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Abstract

Military air battle managers face many challenges when directing operations in quickly

evolving combat scenarios. These scenarios require rapid decisions to engage moving

and unpredictable targets. In defensive operations, the success of a sequence of air

battle management decisions is reflected by the friendly force’s ability to maintain

air superiority by defending friendly assets. We develop a Markov decision process

(MDP) model of the air battle management (ABM) problem, wherein a set of un-

manned combat aerial vehicles (UCAV) is tasked to defend a central asset from cruise

missiles that arrive stochastically over time. The MDP model explains each compo-

nent of this complex and dynamic problem with the understanding that an exact

solution using traditional dynamic programming techniques is computationally in-

tractable. We utilize an approximate dynamic programming (ADP) technique known

as approximate policy iteration with least squares temporal differences (API-LSTD)

to find high-quality solutions to the ABM problem. We create a generic yet represen-

tative combat scenario to illustrate how the ADP solution compares in quality to a

reasonable benchmark policy. Our API-LSTD policy improves mean success rate by

6.8% compared to the benchmark policy and offers a 318% increase in the frequency

at which the policy performs equivalently to an optimal policy. The improvements

come at a cost of idle time, indicating a trade-off between defensive success rates

and fuel cost. We show that the increase in performance of the API-LSTD policy is

equivalent on average to increasing UCAV flight speed by 50% under the benchmark

policy. These results inform force management and acquisition decisions, and aid in

the development of more effective tactics, techniques, and procedures.
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IMPROVING AIR BATTLE MANAGEMENT TARGET ASSIGNMENT

PROCESSES VIA APPROXIMATE DYNAMIC PROGRAMMING

I. Introduction

The United States recognizes an increasingly complex and volatile global security

environment marked by rapid technological advancements in areas such as artificial

intelligence and autonomy (Department of Defense, 2018c). These technologies have

decreasing barriers to entry, amplifying opportunities for both state- and non-state

actors to develop and refine military capabilities in these sectors. Large-scale combat

against these technologies is unprecedented, and given their widespread and increasing

commercial availability, the traditional conventional overmatch of the United States

is not guaranteed (Department of Defense, 2018c). Without this quantitative over-

match, offensive and defensive operations realize advantages in superlative decision-

making processes.

The theater air control system (TACS) conducts air battle management (ABM)

activities, providing counterair operations oversight as well as command and control

functions for all friendly air assets within a theater of operations. Effective man-

agement of counterair operations is critical to the achievement of military objectives.

Counterair operations comprise two categories: offensive counterair (OCA) and defen-

sive counterair (DCA), with expected overlap and synchronization. OCA operations

seek to destroy, disrupt, or neutralize enemy forces as close to their source as possi-

ble, whereas DCA operations seek to neutralize enemy forces attempting to penetrate

an airspace (Department of Defense, 2018b). Together, these operations provide an

area in which friendly forces can operate while protected from air and missile threats
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(Department of Defense, 2018b). The TACS consists of regional ground and airborne

elements wherein the ground-based control and reporting center (CRC), under the

direction of the regional air defense commander (RADC), serves as the primary de-

cision authority for target assignment during DCA missions (Department of the Air

Force, 2011).

The RADC ensures friendly forces conduct effective DCA operations to obtain or

maintain air superiority in a region within the theater of operations. Friendly forces

are said to achieve air superiority in a region when they are able to operate without

prohibitive enemy interference. Although air superiority itself provides little intrinsic

benefit, it acts as an enabler for friendly forces to conduct missions subject to a

minimized vulnerability of detection and attack (Department of the Air Force, 2011).

To meet this objective of obtaining or maintaining air superiority, OCA and DCA

forces work in concert. OCA forces aim to preempt enemy attacks, and DCA forces

respond reactively as needed. DCA forces implement the same sequential process for

any airborne threat: detect, identify, intercept, and destroy (Department of the Air

Force, 2011). The RADC and a staff of air battle managers within the CRC must

consider the speed, trajectory, location, and threat level of incoming hostile forces to

appropriately prioritize assignments for intercept within this process, especially when

considering multiple targets and multiple methods of intercept simultaneously.

DCA operations may be classified as active air and missile defense and include

employment of several disparate asset types and systems, e.g., fighter aircraft, surface-

to-air missiles, anti-aircraft artillery, electromagnetic warfare systems, and ballistic

missile defense systems, to destroy the hostile forces or reduce the effectiveness of

their attacks (Department of Defense, 2018b). Alternatively, DCA operations may be

classified as passive air and missile defense and include all measures not considered

active, e.g., detection and warning; mobility and dispersion; chemical, biological, ra-
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diological, and nuclear (CBRN) defense; or low-observable technology (Department

of Defense, 2018b). The TACS airborne elements, the Airborne Warning and Control

System (AWACS) and the Joint Surveillance Target Attack Radar System (JSTARS),

use long-range sensor platforms to relay real-time information supporting the deci-

sions of how to engage enemy targets (Department of the Air Force, 2011). Fighter

aircraft involved in these missions may be traditional manned aircraft, or they may

also be unmanned aerial vehicles (UAV). Weaponized UAVs intended for use in com-

bat are referred to as unmanned combat aerial vehicles (UCAV) and can be either

remotely controlled or autonomous. The distinction between remotely controlled and

autonomous is important because it highlights a key difference in the nature of their

command and control.

Air battle managers face many challenges when conducting counterair operations.

Air combat situations evolve quickly, requiring rapid decisions to engage moving and

unpredictable targets. Moreover, each aircraft mission design series (MDS) is charac-

terized by different flight dynamics and, even within the same MDS, each individual

aircraft may have a different, mission-specific weapons configuration. The increased

proliferation of UAV technology further complicates the DCA mission with regard

both to the control of friendly UCAV forces and to the defense against hostile UCAV

forces because UAVs are not subject to the same human factor limitations as tradi-

tional manned aircraft. The United States Department of Defense currently operates

over 11,000 UAVs (Department of Defense, 2014). In the civilian and commercial

sectors, over 1.6 million UAVs are currently registered with the Federal Aviation

Administration, and the number is quickly increasing (Federal Aviation Administra-

tion, 2020). Worldwide, over 70 countries have advertised military UAV capabilities

(Franke, 2014). Additionally, as Operation Inherent Resolve coalition forces witnessed

recently during conflict with the Islamic State, basic UAV technology is so widely ac-

3



cessible that any non-state actor should reasonably be expected to employ UAVs in

some fashion.

The 2018 National Defense Strategy of the United States highlights autonomous

aircraft as a key capability (Department of Defense, 2018c). Operating autonomous

UCAVs in counterair roles offers advantages to offensive and defensive strategies with-

out human factor limitations. Of course, adversaries may realize these same benefits.

Although the United States implements controls to guard against unethical employ-

ment of autonomous vehicles in combat, it is important to understand how these

technologies can be employed independent of policy and ethical considerations to

best defend against their employment by hostile forces. Understanding UCAV em-

ployment strategies can provide for improved ABM policies by considering the prob-

abilistic outcomes of a large number of sequential decisions. These improvements are

realized through development of enhanced training practices along with more effective

tactics, techniques, and procedures. Furthermore, understanding desired capabilities

informs the Joint Capabilities Integration and Development System (JCIDS) for a

variety of systems, allowing for the creation of more accurate system requirements

and overall more efficient acquisitions programs.

In this research, we formulate the ABM Problem, specifically considering the em-

ployment and management of autonomous UCAVs in a defensive role. During DCA

operations, air battle managers must make sequential decisions regarding the assign-

ment of friendly aircraft to the intercept of incoming enemy targets. Using a myopic

(closest-available) task-assignment policy to intercept targets may risk leaving other

parts of the airspace unnecessarily open for attack or risk leaving friendly forces poorly

postured to respond to future threats. If improved task-assignment policies exist, they

may not be immediately obvious, especially when confronted with an overwhelming

enemy force requiring a complex series of decisions. The nature of ABM is both

4



dynamic and stochastic with enemy targets approaching over time at an uncertain

arrival rate and moving towards their destination with some uncertain velocity. We

assume prior intelligence-gathering activities allow for reasonable conclusions regard-

ing the stochastic behavior of these enemy targets. Air battle managers must assign

friendly forces to engage each enemy target before it poses a critical level of threat

to friendly defended assets, suggesting there is a time window in which each target

must be intercepted. To find high-quality solutions to the ABM Problem, we de-

velop a Markov decision process (MDP), which is a stochastic dynamic programming

technique used for sequential decision making when outcomes are uncertain.

Although traditional dynamic programming techniques are effective at finding ex-

act solutions to stochastic and dynamic decision problems, many realistic problems

such as the ABM Problem involve too many combinations of model states and pos-

sible decisions to be computationally tractable. This computational intractability is

referred to as the curse of dimensionality or combinatorial explosion, wherein the

dimension of a problem increases exponentially relative to the number of individ-

ual problem elements. In these cases, approximate dynamic programming (ADP) is

an effective method for developing high-quality, approximate solutions to otherwise

unsolvable problems. Our ADP solution employs an approximate policy iteration

technique using least squares temporal differences (API-LSTD). To demonstrate the

effectiveness of our ADP solution, we create a generic yet representative DCA scenario

alongside a simulation model that characterizes how the DCA scenario evolves over

time. We design and conduct a series of computational experiments to explore how

the numeric algorithm and problem parameters affect API-LSTD solution quality.

The remaining chapters discuss further details of this research. Chapter II reviews

applicable previous literary works and discusses their relevance to the current research.

Chapter III elaborates on the ABM Problem, and Chapter IV proposes an ADP

5



solution methodology. Chapter V describes a computational experiment designed to

improve the performance of the ADP solution methodology along with an analysis

of the results. Chapter VI concludes the research and provides suggestions for future

research.
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II. Literature Review

This paper focuses on finding high-quality policies for ABM target assignment

during DCA operations. The study of UCAV routing to develop an appropriate

target assignment mathematical model suggests the applicability of several classical

combinatorial optimization routing problems: the traveling salesman problem (TSP),

the vehicle routing problem (VRP), and the orienteering problem (OP). Addition-

ally, Markov decision processes (MDP) are specifically suited for solving sequential

decision-making problems under uncertainty. Routing considerations aside, the class

of problems known as assignment problems (AP) is itself non-trivial and should be

investigated. Finally, relevant ADP papers inform the development of our solution

approach. The remainder of this chapter discusses the components of these related

problems and examines a variety of applicable research.

2.1 Markov Decision Processes

An MDP formulates a stochastic sequential decision-making problem wherein a

decision-maker selects actions based on the observed state of a system. The system

then transitions to a new state based on the current state, the action selected, and

a set of transition probabilities. Of profound importance is that the process exhibits

the Markov property; if the present state of the system is known, the future of the

system is independent of its past (Kulkarni, 2017). In an MDP, it follows that the

decision maker is able to make decisions based only on the current state of the system

and subsequently observe the system evolve independent of its previous history.

Puterman (2005) provides a thorough description of the components of an MDP

model. First, there exists a set of decision epochs, T , wherein each decision epoch

t ∈ T represents a point in time when a decision is made, and the system is observed

7



to occupy a state St ∈ S during every decision epoch. Depending on the current state,

St ∈ S, the decision maker is able to choose from a set of allowable actions, a ∈ As.

The decision maker chooses action at ∈ As while in state St ∈ S at time t ∈ T and

receives a contribution (or incurs a cost) given by C(St, at). Finally, at time t+1, the

decision maker observes the system in state St+1 ∈ S with probability p(St+1|St, at).

Thus, an MDP is defined as the set of components {T ,S,As, C(St, at), p(St+1|St, at)}.

These components serve as a common mathematical framework to represent problems

in this area of research.

The decision maker chooses action at ∈ As while in state St ∈ S at time t ∈ T and

receives a contribution (or incurs a cost) given by C(St, at). Finally, at time t+1, the

decision maker observes the system in state St+1 ∈ S with probability p(St+1|St, at).

2.2 Combinatorial Optimization Problems for Route Planning

The TSP (see, e.g., Dantzig et al. (1954)) is one of the most widely studied prob-

lems in combinatorial optimization. It involves a directed or undirected graph with

a set of nodes and edges with associated weights (representing some manifestation of

travel cost). The goal of the TSP is to determine a single entity’s most efficient route

to visit all nodes exactly once and return to the point of origin. The TSP and its

variations are typically modeled using integer linear programming.

The VRP is a generalization of the TSP wherein the goal is also to visit all nodes

as efficiently as possible, but it is formulated with a group of K identical entities

available to traverse the graph (when K = 1, the VRP is equivalent to the TSP).

Originally proposed by Dantzig and Ramser (1959), the VRP is experiencing increas-

ing applicability to transportation logistics given the steadily increasing urbanization

of the global population and the highly variable nature of urban travel times (United

Nations, 2018). In applications of the VRP, a vehicle’s ability to move directly be-

8



tween pairs of nodes may be additionally constrained, e.g., due to fuel capacity or an

operator’s fatigue level.

When there is a limited ability to visit every node in the graph, it necessary to

formulate the problem such that the objective is modified to instead visit a subset of

nodes that maximizes the sum of values associated with the individual nodes. This

variation of the VRP (with K = 1) is known as the orienteering problem (OP) or

(with K > 1) the team orienteering problem (TOP). Tsiligirides (1984) originally

introduces the OP as distinct from the VRP. Golden et al. (1987) formalize the

problem, describing the sport of orienteering wherein control points with associated

reward values are located across a geographical region. Competitors attempt to visit

any number of these points and then return to the starting point within the allotted

time. The classical version of the OP is equivalent to the generalized TSP (Tsiligirides,

1984).

Chao et al. (1996) propose the TOP as an extension of the single-competitor OP

wherein a team of competitors starting at the same point attempt to navigate to a

number of control points and return to the starting location within a known time

limit. The score for visiting a control point can only be received once. Each team

member must determine a route that collectively maximizes the team’s score and thus

likely minimizes overlap between team members.

Kantor and Rosenwein (1992) introduce the OP with time windows (OPTW),

which can be directly extended to the TOP with time windows (TOPTW). In the

OPTW, each node i is associated with at least one time window [ei, di] in which that

node may be visited. Visiting the node outside of the associated time window would

lead to an infeasible solution or, in the case of an early arrival, a possible waiting

timer.

9



A recent proposal by Vincent et al. (2019) presents the TOPTW with time-

dependent scores (TOPTW-TDS) as a practical extension of the TOPTW, allowing

for nodes to provide different scores depending on the time when they are visited.

The authors explain the popularity of the TOPTW in the tourist trip design problem

(TTDP) and suggest that time-dependent scores are a more realistic representation of

the TTDP and other applications given that tourist landmarks are often more or less

attractive at different times of day. They formulate an integer linear programming

model and solve it with a hybrid artificial bee colony (HABC) algorithm, created

by combining the simulated annealing (SA) technique with the artificial bee colony

algorithm developed by Karaboga and Basturk (2007).

2.3 Assignment Problems and Approximate Dynamic Programming

Pentico (2007) provides a survey of AP variations dating back to the introduc-

tion of an effective linear programming solution methodology by Kuhn (1955). The

classical AP seeks to find a one-to-one assignment of agents to tasks such that the

total cost associated with the assignments is minimized. Similarly, in the ABM Prob-

lem, there exist n agents needing to be assigned to intercept m targets. However, m

varies stochastically over time, and a high-quality assignment policy must consider

the dynamic nature of the problem in order to minimize the expected total cost.

Rettke et al. (2016) examine a complex implementation of the AP wherein aerial

medical evacuation (MEDEVAC) agents must be prioritized and dispatched to sup-

port service calls during high-intensity combat operations. Calls arrive stochastically

over time with varying priority levels and must be serviced in accordance with time-

lines given in the Army Medical Evacuation Field Manual (Department of the Army,

2019). The problem state space is defined with information on each MEDEVAC

agent’s status (idle or busy), the list of queued service calls, and any presently ar-
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riving service call. This formulation shares many similarities with the state space

requirements of the ABM Problem, although the ABM Problem requires additional

detail to define a precise location of each entity within a geographic region. The au-

thors find that the MDP solution approach is computationally intractable and they

implement an ADP approach using approximate policy iteration with least squares

temporal differences (API-LSTD) to attain solutions. The API algorithm consists of

a policy evaluation phase wherein the algorithm approximates the value function for

a fixed policy using LSTD learning. The algorithm then enters a policy improvement

phase and creates a new policy based on the updated value function approximation.

The authors find that the task assignment policy produced by the API-LSTD algo-

rithm is improved over the baseline closest-available assignment policy, and that the

most significant problem feature is the MEDEVAC agents’ speed.

Jenkins et al. (2021) describe a military MEDEVAC problem similar to Ret-

tke et al. (2016) but compare API-LSTD with a proposed, improved ADP solution

methodology using approximate policy iteration with a neural network (API-NN).

The authors use a feed-forward neural network with one hidden layer and find that

this approach produces significantly improved results over API-LSTD.

Summers et al. (2020) explore a specific type of AP known as the weapon target

assignment problem (WTAP), wherein they investigate the defense of a number of as-

sets from incoming theater ballistic missiles using a collocated air defense system. In

a static representation of this problem, the air defense system considers a single salvo

of incoming theater ballistic missiles and assigns the air defense system to intercept

them appropriately. However, a dynamic representation with multiple salvos arriving

stochastically over time is more realistic, but computationally intractable to solve ex-

actly. Thus, the authors employ an API-LSTD implementation to find approximate,

high-quality solutions to a dynamic WTAP. They perform extensive computational
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experiments and find that the API-LSTD policy in all problem instances outperforms

the baseline policies currently in use by the United States Army.
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III. Problem Description

This chapter describes the ABM Problem wherein friendly airborne entities (e.g.,

UCAVs) are tasked to defend a central asset from incoming hostile airborne forces

(e.g., cruise missiles). A decision authority, such as the RADC and staff of air battle

managers, is responsible for sequentially determining how friendly forces are tasked.

The effectiveness of the friendly forces is determined by their ability over time to

maintain air superiority by successfully targeting and intercepting the hostile forces

that encroach upon the defended airspace.

Targeting is the process of selecting and prioritizing targets and matching the

appropriate response to them, considering operational requirements and capabilities

(Department of Defense, 2018a). Targets that are both fleeting and critical consti-

tute the most significant targeting challenge to the joint force (Joint Targeting School,

2017); in DCA operations, nearly all targets pose a critical threat with a narrow time

window to intercept them. Because of the time-sensitive nature of defensive opera-

tions, effective DCA requires streamlined coordination and decision-making processes

(Department of Defense, 2018b). Although the concept of UCAVs in warfighting can

be traced back to the mid-nineteenth century (Buckley and Buckley, 1999), the use

of autonomous UCAVs is more recent. Autonomous UCAVs developed by the United

States must undergo rigorous verification, validation, test, and evaluation procedures

before being considered for use in combat. Because of the relatively nascent use of

UCAVs and the need for additional testing before the use of completely autonomous

UCAVs is tenable, target selection during DCA operations with autonomous UCAVs

must be approved by an authorized human operator (Department of Defense, 2012).

In this formulation of the ABM Problem, friendly forces consist of two or more

UCAVs defending an airspace against incoming cruise missiles that arrive via a sta-

tionary Poisson process and proceed towards a defended asset. The defended asset
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may be the static location of friendly ground forces, such as a forward military base,

or it may be defined by a region encompassing more than one asset being protected.

For the problem examined herein, the asset can be stationary or moving, so long as

its velocity is constant. That is, we assume all entities move in an inertial reference

frame around the asset, and reasonable constraints on speed with respect to the sur-

rounding environment are not violated. As such, the realization of the defended asset

could be extended to entities such as a convoy of ground forces or an aircraft carrier.

Additionally, there exist sensor platforms in the vicinity of the defended asset capa-

ble of detecting incoming cruise missiles and relaying their location to the decision

authority; we assume these sensors operate correctly and successfully.

The decision authority must identify and implement the best ABM-related course

of action at each of three key moments: first, whenever a cruise missile is detected

by a sensor platform; second, whenever a UCAV completes an intercept action and

is available for reassignment; and third, whenever a cruise missile impacts the de-

fended asset. When no active threats exist, the UCAVs operate in accordance with

the published airspace control plan (ACP) and orbit assigned DCA combat air patrol

(CAP) locations. Upon cruise missile detection, the decision authority determines the

location and velocity of the threat and characterizes the missile type to estimate the

relative level of threat it poses. As this information pertains to the problem exam-

ined herein, we assume the cruise missiles have homogeneous offensive capabilities and

move at a constant velocity. After threat detection and identification, the decision

authority must consider the current location of all friendly UCAVs and determine

a response for each, which may include relaying to each UCAV a target intercept

location or waypoint for defensive posturing. Upon detection of multiple cruise mis-

siles, the decision authority must consider the location and velocity of each missile

and prioritize this response accordingly. After all threats have been neutralized, the
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decision authority must determine where to position each UCAV in accordance with

the ACP.

A defensive ABM system endeavors to minimize the expected damage to the de-

fended asset posed by adversary threat capabilities. The ABM system must assign

UCAVs to incoming targets sequentially over time to achieve this objective, maxi-

mizing expected total discounted reward. The ABM Problem is both dynamic and

stochastic in that cruise missile arrival times and locations are not known a priori.

The decision authority must characterize the stochastic arrival behavior of the enemy

based on past intelligence-gathering activities and determine how to task UCAVs to

maintain the most effective defensive posture over time.
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IV. Methodology

4.1 MDP Formulation

This section describes the MDP formulation of the ABM Problem. To minimize

expected damage to an asset defended by a fleet of friendly UCAVs, any hostile forces

detected in the area of operations must be engaged to prevent them the opportunity

to attack. A solution to this sequential decision-making problem is represented by a

policy that provides a decision-maker with decision rules to employ, given any possible

state of the system. The survivability of the defended asset depends on establishing

a high-quality policy to govern UCAV actions during DCA operations.

Consider the following situation. Cruise missiles arrive in the area of operations

defined by a Cartesian coordinate system over a circular region encompassing a central

sensor platform collocated with the defended asset. The radius of the circle represents

the sensor’s detection horizon, where missiles are detected with certainty upon arrival.

Missiles arrive via a stationary Poisson process with rate λ at random radial positions

along the horizon governed by a statistical distribution intended to estimate the

enemy’s expected attack strategy based on intelligence reports. The missiles proceed

with a constant velocity towards their target.

When assigned to intercept a target, a UCAV proceeds via a minimum-time in-

tercept trajectory. To maintain a focus on finding high-quality target assignment

policies, we assume the UCAVs are uniformly armed with a weapon system that will

not be quickly depleted of its offensive means to destroy a target. Additionally, given

a reasonable time horizon for our model, we assume that the UCAVs are able to re-

main airborne without encountering limitations on flight time otherwise imposed by

range or maintenance requirements. Upon closing distance with a target with respect
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to the UCAV’s weapon engagement zone (WEZ), the UCAV destroys the target with

a specified probability.

To model the ABM Problem as an MDP, we leverage the modeling framework

set forth by Jenkins et al. (2021) for a different application having related asset

management features. The problem formulation uses the notation shown in Table 1.

Table 1. Markov Decision Process Model Notation

T the set of decision epochs, indexed by t
t a decision epoch; the index element of T
S the set of all system states, referenced at a specific decision epoch by St
St the system state in S at decision epoch t ∈ T
τt the system time at decision epoch t ∈ T
Ut the UCAV status tuple in St
Mt the missile status tuple in St
R̂t the stochastic information arriving at decision epoch t ∈ T , realized in St
U the set of UCAVs in the system, indexed by u
u a UCAV; the index element of U
Utu the status tuple representing UCAV u ∈ U at decision epoch t ∈ T
υtu the Cartesian position vector in R2 of UCAV u ∈ U

at decision epoch t ∈ T
υ̇tu the Cartesian velocity vector in R2 of UCAV u ∈ U

at decision epoch t ∈ T
dtu the rotational direction indicator of the velocity vector of UCAV u ∈ U

at decision epoch t ∈ T
Mt the set of missiles in the system at decision epoch t ∈ T , indexed by m
mmax the maximum allowed cardinality of Mt

m a missile; the index element of Mt

Mtm the status tuple representing missile m ∈Mt at decision epoch t ∈ T
ρtm the Cartesian position vector in R2 of missile m ∈Mt at

decision epoch t ∈ T
ρ̇tm the Cartesian velocity vector in R2 of missile m ∈Mt at

decision epoch t ∈ T
K the non-empty set of static CAP locations in the system, indexed by k
k a CAP location; the index element of K
Kk the status tuple representing CAP location k ∈ K
κk the Cartesian position vector in R2 of CAP location k ∈ K
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4.1.1 Decision Epochs

The set of decision epochs T = {1, 2, ...} represents the points in time that require

a decision regarding the tasking of a UCAV. These decision epochs occur alongside

three system events: first, whenever a cruise missile is detected by the sensor plat-

form; second, whenever a UCAV completes an intercept action and is available for

reassignment; and third, whenever a cruise missile impacts the defended asset.

4.1.2 State Space

At decision epoch t ∈ T , the system state St ∈ S is given by the tuple

St = (τt, Ut,Mt, R̂t),

wherein τt represents the system time, Ut represents the UCAV status tuple, Mt rep-

resents the missile status tuple, and R̂t represents the stochastic information arriving

at decision epoch t ∈ T . It is important to note that, although decision epochs occur

at discrete times (τ1, τ2, ...), the system evolves in continuous time and may occupy

any number of states during the time between decision epochs.

The UCAV status tuple, Ut, contains information describing each UCAV in the

system at decision epoch t ∈ T . Specifically, we define

Ut = (Utu)u∈U ≡ (Ut1, Ut2, ..., Ut|U|),

wherein U = (1, 2, ..., |U|) denotes the set of UCAVs in the system and the tuple Utu

contains all necessary information regarding UCAV u ∈ U at decision epoch t ∈ T .

We further specify the tuple

Utu = (υtu, υ̇tu, dtu),
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wherein at decision epoch t ∈ T , υtu ∈ R2 denotes the Cartesian position vector of

UCAV u ∈ U ; υ̇tu ∈ R2 denotes the Cartesian velocity vector of UCAV u ∈ U ; and dtu

indicates the rotational direction of the velocity vector of UCAV u ∈ U . The UCAV

status tuples maintain information necessary to represent movement according to a

two-degree-of-freedom, point-mass aircraft model. We let dtu ∈ {−1, 0, 1} wherein −1

denotes that the UCAV is currently performing a right turn, 0 denotes no turn, and 1

denotes a left turn. Because the UCAV is not subject to human endurance limits, we

assume it will always perform turns at the maximum allowable rate until aligning to

intercept a target. We apply realistic bounds to υ̇tu based on the flight characteristics

and the operating flight strength of a particular UCAV MDS. Moreover, an important

element of the ABM Problem is the notion of task preemption, wherein a UCAV

currently en route to intercept a particular target may be reassigned to intercept a

different target as needed. We do not allow for the destruction of UCAVs, nor are

UCAVs removed from the system temporarily or permanently for other reasons, so

|U| > 0,∀t ∈ T .

In the same manner, we define the missile status tuple Mt, which describes the

status of each missile in the system at decision epoch t ∈ T . Let

Mt = (Mtm)m∈Mt ≡ (Mt1,Mt2, ...,Mt|Mt|),

wherein Mt = {1, 2, ..., |Mt|} denotes the set of missiles in the system at decision

epoch t ∈ T with the tuple Mtm containing all necessary information to describe each

missile. We further specify the tuple

Mtm = (ρtm, ρ̇tm),

19



wherein at decision epoch t ∈ T , ρtm ∈ R2 denotes the Cartesian position vector

of missile m ∈ Mt, and ρ̇tm ∈ R2 denotes the Cartesian velocity vector of missile

m ∈ Mt. Because the incoming missiles arrive randomly, the dimension of the state

space is a random variable. To maintain the assurance of a finite-dimensional state

space, we establish the parameter mmax ∈ N wherein |Mt| ≤ mmax,∀t ∈ T . If no

missiles exist in the system at decision epoch t ∈ T , Mt = ∅.

We represent the stochastic information arriving at decision epoch t ∈ T by

the tuple R̂t. Specifically, if a new missile is detected in the system at decision

epoch t ∈ T , R̂t contains all information necessary to update the system state upon

realization of the random variables. If no new missile is detected at decision epoch

t ∈ T , R̂t = ∅. Let

R̂t = (ρ̂t, ˆ̇ρt),

wherein the components of R̂t represent a random realization of the previously defined

components of Mtm.

Although not formally a component of the state variable because of its static

nature, the following CAP information represents an important aspect of the ABM

Problem and merits development. The CAP location tuple K contains information

regarding static CAP locations orbited by UCAVs not actively intercepting a target.

We assume that any number of UCAVs can be assigned to a single CAP location.

The set K is written

K = (Kk)k∈K = (K1, K2, ..., K|K|),

wherein K = {1, 2, ..., |K|} : |K| > 0, denotes the non-empty set of static CAP

locations in the system, and Kk contains all necessary information to define each

CAP location. The set K is necessarily non-empty because we define K1 in all cases
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to be the static location of the defended asset. We define

Kk = (κk),

wherein κk ∈ R2 denotes the Cartesian position vector of CAP k ∈ K.

4.1.3 Action Space

A decision-maker must consider the overall system state to decide how to best

assign UCAVs to intercept targets at each decision epoch. The set of all possible

decisions while in state St is represented by the set

XSt =

{(
(xtum)m∈Mt , (xtuk)k∈K

)
:
∑
m∈Mt

xtum +
∑
k∈K

xtuk = 1 ∀u ∈ U

}
,

wherein the constraint

∑
m∈Mt

xtum +
∑
k∈K

xtuk = 1 ∀u ∈ U

prevents each UCAV u ∈ U from being assigned to perform multiple tasks simul-

taneously. The decision associated with each UCAV represents a set of individual

decisions to assign UCAV u ∈ U to one of two tasks. First, let xtum = 1 if UCAV

u ∈ U is assigned to intercept missile m ∈ Mt at decision epoch t ∈ T , and 0 oth-

erwise. Second, let xtuk = 1 if UCAV u ∈ U is assigned to move to CAP k ∈ K at

decision epoch t ∈ T , and 0 otherwise. Based on the decision, each UCAV either

navigates via the most direct route to a CAP or navigates to the calculated missile

intercept location and destroys the target with probability pkill once within the range

established by the WEZ.
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4.1.4 Transition Probabilities

The ABM system state at each decision epoch t ∈ T is determined by the state

transition function St+1 = SM(St, xt,Wt+1), although the system may transition

through any number of states between decision epochs. This transition function

indicates that the system state at decision epoch t+ 1 ∈ T is fully determined by the

state at decision epoch t, the decision made at decision epoch t, and the information

that arrives at decision epoch t+ 1, represented by Wt+1.

A central aspect of a system state transition is the method by which each UCAV

u ∈ U navigates from location to location. We model the UCAV kinematics in a

two-degree-of-freedom, point-mass aircraft model. The equations of motion for this

model are

υ′x = υx + ζ cos Θ,

υ′y = υy + ζ sin Θ,

wherein ζ is the UCAV’s speed and Θ is the UCAV’s directional heading.

Upon UCAV assignment to intercept a missile, we calculate the most direct in-

tercept locations by first establishing the location of missile m ∈Mt as a function of

time elapsed since τt. We denote this time difference as δ. Let

ρfuturetm = ρtm + δρ̇tm. (1)

Recall that each missile m ∈Mt moves with a constant velocity. In the time interval

[τt, τt + δ], the range of UCAV u ∈ U is defined by radius r, and we would like to

determine the time δ when r is equal to the distance between the UCAV and the
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projected location of the missile. This relationship is expressed as

r2 =

(
δ

υ̇tu
‖υ̇tu‖

)2

= (ρfuturetm − υtu)
2. (2)

The variable δ indicates the minimum time until intercept of missile m ∈ Mt by

UCAV u ∈ U and is given by the smallest real solution to the quadratic equation

(
‖ρ̇tm‖2 −

(
υ̇tu
‖υ̇tu‖

)2
)
δ2 + 2

(
(ρtm − υtu) · ρ̇tm

)
δ + ‖ρtm − υtu‖2 = 0, (3)

such that δ < δimpact, wherein δimpact is the time until missile m ∈ Mt impacts the

target. Additionally, we define the function

Y : (u,m) 7→ [0,∞)

as the smallest real solution to Equation (3) with respect to UCAV u ∈ U and missile

m ∈Mt. If Equation (3) has no real solutions, UCAV u ∈ U is not able to intercept

missile m ∈ Mt prior to it reaching the defended asset. If the UCAV’s heading is

closely aligned at decision epoch t ∈ T with the required direction to intercept the

target, we assume the UCAV can make the directional correction immediately, and

the intercept location for tasking is determined directly from Equation (1). However,

if the UCAV requires a directional adjustment greater than its maximum turning

rate per unit of time, we solve Equation (3) iteratively by projecting the UCAV and

missile positions forward in time while the UCAV performs full left and right turns,

as appropriate. The smallest real solution to Equation (3) using these projected

positions, wherein the UCAV’s projected heading aligns closely with the projected

intercept location, determines the appropriate intercept location for UCAV tasking

via Equation (1).
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4.1.5 Rewards and Costs

The system incurs a cost whenever a missile successfully reaches the defended

asset. In the case of a missile impact, it is difficult to determine which action or

actions taken by the decision-maker ultimately resulted in this event, and at times

the decision-maker may make many decisions prior to observing a non-zero cost. This

is referred to as a delayed cost, and the difficulty of assigning a cost value to a specific

state-action pair is referred to as the credit assignment problem (Sutton and Barto,

2018). We define this cost as

C(St, xt) = −
∑
m∈Mt

1(ρtm, K1), (4)

wherein the indicator function 1 : (ρtm, K1) 7→ {0, 1} is defined as

1(ρtm, K1) =


1 if ‖ρtm −K1‖ ≤ ρimpacttm ,

0 otherwise.

(5)

The scalar ρimpacttm indicates the distance at which missile m ∈ Mt may impact the

defended asset at position K1 with a significant probability of damage. Given a cruise

missile impact on the defended asset, damage expectancy calculations are outside the

scope of this research; we assume that a missile m ∈ Mt within its impact range

ρimpacttm poses a homogeneous level of threat to the defended asset regardless of the

precise impact location. The reward function calculates the total cost of all missiles

impacting the defended asset at decision epoch t ∈ T , or 0 if no missiles are within

their impact range.
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4.1.6 Objective Function

This MDP model aims to determine an optimal policy π∗ ∈ Π, which is the

optimal sequence of decision rules mapping system states to actions. The optimal

policy guides the decision maker by determining the action for any possible system

state that maximizes the expected total discounted reward given by the objective

function

max
π∈Π

Eπ
(
∞∑
t=1

γτtC(St, π(St))

)
, (6)

wherein γ ∈ [0, 1) is the discount factor. As originally established by Bellman (1957),

an optimal policy has the property that, whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard to the

state resulting from the first decision. Thus, we determine the optimal policy from

the solution to the Bellman equation

V (St) = max
xt∈X(St)

(
C(St, xt) + γ(τ̂(St+1)−τt)E[V (St+1) | St, xt]

)
, (7)

wherein τ̂(St+1) indicates the time when the system visits state St+1.

The state space of the ABM Problem is naturally continuous, as the locations

and velocities of the system entities must be described over time at a resolution

that offers meaningful insight into the behavior of the system. Although the action

space of the ABM Problem is discrete, attaining an exact solution to the Bellman

equation is computational intractable given the continuous state space. Moreover,

given the high dimensionality of the state space, the Bellman equation would be

computationally intractable even if the state space were to be discretized. Thus,

we propose an approximate dynamic programming (ADP) technique for finding an

approximation of V (St) to produce a high-quality task-assignment policy.
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4.2 ADP Formulation

This section describes an ADP approach for the ABM Problem to formulate a

high-quality approximation of the Bellman equations for optimality. The high di-

mensionality and continuous nature of the state space along with the sparse reward

structure require the use of an approximation technique that can uncover complex,

nonlinear relationships between system states, actions, and rewards. We employ basis

functions in this approximation and we seek to determine problem-specific basis func-

tions that can be used in a linear combination to approximate the Bellman equations.

The creation of problem-specific basis functions to support an ADP algorithm

is both an art and a science. It is necessary to leverage empirical knowledge of air

combat scenarios to develop basis functions that describe important patterns in the

state space. Let φf∈F(Sxt ) represent a basis function wherein f ∈ F is a feature of

state St and F is the set of features. The first set of basis functions describes the

distances of each UCAV u ∈ U from its assigned target m ∈Mt:

φf (St) = ‖υtu − ρtm‖. (8)

The second set of basis functions describes the distances between the defended

asset (located at the origin of the coordinate system) and the assigned target m ∈Mt

of UCAV u ∈ U :

φf (St) = ‖ρtm‖. (9)
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The third set of basis functions describes the average distance of a UCAV’s as-

signed target, missile mj ∈Mt, from all other missiles in Mt:

φf (St) =


1

|Mt|−1

|Mt|∑
i=1,i 6=j

‖ρtmi
− ρtmj

‖, for i, j ∈ {1, 2, ..., |Mt|} if |Mt| ≥ 2,

0 otherwise.

(10)

The fourth set of basis functions describes the distance between each UCAV u ∈ U

and its assigned target’s intercept location, calculated in Equation (3):

φf (St) = ‖υtu − Y (u,m)‖. (11)

The fifth and final set of basis functions describes the distance between the origin

and the calculated intercept location of the assigned target m ∈Mt of UCAV u ∈ U :

φf (St) = ‖Y (u,m)‖. (12)

We employ an approximate policy iteration technique using least squares temporal

differences (API-LSTD) using a implementation similar to Rettke et al. (2016), Davis

et al. (2017), Jenkins et al. (2021), McKenna et al. (2020), and Summers et al. (2020).

The architecture of the API-LSTD algorithm is defined in part by several tunable

hyperparameters. These hyperparameters differ from other system parameters in

that the ideal settings cannot be determined directly from the data and must be

discovered by experimentation.

First, we define a learning rate (or smoothing rate) given by the polynomial step-

size rule

αg =
1

gα
, (13)
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wherein α ∈ (0, 1]. This hyperparameter determines how new estimates of θ are

incorporated into the existing estimate of θ. In all cases, αg decreases over time as

the policy improvement counter g increases, indicating that the model incorporates

new information more quickly during the initial simulations, but relies more heavily

on the existing model in later simulations. However, the rate at which αg decreases

depends on the setting for α.

Next, we define an exploration-exploitation parameter, ε, given by the polynomial

step-size rule

εg =
1

gε
, (14)

wherein ε ∈ (0, 1]. A key aspect of reinforcement learning is balancing the trade-off

between exploration and exploitation. Exploration refers to the process of discovering

new system behavior by taking actions that are potentially different from what the

current model may recommend. Conversely, exploitation refers to the incremental

refinement of the existing model by following recommended actions. Lower values of

ε indicate a higher tendency towards exploration.

Finally, we define a regression regularization parameter, η > 0. Because our API-

LSTD implementation uses linear regression analysis, we need to ensure that we are

working with non-singular matrices, and it is often very difficult to avoid multicolin-

earity in high-dimensional data matrices. In linear regression, the covariance matrix

XᵀX is naturally positive semidefinite, so there is no guarantee that (XᵀX)−1 exists.

However, by adding a regularization component, we ensure that XᵀX+ηI is positive

definite and thus (XᵀX+ηI)−1 will always exist. This characteristic of the perturbed

covariance matrix is a consequence of the fact that b is an eigenvalue of XᵀX if and

only if b+ η is an eigenvalue of XᵀX + ηI. Because b ≥ 0 and η > 0, all eigenvalues

of XᵀX + ηI are positive, thus the matrix is non-singular. However, regularization

comes at the cost of introducing bias into the regression estimates.
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V. Testing, Analysis, and Results

In this chapter, we develop a generic yet representative scenario to demonstrate

our ADP approach using an implementation of the API-LSTD algorithm. We design

computational experiments to conduct sensitivity analyses on how algorithm hyperpa-

rameter settings and certain numeric aspects of the ABM Problem, such as the cruise

missile arrival rate, affect the API-LSTD algorithm’s ability to find high-quality so-

lutions. Recall that ideal hyperparameter settings cannot be determined outside of

problem-specific experimentation. The processing system for this experiment uses

an Intel Core i7-9700k with 8 cores at 5.2GHz and 32GB RAM. We implement the

API-LSTD algorithm in MATLAB R2020b and use MATLAB’s Parallel Computing

Toolbox alongside built-in functionality for solving large systems of linear equations

via matrix inverse operations.

5.1 Representative Scenario

To effectively implement the ABM Problem in a realistic environment, we develop

a generic yet representative scenario wherein the United States (US) military is con-

ducting combat operations. We examine the case of defending a forward operating

base (FOB) wherein intelligence reports indicate that enemy forces intend to attack

the base by employing a large arsenal of ground-launched cruise missiles. The system

incurs a cost when cruise missiles impact the defended asset. The quality of a policy

is represented by the expected total discounted reward generated by the system under

that policy compared to the same metric under a myopic or benchmark policy.

To model cruise missile attacks, we use a stationary Poisson process (PP) with rate

parameter λ = 1
30

, indicating exponentially distributed interarrival times and a mean

interarrival time of 30 seconds. Observations from trial runs inform this parameter
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level selection, as less frequent arrivals often result in a sequence of trivial, single-

entity assignment problems, whereas a mean interarrival time of 30 seconds creates

a scenario that requires some amount of intelligent and proactive decision-making

for success. Additionally, more rapid arrivals allow for an efficient evaluation of de-

fensive performance without necessitating a simulation horizon that would introduce

constraints such as fuel, weapons load, or periodic maintenance requirements.

Figure 1. Scenario Representation

A notional geographic representation of the scenario environment is shown in

Figure 1. We establish a circular region with a radius of 15 miles in which incoming

cruise missiles are detected with certainty when they arrive according to the PP(λ)
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at the region boundary. The missiles arrive over time from any direction with equal

probability and proceed with a constant velocity of 500 miles per hour towards the

FOB, impacting the FOB in approximately 100 seconds if not intercepted. The

UCAVs defend the FOB, also moving with a constant velocity of 500 miles per hour,

and maneuver according to a two-degree-of-freedom model with a turning rate of 11.25

degrees per second. If a UCAV is assigned to intercept a particular cruise missile and

is able to reach a position within one-half of a mile of the missile regardless of relative

velocity, the UCAV intercepts the cruise missile with probability pkill = 1.

5.2 Simulation Environment

To accurately characterize how this dynamic system evolves over time, we develop

and implement a modular simulation system used by the API-LSTD algorithm to find

high-quality solutions. As shown in Figure 2, the simulation process consists of four

primary objects: the ABM environment object, ABM entity objects, the simulation

process, and the API-LSTD process.

The ABM environment object is the primary data interface between all objects

and is central to the simulation process. It establishes the overall parameters for the

environment and handles the creation and destruction of all ABM entity objects. The

ABM environment object maintains event timing for the exponentially distributed

interarrival times of the cruise missiles. As the simulation progresses, it records

positional updates for each entity, determines entity ranges from their targets, triggers

intercept or missile impact events, and handles the target assignment process.

Within the ABM environment exists a collection of ABM entity objects that

represent all UCAVs and cruise missiles present in the simulation. The ABM entities

maintain entity-unique parameters such as position and velocity. The ABM entities

also carry out all calculations for determining target intercept trajectories.

31



Figure 2. Simulation Class Hierarchy Diagram

External to the ABM environment, the simulation process advances the simulation

clock, determines when decisions are necessary, invokes the API-LSTD process to

determine appropriate decisions, and passes those decisions to the ABM environment

object. The simulation process flow is shown in Figure 3.

Figure 3. Simulation Flow Diagram
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5.3 Computational Experiments - Hyperparameters

In this section, we design a sequential experiment to screen and refine API-LSTD

hyperparameter settings. In the first phase of the experiment, we investigate a wide

range of settings to confirm which hyperparameters appear to be significant predictors

of API-LSTD algorithm performance when applied to the ABM Problem. Table 2

presents the factors and factor levels for this experiment.

Table 2. Initial Experiment Factors

Factor Name Factor Levels Type

Learning Parameter α 0.1, 0.5, 0.9 Continuous
Exploration Parameter ε 0.1, 0.5, 0.9 Continuous
Regularization Parameter η 0.0001, 0.5, 1 Continuous
Basis Function Level F 1a, 1b, 2, 3 Categorical

The four levels of Factor F represent the inclusion in the model of first-order basis

functions only; first order basis functions with two-factor interactions; second-order

basis functions; and third-order basis functions, respectively.

Although the ADP algorithm seeks to find a policy that maximizes expected

total discounted reward, this value difficult to interpret. Thus, we develop a proxy

dependent variable that has a strong correlation to observed total discounted reward,

but that is much easier to interpret and explain. The dependent variable is defined as

the mean percentage of UCAV successful intercept actions over G = 400 simulation

runs. During simulation run g, let Ωg denote the number of successful intercept

actions and ωg denote the number of missile impacts. We define the UCAV success

rate as

J =
1

G

G∑
g=1

100Ωg(
Ωg + ωg

) . (15)

The API-LSTD algorithm performs 400 policy improvement iterations with a

1000-second, trajectory-following simulation for policy evaluation. Once the algo-

rithm terminates, we evaluate the resulting policy again using 400 repetitions of a

33



1000-second, trajectory-following simulation. Our computational experiment imple-

ments a full factorial experimental design with five overall replications resulting in

108 experimental runs and requiring approximately 30 hours of computation time.

Table 3 reports the results, sorted in order of decreasing mean(J).

Table 3. Initial Hyperparameter Experiment Results

Run α ε η F max(J) mean(J) var(J)

70 0.5 0.9 1 1b 96.08 95.73 0.05
30 0.5 0.9 1 1a 95.74 95.59 0.01
72 0.5 0.9 0.5 3 95.86 95.49 0.13
69 0.5 0.9 0.5 1b 95.60 95.32 0.07
67 0.5 0.9 1 3 95.72 95.32 0.07
71 0.5 0.9 1 2 95.51 95.28 0.04
66 0.5 0.9 0.5 1a 95.87 95.27 0.25
106 0.1 0.9 1 1b 95.95 95.27 0.69
107 0.5 0.9 0.5 2 95.86 95.26 0.15
105 0.9 0.9 0.5 2 95.39 95.25 0.01

...
...

...
15 0.1 0.5 0.0001 2 71.91 54.82 137.90
2 0.1 0.1 0.0001 1a 63.23 53.42 47.06
3 0.1 0.1 0.0001 2 61.56 52.06 127.29
40 0.5 0.1 0.0001 3 57.17 50.79 55.39
38 0.5 0.1 0.0001 1b 52.81 43.87 38.49
4 0.1 0.1 0.0001 3 61.30 43.51 333.33
76 0.9 0.1 0.0001 3 44.97 42.92 2.54
74 0.9 0.1 0.0001 1b 41.39 38.73 5.59
75 0.9 0.1 0.0001 2 39.53 35.86 9.94
39 0.5 0.1 0.0001 2 53.37 33.98 161.24

The results of the initial experiment provide insight into effective API-LSTD hy-

perparameter settings for the ABM Problem. The most successful policies appear

robust, exhibiting low variance, whereas the least successful policies show variance

several orders of magnitude higher, indicating policies that are not robust to a variety

of stochastic realizations of the problem. A multiple linear regression metamodel of

the experimental results shows that all factors with the exception of F are statisti-

cally significant predictors of API-LSTD algorithm performance based on this data

set. Similarly, we observe the significance of the various basis functions by examin-
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ing the magnitude of their coefficients. A graphical depiction of the basis function

coefficients is shown in Figure 4.

Figure 4. Basis Function Coefficients

Larger magnitudes of basis function coefficients indicate that the particular basis

function or interaction is more significant in predicting the value of a given system

state. Highlighted in Figure 4 are four first-order basis functions that are of noticeably

higher magnitude than the others within the same category. These results correspond

to the second and fifth basis functions for each of the two UCAVs. Recall that the

second set of basis functions describes the distance of a UCAV’s assigned target to

the defended asset, and the fifth set of basis functions describes the distance of the

calculated intercept location of a UCAV’s target to the defended asset. Three of the

four of these coefficients also appear significant among the second-order coefficients.

A single two-factor interaction has a coefficient that is noticeably larger in magni-

tude than all other interactions, which is the interaction between the first UCAV’s

third basis function and the second UCAV’s fourth basis function. Recall that the
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third set of basis functions describes the average distance of a UCAV’s target to all

other targets, and the fourth set of basis functions describes the distance between

each UCAV and its assigned target’s calculated intercept location. Interestingly, the

reverse interaction is not of notable magnitude. This analysis of basis function coeffi-

cient magnitudes assists the future development of new basis functions as well as the

refinement of existing basis functions to better predict the value of any particular sys-

tem state. Further investigation into the significance of individual basis functions and

basis function interactions with the intent to remove less significant terms is outside of

the scope of this research but is acknowledged to be potentially valuable in improving

computational efficiency by reducing the size of the basis function covariance matrix.

For this initial experiment, with the factor levels chosen to span nearly the entire

allowable range of the factors, it would be unusual for the experiment to predict

the optimal ADP algorithm parameter settings. Thus, we use the results of this

initial experiment to inform selection of the factor levels for a follow-on optimization

experiment. A linear metamodel predicts optimal settings of α = 0.66, ε = 0.9, η =

0.47, and F = 3. We design a more focused experiment wherein we vary the factor

levels over a smaller range to achieve a more accurate metamodel. Because F is shown

to be a statistically insignificant predictor at the factor levels chosen, we fix F = 3.

Table 4 presents the factors and factor levels for the optimization experiment.

Table 4. Hyperparameter Optimization Experiment Factors

Factor Name Factor Levels Type

Learning Parameter α 0.4, 0.6, 0.8 Continuous
Exploration Parameter ε 0.75, 0.85, 0.95 Continuous
Regularization Parameter η 1, 0.1, 0.01, 0.001 Continuous

Applying the same policy improvement and policy evaluation construct, we per-

form five overall replications for a total of 36 experiment runs requiring approximately

10 hours of computation time. Table 5 reports the results of the optimization exper-
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iment, sorted in order of decreasing mean(J). We observe minor improvements in

mean success rate from the initial experiment shown in Table 3. In particular, the

superlative parameter settings offers both an increase in mean success rate and a

decrease in variance when compared to the initial experiment.

Table 5. Hyperparameter Optimization Experiment Results

Run α ε η max(J) mean(J) var(J)

21 0.6 0.95 1 95.91 95.81 0.03
9 0.4 0.95 1 95.91 95.69 0.10
33 0.8 0.95 1 95.54 95.42 0.03
34 0.8 0.95 0.1 95.49 95.37 0.01
17 0.6 0.85 1 95.56 95.34 0.08
23 0.6 0.95 0.01 95.51 95.33 0.02
22 0.6 0.95 0.1 95.58 95.31 0.13
36 0.8 0.95 0.001 95.44 95.30 0.05
19 0.6 0.85 0.01 95.42 95.30 0.03
10 0.4 0.95 0.1 95.50 95.23 0.11
...

...
...

20 0.6 0.85 0.001 94.36 94.15 0.03
4 0.4 0.75 0.001 95.42 94.06 2.86
8 0.4 0.85 0.001 94.95 94.00 0.74
7 0.4 0.85 0.01 95.24 93.74 3.09
3 0.4 0.75 0.01 92.85 92.78 0.01

Analyzing a multiple linear regression metamodel created using the data from the

hyperparameter optimization experiment indicates statistical significance for main

factors ε and η along with the α · η interaction and second-order terms for α and

η. Despite the apparent statistical insignificance of the α term, we retain it in

the metamodel for the principle hierarchy. Otherwise, we remove statistically in-

significant terms for a 95% confidence level. Table 6 reports the regression meta-

model coefficients. The metamodel predicts the optimal hyperparameter settings of

α = 0.62, ε = 0.95, and η = 0.57. We use these hyperparameter settings to formally

compare the performance of the benchmark policy with the API-LSTD-generated

policy.
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Table 6. Multiple Linear Regression for Hyperparameter Optimization

Term
Parameter
Estimate

Standard
Error

t Ratio P > |t|

Intercept 96.23 0.35 275.55 < 0.01
α 0.08 0.07 1.16 0.25
ε 0.39 0.06 6.11 < 0.01
η 0.36 0.07 5.59 < 0.01

α · η -0.24 0.08 -3.21 < 0.01
α2 -0.27 0.11 -2.39 0.02
η2 -1.18 0.36 -3.25 < 0.01

5.4 ADP and Benchmark Policy Comparison

The API-LSTD policies in the previous section appear effective in general, but

we have not yet established the effectiveness of a competing benchmark policy. We

develop an intuitive and easily implemented benchmark policy wherein each UCAV

will be assigned to intercept the missile with the closest calculated intercept location.

Moreover, multiple UCAVs will not be assigned to intercept the same missile. The

benchmark policy allows for task preemption, wherein a UCAV may be reassigned

to intercept a newly detected missile with a calculated intercept location that is

closer than its current destination. To compare policies, we perform five overall

replications of four hundred 1000-second simulations using the benchmark policy and

the same five replications using the policy generated by the API-LSTD algorithm,

with hyperparameters set in accordance with the multiple linear regression metamodel

predictions from the previous section. Table 7 reports the results of this comparison.

Table 7. ADP and Benchmark Policy Performance Comparison

Policy
Success

Rate
Success Rate

> 90%
Success Rate

> 95%
Success Rate

= 100%
UCAV

Idle Time

Benchmark 89.7%± 0.2% 47.8%± 1.5% 19.8%± 1.0% 6.4%± 0.7% 22.2%± 0.4%
API-LSTD 95.8%± 0.2% 89.4%± 1.3% 59.6%± 3.0% 26.8%± 1.3% 11.9%± 0.3%

ADP Improvement 6.82% 87.03% 201.52% 317.97% -46.51%
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The API-LSTD-generated policy offers statistically significant improvements in

several key metrics. First, the ADP solution significantly improves mean success

rate, ensuring that more targets are successfully intercepted during any stochastic

realization of the ABM Problem. Second, the ADP solution immensely improves

the frequency of achieving a greater-than-90% and higher success rate. Of specific

note is the 318% increase in frequency that the policy will perform equivalently to

an optimal policy, defending the FOB with 100% successful intercepts and no cruise

missile impacts. Finally, the increased success rates of the API-LSTD policy come at

a cost of decreased UCAV idle time, which roughly translates to increased fuel costs.

A more detailed examination of UCAV idle time is presented in Section 5.9.

5.5 ADP and Benchmark Policy Behavior Analysis

The statistically significant improvement in the API-LSTD policy’s success rate is

a salient finding, but it is important to address what specific behaviors the API-LSTD

policy exhibits that are responsible for this improvement. This section illustrates

the behavioral differences between the API-LSTD and benchmark policies in two

scenarios. Specifically, we subject a pair of UCAVs to a selection of cruise missile

arrival patterns and observe how the policies prioritize intercept actions.

The first scenario is shown in Figures 5 and 6, wherein three cruise missiles ap-

proach from the southwest while one approaches from the northeast. It is feasible

for the two UCAVs to intercept all four cruise missiles, but the order in which the

UCAVs intercept the missiles is paramount. Under both policies, as shown in Figures

5(a) and 6(a), we observe that one UCAV is tasked to intercept the northeast cruise

missile and the other is tasked to intercept the closest missile to the southwest. Af-

ter the southwest intercept action is complete, the benchmark policy in Figure 5(b)

directs the UCAV to intercept the next-closest target, which is the northernmost of
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the two remaining missiles. However, this decision leaves the UCAV out of position

to intercept the last missile as shown in Figure 5(c), and the defended asset suffers

a missile impact shortly afterwards. Alternatively, in Figure 6(b), we observe that

the API-LSTD policy recognizes this danger and instead intercepts the farthest of

the two remaining missiles. The UCAV is then positioned to intercept the remaining

missile in Figure 6(c), thus successfully defending the asset from all present threats.

In more complex environments, controlling the order in which missiles are intercepted

to optimize UCAV positioning for subsequent intercept actions becomes increasingly

important.

Figure 5. Scenario 1 Benchmark Policy Behavior

Figure 6. Scenario 1 API-LSTD Policy Behavior
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The second scenario is shown in Figures 7 and 8, wherein four cruise missiles ap-

proach from each of the cardinal directions, followed by a total of three additional

missiles from the east and southeast. It is again feasible for the two UCAVs to in-

tercept all incoming missiles, but intercept positioning is critical. In Figure 7(a), we

observe the benchmark policy directing the UCAVs to intercept the cruise missiles

approaching from the north and south. However, upon completion of these intercept

actions, the UCAVs shown in Figure 7(b) are out of position to intercept the mis-

siles approaching from the east and west, and the defended asset suffers two missile

impacts. In Figure 7(c), we observe the UCAVs are able to intercept the remaining

three missiles. In contrast, the API-LSTD policy initially provides the same direction

for the UCAVs to intercept the missiles approaching from the north and south, but

as more missiles are detected, the policy directs the UCAVs to remain close to the

defended asset. The cruise missile approaching from the west shown in Figure 8(a)

poses the most immediate threat, so the UCAVs intercept that missile first while posi-

tioning themselves in Figure 8(b) to intercept the missiles approaching from the north

and south. Finally, in Figure 8(c), the UCAVs are positioned to intercept all remain-

ing missiles, and thus the defended asset is protected from all present threats. This

scenario illustrates the importance of trajectory optimization, wherein the UCAVs

position themselves not only to intercept their current target, but to intercept all

follow-on targets as well.

To successfully intercept all missiles in the second scenario, the UCAVs must

intercept them much closer to the defended asset to maintain proper positioning for

subsequent intercepts. There are benefits in waiting to intercept missiles related to

decreasing the size of the region that is actively being defended, but it is reasonable

to assume decision-makers may prefer engagements farther away. We investigate this

behavior in particular in Section 5.8.
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Figure 7. Scenario 2 Benchmark Policy Behavior

Figure 8. Scenario 2 API-LSTD Policy Behavior

5.6 Problem Environment Sensitivity Analysis

In this section, we design an additional computational experiment to determine

how changes to the ABM Problem environment, such as enemy arrival rate, affect

the performance of both the benchmark policy and the API-LSTD-generated policy.

In this experiment, we vary the cruise missile arrival rate λ by ±50% of the baseline

scenario value of 1
30

. Moreover, we modify the relative speed of the UCAV and

cruise missile entities by varying the UCAV speed by ±20% of the baseline scenario

value of 500 miles per hour. Finally, we introduce a cruise missile arrival asymmetry

factor, ψ, where ψ = 0 indicates that cruise missiles arrive with equal probability

from any direction as in the baseline scenario, and ψ = 1 indicates an asymmetric
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arrival pattern wherein 70% of the arriving cruise missiles are detected in the northern

hemisphere and the remaining 30% are detected in the southern hemisphere. Table

8 details the factor levels for this full-factorial experiment. For each of the 36 policy

and factor combinations, we perform five replications of four hundred 1000-second

simulations.

Table 8. Sensitivity Analysis Experiment Factors

Factor Name Factor Levels Type

Mean Interarrival Time 1
λ 20, 30, 60 Continuous

UCAV Speed v 400, 500, 600 Continuous
Asymmetry Indicator ψ 0, 1 Categorical

Table 9 displays the results of the sensitivity analysis. The API-LSTD-generated

policy shows statistically significant improvement over the benchmark policy in every

instance. In particular, the API-LSTD policy shows the largest improvements in

scenarios with the fastest cruise missile arrival rate and slowest UCAV speed. In

these instances, the UCAVs are at a considerable disadvantage, and it would be

expected that success requires more thoughtful decision-making. We also observe

that the benchmark policy performs better in the asymmetric cruise missile arrival

scenarios in all cases, whereas the API-LSTD policy shows mixed results, sometimes

performing better in the symmetric scenarios.

A multiple linear regression metamodel depicts the statistical significance of fac-

tors λ, v, and ψ in predicting API-LSTD policy success rate (J). Table 10 reports

the parameter estimates for this metamodel. We develop a second-order metamodel

including all factor interactions and observe that all main effects are statistically sig-

nificant predictors of the dependent variable, the policy success rate (J). We remove

statistically insignificant terms for a 95% confidence level. Based on the repeated

observations in the experiment, we compare the sum of squares due to lack of fit

with the sum of squares due to pure error and find no strong evidence of a lack of
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Table 9. Sensitivity Analysis Experiment Results for Success Rate (J)

Run 1
λ

v
(mph)

ψ
API-LSTD

Success Rate (J)
Benchmark

Success Rate (J)
API-LSTD

Improvement

1 20 400 1 87.19%± 0.10% 79.32%± 0.22% 9.92%
2 20 400 0 88.06%± 0.17% 75.21%± 0.22% 17.08%
3 20 500 1 92.07%± 0.10% 83.98%± 0.07% 9.64%
4 20 500 0 91.38%± 0.24% 80.58%± 0.20% 13.40%
5 20 600 1 95.03%± 0.04% 88.51%± 0.12% 7.36%
6 20 600 0 94.01%± 0.09% 85.61%± 0.18% 9.81%
7 30 400 1 92.58%± 0.22% 88.42%± 0.16% 4.70%
8 30 400 0 92.93%± 0.25% 85.00%± 0.29% 9.33%
9 30 500 1 95.76%± 0.13% 91.61%± 0.10% 4.53%
10 30 500 0 95.76%± 0.26% 89.14%± 0.17% 7.42%
11 30 600 1 97.98%± 0.11% 94.45%± 0.11% 3.73%
12 30 600 0 97.48%± 0.15% 92.71%± 0.16% 5.15%
13 60 400 1 95.24%± 0.14% 92.74%± 0.19% 2.69%
14 60 400 0 95.22%± 0.18% 89.81%± 0.31% 6.02%
15 60 500 1 97.29%± 0.17% 94.83%± 0.13% 2.59%
16 60 500 0 97.08%± 0.19% 92.96%± 0.21% 4.43%
17 60 600 1 98.78%± 0.14% 96.84%± 0.09% 2.00%
18 60 600 0 98.71%± 0.07% 95.73%± 0.21% 3.12%

fit for this linear metamodel. We observe the metamodel’s root mean square error

of 0.21 and adjusted R2 of 0.999, indicating the metamodel predicts the relationship

between ABM Problem environmental parameters and API-LSTD policy success rate

extremely accurately for this data sample.

Table 10. Multiple Linear Regression for Sensitivity Analysis

Term
Parameter
Estimate

Standard
Error

t Ratio P > |t|

Intercept 46.01 0.04 1186.80 < 0.01
λ 5.74 0.03 209.19 < 0.01
v 3.56 0.03 129.76 < 0.01
ψ0 -1.31 0.02 -58.37 < 0.01
λ · v -0.94 0.03 -28.15 < 0.01
λ · ψ0 0.28 0.03 10.27 < 0.01
v · ψ0 0.34 0.03 12.34 < 0.01

λ · v · ψ0 0.16 0.03 4.02 < 0.01
λ2 -2.02 0.05 -42.55 < 0.01
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To further examine the performance differences between the benchmark policy

and the API-LSTD policy, we investigate the frequency at which each policy achieves

a success rate (J) at three different levels: success rate greater than 90%, success rate

greater than 95%, and success rate equal to 100%. These metrics may be interesting

if, for example, there is a minimum tolerance for cruise missile impacts. The 100%

level measure is specifically useful if the likelihood of optimal-equivalent performance

is important. Tables 11-13 report these results, ordered generally by decreasing prob-

lem difficulty, with the most difficult instances (i.e., rapid missile arrivals and slow

UCAVs) appearing at the top of the tables.

Table 11. Sensitivity Analysis Experiment Results
for Success Rate (J) Frequency > 90%

Run 1
λ

v
(mph)

ψ
API-LSTD

Success Rate (J)
Frequency > 90%

Benchmark
Success Rate (J)
Frequency > 90%

API-LSTD
Improvement

1 20 400 1 31.80%± 1.66% 7.00%± 1.06% 54.29%
2 20 400 0 36.95%± 1.67% 1.40%± 0.50% 2539.29%
3 20 500 1 70.25%± 2.12% 19.55%± 1.11% 259.34%
4 20 500 0 63.45%± 2.41% 7.30%± 1.54% 69.18%
5 20 600 1 90.70%± 0.73% 41.35%± 1.70% 119.35%
6 20 600 0 83.05%± 0.78% 27.40%± 1.03% 203.10%
7 30 400 1 71.00%± 1.81% 42.55%± 1.99% 66.86%
8 30 400 0 74.25%± 2.57% 28.05%± 1.44% 164.71%
9 30 500 1 91.60%± 0.59% 65.95%± 1.17% 38.89%
10 30 500 0 89.25%± 1.81% 47.35%± 1.06% 88.49%
11 30 600 1 98.05%± 0.52% 84.15%± 0.87% 16.52%
12 30 600 0 96.35%± 0.29% 73.05%± 1.85% 31.90%
13 60 400 1 88.50%± 0.83% 70.70%± 1.47% 25.18%
14 60 400 0 86.70%± 1.34% 54.15%± 2.37% 60.11%
15 60 500 1 96.80%± 0.42% 84.75%± 1.28% 14.22%
16 60 500 0 94.75%± 0.82% 73.30%± 1.82% 29.26%
17 60 600 1 98.90%± 0.29% 94.80%± 0.78% 4.32%
18 60 600 0 98.75%± 0.27% 88.25%± 1.68% 11.90%

We observe that the API-LSTD-generated policy outperforms the benchmark pol-

icy in meeting all thresholds more often under every combination of problem environ-

mental factors. Although both policies struggle to achieve consistent results above
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Table 12. Sensitivity Analysis Experiment Results
for Success Rate (J) Frequency = 95%

Run 1
λ

v
(mph)

ψ
API-LSTD

Success Rate (J)
Frequency = 95%

Benchmark
Success Rate (J)
Frequency = 95%

API-LSTD
Improvement

1 20 400 1 6.75%± 0.46% 0.85%± 0.61% 694.12%
2 20 400 0 8.95%± 0.59% 0.15%± 0.20% 5866.67%
3 20 500 1 29.85%± 1.74% 3.55%± 0.95% 740.85%
4 20 500 0 26.45%± 1.11% 1.55%± 0.52% 1606.45%
5 20 600 1 56.10%± 0.67% 13.70%± 0.80% 309.49%
6 20 600 0 47.55%± 1.08% 5.25%± 0.71% 805.71%
7 30 400 1 39.35%± 2.18% 18.05%± 1.19% 118.01%
8 30 400 0 37.90%± 1.34% 10.55%± 0.97% 259.24%
9 30 500 1 63.05%± 1.36% 32.45%± 1.47% 94.30%
10 30 500 0 63.55%± 2.74% 20.95%± 1.45% 203.34%
11 30 600 1 85.95%± 0.80% 51.20%± 1.01% 67.87%
12 30 600 0 79.95%± 2.00% 38.95%± 1.94% 105.26%
13 60 400 1 59.00%± 1.88% 43.55%± 1.73% 35.48%
14 60 400 0 60.00%± 2.31% 27.25%± 2.07% 120.18%
15 60 500 1 78.90%± 2.48% 58.10%± 0.86% 35.80%
16 60 500 0 78.00%± 1.25% 43.80%± 1.92% 78.08%
17 60 600 1 92.25%± 1.53% 75.45%± 1.72% 22.27%
18 60 600 0 91.65%± 0.33% 65.45%± 1.79% 40.03%

the thresholds when UCAV speed is reduced in combination with an increased cruise

missile arrival rate, the API-LSTD policy shows a larger improvement over the bench-

mark policy in these more difficult circumstances.
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Table 13. Sensitivity Analysis Experiment Results
for Success Rate (J) Frequency = 100%

Run 1
λ

v
(mph)

ψ
API-LSTD

Success Rate (J)
Frequency = 100%

Benchmark
Success Rate (J)

Frequency = 100%

API-LSTD
Improvement

1 20 400 1 0.65%± 0.12% 0.15%± 0.20% 333.33%
2 20 400 0 0.80%± 0.29% 0.00% N/A
3 20 500 1 5.60%± 0.70% 0.80%± 0.50% 600.00%
4 20 500 0 4.00%± 0.98% 0.10%± 0.12% 3900.00%
5 20 600 1 17.00%± 1.68% 2.35%± 0.83% 623.40%
6 20 600 0 12.20%± 0.84% 0.80%± 0.29% 1425.00%
7 30 400 1 14.20%± 1.81% 5.85%± 0.65% 142.74%
8 30 400 0 16.50%± 0.38% 2.30%± 0.39% 617.39%
9 30 500 1 31.20%± 2.49% 11.95%± 1.53% 161.09%
10 30 500 0 32.80%± 2.05% 6.55%± 0.48% 400.76%
11 30 600 1 57.15%± 1.96% 23.80%± 1.22% 140.13%
12 30 600 0 52.80%± 2.52% 14.55%± 1.12% 262.89%
13 60 400 1 34.70%± 1.07% 24.10%± 1.21% 43.98%
14 60 400 0 36.90%± 1.47% 13.50%± 1.74% 173.33%
15 60 500 1 54.05%± 1.95% 34.45%± 1.00% 56.89%
16 60 500 0 53.00%± 2.52% 23.95%± 1.01% 121.29%
17 60 600 1 76.60%± 1.89% 50.25%± 1.13% 52.44%
18 60 600 0 75.80%± 1.71% 43.25%± 1.61% 75.26%

5.7 Focused Analysis of UCAV Speed

In this section, we consider the specific effect of UCAV speed on defensive perfor-

mance in the ABM Problem. The sensitivity analysis in the previous section shows

clear and significant relationships between policy performance and several ABM Prob-

lem environmental factors: cruise missile arrival rate, UCAV speed, and cruise missile

arrival directional symmetry. The UCAV speed factor differs from the other two fac-

tors in that friendly forces are able to actively control UCAV speed through force

management or acquisitions activities, whereas the cruise missile arrivals rates and

directions are considered uncontrollable characteristics of the combat environment.

The results reported in Table 14 show how varying speed affects mean success rate

across all problem instances under both the API-LSTD and benchmark policies.
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Table 14. Effect of UCAV Speed on Success Rate (J)

Flight Speed
API-LSTD

Mean Success Rate (J)
Benchmark

Mean Success Rate (J)

-20% 91.89% 85.09%
Baseline 94.87% 88.85%
+20% 97.01% 92.31%

Recall that UCAV flight speed is shown to be a statistically significant predic-

tor of API-LSTD policy success rate in the multiple linear regression metamodel in

Table 10. The observations in Table 14 offer several meaningful insights. First, as ex-

pected, friendly forces will observe noticeable improvements in defensive performance

by adopting a faster and more maneuverable UCAV for intercepting hostile forces,

which is an observation that can aid in informing force management and acquisitions

decisions. Second, and perhaps more importantly, we observe that simply moving

from the benchmark decision policy to the improved ADP policy that incorporates

stochastic information in decision-making offers a similar mean benefit to increas-

ing UCAV speed by a total of 50%. A decision-making policy of this type is likely

implementable with minimal cost and offers significant improvements.

5.8 Focused Analysis of Intercept Proximity to the Defended Asset

This section analyzes the distance from the defended asset at which the UCAVs

intercept missiles in all problem instances and under both policies. We define this de-

pendent variable as the mean distance from the defended asset of all UCAV intercept

actions. Although the previous analysis of mean success rate translates directly to

the ability of a policy to protect forces and facilities, it does not consider the practical

consideration of intercept distance. Considering only mean success rate is somewhat

shortsighted, as equivalently performing policies in terms of success rate may vary

drastically in desirability. That is, if one equivalently performing policy consistently
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intercepts missiles far away from the FOB, while the other policy consistently inter-

cepts missiles at the last available opportunity, there is increased risk that the latter

policy may not be robust to increases in the missile arrival rate. Moreover, there

is a psychological component to consider, wherein a greater perception of safety is

likely to positively affect the well-being of forces stationed at the FOB. Recall that

the contribution function given in Equation (4) utilizes a constant value for penaliz-

ing missile impacts; thus, the UCAVs are not offered incentives to intercept missiles

farther away from the defended asset. Table 15 reports the results of this analysis.

Table 15. Intercept Proximity to the Defended Asset

Run 1
λ

v
(mph)

ψ
API-LSTD

Mean Intercept
Proximity (mi)

Benchmark
Mean Intercept
Proximity (mi)

API-LSTD
Mean Difference

1 20 400 1 5.18± 0.92 7.32± 1.05 -29.26%
2 20 400 0 2.14± 0.21 4.56± 0.70 -53.16%
3 20 500 1 4.35± 0.52 7.60± 0.84 -42.78%
4 20 500 0 2.46± 0.24 5.17± 0.59 -52.39%
5 20 600 1 5.28± 0.28 7.85± 0.70 -32.74%
6 20 600 0 3.54± 0.53 5.06± 0.35 -30.09%
7 30 400 1 4.82± 0.80 7.02± 0.56 -31.39%
8 30 400 0 3.03± 0.50 4.45± 0.28 -31.88%
9 30 500 1 4.89± 0.80 7.36± 0.61 -33.56%
10 30 500 0 3.47± 0.70 5.17± 0.54 -33.00%
11 30 600 1 6.17± 0.79 7.75± 0.65 -20.30%
12 30 600 0 4.46± 0.57 5.77± 0.69 -22.67%
13 60 400 1 4.88± 1.29 6.47± 0.75 -24.65%
14 60 400 0 3.39± 0.54 4.74± 0.37 -28.39%
15 60 500 1 4.99± 1.11 6.56± 0.78 -23.98%
16 60 500 0 3.86± 0.54 5.43± 0.60 -28.93%
17 60 600 1 6.43± 1.05 7.11± 0.54 -9.56%
18 60 600 0 5.28± 0.96 6.09± 0.67 -13.39%

We observe that the mean intercept distance of the API-LSTD-generated policy

is lower than the mean intercept distance of the benchmark policy in every instance,

with some instances being statistically significant and others not. The UCAVs under

the API-LSTD policy tend to stay closer to the defended asset overall, decreasing the

size of the actively defended region considerably. Although this tendency is partially
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responsible for the API-LSTD policy’s improved success rates, the measure of inter-

cept distance is important to consider. Over all problem instances, the API-LSTD

policy achieves a mean intercept distance of 4.4 miles, whereas the benchmark policy

achieves a mean intercept distance of 6.2 miles. Neither policy elicits concerns due

to consistent close-call intercepts.

5.9 Focused Analysis of UCAV Idle Time

In this section, we examine UCAV idle time under each policy and every problem

instance. We define this dependent variable as the percentage of time that a UCAV

is not actively assigned to intercept a missile. Although idle time understandably

increases as missile arrival rate decreases, the aspect of idle time has several impli-

cations. First, given a specific problem instance, it may be possible to find a policy

that increases success rate by decreasing idle time, indicating a more effective use

of resources. Second, we assume that UCAVs consume less fuel while not actively

engaging a target; thus increased idle time may indicate some amount of fuel savings.

Table 16 reports the results of this analysis.

In all problem instances, the API-LSTD-generated policy decreases UCAV idle

time by a statistically significant amount while also improving success rate. This

result indicates that the policy is making more effective use of resources but at the

cost of increased fuel consumption.
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Table 16. UCAV Idle Time Comparison

Run 1
λ

v
(mph)

ψ
API-LSTD
Idle Time

Benchmark
Idle Time

API-LSTD
Mean Difference

1 20 400 1 4.87%± 0.11% 10.21%± 0.18% -52.29%
2 20 400 0 5.28%± 0.14% 10.90%± 0.22% -51.52%
3 20 500 1 5.46%± 0.14% 11.87%± 0.18% -53.98%
4 20 500 0 5.47%± 0.16% 11.76%± 0.26% -53.47%
5 20 600 1 6.32%± 0.12% 13.91%± 0.18% -54.55%
6 20 600 0 5.73%± 0.14% 12.76%± 0.23% -55.13%
7 30 400 1 10.48%± 0.17% 20.35%± 0.32% -48.47%
8 30 400 0 11.34%± 0.25% 20.23%± 0.36% -43.97%
9 30 500 1 11.96%± 0.15% 23.16%± 0.24% -48.36%
10 30 500 0 11.89%± 0.28% 22.23%± 0.38% -46.51%
11 30 600 1 14.61%± 0.15% 26.23%± 0.16% -44.31%
12 30 600 0 13.23%± 0.26% 24.19%± 0.46% -45.33%
13 60 400 1 17.22%± 0.29% 29.86%± 0.38% -42.34%
14 60 400 0 18.30%± 0.32% 29.34%± 0.39% -37.65%
15 60 500 1 19.29%± 0.28% 32.97%± 0.36% -41.49%
16 60 500 0 19.43%± 0.28% 31.70%± 0.32% -38.72%
17 60 600 1 22.89%± 0.27% 36.08%± 0.24% -36.54%
18 60 600 0 21.70%± 0.30% 34.20%± 0.40% -36.57%
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VI. Conclusion

This research examines the air battle management (ABM) problem wherein a set of

friendly unmanned combat aerial vehicles (UCAV) is tasked to defend a central asset

from incoming cruise missiles. The effectiveness of the UCAVs is measured by their

ability over time to maintain air superiority by successfully targeting and intercepting

these cruise missiles. The intent of this research is to develop a representative combat

scenario and determine high-quality policies for UCAV tasking that maximize their

ability to defend the central asset. We develop a Markov decision process (MDP)

model to explain each component of the ABM problem with the understanding that

the continuous state space of the problem renders a traditional dynamic programming

solution to the MDP computationally intractable.

To accurately characterize how this dynamic system evolves over time, we develop

and implement a modular simulation system. We utilize an approximate dynamic pro-

gramming (ADP) technique known as approximate policy iteration with least squares

temporal differences (API-LSTD) to find high-quality solutions to the problem. The

architecture of the API-LSTD algorithm is defined in part by several tunable hyper-

parameters. These hyperparameters differ from other system parameters in that the

ideal settings cannot be determined directly from the data and must be discovered

by experimentation. We design and conduct a sequential computational experiment,

consisting of an initial experiment to investigate a wide range of hyperparameter set-

tings followed by an optimization experiment to investigate a more specific range of

settings identified by the initial experiment. We create a multiple linear regression

metamodel based on the results of these experiments to identify the superlative hy-

perparameter settings which are then used to formally compare the performance of a

reasonable benchmark policy against the performance of the ADP policy. Finally, we

design and conduct a series of sensitivity analysis experiments to determine how mod-
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ifications to several problem features, such as cruise missile arrival rate, affect solution

quality. These experiments require a total of approximately 75 hours of computation

time on a processing system using an Intel Core i7-9700k with 8 cores at 5.2GHz and

32GB RAM. We implement the API-LSTD algorithm in MATLAB R2020b and use

MATLAB’s Parallel Computing Toolbox alongside built-in functionality for solving

large systems of linear equations via matrix inverse operations.

In the baseline scenario, the ADP policy improves mean success rate by 6.8%

compared to the benchmark policy at the cost of a 46.5% decrease in UCAV idle

time, indicating a trade-off between success rate and fuel cost. More specifically,

the ADP policy offers a 318% increase over the benchmark in frequency of optimal-

equivalent performance. That is, the UCAVs perform equivalently to an optimal

policy by intercepting 100% of the incoming cruise missiles before they impact the

defended asset.

The improved performance of the ADP policy also comes with the cost of intercept-

ing cruise missiles on average 1.7 miles closer to the defended asset when compared

to the benchmark policy. Although the ADP policy mean intercept distance is a

non-concerning 4.4 miles, a potential extension to research would determine whether

there is subjective value in intercepting missiles farther away, and it may implement

model changes such as a reward for intercepting missiles that decays with time or

proximity to the defended asset.

Two major limiting assumptions of this work are that the battle time horizon is

short enough such that fuel is not a concern, and the UCAVs are able to intercept

any number of incoming missiles without needing to rearm. An extension to im-

prove model realism would be the addition of UCAV fuel capacity and weapons load,

wherein a high-quality policy would need to determine the best times to remove a

UCAV from intercept assignments temporarily to refuel and rearm. Results of this re-
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search could better inform policies representative of long-term, steady-state defensive

counterair (DCA) operations. Additional worthwhile extensions to this work include

a comparison of the API-LSTD-generated policy with policies generated using other

ADP techniques, such as those using a neural network for learning value function

approximations.

Overall, we find that the implementation of an ADP policy offers significant in-

creases to DCA operation success rates with the identified increase to fuel costs.

However, we find that the success rate increase of the ADP policy is, on average,

equivalent to the success rate increase of the benchmark policy with a 50% faster

UCAV. Understanding that slightly increased fuel costs pale in comparison to the

acquisition cost of a faster UCAV, we conclude that implementing a ADP-generated

policy for target assignment tasking in the ABM problem is a cost-effective means to

improve protection of friendly forces and facilities.
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