied in this research: 

 

Investigative Question 1: Is fuzzy logic an appropriate methodology for calculating 

MDI?  

Although the Air Force's current process to quantify the MDI is valid, it can be improved 

to reduce the imprecision, uncertainty, and bias by integrating the existing traditional risk 

matrix with a modernized fuzzy inference system. Fuzzy logic can combine the MDI's 

descriptive linguistic terms and imprecise data with the Air Force's value and respect for 

expert knowledge to create tangible results. A fuzzy system can capture the uncertainty 

between the risk matrix categories and can be customized to fit the user's needs. The 

products of a fuzzy inference system can be used for prioritization and risk assessments, 

with the opportunity to expand the system boundaries and include new inputs for 

computing operational and strategic level MDI. Assessing the viability of using fuzzy logic 

for risk assessment was further investigated in Chapter 2. The literature review in Chapter 

2 revealed fuzzy logic as an appropriate methodology to integrate with risk assessments, 

prioritization methodologies, and risk matrices because of their imprecise nature and use 

of linguistic variables for better understanding of results. Fuzzy logic has also been 

explicitly applied to military operational risk planning (Nelson 2019). The benefits of using 
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fuzzy logic include the system's customizability to reflect the Air Force's needs and 

flexibility to changing operational priorities without additional complexities for decision-

makers.  

 

Investigative Question 2: What is an appropriate framework for a Fuzzy Inference 

System (FIS) that could enable assessments of mission risk? 

The fuzzy tactical MDI framework was built with AFIMSC's original MDI re-baselining 

matrix as the foundation to determine the rules, variables, and membership functions, as 

seen in Chapter 2. The original four-by-four matrix was expanded to increase the range of 

possible MDI scores and eliminate the need for re-scoring assets below 40. Dependency 

was added as an input variable to show the ease of flexibility and add dimensionality to the 

system. Initial MDI survey results were normally distributed to capture the uncertainty 

between categories and produce realistic results for system validation. The different risk 

surfaces can be compared in Figure 18, which shows the additional resolution able to be 

achieved when using a fuzzy inference system rather than a traditional risk matrix.  
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Figure 18. a (left) AFIMSC's TMDI risk matrix surface as compared to b (right) the 

proposed fuzzy TMDI surface at Dependency = 0.5 

 In Chapter 3, the authors expanded the MDI metric beyond the original matrix to explore 

the opportunities to quantify MDI at the operational and strategic levels. This framework 

produced a series of FISs that used Interruptability, Replicability, and Dependency to 

output TMDI, OMDI, and SMDI scores. Although Chapter 2 and Chapter 3 propose a 

framework that assesses a facility's failure risk to mission, the framework must be 

calibrated by AFIMSC to produce realistic results. Calibration requirements can be seen in  

Table 8 and should be determined by Air Force facility management, risk, and mission 

experts. The calibrated system requirements should be included in future research on this 

topic.  

 



97 

Investigative Question 3: How can fuzzy logic be used to expand MDI to enable 

participation by stakeholders from all levels of the organizational hierarchy, e.g., 

operational and strategic level? 

Chapter 3 investigates the opportunity to expand the MDI to include operational and 

strategic level influence. The research suggests that fuzzy logic is a methodology that is 

capable of adding assessment criteria without increasing the complexity of understanding 

the results to decision-makers. This research illustrates this by increasing the informational 

depth at the tactical level with Inter-Dependency in Chapter 2 and increasing the breadth 

with Intra-Dependency information at the strategic and operational level in Chapter 3. 

These additional variables were quickly incorporated into the system, expanding MDI's 

dimensionality without complicating the results for decision-makers. The framework in 

Chapter 3 includes operational and strategic knowledge to produce OMDI and SMDI 

results. Still, these variables could all be independent input variables for a single system 

merging tactical, operational, and strategic facility data to produce one MDI metric. The 

authors did not research this single-output-architecture due to stakeholder requests for 

individual MDI scores at each hierarchy level. The ability to include additional meaningful 

information without further taxation of decision-maker resources is vital to keep the 

process simple and repeatable across the entire Air Force or similarly motivated 

organizations. A significant limitation to the operational and strategic expansion in the Air 

Force is the need to protect the operational and strategic level data from adversaries.  
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Significance of Research  

Air Force operational risk managers need a reliable methodology to accurately assess the 

consequence of a facility's failure to strategic objectives and ensure resources are 

prioritized for the highest-risk projects. The procedure should be a simple and repeatable 

process that takes into account tactical, operational, and strategic level knowledge about 

the facility and the mission it enables. The process needs to be resilient to human decision-

making biases and risk attitude as well as MDI inflation. This research provides a novel 

framework for using fuzzy logic to assess risk and quantify the relationship between a 

facility and the enabled functions.  

 

Unlike traditional risk matrices, fuzzy logic can capture the uncertainties between 

categorical input classes and use them to determine a low-cost, robust solution. Without 

capturing uncertainty between categories, the traditional risk matrix produces risk ties that 

do not provide the resolution needed to distinguish between facilities when decision-

making differences exist. For example, if two facilities have a Replicability of "Extremely 

Difficult", but Facility A has an Interruptability requirement of a 30-minute response, and 

Facility B needs just under a 24-hour response, both facilities fall within the "Brief" 

category. The risk matrix (Figure 1) would give both of these facilities an MDI of 80 when 

clearly, Facility A requires a more critical response than Facility B. Although this example 

is highly simplified, the complexity is increased if a decision-maker is forced to choose 

between many facilities with the same risk score. This process becomes even more difficult 

or impossible without the tactical-level knowledge needed to differentiate multiple 

facilities.  
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This framework can be implemented into Air Force asset management practices as a 

technical backbone for a prioritization methodology or a decision support system. Because 

the MDI is part of AFIMSC's technical project score, risk score ties can cause zones of 

uncertainty when it comes to project authorization. By using a fuzzy logic system, these 

risk ties can be reduced, and the remaining risk ties can be assumed to have an equal 

consequence to the mission. Reducing risk ties and capturing uncertainty allows the 

organization to use the methodology to create meaningful prioritizations with ordinal 

results. This system can be built using MathWork's Fuzzy Logic Toolbox (MathWorks, Inc 

2021) and fed crisp inputs employing data collection from existing Real Property databases 

or mission owner survey responses. 

 

The additional information from the senior-leadership levels and the capture of uncertainty 

within the categories can allow the Air Force to eliminate the use of CATCODE-based 

MDI scores. This update ensures there is no need for an adjudication process due to 

mismatched CATCODE-to-MDI scores. The MDI accurately reflects the facility's 

consequence to the mission at all levels, based on the function rather than the facility type. 

This can also be useful when a location's objectives are changed, such as when a new 

mission is beddown at a base or an old mission is relocated. Previously, these changes 

would require Base Civil Engineers to re-prioritize their facility type codes to align with 

the base's new objectives and re-distribute scores for facilities categorized as "Prolonged" 

Interruptability and "Possible" Replicability. By eliminating the use of CATCODEs within 

the system, the Air Force can eliminate this need for large-scale re-prioritization.  
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The value of an MDI score goes beyond a centralized project prioritization for large scale 

portfolio management. This metric can be used by organization leadership to determine the 

best use of their resources in many different situations. For example, base defense experts 

can use MDI to determine which facilities need additional hardening and threat protection. 

Civil Engineers and communication technicians can use MDI to decide which facilities 

require redundant systems (such as generators or servers) and in what order to distribute 

these resources. Tactical leadership can use MDI to authorize or advocate for decentralized 

funding to sustain, repair, or modernize facilities.  

 

Recommendations for Future Research 

Primarily, this research was limited by the availability of expert knowledge about the true 

MDI membership functions and translating linguistic rules. The resulting framework can 

be calibrated to fit the Air Force's needs after future research determines the real 

membership function class, range, and shape of all input and output variables. Additionally, 

the linguistic rules that translate these inputs to outputs must be attuned to fit the 

organization's desired results. Once the system is calibrated, products can be created to 

update a variable’s information in the system easily. Crisp inputs can be collected by a 

graphical user interface (GUI) with tools like a slider bar for subjective values or direct 

database links to Real Property Inventory Data values, as seen in Figure 19. This interface 

can be customized to fit the organization's needs and reduce the influence from human 

decision-making biases or risk attitudes with personalizations such as hiding the final MDI 

score or junior level Dependency values at higher organizational echelons.  



101 

 

 

Figure 19. Example graphical user interface to collect crisp inputs for the Fuzzy MDI 

methodology. 

 

Secondly, additional research is needed for different organizational hierarchy frameworks. 

The proposed method of a three-tiered organization will not work in all instances. Other 

hierarchical structures with multiple management levels or shared assets will require 

additional future research.  

 

Finally, the Air Force should expand the TMDI metric beyond facilities to other 

infrastructure types such as roads and utilities. These additional infrastructure assets are 

essential to mission success, and facilities are highly dependent on their operations. Future 

researchers should determine if Interruptability, Replicability, and Dependency are still 
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appropriate variables for quantifying the MDI of infrastructure. With these future research 

topics, the Air Force can expand the MDI metric to support better risk-based decision-

making and asset management practices.  
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Appendix A. MATLAB Fuzzy Inference System Code 

[System] 
Name='TMDI' 
Type='mamdani' 
Version=2.0 
NumInputs=3 
NumOutputs=1 
NumRules=75 
AndMethod='min' 
OrMethod='max' 
ImpMethod='min' 
AggMethod='max' 
DefuzzMethod='centroid' 
  
[Input1] 
Name='Interruptability' 
Range=[0 6] 
NumMFs=5 
MF1='No_Impact':'trapmf',[-1 0 1 2] 
MF2='Prolonged':'trimf',[1 2 3] 
MF3='Short':'trimf',[2 3 4] 
MF4='Brief':'trimf',[3 4 5] 
MF5='Immediate':'trapmf',[4 5 6 7] 
  
[Input2] 
Name='Replicability' 
Range=[0 6] 
NumMFs=5 
MF1='Available':'trapmf',[-1 0 1 2] 
MF2='Possible':'trimf',[1 2 3] 
MF3='Difficult':'trimf',[2 3 4] 
MF4='Ex._Difficult':'trimf',[3 4 5] 
MF5='Impossible':'trapmf',[4 5 6 7] 
  
[Input3] 
Name='Dependency' 
Range=[0 1] 
NumMFs=3 
MF1='Low':'trapmf',[-0.3 0 0.2 0.4] 
MF2='Medium':'trapmf',[0.2 0.4 0.6 0.8] 
MF3='High':'trapmf',[0.6 0.8 1 1.3] 
  
[Output1] 
Name='TMDI' 
Range=[-25 125] 
NumMFs=5 
MF1='Very_Low':'trimf',[-25 0 25] 
MF2='Low':'trimf',[0 25 50] 
MF3='Medium':'trimf',[25 50 75] 
MF4='High':'trimf',[50 75 100] 
MF5='Very_High':'trimf',[75 100 125] 
  
[Rules] 
1 1 2, 1 (1) : 1 
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1 2 2, 2 (1) : 1 
1 3 2, 2 (1) : 1 
1 4 2, 3 (1) : 1 
1 5 2, 3 (1) : 1 
2 1 2, 2 (1) : 1 
2 2 2, 2 (1) : 1 
2 3 2, 3 (1) : 1 
2 4 2, 3 (1) : 1 
2 5 2, 4 (1) : 1 
3 1 2, 2 (1) : 1 
3 2 2, 3 (1) : 1 
3 3 2, 3 (1) : 1 
3 4 2, 4 (1) : 1 
3 5 2, 4 (1) : 1 
4 1 2, 3 (1) : 1 
4 2 2, 3 (1) : 1 
4 3 2, 4 (1) : 1 
4 4 2, 4 (1) : 1 
4 5 2, 5 (1) : 1 
5 1 2, 3 (1) : 1 
5 2 2, 4 (1) : 1 
5 3 2, 4 (1) : 1 
5 4 2, 5 (1) : 1 
5 5 2, 5 (1) : 1 
1 1 1, 1 (1) : 1 
1 2 1, 1 (1) : 1 
1 3 1, 2 (1) : 1 
1 4 1, 2 (1) : 1 
1 5 1, 3 (1) : 1 
2 1 1, 1 (1) : 1 
2 2 1, 2 (1) : 1 
2 3 1, 2 (1) : 1 
2 4 1, 3 (1) : 1 
2 5 1, 3 (1) : 1 
3 1 1, 2 (1) : 1 
3 2 1, 2 (1) : 1 
3 3 1, 3 (1) : 1 
3 4 1, 3 (1) : 1 
3 5 1, 4 (1) : 1 
4 1 1, 2 (1) : 1 
4 2 1, 3 (1) : 1 
4 3 1, 3 (1) : 1 
4 4 1, 4 (1) : 1 
4 5 1, 4 (1) : 1 
5 1 1, 3 (1) : 1 
5 2 1, 3 (1) : 1 
5 3 1, 4 (1) : 1 
5 4 1, 4 (1) : 1 
5 5 1, 5 (1) : 1 
1 1 3, 2 (1) : 1 
1 2 3, 2 (1) : 1 
1 3 3, 3 (1) : 1 
1 4 3, 3 (1) : 1 
1 5 3, 4 (1) : 1 
2 1 3, 2 (1) : 1 
2 2 3, 3 (1) : 1 
2 3 3, 3 (1) : 1 
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2 4 3, 4 (1) : 1 
2 5 3, 4 (1) : 1 
3 1 3, 3 (1) : 1 
3 2 3, 3 (1) : 1 
3 3 3, 4 (1) : 1 
3 4 3, 4 (1) : 1 
3 5 3, 5 (1) : 1 
4 1 3, 3 (1) : 1 
4 2 3, 4 (1) : 1 
4 3 3, 4 (1) : 1 
4 4 3, 5 (1) : 1 
4 5 3, 5 (1) : 1 
5 1 3, 4 (1) : 1 
5 2 3, 4 (1) : 1 
5 3 3, 5 (1) : 1 
5 4 3, 5 (1) : 1 
5 5 3, 5 (1) : 1 
 
[System] 
Name='OMDI' 
Type='mamdani' 
Version=2.0 
NumInputs=2 
NumOutputs=1 
NumRules=15 
AndMethod='min' 
OrMethod='max' 
ImpMethod='min' 
AggMethod='max' 
DefuzzMethod='centroid' 
  
[Input1] 
Name='TMDI' 
Range=[0 100] 
NumMFs=5 
MF1='Very_Low':'trimf',[-25 0 25] 
MF2='Low':'trimf',[0 25 50] 
MF3='Medium':'trimf',[25 50 75] 
MF4='High':'trimf',[50 75 100] 
MF5='Very_High':'trimf',[75 100 125] 
  
[Input2] 
Name='Dependency' 
Range=[0 1] 
NumMFs=3 
MF1='Low':'trapmf',[-0.1 0 0.2 0.4] 
MF2='Medium':'trapmf',[0.2 0.4 0.6 0.8] 
MF3='High':'trapmf',[0.6 0.8 1 1.2] 
  
[Output1] 
Name='OMDI' 
Range=[-25 125] 
NumMFs=5 
MF1='Very_Low':'trimf',[-25 0 25] 
MF2='Low':'trimf',[0 25 50] 
MF3='Medium':'trimf',[25 50 75] 
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MF4='High':'trimf',[50 75 100] 
MF5='Very_High':'trimf',[75 100 125] 
  
[Rules] 
1 1, 1 (1) : 1 
2 1, 1 (1) : 1 
3 1, 2 (1) : 1 
4 1, 3 (1) : 1 
5 1, 4 (1) : 1 
1 2, 1 (1) : 1 
2 2, 2 (1) : 1 
3 2, 3 (1) : 1 
4 2, 4 (1) : 1 
5 2, 5 (1) : 1 
1 3, 2 (1) : 1 
2 3, 3 (1) : 1 
3 3, 4 (1) : 1 
4 3, 5 (1) : 1 
5 3, 5 (1) : 1 
 
[System] 
Name='SMDI' 
Type='mamdani' 
Version=2.0 
NumInputs=2 
NumOutputs=1 
NumRules=15 
AndMethod='min' 
OrMethod='max' 
ImpMethod='min' 
AggMethod='max' 
DefuzzMethod='centroid' 
  
[Input1] 
Name='OMDI' 
Range=[0 100] 
NumMFs=5 
MF1='Very_Low':'trimf',[-25 0 25] 
MF2='Low':'trimf',[0 25 50] 
MF3='Medium':'trimf',[25 50 75] 
MF4='High':'trimf',[50 75 100] 
MF5='Very_High':'trimf',[75 100 125] 
  
[Input2] 
Name='Dependency' 
Range=[0 1] 
NumMFs=3 
MF1='Low':'trapmf',[-0.1 0 0.2 0.4] 
MF2='Medium':'trapmf',[0.2 0.4 0.6 0.8] 
MF3='High':'trapmf',[0.6 0.8 1 1.2] 
  
[Output1] 
Name='SMDI' 
Range=[-25 125] 
NumMFs=5 
MF1='Very_Low':'trimf',[-25 0 25] 
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MF2='Low':'trimf',[0 25 50] 
MF3='Medium':'trimf',[25 50 75] 
MF4='High':'trimf',[50 75 100] 
MF5='Very_High':'trimf',[75 100 125] 
  
[Rules] 
1 1, 1 (1) : 1 
2 1, 2 (1) : 1 
3 1, 3 (1) : 1 
4 1, 3 (1) : 1 
5 1, 4 (1) : 1 
1 2, 2 (1) : 1 
2 2, 3 (1) : 1 
3 2, 3 (1) : 1 
4 2, 4 (1) : 1 
5 2, 4 (1) : 1 
1 3, 3 (1) : 1 
2 3, 4 (1) : 1 
3 3, 4 (1) : 1 
4 3, 5 (1) : 1 
5 3, 5 (1) : 1 
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