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Abstract

Air Force weather squadrons are required by Air Force Instruction 91-203 (AFI

91-203) to issue a warning when lightning activity is observed within 5 nautical miles

(NM) of areas under their jurisdiction. Upon receiving this warning, personnel out-

doors are expected to pause activities, move indoors, and wait until the warning is

cleared. Studies sponsored by the 45th Weather Squadron (45 WS) have concluded

that the 5 NM warning radius can be reduced for well-developed storms while main-

taining an appropriate level of safety. This thesis investigates whether radii for storms

that are in early development can also be reduced. The research presented here de-

velops algorithms to partition lightning sensor data into storms. Next, storms are

filtered to their earliest lightning events, and the study calculates distances of early

lightning observations both from the origin point of the storm and between successive

observations, with the latter forming the basis of our conclusions. Analysis indicates

that 4.02% of lightning events during the first 30 seconds of a storm occur more than 4

NM away from the previous event, and 2.11% occur more than 5 NM away. Because

these percentages are smaller than the equivalent values for well-developed storms

from Sanderson (2019), we conclude that her recommended lightning warning radius

of 4 NM is valid for developing storms as well.

iv
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BEHAVIOR OF LIGHTNING IN DEVELOPING STORMS

I. Introduction

1.1 Motivation and Background

Lightning contributes significant challenges to the process of preparing and exe-

cuting space launches. Safety procedures require that outdoors work cease when a

lightning warning is issued, and this work stoppage can cost valuable space launch

preparation time in areas prone to storms. For example, Central Florida, home of

the Cape Canaveral Space Force Station (CCSFS) and NASA Kennedy Space Center

(KSC), has historically received an average of over 2,500 watches and warnings per

year, each halting work for a minimum of 20 minutes (Roeder et al., 2017). The goal

of this thesis is to examine potential adjustments to the criteria for lightning warn-

ings, with the goal of “buying back” some of this working time while still adhering

to safety standards.

The 45th Weather Squadron (45 WS) provides weather forecasting and lightning

warnings to several key space launch facilities in the Central Florida region, including

the KSC. The KSC must be concerned both with personnel working outdoors in

preparation for a launch, and also with the effects of lightning on spacecraft during a

planned launch (Tamurian et al., 2012). The 45 WS defines their area of responsibility

with lightning warning radii centered on twelve protected facilities. Areas protecting

a single facility or closely spaced facilities have a 5 nautical mile (NM) radius, while

areas protecting a large facility or a collection of more widely spread facilities have a

6 NM radius (Roeder et al., 2017; Hinkley et al., 2019). If lightning occurs inside any
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of these areas, then the 45 WS will issue a warning, and launch preparation must stop

as workers seek shelter from potential further strikes. The radii for these areas are

derived from Air Force Instruction 91-203, which, in turn, derives the standard 5 NM

warning radius from studies performed after the death of an Airman due to lightning

in 1996 (Department of the Air Force, 2012; Renner, 1998; Cox, 1999; McNamara,

2002). See Ceschini (2013) for a recent study on potential changes to KSC warning

areas.

Sanderson (2019) and Hinkley et al. (2019) investigate lightning behavior in the

Central Florida region, and each concludes that the 5 NM and 6 NM warning radii

may both be safely decreased to 4 NM. On average, this change saves approximately

180 man-hours and 181 false alarms over five months, measured from May through

September each year (Sanderson, 2019), the lightning season in Central Florida. Both

studies rely mainly on measuring the distance distribution of lightning beyond a pre-

existing area.

In the earliest moments of a storm’s life, however, when only a few lightning events

have been observed, any “pre-existing area” one might calculate will be subject to

rapid, substantial change as the storm moves and expands. During this period, we

say we have a developing, or “early”, storm. For developing storms, we are uncertain

of the degree to which research from Sanderson (2019) or Hinkley et al. (2019) using

pre-existing storm areas is applicable. Sanderson (2019) does additionally investigate

distance distributions for developing storms; her results are promising, indicating

that a 4 NM lightning warning radius remains applicable with regard to developing

storms. Since she explores developing storms only as a secondary research topic,

however, we seek to study this topic in greater depth. Additionally, Sanderson (2019)

and Hinkley et al. (2019) perform their research using data from the Lightning Detec-

tion and Ranging System (LDAR); since the completion of their research, data from

2



the newer Mesoscale Eastern Range Lightning Information System (MERLIN) has

become available for study (Roeder and Saul, 2017). MERLIN’s improved reliability

and precision over LDAR present an opportunity to increase our confidence in the

results of our research.

Our primary research question is thus: how are lightning flashes in a developing

storm distributed? Conclusions from Sanderson (2019) and Hinkley et al. (2019)

provide support for a revised weather warning policy that reduces work interruptions

while still adhering to lightning safety regulations; we are interested in whether we

can further reduce the lightning warning radii for developing storms to achieve even

greater gains.

1.2 Approach Summary

We adopt a two-phased approach to our research question. In the first phase, we

perform clustering analysis on the raw data to partition the records into storms. Once

the storms are identified, we are able to move into the second phase, where we extract

and analyze records that represent lightning in developing storms. In particular, we

seek to estimate the distribution of distances between successive lightning events in

a developing storm, allowing us to study the safety impact of reducing the lightning

warning radius from the current 5 NM or 6 NM. If, for example, the distance between

successive events is beyond 4 NM with a low enough probability – e.g. a probability

at least as low as for pre-existing areas from Sanderson (2019) – this will indicate

that 4 NM represents a safe lightning warning radius.

We begin Phase 1 with lightning data provided by the 45 WS from MERLIN. This

data set contains the date, time, and location of 55.7 million lightning events, includ-

ing lightning aloft and cloud-to-ground lightning. This is raw data, however, and does

not identify which events belong to what storms. We therefore spend Phase 1 devel-
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oping and implementing algorithms to identify storms in the data. Our algorithms

include a pairwise comparison algorithm, a grid-based algorithm, and a dynamic clus-

tering algorithm developed by Hyde and Angelov (2015), named Clustering of Online

Data Streams (CODAS). The pairwise comparison algorithm is projected from our

experiments to require about two weeks to process the data set. This is too slow for

our purposes, as the algorithm additionally requires testing parameters over many

runs. The grid algorithm is a heuristic; it is capable of processing the MERLIN data

much faster, but it sacrifices accuracy in exchange and is prohibitively difficult to test

in the time available to us. CODAS falls between the others in terms of run time,

is much easier to optimize than either, and avoids the accuracy issues inherent in

the grid algorithm. We implement a version of CODAS and use it to create storm

identifiers for each lightning event in our data set over four days of computational

run time.

We begin Phase 2 of our study by filtering the observational data from each storm

to examine only the earliest events of each storm. We can filter by capturing the

first n records from each storm or by capturing the first t seconds of lightning data.

Next, we calculate each remaining lightning event’s geographical distance from its

storm “origin,” (i.e. the first lightning event in the same storm), as well as the

distance between successive events. Using descriptive statistical techniques, we can

estimate the probability that early lightning exceeds a threshold of 4 NM from the

storm origin or the previous lightning event. We can then compare this with the

equivalent probability for 5 NM and 6 NM; if the increase in probability is minimal,

then this result supports the conclusion that existing lightning warning radii may be

safely reduced. We can also compare the probability of exceeding selected distances

with the probability of exceeding the same distances in Sanderson’s distribution for

well-developed storms. If our probabilities are smaller than Sanderson’s equivalents,

4



then this supports the conclusion that her recommended lightning warning radius of

4 NM is applicable to early lightning.

1.3 Thesis Overview

The remainder of this thesis is organized as follows. Chapter II describes re-

lated research to provide context regarding lightning detection equipment and the

current understanding of lightning physics and distributions in the scientific commu-

nity. There is substantial support for a 4 NM lightning warning radius with regard to

well-developed storms, but research on developing storms is lacking. Chapter III ex-

plains algorithms developed in the pursuit of identifying storms and assigning storm

IDs to lightning observations; we select CODAS for its speed and robustness. Chap-

ter IV presents our efforts to filter storm data and analyze the distances of early

lightning events; we find that only 5.57% of lightning events occur beyond 4 NM

of the previous lightning event in developing storms. Chapter V presents our con-

clusions, recommendations, and proposals for future research; since the probability

of lightning exceeding 4 NM or 5 NM is lower than for distributions developed by

Sanderson (2019), we conclude that 4 NM is an acceptable lightning warning radius

for developing storms.
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II. Literature Review

This chapter introduces lightning detection systems and existing research on light-

ning distributions, with an aim toward establishing a knowledge base that will provide

context and aid in our research.

2.1 Lightning Detection Systems

Systems that have provided lightning data for use in past studies include Weather

Surveillance Radar (WSR-88D; Renner, 1998; Cox, 1999); the National Lightning

Detection Network (NLDN; Lopez and Holle, 1999; Parsons, 2000; McNamara, 2002;

Holle et al., 2016; Roeder et al., 2017), and the Four-Dimensional Lightning Surveil-

lance System (4DLSS; Boyd et al., 2005; Murphy et al., 2008; Tamurian et al., 2012;

Hinkley et al., 2019; Sanderson, 2019), consisting of the Cloud-to-Ground Light-

ning Surveillance System (CGLSS) and the Lightning Detection and Ranging System

(LDAR). More recently, the Mesoscale Eastern Range Lightning Information System

(MERLIN) has come online and begun producing the lightning data used in our own

research.

To provide context for relevant studies, we briefly describe these weather detection

systems. WSR-88D is a Doppler radar system; it works by detecting precipitation

rather than electrical activity, and gathers data on storm reflectivity, mean radial

velocity, and spectrum width (Renner, 1998). These data can be used to identify

storms and, by proxy, cloud-to-ground (CG) lightning strikes, enabling calculation of

the distances of CG lightning strikes from storm centroids (Renner, 1998).

However, lightning can be observed more precisely and reliably through the direct

detection of electrical activity. Streamer theory explains how lightning is formed from

paths of least electrical inductance (Horvath, 2006). Essentially, “stepped leaders”,
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or thin channels of electric current that ionize gases, branch outward and sometimes

downward from a cloud. When a stepped leader makes contact with a suitable conduc-

tor, it forms a path along which electrical current discharges in the opposite direction,

producing the lightning we are accustomed to seeing. This discharge is referred to as

a “return stroke” for CG lightning (Horvath, 2006), or a “recoil leader” for lightning

aloft (Roeder and Saul, 2017). Modern systems can measure lightning directly by

detecting stepped leaders, return strokes, and recoil leaders.

NLDN is owned by Vaisala, and along with the remaining systems described here,

it detects electrical activity. Its IMPoved Accuracy from Combined Technology (IM-

PACT) sensors capture primarily CG lightning return strokes (Parsons, 2000; Zogh-

zoghy et al., 2014), recording the time, polarity, signal strength, and number of strokes

of each observed CG lightning flash (Tamurian et al., 2012). In 2013, NLDN was up-

graded to be able to additionally detect the time and location of lightning flashes

aloft with about 50% detection efficiency (i.e. true positive rate; Holle et al.; Roeder

and Saul, 2016; 2017).

4DLSS uses two sensor suites to detect total lightning. Of these, CGLSS uses

the same IMPACT sensors as NLDN, but its sensors are closer together than NLDN,

resulting in greater sensitivity and location accuracy (Boyd et al., 2005; Murphy

et al., 2008; Tamurian et al., 2012). These are also primarily used for CG lightning

detection. LDAR is yet more precise, but uses stepped leaders to detect lightning

aloft, and does not directly detect CG lightning (Murphy et al., 2008; Tamurian et al.,

2012; Sanderson, 2019).

MERLIN, similar to 4DLSS, is a total lightning detection system serving the

Kennedy Space Center and surrounding area (Roeder and Saul, 2017). Its primary

sensor, the Total Lightning Sensor Model-200 (TLS-200), serves the combined purpose

of both of 4DLSS’s sensor suites, detecting both lightning aloft and CG lightning
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(Roeder and Saul, 2017). The TLS-200 yields improved location accuracy, recording

the location of lightning activity to within 58 meters compared with 350 meters for

4DLSS. TLS-200 sensors additionally detect recoil leaders instead of stepped leaders

for lightning aloft, greatly reducing the number of points that may be considered

redundant when studying lightning flashes. The MERLIN system contains ten TLS-

200 sensors, located as in Figure 2.1a. Ten NLDN sensors (shown in Figure 2.1b) are

additionally integrated into the MERLIN system to increase its effective range for

CG lightning.

(a) Location of MERLIN’s 10 TLS-200 sensors in and
around the Kennedy Space Center.

(b) Location of the in-range NLDN sensors in-
tegrated into MERLIN for cloud-to-ground return
stroke solutions.

Figure 2.1. Locations of sensors comprising the MERLIN network (Roeder and Saul,
2017).

Another key benefit of MERLIN is that it produces many fewer redundant ob-

servations of lightning aloft than its predecessor, 4DLSS. The 4DLSS system detects

lightning aloft using stepped leaders, which are plentiful for a given flash and have

a low signal-to-noise ratio. For these reasons, the 4DLSS system must collect many

individual stepped leader signals and aggregate them to detect each actual lightning
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flash. Thus, past studies typically aggregate individual data records into flashes (Cox,

1999; Parsons, 2000; Hinkley et al., 2019; Sanderson, 2019). Because MERLIN’s TLS-

200 sensors instead detect recoil leaders, which are much sparser for a given flash and

have a much stronger signal-to-noise ratio, we do not perform this aggregation, but

instead treat each record as a lightning flash.

2.2 Lightning Distance From Storm Centroids

In 1996, lightning struck eight minutes after the expiration of a lightning advisory,

killing an Airman and injuring 10 others. This event prompted multiple research

efforts regarding the safety of lightning warning and advisory practices (Renner, 1998;

Cox, 1999; McNamara, 2002).

McNamara and Renner both study the horizontal distance traveled by CG light-

ning on its way to the ground. Renner (1998), using WSR-88D data, concludes that

this distance varies greatly with region and season; McNamara (2002), using LDAR

and NLDN data, concludes that 28.6% of CG lightning flashes travel more than 5

nautical miles (NM) from their point of origin.

Renner (1998) studies the distance of CG lightning strikes from storm centroids,

and states that 75% of CG flashes occur less than 10 NM away; this is further sup-

ported by Bazelyan and Raizer (2000). Cox (1999) expands on Renner’s research,

studying lightning behavior using data from the same WSR-88D systems as Ren-

ner. He calculates storm centroids based on WSR-88D reflectivity measurements and

computes lightning centroids by averaging the positions of lightning flashes clustered

using an algorithm called Distance Between Successive Flashes (DBSF). He then finds

the distances of lightning flashes from associated storm and lightning centroids. Cox

(1999) comes to the conclusion that between 32% and 39% of flashes occur beyond

5 NM of associated storm centroids, and between 18% and 34% occur beyond 5 NM
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of associated lightning centroids.

Parsons (2000) builds upon Cox’s research, performing clustering and analysis

similar to Cox’s DBSF method, but on a much larger data set procured from NLDN.

Parsons builds clusters of flashes that occur within 12 minutes of the first flash in the

set, and within 17 kilometers (km) of each other successively. Parsons (2000) finds

that 21% to 32% of grouped flashes recorded by NLDN occur more than 5 NM from

the centroids of their respective clusters, and 76% to 80% of isolated flashes strike

more than 5 NM from the nearest other flash.

Studies up to this point all seem to indicate that 5 NM is an inadequate lightning

warning radius; however, these studies all measure the distance of lightning from

the center of a storm. In making decisions regarding lightning warnings, weather

squadrons measure from the edges of known storm areas, not from storm centers.

The 45th Weather Squadron (45 WS) therefore began to investigate the distance of

new lightning from a pre-existing storm area’s edge, as opposed to its centroid. This

research was accomplished via two parallel efforts (Hinkley et al., 2019; Sanderson,

2019).

2.3 Lightning Distance From Pre-Existing Storm Areas

Hinkley et al. (2019) use a convex hull algorithm on lightning flashes aggregated

from LDAR data to generate polygons that define pre-existing lightning areas. When

a new lightning flash occurs within a distance threshold of one of these polygons, its

distance from the polygon is recorded, and then the polygon is expanded to include the

new lightning. As new flashes are added, those more than 15 minutes old are phased

out. From the data recorded over the duration of this process, Hinkley et al. (2019)

then calculate the best fit curves for polygon expansion frequency versus distances,

arriving at an exponential decay function. From this function, they calculate an
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optimal lightning warning radius. They recommend a warning radius between 3.857

and 3.988 NM, depending on how lightning activity is aggregated into flashes.

Sanderson (2019) performs a similar analysis on LDAR data, basing the pre-

existing lightning area on a minimum area ellipse surrounding lightning flashes. She

concludes that 4 NM constitutes an optimal lightning warning radius.

Holland (2021) additionally performs an analysis in parallel with our thesis. Her

research is conceptually similar to Sanderson (2019), but operates on MERLIN data.

Her work further supports a 4 NM warning radius for well-developed storms.

Between Holland (2021), Sanderson (2019), and Hinkley et al. (2019), there is

strong support for this new warning radius when applied to well-developed storms.

However, this leaves the question of whether the same can be said for early storms

beginning their life near a protected area, when there is no pre-existing storm area

to measure from. Sanderson (2019) briefly investigates early storms, and using her

elliptical storm areas, she finds that the mean distance from the ellipse center is

3.13 NM for the first 5 flashes of a storm, and 3.53 NM for the first 10 flashes. Her

preliminary results provide support for using a 4 NM lightning warning radius when

the observed lightning is part of a newly developing storm, and not just well-developed

storms moving toward a protected area.

2.4 Lightning at Airports

Outside of these studies sponsored by the 45 WS, most studies for optimizing

lightning warning radii focus on airport safety. An early study examines the effect of

adding lightning aloft to CG data sets (Murphy and Cummins, 2000). Their policy

is to issue a warning if any lightning is detected within a large radius RBig, and have

everyone stay inside until 15 mins after the last lightning to occur within RBig. They

want a high probability that a warning will be issued at least two minutes prior to
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the first CG strike within a smaller radius rsmall = 4.8 km, and no strikes inside

rsmall after releasing the warning. They consider the probability of detection (POD),

failure to warn (FTW = 1-POD2), and false alarm rate (FAR). They also consider

the percent of time spent under valid warnings versus under false alarms. A larger

warning radius yields a higher POD and higher FAR.

Holle et al. (2014) investigate upgrades to NLDN, including upgraded CC lightning

detection; they find that the upgrades yield a flash detection efficiency of about 50%,

compared with the previous efficiency of between 15% and 25%. In light of this, Holle

et al. (2016) seek to determine the value of adding lightning aloft to CG lightning

data to improve lightning warnings, and find that doing so improves the 2-minute

POD by 13% compared with CG lightning only. Holle et al. (2016) also consider

decreasing the inner warning radius (where CG lightning detection is poor) from 4.8

km to 0.5 km; this increases POD to 0.90, but also generates a substantial increase

in the FAR.

2.5 Summary and Contributions

Holle et al. (2014) and Holle et al. (2016) support the value of including lightning

aloft in lightning distribution research and warning procedures. They further support

that a large disparity between the size of lightning warning radii and the size of the

encompassed facilities (as modeled by smaller “inner” warning radii) improves the

probability of detecting lighting before facilities are struck, but also increases the rate

of false alarms. Renner (1998), Cox (1999), and Parsons (2000) each conclude that

a significant portion of lightning flashes fall more than 5 NM from their respective

storm centroids. Sanderson (2019) and Hinkley et al. (2019) each find much shorter

lightning distances by calculating from the edge of a pre-existing storm area, in better

keeping with the way weather squadrons make lightning warning decisions. Sanderson
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and Hinkley et al. provide strong support for the safety of a 4 NM lightning warning

radius when applied to well-developed storms, and Sanderson’s work additionally

supports this for storms in early development.

Developing storms remain an area of interest, however; Sanderson (2019) is the

only known work to differentiate early storms from well-developed storms, and does so

as a secondary topic of interest. Additionally, MERLIN’s advanced sensors present

fresh opportunities for improving our understanding of lightning distance distribu-

tions, both for early lightning and in general. Our research uses MERLIN lightning

data to explore the distance distributions of lightning events in developing storms,

with the aim of investigating the optimal lightning warning radius for developing

storms and whether this radius differs from that of well-developed storms. In the

following chapters, we will begin to explore the nature of early storms in greater

depth.
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III. Storm Identification

3.1 Introduction

The 45th Weather Squadron (45 WS) provides the data used for this research,

sourced from the Mesoscale Eastern Range Lightning Information System (MERLIN)

in Central Florida. MERLIN sensors record the time and location of each observation

of lightning activity. The data set contains 55.7 million lightning events observed

between May 2019 and September 2019; Table 3.1 provides a sample of the data.

Each record includes the time (formatted as seconds since 1 January 1970, or “since

epoch”), latitude, and longitude of an observed lightning event. The MERLIN data

set includes separate files for lightning aloft and cloud-to-ground lightning. We merge

these into a single file, so that our study examines total lightning data. Notably, the

provided data does not include storm identification labels. Associating lightning

events with storms is essential to the study of lightning in developing storms, so the

first part of our study focuses on assigning these storm labels.

Table 3.1. Example of input data formatting. The DateTime column has been formatted to
represent seconds elapsed since 1 January 1970.

DateTime Latitude Longitude
1556808217.833 26.9517 -81.4851
1556808217.857 26.9674 -81.4758
1556808217.988 26.9802 -81.4698
1556808341.512 27.0024 -81.4612
1556810579.614 27.295 -81.1728

For our study, a storm is defined as a group of lightning events that are densely

packed in space and time, relative to the surrounding area. Using this definition,

identifying the storms from the lightning data is non-trivial. When multiple storms

occur at the same time, data points observed from each are intermixed in the data.

Further, storms that begin their lives in separate geographical regions may later col-
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lide with each other, effectively becoming one storm. In short, storms do not occur

uniformly, one after another; thus, data representing the beginnings of storms cannot

be identified via simple aggregation, as when grouping the data by date. In addi-

tion, the size of the data set precludes identifying storms manually. An algorithmic

approach is required.

In this chapter we consider three different approaches for grouping the lightning

events into storms: pairwise comparison, a grid-based algorithm, and an online clus-

tering algorithm. Pairwise comparison is straightforward in concept, but we show

that the quality of the output is overly sensitive to user-input parameters, and the

algorithm is too computationally slow to be practical. A grid-based algorithm has

the potential to run much faster, but at the cost of accuracy. Its run time and output

quality appear to be inversely related, and achieving the best balance requires opti-

mizing four parameters simultaneously. Time constraints would not allow us to fully

implement this grid algorithm and perform the necessary parameter optimization.

Clustering of Online Data Streams (CODAS), an algorithm published by Hyde and

Angelov (2015), proves effective for our purposes; it runs more quickly than pairwise

comparison, and its low sensitivity to input parameters allows us to achieve useful

output on the first attempt. An exploration of each algorithm follows.

3.2 Pairwise Comparison

The pairwise comparison approach compares each observation with each other

observation occurring within a specified number of records, searching for the most

recent record occurring within a specified time and distance. In particular, Algorithm

3.1 accepts as input a set of lightning observation records formatted as in Table 3.1

and appends a predecessor ID and storm ID to each record. Storm IDs are assigned

using pairwise comparison, accomplished in two parts. Part 1 (lines 5-18) identifies,
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for each row of data, a predecessor lightning event, if one exists. In Part 2 (lines 20-

27), events with no predecessors are each assigned new storm IDs, and the remaining

events are assigned the storm ID of their predecessor.

Algorithm 3.1 Pairwise Comparison

1: Input: List A of lightning observation records (time since epoch ti, longitude xi,
latitude yi), sorted by ti

2: Parameters: record count threshold C, distance threshold D, time threshold T
3: Output: vector s of storm IDs corresponding to records in A
4:

5: for i from 1 to |A| do
6: Retrieve set S = {max(i− C, 0), ... , i− 2, i− 1}
7: for each j ∈ S do
8: dj =

√
(xi − xj)2 + (yi − yj)2

9: if dj > D then
10: Remove record j from S

11: if S 6= ∅ then
12: Find record k = arg max

j∈S
(tj) . i’s ”predecessor”

13: if ti − tk < T then
14: pi = k . assign predecessor ID
15: else
16: pi = −1 . indicate no predecessor found

17: else
18: pi = −1 . indicate no predecessor found

19:

20: B = ∅
21: s1 = 1
22: for i from 2 to |A| do
23: if pi == −1 then

24: si =
i−1

max
j=1

(sj) + 1 . assign new storm ID

25: else
26: si = spi . copy storm ID from predecessor

27: return s

3.2.1 Algorithm Walkthrough

Algorithm 3.1 begins in line 5 by iterating through lightning observation records

formatted as in Table 3.1 and sorted by time. In line 6, each record i is compared
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with the set S of up to C preceding records:

S =


{i− C, ... , i− 2, i− 1} if i− C > 0

{0, ... , i− 2, i− 1} otherwise.

From this set, lines 7-10 remove any elements j associated with lightning events that

occur more than D nautical miles (NM) away, calculated using the Euclidean (`2)

norm to approximate geographical distance. In lines 11-12, if any records remain in

S, the algorithm finds the most recent and labels it k. Line 13 gets the time difference

between tk and ti and checks it against the time threshold T . If the time difference

falls within T , record i is given predecessor ID k in line 14. If set S is empty or the

time difference ti− tk exceeds our time threshold T , this indicates that any candidate

predecessors were either too far away or too old; in either case, the algorithm assigns

a value indicating that no predecessor was found.

The algorithm can then use predecessor information to assign storm IDs. It iter-

ates through the records a second time. In line 21, the very first record is automat-

ically assigned storm ID s1 = 1. In lines 23-24, if a given record i does not have a

predecessor, it is considered to be the beginning of a new storm. In this case, the

algorithm assigns it a new storm ID according to the formula

si =
i−1

max
j=1

(sj) + 1.

Otherwise, it is considered to be a continuation of an existing storm, and in line 26

it is therefore assigned the same storm ID as its predecessor. The algorithm then

returns the vector s associating storm IDs with each record in A.

17



3.2.2 Algorithm Evaluation

The parameter C limits the number of records being compared with record i on

each iteration, and thus helps to alleviate run time issues. Without this parameter,

the algorithm performs a full pairwise comparison, and the running time grows pro-

hibitively large; in our experiments, it took approximately 2.5 hours to process a file

representing less than 0.02% of the complete data set. By limiting the comparison to

only the previous C = 30 records (a value chosen based on multiple trial runs), the

algorithm was able to process the entire data set over the course of approximately

two weeks. However, this parameter creates a risk of missing valid predecessors, and

therefore of assigning storm IDs incorrectly. We have traded a speed issue for an

accuracy issue.

Further, the algorithm’s output quality is sensitive to input parameters T and D.

By using this algorithm, we effectively define the size of a storm with simple time

and distance cutoffs, and small changes to these cutoffs can dramatically alter the

assignment of storm IDs. If, for example, two dense groups of lightning activity are

6.5 NM from each other at their closest point, then with D = 6.4 we identify them as

two separate storms, but with D = 6.6 we connect them to form a single storm of a

much larger size. It is therefore important to determine the parameter settings that

most accurately define a storm. However, the only method we have for accomplishing

this is to test a wide variety of parameter settings on large data sets (weeks of data,

or millions of records). Even with parameter C limiting comparisons, the run time

for a large data set is prohibitive to this kind of experimentation.

Finally, this algorithm requires access to multiple records at once; this necessitates

a data handling scheme, as the full data set is too large to load into memory at once.

We can divide the data set into batches to be processed separately (e.g. process one

day of lightning data at a time). When we do this, however, the algorithm fails to
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handle the rollover between batches – due to the break when one batch is dropped

from memory and the next is loaded, storms that begin within one batch and continue

into the next are incorrectly identified as two separate storms. We can work around

this rollover issue by formatting the data as a database that we can query, such that

only the records we are actively comparing are loaded in memory. This exacerbates

existing run time issues, however, as it takes significantly longer to perform a database

query than to retrieve information that is already loaded in memory.

Overall, Algorithm 3.1 has the advantage of being fairly straightforward in con-

cept, but it requires too much balancing of accuracy, run time, and memory require-

ments to be effective for large data sets, such as the one we use in this study.

3.3 Grid Algorithm

The grid algorithm presented here is a modification of an algorithm proposed by

Roeder (2020). The original version from Roeder calculates approximate distances of

lightning flashes from pre-existing lightning areas; our modified version in Algorithm

3.2 aggregates lightning observation records into storms.

This algorithm seeks to improve on the run times of existing clustering algorithms

by discretizing the data and replacing the typical Euclidean (`2) distance calcula-

tion with the faster rectilinear or “Taxicab” (`1) norm. In this section, we present

Algorithm 3.2, followed by an example, and then we provide an evaluation.

3.3.1 Algorithm Walkthrough

Before running the algorithm, the user must specify conversion factors U and V

and a time interval T . Parameters U and V are applied to the longitude and latitude

of each point, respectively, to define the dimensions of the spatial grid onto which

lightning events are aligned. For a convenient example, 1 degree (◦) latitude equals
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Algorithm 3.2 Grid Algorithm

1: Input: list A of lightning observation records (time since epoch ti, longitude xi,
latitude yi), sorted by ti

2: Parameters: conversion factors U , V ; time interval T , neighbor threshold L
3: Output: vector s of storm IDs corresponding to records in A
4:

5: DISCRETIZE:
6: timeMin = mini∈A(ti)
7: longMin = mini∈A(xi)
8: latMin = mini∈A(yi)
9: J = (J t, Jx, Jy, Js) . empty table w/ 4 integer cols

10: Jn = ∅ . empty list of sets
11: for each i ∈ A do
12: t = b(ti − timeMin)/T c
13: x = bU(xi − longMin)c
14: y = bV (yi − latMin)c
15: s = −1 . storm ID; −1 indicates no assignment
16: if (t, x, y, s) 6∈ J then
17: Append (t, x, y, s) to J
18: Append singleton set {i} to Jn . map J to A
19: else
20: for j | (t, x, y, s) == Jj do
21: Append i to set Jn

j . map redundant point

22:

23: INITIALIZE:
24: C = ∅ . empty set of graph edges
25: snew = 1 . initial storm ID
26: s = −1 . storm ID vector of length |A|; -1 indicates no assignment
27:

28: function IsNeighbor(integer i, integer j)
29: li = |Jx

i − Jx
j |+ |J

y
i − J

y
j |

30: if li ≤ L then
31: return TRUE
32:
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33: for each t ∈ {J t} do . with distinct, ascending t
34:

35: N = {i | J t
i == t}

36: P = {i | J t
i == t− 1}

37: if P 6= ∅ then D = C else D = ∅
38: C = ∅
39:

40: for each {i, j} such that i 6= j and i, j ∈ N do
41: if IsNeighbor(i, j) then
42: Add edge {i, j} to C if not present

43: for each connected subgraph c(cV , cE) ⊆ G(N,C) do
44: if P 6= ∅ then
45: for each connected subgraph d(dV , dE) ⊆ G(P,D) do
46: for each {i, j} such that i ∈ cV and j ∈ dV do
47: if IsNeighbor(i, j) then
48: for each k ∈ cV do
49: Js

k = Js
j . inherit storm ID

50: continue to next c in line 43
51: for each k ∈ cV do . only executes if no storm ID assigned
52: Js

k = snew . assign new storm ID

53: snew = snew + 1

54:

55: for each i ∈ J do
56: for each j ∈ Jn

i do
57: sj = Js

i

58: return s

60 NM; if, as part of discretizing latitude values, we multiply them by U = 60, we

effectively create a grid that has vertical (latitudinal) increments of 1 NM. Longitude

is more complicated, as the spacing between standard longitudinal lines varies with

latitude. For computational ease, we use the average latitude across the entire data

set to approximate that 1◦ longitude ≈ 51.8 NM for our area of concern. If desired,

we can make further conversions from there. Meanwhile, T defines a window of time

within which lightning events are grouped together. Since we group time windows by

discretizing in a similar manner to the spatial data, it can be said that we snap data

to a three-dimensional grid, with time acting as a third axis.
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Algorithm 3.2 begins in lines 6-14 by discretizing the data according to the for-

mulae

t = b(ti −min
j∈A

(tj))/T c,

x = bU(xi −min
j∈A

(xj))c,

y = bV (yi −min
j∈A

(yj))c.

Here, the “origin” of the discrete grid is defined by subtracting the minimum time,

longitude, and latitude in the data from each record’s coordinates. The grid spacing

is defined by applying T , U , and V , and then the data points are “snapped” to the

grid by truncating the resulting values to integers.

The algorithm eliminates redundant data by storing unique grid coordinates in J

(line 9), and uses Jn (line 10) to map J back to A so that storm IDs can later be

assigned to the original data. In lines 15-21, the algorithm creates a placeholder storm

ID, then combines this with our discretized coordinates to form a record in J , which

tracks cells on the grid that contain data. The algorithm also creates a set within list

Jn to which it adds record index i; the sets in Jn keep track of which records from

the original data are contained within each grid cell. If, upon attempting to add a

record to J , the algorithm finds that a matching record already exists, it simply adds

the original record’s index to the appropriate set in Jn.

In lines 24-26, the algorithm then initializes an empty set of graph edges C = ∅,

a counter snew for generating storm IDs, and vector s of length |A| to hold all storm

ID assignments. Vector s is pre-assigned values of −1 to indicate that no record has

yet been assigned a storm ID.

Lines 33-53 contain the main body of the algorithm, which iterates through dis-

tinct time values t in J t. Lines 35-36 create two index sets that reference subsets

of J : a “new” set N referencing records that share the current value of t, and a

“previous” set P referencing records occurring during the time t − 1 (note that P
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is empty on the first iteration and after any gap in t values, indicating no preceding

lightning). Line 37 checks whether P contains data; if so, the graph edges C from the

previous iteration are associated with this data, and the algorithm relabels the set as

D. Otherwise, D is emptied of any existing data. In either case, C is reset in line 38.

In lines 40-42, records referenced by N are compared to find “neighbors,” as defined

by the IsNeighbor function in lines 28-28, and any neighbors become connected in C,

as shown in Figure 3.1.

Figure 3.1. Example of the first iteration of the grid algorithm. (b) contains two connected
subgraphs. For this example, graph edges are created between filled cells separated by a rectilinear
distance of at most 2.

Storm IDs may then be assigned as in lines 43-52 of the algorithm. On the first

iteration, set P is empty; each internally connected subgraph c in the graph G(N,C)

is associated with a unique storm ID, which is in turn assigned to each associated

record in J (note that G(N,C) denotes a graph with vertex set N and edge set C).

When both P and N contain data, each subgraph c in G(N,C) is compared with

each subgraph d in G(P,D); when c neighbors or overlaps exactly one subgraph d in

G(P,D), it is taken to be a continuation of the storm represented by d. Thus, in line

49, the storm ID associated with d is copied to the records identified in cV . When
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c neighbors or overlaps multiple subgraphs in G(P,D), this is taken to represent

multiple storms merging into one. In this case, line 49 of the algorithm copies the

storm ID of the first subgraph encountered to the records identified in cV . Finally,

when c does not neighbor or overlap any subgraphs in D, records identified in cV

are assigned a new storm ID in lines 51-53. An example of this process is illustrated

in Figure 3.2. Note that when we have multiple candidate subgraphs in G(P,D) to

connect with c, we deem it acceptable to simply select one because we mainly need

to ensure that, in this case, records associated with c are assigned an existing storm

ID and not a new one. Additionally, this method allows each storm’s beginning (the

part we are primarily concerned with) to remain separate.

Once the loop beginning in line 33 completes, each record in J (each occupied

grid cell) has been assigned a storm ID. In lines 55-57, the algorithm uses Jn to map

these IDs onto the vector s, effectively associating storm IDs with each record in the

original data A. The algorithm terminates by returning s.

3.3.2 Algorithm Evaluation

Algorithm 3.2 is capable of achieving fast run times. By aggregating individ-

ual events co-located within each grid cell, it dramatically decreases the number of

comparisons that must be made. These improvements to the algorithm’s run time

come at the cost of reduced accuracy, however. Discretizing the data inherently in-

troduces error; when snapping points to a grid, we cause some records to move closer

to each other in space and time, and some to move farther apart. Some graph con-

nections may be made that would otherwise not have been, and some may be missed

that would otherwise have been captured. We can improve accuracy by increasing

the grid’s granularity (decreasing its spacing). For example, doubling U doubles the

number of grid cells longitudinally. Of course, fitting more grid cells into the same
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Figure 3.2. Example of a typical iteration of the grid algorithm. This example follows
directly from Figure 3.1. As in the previous figure, cells in (c) and (d) are considered to be neighbors
when separated by a rectilinear distance of at most 2.

space improves accuracy, but it also means an increase in the comparisons that must

be made. Thus, we see that accuracy and run time are inversely correlated, and both

are controlled by the parameters U , V , and T .

Extensive experimentation is required to determine the most appropriate parame-

ter settings. This includes not only the time interval T and conversion factors U and
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V , but also the definition for when we consider two grid spaces to be neighbors. More-

over, these four factors may interact with each other to varying degrees, depending

on the weather patterns inherent in the data set. Thus, we are presented with an op-

portunity to “slow down to speed up:” we may conduct a parameter-tuning study to

optimize Algorithm 3.2 to obtain acceptably accurate storm partitions in a reasonable

time frame. However, the complexity of this study is impossible to predict, as are the

potential run time improvement and end-state accuracy. Due to these circumstances,

we elect to prioritize an algorithm that can be developed and tested more quickly.

Nevertheless, Algorithm 3.2 remains a potential avenue for future research.

3.4 Clustering of Online Data Streams (CODAS)

Hyde and Angelov (2015) present the Clustering of Online Data Streams (CODAS)

algorithm, which is designed to cluster data quickly, based on local data density, and

into arbitrary shapes in an arbitrary number of dimensions. The “online” in the title

indicates that the algorithm may be fed one data point at a time, so that the entire

data set need not be kept available in memory. This additionally confers the benefit

that the rollover from one data file to the next is handled correctly by default. This

section first defines the “microcluster,” the algorithm’s basic building block, then

describes how it is used to build “macroclusters,” which correspond to storms.

3.4.1 Microclusters

CODAS operates on a two-tiered hierarchy of clusters. The lower-tier clusters

are called microclusters (see Figure 3.3). Each microcluster is a hypersphere of the

same dimensionality as the data being processed and has a radius (R in Figure 3.3)

specified as a parameter input to the CODAS algorithm. The microcluster addition-

ally contains a “kernel”; this is a smaller, concentric hypersphere with radius R/2
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that CODAS uses to define how the microcluster moves. Because the kernel controls

movement, CODAS microclusters are less sensitive to outliers and more limited in

how they shift their location to follow a drifting data set. In Section 3.4.3, we describe

how the kernel also helps to form the upper-tier macroclusters.

Figure 3.3. Illustration of a CODAS microcluster. The light blue circle is the microcluster
m, the white circle is its center cCm, and the dark blue circle is its kernel. The black circles are
points that have been added to the cluster. cNm counts the number of points in the overall cluster,
while cKm counts the number of points in just the kernel.

CODAS tracks microclusters by recording their center points cCm, which are

initially calculated by averaging the coordinates of all member points inside the mi-

crocluster (see Algorithm 3.3, lines 24, 27, 30-31). After microcluster creation, any

new points that fall inside the cluster are assigned to it. That is, in H-dimensional

space, point P is assigned to the cluster centered at Q if

√√√√ H∑
h=1

(Ph −Qh)2 ≤ R
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(Euclidean norm; all CODAS distances are calculated this way). Points falling in the

intersection of multiple clusters are assigned to the cluster with the nearest center. As

points are added to each microcluster m, CODAS tracks the number of points inside

the kernel (cKm) and the number of points assigned to the microcluster (cNm ≥ cKm).

The individual points are dropped from memory. Figure 3.3 illustrates this process,

further detailed in Algorithm 3.3.

3.4.2 Algorithm to Construct Microclusters

Algorithm 3.3 accepts lightning data formatted as in Table 3.1, in addition to a

radius parameter R and an outlier density threshold D. It returns a set of microclus-

ters connected by a graph structure as output. After initializing data structures in

lines 6-10 of Algorithm 3.3, lines 12-33 define the function OutlierHandler, which

dictates what happens when a new point does not fall within any existing microclus-

ters. The point is first added to a list of “outliers”. In lines 14-17, CODAS then

performs a pairwise comparison of the outliers, checking which points are within one

microcluster radius R of each other; we call such pairs “neighbors.” In lines 18-21,

we find the point p that has the most neighbors Nmax. In lines 23-33, if p has enough

neighbors Nmax to meet the minimum threshold D, then CODAS forms a new micro-

cluster m. Note that while this differs, strictly speaking, from finding a set of points

that fit within a sphere, it is similar and does not detract from CODAS’s effectiveness

(see Appendix A for more detail).

Once a microcluster is generated, lines 24, 27, and 30 collectively define the center

of this new microcluster as the average of the positions of the included points. The

microcluster’s point count cNm and kernel point count cKm are updated in lines 32

and 33 respectively, and the included points are removed from the table of outliers

O, and thus from memory. Figure 3.4 illustrates this process.
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Algorithm 3.3 CODAS Algorithm

1: Input: Set A of lightning observation records (time since epoch ti, longitude xi,
latitude yi), sorted by ti

2: Parameters: radius R, outlier density threshold D
3: Output: Set cC of microcluster centers and graph G, collectively representing

storms
4:

5: INITIALIZE:
6: cC (cluster centers; empty table w/ columns DateTime ctm, Longitude cxm, Lat-

itude cym)
7: cN (cluster counts; empty integer list)
8: cK (cluster kernel counts; empty integer list)
9: O (outliers; empty table w/ columns DateTime otj, Longitude oxj, Latitude oyj)

10: E (empty set of graph edges)
11:

12: function OutlierHandler(integer i)
13: Append record Ai to O
14: for each record j ∈ O do
15: for each record k ∈ O do
16: djk =

√
(otj − otk)2 + (oxj − oxk)2 + (oyj − oyk)2

17: if djk ≤ R then njk = 1 else njk = 0

18: L = length(O)
19: for each j ∈ O do Nj =

∑L
k=1(njk)

20: Nmax = maxL
j=1(Nj)

21: p = arg maxL
j=1(Nj)

22:

23: if Nmax ≥ D then
24: C = (0, 0, 0)
25: K = 0
26: for each k | npk == 1 do
27: C = C +Ok . vector addition is elementwise
28: if dpk ≤ R/2 then K = K + 1

29: Delete Ok

30: C = C/Nmax . elementwise division
31: Append C to cC
32: Append Nmax to cN
33: Append K to cK
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34: for each i ∈ A do
35: if cC == ∅ then
36: Run OutlierHandler(i)
37: else
38: for each j ∈ cC do
39: dj =

√
(ti − ctj)2 + (xi − cxj)2 + (yi − cyj)2

40: L = length(cC)
41: dmin = minL

j=1(dj)

42: m = arg minL
j=1(dj)

43: if dmin ≤ R then
44: cNm = cNm + 1
45: if dmin ≤ R/2 then
46: cKm = cKm + 1
47: cCm = cCm(cKm−1)+Ai

cKm

48: for each j ∈ cC | j 6= m do
49: dj =

√
(ctm − ctj)2 + (cxm − cxj)2 + (cym − cyj)2

50: if dj ≤ 1.5R then
51: Add edge {m, j} to E if not present

52: else
53: m = length(cC)
54: Run OutlierHandler(i)
55: if length(cC) > m then
56: m = length(cC)
57: for each j ∈ cC | j 6= m do
58: dj =

√
(ctm − ctj)2 + (cxm − cxj)2 + (cym − cyj)2

59: if dj ≤ 1.5R then
60: Add edge {m, j} to E if not present

Lines 34-60 give the main loop of the algorithm. Each iteration reads one record,

Ai, from the input data set and processes it according to one of three cases. The first

occurs when no microclusters exist yet (line 35); in this case, the new data point Ai

of course does not fall within any microclusters. CODAS runs the OutlierHandler

function and ends the current iteration, moving on to the next data point. At this

time, the addition of point Ai may or may not have been enough to cause the first

microcluster to form.

In the second case, microclusters exist and Ai falls inside at least one of them.

When this happens, lines 38-51 add Ai to the nearest microcluster m (see Figure 3.5).
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Figure 3.4. Example of a new microcluster being formed. The orange dots are “outliers,”
and the green dots in (a) and (b) are new data points.

Line 44 increments the appropriate cluster point counter cNm, denoting that m now

contains one additional point. If Ai falls outside m’s kernel, then the iteration ends

and Ai is dropped from memory. If, however, Ai falls inside the kernel, then CODAS

executes lines 46-51. The appropriate kernel point counter cKm is incremented, and

m’s center cCm is updated according to the equation

cCm =
cCm(cKm − 1) + Ai

cKm

,
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which approximates the new average position of points in the kernel such that the

center moves toward Ai. We leave discussion of lines 48-51 for the next section. The

iteration ends, and Ai is dropped from memory.

Finally, in the third case, microclusters exist, but Ai does not fall within any of

them. If this happens, in lines 53-56 CODAS runs the OutlierHandler function and

assigns variable m to check whether a new microcluster was formed; if so, m becomes

the new cluster’s ID. This leads into lines 57-60.

Figure 3.5. Adding a point to an existing microcluster (two cases). The green dots in
each case represent a new point being added to a microcluster. The purple dots are the centers of
the affected microclusters.

3.4.3 Macroclusters

In lines 48-51 and 57-60, CODAS checks m’s distance to each other cluster to see

if any are within 1.5R. If any are, they form graph edges with m. Macroclusters are

defined implicitly using the graph structure G(I, E), where I = {m ∈ cC} consists

of the indices of all microclusters, representing vertices, and E contains graph edges.

Within G(I, E), each connected subgraph represents a separate macrocluster. Figure

3.6b provides a visual example of how macroclusters can represent arbitrarily-shaped
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regions of high-density microcluster activity; the figure contains six prominent macro-

clusters, in addition to a number of other much smaller macroclusters resulting from

background noise. This ability to represent arbitrary regions is of particular value in

our context, because storms can have unusual shapes. The aim of the CODAS algo-

rithm is to identify high-density clusters in the input data set by fitting macroclusters

to them; thus, a macrocluster can be said to represent a region of high data density.

In our case, a storm is an area of dense lightning activity, and thus we can identify

storms by fitting macroclusters to them.

Figure 3.6. Macrocluster example (Hyde and Angelov, 2015). In (b), each individual
circle represents a microcluster, while each set of circles of the same color collectively represents a
macrocluster.

Since graph nodes are represented by microclusters, node creation is already im-

plicit in the algorithm. To construct the graph edges, we simply update edges each

time a microcluster is moved (line 47) or added (line 54). Note an important dis-

tinction in the rule for generating edges: microclusters do not form edges simply by

touching another cluster. They must be closer, within 1.5R of each other, to be con-

nected by an edge – in other words, their outer shells must each be in contact with

the other’s kernel. This helps to minimize the open space that typically forms amidst

masses of connected microclusters, as in Figure 3.6. To illustrate this rule, note Fig-
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ure 3.7a, where graph edges are shown in purple. The three right-most clusters are

connected, forming a macrocluster; however, the cluster in the top center is not close

enough to form a connection. It is in contact with another cluster’s shell, but not its

kernel. Once a new microcluster is generated in Figure 3.7b, it happens to be close

enough to connect to both macroclusters, merging them into one.

Figure 3.7. Updating macrocluster graph structure. The purple lines represent graph edges;
each set of microclusters connected by these graph edges forms a macrocluster.

3.4.4 Configuring CODAS for Lightning Data

To partition our lightning data into storms, we perform clustering in three dimen-

sions: time, latitude, and longitude. In particular, we desire that lightning observa-

tions occurring within about 5 NM and 15 minutes of each other should be part of

the same storm. Since CODAS operates with hyperspheres, we therefore normalize

the data according to

ti = T (ti),

xi = X(xi ∗ 51.8),

yi = Y (yi ∗ 60),
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where 51.8 and 60 are constants to convert spatial distances to NM, and T , X, and

Y ensure that a difference of 15 minutes (in time) or 5 NM (in latitude or longitude)

translates to a normalized distance of one. We then set parameter R = 1. We

additionally set the outlier density threshold D = 5, enough to reasonably limit

the number of microclusters that will be generated. These are all the preparations

necessary to run CODAS on our lightning data. We do so, and after execution,

we undo the data normalization on the output. At this point, we have a set of

macroclusters that ideally represent every storm in the data.

Storm IDs must still be assigned, however. Algorithm 3.4 iterates through con-

nected subgraphs (macroclusters) g of G; each macrocluster gets a unique ID that is

assigned to every member microcluster. Since data points are dropped from memory

after being processed, the clusters generated by CODAS are not directly associated

with the data at this stage. The algorithm handles this with an approximation: for

each data point Ai, it simply finds the nearest microcluster m and checks whether

Ai is inside it. If so, we copy the macrocluster ID from m and assign it to si ∈ s,

where s is a storm ID vector with elements corresponding to records in A. If Ai is

not inside any microclusters, we assign a default value of si = 0 to indicate as such.

The algorithm terminates by returning s.

3.4.5 Relationship of Parameters to Lightning Data

The choice of parameter D is trivial in most cases; the user can simply choose a

number such that macroclusters collect at least some small number of points. D = 5

is sufficient for most use cases. The choice of the parameter R, on the other hand, is

fundamentally important to the performance and output of the CODAS algorithm.

In application to lightning data, a value of R may be selected that closely correlates

to the natural phenomena we want the microcluster to represent. For example, if we
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Algorithm 3.4 Associate data with clusters

1: Input: Set A of lightning observation records (time since epoch ti, longitude xi,
latitude yi), sorted by ti; set cC of microclusters (time since epoch ctm, longitude
cxm, latitude cym), sorted by ctm; graph G containing vertex set GV and edge set
GE

2: Parameters: radius R
3: Output: vector s of storm IDs corresponding to records in A
4:

5: INITIALIZE:
6: ID = 0 . storm ID
7: cS . microcluster storm IDs; empty list
8: s = 0 . lightning event storm IDs; zero vector
9:

10: for each connected subgraph g in G do
11: ID = ID + 1
12: for each m in gV do cSm = ID

13: for each i in A do
14: for each j in cC do
15: dj =

√
(ti − ctj)2 + (xi − cxj)2 + (yi − cyj)2

16: L = length(cC)
17: dmin = minL

j=1(dj)

18: m = arg minL
j=1(dj)

19: if dmin ≤ R then si = cSm

20: return s

make our microclusters cover roughly the size and time span of a typical lightning

strike, we can say that our microclusters represent lightning strikes. However, this

clustering will provide little information beyond what exists in the raw data set. At

the other extreme, we could try to make them large enough to encompass entire storms

and say that a microcluster represents a storm, but this would effectively assume

that all storms are hyperspheres in time and space. In between these extremes, we

might choose to have microclusters represent “lightning warning areas,” and size them

appropriately. But the lightning warning areas of the 45 WS are spatially located by

buildings, not lightning strikes. In summary, we find that these micro-clusters are

difficult to define in representational terms, and we instead choose our microcluster
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size based on utility. Rather than carrying any specific meaning, a microcluster

is simply a hypersphere of an appropriate size to collect a few data points and form

macroclusters of good resolution. In our study we choose a microcluster radius similar

to lightning warning area dimensions, since the two constructs serve similar purposes:

representing an upper bound on the geographic progression of a sequence of lightning

events over a specified time interval. Moreover, studies by Hyde and Angelov (2015)

indicate that macrocluster structures are fairly robust to changes in the microcluster

radius. Nevertheless, since we have not performed tests on a sufficiently wide variety

of parameters, it remains an area of future research to examine whether different radii

might provide a better representation of storm activity.

3.4.6 Algorithm Evaluation

CODAS makes pairwise comparisons at many different stages; however, in keep-

ing with its online nature, it maintains and operates on much smaller data sets than

Algorithm 3.1 at any given time. Thus, CODAS is faster than Algorithm 3.1, pro-

cessing the MERLIN data set over approximately three to five days of continuous

computation. This is still likely to be significantly slower than Algorithm 3.2 in most

cases. It has a major advantage over both, however: it is far more robust to changes in

the input parameters. The user specifies only a microcluster radius R and an outlier

density threshold D, neither of which requires optimization to achieve good results.

R only needs to be within a reasonable range: large enough to ensure microclusters

will connect to form macroclusters, small enough to prevent macroclusters from con-

necting to each other over unreasonably large distances. Likewise, D only needs to

be large enough to help keep the microcluster count from growing too rapidly. Under

these conditions, a reasonable guess is sufficient to select parameters that will accu-

rately identify the vast majority of storms. Thus, we eliminate the need to process
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the data many times in order to optimize the parameters, and achieve our greatest

speed increase via ease of use.

When we seek to visually validate the storm data output of our algorithm, the

results are promising. When the resulting clusters are plotted on a map, we see

that known weather phenomena can be identified visually. Figure 3.8 presents an

example, where anvil lightning is represented by the shape of the clusters circled in

red (Horvath, 2006; Roeder, 2021).

Figure 3.8. Florida storms represented by CODAS clusters. The green microclusters inside
the red ellipse collectively represent an instance of anvil lightning. The blue rectangle represents the
region containing MERLIN sensors.

3.4.7 Microcluster Benefits

Since the shape of all microclusters is completely defined by a single, uniform

value, it is easy to track and store them by simply recording the locations of their

centers. They readily scale to any dimensionality by increasing the number of values

that define their center coordinates. Parameter selection is straightforward; for most
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use cases, one need only select a radius large enough to encompass a few data points,

and a density threshold large enough to keep the number of clusters manageable. This

enables us to achieve useful results using parameters selected via intuition. Further,

microcluster kernels provide a straightforward way to have clusters follow drifting

data, improving the robustness of the algorithm as a whole – meanwhile, the size of

the kernel relative to the cluster also limits its motion, preventing it from moving so

quickly or erratically that it risks pulling away from the bulk of the data. It also is

simple to have microclusters each collect a few data points at a time, then connect

the microclusters together to form much larger clusters of arbitrary shape. Finally,

key to our study, microclusters are excellent at data reduction; because lightning

records are dropped from memory upon being added to a microcluster, we can make

comparisons over a pair of small data sets representing hundreds or thousands of

points (microclusters and outliers), rather than one large set representing millions.

3.5 Summary

The 55.7 million lightning events detected by MERLIN between May 2019 and

September 2019 must be organized into storms before they can be properly analyzed.

The pairwise comparison algorithm presented in Section 3.2 is capable of processing

this data given extensive run time, but the results are suspect, as the output is overly

sensitive to the input parameters. The grid algorithm in Section 3.3 is projected to

have a much faster typical run time than the pairwise comparison algorithm, but it

is yet more sensitive, and to a larger number of parameters. The CODAS algorithm

in Section 3.4 runs faster than the pairwise comparison algorithm and is much more

robust, allowing us to select its parameters intuitively and achieve useful results on

the first attempt. We therefore use CODAS to identify storms in our data set.
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IV. Lightning Behavior Analysis

In the previous chapter, we reviewed how to take a data set of lightning events and

cluster them into storms. In this chapter we consider the spatial distances between

lightning events in developing storms. The goal is to ascertain whether we might safely

reduce the current lightning warning radius from the current standard of 5 nautical

miles (NM). Sanderson (2019) finds that the distances of lightning flashes from a

pre-existing lightning area follow a Weibull(0.833,2.142) distribution, with distances

measured in kilometers (km). Thus, by converting NM to km and checking against

the distribution, we find that the probability of a lightning strike beyond 5 NM of a

lightning area is approximately 3.39%, whereas the probability of a lightning strike

beyond 4 NM of a lightning area is approximately 6.01%. Based on empirical val-

idation and a “what-if” analysis exploring how historical failure rates would have

changed given a 4 NM warning radius, Sanderson argues that this increase in risk

is outweighed by the 1 − (4 NM)2π/(5 NM)2π = 36% decrease in overall number of

lightning warnings issued. Moreover, her preliminary analysis suggests that similar

results may be true for developing storms (where no pre-existing area is available).

Based on the observations of Sanderson (2019), we expect that a reasonable lightning

warning radius will be approximately 4 NM. In particular, we expect that the prob-

ability that lightning strikes in a developing storm are more than 4 NM away from

the first lightning strike is no more than 6.01%. This result would strongly support

a policy change to reduce the lightning warning radius for developing storms.

4.1 Distance Calculations and Histograms

The next stage is to inspect developing, or “early,” storm data and calculate

distances between lightning events. After grouping the data set by storm ID – using
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Clustering of Online Data Streams (CODAS), in our case – we want to filter out all but

the first moments of each storm. To this end, we have the option to select either the

first n records or those that occur before the first t amount of time. Parameter n allows

us finer control over our sample size, ensuring we always have a few points to look at

for each storm; however, we run the risk of capturing more extreme time differences

than we desire, as a macrocluster may potentially begin with a very small number of

points separated by several minutes of time. Parameter t runs the risk of biasing the

sample toward storms that have a large point count in the first few seconds; however,

we are by definition guaranteed to only capture the early moments of a macrocluster,

and thus results should be more representative of the true distribution of lightning in

early storms.

We choose to test both approaches in our study. For the time-cutoff approach we

use t = 30 seconds, and for the other approach we select the first n = 10 records from

each storm. Figure 4.1 presents histograms of distance to first lightning (a.k.a. “storm

origin”). The results are surprising; 27.1% of lightning events are occurring beyond

4 NM. Further, the results include distances greater than 20 NM, with a maximum

encountered distance of 101.4 NM. Though they are vanishingly rare (approximately

0.3% beyond 20 NM), the presence of such large values nevertheless appears indicative

of an issue with the data or the process.
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Figure 4.1. Example histogram of early lightning distances from storm origin. This
is the histogram produced when examining the first 10 records from each storm. There are 211
observations larger than 20 NM. The largest distance encountered is 101.4 NM.
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4.2 The Merging Storms Problem

Further experimentation reveals that some macroclusters in the data represent

merged storms. When storms collide with each other, CODAS merges them into a

single macrocluster. Figure 4.2 provides examples of clusters merging in the lightning

data. All microclusters in Figure 4.2a are considered by CODAS to be part of the

same macrocluster; the same is true for Figures 4.2b and 4.2c. To explain how the

CODAS algorithm handles these events, we take Figure 4.2a as an example. In the

first image, we clearly have two small clusters separated by a large distance. At

this early stage, the lightning activity in the north and south are represented by

separate macroclusters, and their independence persists through the second and the

third images. By the fourth image, however, the storms move close enough that

the microclusters they generate connect to each other; thus, we no longer have two

subgraphs, but one. Because storm IDs are assigned only after all the data have

been processed and the macroclusters have fully formed, the lightning events from

the first three images in Figure 4.2a retroactively become part of this single larger

macrocluster.

When two (or more) such merged storms begin at a similar enough time (i.e. the

difference between their start times is smaller than our early-storm cutoff n or t), we

end up calculating distances from the origin of one storm to each point of each storm.

Figure 4.3 provides a notional example stripped down to two dimensions (1 in space

and 1 in time) for illustration purposes; Figure 4.4 is provided from MERLIN data

for comparison. In Figure 4.3, the two storms merge into one macrocluster at about

time 17. When we retrieve this macrocluster and filter to the first 10 points, however,

we only see the portion to the left of the red line. If we then simply calculate the

distance of each lightning event from the first event, we get the behavior in Figure

4.3a; we prefer the behavior in Figure 4.3b, where each storm is handled separately.
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Figure 4.2. Examples of storms merging over time. For each subfigure (each row of images),
CODAS has assigned all visible data to the same macrocluster. The blue box indicating MERLIN
sensors, included for reference, measures 45.1 NM by 52.9 NM.

To separate merged storms and achieve the behavior in Figure 4.3b, we implement

a second stage of clustering, or “subclustering.” Normally, it is difficult to subcluster

merged macroclusters without simply recreating the problem; here, however, it works

to our advantage that we are studying only early storms. By filtering to the first few

records or seconds of a storm, we create a data space with multiple visibly separate

clusters, as in the leftmost images in Figure 4.2 or the left side of the red lines in

Figure 4.3. Typical clustering algorithms can readily separate clusters such as these.

4.2.1 Hierarchical Subclustering

We begin by applying hierarchical clustering (described in greater depth by Murtagh

and Contreras, 2012). This method initially treats each data point as its own cluster,
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Figure 4.3. Notional 2D illustration of merged storms. Axes are unitless. The blue arrows
indicate distances being calculated. The behavior in (a) occurs by default. By applying clustering
to only the points on the left of the red line, we can achieve the desired behavior in (b).
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Figure 4.4. 2D example of merged storms from MERLIN data. This CODAS macrocluster,
plotted in two dimensions with longitude data omitted, occurs on 11 June 2019 from 16:21:23 to
22:19:27 EDT and spans a maximum latitude difference of 3.16 degrees, or 189 NM.

then iteratively merges the two nearest clusters into one, maintaining knowledge of

the members of each merge operation. The final product is a dendrogram showing

how each data point and subcluster is related, as in Figure 4.5, where data points

that are more similar are connected by smaller subtrees. We can “cut” this tree at

any “height” h, such that we re-obtain subclusters that are separated by a distance

greater than h. To handle merging storms, we generally want to cut the tree at a

height that splits long vertical gaps in the dendrogram. For instance, in Figure 4.5,

h = 20 is a sensible cut, as it separates three vertical leaders that are significantly

longer than any below them, representing a sudden increase in the distances between

subclusters. If we cut too high, we merge storms that should remain separate; if we

cut too low, we separate lightning events belonging to the same storm.

We desire to find a value for h that works well for the lightning data set. The value

must be sufficiently large to avoid truncating the distribution of lightning distances,
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Figure 4.5. Example of a dendrogram resulting from hierarchical subclustering of
lightning data. Tree height is measured in NM. The numbered “leaves” along the bottom represent
each of 14 lightning events. With the blue cutoff h = 20, we obtain three subclusters, two of which are
separated by just over 20 NM. With the orange cutoff h = 60, we obtain two subclusters separated
by just over 100 NM.

but it must be small enough to distinguish between distinct storms that later merge.

Figure 4.6 shows two histograms over the distance to the storm origin, where storms

are identified using CODAS clustering and hierarchical subclustering. In Figure 4.6a

(h = 10) the distances range over [0 NM, 9.99 NM], and the the percentage of lightning

beyond 4 NM is 8.17%. By contrast, in 4.6b (h = 5) the range of distances is [0 NM,

5.00 NM], and the percentage beyond 4 NM is 0.684%. Nevertheless, Figures 4.6a

and 4.6b appear to have similarly shaped distributions. Our preliminary experiments

reveal that hierarchical clustering generally forms this shape within the bounds of

any cutoff h we apply. This indicates that rather than allowing the data to show us

the distribution of early lightning events, we are instead controlling the distribution

with our selection of h. These preliminary results allow us to conclude that no single

cutoff parameter will work for all storms in the data set.
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Figure 4.6. Histograms of early lightning distances from storm origin, using time cutoffs
and hierarchical subclustering. Parameters include time cutoff t and cluster height cutoff h.
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4.2.2 CODAS Subclustering

We next consider whether CODAS might perform the desired subclustering. For

this application, the time differences involved are small enough as to be irrelevant;

thus, we apply CODAS in two dimensions, examining location only. We re-use our

existing implementation of CODAS; however, as this implementation is designed for

three dimensions, we accomplish two-dimensional clustering by producing a copy of

the early storm data with the time values flattened (set equal to 1), and then applying

CODAS to this set. We use outlier density threshold D = 5 and vary our CODAS

radius R and our early storm cutoff to produce Figures 4.7 and 4.8. These appear

better than Figure 4.1, but they are still heavier-tailed than expected; estimates for

the percentage of lightning beyond 4 NM range from 24.3% - 33.4%, depending on

whether we use the first 10 events of the storm or first 30 seconds of data, and (to a

lesser effect) the microcluster radius.

Visual inspection of the most extreme results reveals macroclusters such as those

in Figure 4.9. Though the storm merging issue appears to have been resolved, these

filtered storms are still too large to be representative of the early moments of a new

storm. Rather, Figure 4.9b is what one would expect a storm to look like in its final

moments coming from the western coast of Florida (Roeder, 2021). Similarly, Figure

4.10 presents an example of a large “early storm” and the surrounding raw data,

plotted with a time axis; the events in question occur over a time interval of only

0.411 seconds and are neither preceded nor immediately succeeded by any significant

lightning activity. Clusters such as in Figures 4.9 and 4.10 are most likely the result

of a well-developed storm entering from outside of MERLIN’s “local” range – i.e., the

effective range of its network of Total Lightning Sensor Model-200 (TLS-200) units.

For the purposes of this analysis, we apply additional filters to remove situations

likely to result in data that are clearly not representative of early storms. We first
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Figure 4.7. Histograms of early lightning distances from storm origin, using time cutoffs
and CODAS subclustering. Parameters include time cutoff t and CODAS microcluster radius
R.
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Figure 4.8. Histograms of early lightning distances from storm origin, using point-
count cutoffs and CODAS subclustering. Parameters include point-count cutoff n and CODAS
microcluster radius R.
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Figure 4.9. Examples of early storms with subclustering. The origin of each storm is
marked with a white circle. (a) contains 89 lightning events occurring within 0.4 seconds. (b)
contains 1,305 points occurring within 29 seconds. The blue box indicating MERLIN sensors is
included for reference, and measures 45.1 NM by 52.9 NM.

(a) A single microcluster. (b) Contextualized within surrounding data.

Figure 4.10. Three-dimensional plot of a large macrocluster and surrounding raw data.
Figure (a) represents the raw lightning events contained within a single macrocluster, with the first
30 seconds circled in red. The circled portion contains 1,874 points occurring over a total time
interval of 0.411 seconds. Figure (b) displays a time interval centered on the same data and includes
all surrounding data from the raw set; the cluster in question is not preceded by any significant
lightning activity within 5 NM.

52



reduce the early storm data to consider only macroclusters that are not preceded by

any lightning activity within the past 15 minutes. We additionally filter to macroclus-

ters beginning between 1400 and 1800 UTC, as this is the period of the day during

which storms are most likely to form within MERLIN’s local sensor range and least

likely to encroach from outside of it (Roeder, 2021). With these additional filters in

place, we obtain the histogram in Figure 4.11a.

The tail in Figure 4.11a is still too heavy; 12.0% of distances are beyond 5 NM.

However, we note that the percentiles we have obtained so far, particularly in Figures

4.7, 4.8, and 4.11a, are reminiscent of those from Cox (1999) and Parsons (2000).

Their technique of measuring from storm centroids yields large distances and does

not match with how warnings are issued, and we posit that we may be committing

a similar error by measuring from storm origins. Roeder (2021) confirms this, and

suggests that we instead calculate the distance between successive events. Weather

squadrons are concerned primarily with the most recent lightning in a storm; the

origin can quickly become irrelevant as the storm moves, even during the first few

seconds. The distance between successive events tracks recent changes, and therefore

better aligns with warning procedures. Note that this serves a similar purpose to

the concept of measuring the distance from a pre-existing lightning area for a well-

developed storm.

We therefore re-use our parameters and filters from Figure 4.11a, but change

our calculations to measure the distance between successive events, producing Figure

4.11b. This figure represents 63,819 distance values calculated from 71,843 lightning

events (no distance is calculated for the first event in each of 8,024 storms). The

median distance in 4.11b is 0.529 NM; 5.57% of values exceed 4 NM, and 3.24%

exceed 5 NM. For comparison, recall that data from Sanderson (2019, p. 67) follows

a Weibull distribution that indicates that 6.01% of lightning events occur beyond
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4 NM of pre-existing lightning areas and 3.39% occur beyond 5 NM. Holland (2021)

also finds a Weibull distribution for lightning distances from a pre-existing area; her

distribution indicates 7.32% of lightning falls beyond 4 NM and 3.86% falls beyond

5 NM. As our percentiles fall within those of both Sanderson (2019) and Holland

(2021), we can conclude that their recommended warning radius of 4 NM for well-

developed storms is applicable to developing storms as well.

The distribution that best fits our early lightning data is also a Weibull, shown

in Figure 4.12. 4.02% of this distribution exceeds 4 NM, and 2.11% exceeds 5 NM,

further supporting our conclusions. Table 4.1 presents a comparison of the statistics

for our distribution with those of Sanderson (2019) and Holland (2021). In making

this comparison, we must keep in mind that we are representing qualitatively different

phenomena. While their distributions measure the probability of lightning outside of

a pre-existing lightning area throughout the entire storm life cycle, our distribution

focuses exclusively on early lightning. Nevertheless, while there may be many behav-

ioral similarities and differences compared to lightning later in the storm, we believe

that our analysis provides sufficient evidence to conclude that the probability of early

lightning striking more than 4 NM from the previous lightning event does not ex-

ceed the total probability of lightning striking more than 4 NM beyond a pre-existing

lightning area. However, this conclusion comes with the caveat that early storm be-

havior, like mature storms, can deviate greatly from the storm origin. It is therefore

important to base warnings on the most recent lightning information available. In

this way, our use of the previous lightning event may be seen as something akin to a

proxy for pre-existing lightning areas. Additional research might be able to show an

even tighter radius for developing storms using a better proxy measure.
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Figure 4.11. Histograms of early lightning distances, using time cutoffs, CODAS sub-
clustering, and additional filters. As compared with Figure 4.7a, these figures result from
filtering to include only macroclusters that begin between 1400 and 1800 UTC and are not preceded
by any lightning activity within 15 minutes. In (a), 17.1% of distances exceed 4 NM and 12.2%
exceed 5 NM, with a median of 1.51 NM. In (b), 5.57% of distances exceed 4 NM and 3.24% exceed
5 NM, with a median of 0.529 NM.
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Table 4.1. Comparison of Weibull distributions of lightning events.

Early Storms Mature Storms
Sanderson Holland

Shape 0.818 0.833 0.98
Scale 0.961 1.16 1.50
Mean 1.08 1.28 1.48
Median 0.613 0.782 0.993
% >4 NM 4.02 6.01 7.32
% >5 NM 2.11 3.39 3.86

Figure 4.12. Weibull distribution for early lightning distances, using time cutoffs,
CODAS subclustering, and additional filters. This distribution has mean = 1.08 NM and
median = 0.613 NM. 4.02% of distances exceed 4 NM, and 2.11% exeed 5 NM.
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4.3 Summary

Initial calculations of the distances of early lightning events from their storm

origins yield distances as large as 101.4 NM. Some of these distances, including the

largest extremes, result from initially distant storms that collide and merge into one

storm later in their lifespans. Hierarchical clustering on early storm data fails to

handle this properly, as it controls the shape of the resulting histograms rather than

indicating the true distribution of the data. CODAS appears to perform better based

on a cursory visual inspection of the resulting clusters. It still yields much heavier-

tailed distributions than anticipated, however; in the worst case, 33.4% of events are

more than 4 NM from their storm origins, and the maximum distance encountered is

63.6 NM. We hypothesize that the extreme values result from well-developed storms

entering MERLIN’s TLS-200 sensor range. To eliminate situations where data are

less likely to accurately represent early storms, we filter to include only macroclusters

that begin between 1400 and 1800 UTC and are not preceded by any lightning activity

within the past 15 minutes. We also change our calculations to measure the distance

between successive flashes, more closely aligning with the way lightning warnings are

issued. With these changes in place, we filter to the first 30 seconds of each storm

and perform CODAS subclustering with R = 5 NM. This results in percentiles that

are not only smaller than anything else we have obtained, but also smaller than the

percentiles calculated by Sanderson (2019, p. 67) for lightning distances from pre-

existing storm areas; only 5.57% of our event distances exceed 4 NM, and only 3.24%

exceed 5 NM.
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V. Conclusions and Recommendations

5.1 Conclusions

5.1.1 Storm Identification

It is complex to build a practical algorithm for identifying storms within a data

set containing millions of records, such as that obtained from the Mesoscale East-

ern Range Lightning Information System (MERLIN). Most algorithms for this task

require balancing speed against accuracy, and the balancing process can require pro-

hibitive amounts of time. The pairwise comparison algorithm described in Section

3.2 is the most conceptually straightforward for this application. However, its input

parameters require us to tell it beforehand how far apart lightning events should be

in time and space; this is information we want the algorithm to tell us, not the other

way around. It is conceptually possible to work around this challenge with sensitivity

analysis, but this requires testing the algorithm with a wide variety of parameter

values, visually inspecting the resulting storm clusters for accuracy each time. This is

not practical for a large data set, as each combination of parameters we test requires

weeks of processing time followed by manual validation.

The grid algorithm proposed in Section 3.3 can alleviate the run time issue, but

it introduces error and exacerbates the challenge of handling parameter sensitivity.

Where the pairwise comparison algorithm is sensitive to at least two of its input

parameters, the grid algorithm is sensitive to four. This represents an exponential

increase in the amount of testing required to achieve quality results, which again

renders the algorithm impractical for this study. Note, however, that once appropriate

parameters are found, they should be applicable to other studies on similar MERLIN

datasets, at which point the algorithm’s expected run time benefits may be more fully

realized. Development and testing of this algorithm is left for future work.
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The Clustering of Online Data Streams (CODAS) algorithm developed by Hyde

and Angelov (2015) and presented in Section 3.4 resolves the issue of parameter sen-

sitivity. It is robust: rather than requiring precise optimization of its two parameters,

it produces quality results as long as said parameters are each within a reasonable

range. CODAS’s run time of three to five days on the MERLIN data set is middling

compared with the other algorithms in this study – faster than the pairwise com-

parison algorithm, and significantly slower than the grid algorithm. Because we can

run it once with parameters selected by intuition, this run time becomes practical for

our purposes. This is the algorithm we have used to process our MERLIN data and

identify storms.

5.1.2 Lightning Behavior

Upon filtering MERLIN data to study early storms, we calculate distances of

lightning events from storm origins and find that some are over an order of magnitude

larger than anticipated. In the worst case, we encounter a maximum distance of

101.4 NM occurring within the first 30 seconds of a storm. We find many of the

most extreme cases to be due to storm merging, where storms that begin in separate

locations later collide, causing CODAS to identify them collectively as one storm (see

Figures 4.3 and 4.2). When we calculate distances for a merged storm, they are then

all in reference to the starting point of only one of the original constituent storms.

We solve this by performing a second round of clustering, this time on the filtered

data representing early storms.

Hierarchical clustering with a height cutoff of h = 10 yields a histogram that

looks promising, but experimentation reveals an issue. When we vary h, the resulting

histogram changes such that approximately the same distribution shape fits within

the range 0 to h. This indicates that the algorithm is controlling the distribution
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we see, rather than showing us the true shape of the data. This could be corrected

with sensitivity analysis, but that is a time-intensive process. We set hierarchical

clustering aside.

We next revisit CODAS, applying it this time to the filtered early storm data. The

resulting histograms represent an improvement over Figure 4.1, but are still heavier-

tailed than expected (see Figures 4.7 and 4.8 for examples). Visuals of some of the

clusters, particularly those related to Figure 4.7b, are surprising; the early storm in

Figure 4.9b is 30 seconds old, contains 1,305 lightning events, and spans a maximum

distance from origin of 63.6 NM. This extreme is again much larger than anticipated,

and is likely due to mature storms that enter from outside the range of MERLIN

sensors. We apply filters to exclude such situations, filtering to only storms that

begin between 1400 and 1800 UTC and have no preceding lightning activity within

the past 15 minutes.

We additionally switch to measuring distances between successive lightning events,

which more closely aligns with the way lightning warnings are issued. These changes

result in a distribution for which only 5.57% of lightning distances in developing

storms exceed 4 NM, and only 3.24% exceed 5 NM. These percentages differ by only

2.33% and are smaller than those produced from Sanderson’s distribution for well-

developed storms; thus, we conclude that 4 NM represents a reasonable reduction of

the standard lightning warning area.

5.2 Recommendations and Future Work

Despite the large size of the data set used in this thesis, it represents only May-

September 2019 in Central Florida. This is lightning season in the region of greatest

lightning activity in the United States (Holle et al., 2016), and is therefore akin to

a worst-case scenario, but it is still only one summer in one region of the country.
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We recommend expanding the sample to include all seasons and a greater number of

years for locations across the country. The winter season is of particular interest, as

its weather patterns are a substantial departure from those of the summer months

(Roeder, 2021). To support research on this scale, it may be necessary to refine

CODAS or to find or develop a faster clustering technique applicable to enterprise

level computing.

Regarding results for our data set: our first application of CODAS yields macro-

clusters that are, as we desire, closely packed in space and time. However, we do

not perform a sensitivity analysis or a complete validation of the algorithm’s output.

Thus, though our output is useful, it is unlikely to be truly optimized; it may be

possible to further improve our parameter settings.

It may also be possible to improve CODAS’s OutlierHandler function, which

deviates slightly from the definition of a microcluster. This issue, described in Ap-

pendix A, does not appear to detract from the algorithm’s performance, but resolving

it may make CODAS friendlier to the user.

Further, in studying early storms, we encounter situations that clearly do not

represent early lightning activity but are erroneously identified as such, likely as a

result of well-developed storms encroaching from outside of sensor range. In the

interest of time, we simply filter out situations likely to produce such issues. For

future study, we recommend a more thorough investigation, so as to determine the

root cause and handle the problem more directly.

Finally, the grid algorithm (Algorithm 3.2) currently exists only as a concept.

This algorithm appears promising as a heuristic; though it is expected to be difficult

to find appropriate parameters for most use cases, it is projected to be significantly

faster than most other comparable algorithms once said parameters are optimized.

Further, the grid algorithm has an interesting advantage over CODAS for the case
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of studying developing storms: since it assigns storm IDs “on the fly” as it iterates

through time, it avoids CODAS’s storm merging problem entirely. If fully developed,

it may be worth running the grid algorithm at a high “resolution” to see how its

results compare with our two-stage application of CODAS.
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Appendix A. CODAS OutlierHandler Considerations

In Algorithm 3.3, when looking for points to add to a microcluster, OutlierHandler

finds the number of “neighbors” within distance R of each outlier. An outlier must

have at least D neighbors for a microcluster to form. This method comes with the

caveat that there is an edge case that it cannot handle properly. When a group of D

or more outliers is close enough to fit in a microcluster, but they are all positioned

far from the center as in Figure A.1, they may be up to 2R away from each other.

Thus, they have fewer neighbors than fit in the sphere, and a microcluster might not

form. This means that CODAS’s clustering is slightly more restrictive in practice

than indicated by the microcluster definition from the previous section. Despite this,

however, the existing CODAS algorithm is no less effective at performing dynamic

clustering of data streams based on point density. The behavior obtained is different

than expected, but not inherently worse, and therefore we leave the resolution of this

issue for future work.

Figure A.1. Edge case not handled by CODAS. Each black point has exactly two “neighbors”
for clustering purposes, despite that all six fit in the circle. No points have at least five neighbors,
so no microcluster forms.
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Appendix B. Pairwise Comparison Algorithm Code

B.1 Wrapper (pairwise wrapper.R)

### Wrapper for Pairwise Comparison Algorithm ###

### Capt Erick Tello, 2021 ###

library(dplyr) #Used to select/aggregate data

library(Rcpp) #Used to run pairwise.cpp

# Set numerical format for POSIXct DateTime conversion

options(digits = 13)

options(digits.secs = 3)

# Get file list

fList = list.files(pattern = "*.TL.csv")

# Get algorithm source code

sourceCpp("pairwise.cpp")

# Iterate through files, run pairwise algorithm on each

for (i in fList) {

t1 = read.csv(i, colClasses=c(DateTime="character"))

temp = mutate(t1, DateTime = as.numeric(

as.POSIXct(DateTime, format = "%Y-%m-%d %H:%M:%OS", tz="UTC")))

start_time <- Sys.time()

tempGap = round(timeGap(temp),3)

end_time <- Sys.time()

print(end_time - start_time)

t1$TimeGap = tempGap

write.csv(t1, paste0("WithTGs/g",i), row.names=FALSE)

}
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B.2 Algorithm (pairwise.cpp)

/// Pairwise Comparison Algorithm ///

/// Capt Erick Tello, 2021 ///

// Set up Rcpp for compatibility with R

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

DataFrame timeGap(DataFrame df){

// INITIALIZE

int C = 30;

int D = 5;

NumericVector dateTime = df[0];

NumericVector latitude = df[1];

NumericVector longitude = df[2];

IntegerVector outIdx(dateTime.size());

NumericVector outTime(dateTime.size());

NumericVector outDist(dateTime.size());

DataFrame out;

IntegerVector r(dateTime.size());

std::iota(r.begin(),r.end(),0);

IntegerVector shortIdx(C);

LogicalVector l1(dateTime.size());

LogicalVector l2(C);

NumericVector x(C);

NumericVector y(C);

NumericVector z(C);

NumericVector yGap(C);

NumericVector zGap(C);

NumericVector gap(C);

double time = 0;

int idx = 0;

// Main body

for (int i = 0; i < dateTime.size(); i++) {

// Get a collection of C previous records and their indices

l1 = (r < i) * (r >= i - C);

x = dateTime[l1];

y = latitude[l1];

z = longitude[l1];

shortIdx = r[l1];

// Calculate Euclidean distance between each point and point i

yGap = (y - latitude[i]) / 0.01667;

zGap = (z - longitude[i]) / 0.0193;

gap = sqrt(yGap*yGap + zGap*zGap);

// Filter to points within D nautical miles

l2 = (gap <= D);
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x = x[l2];

y = y[l2];

z = z[l2];

gap = gap[l2];

shortIdx = shortIdx[l2];

// Find the most recent remaining record

for (int j = 0; j < x.size(); j++) {

if(x[j] > time) {

time = x[j];

idx = j;

}

}

// Check whether any records were found

if(time == 0) { //If none, indicate as such in the output

outIdx[i] = -1;

outTime[i] = NAN;

outDist[i] = NAN;

} else { //If found, append index, time, and time gap

// from most recent record to output

outIdx[i] = shortIdx[idx] + 1; //Add 1 to account for zero-indexing

outTime[i] = dateTime[i] - time;

outDist[i] = gap[idx];

}

time = 0; //Reset time for next loop

}

out["PredIndex"] = outIdx;

out["TimeGap"] = outTime;

out["DistGap"] = outDist;

return out;

}
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Appendix C. CODAS Algorithm Code

C.1 Wrapper (CODAS Wrapper.R)

### Wrapper for CODAS algorithm ###

### Capt Erick Tello, 2021 ###

library(dplyr) #Used to select/aggregate data

library(Rcpp) #Used to run CODAS.cpp

library(igraph) #Used to find graph components

library(beepr) #Used to play alert sound

# NOTES:

# - The "fList1" and "fList2" variables must be able to read input data files;

# change filepaths as necessary.

# - The "path" argument in list.files() defaults to the current working

# directory, which you, the user, must set in RStudio before running this

# script. Use the RStudio file explorer or the setwd() command.

# - The data file(s) beginning with "nd" have had their dates converted to a

# numerical format (seconds since January 1, 1970) for processing in Rcpp.

# This saves time over pre-processing them each time the script is run.

# However, we then want to write outputs to files with text dates, hence

# the input to fList2.

overallStartTime = Sys.time()

#CEDAS parameters

#Notes on coordinates:

# - Avg seq diffs for time, lat, long: [0.1743, 0.0617, 0.0537]

# - (1 nmi = 0.01667, lat = 0.0193 long)

# - Min Lat: 25.9034

# - Min Long: -84.071

radius = 1 # CEDAS microC radius (do not adjust this)

minThreshold = 5 # Min microC threshold

timeThreshold = 900 # Time threshold in seconds (adjust this)

distThreshold = 5 # Distance threshold in nmi (adjust this)

outputFolder = "CEDAS 5nmi 30min (all data)"

# Set DateTime precision

options(digits = 13)

options(digits.secs = 3)

# Get file lists

fList1 = list.files(path = "./POSIXct/", pattern = "*.TL.csv")

fList2 = list.files(pattern = "*.TL.csv")

# # Subset files if necessary

# fList1 = fList1[112:135]

# fList2 = fList2[112:135]

# Get CODAS and associated functions

sourceCpp("CODAS.cpp")
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# Initialize CODAS data structure

output = list(data.frame(DateTime = numeric(0),

Latitude = numeric(0),

Longitude = numeric(0)),

integer(0),

integer(0),

data.frame(DateTime = numeric(0),

Latitude = numeric(0),

Longitude = numeric(0)),

integer(0),

integer(0))

names(output) = c("clusterCenters","clusterCounts","clusterKernels",

"outliers","graphL","graphR")

fileCounter = 1L #Progress message helper

# Iterate through lightning data files

for (i in fList1) {

# Read file and clean up NAs, any formatting issues

temp = read.csv(paste0("POSIXct/",i))

temp = na.omit(temp)

temp$DateTime = as.numeric(temp$DateTime)

temp$Latitude = as.numeric(temp$Latitude)

temp$Longitude = as.numeric(temp$Longitude)

temp = na.omit(temp)

# Normalize data such that a difference of 1 meets our thresholds:

temp[,1] = temp[,1] / timeThreshold # secs -> sec increments

temp[,2] = temp[,2] / 0.01667 / distThreshold # lat -> NM -> NM increments

temp[,3] = temp[,3] / 0.0193 / distThreshold # long -> NM -> NM increments

# Start timer, run CODAS algorithm

startTime <- Sys.time()

output = CODAS(temp,

fileCounter,

output$clusterCenters,

output$clusterCounts,

output$clusterKernels,

output$outliers,

radius,

minThreshold,

output$graphL,

output$graphR)

endTime <- Sys.time() #End timer

# Progress message

message(paste0("CEDAS run time (file ",i,"):"))

print(endTime - startTime)

fileCounter = fileCounter + 1L #Progress message helper

}

# Allow for shorter variable references:
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attach(output)

# Fix graph node IDs (off due to Rcpp zero-indexing):

graphL = graphL + 1

graphR = graphR + 1

# Find graph components

clusterGraph = make_undirected_graph(c(rbind(graphL,graphR)),

nrow(clusterCenters))

macroClusters = components(clusterGraph)

# Undo normalization, write clusters to file

ClusterData = data.frame()[1:nrow(clusterCenters),]

ClusterData$DateTime = clusterCenters$DateTime * timeThreshold

ClusterData$Latitude = clusterCenters$Latitude * 0.01667 * distThreshold

ClusterData$Longitude = clusterCenters$Longitude * 0.0193 * distThreshold

ClusterData$ClusterLife = clusterLives

ClusterData$ClusterCount = clusterCounts

ClusterData$ClusterKernelCt = clusterKernels

ClusterData$MacroClusterID = macroClusters$membership

write.csv(ClusterData, paste0(outputFolder,"/ClusterData.csv"), row.names=FALSE)

# Undo normalization, write outliers to file

outliers[,1] = outliers[,1] * timeThreshold

outliers[,2] = outliers[,2] * 0.01667 * distThreshold

outliers[,3] = outliers[,3] * 0.0193 * distThreshold

write.csv(outliers, paste0(outputFolder,"/Outliers.csv"), row.names=FALSE)

# Write graph data to file

GraphData = data.frame()[1:length(graphL),]

GraphData$Left = graphL

GraphData$Right = graphR

write.csv(GraphData, paste0(outputFolder,"/GraphData.csv"), row.names=FALSE)

for (i in 1:length(fList1)) {

# for (i in 1:24) { #Manual looping control for handling reduced file list

startTime <- Sys.time() #Start timer

# Read files, clean NAs and any formatting issues

temp = read.csv(paste0("POSIXct/",fList1[i]))

temp = na.omit(temp)

temp$DateTime = as.numeric(temp$DateTime)

temp$Latitude = as.numeric(temp$Latitude)

temp$Longitude = as.numeric(temp$Longitude)

temp = na.omit(temp)

out = read.csv(fList2[i])

out = out[complete.cases(out[,1:3]),]

out$Latitude = as.numeric(out$Latitude)

out$Longitude = as.numeric(out$Longitude)

out = out[complete.cases(out[,1:3]),]

# Normalize data to compare with clusters:
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temp[,1] = temp[,1] / timeThreshold # secs -> sec increments

temp[,2] = temp[,2] / 0.01667 / distThreshold # lat -> nmi -> nmi increments

temp[,3] = temp[,3] / 0.0193 / distThreshold # long -> nmi -> nmi increments

# Assign cluster (storm) IDs

out$MicroClusterID = MicroMembers(temp,clusterCenters,radius)

out$MacroClusterID = MacroMembers(out$MicroClusterID,macroClusters$membership)

temp$MicroClusterID = out$MicroClusterID

temp$MacroClusterID = out$MacroClusterID

# Un-normalize data:

temp[,1] = temp[,1] * timeThreshold # secs -> sec increments

temp[,2] = temp[,2] * 0.01667 * distThreshold # lat -> nmi -> nmi increments

temp[,3] = temp[,3] * 0.0193 * distThreshold # long -> nmi -> nmi increments

# Write data with storm IDs to files

write.csv(out, paste0(outputFolder,"/cd",fList2[i]), row.names=FALSE)

write.csv(temp, paste0(outputFolder,"/cdpx",fList2[i]), row.names=FALSE)

endTime <- Sys.time() #End timer

#Progress message

message(paste0("Writing to file (cd",fList2[i],"):"))

print(endTime - startTime)

}

detach(output) #Undo variable attachment

beep(2) #Play alert sound

# Print run time

overallEndTime = Sys.time()

messsage("Overall run time:")

print(overallEndTime - overallStartTime)

# Write run time to file

timeDiff = overallEndTime - overallStartTime

write(paste(date(),"-",timeDiff, attr(timeDiff, "units")),

file = "LOG.txt", append = T)
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C.2 Algorithm (CODAS.cpp)

/// CODAS Algorithm ///

/// Original by Dr. Richard Hyde: https://github.com/RHyde67 ///

/// This implementation by Capt Erick Tello, 2021 ///

// Set up Rcpp for compatibility with R

#include <Rcpp.h>

using namespace Rcpp;

// Helper function: append rows to dataframe

DataFrame dfAppend(DataFrame df, NumericVector newRow) {

if (df.length() != newRow.length()) {

stop("Input mismatch: dataframe column count does not match vector length");

}

DataFrame out;

CharacterVector tempNameV = df.names();

for (int i = 0; i < df.length(); i++) {

NumericVector temp = df[i];

temp.push_back(newRow[i]);

String tempName = tempNameV[i];

out[tempName] = temp;

}

return out;

}

// Helper function: keep only selected rows in dataframe

DataFrame dfKeep(DataFrame df, LogicalVector lv) {

if (df.nrows() != lv.length()) {

stop("Length mismatch");

}

DataFrame out;

CharacterVector tempNameV = df.names();

for (int i = 0; i < df.length(); i++) {

NumericVector temp = df[i];

temp = temp[lv];

String tempName = tempNameV[i];

out[tempName] = temp;

}

return out;

}

// Helper function: remove selected rows from dataframe

DataFrame dfRemove(DataFrame df, IntegerVector iv) {

if (df.nrows() != iv.length()) {
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stop("Length mismatch");

}

DataFrame out;

CharacterVector tempNameV = df.names();

for (int i = 0; i < df.length(); i++) {

NumericVector temp = df[i];

temp = temp[iv == 0];

String tempName = tempNameV[i];

out[tempName] = temp;

}

return out;

}

// Helper function: copy row from dataframe

NumericVector dfRow(DataFrame df, int rowID) {

NumericVector row(df.length());

for (int i = 0; i < df.length(); i++) {

NumericVector temp = df[i];

row[i] = temp[rowID];

}

return row;

}

// Helper function: edit row in dataframe

void dfUpdate(DataFrame& df, int rowID, NumericVector data) {

for (int i = 0; i < df.length(); i++) {

NumericVector temp = df[i];

temp[rowID] = data[i];

}

return;

}

// Helper function: concatenate vectors together

IntegerVector vConcat(IntegerVector a, IntegerVector b) {

int n = a.length() + b.length();

IntegerVector out(n);

for (int i = 0; i < a.length(); i++) {

out[i] = a[i];

}

for (int i = 0; i < b.length(); i++) {

out[i+a.length()] = b[i];

}

return out;

}

// Helper function: calculate Euclidean distance between dataframe rows, pairwise

NumericMatrix pDfDist(DataFrame df1, DataFrame df2) {

NumericMatrix out(df1.nrows(),df2.nrows());

NumericVector x1 = df1[0];
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NumericVector y1 = df1[1];

NumericVector z1 = df1[2];

NumericVector x2 = df2[0];

NumericVector y2 = df2[1];

NumericVector z2 = df2[2];

for(int i = 0; i < df1.nrows(); i++){

double xi=x1[i];

double yi=y1[i];

double zi=z1[i];

for(int j = 0; j < df2.nrows(); j++){

double xDiff = xi - x2[j];

double yDiff = yi - y2[j];

double zDiff = zi - z2[j];

out(i,j) = sqrt(xDiff*xDiff + yDiff*yDiff + zDiff*zDiff);

}

}

return out;

}

// Helper function: calculate Euclidean distance between point and dataframe rows

NumericVector pDist(NumericVector v, DataFrame df) {

NumericVector out(df.nrows());

NumericVector x2 = df[0];

NumericVector y2 = df[1];

NumericVector z2 = df[2];

double xi=v[0];

double yi=v[1];

double zi=v[2];

for(int i = 0; i < df.nrows(); i++){

double xDiff = xi - x2[i];

double yDiff = yi - y2[i];

double zDiff = zi - z2[i];

out[i] = sqrt(xDiff*xDiff + yDiff*yDiff + zDiff*zDiff);

}

return out;

}

// Helper function: compare numeric matrix against treshold, make boolean matrix

IntegerMatrix MatrixCompare(NumericMatrix fmat, double t) {

IntegerVector dims = fmat.attr("dim");

NumericVector v(fmat);

IntegerVector lv = wrap(v < t);

return IntegerMatrix(dims[0], dims[1], lv.begin());

}

// CODAS function: check outliers, generate first microcluster (mC) if appropriate

void StartCluster(DataFrame& clusterCenters,

IntegerVector& clusterCounts,
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IntegerVector& clusterKernels,

DataFrame& outliers,

double radius,

int minThreshold){

// Note: graph update not necessary for first mC, excluded from function

NumericMatrix distances = pDfDist(outliers,outliers); //Pairwise comparison

IntegerMatrix neighbors = MatrixCompare(distances, radius); //Get neighbors

IntegerVector neighborSums = colSums(neighbors); //Get neighbor counts

int maxID = which_max(neighborSums); //Get point with most neighbors

int maxN = neighborSums[maxID]; //Get max neighbor count

NumericVector distanceCol = distances(_,maxID); //Max neighbor distances

IntegerVector neighborCol = neighbors(_,maxID); //Max neighbor IDs

// If enough neighbors, generate mC

if (maxN >= minThreshold) {

NumericVector newRow(outliers.length()); //Container for new mC

for (int i = 0; i < outliers.length(); i++) { //Get neighbor points, avg them

NumericVector temp = clone(as<NumericVector>(outliers[i]));

temp = temp[neighborCol==1];

newRow[i] = mean(temp); //Avgs become mC coordinates

}

IntegerVector kern = wrap(distanceCol < radius*0.5); //Count points in kernel

int kernSum = sum(kern); //Sum count

clusterCenters = dfAppend(clusterCenters,newRow); //Assign mC coordinates

clusterCounts.push_back(maxN); //Write point count

clusterKernels.push_back(kernSum); //Write kernel point count

outliers = dfRemove(outliers,neighborCol); //Remove points from outliers

}

return;

}

// CODAS function: build graph edges

void Graph(IntegerVector& graphL,

IntegerVector& graphR,

DataFrame clusterCenters,

int nID, double radius) {

NumericVector CCRow = dfRow(clusterCenters,nID); //Get ID'd microcluster (mC)

NumericVector distances = pDist(CCRow,clusterCenters); //Get distances to mCs

// Get mCs within 1.5R

IntegerVector edgeClusters;

for (int i = 0; i < distances.length(); i++) {

if (distances[i] < radius*1.5) {

if (i != nID) {

edgeClusters.push_back(i);

}

}

}

// Build edges

if (edgeClusters.length() > 0) {

IntegerVector CCRep(edgeClusters.length(),nID);
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// Ensure the smaller of each ID pair is considered the left end of the edge:

IntegerVector edgeL = pmin(CCRep,edgeClusters);

IntegerVector edgeR = pmax(CCRep,edgeClusters);

LogicalVector flags(edgeL.length(),1); //Used to subset candidate edges

// Check each candidate for matching edges in the graph:

for (int i = 0; i < edgeL.length(); i++) {

// For a given candidate edge, find any matching left ends in the graph,

// then get their corresponding right ends:

IntegerVector temp1 = graphR[graphL==edgeL[i]];

IntegerVector temp2 = clone(temp1);

// Loop through right ends to see if any match the candidate, unflag if so:

for (int j = 0; j < temp2.length(); j++) {

if (temp2[j] == edgeR[i]) {

flags[i] = 0;

break;

}

}

}

// Remove edges already in graph:

edgeL = edgeL[flags];

edgeR = edgeR[flags];

// Put everything together and update graph

if (edgeL.length() > 0) {

graphL = vConcat(graphL,edgeL);

graphR = vConcat(graphR,edgeR);

}

}

return;

}

// CODAS function: move/generate microclusters (mCs)

void Assign(NumericVector sample,

DataFrame& clusterCenters,

IntegerVector& clusterCounts,

IntegerVector& clusterKernels,

DataFrame& outliers,

double radius,

int minThreshold,

IntegerVector& graphL,

IntegerVector& graphR) {

// Find distance to nearest mC

NumericVector distances = pDist(sample,clusterCenters);

int nID = which_min(distances);

double nearestDist = distances[nID];

// If inside a microcluster, update microcluster:
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if (nearestDist < radius) {

clusterCounts[nID]++; // Increment sample count

if (nearestDist < radius*0.5) {

clusterKernels[nID]++; // Increment kernel sample count

// Update cluster location:

NumericVector CCRow = dfRow(clusterCenters,nID);

CCRow = (CCRow*(clusterKernels[nID]-1) + sample) / clusterKernels[nID];

dfUpdate(clusterCenters,nID,CCRow);

// Update graph with any new edges:

Graph(graphL,graphR,clusterCenters,nID,radius);

// (Note: cluster movement never results in deletion of edges)

}

} else { // If not inside a microcluster, try to create new microcluster:

outliers = dfAppend(outliers,sample); //Add record to outliers

NumericMatrix distances = pDfDist(outliers,outliers); //Pairwise comparison

IntegerMatrix neighbors = MatrixCompare(distances, radius); //Get neighbors

IntegerVector neighborSums = colSums(neighbors); //Get neighbor counts

int maxID = which_max(neighborSums); //Get point with most neighbors

int maxN = neighborSums[maxID]; //Get max neighbor count

NumericVector distanceCol = distances(_,maxID); //Max neighbor distances

IntegerVector neighborCol = neighbors(_,maxID); //Max neighbor IDs

// If enough neighbors, generate mC

if (maxN >= minThreshold) {

int n = clusterCenters.nrows(); //Get number of existing mCs

NumericVector newRow(outliers.length()); //Container for new mC

for (int i = 0; i < outliers.length(); i++) { //Get avg of neighbor points

NumericVector temp = clone(as<NumericVector>(outliers[i]));

temp = temp[neighborCol==1];

newRow[i] = mean(temp); //Avgs become mC coordinates

}

IntegerVector kern = wrap(distanceCol < radius*0.5); //Count kernel points

int kernSum = sum(kern); //Sum count

clusterCenters = dfAppend(clusterCenters,newRow); //Assign mC coordinates

clusterCounts.push_back(maxN); //Write point count

clusterKernels.push_back(kernSum); //Write kernel point count

outliers = dfRemove(outliers,neighborCol); //Remove points from outliers

// Update graph with any new edges:

Graph(graphL,graphR,clusterCenters,n,radius);

}

}

return;

}

// Main CODAS function (accessible from R script)

// [[Rcpp::export]]

List CODAS(DataFrame data,

int fileCounter,
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DataFrame clusterCenters,

IntegerVector clusterCounts,

IntegerVector clusterKernels,

DataFrame outliers,

double radius,

int minThreshold,

IntegerVector graphL,

IntegerVector graphR) {

// Iterate through records

for (int i = 0; i < data.nrows(); i++) {

NumericVector sample = dfRow(data,i); //Select record from dataframe

// Remove outliers older than twice the time threshold

LogicalVector outliersSelect = as<NumericVector>(outliers[0]) >= sample[0] - 2;

dfKeep(outliers,outliersSelect);

if (clusterCenters.nrows() == 0) { //If no microclusters (mCs) exist

outliers = dfAppend(outliers,sample); //Add record to outliers

StartCluster(clusterCenters,clusterCounts,clusterKernels,

outliers,radius,minThreshold); //Generate mC if appropriate

} else {

Assign(sample,clusterCenters,clusterCounts,clusterKernels,

outliers,radius,minThreshold,graphL,graphR); //Assign to or generate mC

}

// Print progress message every 1,000 records

if ((i%1000 == 0)*(i>0)) {

Rcout << "File "<< fileCounter << ": Row " << i << ", " << outliers.nrows()

<< " outliers, " << clusterCenters.nrows() << " clusters" << "\n";

}

}

// Assemble & output cluster information

List output = List::create(_["clusterCenters"] = clusterCenters,

_["clusterCounts"] = clusterCounts,

_["clusterKernels"] = clusterKernels,

_["outliers"] = outliers,

_["graphL"] = graphL,

_["graphR"] = graphR);

return output;

}

// Post-CODAS function: associate data records with nearest microcluster (mC)

// [[Rcpp::export]]

IntegerVector MicroMembers(DataFrame data, DataFrame clusterCenters, double radius) {

IntegerVector microIDs(data.nrows()); //microID values default to zero

// Iterate through records

for (int i = 0; i < data.nrows(); i++) {

NumericVector sample = dfRow(data,i); //Get data record

// Find nearest mC, associate with record if appropriate

NumericVector distances = pDist(sample,clusterCenters);

int minID = which_min(distances);
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double minDist = distances[minID];

if (minDist < radius) {

microIDs[i] = minID + 1; //(account for zero-indexing)

}

}

return microIDs;

}

// Post-CODAS function: assign macrocluster (MC) IDs to data records

// [[Rcpp::export]]

IntegerVector MacroMembers(IntegerVector microIDs, IntegerVector macros) {

IntegerVector macroIDs(microIDs.length()); //macroID values default to zero

// Iterate through records, assign MC IDs based on association w/ mCs

for (int i = 0; i < microIDs.length(); i++) {

if (microIDs[i] != 0) {

macroIDs[i] = macros[microIDs[i]-1]; //(account for zero-indexing)

}

}

return macroIDs;

}
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Appendix D. Distance Calculations Code

D.1 With Hierarchical Subclustering (ltngDistHC.R)

### Lightning Distance Calc with Hierarchical Subclustering ###

### Capt Erick Tello, 2021 ###

library(geosphere) #Used for calculating geographic distances

library(beepr) #Used to play alert sound

library(dplyr) #Used to select/aggregate data

library(Rcpp) #Used to run CODAS.cpp

library(igraph) #Used to find graph components

library(sp) #geosphere helper

library(rgdal) #geosphere helper

# Set DateTime precision

options(digits = 13)

options(digits.secs = 3)

# Initialize ID and distance containers

folderID = c()

fileID = c()

clusterID = c()

dists = c()

# Iterate through 11 output folders

for (m in 1:11) {

outputFolder = paste0("CEDAS 5nmi 30min (all data) Final ",m)

fList = list.files(path = paste0("./",outputFolder,"/"), pattern = "cdpx*")

# Iterate through files

for (i in fList) {

ltngData = read.csv(paste0(outputFolder,"/",i))

# Iterate through macrocluster IDs

for (j in min(ltngData$MacroClusterID):max(ltngData$MacroClusterID)) {

tempData = ltngData[ltngData$MacroClusterID == j,]

# # Option: get 1st 10 records

# tempData = tempData[1:10,]

# Option: get 1st 30 seconds

tempData = tempData[tempData$DateTime <= min(tempData$DateTime) + 30,]

tempData = tempData[,c(3,2)] #Arrange columns for distance calculation

tempData = na.omit(tempData) #Omit any NAs

# If any data, apply hierarchical subclustering

if (nrow(tempData) > 1) {

# Detect any separation of electrical activity w/ heirarchical clustering

distMatr = distm(tempData) * 0.000539957 #Get distances, convert to NM

hc = hclust(as.dist(distMatr), method="complete") #Apply clustering

localClust = cutree(hc, h=5) #Set cutoff distance, assign cluster IDs

79



if (max(localClust) > 1) { #max(localClust) > 1

# Process subclusters

for (k in 1:max(localClust)) {

tempCData = tempData[localClust == k,]

if (nrow(tempCData) > 1) {

# Geographic distance calculation (storm origin)

tempDists = sapply(2:nrow(tempCData),function(i){

distm(tempCData[1,],tempCData[i,])}) * 0.000539957

dists = c(dists,tempDists) #Append to distance list

# Append IDs

folderID = c(folderID,rep(m,length(tempDists)))

fileID = c(fileID,rep(i,length(tempDists)))

clusterID = c(clusterID,rep(j,length(tempDists)))

}

}

} else {

# Geographic distance calculation (storm origin)

tempDists = sapply(2:nrow(tempData),function(i){

distm(tempData[1,],tempData[i,])}) * 0.000539957

dists = c(dists,tempDists)

# Append IDs

folderID = c(folderID,rep(m,length(tempDists)))

fileID = c(fileID,rep(i,length(tempDists)))

clusterID = c(clusterID,rep(j,length(tempDists)))

}

}

print(paste0("Points: ",i,", ",j)) #Progress message

}

}

}

beep(2) #Play alert sound

ltngDistsRaw = data.frame(Folder = folderID, #Build dataframe

File = fileID,

Cluster = clusterID,

Distance = dists)

ltngDists = data.frame(ltngDistsRaw) #Copy dataframe

ltngDists = ltngDists[ltngDists$Cluster != 0,] #Remove outliers

ltngDists = na.omit(ltngDists) #Remove NAs

#---- Analytics ----#

# Basic histogram

hist(ltngDists$Distance,

main = NULL, #"Histogram of Early Lightning Distances From Storm Origin",

xlab = "Distance (NM)",

breaks = seq(0,ceiling(max(ltngDists$Distance)),1))

# Percent of values beyond 4 NM

length(ltngDists$Distance[ltngDists$Distance > 4])/length(ltngDists$Distance)
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D.2 With CODAS Subclustering (ltngDistCODAS.R)

### Lightning Distance Calc with CODAS Subclustering ###

### Capt Erick Tello, 2021 ###

library(geosphere) #Used for calculating geographic distances

library(beepr) #Used to play alert sound

library(dplyr) #Used to select/aggregate data

library(Rcpp) #Used to run CODAS.cpp

library(igraph) #Used to find graph components

library(sp) #geosphere helper

library(rgdal) #geosphere helper

library(fitdistrplus) #Used to fit distributions

# Set DateTime precision

options(digits = 13)

options(digits.secs = 3)

# Initialize ID and distance containers

folderID = c()

clusterID = c()

dists = c()

# Get CODAS and associated functions

sourceCpp("CODAS.cpp")

radius = 5 # CEDAS microC radius

minThreshold = 1 # Min microC threshold

# Iterate through 11 output folders

for (m in 1:11) {

outputFolder = paste0("CEDAS 5nmi 30min (all data) Final ",m)

fList = list.files(path = paste0("./",outputFolder,"/"), pattern = "cdpx*")

# Initialize lightning data container

ltngData = data.frame(DateTime = numeric(0),

Latitude = numeric(0),

Longitude = numeric(0),

MicroClusterID = integer(0),

MacroClusterID = integer(0))

for (i in fList) { #Iterate through files

ltngData = rbind(ltngData,read.csv(paste0(outputFolder,"/",i)))

}

# Iterate through macrocluster IDs

for (j in min(ltngData$MacroClusterID):max(ltngData$MacroClusterID)) {

tempDataInit = ltngData[ltngData$MacroClusterID == j,]

tempDataInit = na.omit(tempDataInit)

# Filter to times between 1400 and 1800 UTC

if ( (nrow(tempDataInit) > 1) &

(tempDataInit$DateTime[1] %% 86400 >= 50400) &
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(tempDataInit$DateTime[1] %% 86400 <= 64800) ) {

# Filter to data not preceded by anything in past 15 minutes

chckWinStart = tempDataInit$DateTime[1] - 1

chckWinEnd = tempDataInit$DateTime[1] - 900

chckWin = ltngData[(ltngData$DateTime >= chckWinStart) &

(ltngData$DateTime <= chckWinEnd),]

if(nrow(chckWin) == 0){

# # Option: get 1st 10 records

# tempDataInit = tempDataInit[1:min(c(10,nrow(tempDataInit))),]

# Option: get 1st 30 seconds

tempDataInit = tempDataInit[tempDataInit$DateTime <=

min(tempDataInit$DateTime) + 30,]

# Arrange columns for distance calculation

tempData = tempDataInit[,c(3,2)]

# If any data, apply CODAS subclustering

if (nrow(tempData) > 1) {

#----

clusteredData = data.frame(tempDataInit[,1:3])

clusteredData$DateTime = rep(1,nrow(clusteredData)) #Flatten times

clusteredData$Latitude = clusteredData$Latitude / 0.01667 #lat -> NM

clusteredData$Longitude = clusteredData$Longitude / 0.0193 #long -> NM

# Initialize CODAS data structure

output = list(data.frame(DateTime = numeric(0),

Latitude = numeric(0),

Longitude = numeric(0)),

integer(0),

integer(0),

data.frame(DateTime = numeric(0),

Latitude = numeric(0),

Longitude = numeric(0)),

integer(0),

integer(0))

names(output) = c("clusterCenters","clusterCounts","clusterKernels",

"outliers","graphL","graphR")

fileCounter = 1L #Progress message helper

# Run CODAS algorithm

output = CODAS(clusteredData,

fileCounter,

output$clusterCenters,

output$clusterCounts,

output$clusterKernels,

output$outliers,

radius,

minThreshold,

output$graphL,

output$graphR)
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# Fix graph node IDs (off due to Rcpp zero-indexing):

output$graphL = output$graphL + 1

output$graphR = output$graphR + 1

# Find graph components

clusterGraph = make_undirected_graph(c(rbind(output$graphL,

output$graphR)), nrow(output$clusterCenters))

subMacroClusters = components(clusterGraph)

# Assign subcluster IDs

subMicroID = MicroMembers(clusteredData,output$clusterCenters,radius)

subMacroID = MacroMembers(subMicroID,subMacroClusters$membership)

#----

# Process subclusters

for (k in 1:max(subMacroID)) {

tempCData = tempData[subMacroID == k,]

if (nrow(tempCData) > 1) {

# Geographic distance calculation

tempDists = sapply(2:nrow(tempCData),function(i){

distm(tempCData[i-1,],tempCData[i,])}) * 0.000539957

dists = c(dists,tempDists) #Append to distance list

# Append IDs

folderID = c(folderID,rep(m,length(tempDists)))

clusterID = c(clusterID,rep(j,length(tempDists)))

}

}

}

}

}

}

print(paste0("Folder: ",m,"; Max Macrocluster: ",j)) #Progress message

}

beep(2) #Play alert sound

ltngDistsRaw = data.frame(Folder = folderID, #Build dataframe

Cluster = clusterID,

Distance = dists)

ltngDists = data.frame(ltngDistsRaw) #Copy dataframe

ltngDists = ltngDists[ltngDists$Cluster != 0,] #Remove outliers

ltngDists = na.omit(ltngDists) #Remove NAs

#---- Analytics ----#

# Basic histogram

hist(ltngDists$Distance,

main = NULL, #"Histogram of Distances Between Successive Lightning Events",

xlab = "Distance (NM)",

breaks = seq(0,ceiling(max(ltngDists$Distance)),1))
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# Summary statistics

cGroup = group_by(ltngDists,Folder,Cluster)

cSummary = summarize(cGroup, length(Distance), max(Distance), .groups="keep")

# Percent of values beyond 4 NM

length(ltngDists$Distance[ltngDists$Distance > 4])/length(ltngDists$Distance)

# Distribution plotting

hist(ltngDists$Distance,

main = NULL, #"Histogram of Distances Between Successive Lightning Events",

xlab = "Distance (NM)", ylab = "Probability Density", freq = FALSE,

breaks = seq(0,ceiling(max(ltngDists$Distance)),0.5))

weib = fitdist(ltngDists$Distance, "weibull",

start = list(shape = 0.833, scale = 2.142*0.539957), method = "mse")

curve(dweibull(x, shape=weib$estimate[1], scale=weib$estimate[2]),

from=0, to=max(ltngDists$Distance), add=TRUE,

col="blue", lwd=2)

legend(x=max(ltngDists$Distance)/2, y=1, col="blue", lty=1, lwd=2,

legend=c(paste0("Weibull (shape = ",round(weib$estimate[1],3),

", scale = ",round(weib$estimate[2],3),")")))

# Percent of distribution beyond 4 NM

1-pweibull(4, shape = weib$estimate[1], scale = weib$estimate[2])

# Sanderson distribution comparison

1-pweibull(4,0.833,2.142*0.539957)

mean(rweibull(1000, shape = 0.833, scale = 2.142*0.539957))

median(rweibull(1000, shape = 0.833, scale = 2.142*0.539957))
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Appendix E. Data Visualisation Code (ltngVis.R)

### Data Visualisation App ###

### Capt Erick Tello, 2021 ###

library(dplyr) #Used to select/aggregate data

library(DBI) #Used for data manipulation

library(shiny) #Used for data visualisation

library(shinyTime) #Used for improved time controls

library(leaflet) #Used to overlay data on satellite maps

# Set DateTime precision

options(digits = 13)

options(digits.secs = 3)

# # Default data file selection (user should edit filepath as desired)

# ltng = read.csv("CEDAS 5nmi 30min May2/cd2019.05.02.TL.csv",

# colClasses=c(DateTime="character"))

# dateTime = as.POSIXct(ltng£DateTime)

# Commented lines represent clusters of interest

# ltng = read.csv("CEDAS 5nmi 30min (all data) Final 5/cdpx2019.07.02.TL.csv")

# ltng = ltng[ltng£MacroClusterID == 228,]

# ltng = read.csv("CEDAS 5nmi 30min (all data) Final 8/cd2019.07.30.TL.csv")

# ltng = ltng[ltng£MacroClusterID == 170,]

# ltng = read.csv("CEDAS 5nmi 30min (all data) Final 4/cdpx2019.06.26.TL.csv")

# ltng = ltng[ltng£MacroClusterID == 423,]

# ltng = read.csv("CEDAS 5nmi 30min (all data) Final 3/cdpx2019.06.11.TL.csv")

# ltng = ltng[ltng£MacroClusterID == 338,]

# Get data across CODAS output files, build data structures

outputFolder = paste0("CEDAS 5nmi 30min (all data) Final ",8) #Select folder

fList = list.files(path = paste0("./",outputFolder,"/"), pattern = "cdpx*")

ltng = data.frame(DateTime = numeric(0),

Latitude = numeric(0),

Longitude = numeric(0),

MicroClusterID = integer(0),

MacroClusterID = integer(0))

for (i in fList) {

ltng = rbind(ltng,read.csv(paste0(outputFolder,"/",i)))

}

# ltng = ltng[ltng£MacroClusterID == 589,] #Optional filter to macrocluster

dateTime = as.POSIXct(ltng$DateTime, origin="1970-01-01")
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# Build color palette for data points:

colr = topo.colors(50)

colr2 = grDevices::colors()[grep('gr(a|e)y', grDevices::colors(), invert = T)]

pal = colorFactor(grDevices::colors()[grep('gr(a|e)y',

grDevices::colors(), invert = T)], 1:433)

pal2 = colorFactor(topo.colors(50), 1:50)

factpal <- colorFactor(topo.colors(5), 1:5)

# Build UI:

ui <- fluidPage(

align = "center",

sliderInput(inputId = "timeStart", label = "Time start",

min = as.POSIXct(dateTime[1]),

max = as.POSIXct(tail(dateTime, n=1)),

value = as.POSIXct(dateTime[1])),

numericInput(inputId = "timeOffset", label = "Time window (seconds):",

value = 30, min = 1, step = 1),

sliderInput(inputId = "pointCount", label = "Point Count",

min = 1, max = 10, value = 10),

leafletOutput("map")

)

# Translate inputs to outputs:

server <- function(input, output) {

output$map <- renderLeaflet({

# # Alternative filtering:

# timeStart = as.POSIXct(input£dateStart) + input£timeStart*60

# timeEnd = as.POSIXct(input£dateStart) + input£timeStart*60 + input£timeOffset

# output£timeStart <- renderText({ format(timeStart, tz = "GMT") })

# output£timeEnd <- renderText({ format(timeEnd, tz = "GMT") })

ltngSubset = ltng[(ltng$DateTime >= as.numeric(timeStart)) &

(ltng$DateTime <= as.numeric(timeEnd)),

c("Latitude","Longitude","MacroClusterID")]

# Option: filter by time

ltngSubset = ltng[(dateTime >= input$timeStart) &

(dateTime <= input$timeStart + input$timeOffset),

c("Latitude","Longitude","MacroClusterID")]

# # Option: filter by point count

# ltngSubset = ltng[1:input£pointCount,c("Latitude","Longitude","MacroClusterID")]

# Overlay points on satellite map

leaflet(ltngSubset) %>%

setView(lat = 28.424, lng = -80.825, zoom = 8) %>%

addProviderTiles(providers$Esri.WorldImagery,

options = providerTileOptions(noWrap = TRUE)) %>%

addCircleMarkers(lat = ~Latitude, lng = ~Longitude, radius = 6,

color = ~pal2(MacroClusterID %% 50 + 1),

stroke = FALSE, fillOpacity = 0.5, group = "Cloud-to-Cloud") %>%

addRectangles(

lat1 = 28.1016, lng1 = -81.2038,
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lat2 = 28.9861, lng2 = -80.3546,

fillColor = "transparent"

)

})

}

# Required for Shiny app

shinyApp(ui = ui, server = server)
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