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Abstract

An autonomous unmanned combat aerial vehicle (AUCAV) performing an air-to-

ground attack mission must make sequential targeting and routing decisions under

uncertainty. We formulate a Markov decision process model of this autonomous

attack aviation problem (A3P) and solve it using an approximate dynamic program-

ming (ADP) approach. We develop an approximate policy iteration algorithm that

implements a least squares temporal difference learning mechanism to solve the A3P.

Several novel, problem-dependent basis functions are developed and tested for appli-

cation within the ADP algorithm. The ADP targeting and routing policy generated

by our algorithm is compared to a benchmark policy, the DROP policy, which is

determined by repeatedly solving a deterministic orienteering problem as the system

evolves over time. Designed computational experiments involving several problem

instances are conducted to compare the benchmark and ADP policies with respect to

their quality of solution, computational efficiency, and robustness. Quality of solution

results indicate the ADP policy is superior in 2 of 8 problem instances investigated

– those instances with relatively less AUCAV fuel availability and a low target ar-

rival rate – whereas the DROP policy is superior in the remaining 6 of 8 problem

instances. The ADP policy outperforms the DROP policy with respect to computa-

tional efficiency in all 8 problem instances investigated. The DROP policy provides

more robust results, with less observed variance.

Key Words: Markov decision process, approximate dynamic programming, rein-

forcement learning, artificial intelligence, autonomous attack aviation, targeting, deep

attack
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THE AUTONOMOUS ATTACK AVIATION PROBLEM

I. Introduction

The purpose of the United States (US) military is to deter and win armed conflict.

This raison d’etre requires the ability to destroy enemy forces and compel desired be-

havior. The defeat of adversary ground forces is a desired outcome of major combat

operations, and military planners often task attack aviation assets to deliver lethal

air-to-ground effects during such operations. The tasking of attack aviation assets

is managed by a current operations targeting cell. This cell continuously monitors

and adjusts current operations as new information becomes available. Routing at-

tack aviation assets and delivering munitions requires deliberate management and

oversight. The goal of attack aviation in high tempo combat operations is to deliver

lethal effects as effectively and efficiently as possible, achieving the desired end state

as envisioned by the commander. As with civilian-oriented service operations man-

agement, military service operations management, including employment of attack

aviation assets, can greatly benefit from the application of operations research and

artificial intelligence methods to gain and maintain a competitive advantage.

Contemporary military leaders agree that future combat operations will occur

within complex and uncertain multidomain environments and that autonomous weapon

employment is a critical component for achieving success in such operations (Mat-

tis, 2018; Trends, 2017; Pellerin, 2015). In particular, the development of small,

autonomous, and inexpensive aerial vehicles is of critical importance (Department

of Defense, 2016; General Charles Q. Brown, 2020). It is essential for the US to

quickly develop an effective and efficient autonomous unmanned combat air vehicle
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(AUCAV) to gain a competitive military advantage over its adversaries (Department

of Defense, 2018; Collins, 2020; Pasztor, 2021). Indeed, such adversaries seek to em-

ploy autonomous, lethal decision-making capabilities (Department of Defense, 2016;

Department of the Army, 2011a; Naegele, 2020). The US military has allocated sig-

nificant funds to prepare units for combat involving large Army formations operating

against near-peer adversaries (Tressel, 2020).

A core capability of US air power is to conduct global strike missions, i.e., air-to-

ground attacks, destroying enemy land forces anywhere on the planet using airborne

assets. Two examples of air-to-ground attacks are close air support (CAS) and in-

terdiction. CAS implies the presence of a nearby friendly ground force that requires

coordination with the friendly air forces prior to conducting the air-to-ground attack.

Interdiction does not require prior coordination with friendly ground forces. The

purpose of joint interdiction operations is to “prevent adversaries from employing

surface-based weaponry and reinforcing units at a time and place of their choosing”

(Department of Defense, 2019c). US interdiction-capable forces must be able to em-

ploy lethal and non-lethal effects. Air interdiction is the ability for air forces to divert,

disrupt, delay, or destroy an enemy’s surface military assets (Department of Defense,

2020). A destroyed unit is physically rendered combat-ineffective until reconstituted

(Department of the Army, 2018). This research models and analyzes the lethal effects

of air interdiction. The process by which enemy assets are prioritized for attack is

referred to as targeting.

Target selection and prosecution are critical processes that fuel interdiction. A

target is anything that performs a function for an adversary (Department of Defense,

2020). Targeting is the iterative process that assigns friendly assets to a prioritized

target list (Department of the Army, 2015). Selected indirect-fire weapons, ground

maneuver forces, and attack aviation assets deliver desired effects to adversary targets.
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Targets are categorized into two types, deliberate and dynamic. Deliberate targets

are known to exist a priori and are typically scheduled or queued for prosecution

whereas dynamic targets are unplanned or unanticipated targets that are identified

too late in the targeting process or are discovered in an unanticipated location (De-

partment of the Army, 2015). Dynamic targets are not scheduled for prosecution.

Targets are arranged into a prioritized high-payoff target list (HPTL) that is gener-

ated by military planners prior to the dispatching of assets. With respect to attack

aviation, dispatching includes a path assignment that starts at a point of departure

following a predetermined path leading to a target area of interest (TAI) or kill box to

acquire and engage high payoff targets (HPTs). In addition to TAIs, named areas of

interest (NAIs) are identified by military planners as areas wherein enemy activities

are anticipated, and the confirmation or denial of enemy activity in an NAI drives

future military planning and targeting (Department of the Army, 2015).

Military operations are geographically segregated into deep, close, and support

operations (Department of the Army, 2016). At the US Army division level, close and

support areas are distinct, and responsibility for them is delegated to a subordinate

unit. Deep operations are those military activities that occur within a unit’s assigned

area but not delegated to a subordinate unit. For the US military, deep operations

normally fall under the purview of the division level. The division conducts deep

operations with long range strategic assets to shape an enemy force before it becomes

engaged with a friendly subordinate unit, such as a brigade combat team (BCT)

(Department of the Army, 2014). The Division leverages missiles, artillery, and attack

aviation assets to accomplish deep operations. An important concept to highlight with

deep operations is that air-to-ground fratricide is extremely unlikely when physical

distance to the closest friendly ground unit generally exceeds 10 kilometers.

In this thesis we consider the autonomous attack aviation problem (A3P) wherein

3



a division-level current operations team must determine high-quality assignment and

routing policies for attack aviation assets performing a deep air-interdiction attack

mission. The mission objective is to engage a large-scale, near-peer mounted enemy

ground force by destroying deliberate and dynamic HPTs through management of an

HPTL while also conducting reconnaissance for targets via visitation of NAIs. Enemy

ground targets, with their inherent, type-based priority, can be viewed as requests

for service much like how profit-seeking companies view customers and their assessed

demands for service. AUCAVs represent service providers, satisfying requests for

service by delivering lethal effects to adversary ground targets. High-quality task as-

signment and routing decisions are required to achieve effective and efficient servicing

of targets.

This thesis formulates a Markov decision process (MDP) model of the A3P. The

uncountable state and outcome space renders classical dynamic programming tech-

niques intractable. Instead, the problem solution methodology utilizes artificial in-

telligence to find an approximate solution via approximate dynamic programming

(ADP) and reinforcement learning methods. A representative example of AUCAVs

supporting deep interdiction targeting operations for a US Army Division in a defense

against a contemporary near-peer, hybrid threat adversary is considered (Department

of the Army, 2011a). A designed experiment is used to analyze problem features and

algorithmic features.

The remainder of this thesis is structured as follows. Chapter 2 explores the rel-

evant topical and methodical literature pertinent to the A3P. Chapter 3 introduces

specific quantitative and qualitative problem features requisite to describe the prob-

lem, describes the MDP model formulation, and outlines the ADP solution approach.

Chapter 4 presents computational results, analysis, and insights. Chapter 5 concludes

the thesis and suggests future areas of research.

4



II. Literature Review

This section reviews the relevant literature, providing context for formulating

the autonomous attack aviation problem (A3P). Four literature streams inform this

research. First, recent formulations of the dynamic stochastic vehicle routing problem

(DSVRP) provide a helpful mathematical modeling approach. Second, the literature

related to the team orienteering problem with time windows (TOPTW) informs how

aircraft choose some tasks over others. Third, literature related to Markov decision

process (MDP) models utilizing ADP solution methodologies informs development

of our own approach. We chose the term ADP in this thesis; however, the term

reinforcement learning also applies. This stream is useful in that it not only succinctly

models sequential decision-making under uncertainty, but also includes the powerful

solution methodology of ADP to determine high-quality behavior policies. Finally,

several works relevant to the construction of specific autonomous aircraft behaviors

are discussed for breadth.

2.1 Dynamic Stochastic Vehicle Routing

The body of research related to dynamic stochastic problems was published within

the last decade because computational power has only recently made the examination

of large realistic problem instances possible. Surveys provide an excellent review of

the background, taxonomy, and variants of the dynamic stochastic vehicle routing

problem (DSVRP) (Pillac et al., 2013; Psaraftis et al., 2016; Ulmer, 2017). The

DSVRP is relevant to this research because attack aviation assets (i.e., suppliers)

operating in groups with limited payloads must efficiently visit enemy ground assets

in unknown location (i.e., customers requiring lethal force). This section explores the

background of DSVRPs, which informs the development of the A3P MDP model.
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The vehicle routing problem (VRP) is a variant of the well-known traveling sales-

man problem (TSP). The TSP is a much studied problem in optimization wherein

a traveler is compelled to visit an array of cities once using the shortest route pos-

sible and return to the starting city. The objective of the TSP is to find the route

that minimizes the cost of traveling to each city once wherein cost is a function of

distances among cities. The TSP is attributed to Flood (1956) and is the foundation

to modeling many systems requiring service providers traveling to destinations in the

form of a network. The VRP, originally referred to as the truck dispatching problem,

is attributed to Dantzig & Ramser (1959). The VRP is a special case of the TSP

wherein more than one traveler is required to visit a network of destinations only

once. The starting node serves as the originating location for multiple travelers or

vehicles with the same objective – to visit cities or locations only once and return

to the starting node with the goal of minimizing travel cost. The starting node is

commonly referred to as a depot. Vehicles are traditionally capacitated with a certain

amount of supply, which they must use to satisfy the demand at each of the nodes

along their assigned route.

The terms dynamic and stochastic refer to the level of uncertainty and change

characterizing the VRP. A deterministic, static VRP is one in which the input pa-

rameters are known and stable, and no new actionable information is discovered as

the system progresses (Ulmer, 2017). For example, if the location and demand for

each node is known, the problem is deterministic. The problem is static if no new

information is realized by the decision-making authority during the progression of

the system through time. In a stochastic VRP the number of nodes, their locations,

and demands are known but with uncertainty. Dynamic VRPs are those problems

in which new information is realized during the progression of the vehicles traveling

along their current assigned routes. For example, as a vehicle visits the second node
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along its assigned route of four nodes, the vehicle may discover that the demand is

much lower than anticipated and potentially not spend as many supplies as previously

expected. The structure of the DSVRP is conducive to modeling the A3P as an MDP.

In contrast, the more common mixed integer program (MIP) formulation approach

does not support the flexibility and powerful solution methodologies required to find a

high-quality policy intended to inform sequential decision-making under uncertainty.

The purpose of a mathematical formulation of a real world problem is to sum-

marize and record the salient features of the problem, to understand the problem,

and apply a solution methodology. The MDP formulation of the DSVRP provides

a unique linkage between applications and powerful solution methodologies (Ulmer

et al., 2017). Ulmer et al. (2020) provides a novel route-based MDP model that allows

the decision-maker to not only integrate problem features into the model, but also

facilitate the application of powerful solution methods such as ADP.

A route is a path through a set of realized service requests (Gendreau et al.,

1999). The route-based MDP is characterized by an action space comprised of a set

of routes as opposed to a set of next nodes to visit. This inclusion of an entire route

into an action space allows a decision-making authority to include deeper intuition in

pursuit of a solution by allowing possible future rewards to impact the decision at the

current time. The features introduced by Ulmer et al. (2020) are useful for modeling

decisions in the A3P because it is prudent to consider the possibility of destroying

yet-to-arrive, distant, high-value targets while making the decision to destroy closer

targets in time and space. The DSVRP provides key components to the formulation

of the deep A3P by effectively modeling relevant features and setting conditions to

apply ADP solution methodologies.
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2.2 Stochastic Dynamic Task-Resource Allocation Problem

In addition to vehicle routing, the stochastic dynamic task-resource allocation

problem (SDTRAP) is relevant to the A3P because a set of AUCAVs must be assigned

to prosecute a set of tasks in the form of enemy targets taking into consideration a

finite set of weaponry (Gülpınar et al., 2018). Gülpınar et al. (2018) present an MDP

formulation as well as ADP solution methodologies to solve the SDTRAP. In the

case of unmanned vehicles, the decision to task AUCAVs must be made jointly with

resource allocation decisions (De Weerdt & Clement, 2009). It is prudent to assume

that the weaponry of an individual attack aircraft is used at different rates when

satisfying asynchronous demand requests.

The SDTRAP has successfully modeled complex and critical problems to include

the transportation of a fleet of nationwide delivery vehicles, the management of in-

vestment within assets across a portfolio, and the management of blood resources

across several healthcare provider systems (Powell, 2011). In consideration of the un-

certainty of demand arrival and quantities of blood, complicated by the unique nature

of constrained transmission of blood by blood type, hospitals must find a method to

steward the precious blood resource to maximize health. Whether the resource is

trucks, blood, dollars, or AUCAV resources, the management of limited resources to

service uncertain and dynamic demand is a challenging and complex problem.

Elements from the DSVRP and SDTRAP are useful in structuring the A3P. Al-

though no previous author has researched the A3P specifically, our problem formula-

tion and solution methodology are built upon the critical works contributed by those

researchers who have published in this methodological area.
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2.3 Orienteering Problem

The orienteering problem (OP) is also a variant of the TSP albeit with two main

differences. First, the requirement to visit all locations within a given set of service

requests is relaxed. Second, the objective of minimizing cost is replaced with the

objective of maximizing rewards gained by visiting a subset of the nodes within a set

amount of time. The OP, originally introduced by Chao et al. (1996), is a problem

wherein a traveler must start at a single location, visit as many locations as possible

to satisfy demand, collect rewards, and return to their original position within a

set amount of time. Similar to the VRP, the OP has several variants with unique

features and characteristics. An interested reader may review a survey to gain an

understanding of history, taxonomy, and applications of OPs (Vansteenwegen et al.,

2011).

The OP is relevant to the A3P because it is reasonable to expect that the objective

of a team of AUCAVs is not to minimize cost. Rather, it is to maximize destruction

of enemy targets. The OP clearly characterizes and mathematically models this

important problem feature of the A3P. Prize collecting is the behavior of maximizing

benefits when locations are visited (Balas, 1989). An OP variant conducive to the

modeling of the A3P is the team orienteering problem with time windows (TOPTW)

(Kantor & Rosenwein, 1992). This problem is appropriate because attack aviation

missions prosecute targets with a small team of aircraft as opposed to a single aircraft

operating independently. The time windows feature is useful to simulate the nature

of targets only permitting servicing within a finite amount of time to earn rewards.

An example of this is an enemy realizing they have been detected and move locations,

or a target looses relevance before it is serviced.

Problems modeled as VRPs and OPs normally utilize an MIP formulation with a

heuristic solution methodology. An effective model and solution approach for the A3P
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is an MDP model with an ADP solution methodology. The dynamic programming

foundations found in ADP accommodate an uncountable state and/or action space

while still providing a decision-making authority with a set of high-quality decision

rules in the form of a policy.

2.4 Approximate Dynamic Programming

The nature of the A3P requires a decision-making authority to make sequential

decisions under uncertainty with the information currently available. This makes dy-

namic programming the best suited modeling and solution methodology for modeling

and solving the A3P. Several recent papers utilize ADP techniques to examine medical

evacuation (MEDEVAC) dispatching problems, which exhibit similar characteristics

as the A3P (Rettke et al., 2016; Jenkins et al., 2021). In Jenkins et al. (2021), air

MEDEVAC assets are dispatched to casualty collection points predicated on uncer-

tain arrival of casualties and types of casualties. The decision-making authority must

decide when to dispatch MEDEVAC helicopters performing as service providers given

an array of casualties or service requests. The objective of the MEDEVAC dispatch

system is to evacuate combat casualties from casualty collection points to medical

treatment facilities as effectively and efficiently as possible with the aim of preserving

human life. The system is influenced by exogenous information generating uncer-

tainty, which influences the sequential decision-making. In addition, the state and

action spaces are too large for classical optimization techniques. The authors leverage

ADP to simulate forward in time to generate sufficient estimates at the current time

for the decision-making authority to take its best action. In the field of computer

science, such methods are referred to as (model-based) reinforcement learning.

Other dynamic and stochastic problems that are effectively modeled via MDP and

utilize ADP solution methodologies include shortest path problems, continuous bud-

10



geting problems, asset acquisition, asset liquidation, and dynamic resource allocation

problems (Powell, 2011).

2.5 Unmanned Aerial Vehicle Behavior

Research related to military unmanned aerial vehicle (UAV) behavioral modeling

is diverse with each piece of literature investigating a unique feature related to the

A3P. Many researchers have investigated niche aspects of UAV behavior; however,

less research exists regarding the blending of the multiple AUCAV behaviors required

for realistic cooperative behavior in a deep air-interdiction scenario. For example,

AUCAVs performing air-to-ground attacks have been investigated but only for one

AUCAV. Other models involved multiple UAVs but only for surveillance missions.

The remainder of this chapter is a survey of the salient features available in literature

that are related to our problem. As outlined in Sutton & Barto (2018), specific feature

research is critical for algorithm developers to take advantage of a problem’s structure

during modeling and solution development. We seek to study the specific nature of

the A3P to enable precise modeling and useful solution development. A3P relevant

features included in this literature review are: Route Planning, Task Assignment,

Multi-UAV Task Cooperation, and Moving Targets.

2.5.1 Route Planning and Task Assignment

Route planning determines the movement path of an AUCAV or set of AUCAVs

from their current position to their desired position. It may seem like a simple en-

deavor until accounting for flight dynamics. For example, an AUCAV has a minimum

turning radius and the requirement to remain airborne. Much current research cites

Dubins (1957) as a foundation to their analysis. Dubins (1957) proposes a simple

procedure to plan paths considering constraints similar to those the physical world
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imposes on fixed wing aircraft like AUCAVs. Multiple methods have been used to

determine the optimal path to include minimizing the total distance by way of a TSP

(Medeiros & Urrutia, 2010), maximizing expected total discounted reward with a par-

tially observable MDP (Widyotriatmo & Hong, 2008), and solving for the minimum

time interval upon arrival (Li et al., 2017). Many authors take unique approaches

concerning how obstacles are considered in route planning.

Task assignment is the process of identifying service requests and matching servers

or sets of servers to a service request or set of service requests. This can occur

before, after, or potentially simultaneously with path planning. Task assignment

must balance the reward from performing the task with the cost of traveling to the

service site (Ning et al., 2019). With respect to the A3P, a request for service is a

ground target needing to be destroyed. Recent works on MEDEVAC task assignment

by Rettke et al. (2016) and Jenkins et al. (2021) serve as a helpful baseline but do

not focus on stochastic path planning or possible enemy components as are expected

in near-peer direct action combat. Others consider not only the paths and motion of

the AUCAV but also the ground service requests (Frew & Lawrence, 2005).

Some papers in the literature make a concerted effort to determine optimal route

planning and task assignment simultaneously. Minimizing a cost function is a typical

objective with many authors focusing on one AUCAV (Coutinho et al., 2018; Zhang

et al., 2012) and others considering multiple AUCAVs (Zhu et al., 2005). On occasion,

authors embed optimization problems inside a broader optimization framework (Yang

& Chakraborty, 2019). Each approach brings its own strengths; however, few have

addressed the multiple moving AUCAVs serving multiple moving ground targets.
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2.5.2 Muti-UAV Cooperation

Authors who have approached the multi-UAV problem normally offer a disclaimer

that it is a difficult problem with many dynamic variables and uncertainties. A helpful

theme in reviewed research includes assuming a heterogeneous makeup of AUCAVs to

allow for tracking and attacking tasks to be assigned more appropriately (Valavanis

& Vachtsevanos, 2015). In addition, simultaneous task execution is found to be

a common obstacle to approach optimally (Shima & Rasmussen, 2009). Like all

mathematical formulations of problems, the A3P must make prudent assumptions to

generate a tractable mathematical model.

2.5.3 Moving Targets

A complicating problem feature within the A3P is considering multiple moving

enemy ground targets whose route and speed is stochastic in nature. A solution

approach identifies a likely meeting point to facilitate task assignment and route

planning (Chen & Liu, 2019). Others have considered the use of a “dummy target”

to facilitate solution procedure convergence in optimization (Jiang & Liang, 2018).

In addition, a non-trivial problem feature is the number of AUCAVs relative to the

number of moving ground targets.
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III. Methodology

3.1 Problem Definition

In this section we describe the problem of developing a high-quality policy to

govern the behavior of attack aviation assets performing a deep interdiction mission.

We review the role of attack aviation within deep operations and describe the role

of attack aviation in deliberate and dynamic targeting. We then introduce the strike

coordination and reconnaissance (SCAR) mission. This mission provides a realistic

context for the autonomous attack aviation problem (A3P).

3.1.1 Deep Operations

Attack aviation is a highly versatile military capability that contributes to the

tactical, operational, and strategic level of war across the range of offensive, defensive,

and stability operations. This research focuses on offensive, operational missions

executed by US Army division-sized forces. The assets serving in the role of attack

aviation in deep operations are of interest because these aviation assets are likely

identified as the main effort. The main effort is a title given to the unit whose mission

is so critical it is given priority for resources such as communications, artillery, and

naval gun fire (Department of the Army, 2019b).

The nature of deep operations exhibits two critical attributes. First, deep op-

erations exist beyond the forward line of troops (FLOT), which denotes the closest

position of friendly ground forces. This extended distance relaxes the requirement for

air assets to closely coordinate with ground forces, permitting attack aviation assets

the flexibility to discover and prosecute targets unilaterally and quickly, with low risk

of fratricide. The FLOT generally denotes the friendly boundary of the deep area.

Figure 1 is an example graphical depiction of a US Army division conducting deep
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operations (Burket, 2019). The blue rectangle icons depict friendly units conducting

operations from west to east, whereas the red diamonds denote enemy units. Black

lines denote unit boundaries and control measures, which provide structure for plan-

ning and execution of operations. A single “X” denotes a Brigade Combat Team

(BCT) and a double “XX” denotes the division headquarters. In this example, the

FLOT is not fixed, but it resides within the Close Area, tethered to the three BCTs

advancing from west to east within the Close Area. The coordinated fire line (CFL)

depicted within the Deep Area is a line beyond which conventional forces may fire

at any time within the intent of the CFL establishing headquarters (Department of

Defense, 2019b). The BCTs are assigned missions focused on enemy units located

within Objective A. Notice there are enemy forces within Objective B and beyond

the CFL in the Deep Area where division assets, such as attack aviation, shape the

ground fight for the maneuvering BCTs.

Figure 1. An Example Division Area of Operations (Burket, 2019)

Deep operations exist geographically in a linear or non-linear shape as shown in

Figure 2. This highlights the non-trivial requirement to closely manage limited flight
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time and on-board resources to destroy known and prioritized enemy ground targets.

If the mission’s requirement exceeds the maximum weapon payload or the time one

tank of fuel can provide, aviation assets must replenish their fuel and weapons at

forward arming and refueling points (FARPs) to facilitate mission success. These

FARPs are normally arrayed in fixed, secure locations to maintain sustained pressure

on the enemy (Department of the Army, 2016). However, the US Air Force is currently

testing mobile refueling of helicopters (King, 2020).

Figure 2. Example Geographic Framework (Department of the Army, 2016)

16



Attack aircraft do not always service ground targets with their own organic mu-

nitions. Indeed, it is often more conducive for an airborne asset to serve as a forward

observer (FO) requesting friendly indirect fire to destroy a target it detects (Depart-

ment of the Army, 2007). This function is helpful in two key ways: first, an FO

who calls for indirect fire can attack without exposing their own presence; second,

their attack does not expend any of their own finite organic ammunition. It is crit-

ical for attack aviation to be able to serve as an FO during a suppression of enemy

air defense (SEAD) attack. Of course, aircraft prefer to attack enemy anti-aircraft

assets as covertly as possible (Department of the Army, 2014). The DoD has shown

recent interest in lethal munitions originating from various platforms while following

the targeting guidance of aircraft (Freedberg, 2020; Gordon IV et al., 2019). The US

Army has recently demonstrated that their artillery achieves high accuracy over forty

miles from the target (Judson, 2020a). An attack aircraft’s capacitated fuel, and the

AUCAVs role as an FO, inform development of our mathematical model.

3.1.2 Targeting

The success of deep operations depends upon the execution of effective targeting.

Several teams share responsibility for a portion of the targeting process. These groups

include the Deep Operations Coordination Cell (DOCC), the Joint Air Ground Inte-

gration Center (JAGIC), and the targeting working group. Each of these teams has

a different role and responsibility, and the makeup of each team varies as a function

of the division staff’s mission and competencies. Ultimately, the responsibility for

mission success lies with the Joint Force Commander (JFC). The targeting working

group manages the targeting process (Department of the Army, 2015) within the

military decision making process (MDMP). They are responsible for interpreting the

JFC’s guidance and generating the HPTL as part of the intelligence preparation of
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the battlefield (IPB).

The targeting working group must effectively manage the execution of the HPTL

to achieve mission success (Department of the Army, 2019a). The targeting process

is summarized by the find, fix, finish, exploit, analyze, disseminate process (F3EAD)

embedded in the decide, detect, deliver, assess (D3A) methodology. This process is

used during both deliberate and dynamic targeting. Figure 3 illustrates the targeting

process. This research focuses on lethal dynamic targeting.

Figure 3. The Targeting Process (Department of the Army, 2015)

The lethal targeting of HPTs is intended to set conditions to achieve the purpose

of a mission and to satisfy the JFC’s intent. The value of individual HPTs is decided

by the targeting working group and approved by the JFC before it is added to the

HPTL. This process inherently takes deliberate analysis and requires time to com-

plete. At the JFC’s discretion, targeting may be generalized using a set of criteria

to facilitate a faster target prosecution rate and increase the likelihood of mission

success. A target value analysis tool that considers targets’ criticality, accessibility,

reputability, vulnerability, effect, and recognizability (CARVER) is used to identify
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and prioritize targets to efficiently assign attack resources (Department of the Army,

2019a). This tool, once understood by JFC staffs, can rapidly increase the rate of

targets prosecuted, particularly in dynamic targeting – see Figure 4. In general, the

lethal targeting of enemy high value assets includes anti-air capabilities, long range

indirect fire assets, communications equipment, and all other enemy assets. An ex-

ample HPTL is shown in Figure 5.

Figure 4. Example CARVER Matrix Tool (Department of the Army, 2019a)

Figure 5. Example Target List (Department of the Army, 2019a)

During dynamic targeting, a sensor may detect a signal that is possibly a target
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but lacks sufficient fidelity to justify an attack. An emerging target is a detection

that meets sufficient criteria to be acknowledged as a potential target (Department

of the Army, 2015). Emerging targets are capricious, compelling the execution of a

portion of the dynamic targeting process to gain more information. See the emerging

target flow chart in Figure 6.

Figure 6. Find step determination and follow-on actions (Department of the Army,
2015)

Aviation assets performing a deep attack mission may encounter emerging targets

en route to the prosecution of known targets. Some missions are launched based on

this expectation. One mission type that showcases lethal dynamic targeting predi-

cated on the expectation of encountering more targets is the SCAR mission. It is an

intentional hybrid of both attack and reconnaissance (Department of Defense, 2019a).

3.1.3 SCAR Mission

The SCAR mission consists of Army aviation and joint assets. Such missions are

flown to “detect and attack enemy ground targets, neutralize enemy air defenses,

and provide battle damaged assessment (BDA)” (Department of the Army, 2016).

BDA is the process of assessing the effect on the enemy after an attack. These

three actions, detection, attacking, and BDA, are critical elements for our MDP

model. In addition, the Joint Interdiction Manual highlights speed of intelligence and
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attacks as important (Department of Defense, 2019a). Referring to aviation assets

in the deep attack, Army doctrine states “it is normally better to err on the side

of speed, audacity, and momentum with the minimum mission essential information

than waiting to gain complete situational understanding prior to conducting attacks”

(Department of the Army, 2016; Judson, 2019a). The SCAR mission sets conditions

for aviation assets to conduct rapid, lethal, dynamic targeting.

Static targeting is required to launch attack aviation assets in a SCAR mission.

However, with new information discovered while executing the mission, dynamic tar-

geting is likely the primary cause of fuel and weapon expenditure. The HPTL is not a

static document because the dynamic targeting process is iterative. Not knowing your

enemy’s composition and disposition with complete certainty is expected in armed

conflict. The JFC’s staff initial expected geographic array of HPTs is referred to as a

threat template. Figure 7 provides an illustration (Department of the Army, 2019a).

Figure 7. Threat Template Example (Department of the Army, 2019a)

Some targets are inherently static, like buildings or bridges. However, it is our

assumption that all discovered targets will remain static indefinitely given the relative
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speed advantage the AUCAV has over ground vehicles. A non-static target disposition

could manifest in the form of a target balking. Such a concept is worth examining

in follow-on research. SCAR mission planners must prepare for and anticipate the

expected, but unknown, to be successful. Moreover, speed of discovery, prosecution,

and BDA are critical to the success of dynamic targeting.

3.1.4 The A3P

The A3P models a mission wherein an AUCAV tasked to the deep zone is as-

signed a SCAR mission given a fixed CARVER tool and initial HPTL. The HPTs

are initially geographically arrayed at anticipated but unknown locations. This pre-

mission intelligence assessment informs development of an initial launch route for

the AUCAV. The AUCAV must discover, attack, and confirm destruction through

BDA of as many HPTs as possible within a finite amount of time through dynamic

targeting. The deep zone exit point is fixed and facilitates the AUCAV’s decision to

depart combat operations in route to the FARP. The deep targeting of enemy forces

is operationally managed and synchronized by geographic control measures, including

named areas of interest (NAIs) and target areas of interest (TAIs) (Department of

Defense, 2019a). Human military planners geographically label expected clusters of

anticipated enemy targets as TAIs to facilitate execution of operations. The NAI is

an area wherein enemy activity is likely but uncertain, and the visitation to an NAI

is expected to answer a JFC’s critical information requirement (CCIR). The answers

to CCIRs provide information regarding enemy composition, disposition, or terrain

composition that are essential to future decisions the JFC expects to make during

the course of a battle (Department of Defense, 2020).

In the following sections, we mathematically formulate the A3P as a Markov de-

cision process (MDP) model, then introduce the approximate dynamic programming
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(ADP) solution approach. A MDP model is utilized because the A3P requires sequen-

tial decision-making under uncertainty. The ADP solution approach is conducive to

managing the uncountable state and action space within the MDP model of the A3P.

3.2 MDP Model

This section presents the mathematical formulation of the autonomous attack

aviation problem (A3P) as a discounted, infinite-horizon MDP model. Model compo-

nents include decision epochs, states, actions, transitions, and rewards (referred to as

contributions). The objective of the model is to determine the best routing solution for

an autonomous unmanned combat aerial vehicle (AUCAV) given a currently known

geographic array of NAIs, the enemy ground targets as informed by the HPTL, and

the status of friendly resources (i.e., playtime). The AUCAV is incentivized through

the collection of rewards to choose the best action possible given current and ex-

pected future information. A strength of the MDP formulation over other modeling

techniques is that the MDP model facilitates powerful modern approximate dynamic

programming (ADP) solution methods, allowing A3P solution methods to anticipate

and incorporate many realistic attributes of the real-world problem, thus facilitating

high-quality solutions.

Table 1 includes definitions of key notation and acronyms to support reader com-

prehension of the remainder of the thesis.

3.2.1 Dynamic Targeting Process

The A3P consists of an initial threat template of known and suspected enemy

positions produced from the IPB. The AUCAV is deployed on a SCAR mission

and is repeatedly assigned the most effective and efficient route possible to prose-

cute known enemy targets, collecting the largest reward possible while playtime is
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Table 1. Acronyms and Notation

Acronym Description

AUCAV Autonomous unmanned combat aerial vehicle
CCIR Commander’s critical information requirement
JFC Joint forces commander (the responsible decision-maker)
IPB Intelligence preparation of the battlefield
NAI Named area of interest
TAI Target area of interest
HPT High payoff target
HVT High value target (an asset adversary forces must have to

accomplish their mission)
HPTL High payoff target list (consists of HPTs and HVTs)
Notation Description

πLSTD Least squares temporal difference policy
πDROP Deterministic repeating orienteering problem policy
St state S at decision epoch t
ρt playtime remaining at epoch t
θ Coefficients (i.e, weights) of the approximate value function
α Learning rate (i.e, smoothing) parameter
Wt Exogenous information realized at epoch t

available. The model incorporates dynamic behavior of the A3P through numerous,

sequential changes of the state of the system, through the realization of particular

events. New information is discovered as the system progresses. Figure 8 depicts the

inter-event process nested within the targeting process as experienced by the AUCAV.

Figure 8. The Inter-event Process
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Events change the state of the system and require attendant decisions to be made

at such decision epochs. The decision-making authority who controls AUCAV actions

must evaluate the new state resulting from the event and make another decision to

maximize rewards (i.e., contributions). The random, inter-event time between events

is one decision period. Periods are not uniform in duration. A period may be near

instantaneous or multiple minutes long. We use a Poisson process to model the

stochastic arrival of new targets being scheduled for prosecution. When an emerging

target is confirmed to be an HPT, it is scheduled and arrives to the HPTL from

the targeting cycle (D3A). The inter-arrival time of targets to the HPTL follows an

exponential distribution with rate λ. Once a target is placed on the HPTL, it is

considered as a node requesting service. In the case of the A3P, this is an enemy

ground target requesting destruction. Table 2 depicts the list of events that drive the

evolution of the A3P system.

Table 2. A3P Event Types

1 Destruction of enemy HVT (service)
2 Destruction of enemy HPT (service)
3 AUCAV answers CCIR through visitation to NAI (service)
4 Emerging target approved and added to HPTL (arrival)

The A3P is an infinite horizon problem. Let T = {0, 1, 2, ...} denote the set

of decision epochs over which decisions are made by the decision-making authority.

Given the currently known HPTL, and the current position and status of the AUCAV,

a decision-maker must determine the next target to visit to achieve the highest total

contribution with the playtime remaining. We assume some deterministic behaviors in

the A3P. The AUCAV’s physical arrival to a target immediately results in confirmed

destruction of the target through artillery or other lethal means. The AUCAV’s

physical arrival to an NAI immediately results in the answering of a CCIR associated

with the NAI. Once a target or NAI is visited, it is not visited again. No reward is
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associated with TAI visitation. We also assume the AUCAV cannot be destroyed,

and the AUCAV must return to the deep zone exit point before completely depleting

the finite playtime allotted for the SCAR mission.

3.2.2 The State Variable

The state variable in Equation 1 consists of the minimal information necessary

to generate an action, transition the system, and assess contributions (Powell, 2011).

We denote the state of the A3P system at epoch t as

St = (At,Rt,Nt, τ, e) ∈ S, (1)

wherein At is the AUCAV status tuple, Rt is the target service request status tuple,

Nt is the NAI status tuple, τ is the current system time, e is the event type, and

S is the set of all possible states. Let τ(St) and e(St) denote the system time and

the event type when the system is in state St at epoch t, respectively. We define the

status tuple of the AUCAV at epoch t as

At = (`At , ρt), (2)

wherein `At ∈ R2 denotes the two dimensional location of the AUCAV within the

defined deep zone battle space and ρt denotes the playtime remaining. We assume

the AUCAV travels at a constant speed, and fuel is depleted at a constant rate as the

system time advances. This facilitates deterministic movement for the AUCAV.

The target service request status tuple Rt = (Rtr)r∈Rt contains the status of each

target r in the set of known targets Rt as of epoch t. Let

Rtr = (`R,HPTtr , ξr), (3)
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wherein `R,HPTtr ∈ R2 denotes the two dimensional location of target request r within

the defined deep zone battle space on the HPTL requesting destruction. The variable

ξr ∈ {0, 1} denotes the priority of the target wherein 0 denotes low priority and 1

denotes high priority. We assume once a target is added to the HPTL, its location

and priority remain fixed unless visited by an AUCAV. When a target is destroyed,

it is removed from the HPTL.

The NAI service request status tuple Nt = (Ntn)n∈Nt contains the status of each

NAI n in the set of assigned NAIs Nt as of epoch t. Let

Ntn = (`NAItn ), (4)

wherein `NAItn ∈ R2 denotes the two dimensional location of NAI n within the defined

deep zone battle space. When an NAI is visited, the CCIR is immediately answered

and the visited NAI is removed from the set of active NAIs, Nt.

We also define O = (Oo)o∈O as the set of TAI vertices whose locations, when

connected denote a TAI polygonal area. Oo ∈ R2 denotes the two dimensional location

of TAI vertices o ∈ O. The notation letter O is appropriate as a TAI is an operational

graphic whose existence and placement is at the discretion of the controlling, human

military forces. Note that the status of TAI vertices is fixed. The TAI vertices may

not be visited as they do not demand service and the possible, but unlikely arrival

of an AUCAV to a TAI vertex will not return a reward, as TAI visitation does not

have its own intrinsic utility. TAIs are included, in part, to assist with development

of anticipatory actions by the AUCAV, as is their purpose for human pilots. Their

unchanging nature allows them to be excluded from the state variable.

27



3.2.3 Action Space

At each decision epoch t, the decision-making authority must choose which node

to travel to next given the current state of the system. At the beginning of each

decision epoch an AUCAV is located either (1) at the node which it selected as its

next destination during the previous epoch, or (2) somewhere en route to its intended

destination because its travel is interrupted by the stochastic arrival of a new target

to the HPTL, initiating a new epoch. It is assumed that AUCAV travel time is

deterministic. If a stochastic arrival does not occur, the AUCAV arrives precisely to

its intended destination at a known arrival time. For example, suppose at time = 0,

the AUCAV begins to travel to an NAI to answer a CCIR with a travel time of two

minutes. Before the AUCAV arrives at the NAI, collecting the associated reward,

suppose a new target arrives at time = 1 minute initiating a new decision epoch.

If a stochastic arrival does not occur, the next decision epoch occurs at time = 2

minutes, upon the arrival of the AUCAV to its intended destination. It is possible

the next resulting decision remains the same NAI chosen in the previous decision

epoch. However, a re-evaluation of all feasible options occurs.

We denote XSt as the finite set of available actions given the current state St at

epoch t. This comports with the traditional notation of x as the decision variable

within the optimization discipline. The decision-making authority must choose one

action xt from set XSt for each epoch t. Each available action corresponds to the two

dimensional location of the selected next node (i.e., NAI, target, or deep zone exit

point). An AUCAV may choose any NAI or target on the HPTL that has not yet

been visited, or the deep zone exit location. The set of available actions is

XSt = {(`R,HPTtr )r∈Rt , (`NAItn )n∈Nt , Ω}, ∀ St ∈ S, t ∈ T (5)

wherein Ω is the location of the single, fixed deep zone exit point. We assume the JFC
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always values the return of an AUCAV over the destruction of any amount of enemy

targets or answered CCIRs. Hence, all feasible actions for a given epoch include only

those destinations which the AUCAV has sufficient playtime to visit and return to

the deep zone exit point. We also assume the AUCAV travels at a constant speed

moving at a constant rate as the A3P system time progresses.

3.2.4 Transitions

The A3P system evolves over time changing the state of the system through an

exogenous information process given the decision and stochastic information realiza-

tion. The transition function describes how the system evolves. The stochastic nature

of the system manifests in the uncertain arrival of targets to the HPTL according to

a Poisson process as shown in Figure 8. As targets arrive, the system dynamically

evolves to a new state and initiates a new decision epoch. Similarly, the arrival of an

AUCAV to an NAI or target requesting service also causes an evolution of the system

and initiates a new decision epoch. We let Wt denote the exogenous information

realized at decision epoch t, and we denote the system model as

St+1 = SM(St, xt,Wt+1). (6)

At each decision epoch t given the current state St, and decision xt, the system

model considers the resulting stochastic information Wt+1 and evolves the system

either to a new stochastic target arrival or the deterministic arrival of the AUCAV to

the intended destination xt. Recall the list of events in Table 2 which all result in a

new decision epoch. In all cases, the system model SM evolves the system from St to

St+1.
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3.2.5 Contributions

The contribution function motivates the desired behavior of each AUCAV in the

A3P. It assigns a reward when a particular state is achieved by the system. In aggre-

gation over the entire playtime, the contribution function quantifies the performance

of a solution to the A3P, providing a total numerical value (i.e., total reward) after

execution of all decisions and system evaluations for a given problem instance.

The A3P system collects rewards through the destruction of targets on the HPTL

and answering the CCIRs through visitation of NAIs. Arrivals to any other location

including TAI vertices, the deep zone exit location, and any random node on which

an AUCAV may reside when interrupted by an arrival, does not return a reward.

Rewards are collected immediately upon arrival to reward-bearing nodes. We denote

the contribution function as follows

C(St) =



rHV T , if `At = `R,HPTtr , ξr = 1

rHPT , if `At = `R,HPTtr , ξr = 0

rCCIR, if `At = `NAItn

0, otherwise.

(7)

These rewards induce the desired behavior while the autonomous aircraft is in com-

munications with human decision-makers. We assume that if communications are ever

severed between an AUCAV and the controlling human military forces, the AUCAV

will return to the exit location and cease to conduct lethal operations in accordance

with Department of Defense directive 3000.09: Autonomy in Weapon Systems De-

partment of Defense (2017).

Some military practitioners may not be experienced in reinforcement learning and

optimization. However, practitioners that utilize an autonomous capability similar

30



to what we propose in the A3P may desire to be cognizant of this component of

the mathematical model. The relative magnitude of the contributions in Equation 7

motivate the behavior of the aircraft and may help JFCs, and potentially human wing-

men, understand why an AUCAV exudes the behavior that it does. The contribution

function can be seen as a medium through which the responsible human military forces

may choose to modify or tune AUCAV behavior to achieve the desired battlefield

end state. The SCAR mission inherently values both reconnaissance (answering of

CCIRs) and the destruction of enemy forces. In this event, a JFC may desire to have

rHPT < rCCIR < rHV T or, if aggression is desired over reconnaissance, a JFC may

desire rCCIR > rHV T > rHPT for that particular SCAR mission.

3.2.6 Objective Function and Optimality Equations

A policy is a decision rule mapping any given state to an action. Some decision

rules are constructed to maximize the objective function via the Bellman Equation.

We let Xπ(St) represent the decision function, which selects decision xt given a specific

state St, and policy π in decision epoch t. The optimal policy, π∗, is the policy that

maximizes the expected total discounted reward (ETDR) of the MDP. The objective

of our MDP model is

max
π∈Π

Eπ
[ ∞∑
t=1

γτtC(St)
]
, (8)

wherein γ ∈ [0, 1) denotes the fixed rate discount factor, and τt denotes the system

time at state St. Equation 9 provides the mechanism by which the optimal policy π∗

is calculated, and is expressed as

V (St) = max
xt∈XSt

(
C(St) + γ(τ̂(St+1)−τt)E

[
V (St+1

∣∣St, xt]), (9)
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wherein τ̂(St+1) is the time the system arrives to state St+1. The state space of the

A3P is uncountable given that any target, NAI or an AUCAV could exist anywhere

in R2. Given this condition, the optimal policy π∗ for the A3P is unattainable using

Equation 9. However, instead of relying on traditional optimization techniques, we

leverage parametric value function approximation (VFA) through application of ADP.

We compare our VFA approach to an available baseline policy through mean total re-

ward earned through simulation. Given that the field of autonomous aircraft research

is still young with many approaches to behavior control, we propose the deterministic

repeated orienteering problem (DROP) solution approach as the baseline policy to

support the effectiveness claims of our high-quality VFA approach. We choose the

DROP baseline policy because the orienteering problem is well established in the liter-

ature and provides a known standard from which to measure performance. The mean

total reward of the DROP and VFA approach are compared using a representative

instance of the A3P.

3.3 ADP Solution Approach

ADP exists to overcome the curses of dimentionality that arise when attempting

to solve large-scale dynamic programming problems. Described by Powell (2011), the

curses of dimensionality refer to problems wherein the magnitude of dimensions are so

high that an exact value of being in a certain state becomes impossible to calculate.

Specifically, oversized dimensions manifest in the state space, action space, outcome

space (resulting state), or any combination of the three. The A3P has an uncountable

state space, and therefore an ADP approach is warranted to replace the exact value

of being in any given state with an estimate of the value of being in a given state.

This estimate is referred to as a VFA.

Two general approaches to approximating value functions exist. They are para-
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metric and non-parametric models. Examples of non-parametric models include

lookup tables such as aggregation schemes, Q-Learning, and neural network regres-

sion. Parametric models leverage regression methods, which presume the existing

but unknown value function has structure. Such models must assume structure of

the value function because they themselves have structure. To solve the A3P, we

employ an approximate policy iteration (API) algorithmic strategy to construct a

decision rule (policy) using a parametric VFA. We choose a parametric VFA since it

permits applications to varying scales of a problem as well as facilitates the exploita-

tion of structure within the model. An essential nuance of using parametric VFA

is that its structure generally requires the generation of basis functions or features

that are pieces of information provided by the state variable and are important when

deciding which action to take.

3.3.1 Basis Functions

Effective basis function or feature construction is essential to generating accurate

estimates of the value function. Basis functions serve as the independent variables in

the continuous VFA. Let

V̄ (St|θ) =
∑
f∈F

θfφf (St), (10)

wherein V̄ (St|θ) denotes the approximation of the value function, such as Equation

9, given state St and value function approximation coefficients (or weights), (θf )f∈F ,

and wherein φf is basis function and f is a feature in the set of features F .

Our continuous VFA is a linear model. Therefore, it is essential we capture the

most important features that aid decision-making. ADP generated policies are only

as good as the accuracy of the value estimate. The closer the value estimate V̄ (St)

is to the true value V (St), the closer the generated decision rule is to the optimal
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policy π∗. In the A3P, AUCAV behavior hinges on developing effective and efficient

basis functions. We draw basis function insight from Rettke et al. (2016) and Jenkins

et al. (2021) to inform formulation of our basis functions. Our basis functions must

accurately and collectively capture the value of each future state to facilitate effective

discrimination and selection of the highest expected valued decision, xt ∈ XSt .

Let φf (St) be the basis function evaluation f of state St at decision epoch t.

We bin our features into the following three types: reward based, spatial based, and

resource based. We normalize all basis function evaluations to scale all values to [0, 1].

This transformation facilitates direct basis function comparisons by examining value

magnitudes.

All of our basis functions are interactions of more than one feature. For example,

many of the functions below are an interaction of both a location and resource feature.

We introduce the following feature types, then list the final basis functions at the end

of the section. Each feature type is akin to a specific genre of information that ought

to be considered during decision-making. We employ significant exploratory testing to

develop the following basis functions and describe this exploratory process in Section

IV.

The first feature type is reward-based. The intent for this feature is to help the

system recognize the type of node on which the AUCAV is located when a reward is

earned, and associate the earned reward with the node type it is currently on. Let

φANAI(St) = I{`At =`NAItn } (11a)

φAHPT (St) = I{`At =`R,HPTtr , ξr=0} (11b)

φAHV T (St) = I{`At =`R,HPTtr , ξr=1} (11c)

wherein the three features are aligned with the type of reward-bearing node on which
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the AUCAV is located. The three different reward bearing node types are: NAIs,

HPTs, and HVTs. We construct the first three features as indicator functions (I),

which take on the value 1 when co-located with that reward-bearing node type and

0 otherwise. For example, if the AUCAV is co-located with a HVT, the indicator

function I{`At =`R,HPTtr , ξr=1} takes on the value 1.

The second feature type is spatial-based. Several key aspects of the spatial ar-

rangement of the system are investigated; however, testing suggests the relative lo-

cation of a node to the TAI and the location of a node relative to other nodes are of

particular importance to aid decision-making.

We assume there is one TAI and it is rectangular in shape with four vertices.

We employ the traditional cardinal direction indicators North (N), South (S), East

(E), and West (W). Let the location of the centroid of the TAI be `TAI,centroid =

(
∥∥OSW −OSE

∥∥ ,∥∥ONW −OSW
∥∥). Let

φATAI(St) =
(distmax −

∥∥`At − `TAI,centroid∥∥)

distmax
(12a)

denote the feature that returns a value as a function of the distance the AUCAV

is from the TAI centroid, wherein the distmax is the hypotenuse of the entire battle

space. The intent of this feature is to encourage the AUCAV to remain cognizant of

its relative distance from the TAI as this is the area human intelligence officers have

identified and labeled as a likely area of enemy discovery.

Another feature we consider is the relative distance each reward-bearing node

is from the other reward-bearing nodes. We assume it is more lucrative to select a

reward-bearing node that is relatively close to others and therefore attempt to include

a notion of clustering into our features. We find that exhaustively enumerating the

distances from each node to each other node is ineffective and inefficient. Additionally,
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partitioning the battle-space into sectors and introducing indicator functions is more

efficient as it requires a smaller number of basis functions. However, its effectiveness

is inadequate. To address relative distances into our ADP solution, we introduce an

unsupervised machine learning algorithm first suggested by Ester et al. (1996) called

Density-Based Algorithm for Discovering Clusters (DBSCAN) (Schubert et al., 2017).

The DBSCAN algorithm is effective, efficient, and is aligned with the principle

of model parsimony (Blumer et al., 1987). The algorithm takes as its inputs two

user-defined parameters and a list of points, then assigns a label for each point as

one of three types. The node types are core, border, and noise. The two parameters

are ε − Neighborhood and minPoints. A core point is a point which has at least

the number of minPoints within its ε − Neighborhood. A border point is within

a core point’s ε − Neighborhood but it does not have minPoints within its own

ε−Neighborhood. A noise point is not within the ε−Neighborhood of a core point.

Introducing this algorithm into our basis functions requires two additional parameters

to tune; however, we saw this as a worthy trade-off as we have the ability to condense

density information into one of three labels. An abstract of the DBSCAN we employ

is in Algorithm 1.

Algorithm 1 Abstract DBSCAN Algorithm

1: initialize value of ε−Neighborhood
2: initialize value of minPoints
3: for Each point in set do count neighboring points within ε − Neighborhood if

neighboring points ≥ minPoints, label point as a core point
4: end for
5: Join Neighboring core points into clusters
6: for each non-core point do label as border point if within ε − Neighborhood of

core point Otherwise, label as noise
7: end for

The output of this algorithm results in each considered point receiving a label

of either core, border, or noise. Let pcore, pborder, pnoise denote a core, border, and
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noise point respectively. The following features indicate the node type on which the

AUCAV resides.

φAcore(St) = I{`At =pcore} (13a)

φAborder(St) = I{`At =pborder} (13b)

φAnoise(St) = I{`At =pnoise} (13c)

wherein indicator function I takes on the value 1 if a specific condition is met. For

example, indicator function I{`At =pcore} takes on the value 1 if the AUCAV is co-located

with a core point and is 0 otherwise.

The final feature type is resource-based. The resource of interest in the A3P is

the amount of playtime ρt the AUCAV has at epoch t to execute the remainder of

its mission. ρmax is the maximum playtime the AUCAV begins a trajectory with.

The amount of playtime the AUCAV expects to use for its next selected step is

ρ(τ̂(St+1|xt)−τt). We then consider the following features:

φ playtime
exp (St) =

(ρt − ρ(τ̂(St+1|xt)−τt))

ρmax
(14a)

φ playtime
prop remaining(St) =

(ρt − ρ(τ̂(St+1|xt)−τt))

ρt
(14b)

wherein φ playtime
exp (St) provides the system the ability to be cognizant of the amount

of playtime the next decision requires. The function subtracts the expected playtime

expenditure from the current playtime remaining and standardizes over max playtime.

This allows our model to learn that a decision that requires less playtime to complete

is more appealing than a decision that may expend playtime frivolously. Moreover,

φ playtime
prop remaining(St) provides slightly different information as dividing by ρt allows the

system to consider the proportion of playtime the next decision will expend as opposed
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to the amount. A larger proportion of remaining playtime remaining after the decision

is more desirable as the irreplaceable playtime resource ought to be closely managed.

Both of these basis functions together are required to capture the expected future

value because of this subtle difference. For example, if the AUCAV were to operate

on jet fuel, the first decision for a given trajectory may require a large amount of

playtime but a small proportion to the remaining fuel left in the gas tank. Conversely,

if the AUCAV is nearing the end of its mission with limited playtime remaining, every

decision will likely account for a large proportion of its remaining playtime though

they may be small amounts.

With the features defined, we introduce the basis functions used in our solution

approach. Each basis function is an interaction of the features introduced above.

Through extensive preliminary testing, we noticed the playtime resource was of crit-

ical importance to consider. Consequently, the resource features are the foundation

to the basis functions with the spacial and reward based features as complimentary.

φ1(St) = φ playtime
exp (St) φ

A
HPT (St) (15a)

φ2(St) = φ playtime
exp (St) φ

A
HV T (St) (15b)

φ3(St) = φ playtime
exp (St) φ

A
TAI(St) (15c)

φ4(St) = φ playtime
exp (St) φ

A
border(St) (15d)

φ5(St) = φ playtime
exp (St) φ

A
core(St) (15e)

φ6(St) = φ1(St) φ
A
TAI(St) (15f)

φ7(St) = φ2(St) φ
A
TAI(St) (15g)

φ8(St) = φ1(St) φ
A
border(St) (15h)

φ9(St) = φ2(St) φ
A
border(St) (15i)

φ10(St) = φ1(St) φ
A
core(St) (15j)
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φ11(St) = φ2(St) φ
A
core(St) (15k)

φ12(St) = φ playtime
prop remaining(St) (15l)

φ13(St) = φ playtime
exp (St) (15m)

Given the basis functions, we can now construct the value function approximation

with the following linear approximation architecture

V̄ (St|θ) =
∑
f∈F

θfφ
s
f (St) ≡ θTφs(St), (16)

wherein θ = (θf )f∈F is a column vector of basis function evaluation coefficients

(weights) and φs(St) is a scaled column vector of basis function evaluations. Sub-

stituting the VFA in Equation 16 back into the Bellman Equation 9, we obtain

V̄ (St|θ) = C(St) + γ(τ̂(St+1)−τt)E
[
V̄ (St+1|θ)

∣∣St, Xπ(St|θ)
]
, (17)

wherein the decision xt is determined via the decision function,

Xπ(St|θ) = argmax
xt∈XSt

{
C(St) + γ(τ̂(St+1)−τt)E

[
V̄ (St+1|θ)|St, xt

]}
. (18)

With the VFA and decision function established, we discuss the manner in which

the VFA, Equation 17, is updated and refined (i.e., statistical learning). The VFA is

updated through an iterative process of sampling state-value pairs (or sample data).

Our data are generated through simulation of our model given problem instance pa-

rameters. We employ a temporal difference approach to approximate and iteratively

refine the value function (Bradtke & Barto, 1996). The following section introduces

the algorithmic strategy, which controls the iterative statistical learning process of

our VFA.
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3.3.2 Algorithmic Strategy

To generate our ADP policy, we employ a finite sequence of steps shown in Al-

gorithm 2. We employ an API approach because at the center of our algorithm is a

loop derived from exact policy iteration. At the center resides the policy evaluation

loop of size N . This inner loop evaluates a fixed policy (fixed θs) by collecting data

through simulation in the form of state-value pairs. At the completion of a finite

number of policy evaluation loops (inner loops), the mth policy is produced using a

least squares temporal differences (LSTD). A new policy θm is generated by merging

the current policy θ m−1 with the sample policy θ̂. The smoothing of the two policies

is managed by the learning rate parameter α.

Algorithm 2 API-LSTD Algorithm

1: Initialize θ (linear model coefficients or weights).
2: for m = 1 to M do (Policy Improvement Loop) If m > 2, radvPay = 0
3: for n = 1 to N do (Policy Evaluation Loop)
4: Initialize problem instance to begin trajectory if n = 1 or St,n = Ω.
5: Generate a trajectory following next state St−1,n (see Figure 9).
6: Record basis function evaluation φs(St−1,n).
7: Employ ε-greedy sampling as discussed in Section 3.3.3.
8: Determine decision xt utilizing Equation 18.
9: Simulate transition to next pre-decision St,n.

10: Record contribution C(St,n) with radvPay as discussed in Section 3.3.4.
11: Record discount factor γ(τ̂(St+1,n)−τt).
12: Record basis function evaluation φs(St,n).
13: end for
14: Update θ utilizing Equations 21-23.
15: end for
16: Return the decision function XπLSTD(· |θ).

The algorithm begins with initializing values of θ at zero, which serves as the

initial fixed policy to undergo evaluation. Next, we evaluate the performance of the

current policy by randomly sampling states in a trajectory fashion and recording their

accompanying values or basis function evaluations φ(St−1,n). We then simulate one

event forward in system time, determine the next action with Equation 18 (following
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an ε-greedy approach), and then record the basis function evaluations for the next

state φ(St,n). The collection of trajectory following state-value pair data continues

for N iterations within the policy evaluation loop (inner loop). With a selected xt,

we simulate forward, and record the contribution C(St,n), current discount factor

γ(τ̂(St+1,n)−τt) and basis function evaluations φ(SM(St,n)). The algorithm continues

to the policy evaluation algorithm step with N temporal difference observations of

sample data. We now have the information to update the approximate value of state

St depicted in Equation 19 wherein C(St,n) + γ(τ̂(St+1,n)−τt)θφ(St,n)− θφ(St−1,n) is the

nth temporal difference given the basis function weight vector θ.

θ>φ(St−1) = C(St−1) + γ(τ̂(St)−τt−1)E
[
θ>φ(St)|St−1

]
(19)

A policy having finished N policy evaluation loops (inner loops) with its accom-

panied evaluation from N data, enters one m policy improvement (outer) loop. For

each iteration of M outer policy improvement loops, we calculate a vector of esti-

mates θ̂ of the existing but unknown coefficients θ through least squares regression.

A θ̂ is sought that makes the sum of the temporal difference samples equal to zero.

We denote the matrix form of the basis function evaluations, discounts, and contri-

butions in Equation 20 wherein Φt−1 and Φt are matrices consisting of basis function

evaluations. Matrices Φt and Φt−1 consist of N rows and |F| columns.

41



Φt−1 ,


φ(St−1,1)ᵀ

...

φ(St−1,N)ᵀ

 , Φt ,


φ(St,1)ᵀ

...

φ(St,N)ᵀ

 ,

Γt ,


γ(τ̂(St+1,1)−τt,1)11×|F|

...

γ(τ̂(St+1,N )−τt,N )11×|F|

 , Ct ,


C(St,1)

...

C(St,N)


(20)

The rows of the discount factor matrix Γt are the discounts for the sample data,

and the elements of vector Ct of length N are the recorded contribution values at

each data observation n. We denote 11×|F| as a row vector of ones of length |F|. We

then use Equation 21 to calculate one sample estimate of θ.

θ̂ =
[
(Φt−1 − Γt � Φt)

>(Φt−1 − Γt � Φt) + ηI
]−1

(Φt−1 − Γt � Φt)
>Ct (21)

We denote ηI as an |F|×|F| sized matrix wherein regularization parameter η ≥ 0

serves as a means to avoid matrix inversion and over-fitting issues (Hastie et al., 2001).

With a new estimate of θ̂, we smooth the new estimate into the current estimate θ

via Equation 23. Note that � is the Hadamard product operator. We draw from

Jenkins et al. (2021) and employ the learning rate (step-size rule) given in Equation

22 wherein β ∈ (0, 1]. This polynomial step-size rule greatly affects convergence of

our algorithm and must be tuned. The magnitude of αm decreases as m increases.

The rate αm decreases is controlled by algorithmic parameter β.

αm =
1

mβ
(22)

Equation 23 depicts the smoothing process. The θ on the right-hand side of the
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arrow is the estimate based on previous iterations of the policy improvement loop

m− 1. The vector θ̂ is the estimate from the current iteration m.

θ ← αmθ̂ + (1− αm)θ (23)

The θ on the left-hand side is the new estimate and completes one iteration of the

M policy improvement loops. The algorithm continues and produces a final estimate

θ, after M policy improvement loops which parameterizes our policy (i.e., decision

function) XπLSTD(· |θ) for policy πLSTD.

3.3.3 Sampling and Exploration

We choose to employ a trajectory following state sampling scheme and ε-greedy

action sampling. We choose trajectory following (i.e., path following) for state sam-

pling to approximately solve the A3P because the state space is uncountable. Many

ADP solution approaches employ a sampling scheme wherein one random state sam-

ple is chosen per inner loop. The system is then simulated one decision epoch into the

future to collect state-value pair data. Preliminary testing of the ADP solution ap-

proach to the A3P suggests that this single-step manner of sampling does not supply

meaningful data for an effective solution. Indeed, we discourage single-step random

sampling to solve the A3P approximately because we suspect such samples miss sam-

pling the most relevant states recalling the uncountable state space. Consequently,

we employ a trajectory following sampling scheme wherein, for each policy evaluation

loop, we sample a sequence of steps always starting with a fixed deep zone entrance

point with full playtime and ending with arrival to the deep zone exit point.

We implement an ε-greedy action sampling approach to balance exploration with

exploitation of the ADP solution approach. Within every sample path generated

in Algorithm 2, the ε-greedy approach encourages the system to choose the best
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decision it thinks available at step t 1-ε percentage of the time. This means that

an AUCAV will choose to go to the next location that will earn maximum rewards

100(1-ε) percentage of the time and choose randomly from the set of feasible actions

ε percentage of the time. The sampling of states through the random selection of

actions may result in exploration of the state space that the system may not have

conducted otherwise.

3.3.4 Reward Engineering

To solve the A3P approximately, we implement reward engineering. Also referred

to as designing reward signals, we take great care in specifically designing the part of

the AUCAV (i.e., entity or agent) environment that is responsible for computing the

scalar reward received by the agent at every decision epoch (Sutton & Barto, 2018).

We began our preliminary testing with having zero immediate reward received until

the service is complete, meaning all epoch contributions (rewards) where a service is

not complete, is equal to zero. This is justifiable as it aligns with the reality that

an AUCAV’s combat performance ought not to be rewarded for only planning to

complete a service, but for actually completing a service. We realized that this could

mean the ADP algorithm may not encourage learning in the manner we expected. For

example, suppose during the progression of the learning algorithm a sample action was

chosen either through ε-greedy sampling or that policy improvement loop’s decision

rule such that the next destination is an HVT. Indeed, Features 11a, 11b, and 11c

exist to encourage the AUCAV to be cognizant that its choice results in a reward

if it services that demand; however, if travel toward the HVT is interrupted by a

new arrival, the AUCAV may never actually experience the reward as the service

is not completed. We see this as a hindrance or obstacle to learning because this

hypothetical AUCAV will never complete its service task due to the interruption,
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and therefore this decision, although appropriate, is not reinforced. As explained

by Sutton & Barto (2018), reward signals ought to be designed so that as an agent

learns, its behavior approaches, and ideally achieves, what the application’s designer

actually desires. In the case of the A3P, we assume the JFC wants targets destroyed

and CCIRs answered. However, for the iterative ADP learning process to achieve such

behavior, we construct a reward scheme that seeks to induce the desired behavior in

an effective manner.

To overcome this suspected hindrance to learning, we employ a reward signal

that gives radvPay % of the reward of the chosen destination node upon selection.

This reward is collected immediately within the epoch in which the reward-bearing

node was chosen. For example, during the progression of Algorithm 2 a decision-rule

within a given policy improvement loop selects an HVT as the next destination in

epoch t, and the system receives an immediate reward of radvPay(rHV T ) at epoch t.

The system does not receive the full rHV T unless the service is actually completed in

a future decision epoch. This partial, advanced reward intends to encourage desired

behavior of the AUCAV within the A3P system. We acknowledge there is risk given

this algorithmic design as it consciously invites statistical bias into the algorithm.

With such an engineered reward scheme, it is possible an AUCAV, within a specific

A3P problem instance, may receive so many partial rewards that its incentive to

actually complete services is insufficient to achieve the behavior that aligns with the

JFC’s intent. Indeed, in an extreme case, it is possible an AUCAV that learns under

a reward scheme as we have introduced could fly an entire sortie without ever actually

completing a service. This obviously does not align with our assumed JFC’s intent.

To monitor a given policy’s alignment with behavior desired by our assumed JFC,

we employ a simulation model to support the design and development of high-quality

policies. In our simulation, this reward scheme does not exist; only serviced targets
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return a reward as outlined in Equation 7.

3.3.5 Simulation

In this section we introduce the simulation model used within the A3P solution

approach. In an earlier section, we discussed the need to sample entire trajectories in

lieu of one-step sampling to address the uncountable and continuous state space of

the A3P. The following simulation model serves as the engine behind the trajectory-

following scheme fueling our learning algorithm. Sampling resulting from simulation-

driven trajectories enables the collection of effective samples of state-value pairs.

The simulation model also serves as a mechanism for evaluating any given policy to

include the benchmark, DROP policy. See the graphical flow of the simulation model

in Figure 9.

Figure 9. Graphical Depiction of Simulation Model
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Each simulation requires as input a specific A3P problem instance, a decision-rule,

and a random number stream. A single problem instance implies problem parameters

are fixed. For example, arrival rate of new enemy targets λ and initial amount of

AUCAV playtime ρmax, is specified. The decision rule is the current policy to undergo

sampling, and the random number seeds allow the simulation user to control multiple

samples from a single problem instance as well as the ability to use common random

number generation to reduce variance when comparing performance of policies. The

discrete event simulation is driven by an event schedule constructed a priori upon

initialization. The event schedule is a list used to determine what event happens

next in a discrete event simulation (Banks et al., 2013). In the A3P the list of new

target arrivals is generated at onset of the simulation with pre-determined arrival

time, location, and type. As the system evolves, the transition function uses this

event list and compares the time for each event with the travel time for the AUCAV

from its current position to its intended destination. The process that takes the least

amount of time, either new arrival or the AUCAV reaching its decided destination,

determines the next decision epoch. The simulation then continuously evolves the

system, collecting rewards and reducing playtime until the only feasible decision to

select next is the deep zone exit point (xt = Ω). Once the system evolves to this

final state, the simulation terminates. In Algorithm 2, the system may re-initialize to

collect the pre-determined number N of algorithmic samples (state-value pair data).

For all evaluation simulations in this research we utilize a discount rate of γ = 1.

With γ = 1, we refer to ETDR as mean total reward. When we use this simulation to

determine the quality of a given decision-rule, one trajectory is sufficient per random

number stream.
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IV. Testing, Analysis, and Results

In this chapter we introduce a representative scenario of the autonomous attack

aviation problem (A3P) that serves as the foundation for our quantitative analysis of

policy performance. We demonstrate the efficacy of our ADP policy using specific,

realistic problem instances of the A3P that serve as a means to quantitatively measure

and compare performances of each policy outlined in Chapter III. We design and

conduct computational experiments to tune the algorithm hyper-parameter values of

the ADP solution procedure to maximize performance. Moreover, we conduct case

study analysis using common random number simulations to gain insights on policy

performance. The computational experiments are conducted utilizing an Intel Core

i7, 2.20GHz, 4-core processor with 16GB of RAM and MATLAB (2020b) parallel

processing toolbox. To determine solutions for the benchmark DROP policy, we

utilize IBM’s CPLEX version 12.9.0.

4.1 Representative Scenario

We develop a notional A3P scenario wherein a single autonomous unmanned com-

bat aerial vehicle (AUCAV) is tasked to conduct a strike coordination and recon-

naissance (SCAR) mission in a deep zone given a fixed criticality, accessibility, rep-

utability, vulnerability, effect, and recognizability (CARVER) tool, an initial threat

template (recall Figure 7), and named area of interest (NAI) reconnoiter require-

ments. The area of operations (AO) for this mission exists on terrain of scale and

makeup similar to that found at the National Training Center (NTC) at Fort Irwin,

California (USGS, 2021). The terrain is arid with near zero vegetation and permis-

sive to armored ground vehicle maneuvers save intermittent, steep, elevation changes

serving as obstacles to ground movement and protection, see Figure 10 from Coryell

48



& Heap (2016). This terrain type is selected to provide smooth transfer of analysis

and insights presented herein to potential application in terrain familiar to modern

war-fighters.

Figure 10. Aerial View of Military Vehicles at the NTC (Coryell & Heap, 2016)

The notional US Army Division current operations section is the controlling au-

thority of the AUCAV. Its duty is to align AUCAV behavior to the Joint Forces

Commander’s (JFC’s) intent as received, in part, in the form of scalar value inputs

to the contribution function (see Equation 7). The JFC is responsible for battlefield

success and approves the employment of the AUCAV enabled sortie through certify-

ing the reward values for destruction of high value targets, high payoff targets, and

answering commander’s critical information requirements (CCIRs) through visitation

of NAIs. Our notional JFC approves the following guidance in Table 3 to facilitate

employment of the AUCAV.

The division targeting working group drives the decide, detect, deliver, assess

(D3A) targeting cycle. The cycle is dynamic and stochastic with a new target arriv-
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Table 3. JFC’s Intent

rHV T = 1000
rHPT = 10
rCCIR = 1

ing to the high payoff target list (HPTL) at rate λ (example HPTL in Figure 5). For

example, a λ = 1
10

, means on average, a new enemy target arrives to the HPTL once

every 10 minutes. The AUCAV speed and playtime are aligned to estimates found

in sources covering current US Army acquisition pursuits such as Judson (2020b),

Judson (2019b), and Freedberg (2021). This mission occurs in the context wherein a

US Army Division conducts a high operational tempo, direct action, large-scale com-

bat operation (LSCO) with one, near-peer adversary whose composition, disposition,

and behavior is aligned with an armored, Brigade Tactical Group (BTG) as found in

Department of the Army (2011b) and Department of the Army (2011a). This rep-

resentative scenario is similar to two historical case studies utilizing attack aviation.

The first is the US Army deep attack on the Medina Division’s armor and artillery

in the Spring 2003 (Kem, 2018), and the other is the first US Army Apache deep

attacks of Desert Storm in 1991 intended to destroy adversary anti-aircraft assets

(Smithsonian, 2015).

The AO is 100 kilometers wide by 100 kilometers deep with the friendly forces

arrayed to the south. We assume the forward line of troops (FLOT) of friendly ground

forces is south of the A3P AO. The AO is indexed with a military grid reference system

(MGRS) with coordinate (0,0) denoting the very center of the square AO. The deep

zone exit point is aligned with the southern boundary of the AO and 5 km to the west

of center (-5,-50). The AUCAV starting position is also aligned with the southern

boundary and aligned 5 km to the east of center (5,-50). Figure 11 depicts an A3P

SCAR Mission AO constructed in the MATLAB computing language.
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Figure 11. SCAR Area of Operations in MATLAB

In this baseline A3P instance, blue forces have constructed a list of 20 known

high payoff targets (HPTs) arrayed uniformly across the 100 km by 100 km space. In

addition, the JFC values the visitation of five NAIs. This is the known, initial HPTL

and NAI requirements that invoke the AUCAV SCAR mission launch. Through

information preparation of the battlefield (IPB), the intelligence officers of the division

expect more targets to manifest to the northwest, behind the L-shaped ridge line.

Intelligence officers also expect a 20% chance that any possible future arrivals will

be high value targets (HVTs). Such HVTs may be specialty assets such as radar,

air defense, artillery, or breaching assets. As a result, the division staff establishes

a square shaped target area of interest (TAI) with four vertices at (-37.5,37.5), (-

37.5,12.5), (-12.5, 37.5), and (-12.5,12.5). This square-shaped TAI centroid is located
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at (-25,25).

The enemy forces consist of a BTG conducting a large-scale, offensive operation

from north to south. As expected by blue forces intelligence estimates, enemy ground

commanders array a majority of their forces in the northwest of the SCAR mission

AO behind the L-shaped ridge line. A majority of red forces locate to the northwest

to consolidate, organize, and conceal their ground forces in a natural assault position

for a future, synchronized brigade attack. The starting state of this baseline instance

of the A3P is displayed in Figure 11.

4.1.1 Problem Instance Factor Selection

In this section we introduce and define the problem factors and our reasons for

selecting the items of information that are experimental factors. Moreover, we choose

factors whose values we vary to generate specific problem instances for deeper study.

Table 4 shows the list of A3P problem factors, categorized into factors we choose to

study in depth and factors we choose to fix. Factors we study are those factors whose

values we modify to investigate policy robustness.

An A3P with a particular set of problem factor values is a problem instance. We

study robustness of policies by modifying the value of a problem factor of interest,

generating a new problem instance and observing the impact on quality of a given

policy. A policy that provides high-quality solutions to multiple problem instances

earns the title of robust. Study factors are selected intentionally since their inclu-

sion in our experimentation comes at a cost of computation time, particularly for

the benchmark policy. Each additional factor and factor level can greatly increase

computation time, so only those problem factors whose study is expected to provide

the most insight are selected. Fixed value problem factors are listed in the bottom

of Table 4. We record their values and our intentions behind their fixed values to
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increase understanding and facilitate reproduction.

Table 4. Problem Factors

Problem Factors to Study Factor Levels

Target Arrival Rate per 10 mins, λ 1, 3
AUCAV Playtime, ρ 60 min , 120 min
Shape of battlespace Linear, Non-Linear (See Figure 2)
Fixed Factors Factor Level

AO Characteristics 100 km by 100 km
AUCAV Speed 108 Knots
Number of NAIs 5
Number of Targets on Initial HPTL 20
Percentage of new target arrivals as HVTs 20%
Geographically asymmetric HPT arrival 95% northwest
JFC’s intent (reward values) See Table 3

We choose to vary the rate of arrival as the inherent uncertainty and variability of

enemy behavior is of primary concern in war-fighting. The two levels of enemy arrivals

intend to simulate A3Ps of varying intensity with regard to enemy activity. We choose

to vary playtime because time is a resource that is normally of critical importance and

must be closely managed. Although the overall flying playtime capacity of a AUCAV

may exceed 120 minutes, we seek to investigate varying mission lengths. Indeed,

mission duration is not only constrained by fuel capacity, other factors impact it as

well, such as a changing battlefield environment or changes in JFC priorities, which

occur frequently in contemporary armed conflict. Finally we choose to vary the shape

of the battlespace to simulate the various terrains in which an A3P may exist. Recall

the linear and non-linear AOs in Figure 2.

4.2 The Benchmark Policy

The purpose of a benchmark policy is to provide a standard from which to mea-

sure the performance of our ADP solution approach. We do not have the option of
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measuring quality relative to an optimal policy since the A3P has an uncountable

state-space and therefore precludes current methods to calculate an optimal policy.

Instead, we measure the solution quality of our ADP policy through comparison with

a benchmark policy. We propose the deterministic, repeated, orienteering problem

(DROP) as the benchmark solution method for this research. The DROP provides

a suitable benchmark policy because, when given a set of nodes to visit with known

rewards and playtime remaining, the DROP will return the optimal route solution

within any given decision epoch t. We suggest that the area of artificial intelligence

and autonomy is still in its formative years and there are no widely accepted rules

or policies from which to compare autonomous behavior within the A3P. Given this,

the DROP policy seems reasonable to embed in an autonomous agent found within

the A3P. In addition, the orienteering problem is well established in literature and

can expand to multi-AUCAV instances as discussed in Chapter II with the team

orienteering problem (TOP).

The mathematical formulation of the DROP consists of classical components found

in optimization literature: objective function, decision variables, and constraints. The

DROP policy is determined by repeatedly solving a mixed integer linear program

(MILP) based on the TOP formulation found in Gunawan et al. (2016). The πDROP

policy takes as its input state St, calculates a routing solution, and identifies the first

stop in the route as a decision xt. The system then evolves to St+1, and the πDROP

solves again until the AUCAV’s arrival to the exit point, Ω.

The MILP seeks to maximize the collected reward for a given state St constrained

by the playtime remaining ρt through planning the optimal route. A route starts

with the current AUCAV location, travels through reward-bearing nodes to maximize

collected reward, and ends at the deep zone exit point. Let Xij denote the decision

variable taking the value 1 if the decision is to travel from node i to node j, and 0
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otherwise. The following formulation depicts the mathematical model of the DROP

solution approach at one epoch t

Obj : max
Xij

(|N |−1)∑
i=2

|N |∑
j=2

PiXij, (24)

s.t.

|N |∑
j=2

X1j =

(|N |−1)∑
i=1

Xi|N | = 1, (25)

(|N |−1)∑
i=1

Xik =

|N |∑
j=2

Xkj ≤ 1; for k = 2, ..., (|N | − 1) (26)

(|N |−1)∑
i=1

|N |∑
j=2

ρijXij ≤ ρt, (27)

2 ≤ ui ≤ |N |; for i = 2, ..., |N |, (28)

ui − uj + 1 ≤ (|N | − 1)(1−Xij); for i = 2, ..., |N | (29)

Xij ∈ {0, 1},∀ i, j ∈ N (30)

wherein N = {1, ..., |N |} denotes the set of nodes including the current AUCAV

location, the A3P exit location, and all NAIs and targets requesting service in state

St at epoch t. Let Pi denote the payoff or reward for visiting node i. Define the

AUCAV location `At = 1 and the deep zone exit location Ω = |N |. All other nodes

are reward-bearing nodes within the battlespace, including NAIs, HPTs, and HVTs.

Let {i + 1, ..., (|N | − 1)} ≡ {(`NAItn )n∈Nt
⋃

(`R,HPTtr )r∈Rt}. Let ui, in the subtour

constraints (i.e., Constraints 28 and 29), denote the position of the visited node i in

the route.

The objective seeks to maximize the total reward. Constraint 25 ensures the

route starts at the current AUCAV location and ends at the deep zone exit point.
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Constraint 26 ensures each node is visited only once for a given route and the nodes of

the route are sequential. Constraint 27 constrains the route length given the current

playtime available at epoch t, wherein ρij indicates the playtime used to travel from

node i to node j and must be less than the playtime remaining ρt. Constraints 28

and 29 are subtour prevention constraints. Constraint 30 enforces non-negativity.

Perhaps the most powerful aspect of the DROP is that for every state St, the policy

considers all feasible routes and chooses not only the next best node destination, but

every subsequent node thereafter to maximize rewards in the form of an optimal

route. This result, however, comes at a computational cost, which we measure and

report. Indeed, the DROP requires much more time to arrive at its solution than

the approximate solutions. Moreover, the DROP policy does not anticipate new

target arrivals, but its effectiveness is still very respectable given its ability to plan an

entire route. This is the primary distinction we seek to investigate – to compare the

performance between the full route-planning DROP policy to our ADP policy that

anticipates the possibility of new enemy target arrivals.

4.3 Experimental Design

The purpose of our experimentation campaign is to measure the performance of

our API-LSTD algorithmic solution approach relative to a benchmark and attempt

to discern why the ADP policy behaves the way that it does. We define performance

as a function of the solution quality, computational effort, and robustness (Barr et al.,

1995). We measure solution quality in the mean total reward earned by a given solu-

tion over 30 simulation runs of a given problem instance. A single run of a simulation

consists of the total rewards collected by policy π with a single use of playtime, ρmax.

Solution quality of the πLSTD is measured relative to the πDROP benchmark. We

measure computational effort as the number of minutes required to find a solution
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to 30 simulation runs of one problem instance of the A3P. Moreover, we determine

robustness through comparing performance on varying problem instances. A policy

earns the title robust when it performs well across multiple problem instances.

Our experimental campaign consists of three phases: preliminary testing, designed

experimentation, and targeted case study investigation. The primary focus of prelim-

inary testing is on πLSTD basis function construction whereas the next phases of the

experimentation campaign focus on identifying and tuning the algorithmic param-

eter values conducive to returning quality solutions. The case study investigations

involve revisiting scenarios in which the DROP and ADP policies perform differently

to discern the root cause of the disparity in behavior through recreating the spe-

cific, tactical conditions. This final phase of experimentation fuels our insights and

conclusions.

4.3.1 Preliminary Testing and Insights

We begin our experimentation campaign with preliminary testing to explore the

operating space of the A3P and scope a meaningful experimentation region of interest.

Besides the number and makeup of basis functions, we explore the seven algorithmic

factors in Table 5.

Table 5. Algorithmic Factors Under Investigation

N number of policy evaluation loops
β learning rate parameter
η regularization parameter

ε-greedy action space search
radvPay reward engineering signal

ε-Neighborhood DBSCAN parameter
minPoints DBSCAN parameter

We follow a structured process during preliminary testing to organize our investi-

gation. We depict our preliminary testing process in Figure 12.
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Figure 12. Preliminary Testing and Investigation Process

The use of common random numbers (CRN) is synchronized, meaning each ran-

dom number used in one model for some purpose is used for the same purpose in

the second model (Banks et al., 2013). This means both policies, the benchmark

and the ADP, for a fixed problem instance, face the same stochastic enemy arrivals,

same locations, and same times for their performance evaluation simulations (recall

Figure 9). This allows us to assume that the difference in the total reward earned

by a policy for a given problem instance, and given CRN, is due to the effectiveness

of the decision rule in making sequential decisions under uncertainty. Any disparity

in policy performance for a given problem instance and given CRN is not blamed on

the inherent randomness in the problem environment.

Preliminary testing is extensive. A critical output of the preliminary testing pro-

cess is the attainment of an ADP policy whose basis functions and algorithm param-

eter values achieve a higher mean total reward than the DROP for a given problem

instance. This solution quality suggests that the basis functions are satisfactory, and
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we can reasonably progress to a more thorough investigation and tuning of algorithmic

factor values through designed experimentation. We use this initial case study as a

foundation for designed experimentation of algorithm parameter value searches. The

case we choose to serve as the foundation of our screening and follow up experiments

is shown in Figure 13.

Figure 13. Baseline ADP Performance for Testing

All data shown in Figure 13 is policy performance on A3P Problem Instance 3.

The top third of Figure 13 shows a histogram of the scores achieved by the πDROP

benchmark policy over 30 runs with accompanied mean value and 90% confidence

interval. The middle third of Figure 13 shows πLSTD performance. Finally, the bottom

third of Figure 13 shows a stacked bar chart of the differences of policy scores arrayed

by the 30 runs. This figure is useful for investigation as it depicts which specific

runs have a disparity in policy performance and display the bars proportional to the

magnitude of performance difference. If the dark blue bar is above the horizontal

line, the ADP achieved a superior mean total reward for that run.
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4.3.2 Screening Designed Experiment

We design our screening experiment based on the ADP policy and problem in-

stance that return a mean total reward higher than that of the benchmark from Prob-

lem Instance 3 in Figure 13. This initial ADP performance establishes a foundation

on which to base a screening experiment to capture the best combination of LSTD

parameter settings that provide the best πLSTD performance possible. We investi-

gate robustness by designing eight problem instances and apply algorithmic factor

levels similar to the ones found in Figure 13. We include first order interactions of

the basis functions, second order, and third order terms with a total of |F| = 134.

The intent of this 26 full factorial designed experiment is to identify the superlative

algorithmic factor levels for each of the eight A3P problem instances that achieve the

greatest mean total reward compared to all other combinations of algorithmic factor

levels. The factor levels for this designed experiment are shown in Table 6. We keep

parameter η fixed at 1.

Table 6. Designed Experiment Factors and Levels

Category Factor Parameter Settings

Problem Instance Battlespace Shape {Linear AO, Non-Linear AO}
Arrival Rate λ { 1

10min
, 3

10min
}

Playtime ρmax {60, 120}
API-LSTD N {1000, 5000}

β {0.5, 0.6}
ε-greedy {0.3, 0.5}
radvPay {0, 0.01}

ε-Neighborhood {12.4, 18}
minPoints {3, 4}

The eight problem instances with their accompanying problem factor levels are

shown in Table 7. The problem instance parameter levels are selected to provide

sufficient insight to investigate a region of experimentation within the operational

region of the A3P. We seek to gain a foothold of research insights most useful for this
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debut research of the A3P.

Table 7. Eight Problem Instances

Problem Instance Parameter Settings

Instance Battlespace Shape 10λ ρmax

1 Linear 1 60
2 Linear 1 120
3 Linear 3 60
4 Linear 3 120
5 Non-Linear 1 60
6 Non-Linear 1 120
7 Non-Linear 3 60
8 Non-Linear 3 120

4.4 Experimental Results

The designed experiment returns the superlative πLSTD parameters settings for

each problem instance shown in Table 8. For six of the eight problem instances, the

superlative parameter setting included the radvPay, suggesting that this parameter is

useful for solving the A3P approximately.

Table 8. Superlative ADP Parameter Values

Superlative API-LSTD parameter settings by problem instance

Instance M N β η ε− greedy radvPay ε−Neigh minPts

1 30 5000 0.6 1 0.5 0 18 4
2 30 1000 0.6 1 0.5 0.01 18 3
3 20 1000 0.5 1 0.3 0.01 18 4
4 10 5000 0.5 1 0.5 0 12.4 4
5 10 1000 0.5 1 0.5 0.01 12.4 3
6 10 5000 0.5 1 0.3 0.01 18 4
7 50 1000 0.5 1 0.3 0.01 18 3
8 50 1000 0.5 1 0.3 0.01 12.4 4

Table 9 depicts the solution qualities of the πLSTD and πDROP policies. The far
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right column of the table shows the mean differences and 90% confidence interval

half-widths for the performances and provides insight into quality and robustness. In

terms of solution quality, the data suggest the πDROP performs more robustly in terms

of quality than the πLSTD of the eight problem instances investigated. However, for

Problem Instances 1 and 5, the πLSTD does outperform the πDROP with respect to

quality. Indeed, the πLSTD superior performance is impacted by two problem factor

levels, λ
10

= 1 and ρmax = 60. This result suggests that the JFC may prefer the πLSTD

performance quality over the πDROP when a mission is of shorter duration and new

enemy arrivals during a mission are fewer.

Table 9. Performance (Quality and Robustness)

πDROP πLSTD Mean Difference
(ADP - DROP)

Instance Mean TR Mean TR Mean TR

1 229.27 ± 103.9 471.4 ± 173.1 242 ± 210.9
2 1652.3 ± 309.7 1405 ± 381.3 -246.7 ± 514.1
3 960.2 ± 251.6 916.2 ± 300.5 -44 ± 404.5
4 5170 ± 793.1 2411.1 ± 448.7 -2758.8 ± 804.3
5 571.3 ± 192.9 843.6 ± 238 272.3 ± 303.1
6 1884.1 ± 365.3 1752.5 ± 364.9 -131.6 ± 558.9
7 1989.9 ± 410 1781.8 ± 427.6 -208.1 ± 665.8
8 5950.8 ± 755.6 4400.3 ± 499.6 -1550.5 ± 965.8

Table 10 depicts policy computational effort or speed of attaining solutions. The

data suggest the πLSTD is far superior to the πDROP in terms of performance speed.

The πLSTD is between 10 to 216 minutes faster at calculating a solution to 30 runs

of a problem instance as compared to the πDROP . The performance speed gap in-

creases substantially with increased λ
10

and ρmax. Indeed, this is the reason only 30

runs of each problem instance are investigated. When comparing performance values

between the πLSTD and πDROP , the benchmark values are calculated only once, with

subsequent investigations read from a table. We encourage future researchers to bud-
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get sufficient time to investigate performance over 100 runs for increase quality data

accuracy.

Table 10. Performance of 30 Simulation Runs (Speed and Robustness)

Benchmark Compu-
tational Effort

LSTD Computational
Effort

Computational
Effort difference
(ADP - DROP)

Instance (mins) (mins) (mins)

1 25.5 0.33 -25.17
2 19.9 0.78 -19.12
3 196.93 0.59 -196.34
4 185.5 2.06 -183.44
5 11.25 0.29 -10.96
6 23.04 0.55 -22.49
7 91 0.76 -90.24
8 218.07 2.07 -216

The results of the 26 full factorial experiment suggest that overall performance of

the πLSTD is contested with the πDROP given the problem instance factor levels and

LSTD algorithmic factor levels under investigation. A decision-maker valuing solution

quality may prefer πDROP with respect to quality; however, the πLSTD performance

quality for problem instances with low λ
10

and ρmax exceeds πDROP quality. In addi-

tion, these results suggest that the πLSTD far surpasses the πDROP performance with

respect to computational effort. We continue our investigation into the third phase of

our campaign of experimentation, performing a specific case study analysis to discern

why the policies seem to behave the way they do.

4.5 Case Study Investigation

Our case study investigation begins by selecting certain behaviors we expect are

most meaningful for decision-makers and future research. The primary question we

choose to investigate is: Why did the πLSTD outperform the πDROP ? Once we gain
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insight into the cause, we seek to confirm our newly formed hypothesis with additional

investigations into other problem instances. To address these inquisitions, we focus

our attention on policy performance quality in Problem Instance 1.

4.5.1 Problem Instance 1

The results suggest a relationship with πLSTD increased attainment of mean total

reward over the πDROP in Problem Instances 1 and 4. We seek to discern the possible

relationship between this performance and the problem factor levels of enemy target

arrival and playtime. Problem Instance 4 seems to support suspicion that this increase

in policy quality is robust considering the battlespace shape problem factor. We begin

our investigation by considering the performances of the 30 simulations of Problem

Instance 1 shown in Figure 14. This figure alone suggests the πDROP never successfully

destroyed more than 1 HVT in any of the 30 runs as no scores are over 1200.

Figure 14. Problem Instance 1 Performance Quality

The data in Figure 14 suggest πLSTD is superior in Runs 5,6,12,13,15,22,25, and 26.

We choose to investigate performance in Run 22 (CRN seed 122) since the magnitude

of the performance gap seems to be the greatest. Figure 15 depicts the initial starting
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state both the πDROP and πLSTD experience. They experience the same arrivals at the

same times, but the sequential decision-making they perform changes the outcomes.

Figure 15. Problem Instance 1 at State S0

There is a high density of initial targets and NAIs to the southeast of the AO. This

is random since the initial set of HPTs and NAIs is uniformly distributed. Only the

new arrivals are subject to asymmetry favoring the northwest. We omit the legend

on the right-hand side of the maps in Figure 16 for efficiency.

Figure 16 depicts a similar process to the preliminary testing outlined in Figure 12.

We re-load Run 22 of Problem Instance 1 (CRN seed 122) to step through the flight

path of each policy to gain insight. The sequence of figures depict specific systems

states while implementing the πDROP and πLSTD policies in the left and right columns,

respectively. In Problem Instance 1 (CRN seed 122), two key events take place that

manifest conditions to gain insight into the two policies. (1) At simulation time τ(St)

= 7.6 minutes, the first of two HVTs arrives just south of the TAI at approximate

coordinates (-15, 10) and (2) a second HVT arrives at approximately τ(St) = 12.8

minutes to coordinates (-35, 25).
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(a) XπDROP

0 (b) XπLSTD

0

(c) DROP Decision after HVT 32 arrives (d) LSTD Decision after HVT 32 arrives

(e) Chooses HPT 33 over HPT 28 (f) Passes 36 and 33 to reach HVT 34

(g) Chooses HPT 36 over NAI 4 (h) Collects 36, 33, 25 and 4 on return to exit

Figure 16. A3P Problem Instance 1 (CRN seed 122) - policy contrast
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The πDROP ultimately experiences 23 epochs whereas the πLSTD experiences 21.

This investigation reveals several observations and possible insights. The higher den-

sity of initial targets seems to pull both policies initially to the southeast with a

seemingly identical first decision see Figures 16a and 16b. After the arrival of the

first HVT at 7.8 minutes into the mission, the πDROP reroutes to include now-arrived

HVT 32; however, πDROP still decides to spend early playtime to service HPT 27.

This decision ultimately seems to cost πDROP the opportunity to service the not-yet-

arrived HVT 34. In contrast, πLSTD recognizes the arrival of HVT 32 and routes

toward HVT 32 (and the TAI) with a more efficient route, choosing not to service

HPT 27. This leaves πLSTD enough playtime remaining to service the HVT 34 arriv-

ing at 12.8 minutes into the mission. In addition, it is interesting to note that πLSTD

passes HPT 36 en route to HVT 34 but later services HPT 36 on its return to the

deep zone exit point.

We infer the following insights as a result of this case study. The πDROP very well

finds the optimal route for a given state. However, its lack of anticipation suggests

it may be burning a portion of early playtime at epoch t that would have been

better saved for a possible future arrival in epoch t + 1...t + 2.... The πLSTD is a

better steward of the playtime remaining ρt for any given epoch t since it preserved

playtime in anticipation of future arrivals. We suppose this preferred use of playtime

is attributed to the basis functions, which include the features expressed in Equations

14a and 14b. The πDROP considers ρt as a constraint in Equation 27 but the DROP

does not consider the amount of playtime it might use for its next decision relative to

its current playtime remaining. This hypothesis is reinforced in the πLSTD decision

to closely bypass HPT 36 but then later service HPT 36. We supposed the πLSTD

basis functions, which include distance to the TAI centroid (Equation 12a), may be

influential in these types of decisions.
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The simulation for this problem alone instance took πDROP approximately 30

minutes to compute. The simulation took πLSTD just under 2 minutes to compute.

This again reinforces our earlier data on the disparity in computational effort between

the two policies.

We see further evidence of the πDROP inefficient use of the playtime resource

within Problem Instance 1 (see Figure 17). In this decision, πDROP chooses a route

that crosses over itself to collect the maximum rewards possible for epoch t. While

this route is optimal for a specific t this criss-cross behavior is inefficient. The wasted

playtime used to negotiate this optimal route could have been allocated toward flying

deeper into the AO in anticipation of targets yet to arrive to the HPTL.

Figure 17. πDROP Problem Instance 1 Misappropriation of ρt

From this experimentation we learned about the differing uses of playtime and

reinforced the disparity in computational effort. It is reasonable to compare the

amount of computational effort it takes to train and employ one πLSTD to employing
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the πDROP . Often, training and employing a πLSTD is many times faster than em-

ploying the πDROP . Indeed, the time disparity is so significant that it is appropriate

to consider training an entirely new LSTD policy through Algorithm 2 and employing

the brand new policy before the DROP finds a solution.

4.6 Additional case study analysis and insights

We follow a similar process of investigation into Problem Instances 2, 3, 4 and 5.

The disparity in performance quality is again a result of the interaction of primarily

λ
10

and ρmax. If a problem instance has a higher ρmax, the πDROP attains a higher per-

formance quality. However, as quality increases, computational effort also increases.

The battlespace shape problem factor has a minor influence over quality, but less so

than the other two problem factors.

Additional case study inspections confirm the πDROP achieves a high quality be-

cause its behavior is optimal for any one system state (assuming no new target ar-

rivals). When presented with a system state, there exists no better route than the

route the πDROP chooses. Any inefficiencies in route selection for a given system state

that another decision rule may choose, such as πLSTD, may be very costly when there

are more opportunities to make inefficient decisions. A3P problem instances, where

there are more opportunities to make decisions, occur in problems with increased

target arrival rates and playtime.

The results of this campaign of experimentation equip us to glean several insights.

We offer the following comments on πLSTD performance in terms of quality, compu-

tational effort, and robustness relative to the benchmark πDROP .
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4.6.1 Performance - Quality

We investigate eight instances of the A3P over 30 runs with a 90% confidence (see

Table 9). The πLSTD outperforms πDROP in one instance (Instance 1), and the πDROP

outperforms the πLSTD in two instances (Instance 4 and 8). The two policies achieve

parity in five instances (Instances 2, 3, 5, 6, 7). When only examining practical

mean results the πLSTD outperforms πDROP in two of the eight instances and under

performs in six of the eight.

The results suggest the πDROP relative quality over πLSTD is greater with increased

arrivals and playtime. Conversely, the πLSTD outperforms the πDROP on instances

of low target arrival and low playtime. Our case study analysis confirms the πDROP

makes optimal decisions for any one state considering only the current HPTL at epoch

t. When the πDROP is presented with sequential system states, its behavior, although

myopic, continues to achieve a relatively high performance quality.

There could be several reasons for the disparity in performance quality between

the two policies. First, the VFA is a linear model that must predict the value of being

in a future state accurately to prove useful (recall Equation 10). The basis function

evaluations that serve as the independent variables of the linear model must accurately

and collectively capture the information necessary to facilitate discrimination of value

among feasible future states. It is possible the linear value function approximation

(VFA) does not capture the information necessary to make high-quality decisions. If

the VFA poorly models the actual but unknown value function, performance suffers.

Our preliminary testing suggests the A3P’s actual value function is likely non-

linear, as all of our thirteen basis functions are second and third order interactions

of the fundamental reward-based, spatial-based, and resource-based features. Indeed,

all of the thirteen basis functions consider resource-based, playtime-centric features -

a realization we only discovered near the climax of preliminary testing that resulted
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in a jump in performance quality. Another VFA approach such as support vector

regression or neural network regression may be able to capture important features

at the expense of clearly understanding these these features. Moreover, possibly the

addition or removal of basis functions could greatly affect the accuracy of the VFA. For

example, if we remove all features related to the type of node on which the AUCAV

resides, the ADP policy would make decisions blind to the type of node as it relates

to the contribution (i.e., reward) it just received for making a decision. Preliminary

testing outlined in Figure 12 suggests the removal of such features is detrimental,

and for that reason, we keep such features in our basis functions. Moreover, if a

basis function were to be added that considers a route-based approach similar to the

πDROP , we could reasonably expect an increase in performance.

Other possible limitations to the performance quality of the πLSTD are the ranges

of the algorithmic parameter values we investigate (recall Table 6). It is possible

that a combination of algorithmic parameter values we did not investigate using

the same linear VFA, could return increased performance quality. We based our

experimentation on the outcomes of many preliminary tests; however, there is no

evidence to suggest that more testing with the same VFA cannot lead to increased

performance quality.

Further testing should devote considerable attention to the elements of model

construction related to how a policy considers the playtime resource, because the

two policies’ performance disparity seems to be centered around their allocation of

playtime. The πDROP arguably uses playtime perfectly but in a myopic manner only

considering its current system state. The πLSTD allocates playtime while considering

anticipated but unknown targets. Possibly the inclusion of basis functions we outline

in Chapter III may be included into a more powerful, non-linear, VFA to return

higher-quality policies that will anticipate.
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Additionally, our ADP solution approach is an offline method. After we finish

training the πLSTD, its VFA coefficients are fixed and do not change when solving the

A3P. The results in Table 10 suggest the computational effort the πLSTD requires to

be trained and solve the A3P is less than the computational effort the πDROP requires

to solve. An online solution approach to solving the A3P is a reasonable endeavor

that may increase performance quality.

Finally, any permutation of the suggestions above may yield an increase in ADP

solution approach performance. We expect a JFC to prefer an autonomous attack

aircraft equipped with a πLSTD when the mission duration is short and the density of

new arrivals is sparse. In contrast, if the density of new arrivals is high and mission

duration is also high, the quality of the πDROP likely makes it the preferred policy.

We assume a notional JFC’s intent in establishing the notional A3P instances to

investigate and compare policies for the purposes of this research. If a JFC decides

to employ an autonomous agent, we encourage reserving pre-combat check resources

to rehearse what behaviors they expect an AUCAV to perform for a given set of

rewards. Such pre-combat checks provide the opportunity for combat leaders to

conduct final tuning of AUCAV behavior before likely enemy contact. This should

support expectation management, leader understanding, and ideally, combat success.

4.6.2 Performance - Speed (computational effort)

If performance computational effort is influential in decision-making, it is reason-

able to expect a JFC to prefer an autonomous aircraft equipped with a πLSTD over the

πDROP for most problem instances. We suppose this is the case as the ADP policy’s

computational effort seems to be a fraction of the repeated solving of the orienteering

problem within the problem instances we investigate (recall Table 10). Similar to

performance quality, we encourage future employment to add computational effort
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expectations to practice pre-combat checks since a lagging or seemingly indecisive

AUCAV could put friendly forces at risk.

4.6.3 Performance - Robustness

Through the lens of performance robustness, the πLSTD under-performs the bench-

mark on problem instances with high target arrival rate and playtime. For instances

with high target arrival rate and low playtime or low target arrival rate and high

playtime, the πLSTD and πDROP qualities seem comparable. Given this, we suppose

the πLSTD is neither robust nor constrained to parochial employment for the problem

instances we investigate. Indeed, the ADP policies computational effort may make it

the only feasible policy. The πLSTD has shown to be superior in the time-sensitive,

short duration missions we investigate where the risk of success or failure is poten-

tially heavier than the aggregation of many decisions over a longer, higher arrival

battle. This superior performance of πLSTD quality and speed seems robust for linear

and non-linear battlespaces.
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V. Conclusions and Future Research

This thesis examines the autonomous attack aviation problem (A3P). The intent

of this research is to determine suitable policies that provide high-quality solutions

to the A3P. We leverage a Markov decision process (MDP) framework to construct

a mathematical model of the A3P. We then construct an approximate dynamic pro-

gramming (ADP) (i.e., reinforcement learning) algorithm to generate decision rules

(i.e., policies) that solve the MDP model. We define performance with respect to

quality, computational effort, and robustness. We measure performance of our ADP

solution approach as compared to a benchmark policy, the deterministic repeating

orienteering problem (DROP) solution approach.

We introduce a baseline, realistic, problem instance of the A3P as a large-scale,

near-peer, strike coordination and reconnaissance (SCAR) mission fought in a no-

tional US Army division’s deep area. Through extensive preliminary testing, we de-

velop a set of basis functions to approximate the value function for our least squares

temporal difference approximate policy iteration ADP solution approach. We then

introduce eight notional problem instances of the A3P to provide a realistic venue

to study the performance of our ADP solution approach relative to the benchmark

policy.

We conduct computational experimentation to determine high-quality policies

and evaluate policy effectiveness to study the efficacy of our proposed ADP solution

approach. Finally, we leverage common random numbers to re-create the tactical

situations and specific decision points to study the causes behind the disparity in

the sequential decision-making under uncertainty performed by our ADP policy and

benchmark policy.
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5.1 Conclusions

The results of our investigations into the eight problem instances suggest the API-

LSTD solution approach outperforms the benchmark on problem instances where

AUCAV playtime is more constrained and new enemy arrivals are sparse. As arrival

rate and playtime increase, the benchmark seems to perform with superior solution

quality. The ADP solution approach is superior to the benchmark in terms of com-

putational effort. Moreover, the ADP solution approach seems robust to changes in

battle space shape.

This research is of interest to organizations concerned with the performance of

autonomous military assets. Some organizations may be interested to know how au-

tonomous aircraft may behave and adapt to develop new tactics, techniques, and

procedures. Moreover, the acquisition and simulation community may be interested

in the modeling of the A3P for possible implementation in training and wargaming.

Throughout this research, we highlight the interdependence of human and machine

decision-making. This blended decision-making seems realistic and increasingly preva-

lent in modern problem solving. Specifically, we outlined the roles and responsibilities

of the Joint Forces Commander and their staff with emphasis on the inclusion of hu-

man intelligence officers’ prediction of enemy action into AUCAV behavior (i.e., basis

functions). Potentially the group of people most interested in this research are pilots

themselves. Pilots may see AUCAVs successfully conducting deep SCAR missions as

an alternative to a human completing the same mission. Moreover, a human pilot

may be interested in the decision-making of an autonomous aircraft in the event they

fly with an AUCAV as a wing-man for a combat mission.
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5.2 Future Work

The crux of this research is to codify how an autonomous aircraft may perform

when assigned an air-to-ground attack mission. Since we are one of the first research

efforts to model the A3P in this way, we encourage future work in this area. We rec-

ommend three areas of deeper solution procedure research and three areas of problem

instance research.

5.2.1 Future Work - Solution Procedure

Our efforts outlined in this thesis are subject to the amount of time available to

conduct research. We have suggestions for interested parties whose intent is to pursue

similar research efforts. Consider increasing the levels of algorithmic parameter levels

and the span of the levels investigated. Computational experiments take time, and it

is possible that continued computational experimentation of algorithmic parameter

settings for πLSTD may attain superior quality and robustness over the πDROP in turn,

thus providing more insights.

We recommend investigating new ADP policies that include the blending of the

πDROP approach to route planning with the πLSTD anticipation. This may be ap-

proached by building a basis function which returns the expected total discounted

reward based on a complete route if a certain node is chosen. To combat the costly

computational effort, we suggest a roll-out algorithm that makes a truncated route,

constrained by a finite number of steps less than the playtime remaining. If multiple

AUCAVs are considered, potentially the blending of solution approaches could be

investigated by allowing some AUCAVs to make decisions using the πDROP , while

others use the πLSTD.

We recommend investigating neural network regression as a substitute to the least

squares temporal difference approach to construct the value function approximation.
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It is possible that a neural network ADP approach is more suitable to capture the

complex, non-linear relationships necessary to increase performance quality. How-

ever, with neural network regression comes the possibility that any uncovered effec-

tive relationships of features may be too complex for human intuition to effectively

understand.

5.2.2 Future Work - Problem Model

In addition to continued solution procedure research, we suggest further research

into the modeling of the A3P itself. We encourage investigation into problem in-

stances with the inclusion of multiple AUCAVs and multiple exit locations. Our

recommendation’s purpose is to increase relevancy and application of the A3P. We

make a limiting assumption that only one AUCAV performs one mission at a time and

that AUCAV cannot be destroyed. This assumption facilitates our initial research but

does not comport with the reality that an adversary will desire and allocate resources

to destroy the AUCAV. We suggest reviewing research wherein multiple autonomous

agents work collectively toward a common goal such as Bertsekas (2021) and Bhat-

tacharya et al. (2020). The consideration of multiple AUCAVs invites opportunity to

simulate AUCAV attrition during combat. Moreover, the addition of exit locations

is reasonable since there is current research into air refueling of helicopters.

We recommend instances with multiple areas of asymmetric enemy arrivals. In

our work, we assume one location of increased density of enemy arrivals behind the

L-shaped ridge line to the northwest. In more realistic scenarios, it’s reasonable to

foresee missions where there are multiple areas of increased enemy arrival density. We

encourage this effort as it may reveal insights that would not otherwise be discovered.

Finally, we recommend investigating problem instances where the array of TAIs

is not aligned with the actual increased density of enemy arrivals. Indeed, this may
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invite the inclusion of game theory into the A3P. A misalignment of the TAI to actual

enemy arrivals simulates poor intelligence, which is something an adversary desires.

Any consideration of a sentient adversary may also bring into question the predictabil-

ity of AUCAV behavior. We suggest that any researcher concerned with application

consider a fourth facet to solution performance possibly titled: solution predictability.

As the behavior of an AUCAV becomes more predictable to an adversary, it may be

less desirable to employ by practitioner of armed conflict.

In conclusion, we intend for the the data and insights presented in this research

to support the development of viable AUCAV air-to-ground employment in future

military operations.
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