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Abstract 

 

In the face of an unprecedented crisis, like a pandemic, healthcare decision makers 

face a difficult challenge of allocating critical, but scarce healthcare resources in a 

dynamic, uncertain environment.  Their decisions will not only affect the patients coming 

to the hospital for treatment, both pandemic related and not, but also the Military 

Treatment Facility’s personnel responsible for that treatment.  The decision maker must 

decide the best course of action to allocate these resources in the hopes of achieving 

multiple, conflicting objectives under multiple resource constraints.  In response, we 

propose a methodology allowing for the implementation of both a Portfolio Decision 

Analysis model and a Goal Programming model.  The steps of this methodology provide 

a framework with which the decision maker can aim to develop an optimal allocation of 

resources based on the organization’s values and goals.  This framework was then applied 

to a notional case study as a means of comparison for these two models that were 

explored.  Both a linear value function and a piecewise value function were explored to 

show the effect of the very likely non-linearity of value functions scenario on each 

method’s results.  Complementary analysis, namely budget analysis and tradeoff analysis 

was conducted to illustrate potential insights into the model and the problem itself that 

could be highlighted.  This application showed the merits of both models.  PDA allows 

for the decision maker to decide what values are important to the organization and then 

maximizes that value generation via the objective function which is driven by the value 
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function.  The GP approach allows for the decision maker to set target level that would be 

ideal for each objective and then minimizes any deviation from that goal subject to 

penalty based on the value function.  Both, using the framework provided, allow for as 

little or as much fidelity as required based on the situation.  Each model can be easily 

updated to account for the dynamic environment or as a result of the budget and tradeoff 

analysis findings.  The flexibility and adaptability of these models is especially useful in 

our problem.   
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ALLOCATION OF SCARCE HEALTHCARE RESOURCES IN A MILITARY 

TREATMENT FACILITY DURING A PANDEMIC:  A COMPARISON OF GOAL 

PROGRAMMING AND PORTFOLIO DECISION ANALYSIS METHODS  

 

I.  Introduction 

1.1   Background 

 

A crisis can arise unexpectedly and, despite preparation, brings about uncertain       

circumstances and a sudden strain on key resources.  Such a crisis can be triggered by a 

natural disaster, an act of aggression or terrorism, or a pandemic, like the COVID-19 

pandemic which has led to a dramatic loss of human life worldwide and presents an 

unprecedented challenge to public health (ILO, FAO, IFAD, WHO, 2020).  Each 

emergency situation requires a unique, dynamic, and agile response to ever-changing 

needs.  Crisis impacts reflect in multiple environments such as the economic and the 

social dimensions of society.  For example, the Supply Chain Resource Cooperative 

(2005) outlines how both Hurricane Mitch in Central America in 1998 and the September 

11 terrorist attacks in 2001 disrupted supply chains and caused widespread transportation 

delays.  In 2009, the H1N1 influenza prompted shortages of protective respirator masks 

(HealthLeaders, 2009).  Turnquist and Rawls (2012), when seeking to develop a model, 

examined the sudden influx of people seeking shelter following a natural disaster that 

created demand for emergency supplies that were immediately needed.  Others have 

looked at the need for a healthcare system and its response to have preplanned and 
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practiced procedures in place to improve responses following a terrorist attack (Chauhan, 

Conti, and Keene, 2018).  In a study about the H1N1 influenza of 2009, Sherlaw and 

Raude (2013) illustrate the potential public crisis that was averted thanks to, in part, the 

preparedness of the French government with vaccinations and prioritizations.   

A crisis like the COVID-19 pandemic, requires not only an immediate need for 

general household goods, such as toilet paper, cleaning products and hand soap, but also 

specific personal protection equipment (PPE) and professional devices for essential 

workers to conduct their activities.  According to the Department of Homeland Security, 

essential workers are those who conduct operations and services that are necessary to 

continue critical infrastructure operations (NCSL, 2020).  Healthcare workers are among 

those considered essential and furthermore, federal guidelines, like those of the 

Occupational Safety and Health Administration (2020) stipulate that healthcare providers 

with a high exposure risk should use respirators.  One of the most critical items for 

healthcare workers is PPE.  PPE is special equipment healthcare workers wear to create a 

barrier between them and germs.  This barrier reduces the chance of touching, being 

exposed to, and spreading germs.  According to the World Health Organization, PPE for 

protecting against respiratory droplets, which are dangerous with the current pandemic, 

consists of a gown, medical mask, goggles or a face shield, and gloves (WHO, 2020).  In 

diseases spread by direct contact, such as Ebola, the CDC recommends an impermeable 

garment, respiratory protection, disposable exam gloves, disposable boot covers, and 

disposable aprons (CDC, 2019).  During the COVID-19 initial phase, the Secretary of 

Health and Human Services identified several products as scarce to include: N-95 masks, 

portable ventilators, PPE face masks, PPE surgical masks and PPE shields (WilmerHale, 
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2020).  This type of scarcity directly impacts the performance of essential workers. 

Specifically, how to prioritize the allocation of scarce resources to properly meet this 

demand may be considered one of the critical challenges that need to be addressed during 

such a crisis. 

One particular essential organization with employees that face high risk exposure is a 

hospital.  The risks to healthcare workers during a pandemic situation are appreciably 

greater than those encountered in normal practice.  In addition to the risk of contracting 

the infection, other tolls include physical and mental exhaustion, the torment of difficult 

triage decisions, and the pain of losing patients and colleagues (Healthcare Heroes, 

2020).  The burden of the COVID-19 outbreak on healthcare providers makes it 

extremely likely that healthcare workers involved in the diagnosis, treatment, and care of 

patients with COVID-19 are at risk of developing psychological distress and other mental 

health symptoms (PTSD symptoms, 2020).  Hospitals must adapt and maneuver through 

all the regulations and considerations to its workforce.  For instance, because of the 

restrictions put in place by the government of many states, some of the standard medical 

procedures were not allowed to take place in a hospital during the pandemic (COVID 

OH, 2020).  Simultaneously, other procedures, such as patient intubation in intensive care 

units become critical during a pandemic, are often required in the clinical environment, 

and require more specific training  (ICU Management, 2020).  Healthcare workers 

require specialized training, so that coupled with the high risk of exposure brings 

questions about the depth of the workforce available should they contract the virus.  

Finally, the hospital must be agile in adjusting to new information about the virus as it 

matures.   



4 

A military treatment facility, MTF, is a facility established for the purpose of 

furnishing medical and dental care to eligible individuals.  An MTF acts as a typical 

civilian hospital, but with the added component of ensuring all active and reserve military 

members are healthy to complete national security missions and that the MTF personnel 

in uniform are trained and ready to provide medical care and support of operational 

forces around the world (Military Health System, 2021).   

In military hospitals, the combination of PPE and other resource shortages, workforce 

risk and potential scarcity, specific military organizational regulations, and the need for 

specialized training create this complex situation of huge demands against limited 

financial and personnel resources.  A methodical approach to resource allocation can help 

with leadership decision-making and ensure efficient utilization of these resources. 

1.2   Problem Statement 

 

A hospital, specifically a military hospital, during a pandemic crisis has several 

competing objectives that must be addressed simultaneously with a limited number of 

available resources.  The necessary health care required encompasses a large context 

under normal circumstances.  It is difficult to define this context because there are many 

competing dynamic objectives and limiting factors.  For example, according to the 

Wright Patterson Air Force Base COVID-19 Commanders and Supervisors Guidebook 

(2020), healthcare capacity (HC) is “the ability to effectively treat both COVID-19 and 

non-COVID-19 patients inside and outside of the installation.  Limiting factors for HC 

include the number and type of health care providers, hospital rooms, ICU rooms, 

ventilators, and personal protective equipment.” Furthermore, the document claims that 
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healthcare capacity is critical to support a safe and healthy workforce and ensure the 

ability to do the mission.  With the COVID-19 pandemic situation that means 

maximizing available beds if admittance is required, available ventilators for patients 

requiring them, and available personal protective equipment for the doctors and nurses 

required to treat the patients.  Secondly, the hospital needs to minimize the risk to its 

employees, not only as a moral decision, but also as a means of meeting the first 

objective.  Additionally, as a key role in base operations, the hospital has a requirement to 

effectively support base personnel to maintain mission ready status.  Finally, cost must 

also be considered and monitored.  All of this makes the allocation of resources a 

complex problem.  It requires a robust method capable of dealing with all the complexity 

while optimizing the utilization of available resources. 

1.3   Research Objectives 

 

The main objective of this study is to compare two of the most explored resource 

allocation methods, PDA and GP, when aiding the optimization of the resource allocation 

process that would allow for the achievement of optimal performance of a military 

treatment facility during a pandemic.  To achieve the main objective, the following 

specific objectives are proposed: 

 

1.  An investigation into hospital resource allocation problems and approaches to 

solve them in the past. 

 

2.  Research into applications of Portfolio Decision Analysis and Goal Programming 

for resource allocation optimization. 
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3.  Modeling and solving the healthcare resource allocation optimization as a 

Portfolio Decision Analysis and a Goal Program. 

1.4   Summary 

 

In Chapter 2, this document provides a literature review about the resource allocation 

problem in the healthcare environment, focusing on the hospital resource allocation 

problem.  Then, it reviews the scientific literature about the most explored methods that 

support resource allocation, namely Portfolio Decision Analysis (PDA) and Goal 

Programming (GP), and discusses important aspects of the difference between these two 

methods.  In Chapter 3, it presents the methodology to be followed in this work to allow 

the comparison of these two methods when seeking to optimize resource allocation on 

health organizations.  Chapter 4 presents a hypothetical case study where the proposed 

methodology is applied using both the PDA and GP approach, followed by analysis and 

results from the study.  Finally, Chapter 5 concludes the document, presents limitations of 

the methodologies, and provides recommendations on future research in the field. 
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II. Literature Review 

 

2.1   Overview 

 

This chapter reviews the scientific literature about hospital resource allocation 

problems in order to develop intuition into potential approaches that best fit the needs of 

healthcare resource allocation.  Then, it investigates and characterizes two of the most 

explored methods that support resource allocation, namely Portfolio Decision Analysis 

(PDA) and Goal Programming (GP).  Ultimately, we will seek to understand the main 

differences that may exist between the problems explored and the results delivered by 

both methods.  

 

2.2   Hospital Resource Allocation 

 

Health resource allocation refers to the health resources which were distributed and 

flowed throughout the healthcare industry, at a macro level, or a department at a local 

level (Yi Tao et al, 2014).  Tao continues by claiming these allocations are also 

influenced by factors such as convenience of medical service, hierarchy of needs, the 

quantity, quality, and scope of supply, and the degree of effective utilization.  The health 

sector, specifically hospitals, has been asked over the last years to manage fixed 

resources against increasing healthcare activities from an ever-increasing  number of 

needs from a population which is older and older (Bodina et al, 2017).  These resource 

decisions happen at every level of the healthcare enterprise.  Often, national level 

priorities impact patient-specific allocations.  As described by Marino and Quatronne 
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(2019), national recommendations cannot take into account local factors such as 

population needs, organizational priorities, budgets, capacity or capability, therefore 

many crucial decisions need to be made at institutional levels.  One national example of 

resource decision-making comes from the National Institute for Health and Clinical 

Excellence for England and Wales which sought to reduce spending on treatments that do 

not improve patient care through divestment (Pearson and Littlejohns, 2007).  Divestment 

is closely linked to efforts to set priorities and allocate resources wisely; and it has logic 

in taking resources from less effective services and applying them to meet unfilled needs.  

Despite this logic, the divestment process presents difficult scientific, political, and 

ethical challenges (Pearson and Littlejohns, 2017).  Research shows that healthcare 

resource priority setting has focused on the macro (national) and micro (bedside) level 

while leaving the intermediate (hospital) level relatively neglected.  This is despite the 

fact that hospitals play a key role in the delivery of healthcare services and utilize a large 

proportion of health system resources (Basara et al, 2015).  It may not always be hospital-

specific resources, but partnerships providing alternatives through other healthcare 

facilities that provide relief.  For example, one suggestion for the COVID-19 pandemic is 

for pediatric intensive care units, which are less effected due to demographics of infected 

people, to share resources by either importing adult patients or exporting excess key ICU 

resources (Wolf et al, 2020).  This idea highlights the need to explore alternatives within 

the organization as well as from outside to achieve the hospital’s objectives.  Several 

strategies may be employed to rationalize resource allocations and reduce relative cost, 

but unfortunately many of these interventions do not provide the intended benefits and 

the outcomes are not easily measurable (Marino and Quattrone, 2019).  Moreover, 
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according to Pearson and Littlejohns (2007), health authorities, hospitals and other health 

care facilities have always moved resources from one area to another in order to 

maximize scarce resources, but decisions to restrict or reallocate resources are generally 

reactive, in response to established or emerging problems (Pearson and Littlejohns, 

2007).  As evidence above, hospital resource management has multiple objectives with 

many sets of alternatives that may be adopted to meet the dynamic needs of healthcare.  

Specific investigations about fundamental values that must be addressed during an 

extreme situation, like a pandemic, are presented by Emanuel et al. (2020) and converges 

on four values:  maximizing the benefits produced by the scarce resources, treating 

people equally, promoting and rewarding instrumental value, and giving priority to the 

worst-off patients.  These values yield six specific recommendations for allocating 

medical resources in a pandemic: maximize benefits; prioritize health workers; do not 

allocate on a first-come, first-served basis; be responsive to evidence; recognize research 

participation; and apply the same principles to all pandemic and non–pandemic patients.  

Emanuel et al. (2020) argue that no single value is sufficient to determine which patients 

should receive the resources and that an adaptable, multi-value ethical framework is 

required for fair allocation.  These values and proposals are either working in concert 

together or in competition with one another and, therefore, the distribution of resources 

requires an optimization of values that are ethically based. 

Many researchers have tried to address the resource allocation issue in health 

organization environment by different optimization approaches.  For example, Grant and 

Hendon (1967) applied a linear programming approach in solving a common problem in 

the marketing of hospital services.  It was an effort to maximum audience exposure while 
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constrained by the hospital’s limited finances.  The advertising campaign was viewed as a 

success and the conclusion suggested there were extensions to the approach for other 

scarce-resource allocation decisions.  Mulholland et al. (2005) utilized a linear 

programming model to optimize financial outcomes for both the hospital and physicians 

in the department of surgery.  This model dealt with the decision of procedure mix or the 

number of a surgical procedure type.  The constraints of the model are the resources that 

are consumed during the patient’s surgical experience.  Through this mathematical 

model, aligning quality surgical care with optimal financial performance produced an 

increase in both professional payments and the hospital’s total margin.  A third example 

of linear programming use in hospital resource allocation estimates the impact of changes 

in a hospital’s operating room time allocation on variable costs (Dexter, 2002).  The 

objective was to maximize variable costs to determine the worst-case scenario for the 

increase under the assumption of fixed resources.  Four phases of analysis were 

conducted, adding more constraints on additional resource availability in each phase.  

With this model and methodology, it was shown that allocating operating room time 

based on utilization can adversely affect the hospital financially.  Instead, the operating 

room manager can reduce this potential increase in costs by considering operating room 

time, the resulting use of hospital beds and implants. 

As a variation of linear programming, researchers have also tried to approach health 

resource allocation problems using integer programming.  Gunipar and Centeno (2015) 

presented integer programming models to minimize the total cost, shortage, and wastage 

levels of blood products at a hospital.  Each model resulted in reduced total cost, reduced 

shortages, and decreased wastage rates, respectively.  Another methodology consists of a 
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mixed integer programming model to determine a weekly operation room allocation that 

minimizes inpatients’ cost (Zhang et al., 2017).  This cost is measured as length of stay 

and several patient type priority and clinical constraints are included in the formulation.  

A simulation model then captures some of the randomness of the processes and outputs 

the average length of stay for each specialty and the room utilization.  A case example 

shows how the hospital length of stay pertaining to surgery can be reduced.  In a separate 

study about operating room allocation, integer programming was used in an effort to 

minimize the difference between assigned operating room time and the agreed upon 

target time of hospital departments (Blake and Donald, 2002).  A penalty was assigned to 

avoid the extremely undesirable outcome of a target time shortfall.  Constraints on the 

solution are daily global, daily type, or weekly bounds on the number of rooms that may 

be assigned to a department.  This model provides an allocation of whole blocks of time 

to departments in a manner that minimizes the shortage of time to each department.  This 

makes the schedule have only whole blocks, resulting in a consistent week to week 

schedule and the model’s bounds ensure the resulting schedule is always feasible.  The 

authors also claim the model has greatly reduced conflict among the departments. 

In another example, specifically in the health field, Crown (2018) shows, through the 

application of constrained optimization, a method that provides insights to decision 

makers about how to optimally reach the targets set in relation to cost and the associated 

value of each available policy choice.  This maximizes the outcome of health gain.  In a 

separate study, Varghese et al. (2020) describe the use of a constrained optimization 

model to help prioritize the introduction of various infectious disease interventions within 

the budget constraints while simultaneously optimizing the health outcome measure of 
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quality-adjusted life-years gained.  Since funding for all the specified programs each year 

far exceeds the available annual budget, this portfolio model helps healthcare decision 

makers effectively develop health plans aimed at attaining specific health goals over time 

under constrained budget investment forecasts. 

We may conclude that resource allocation problems in the healthcare environment 

embrace the following characteristics: 

 

1. There are multiple objectives that are critical and must be considered when 

defining resource allocation policies. 

 

2. A vast list of alternatives may be adopted to meet the situationally dynamic needs 

of healthcare and these needs may be grouped into different sets of alternatives. 

 

 

3. There is a level of risk associated with any allocation, even an optimal one, 

therefore a prioritized list of objectives is necessary and risk management 

strategies must be considered. 

These types of problems are characterized as portfolio problems.  Addressing the 

resource allocation problem in the healthcare sector as a portfolio problem would be 

interesting since this approach offers the following benefits: 

 

1. Solves problems where the availability of resources is typically limited by 

constraints while the desirability of consequences depends on the preferences 

concerning the attainment of multiple objectives. 
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2. Allows for selecting a subset or portfolio from a large set of alternatives. 

 

 

3. Considers that there can be uncertainties at the time of decision making and it 

may be unable to determine what consequences the actions will lead to or how 

many resources will be consumed.  

Two main approaches can be found in the literature concerned with defining efficient 

portfolios in the resource allocation class of problems:  Portfolio Decision Analysis 

(PDA) and Goal Programming (GP).  In the following sections, we study the literature 

regarding both approaches and examine applications to determine their usefulness and 

relevance to our resource allocation problem. 

 

2.3 Portfolio Decision Analysis 

 

The use of a portfolio approach is typically categorized into three main fields: (i) 

economic, (ii) project management, and (iii) risk management.  Through the examination 

of these three types of portfolios, we can determine aspects and methods that may be 

useful in application for our problem. 

Portfolio selection problems related to economic investments, particularly in the stock 

market, have a root in decision analysis.  This root really took hold after Harry 

Markowitz published his article “Portfolio Selection” (1952).  He argued there is a rate at 

which the investor can increase expected return by taking on variance or reduce variance 

and decrease expected return. This was characterized as the volatility or risk.  Markowitz 

devised a method to mathematically match an investor’s risk tolerance and reward 

expectations to create an ideal portfolio that focused on diversification of asset classes 
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and securities, hence “diversifying your portfolio.”  These economic portfolio problems 

are examining alternatives that can be used to maximize the organization’s or individual’s 

profit objective subject to financial and risk constraints.  When there are portfolio 

constraints, the Black-Litterman model can be used to generate the expected returns for 

assets and then use a mean-variance optimizer to solve the constrained optimization 

problem (Black and Litterman, 1991).  Kaiser described a simple model constructed to 

allocate portfolios between stocks and real estate and between bonds and real estate.  His 

conclusion is that fundamental value strategies can offer superior return/risk ratios to any 

of the single asset comparisons (Kaiser, 1999).  This demonstrates that, at times, 

resources can work in tandem to create a more than summative outcome.  Financial 

portfolios typically rely on past performance as an indicator for future performance.  The 

decision variables are continuous in the markets and the primary objective, is only based 

on profit.   

Another field that largely explores the portfolio approach is in the project 

management area.  Mottley and Newton (1959) brought to light the important decision 

problem of project selection as part of project management in 1959.  Research 

departments of organizations propose problems for investigation or potential investment 

at a faster rate than the resources or money for the projects can support.  This brought 

about their method of evaluation based on numerical scores quantifying certain important 

criteria which included promise of success, time required, cost, market situation, and 

expected gain.  The resulting scores help determine the best project mix given budget 

allocation. 
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Risk management is an organized methodology for continuously identifying and 

measuring the unknowns; developing mitigation options; selecting, planning, and 

implementing appropriate risk mitigations; and tracking the implementation to ensure 

successful risk reduction.  Effective risk management depends on risk management 

planning; early identification and analyses of risks; early implementation of corrective 

actions; continuous monitoring and reassessment; and communication, documentation, 

and coordination (DoD, 2006).  Portfolio optimization is an approach to address the issue 

of risk (Markowitz, 1952).  A large number of studies have applied the portfolio 

optimization approach to manage risk.  For example, in the electricity market, Jun Xu et 

al. (2006) present a midterm power portfolio optimization model and the corresponding 

methodology to serve the load, maximize the profit, and manage risk.  In this paper, the 

power supplier has three sources of power available to then distribute across its grid and 

meet its obligations.  This supply comes from forward markets (bought months in 

advance), day-ahead markets (one day in advance), and real-time markets (bought or sold 

now).  Due to the large amount of power involved, the complex market structure, and the 

risks in these volatile markets, a power portfolio problem is critical (Jun Xu et al, 2006). 

Portfolio Decision Analysis (PDA) is “a body of theory, methods, and practice which 

seeks to help decision makers make informed multiple selections from a discrete set of 

alternatives through mathematical modeling that accounts for relevant constraints, 

preferences, and uncertainties” (Salo, Keisler, & Morton, 2011).  The types of problems 

described before; economic portfolios, project management, and risk management, may 

seem different, yet share many similarities from a methodological point of view.  There 

are decision makers faced with alternatives which will consume resources, of which are 
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typically limited by constraints.  Each also has some level of preference of attaining 

multiple objectives while facing uncertainty.  These are the key parts of the definition 

above, hence Portfolio Decision Analysis links with each problem type.   

In one example where the PDA approach was explored, (Anadon et al, 2014), the 

United States Department of Energy (DOE) presents a study for supporting research and 

development resource allocation to facilitate a clean and independent energy future for 

the nation.  A key element to this study is that the DOE and other government agencies 

sponsor exploration of technologies where market failures and high risk prevent private 

sector investment and the payoffs exist primarily in the realm of shared social benefits 

(Anadon et al, 2014).  Hence, profit is not the primary driver and there is non-monetary 

value generated.  A decision support system is developed in the form of a PDA model 

which can determine the greatest overall value of the portfolio.  In a similar application 

using PDA, Kurth et al. (2007) explain that the decision maker’s risk attitude can be 

incorporated into the model to create a risk adjusted score for a given funding allocation 

plan.  The study also shows that funding the options that generate the highest score leads 

to a greater expected value than other strategies of similar budget proportions.  A third 

example describes how the PDA approach combines optimization and multi-criteria 

evaluation in environmental decision making (Lahtinen, Hämäläinen, & Liesio, 2017).  

Kleinmuntz (2007) offers the employment of aspects of PDA in a hospital capital 

budgeting study leading to a consensus around model recommendations among decision 

makers. 

The main benefits we may observe from the Portfolio Decision Analysis approach are 

the following:   

https://www-sciencedirect-com.afit.idm.oclc.org/science/article/pii/S0301421517301064?via%3Dihub#bib1
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1. Maximizes value of multiple objectives competing for scarce resources based on 

the decision maker’s preferences or weights. 

 

2. It may incorporate a decision maker’s risk attitude to create a risk adjusted score. 

 

3. Exhibits adaptability to changing markets or situations allowing for a quick 

update based on a dynamic environment. 

 

4. Can be used to incorporate ethical or social considerations as additional criteria. 

 

In our hospital resource allocation problem, decision makers are faced with choosing 

how best to spread out the constrained resources to achieve the greatest value for the 

multiple competing objectives based on the stakeholders’ preferences and while 

surrounded by uncertainty.  As described above through the examples, PDA offers a 

methodology equipped to handle such a problem.  Therefore, we believe that a PDA 

approach is a suitable and fruitful method to optimize this resource allocation.  

 

2.4  Goal Programming 

 

The other oft used approach for optimal resource allocation is Goal Programming 

(GP).  It is an extension of linear programming built to handle multiple and competing 

objectives.  Each objective measure is given a goal to achieve and deviations from these 

targets are minimized.  The method of GP was first introduced by Charnes, Cooper, and 

Ferguson in 1955 (Charnes, Cooper, & Ferguson, 1955).   

A wave of research on the subject followed with many approaches being proposed.  

The use of GP was formalized by Lee and Jerro (1974) to provide a systematic approach 
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to handling multidimensional objectives.  Organizations could now seek to maximize 

their total resources while simultaneously seeking to maximize secondary objectives such 

as responsible ethics.  Further research added the concept of tradeoff among commitment 

of resources, expected payoff, and risk while exploring the impact of individual 

preferences among investment opportunities (Schwartz and Vertinsky, 1977).  Goal 

programming is another technique used to solve health care resource allocation problems.  

Sang Lee (1972) was one of the first to apply GP for hospital administration.  This model 

took the hospital administrator’s list of seven goals, based on the hospital’s current 

operations and listed in order of importance, balanced against the hospital’s seven 

constraints.  The model’s objective function sought to minimize deviations for the goal 

constraints with certain priorities assigned to them.  From this, the top four goals or 

priorities were achieved, the fifth and sixth goals not precisely achieved, and the final 

goal of minimizing cost not possible as it was the lowest priority.  Lee expanded and 

adjusted this simple model to account for the potential for growth, capturing hospital 

operation with expanded facilities.  This added revenue variables and shifted or added 

priorities.  The most notable shift was for the cost goal to become of higher importance as 

well as the addition of priorities related to expansion.  The expanded model shows the 

flexibility of a GP model and its direct application to hospital resource management to 

find the optimum resource allocation mix.  Another GP model, by Blake and Carter 

(2002), takes a two-model strategic approach for resource allocation.  One model sets a 

case mix and volume for physicians, holding service costs fixed and the other model 

translates the case mix decisions into a set of practice changes for the physicians. This 

allows decision makers to set case mix and cost in such a way that the hospital is able to 
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break even while minimizing disturbance to the practice.  The model was successfully 

applied to a real-world scenario where a surgical division faced a 3-year, 18% funding 

reduction.  GP can also be used as an aid to planning and allocation for limited human 

resources in a health care organization (Kwak and Lee, 1997).  Their goal was to assign 

system personnel to the proper shift to meet the objective of minimizing the total payroll 

costs and keeping patients satisfied.  Three of the most complicated, complex 

departments were selected to simplify the problem.  Five goal constraints, with associated 

priorities were developed, along with several system constraints, all influencing the 

objective function.  The model allows management to determine in advance what will 

happen if the outcome deviates from overall objectives.  Furthermore, it shows that 

management can use the information generated by the solution to alter decision variables 

and create new satisfactory solutions given different operating conditions.  Hospital bed 

allocation models have often taken a simulation and goal programming approach.  One 

such study (Ataollahi et al, 2013), identified important bed allocation constraints through 

literature review and expert interviews.  The objective function was based on the 

following goal constraints: minimizing the number of empty beds, maximizing use of 

human resources, minimizing waiting time, definite allocation of bed to patient, and 

definite allocation of bed to ward.  The additional constraints were determined based on 

the resources that bed allocation affects, like staff resources and budget.  The results of 

the GP approach led to an optimum allocation of the limited resources. 

In our hospital resource allocation problem, the decision maker is faced with the 

allocation of scarce resources to satisfy multiple competing objectives.  GP provides a 

way to accomplish this by setting goals for each objective and minimizing any unwanted 
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deviation from those goals.  Therefore, we believe that a GP approach also offers a 

suitable and effective method to optimize this resource allocation. 

 

2.5 Conclusion 

 

We have reviewed the hospital resource allocation problem and described potential 

solutions to these problems.  We have observed that health resource allocation problems, 

in contrast to economic problems, are characterized by more than just profit.  

Additionally, the  resources in economic problems, namely money, are easier to divide 

and apply to different aspects of the portfolio than are the resources in the healthcare 

industry.  While project management problems share attributes of the hospital resource 

allocation problem such as multiple objectives and risk, they tend to focus on time 

required and cost tradeoffs, whereas hospital resources during a crisis typically are 

focused around supplies, equipment, and personnel.  The hospital resource allocation 

problem may present some overlap with the risk management field as well.  For example, 

it is possible to compare the production risk and the service requirements of the hospital.  

Also, commercial risks would relate to increases in costs related to health issues such as 

personal protection equipment and the changes in the market conditions that suddenly 

make them scarce.  Each process displayed aspects that met the needs of the hospital 

resource allocation problem, but a Portfolio Decision Analysis approach offers more 

aspects beneficial to our problem.  Additionally, we explored the applications of a goal 

programming model.  Likewise, the approach aligns well with the problem at hand by 

incorporating the allocation of resources based on multiple objectives with some sort of 

preference under a constrained environment.  Next, we will outline the common steps for 
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creating both models, followed by a discussion on the unique aspects of each model’s 

format as a means of comparison. 
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III.  Methodology 

 

3.1   Overview 

 

In this section, we describe the proposed process of structuring the problem and 

associated assumptions in determining both an appropriate Goal Programming (GP) 

model and a Portfolio Decision Analysis (PDA) model for the problem of optimizing the 

allocation of scarce resources.  The methodology of both approaches will be outlined, 

with generic formulations.  This chapter also provides insights and important 

considerations when comparing the two models.  Similarly, it will discuss the results 

expected from each model and the potential interpretation of these results for decision 

makers concerned with this type of problem.   

 

3.2   The Selected Methodology 

 

Figure 1 depicts the steps that must be taken for the structuring, solving, and 

communicating of results of any complex optimization problem similar to the one we are 

approaching in this work.  Notably, some of the steps, namely steps 1 through 5 and 8, 

are typically common to most of the existing optimization methodologies.  This is also 

the case in the work presented, where steps 1 through 5 and 8 are going to support, in the 

same way, both the application of the GP model and the PDA model.  
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Figure 1.  Optimization Methodology Steps 

 

3.2.1 Define Problem and Collect Data 

 

To set the stage for solving a problem of optimization, it is necessary first to 

formulate it in a manner reflecting the situation being modeled (Rockafellar, 1997). 

Therefore, determining a thorough definition of the problem is a vital step in beginning to 

formulate a model.  Although problem definition and data collection are not necessarily 

the focus of this work, there are interesting and powerful methods for accomplishing 

these activities.  Problem structuring methods are widely used in the literature and may 

scientifically support these activities.  Mingers and Rosenhead (2002) compiled a 

substantial record of applications that describe a wide variety of use in both context and 

content.  An illustration of defining the problem and collecting data comes from Oddoye 

et al.’s (2009) study of a Medical Assessment Unit (MAU) in the United Kingdom.  The 

MAU acts as a buffer between the emergency department and the rest of the hospital, 

able to provide observation and treatment to the patient for 48 hours before either 

discharging them or transferring to a specialist department in the hospital.  The problem 

was initiated by clinicians from the MAU who framed it as a resource problem with the 

hope of avoiding a bottleneck of transfers from emergency to specialist.  The clinicians’ 
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concerns were categorized into several areas, of which the study and the data collection 

focused on one concerning resource level.  The model was then developed using data 

from the MAU database over 4 years, after it was cleaned.  Following the definition and 

structuring of the problem, the focus shifts to developing problem objectives. 

 

3.2.2   Define Problem Objective(s) 

 

Once the problem has been defined and researched, it is important to focus on the 

objective or, in some cases, objectives that one may want to consider when seeking 

potential solutions to the problem.  Keeney (1992), when describing his Value-focused 

Thinking (VFT) approach, states that a decision maker’s values are made explicit with 

objectives.  He continues by writing that fundamental objectives, as opposed to means 

objectives, are the basis for any interest in the decision being considered and qualitatively 

state all that is of concern in the decision context.  They also provide guidance for action 

and the foundation for any quantitative modeling or analyses that may follow.  When 

formulating fundamental objectives, several properties must hold.  The fundamental 

objective should be essential, controllable, complete, measurable, operational, concise, 

and understandable.  If the objectives have these properties, the problem can be 

formulated in a manner that produces value to the decision maker.  A complete 

description of fundamental objectives can be found in Keeney (1992).  For instance, 

Oddoye et al. (2009) show how the value of delivering more efficient and effective care 

led to a focus on resource levels after meeting with the MAU clinicians.  In their work, 

they produced four objectives that were considered fundamental in that study.  These 

objectives were:  (i) minimize patient delay, (ii) minimize extra number of doctors, (iii) 
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minimize extra number of nurses, and (iv) minimize extra number of beds required, the 

last three objectives measured by hours of the day.  With the objectives specified, the 

inputs to the model need to be discussed. 

 

3.2.3   Define Decision Variables 

 

Once the objectives have been defined, additional research should be conducted for 

the problem to determine what can be done to impact the achievement of these 

objectives, specifically the set of alternatives that are available for the decision maker to 

choose.  This set of alternatives or their combination in strategies defines the problem 

decision context (Keeney, 1992).  The manner to measure how much will be spent in 

adopting alternatives may be through a discrete measure, for example different suppliers 

of medical equipment, or may be through a continuous measure within a defined range 

like different quantities of hours to be worked by a doctor in an intensive care unit, 

ranging from a minimum of 5 hours to a maximum of 12 hours.  The inputs, which 

indicate different manners of adopting the available alternatives will become the decision 

variables of the problem.  The variation of these values will influence the performance 

achieved for each of the problem objectives, either aiding or hindering their realization.  

The decision variables often are inputs to other computed parameters that add additional 

insight or context to the problem.  For instance, in Oddoye et al.’s (2009) study, the main 

decision variables are binary and relate to whether patients are seen by doctors and/or 

nurses during a given hour.  They were categorized into 3 types: initial contact, ongoing 

contact, and discharge.  These impacted other important variables to be calculated such as 

the number of doctors, nurses, or beds available, but not used during the hour, as well as 
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the number of extra doctors, nurses, or beds required in that hour.  Patient delay and 

starting hour of treatment could also be determined.  In another example, Blake and 

Carter (2002) present a model that has integer decision variables that assign a certain 

number of patients to each doctor.  Furthermore, Karakas et al. (Karakas, Koyuncu, Erol, 

& Kokangul, 2010) utilize a mixture of integer and binary decision variables related to 

cost in their formulation.  There also exist models where the decision variables and inputs 

take on multiple variable types, as is the case with Chu et al. (Chu, Ho, Lee, & Lo, 2000) 

who that modeled the distribution of the nurse team work hours utilizing both continuous 

and binary variables.  

  

3.2.4   Preference of Objectives 

 

With the objectives now defined, the next step is concerned with preferences or 

priorities that may exist among the problem’s objectives.  This will determine the order 

they should be accomplished.  This preference also helps to determine how the objective 

function of the optimization problem should be formulated.  If there is a clear priority, 

there are different approaches that may be taken.  We discuss later, specifically for each 

of the methods we are exploring in this work, suitable manners of encompassing different 

preferences for objectives when this is the case.  Additionally, any dependencies between 

objectives should be noted, so they can be incorporated into the model later. 

 

3.2.5   Value Functions 

 

One important aspect that must be encompassed in any optimization model is the 

definition of the returns to scale on a measure of importance that may exist (Kirkwood, 
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1998).  Businesses typically measure value in dollars, often net present value.  This 

allows benefits or value to be converted to dollars.  When benefits cannot be converted to 

dollars, or when this is not a convenient measure, it is possible to use normalized values.  

Normalized value uses a value function to convert the level on a measure to a normalized 

value instead of dollars or net present value as shown in Figure 2.  The value model that 

is being maximized should be based on values carefully elicited from the decision maker.  

The value measures can be direct or proxy and natural or constructed, all dependent upon 

the amount of time and data available.  A complete discussion about different types of 

attributes used for measuring values is presented by Keeney and Gregory (2005).  

According to Ghoushchi et al. (2019), the application of appropriate value functions can 

cover the preferences of the decision maker to a great extent and determine the final 

ranking more clearly and reliably for the decision maker.  

 

                

Figure 2. Linear Value Function in Dollars and Normalized. 

 

Value functions can be linear or nonlinear.  Either form begins with anchor points set 

to values of 0 and 1, which indicate the high and low levels while defining the preference 

order.  A simple linear value function estimation method is a direct rating.  Here the 

decision maker rates remaining attribute levels in terms of relative value such that 
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relative spacing between impact levels reflects preferences of one level to another 

(Belton, 1986).  Bisection is another method that can be used.  In this mid-value splitting 

technique, the decision maker is asked to determine the halfway point between two levels 

in terms of value.  This is done to the level of fidelity desired and is especially useful 

with unknown or continuous levels.  Another technique is using the piecewise linear 

value function where the decision maker assesses relative value increments between each 

of the potential attribute levels.  For example, the smallest value increase between levels 

is determined and all other increments are based in terms of that smallest value.  Then, 

the actual value for each increment can be defined by setting the sum of all increments 

equal to 1.  A piecewise value function can be a good alternative when other functions 

are incapable of representing the value function shape desired, such as a V-shape 

(Ghoushchi, Khazaeili, Amini, & Osgooei, 2019).  Some numerical attributes like time, 

cost, or distance can take on infinite continuous levels.  To capture this, a large number of 

impact levels may be defined and approximated by a piecewise function or a nonlinear 

function, like an exponential may be used.  When a nonlinear value function is desired, 

Kim and Lin (2000) argue that an exponential function with varied parameters can 

generate a rich variety of shapes making it a suitable and admissible functional form.  

Liesio (2012) shows an example of the use of an exponential value functions in the 

selection of conservation sites.  Kirkwood and Sarin (1980) present preference conditions 

that, if met, restrict the nonlinear value function to an exponential, logarithmic, or power 

form.  Nonlinear functions may more accurately depict the decision makers preferences 

but add complexity to the model.  Choices on whether a linear value function or nonlinear 
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value function is used must find a balance between this tradeoff.  A piecewise linear 

value function can also be utilized to estimate a nonlinear value function if required.   

The most common calculation for total value in a portfolio is the additive model, 

which is the weighted sum of the value on each value measure (Parnell, 2007).  Buck and 

Parnell explain that such a model is made up of five parts: a value hierarchy, which 

describes and organizes the benefits desired; measures that quantify each benefit; ranges 

for each of the measures, from worst acceptable (or available) to best possible (or 

available); value functions that describe how value accumulates as one goes from low to 

high scores in each measure; and swing weights that show the relative value of full-range 

swings in each of the different measures (Burk & Parnell, 2011).  An important 

assumption for the additive value model is that the measures are mutually preferentially 

independent.  This means that the assessment of the value function on one value measure 

does not depend on the scores of other value measures (Keeney & Raiffa, 1976).  With 

the groundwork of the problem formulation laid, we now must define the objective 

function. 

 

 3.2.6   Define Objective Functions 

 

An objective function, in a mathematical optimization problem, is the real-valued 

function whose value is to be either minimized or maximized over the set of feasible 

alternatives.  For instance, the PDA problem’s objective function seeks to maximize the 

value of a portfolio, while in a GP formulation, the objective function seeks to minimize 

any deviations that may exist among decision variables, target levels, and a given 

solution to the problem.  While their objectives are quite distinct, both offer solutions to 
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the resource allocation problem we are approaching in this work.  We present specific 

comments about objective functions for both of the explored methods when discussing 

each one later in this chapter.  Detailed comments about the next section, constraints for 

each method, are also presented later in the chapter. 

 

3.2.7   Define Constraints 

 

Another vital part to solving an optimization problem is determining what limitations 

must be obeyed in the problem and developing constraints to model those restrictions.  

These constraints can be based, for example, on the availability of resources, undesired 

upper and lower thresholds for the resources, or explicit conditions that the model must 

observe.  These constraints may restrict the achievement of the objectives of the problem 

and sometimes limit the solution space.  There are two types of constraints to be 

considered:  (i) hard constraints and (ii) soft constraints.  Hard constraints are “musts” 

and define the widest acceptable limits of the soft constraints, or “wants” which bracket 

the most desirable range of the constraint value (de Kluyver, 1978).  The example that de 

Kluyver (1978) gives from advertising is that the desired range for ads, or soft constraint, 

is between 4 and 10, but the hard constraint is that there must be between 1 and 13 ads.  

Akplogan et al. (2013) use both hard and soft constraints in their integer linear program 

formulation to crop allocation.  With this step, the model is formulated. 

 

3.2.8   Solve, Analyze, Communicate 

 

After the formulation of the optimization program, it needs to be solved using an 

appropriate solver, such as Microsoft Excel, Minitab, Matlab, etc.  This will provide a 
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solution that shows the mixture of decision variables that produce the best answer 

according to how the objective function was established.  The decision maker can analyze 

the results to determine the feasibility of the solution, what factors influence this solution, 

and where shortfalls exist.  Additionally, the analysis helps decide where adjustments can 

be made in the context of the problem and the organization overall to ensure that the 

decision maker’s values align with the results.  Furthermore, sensitivity analysis can be 

conducted to explore potential trade space and to see what effect any potential 

adjustments to the model inputs could produce.  

 

3.3   Portfolio Decision Analysis 

 

One of the most well-known and explored methods to optimizing the allocation of 

scarce resources is Portfolio Decision Analysis.  This approach seeks to select, out of a 

group of potential alternatives, a subset or portfolio that is the best overall value, subject 

to limitations or constraints (Burk & Parnell, 2011).  Each alternative has a cost 

associated with it and some potential benefit.  Burk and Parnell (2011) give four reasons 

a portfolio problem requires decision analysis: 

 

1. There are more alternatives than the budget can fund. 

 

2. There are multiple and conflicting objectives. 

 

3. There are major uncertainties. 

 

4. There are interactions among the alternatives. 
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Difficulties in identifying alternatives or decisions include uncertain costs or overall 

budget, access to decision makers, requirements on completion time or multiple time 

periods, and multiple resource constraints.   

As before, Value-Focused Thinking (Keeney R. L., 1992) recommends focusing on 

the values that the portfolio is meant to fulfill rather than on the alternatives that may be 

available.  This produces objectives that mirror the values of the organization and, 

therefore, enhance the creation of desirable alternatives.  Burk and Parnell (2011) 

recommend developing an additive value model to provide a numerical measure of 

overall value.  Furthermore, they present a 15-step procedure for any portfolio decision 

analysis.  Broadly, these steps break down into defining and framing the problem, 

working with the decision maker to determine values creating a quantitative model, and 

analyzing the results.  The first seven steps all include interacting with the decision maker 

and the stakeholders.  Montibeller and Franco (2011) detail the importance, as with goal 

programming, of working with the decision maker to define the decision problem, 

explaining that decision makers often have a compartmentalized view of the organization 

that may depend on their department affiliation.  Kloeber (2011) mentions the following 

steps taken to build a quantification model during a pharmaceutical case study: 

 

1. Define Objectives 

 

2. Organize an Objectives Hierarchy 

 

3. Define Measures 

 

4. Define Value Functions 

 

5. Assign Weights 
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These examples not only exhibit the steps to the process this work has laid out, but 

really acknowledge the importance of interacting with the decision maker and striving to 

accurately frame and structure the problem at hand.   

 

3.3.1   PDA Model Objective Function and Constraints Formulations 

 

Portfolio Decision Analysis seeks to maximize the value of the portfolio or decision.  

The PDA objective function strives to maximize the value associated with the objectives.  

These objectives are affected by a resource or budget constraint because not all decision 

opportunities can be pursued since resources are invariably scarce and may not be easily 

changed (Liesio, Salo, Keisler, & Morton, 2020).  Toppila et al. (2007) use this method to 

allocate resources for telecommunications research and development investments.  The 

value, in this case, is realized through sales.  Therefore, the objective function maximizes 

expected sales by solving a mixed integer linear program.  Topilla (2011) explains that 

although the model only shows budget constraints, it could support additional linear 

constraints such as mutual exclusivity of proposed activities.  In another example, 

Kloeber (2011) applies a maximizing objective function to the ranking of drug discovery 

programs for a pharmaceutical company.  Through much interaction with the decision 

makers, the value to the company is able to be transformed into metrics that are tied to 

the decision makers’ objectives for the organization.  Constraints can be introduced to 

model project interactions by including a project if and only if the interaction is triggered 

by the portfolio composition.  Then the project’s value and resource parameters can be 

used to indicate how the interaction effects the entire portfolio (Liesio, Salo, Keisler, & 

Morton, 2020).  A third example outlines the allocation of local government resources 
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utilizing a facilitated PDA approach (Montibeller & Franco, 2011).  The facilitated 

approach helps support, in this case, the social aspect of government planning.  This 

allows portfolio decision models to be built and analyzed by the decision makers who 

then deem which best captures, not only the resource allocation, but their objectives 

concerning value to society.  Montibeller and Franco (2011) illustrate a basic case 

allowing for a value to cost ratio to be formed  (
𝑉(𝑎𝑖)

𝑐𝑖
)  .  This simple and direct approach 

permits a rank order based on that value to cost ratio, then projects would be funded in 

that order until the budget could no longer support the cost of the next project on the list.  

While simple, this method does not guarantee an optimal solution.  Montibeller and 

Franco (2011) instead show the two optimal models provided below for the decision of 

funding new start projects and continuing current projects.  The new starts model features 

the value function, 𝑉(𝑎𝑖), and a binary variable, 𝑥𝑖, indicating the selection of the new 

project.  The current project model features the value function, 𝑉(𝑎𝑖), and a proportional 

variable, 0 ≤ 𝑦𝑖 ≤ 1, indicating what proportion of the current project will be continued.  

Both have the overall budget as constraints. 

 

   New Start:        Current Project: 

𝑀𝑎𝑥 ∑ 𝑉(𝑎𝑖)𝑥𝑖
𝑁
𝑖=1      (1)   𝑀𝑎𝑥 ∑ 𝑉(𝑎𝑖)𝑦𝑖

𝑁
𝑖=1   (3) 

         Subject to            Subject to 

∑ 𝑥𝑖𝑐𝑖 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡𝑁
𝑖=1      (2)   ∑ 𝑦𝑖𝑐𝑖 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡𝑁

𝑖=1   (4) 

 

This formulation ensures that the maximum value to the organization will be realized 

by using as much of the budget as possible.  Therefore, a project with a lower cost may 
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overtake others on the value to cost ratio ranking because they fall under the remaining 

budget, thus providing more overall value.   

 

3.4   Goal Programming 

 

The Goal Programming (GP) approaches utilized by Lee (1972) and Schneiderjans 

(1995) seek to model a multi-criteria/multi-objective optimization problem and deals with 

decision situations with single or multiple goals and subgoals. The objectives state that 

which is of concern and, therefore, important regarding the decision; while the goals set a 

target value for the objective measure to be achieved.  Furthermore, in GP, we want to 

achieve these goals as closely as possible with penalty for deviation from these target 

goal levels (Charnes & Cooper, 1976).  As we reviewed in Chapter 2, GP is a fruitful 

approach (Lee, S, 1972; Blake & Carter, 2002; Kwak & Lee, 1997; Ataollahi et al, 2013) 

for this type of problem because:  

 

1. There are multiple objectives that are critical and must be considered when 

competing for the same resources. 

 

2. There is a level of risk associated with any allocation, even an optimal one, 

therefore a prioritized list of objectives is necessary. 

 

3. Adaptability to changing situations allows for a quick update based on a dynamic 

environment. 
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3.4.1   Goal Programming Model Objective Function Formulation 

 

Formulating the goal program objective function is related to the preferences 

discussion presented in section 3.2.4.  Depending on the decision maker’s preferences, 

each of the following GP methods will produce a different objective function.  Here we 

discuss three variants (lexicographic, weighted, and Chebyshev) that seek to minimize 

the deviations from the goals, but each with a different focus. 

 In the lexicographic, or pre-emptive variant of goal programming the higher-level 

priority is infinitely more important than those in lower levels.  Ignizio (1976) shows an 

algorithm that solves the lexicographic goal program as a series of linear programs.  This 

traditional GP approach was used by Tan et al. (Tan, Elmekkawy, Peng, & Oppenheimer, 

2007) to schedule elective surgeries.  It was useful because their proposed model had 

very obvious and different priority levels and there was no tradeoff between criteria 

allowed.  Similarly, Li et al. (Li, Rafaliya, Baki, & & Chaouch, 2017) created their own 

pre-emptive model to schedule elective surgeries and modeled four objectives each with 

its own ranked priority.  A third example uses staff assignment and shows the flexibility 

of the lexicographic goal program.  Rihm and Baumann (2015), first had requirements as 

the highest priority for one instance of the model, then used fairness as the highest 

priority in the second iteration and were able to show a more acceptable model that still 

had the same quality as the first. While this is a popular method, it is most useful when 

there exists a clear priority ordering amongst the goals to be achieved. 

In situations where the decision maker has a clear order in which they wish to see 

goals satisfied, the lexicographic variant is desirable (Jones & Tamiz, 2010).  This 
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method makes the higher level priority infinitely more important than the lower level 

priority.  Therefore, the minimization algorithm steps through one priority at a time, 

minimizing all deviational values associated with that priority.  Once an optimal solution 

is determined for the first priority, this will set the feasible region for the next priority.  

The process is repeated one priority at a time until all deviations have been minimized.  

Suppose 𝑝1 is the positive deviation and 𝑛2 is a negative deviation for Priority 1 

objective, 𝑛3 is a negative deviation associated with Priority 2 objective, and 𝑝4 and 𝑛5 

are deviations associated with Priority 3 objective.  The objective function would be as 

follows: 

 

         𝑀𝑖𝑛 𝑎 =  [(𝑝1 + 𝑛2), (𝑛3), (𝑝4 + 𝑛5)]        (5) 

 

The steps of the minimizations would be as follows: 

 

Step 1           

 𝑀𝑖𝑛 𝑍1 = 𝑝1 +  𝑛2 (6) 

Subject to constraints of the model 

 

Step 2 

 𝑴𝒊𝒏 𝒁𝟐 = 𝒏𝟑 (7) 

Subject to constraints of the model and results 𝑍1 
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Step 3 

 𝑀𝑖𝑛 𝑍3 =  𝑝4 + 𝑛5        (8) 

Subject to constraints of the model and results of 𝑍1 and 𝒁𝟐 

 

The effects of using this structure will lead to an imbalance between goals.  

Furthermore, if the priority structure is modified, then it is likely that a completely 

different solution will be obtained. 

If the decision maker is more interested in direct comparisons of the objectives, then a 

weighted, or non-pre-emptive, goal program can be employed.  The goals are weighted 

by relative weights that present the decision maker preferences between different goals 

(Iskander, 2012).  If there is no preference, then the objectives, or goals, can be equally 

ranked and assigned equal weights.  With the previous study mentioned (Oddoye, Tamiz, 

Jones, & Schmidt, 2009), there was no existing priority order of the objectives and they 

were only interested in trade-offs between the objectives.  In another goal programming 

model, Lee and Kwak (1999) detailed the process of how they established the goal 

priorities with the help of the organization’s decision makers.  In a third example, Prasad 

and Reddy (2018) presented a model with the weights generated in two different ways.  

They illustrated a percent normalization method as well as the use of an analytical 

hierarchy process.  Their study shows that both methods produced similar results.  

When the decision maker wishes to compare deviations and investigate tradeoffs 

between them, the weighted goal program variant is applicable (Jones & Tamiz, 2010).  

This trade off would allow the decision maker to see what could be gained in one 

objective at the expense of another.  Since many decision makers will not be able to 
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instantly define the weights, insight into these tradeoffs may influence their decisions in 

the weighting assignments. Any subsequent adjustments may then more accurately 

represent the decision maker’s values.  Using a weighted goal program, all unwanted 

deviations from all our goal target values are multiplied by weights and added together as 

a single sum to form the objective function.  The assigned weights reflect the relative 

importance of meeting that goal.  The objective is then to minimize this overall sum of 

deviations.  The algebraic representation is shown below where m is the number of 

objectives, 𝑛𝑖 are negative deviations, 𝑝𝑖 are positive deviations, and 𝑢𝑖 and 𝑣𝑖 are their 

respective weights. 

 

𝑀𝑖𝑛 𝑧 =  ∑ (𝑢𝑖𝑛𝑖 +  𝑣𝑖𝑝𝑖)
𝑚
𝑖=1                           (9)           

                  

An issue that can arise in both lexicographic GP and weighted GP leading to 

erroneous modeling is that the deviations within a priority or the weighted deviations 

being summed may be measured in different units and, therefore, cannot be summed 

directly (Jones & Tamiz, 1996).  If the units are not compatible, the summation is useless.  

In this case, the deviations would need to be multiplied by a normalization constant.  

Three commonly used normalization constants exist: percentage, zero-one, and Euclidean 

(Jones & Tamiz, 2010).  Percentage normalization is described as turning each deviation 

into a percentage value away from its target level; therefore, converting to all values to 

the same units.  Typically, these are divided by the target levels as opposed to the entire 

goal.  In actuality, the objective function contributions are proportions, not percentages, 

but it is fundamentally the same.  According to Jones and Tamiz (2010), one potential 
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pitfall of this normalization method is that there can be a distortion if a subset of goals 

has the same units.  If the concern focuses on percentage shortfall and not direct unit 

comparison, the method still holds.  The zero-one normalization scales and maps all 

unwanted deviations onto a zero-one range with zero representing no deviation from the 

target value and one representing the worst possible deviation.  This method is good in 

cases when each objective has clearly defined ranges and the entire feasible set is of 

potential interest to the decision maker.  It also suffers from irrelevant alternatives with 

unbounded regions.  Finally, the Euclidean normalization method calculates the 

Euclidean mean and uses it as the normalization constant.  It is considered 

computationally robust, but because there is a lack of consideration of the target value, 

the optimal value of the achievement function has no obvious meaning.  According to 

Jones and Tamiz (2010), the Euclidean normalization method is best reserved for cases 

where the percentage method and zero-one method are impractical.  Ultimately, the 

choice of normalization scheme is dependent upon the individual problem situation and 

preferences of the decision maker.  A normalized achievement function using the 

percentage method is shown below with positive and negative deviations represented as 𝑝 

and 𝑛 respectively, and target values shown as 𝑡𝑣. 

 

                                          𝑀𝑖𝑛 𝑧 =
𝑝1

𝑡𝑣1
+  

𝑛2

𝑡𝑣2
+  

𝑛3

𝑡𝑣3
+  

𝑝4

𝑡𝑣4
                                  (10) 

 

Since we are minimizing the deviations, they act as penalties in the objective 

function.  Only unwanted deviation variables should be given a positive weight and this 

weight gives the relative importance of the penalization.  If a deviation, such as excess 
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profit, were given a positive weight, a good solution would be unnecessarily penalized 

and lead to erroneous conclusions (Jones & Tamiz, 2010).  The deviations are typically 

penalized using a direct linear relationship between penalty and distance from goal; 

however, this penalty can be modelled in multiple other ways.  Jones and Tamiz (1995) 

discuss four such situations: an increase in penalty as further distance from goal, a 

decrease in penalty at further distance from goal, a discontinuity in preferences, and a 

non-linear preference structure.  These methods add objectives at the point where the 

penalty changes creating a similar objective with a new target value and altered penalty, 

depending on the decision maker’s preferences.  It is possible for a nonlinear preference 

to arise.  When such a preference occurs, it can be dealt with by a piecewise linear 

approximation as defined by Williams (1978).  At this point, the previous methods of 

increasing or decreasing penalty can be implemented.  Another method for nonlinear 

preference is the Sequential Unconstrained Maximization Technique which sets the 

penalty to grow quadratically as points move away from the feasible or desired region 

(Bradley, Hax, & Magnanti, 1977).  When the solution is better than the goal or within an 

acceptable range the penalty expression equals zero and no penalty is incurred.  A penalty 

scale factor can be applied to ensure near-feasible points receive a large enough penalty.  

Additionally, Bradley, Hax, and Magnanti (1977) describe the barrier method in which 

penalty terms are replaced by barrier terms.  These terms become infinite as the variable 

approaches the infeasible or unwanted region.  Cetin and Sarul (2009) used nonlinear 

goal programming to create a blood bank location model with a nonlinear objective.  

Although transformations could have been used to reduce computation time, this proved 

to be unnecessary, and their results are obtained by solutions of different starting points 
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completed in a reasonable time.  Attari et al. (Attari, Pasandide, Agaie, Taghi, & Niaki, 

2017) present a case where nonlinear objectives and constraints are linearized before 

minimizing the deviations of the goal program.  This transformation back into a linear 

goal program not only allowed them to solve the model using linear goal programming 

techniques, but also reduced the complexity.  In a third example, a genetic algorithm is 

utilized to make the nonlinear GP more practical and easier to use (Deb, 2001).  Deb used 

a non-dominated sorting genetic algorithm, in particular, and demonstrates its application 

and efficiency on five different test cases. 

Another significant variant is Chebyshev goal programming.  The effect of this 

method is to, as much as possible, provide a balance between the levels of the objectives 

and should be utilized when the requirements are defined in terms of balance and fairness 

(Romero, 2001).  Gur and Eren (2018) present a model in which the goals are shown 

separately and there is no prioritization among the goals.  Li, Liang, and Yu (2011) 

demonstrated the effectiveness of the Chebyshev method to take three performance 

criteria and optimize a car’s suspension.  This method was chosen because the three 

criteria are conflicting and non-commensurable; therefore, a balance was desired.  

Pinheiro et al. (Pinheiro, Landa-Silva, Laesanklang, & Constantino, 2019) describe a 

situation where the decision maker benefits from having a set of solutions representing a 

compromise between multiple objectives, giving them the option to choose their 

preferred solution.  Chebyshev goal programming is used in this situation to obtain a 

balanced solution and it is described as an effective technique especially if the target 

goals are similarly difficult to obtain.  Ghuran et al. (Ghufran, Khowaja, & Ahsan, 2015) 

characterized Chebyshev’s method as a specific form of the weighted goal program.  
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They showed it as solving a set of single goal optimization problems at both the best and 

worst values of each objective.  Then the best values are used as targets for the objectives 

and then minimized such that worst values from each objective are at a minimum.  By 

utilizing this method, Ghuran et al. (2015) were able to convert their problem into a 

bounded variable mixed integer linear programming problem.  In another example, 

Naeini et al. (Naeini, Khodamoradi, & Sabzian, 2014) compared a Chebyshev GP model 

with a weighted GP model in the optimization of expansion for sports facilities.  Their 

conclusion showed that although the weighted model had more complete achievements in 

objectives, it also had more complete deviations in the objectives.  Despite having fewer 

complete achievements, the Chebyshev model was far more balanced and was superior in 

providing a better-balanced allocation of the budget.  Overall, their conclusion was that 

when balance among the multiple goals in important for the planner, the Chebyshev goal 

program is strongly recommended (Naeini, Khodamoradi, & Sabzian, 2014). 

In the scenario where balance between the objectives is the dominant need, then the 

Chebyshev goal programming variant should be applied.  Both the lexicographic and 

weighted variants seek to find solutions at the extreme points, due to the use of the 

ruthless optimization associated with the underlying properties, leading to an imbalance 

among the objectives (Jones & Tamiz, 2010).  In the Chebyshev, or Minmax, variant, the 

maximum deviation among the weighted set of deviations is minimized rather than the 

sum of those deviations (Jones & Tamiz, 2003).  A generic Chebyshev goal program 

would be as follows: 
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   𝑀𝑖𝑛 𝑧 = 𝐷                                     (11) 

subject to 

1

𝑘𝑖
[𝑢𝑖𝑛𝑖 + 𝑣𝑖𝑝𝑖]  ≤ 𝐷   𝑖 = 1, … , 𝑚                 (12)                       

         𝑓𝑖(𝑥) + 𝑛𝑖 −  𝑝𝑖 =  𝑏𝑖                            (13) 

 

where 𝑚 is the number of objectives in the model, 𝑓𝑖(𝑥) is the objective, 𝑏𝑖 is the target 

value or goal value, 𝑝𝑖 and 𝑛𝑖  represent the positive and negative deviations, 𝑢𝑖 and 𝑣𝑖 

are the respective weights assigned to these deviations, 𝑧 is the achievement function, 𝐷 

is the maximum deviation to be minimized, and 𝑘𝑖 is the normalization constant. 

 

3.4.2   Goal Programming Constraints Formulation 

 

Another vital part to solving an optimization problem is determining what the 

limitations are in the problem and developing constraints to model those restrictions.  The 

constraints can be written as either equalities or inequalities to show the maximum (or in 

some cases minimum) resources to be used.  These will be the hard constraints, indicating 

that they cannot be violated.  A constraint that is a less than inequality indicates a 

limitation of some resource, while a greater than inequality indicates that a certain 

threshold needs to be reached.  Another hard constraint that may need to be added is a 

non-negativity constraint.  This constraint states that negative values for physical 

quantities cannot exist in any feasible solution. A generic example follows: 

 

𝑥𝑖: quantity of product 𝑖 produced 

𝑅𝑖: quantity of raw material available to produce resource 𝑖 
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𝐷𝑖: demand for product 𝑖 

𝑚: number of products being considered for production 

 

Hard Constraints: 

 

            ∑ 𝑥𝑖 ≤  𝑅𝑖
𝑚
𝑖=1  (Resource limitation)                (14) 

 

            ∑ 𝑥𝑖 ≤  𝐷𝑖
𝑚
𝑖=1  (Threshold for supply)              (15) 

 

            𝑥𝑖 ≥ 0  for all 𝑖   1:𝑚 (Non-negativity)           (16) 

    

 

As shown in a cyclical nurse schedule goal program (Jenal, Ismail, Yeun, & 

Oughalime, 2011), the goals are incorporated into the model as constraints.  These will be 

soft constraints and they will utilize deviational variables.  These variables indicate 

possible deviations from below or above the target value on the right-hand side of the 

constraint.  The inclusion of these variables allows the inequality constraints to be 

converted to equality constraints with the deviational variables acting as real slack 

variables.  In Oddoye’s example (2009), a deviational variable was introduced to measure 

the amount of time a patient has been delayed.  This value can then be minimized, along 

with other deviational variables, in the objective function.  In this particular case, the 

negative deviational variable was omitted since the ideal value of the delay is the same as 

the expected delay of 0.  The generic equations above with deviational variables added 

become: 

𝑛𝑖: negative deviation from resource 𝑖 goal 

𝑝𝑖: positive deviation from demand 𝑖 goal 

 

          ∑ 𝑥𝑖 +  𝑛𝑖 =  𝑅𝑖
𝑚
𝑖=1  (Resource limitation)         (17) 
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          ∑ 𝑥𝑖 +  𝑝𝑖 =  𝐷𝑖
𝑚
𝑖=1  (Threshold for supply)       (18) 

 

         𝑥𝑖 , 𝑛𝑖 , 𝑝𝑖  ≥ 0 for all i 1:m (Non-negativity)      (19) 

 

 

 

3.5   Comparing PDA and Goal Programming Approaches 

 

Portfolio Decision Analysis and Goal Programming both seek to allocate scarce 

resources in an ideal manner, but by focusing on different aspects.  As mentioned above, 

each features the same first five steps in the formulation process.  Each must define the 

problem and collect data, define the problem objectives, define the decision variables, 

establish any preference relationships among the objectives, and establish value 

functions.  The difference lies in how each method realizes the resource allocation.  GP 

focuses on allocating resources based on the ideal state, as defined by the decision maker, 

and then minimizes the deviations from that state.  PDA concentrates on what mix of 

resources generates the most value to the decision maker by maximizing each objective’s 

value as defined by the value functions.  GP utilizes a target value for objectives; 

however, this is not the case for PDA.  Preferences among the objectives are set in GP 

through explicit priorities or through assigned objective weights while preferences for 

PDA are expressed through the decision maker’s value functions and associated objective 

weights.  The final step in the methodology is to solve, analyze and communicate.  This 

can be accomplished in a similar manner for each and both approaches generate 

meaningful insights to the stakeholders, but those results are influenced by the manner 

with which they were achieved.  Arevalo and Insua (2011) present a case for using the 

two methods in tandem.  In their model for innovation management, they suggest using 
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goal programming as a way to manipulate the problem and gain a better understanding; 

followed by utilizing value functions to maximize the satisfaction of the selected 

innovation projects.  Barbati et al. (2018) argue that PDA may be a more robust method 

in handling multi-objective resource allocation problems with multiple criteria.  By fixing 

certain levels of qualitative satisfaction to each objective, PDA was employed to make 

each of these levels become an objective to be maximized. 

3.6   Summary 

 

This chapter presented the selected methodology, showing and specifying the 

elements of the common steps in the formulation, as well as the unique aspects of 

Portfolio Decision Analysis and Goal Programming, detailing the variants of each 

method.  A comparison of the approaches was also outlined.  Next, our healthcare 

resource allocation during a pandemic problem will be formulated using PDA and GP.  

The subsequent analysis will provide further insight into the formulation of the models 

and another means of comparison for the two methods .  
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IV.  Analysis and Results 

4.1   Chapter Overview 

 

In this section, we take the process outlined in Chapter 3 and apply it to our problem 

of healthcare resource allocation at a Military Treatment Facility (MTF) during a 

pandemic.  The parameters and inputs will be notionally developed to depict a real-world 

application of the methodology.  Next, we will apply the portfolio decision analysis 

approach, followed by the goal programming approach.  Finally, both methods will be 

solved with discussion of the outputs and resulting analysis. 

4.2   The Selected Methodology 

 

Steps 1-5 of Figure 3 will be the same for both notional formulations in this Chapter.  

These steps will set the stage for the objective function and constraints associated with 

each approach.     

 

 

Figure 3.  Optimization Methodology Steps Restated 
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4.2.1  Define Problem and Collect Data 

 

In the case of a highly contagious and deadly pandemic, MTFs, much like civilian 

hospitals, face an influx of patients.  This arrival creates many challenges for the hospital.  

First, the infected patients are highly contagious, so there needs to be an area in which 

they can be quarantined from non-pandemic patients while being treated.  This requires 

the use of existing rooms, taking away from their intended purpose, or the creation of 

rooms.  If new, temporary rooms are added, this would demand the need for more beds 

and medical equipment.  Additionally, the increase in patients related to the pandemic 

requires more doctors and nurses to aid in their treatment.  These personnel would likely 

need to be pulled from other departments within the MTF, leading to shortages in those 

departments.  With the threat of the pandemic, additional personal protective equipment 

(PPE) would be essential.  This would include specialized PPE (masks, gowns, 

goggles/face shields, and gloves) for any workers treating pandemic-related symptoms, as 

well as increased need for standard PPE (masks and gloves) for doctors and nurses 

anywhere else within the facility, whether treating patients or not.  For the sake of this 

discussion, assume PPE refers to a package of PPE that encompasses all needed supplies 

for a single use.  Because a pandemic would not be limited to just the local area, PPE and 

cleaning supplies will likely be limited due to massive demand and disruptions to supply 

chains.  Two primary concerns would likely arise out of this problem with its cascading 

effects:  treating patients and MTF personnel safety.  These broad concerns lie in 

competition with one another and MTF decision makers will need to wisely address these 

issues based on the responsibilities and values of the organization. 
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The data for this problem would mostly stem from internal databases.  Available data 

would range from current supplies, to hospital bed requirements and equipment available, 

to staffing levels.  Additionally, data could be collected from other hospitals or MTFs that 

are deeper into the crisis.  In this study, we consider that much of the data used to 

formulate the basis of the portfolio decision analysis or goal program could be based on 

decision maker and staff experience.  For example, as experts in the field, they may be 

able to provide their judgment on how short-staffed a department can be, yet still be 

operational.  The upside to this framework being provided, is that adjustments can be 

made in real-time and inputs can be updated quickly as new things are learned about the 

situation. 

 

4.2.2 Define Problem Objectives 

  

As an MTF, one of the primary values would likely be the treatment of patients.  In 

this situation, that falls into two different categories.  The first category is treating 

individuals suffering from symptoms of the pandemic.  Due to its highly contagious and 

deadly nature, these patients would be considered vulnerable and in need of timely 

medical attention.  The second category of patients would be those coming to the MTF 

for a non-pandemic related reason, thus falling under the scope of normal hospital 

operations.  Those individuals could be further categorized as emergent, non-emergent, 

and routine and would require varying levels of care and timeliness. 

A probable second value of the MTF decision maker is that of safety of the hospital 

personnel.  This concern, while primarily a humanitarian desire to keep them safe, is 

secondarily a business concern since the doctors and nurses are already in high demand.  
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Any reason they are unable to work further complicates the resource limitations.  This 

value of personnel safety again can be categorized in two different ways.  The first is 

physical safety of the workers.  They are interacting with patients all day who are either 

showing pandemic symptoms or at the facility for another reason, but still potential 

transmitters of the illness.  Both situations, although to different degrees, put the MTF 

personnel at risk of contracting the virus.  The second category is wellness of the worker.  

As mentioned in Chapter 2, healthcare workers can suffer physical and mental exhaustion 

and may develop psychological distress, thus limiting their availability and effectiveness. 

Suppose these two MTF or decision maker values generate four related objectives.  

The first two fall under patient treatment and the third and fourth fall under MTF 

personnel safety.  The objectives are to maximize the following: 

1. Pandemic related patient treatment 

2. Patients treated under normal MTF operations 

3. MTF personnel physical safety 

4. MTF personnel mental wellness 

These objectives conflict with each other and compete for the same limited resources.  

They meet the properties outlined by Keeney (1992) in Chapter 3.  Other values of the 

decision maker may exist and lead to the creation of additional objectives, such as 

cost/profit, patient wait times, treatment times, staff utilization, or ethical considerations.  

However, for the purpose of this example, we will model these four.  Furthermore, at this 

point, the objectives are in no particular order as far as preference or priority.  That 

discussion comes later in the Chapter.  First, we must examine the MTF’s controllable 

inputs. 
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4.2.3   Define Decision Variables 

 

With the objectives defined, we must determine what can be done to impact their 

achievement. In this case, the MTF leadership should establish what is within their 

control that can comprise the set of alternatives based on the decision context.  Suppose 

that the decisionmaker identifies four primary decision variables that directly affect the 

realization of the objectives.   These decisions are the (i)  number of beds to utilize, (ii) 

the number of ventilators to utilize, (iii) the amount of personal protection equipment 

(PPE) to utilize, and (iv) the number of doctors to schedule.  The achievement of each 

objective, in this case study, depends on the variation of one or more of these variables.  

Furthermore, the decision maker determines which variables effect which objectives as 

shown in Table 1.   

 

Table 1.  Decision Variables by Objective 
 Beds Vents PPE Doctors 

Objective 1 – Pandemic-related patient treatment X X X X 

Objective 2 – Patients treated under normal MTF operations X X X X 

Objective 3 – MTF personnel physical safety   X  

Objective 4 – MTF personnel mental wellness    X 

 

 

Henceforth, the decision variables will be defined as follows: 

𝐵𝑖 𝑖𝑠  𝑏𝑒𝑑𝑠 𝑓𝑜𝑟 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑖 

𝑉𝑖 𝑖𝑠 𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑜𝑟𝑠 𝑓𝑜𝑟 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑖 

𝑃𝑖  𝑖𝑠  𝑃𝑃𝐸 𝑓𝑜𝑟 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑖 

𝐷𝑖  𝑖𝑠 𝑑𝑜𝑐𝑡𝑜𝑟𝑠 𝑓𝑜𝑟 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑖 
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The achievement of Objective 1, the treatment of pandemic patients, depends on the 

MTF’s ability to admit that patient providing them with a bed and a doctor.  Additionally, 

for the doctor to treat that patient, the doctor will need access to treatment resources and 

the required PPE.  Therefore, Objective 1 is measured by the number of beds, ventilators, 

PPE, and doctors available to treat these patients.  Likewise, the achievement of 

Objective 2, non-pandemic patient treatment, relies on the same types of resources, and 

thus will be measured in the same manner.  Objective 3, MTF personnel physical safety, 

is primarily dependent upon their ability to protect themselves from the virus.  To ensure 

the PPE provided is most effective, this objective is measured by the surplus PPE 

available for use, allowing personnel to utilize it as directed and not rely on re-use, 

homemade, or personally procured PPE.  Objective 4, the mental wellness of MTF 

personnel, is related the amount of time off for personnel to care for themselves.  This is 

measured by the total number of doctors working.  If all doctors are utilized, then there 

are no days off.  While in Objectives 1-3, more resources being utilized is considered 

ideal, Objective 4 is measured in a way that makes less doctor utilization ideal.  With the 

objectives formed and the decision variables effecting those objectives defined, it is now 

time for the decision maker to consider the preference of the objectives. 

 

4.2.4 Preference of Objectives 

 

The next task at hand for the MTF decision maker is to determine whether a 

preference or priority amongst the objectives exists.  One could argue that the decision 

maker would find it difficult to say that one objective is an obviously higher priority than 

another.  At the same time, a balance between each objective is not necessarily ideal 
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either.  Therefore, it is best to assign weights to the objectives.  This enables the decision 

maker to have direct comparisons  of the objectives by establishing a preference and 

relative importance to each other. 

There are multiple ways to go about assigning weights to the objectives.  In Chapter 

3, an example of the Analytical Hierarchy Process (AHP) was referenced from Prasad 

and Reddy (2018).  This can be accomplished by simply providing pairwise comparisons 

to the decision maker and noting their preferences.  Suppose the MTF decision maker 

decides that treating the patients suffering from the pandemic virus is twice as important 

as treating the standard patients.  Next, the decision maker indicates that the relative 

importance of physical safety of the personnel lies somewhere between the two treatment 

categories.  Finally, the decision maker estimates that the physical safety of the personnel 

is roughly three times as important as the mental wellness of the personnel.  The resulting 

weights are displayed in Table 2. 

 

  Table 2.  Objective weights 
Objective Weight 

Pandemic-related patient treatment 40% 

MTF personnel physical safety 30% 

Patients treated under normal MTF operations 20% 

MTF personnel mental wellness 10% 

 

 

4.2.5   Value Functions 

 

The next step in the formulation process is to determine how to measure value in the 

model.  Since the objectives created by the MTF are not monetary, it is best to use 

normalized values and value functions.  Suppose the MTF decision maker wants to use 

the simplest and quickest measure of value, as time for the decision is at a premium due 
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to the pandemic.  This equates to the value functions being linear and based ultimately on 

the ideal numbers of each decision variable (to be determined later).  This means that 

each unit of the decision variable amount yields the same value.  As an example, the 

value function for beds in objective 1 would be as shown in Equation 20.  The graph of 

that normalized function is shown by Figure 4. 

 

𝑉(𝐵1) =  
1

𝐵1(𝑖𝑑𝑒𝑎𝑙)
∗  𝐵1                  (20) 

 

 

Figure 4.  Sample Linear Value Function 

 

In the portfolio decision analysis method, each unit of a decision variable attributed to 

that objective would add the same value based upon Equation 20.  With the goal 

programming approach, each unit of deviation would result in the same loss of value for 

that objective.  These value functions, through the use of an additive value function 

model applying the weights associated with each objective, will help determine the 

overall value of the objective function. 
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4.2.6   Define Objective Function 

 

Both model approaches will seek the optimal decision variable values to satisfy their 

objective function over the set of feasible alternatives.  The portfolio decision analysis 

model will maximize the value gained across the weighted objectives based on the value 

functions.  The goal programming model will aim to minimize the deviation from the 

objective targets.  Both objective functions will be formally discussed and formulated in 

their respective sections below as will method specific constraints, but those constraints 

common to both models are discussed next. 

 

4.2.7  Define Constraints 

  

The MTF and its objectives are subject to resource constraints, hence the problem at 

hand.  Many of these constraints are common to the problem overall and not dependent 

on the model.  Suppose the MTF is a 300-bed facility during normal operations.  Of 

those, around 45 are dedicated to the Intensive Care Unit (ICU) and are accompanied by 

20 ventilators.  Furthermore, the MTF has on hand 300 PPE packs equating to one set per 

potential standard patient.  Finally, there are 50 doctors that work at the facility.  Of these 

50 doctors, ideally only 40 (80%) are on duty any particular day, allowing for a day off 

every 5 days.  Additionally, each one of these resources has an associated cost that is 

applied to the budget.  For the purpose of this discussion, we assume the doctors have no 

additional monetary cost.  Their cost is in time and will be captured by noting how many 

are on duty at one time.  All resource levels and associated costs to buy and/or operate are 

shown in Table 3. 
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        Table 3.  Cost per Resource 
Resource Standard Operations 

Available 
Cost per 
Resource 

Beds 300 $5000 

Ventilators 20 $40000 

PPE Packs 300 $2500 

Doctors 50  

 

 

With the introduction of the pandemic, there is a sudden need for increases in all 

these resources.  Suppose all are available for purchase, except doctors.  There will be a 

hard constraint of 50 doctors.  A survey of other hospitals dealing with the pandemic 

suggest an additional 60 beds, 30 ventilators and 180 PPE packs are required for a 

hospital of this size.  Those requirements are outlined in Table 4.  Due to limitations in 

the supply chain and increased demand, presume only a limited amount of these 

resources can be purchased.  Those limitations are shown in Table 5. 

 

          Table 4.  Standard and Pandemic Resource Requirements 
Resource Standard Operations 

Available 
Pandemic 

Requirements 
Cost per 
Resource 

Beds 300 60 $5000 

Ventilators 20 30 $40000 

PPE Packs 300 180 $2500 

Doctors 50   

 

  Table 5.  Resource Purchase Constraints 
Resource Standard Operations 

Available 
Pandemic 

Requirements 
Available for 

Purchase 
Total 

Available 
Cost per 
Resource 

Beds 300 60 30 330 $5000 

Ventilators 20 30 20 40 $40000 

PPE Packs 300 180 300 600 $2500 

Doctors 50     

 

 

Another limitation that is required to be considered as a constraint in the explored 

model is the budget availability.  We may assume any desired value to be considered by 
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the model as the available total budget, defined as 𝐵𝑇, to be used during the crisis 

scenario we are considering in this work.  All of these hard constraints are modeled 

below. 

 

∑ 𝐵𝑖  ≤ 3302
𝑖=1              (21) 

 

∑ 𝑉𝑖  ≤ 402
𝑖=1                 (22) 

 

∑ 𝑃𝑖  ≤ 6003
𝑖=1               (23) 

 

∑ 𝐷𝑖  ≤ 502
𝑖=1                 (24) 

 

∑ (𝐵𝑖) ∗ 5000 +  (𝑉𝑖) ∗ 40000 + (𝑃𝑖) ∗ 2500 ≤  𝐵𝑇
3
𝑖=1           (25) 

 

Other constraints are needed to model the interdependence among the objectives.  For 

instance, it does not make sense to have too many ventilators available, without enough 

beds.  This is prevented by Equations 26 and 27.  Also, PPE is not needed for doctors if 

there are no beds for patients with Equations 28 and 29 protecting against that. Finally, 

there is a ratio of doctors per number of beds that can be developed.  Equations 30 and 31 

apply that ratio.  Due to the differences in types of treatment required, Objectives 1 and 2 

have different constraints associated with them.  Those constraints are listed next.  

 

𝑉1 ≥  0.3 ∗  𝐵1                         (26) 

 

𝑉2 ≥  0.045 ∗ 𝐵2                    (27) 

 

𝑃1 ≤  3.1 ∗  𝐵1                         (28) 
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𝑃2 ≤  1.2 ∗  𝐵2                         (29) 

 

𝐷1 ≤ (1
3⁄ ) ∗  𝐵1                       (30) 

 

𝐷2 ≤ (0.14) ∗  𝐵2                       (31) 

 

In addition to the constraints, the MTF decision maker also establishes the ideal 

decision variable values that would lead to a completely fulfilled objective.  Objectives 1 

and 2 are based on projected needs,  Objective 3 is a 25% surplus of PPE, and Objective 

4 is set such that doctors would receive a day off every 5 days.  Those resources are listed 

in Table 6. 

 

Table 6.  Ideal Decision Variable Values per Objective 
 Beds Ventilators PPE Doctors 

Objective 1 60 30 180 20 

Objective 2 300 20 300 40 

Objective 3 - - 120 - 

Objective 4 - - - 40 

   

Thus far, we have discussed steps and parts of the formulation of the problem 

common to both models.  Now the focus will turn to aspects of the model specific to each 

approach. 

 

4.3   Portfolio Decision Analysis 

 

Recall that a portfolio decision analysis model seeks to maximize the value to the 

decision maker for the determined objectives which are subject to resource and budget 

constraints.  In this case study, the desire is the determine a mixture of resource allocation 
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that maximizes the value of the objectives laid out above.  The model objective function 

is shown as Equation 32.  There are multiple ways to build the model-specific constraints 

in relation to the value functions.  This can be accomplished through a direct computation 

based on the decision variables as demonstrated in Equations 33, 35, 37, and 39 or 

through a measure of the deviation from the ideal normalized value (1) as shown in 

Equation 34, 36, 38, and 40. 

 

𝑀𝑎𝑥 𝑎 =  ∑ (𝑉(𝐵𝑖)) ∗ 𝑤1 +3
𝑖=1 (𝑉(𝑉𝑖)) ∗ 𝑤2 + (𝑉(𝑃𝑖)) ∗  𝑤3 + (𝑉(𝐷𝑖)) ∗  𝑤4       (32) 

 

Subject to 

𝑉(𝐵𝑖) =  
1

𝐵𝑖(𝑖𝑑𝑒𝑎𝑙)
∗  𝐵𝑖, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2                        (33)  

 

𝑉(𝐵𝑖) + 𝑛𝐵𝑖
= 1, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2                                 (34) 

 

𝑉(𝑉𝑖) =  
1

𝑉𝑖(𝑖𝑑𝑒𝑎𝑙)
∗  𝑉𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2                         (35) 

 

𝑉(𝑉𝑖) + 𝑛𝑉𝑖
= 1, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2                               (36) 

 

𝑉(𝑃𝑖) =  
1

𝑃𝑖(𝑖𝑑𝑒𝑎𝑙)
∗  𝑃𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, 3                    (37) 

 

𝑉(𝑃𝑖) + 𝑛𝑃𝑖
= 1,   𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, 3                 (38) 

 

𝑉(𝐷𝑖) =  
1

𝐷𝑖(𝑖𝑑𝑒𝑎𝑙)
∗  𝐷𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2                       (39) 

 

𝑉(𝐷𝑖) + 𝑛𝐷𝑖
= 1, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2                               (40) 
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𝐷4 =  𝐷1 + 𝐷2            (41) 

 

𝑉(𝐷4) = 1 +  (𝐷4(𝑖𝑑𝑒𝑎𝑙) − 𝐷4) ∗  
1

𝐷4(𝑖𝑑𝑒𝑎𝑙)
         (42) 

 

𝑉(𝐷4) − 𝑝𝐷4
= 1            (43) 

 

𝐵𝑖, 𝑉𝑖, 𝑃𝑖, 𝐷𝑖, ≥ 0 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠        (44) 

 

0 ≤ 𝑛𝐵𝑖
, 𝑛𝑉𝑖

, 𝑛𝑃𝑖
, 𝑛𝐷𝑖 , 𝑝𝐷4

≤ 1         (45) 

 

where, 

 

𝑛𝐵𝑖
, 𝑛𝑉𝑖

, 𝑛𝑃𝑖
, 𝑛𝐷𝑖

 𝑎𝑟𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠    

 

𝑤1, 𝑤2, 𝑤3, 𝑤4 𝑎𝑟𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠   

 

Using the formulated objective function and constraints shown here as well as the 

constraints from 4.2.7, the portfolio decision analysis model is now ready to be solved.  

Analysis of this model will follow the formulation of the goal programming model. 

 

4.4   Goal Programming Model 

 

A key part of creating the goal programming model is determining whether a 

preference or priority amongst the objectives exists.  That determination will lead us to 

choose a particular variant a goal programming; either lexicographic, weighted, or 

Chebyshev.  Since there is no clear priority, the lexicographic variant of goal 

programming would not be the ideal choice.  Alternatively, the Chebyshev method is best 
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applied to as means to provide a balance between objectives when the requirements are 

defined in terms of balance and fairness.  In our problem, the objectives, like the 

condition of the patients themselves, should be treated like a triage.  They all have 

importance but should not necessarily have balanced levels of resources applied to them.  

Thus, the Chebyshev method is also not the preferred choice.  This leaves the weighted 

goal program.  The weighted variant is best when the decision maker is interested in 

direct comparisons of the objectives.  It establishes a preference between the objectives 

and allows the decision maker to determine their relative importance to each other.   

In this case, the weights have already been determined by the decision maker and the 

ideal levels or targets for each objective have been set.  The goal programming model 

objective function, Equation 46, will then minimize the weighted, normalized overall sum 

of deviations from each objective. 

 

𝑀𝑖𝑛 𝑧 = 𝑤1 (
𝑛𝐵1

𝐵1(𝑖𝑑𝑒𝑎𝑙)
+

𝑛𝑉1

𝑉1(𝑖𝑑𝑒𝑎𝑙)
+

𝑛𝑃1

𝑃1(𝑖𝑑𝑒𝑎𝑙)
+

𝑛𝐷1

𝐷1(𝑖𝑑𝑒𝑎𝑙)
) + 𝑤2 (

𝑛𝐵2

𝐵2(𝑖𝑑𝑒𝑎𝑙)
+

𝑛𝑉2

𝑉2(𝑖𝑑𝑒𝑎𝑙)
+

𝑛𝑃2

𝑃2(𝑖𝑑𝑒𝑎𝑙)
+

𝑛𝐷2

𝐷2(𝑖𝑑𝑒𝑎𝑙)
) + 𝑤3 (

𝑛𝑃3

𝑃3(𝑖𝑑𝑒𝑎𝑙)
) + 𝑤4 (

𝑝𝐷4

𝐷4(𝑖𝑑𝑒𝑎𝑙)
)     (46) 

 

Subject to 

 

𝐵𝑖 +  𝑛𝐵𝑖
−  𝑝𝐵𝑖

=  𝐵𝑖(𝑖𝑑𝑒𝑎𝑙), 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2    (47) 

 

𝑉𝑖 +  𝑛𝑉𝑖
− 𝑝𝑉𝑖

=  𝑉𝑖(𝑖𝑑𝑒𝑎𝑙), 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2    (48) 

 

𝑃𝑖 +  𝑛𝑃𝑖
−  𝑝𝑃𝑖

=  𝑃𝑖(𝑖𝑑𝑒𝑎𝑙), 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, 3    (49) 

 

𝐷𝑖 +  𝑛𝐷𝑖
−  𝑝𝐷𝑖

=  𝐷𝑖(𝑖𝑑𝑒𝑎𝑙), 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2    (50) 
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𝐷4 = 𝐷1 + 𝐷2         (51) 

 

𝐷4 +  𝑛𝐷4
−  𝑝𝐷4

=  𝐷4(𝑖𝑑𝑒𝑎𝑙)      (52) 

 

𝐵𝑖, 𝑉𝑖, 𝑃𝑖, 𝐷𝑖, 𝑛𝐵𝑖
, 𝑛𝑉𝑖

, 𝑛𝑃𝑖
, 𝑛𝐷𝑖 , 𝑛𝐵𝑖

, 𝑛𝑉𝑖
, 𝑛𝑃𝑖

, 𝑛𝐷𝑖 , 𝑝𝐷4
 ≥ 0 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 (53) 

 

Using the formulated objective function and constraints shown here as well as the 

constraints from 4.2.7, the goal programming model is now ready to be solved.   

 

4.5   Solution and Analysis 

 

If there were no budget restrictions at all, the hospital standard operations would 

require $3.05M to be held.  The additional pandemic requirements amount sums to 

$1.7M.  This means to fulfill all requirements modeled in this case, a total budget equal 

to $4.75M would be necessary.  However, having all the required budget availability is 

not the common situation in the healthcare resource allocation reality, especially when 

facing an unexpected pandemic.  To emphasize how the proposed models would allocate 

a lower than ideal amount of budget, we start to analyze our results by conditioning the 

total budget availability at $4.5M. 

Considering the total budget availability of $4.5M, we observe that the initial results 

provided by both models, shown in Tables 7 and 8, are very similar.  Each allocates the 

same number of beds, 292, ventilators, 40, and PPE packages 576.  Both methods also 

utilize the entire $4.5M budget.  The difference is in the use of doctors.   
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Table 7.  PDA Results                                        Table 8.  Goal Program Results            

 

 

These results were expected because the PDA model prioritizes the maximization of 

value and the GP model prioritizes minimization in deviation.  Therefore, we observe that 

the strictly linear value function for the PDA approach generates more value by not 

exceeding the 40 doctors limit for Objective 4, the MTF personnel mental wellness.  

Alternately, the linear function related to the weighted deviations for the GP approach 

result in an additional 10 doctors being added to Objective 2, treatment of non-pandemic 

patients, at the expense of deviation from Objective 4.  Since Objective 2 has a higher 

weight, the deviation penalty is greater than that of Objective 4.   

Due to the objective function used in the PDA model, resources that increase the total 

value of the portfolio, or total resources allocated, at the lowest rates will receive the 

lowest priority to be allocated.  This is directly reflected by the number of each type of 

resource allocated.  In this case, because we are considering linear value functions, the 

value added per objective by each resource was 1 divided by the ideal amount for each 

resource.  That value is then multiplied by the objective’s weight and is independent of 

the doctors already allocated.  For example, the value per doctor in Objective 1 is   

1

20 (𝑖𝑑𝑒𝑎𝑙)
 × 1.4 (𝑤𝑒𝑖𝑔ℎ𝑡)  = 0.07  , while the value per doctor in Objective 2 is   

1

40 (𝑖𝑑𝑒𝑎𝑙)
 × 1.2 (𝑤𝑒𝑖𝑔ℎ𝑡)  = 0.03  .  Therefore, the PDA model will generate more value 

GP Beds Vents PPE Docs 

Objective 1 60 20 180 20 

Objective 2 232 20 276 30 

Objective 3 - - 120 - 

Objective 4 - - - 50 

Total 292 40 576 50 

Cost: $4.5M $1.46 $1.6 $1.44  

PDA Beds Vents PPE Docs 

Objective 1 60 20 180 20 

Objective 2 232 20 276 20 

Objective 3 - - 120 - 

Objective 4 - - - 40 

Total 292 40 576 40 

Cost: $4.5M $1.46 $1.6 $1.44  
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per doctor assigned to Objective 1 than Objective 2.  Hence, Objective 1 is fully realized 

before Objective 2.  Likewise, doctors assigned above the ideal level of 40 (or -10 from 

the maximum of 50) in Objective 4 have a value of   
−1

10 (𝑖𝑑𝑒𝑎𝑙)
 × 1.1 (𝑤𝑒𝑖𝑔ℎ𝑡) = −0.11 .  

By trying to maximize value, the PDA model will avoid breaking the threshold of 40 

doctors because each doctor above that level has a negative value that exceeds any 

positive value gained from the other objectives.  The same holds true with the allocation 

of ventilators.  Both Objective 1 and Objective 2 are allocated 20 ventilators despite the 

fact that Objective 1 has an ideal level of 30 ventilators and is considered the preferred 

objective given its weighting.  Again, this outcome is due to the linear value function.  

The weighted value of Objective 1 ventilators, using the same formula as described with 

doctor allocation, is 0.047 while the weighted valued of Objective 2 ventilators is 0.06.  

Hence, Objective 2 ventilators are allocated before Objective 1 ventilators.  The same 

concept holds true for all resource allocations in the PDA model based on the linear value 

functions and other hard resource and budget constraints.  Table 9 shows the weighted 

value per resource for all objectives.  In general, the PDA model will allocate the highest-

valued resources first while also considering cost per resource.  An alternate way to view 

Table 9 is which objective will get which resource first.  As an example, PPE is allocated 

to Objective 3 first, then to Objective 1, and finally to Objective 2. 

 

          Table 9.  PDA Values per Resource 
PDA Beds Vents PPE Doctors 

Objective 1 0.023 0.047 0.008 0.070 

Objective 2 0.004 0.060 0.004 0.030 

Objective 3 - - 0.011 - 

Objective 4 - - - -0.110 
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Likewise, the objective function used in the GP model allocates resources such that 

the resource with the highest weighted deviation is allocated first.  In this approach, each 

resource has a linear deviation based on the objective’s ideal allocation.  For example, the 

doctors in Objective 1 have a weighted deviation of 0.07 (1/20 x 1.4) per doctor, 

independent of how many doctors have already been allocated to that objective.  Doctors 

in Objective 2 have a weighted deviation of 0.03 (1/40 x 1.2) per doctor.  Since the 

objective function is seeking to minimize deviation, the GP model will allocate, in this 

case, Objective 1 doctors before Objective 2 doctors because they have a higher deviation 

per resource.  Unlike the PDA model, the GP model allocates all 50 doctors, essentially 

ignoring Objective 4.  This occurs because the weighted deviation for Objective 4 doctors 

is 0.0275 (1/40 x 1.1), just marginally below that of Objective 2.  Therefore, to minimize 

deviation, the model allocates all the doctors it can to Objective 2 at the expense of 

Objective 4.  As with the PDA model, the GP model allocates 20 ventilators to both 

Objective 1 and Objective 2.  Similarly, the weighted deviation for each ventilator in 

Objective 1 is 0.047 while the weighted deviation per ventilator in Objective 2 is 0.06.  

So, even though Objective 1’s achievement is more preferred, the weighted deviation is 

higher per ventilator for Objective 2 causing the model to allocate ventilators to 

Objective 2 first in order to minimize deviation.  Table 10 shows the weighted deviations 

per resource.  As with the PDA model, the GP model will allocate the highest deviation 

resource first. 
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                                  Table 10.  GP Deviations per Resource 
GP Beds Vents PPE Doctors 

Objective 1 0.023 0.047 0.008 0.070 

Objective 2 0.004 0.060 0.004 0.030 

Objective 3 - - 0.011 - 

Objective 4 - - - 0.0275 

 

 

One type of analysis that may be done here is regarding the available budget 

fluctuation.  It may be the case that the decision maker is interested to understand what 

would be allocated at higher or lower budget availabilities according to the model.  For 

example, what occurs when that budget is less?  As expected, the models take resources, 

in the form of beds, from Objective 2 first until it levels out at $3.5M.  The same is true 

for PPE, except the models continue to take from PPE as the budget drops.  This is due to 

beds and PPE for Objective 2 having the lowest value generated for the PDA model and 

the lowest deviation per unit for the GP model.  Ventilators remain steady for the highest 

two budgets, then a few of each are taken from Objectives 1 and 2 to meet the $3.5M 

budget.  At the $3M mark, the models both take half the ventilators remaining from 

Objective 2 in order to meet the reduced budget.  Interestingly, the PDA model remains 

constant in the allocation of doctors, however, the GP model reduces the number of 

doctors allocated to Objective 2 as the budget decreases even though the doctors have no 

cost associated with them.  This occurs due to the doctor to bed ratio constraint 

introduced earlier.  With the model being forced to utilized fewer beds, there becomes 

less need for doctors to be assigned.    
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Figure 5 . Beds by Obj per Budget          Figure 6.  Percent Bed Fulfillment per Obj  

 

 

Figure 7.  Vents by Obj per Budget                              Figure 8.  Percent Vent Fulfillment per Obj 

 

 

Figure 9.  PPE by Obj per Budget                                 Figure 10.  Percent PPE Fulfillment per Obj 
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Figure 11.  Docs by Obj per Budget                           Figure 12.  Percent Doc Fulfillment by Obj 
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still have budget remaining to purchase 20 more packs of PPE.  With this insight, the 

decision maker can determine the reduced amount of PPE they are willing to purchase 

and the added percentage of normal MTF operations that can now be open that best suits 

the needs of the MTF.  A summary is displayed in the tables below. 

Table 11.  Scenario 1 PDA Results                    Table 12.  Scenario 1 GP Results             

 

 

Table 13. Scenario 2 PDA Results     Table 14.  Scenario 2 GP Results 

                   

 

4.5.1  Analysis of Non-linear Value Functions 

 

A vital part of the formulation of both the PDA and GP models is the determination 

of the value function.  This function will determine the relative value or deviation 

associated with one unit of a resource.  In the formulation and analysis above, a linear 

value function was used meaning each unit of a resource within an objective accounted 

for the same value or deviation regardless of how many resources had already been 

allocated.  A linear value function was used initially for our case due to its simplicity and 

ease of implementation.  It may be of interest to the decision maker to create a different, 

Obj 1 90% Beds Vents PPE Doctors 

Objective 1 54 20 167 18 

Objective 2 240 20 288 22 

Objective 3 - - 117 - 

Objective 4 - - - 40 

Total 294 40 572 40 

Obj 1 90% Beds Vents PPE Doctors 

Objective 1 54 20 167 18 

Objective 2 240 20 288 32 

Objective 3 - - 117 - 

Objective 4 - - - 50 

Total 294 40 572 50 

No Surplus 
PPE 

Beds Vents PPE Doctors 

Objective 1 60 20 180 20 

Objective 2 270 20 300 30 

Objective 3 - - 20 - 

Objective 4 - - - 50 

Total 330 40 500 50 

No Surplus 
PPE 

Beds Vents PPE Doctors 

Objective 1 60 20 180 20 

Objective 2 270 20 300 20 

Objective 3 - - 20 - 

Objective 4 - - - 40 

Total 330 40 500 40 
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perhaps more accurate representation of their value preferences.  One such method of 

creating a value function is by using a bisection approach to create a piecewise linear 

value function.  With this method, the decision maker took the lowest (worst) level to be 

0, the highest level (best) to be 1 and then determined what level of resources would be 

the midpoint between those levels and provide them with 0.5 value.  The same process 

would then be used to determine the 0.25 and 0.75 values.  One example of the result of 

this process, doctors allocated for Objective 2, is shown in Table 15.  With 0 doctors 

allocated as the worst and 40 doctors allocated as the best, the decision maker deemed the 

mid-value of those to be 15 doctors.  They continued by determining 8 and 25 to be the 

number of doctors allocated to provide a value of 0.25 and 0.75, respectively.  The graph 

of this value function is shown in Figure 13.   

 

Table 15. Obj 2 Piecewise Value Function 

 

             Figure 13. Obj 2 Piecewise Value Function 
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an allocation in the range of 0-8 will have a higher per resource value than that of an 

allocation in the range of 15-25.  The same process for determining the value function 

ranges and piecewise functions is used for all resources within each objective.  Next, we 

repeat the previous analysis with these updated value functions. 

In order to have comparable analysis, we consider an initial budget of $4.5M.  

Notably, the GP model using piecewise value functions, yields the same result as the 

linear models.  The only difference is that now, the new value function creates a large 

enough penalty for exceeding 40 doctors in Objective 4, that the model remains at 40.  

The weighted piecewise deviation for doctors in Objective 4, 0.11, now exceeds the 

weighted piecewise deviation in Objective 2, 0.03.  This indicates that the decision maker 

thinks that keeping the total number of doctors at 40 for Objective 4 is more than three 

times as important than adding a 21st doctor to treat non-pandemic patients in Objective 

2.  In the PDA model, the introduction of piecewise value functions made changes to 

many resource allocations from the initial linear value functions.  In particular, the model 

added more beds and PPE to Objective 2 at the expense of 4 vents in Objective 2.  This 

shows that in the PDA model, the value gained from the 20 extra beds and 24 extra PPE 

packages in Objective 2 outweighs the value of the next 4 ventilators in that objective.  

Based on the hard constraints of the model, to add another ventilator, 6 fewer beds and 5 

fewer PPE packages would be allocated.  The calculated value gained by the next 

ventilator, the 17th in Objective 2, would be 0.0625 while the value lost from the 

reduction in beds and PPE would be 0.0665, a small, but critical loss of 0.004 in value.  

Although both models are using the same piecewise functions, the PDA model while 
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maximizing the value produces slightly different results than the GP model which is 

minimizing the penalized deviations from the target levels. 

 
Table 16. Piecewise Value Function Results  Table 17. Piecewise Value Function Results 

 
 

Once more, in order to have a way to compare the two approaches, we show analysis 

based on the available budget as we did with the linear value functions.  Both models 

mirror each other in their allocation of resources to Objective 1 and Objective 4.  For 

Objective 2, the PDA model has a steady decline in beds as the budget declines, whereas 

the GP model has a sharp drop in beds allocated as soon as the budget drops.  The 

opposite is true regarding the allocation of ventilators.  As soon as the budget is reduced, 

ventilators drop in the PDA model, while in the GP model it takes a greater reduction in 

the budget to stop allocating ventilators to Objective 2.  Both models end up allocating 

the same number of beds and ventilators in Objective 2 at the lowest analyzed budget.  

This indicates that the PDA model values beds more than ventilators while the GP model 

prefers ventilators to beds in Objective 2.  In the allocation of PPE for Objective 2, the 

GP approach consistently distributes fewer than does the PDA approach suggesting that 

PPE generates more value to the PDA model.  That holds true for Objective 3 as well, 

until the budget reaches the $3M level, then there is noticeably less PPE allocated to 

GP Beds Vents PPE Doctors 

Objective 1 60 20 180 20 

Objective 2 232 20 276 20 

Objective 3 - - 120 - 

Objective 4 - - - 40 

Total 292 40 576 40 

Cost- 4.5M $1.46 $1.6 $1.44  

PDA Beds Vents PPE Doctors 

Objective 1 60 20 180 20 

Objective 2 252 16 300 20 

Objective 3 - - 120 - 

Objective 4 - - - 40 

Total 312 36 600 40 

Cost- 4.5M $1.56 $1.44 $1.5  
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Objective 3, whereas the GP model always allocates the maximum PPE resources to 

Objective 3.   

 
 

 

Figure 14. Beds by Obj per Budget       Figure 15.  Percent Bed Fulfillment per Obj  

 

 

Figure 16.  Vents by Obj per Budget                         Figure 17.  Percent Vent Fulfillment per Obj 
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    Figure 18.  PPE by Obj per Budget            

 

 

    Figure 19.  Percent PPE Fulfillment per Obj 

 

 

    Figure 20.  Docs by Obj per Budget                                 
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 Figure 21.  Percent Docs Fulfillment per Obj 
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giving that objective 100% of required ventilators while reducing Objective 3 to 50% 

fulfillment.  The GP approach, shown in Table 21, allocates 38 more beds and 24 more 

PPE packages to Objective 2 in this scenario, reducing surplus PPE to 20 packages.  As a 

result, Objective 2 now has 90% of the required beds and 100% of the required PPE 

packages leaving the surplus PPE for Objective 3 at 20% fulfillment.  With this insight, 

the MTF decision maker understands the impact of each scenario on the overall 

allocation and can determine what actions may be best for the MTF’s needs. 

 

Table 18.  PDA Piecewise Results       Table 19.  GP Piecewise Results 

 

 

Table 20.  PDA Piecewise Results             Table 21.  GP Piecewise Results 
No Surplus 
PPE 

Beds Vents PPE Doctors 

Objective 1 60 20 180 20 

Objective 2 250 20 300 20 

Objective 3 - - 60 - 

Objective 4 - - - 40 

Total 310 40 540 40 

  

4.6   Summary 

 

This chapter presented a hypothetical case study in which we described how the steps 

in the proposed methodology are accomplished in relation to our problem.  Both a PDA 

and GP model were formulated, solved, and analyzed.  Initially, we explored linear value 

functions and discussed the results from the models using this function.  It was shown 

Obj 1 90% Beds Vents PPE Doctors 

Objective 1 54 20 167 18 

Objective 2 240 20 285 22 

Objective 3 - - 120 - 

Objective 4 - - - 40 

Total 294 40 572 40 

Obj 1 90% Beds Vents PPE Doctors 

Objective 1 54 20 167 18 

Objective 2 250 18 300 22 

Objective 3 - - 117 - 

Objective 4 - - - 40 

Total 304 38 584 40 

No Surplus 
PPE 

Beds Vents PPE Doctors 

Objective 1 60 20 180 20 

Objective 2 270 20 300 20 

Objective 3 - - 20 - 

Objective 4 - - - 40 

Total 330 40 500 40 
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how PDA and GP models selected the next resource to include in the allocation.  Further 

analysis useful to the decision maker, namely budget fluctuation analysis and tradeoff 

analysis, was conducted to illustrate potential insights into the model and the problem 

itself that could be discovered.  Next, we adopted piecewise linear value functions and 

explored their effect on the models.  It was shown how the allocations differed between 

value function types and between PDA and GP approaches, further emphasizing how the 

models behaved and how the risk attitude of the decision makers could be encompassed 

in the methodology.  Finally, the benefits of additional analysis were reiterated through 

budget and tradeoff analysis. 
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V.  Conclusions and Recommendations 

5.1   Chapter Overview 

 

In this chapter, we first provide a summary, then explain conclusions derived from 

this research.  Finally, we highlight the limitations of the proposed methodology and we 

propose suggestions for potential future work. 

 

5.2   Summary of Research 

 

In the first chapter of this research, the background of the problem is explored, and 

the problem statement is outlined.  The decision maker must decide the best course of 

action to allocate critical, but scarce resources in the hopes of achieving multiple, 

conflicting objective under multiple resource constraints.  Additionally, research 

objectives are stated and the path to those objectives is laid out. 

In Chapter 2, this document provides a literature review of the resource allocation 

problem in the healthcare environment, focusing specifically on hospital or MTF resource 

allocation problem.  It continues by reviewing the scientific literature about PDA and GP, 

two of the most explored methods supporting resource allocation, and discusses important 

similarities and differences between the two methods. 

In Chapter 3, we presented the methodology proposed in this work allowing for the 

comparison of these two methods seeking to optimize resource allocation on health 

organizations.  We explain the steps in the proposed methodology that overlap both 

approaches and detail the unique steps for both types of formulation.  The steps of this 
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process provide a framework with which the decision maker can aim to develop an 

optimal allocation of resources based on the organization’s values and goals.  This chapter 

also provides a glimpse of the analysis to come that may be performed to provide insights 

for the decision maker. 

Chapter 4 presents a hypothetical case study where the proposed methodology is 

applied using both the PDA and GP approach.  After the formulations of these model, 

analysis is provided based on the results of each method along with a description of key 

differences between PDA and GP.  Insights into the benefits for the decision maker based 

on the analysis of each model are explored in performing a budget analysis and the 

tradeoff analysis. 

5.3   Conclusions 

 

This application showed the merits of both models.  PDA allows for the decision 

maker to decide what values are important to the organization and then maximizes that 

value generation via the objective function which is driven by the value function.  The GP 

approach allows for the decision maker to set target level that would be ideal for each 

objective and then minimizes any deviation from that goal subject to penalty based on the 

value function.  Both, using the framework provided, allow for as little or as much fidelity 

as required based on the situation.  Each model can be easily updated to account for the 

dynamic environment or as a result of the budget and tradeoff analysis findings.  The 

flexibility and adaptability of these models is especially useful in our problem.  The 

method chosen should reflect what best suits the decision maker preferences, thus 

producing the most accurate results and organization buy-in. 
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5.4 Limitations of the Proposed Methodology 

One limitation of this research is that we have investigated only two value functions, 

one of which was a linear value function.  Another limitation in this proposed 

methodology is the omission of uncertainty.  All resource constraints and demands were 

deterministic in nature.  Additionally, more analysis could be accomplished to ensure an 

efficient allocation of resources based on value per cost.  Finally, this study presents a 

hypothetical case, whereas the use of actual MTF data would represent a more accurate 

application.  

5.5   Recommendations for Future Research 

 

While research into resource allocation, specifically in the healthcare industry, has 

been studied extensively, this work identified several potential areas of future research.  

The first area would be to further explore the use of non-linear value functions.  As Kim 

and Lin (2000) argued, an exponential value function can generate a rich variety of shapes 

that may more fully capture the decision maker’s values.  This can make the model more 

complex, so, depending on the size of the problem, that is a consideration in exploring 

this topic. 

A second suggestion of future research is to encompass uncertainties in the 

formulation and use a different approach such as a stochastic PDA.  The problem that we 

addressed would likely face uncertainty, especially an unprecedented situation like a 

pandemic.  Such an approach would be interesting way to attempt to capture the reality of 

the real-world problem. 
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Another suggestion would be to investigate a value to cost analysis.  This would help 

to ensure an efficient allocation of resources and allow for the creation of a Pareto 

frontier, providing further insight to the decision maker.  Tradeoffs could then be 

considered to determine if any weak Pareto or strong Pareto improvements exist.  If not, 

there will be no resource allocation that will improve one objective without weakening 

another objective. 

A final suggestion a future application of this research would be to use real data from 

a Military Treatment Facility post pandemic as a verification of the model.  The MTF 

would have a better idea of the course of the pandemic and what challenges are faced at 

the different stages of the pandemic cycle.  Additionally, the use of post-pandemic data 

would allow for preparation and training in the event of another crisis or similar situation. 
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Appendix A.  Linear Value Functions 
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 Objective 3 
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Appendix B.  Piecewise Value Functions 
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Objective 1 Vents 
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Objective 2 Vents 
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