
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2021 

Meta-Heuristic Optimization Methods for Quaternion-Valued Meta-Heuristic Optimization Methods for Quaternion-Valued 

Neural Networks Neural Networks 

Jeremiah P. Bill 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Operational Research Commons 

Recommended Citation Recommended Citation 
Bill, Jeremiah P., "Meta-Heuristic Optimization Methods for Quaternion-Valued Neural Networks" (2021). 
Theses and Dissertations. 4919. 
https://scholar.afit.edu/etd/4919 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F4919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4919?utm_source=scholar.afit.edu%2Fetd%2F4919&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


Meta-Heuristic Optimization Methods for
Quaternion-Valued Neural Networks

THESIS

Jeremiah P. Bill, Capt, USAF

AFIT-ENS-MS-21-M-143

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENS-MS-21-M-143

META-HEURISTIC OPTIMIZATION METHODS FOR QUATERNION-VALUED

NEURAL NETWORKS

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science of Operations Research

Jeremiah P. Bill, BA in Mathematics

Capt, USAF

March 25, 2021

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENS-MS-21-M-143

META-HEURISTIC OPTIMIZATION METHODS FOR QUATERNION-VALUED

NEURAL NETWORKS

THESIS

Jeremiah P. Bill, BA in Mathematics
Capt, USAF

Committee Membership:

Dr. Lance E. Champagne
Advisor

Dr. Bruce Cox
Member

Dr. Trevor Bihl
Member

Capt Phillip R. Jenkins, PhD
Reader



AFIT-ENS-MS-21-M-143

Abstract

In recent years, real-valued neural networks have demonstrated promising, and

often striking, results across a broad range of domains. This has driven a surge of

applications utilizing high-dimensional datasets. While many techniques exist to al-

leviate issues of high-dimensionality, they all induce a cost in terms of network size

or computational runtime. This work examines the use of quaternions, a form of hy-

percomplex numbers, in neural networks. The constructed networks demonstrate the

ability of quaternions to encode high-dimensional data in an efficient neural network

structure, showing that hypercomplex neural networks reduce the number of total

trainable parameters compared to their real-valued equivalents. Finally, this work in-

troduces a novel training algorithm using a meta-heuristic approach that bypasses the

need for analytic quaternion loss or activation functions. This algorithm allows for a

broader range of activation functions over current quaternion networks and presents

a proof-of-concept for future work.

iv



To my family (and my dog) for putting up with my Zoom meetings, Teams classes,

and constant presence in the midst of a work-from-home pandemic. This one’s for

you.

v



Acknowledgements

I would like to thank my advisor, Dr. Champagne, for giving me free rein to

explore this fascinating topic. Additionally, I would to thank Dr. Hill and Dr. Jenkins

for their invaluable inputs, and to my many classmates, friends, and family that have

supported me along the way.

Jeremiah P. Bill

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

II. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Neural Networks & Multi-Layer Perceptrons . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 The Backpropagation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Shortfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Quaternion Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Quaternion Conjugates, Norms, and Distance . . . . . . . . . . . . . . . . 11
2.2.3 Quaternionic Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Quaternion-valued Neural Networks (QNNs) . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 A Note on Quaternion Calculus and

Quaternionic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Quaternion Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Metaheuristic Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

III. Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.1 The Ackley Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 The Lorenz Attractor Chaotic System . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 MLP Network Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Function Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Chaotic Time Series Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Quaternion Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Evaluation & Analysis Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



Page

IV. Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Function Approximation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Time Series Prediction Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

V. Conclusions and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

viii



List of Figures

Figure Page

1 Original Rosenblatt Perceptron diagram [38] . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Overview of a TLU from [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Representation of a basic MLP [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 3D Ackley Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Lorenz Attractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Impact of Initial Conditions on Lorenz System . . . . . . . . . . . . . . . . . . . . . . 27

7 Genetic Algorithm/Genetic Programming Process . . . . . . . . . . . . . . . . . . . 29

8 Training Set Mean Absolute Error for Each Network . . . . . . . . . . . . . . . . 33

9 10-Step Ahead Predicted Coordinate Values . . . . . . . . . . . . . . . . . . . . . . . . 35

10 10-Step Ahead Path Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

11 50-Step Ahead Predicted Coordinate Values . . . . . . . . . . . . . . . . . . . . . . . . 37

12 50-Step Ahead Path Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

13 10-Step Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

14 50-Step Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

15 Unscaled QMAE Training Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



List of Tables

Table Page

1 Neural Network Topologies for Ackley Function
Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Neural Network Topology for Chaotic Prediction . . . . . . . . . . . . . . . . . . . . 27

3 Neural Network Comparison Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Lorenz Prediction Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

x



META-HEURISTIC OPTIMIZATION METHODS FOR QUATERNION-VALUED

NEURAL NETWORKS

I. Introduction

Over the last several decades, the explosive growth in artificial intelligence and

machine learning (AI/ML) research has driven a need for more efficient data repre-

sentations and machine learning training methods. As machine learning applications

have expanded into new and exciting domains, the scale of data processed through

enterprise systems, e.g. Department of Defense (DoD) and industry, has grown to

an almost incomprehensible level. While computational resources have grown com-

mensurately with this increase in data-driven systems, inefficiencies in current neural

network architectures continue to hamper progress on difficult optimization problems.

This work examines the use of hypercomplex numbers in neural networks, with a

particular emphasis on the use of quaternions in neural network architectures. This

thesis demonstrates that quaternion data representations can reduce the total number

of trainable neural network parameters by a factor of four, resulting in improvements

in both computer memory allocations and computational runtime. Additionally, this

work presents a novel, gradient-free, quaternion genetic algorithm that enables the use

of several loss and activation functions previously unavailable due to differentiability

requirements. This chapter provides a brief review of the DoD’s Artificial Intelligence

Strategy, highlighting key application areas for hypercomplex neural networks. This

chapter concludes with an outline of the overall thesis organization.

1



1.1 Motivation and Background

Nearly all modern machine learning applications involve high dimensional datasets

and complex search spaces. Such datasets are often plagued by the “curse of dimen-

sionality” [21, p. 242] which can stymy many of the current multivariate analysis

techniques. In addition, high dimensional datasets often contain hidden interdepen-

dencies between data elements that can be distorted in surprising ways when using

blackbox optimization techniques such as neural networks. While increasing com-

putational resources and improving the quality of the training data can generally

mitigate many of these issues, this is not always a practical solution, especially in

resource constrained environments.

The 2018 Department of Defense Artificial Intelligence Strategy [45] communi-

cates the department’s overall strategy for maintaining technological and operational

advantages in the AI/ML domain. In particular, the strategy highlights several focus

areas for artificial intelligence development, many of which involve multidimensional

data. Two such examples are:

1. Improving situational awareness and decision-making : specifically, AI applied

to perception tasks such as imagery analysis. Image data is naturally multidi-

mensional and often requires special processing to maintain spatial hierarchies

between RGB pixel intensity values, for example.

2. Increasing safety of operating equipment : military equipment necessarily oper-

ates in 3-dimensional space, recording positional information using 3D coordi-

nates over time. Safety systems and autonomous vehicles can reduce human

error and improve operator safety using efficient data representations for posi-

tional information.

This research proposes, develops, and investigates a quaternion neural network for

2



solving multidimensional regression and prediction problems. In addition, this work

introduces a novel quaternion genetic algorithm (GA)-based approach for training the

neural network. Initial experiments with the proposed network structure demonstrate

substantial performance improvements over equivalent real-valued networks in terms

of both accuracy and computational resources. Additionally the quaternion genetic

algorithm removes the need for analytic loss or activation functions in the network,

expanding the aperture on available functions for use in the quaternion domain.

1.2 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter II provides a review

of neural networks, the quaternion number system, quaternion neural networks, and

metaheuristic optimization techniques. Chapter III describes the methodology used

to develop a quaternion neural network and a novel quaternion genetic training al-

gorithm. Chapter IV presents the network results, comparing the quaternion genetic

algorithm performance to two analogous real-valued networks. Additionally, a mul-

tidimensional input/multidimensional output network is presented for predicting the

Lorenz attractor chaotic dynamical system. Finally, Chapter V provides conclusions,

recommendations, and proposals for future work.

3



II. Literature Review

This work evaluates various methods for training quaternion-valued neural net-

works (QNNs). In particular, this work implements a meta-heuristic optimization

technique to train a QNN on both real-valued and quaternion-valued function ap-

proximation problems. Neural networks have received a tremendous amount of at-

tention in recent years, with a large body of research emerging from both academia

and industry. Meta-heuristic optimization techniques are also well-studied and have

been applied to real-, complex-, and quaternion-valued problems. This section pro-

vides a brief review of the quaternion algebra as well as related work regarding neural

networks and meta-heuristic optimization.

2.1 Neural Networks & Multi-Layer Perceptrons

Statistical learning processes have received increasing attention in recent years

with the proliferation of large datasets, ever-increasing computing power, and simpli-

fied data exploration tools. In general, statistical learning is a set of mathematical

and statistical tools for understanding patterns in data [21]. Artificial neural net-

works (ANNs) fall under the umbrella of statistical learning tools and were originally

developed as a mathematical structure that mimics the human brain.

Figure 1. Original Rosenblatt Perceptron diagram [38]

The idea for a mathematical representation of the human brain was first proposed

4



Figure 2. Overview of a TLU from [13]

by Warren McCulloch and Walter Pitts in 1943 [27]. McCulloch and Pitts envisioned

a network structure where each node in the network was governed by propositional

logic rules. In 1957, Frank Rosenblatt proposed a slightly different neural structure

called the Perceptron [38]. A perceptron is composed of several threshold logic units

(TLUs), each of which takes a weighted sum of input values and uses the resulting

sum as the input to a non-linear activation function. While each TLU computes a

linear combination of the inputs based on the network weights, the use of a non-linear

activation function allows the perceptron to estimate a number of non-linear functions

by adjusting the weights of each input. The original perceptron diagram is shown in

Figure 1, whereas a modern representation of an individual TLU is shown in Figure

2.

While the perceptron has proven to be a very capable statistical learning tool,

perceptrons are incapable of solving some trivial non-linear problems, such as repli-

cating the Exclusive Or (XOR) function [28]. However, stacking multiple layers of

perceptrons together so that the output of one perceptron forms the input to a sub-

sequent perceptron allows for the estimation of a vast set of linear and non-linear

problems. In fact, two contemporaries, Cybenko [9] and Hornik et al. [16] both inde-

5



Figure 3. Representation of a basic MLP [17]

pendently showed that a network with three layers and sigmoidal activation functions

at each layer is able to approximate any nonlinear function to an arbitrary degree of

accuracy. This network structure is called the Multilayer Perceptron (MLP) and it

forms the most basic deep neural network (DNN). This result (called the Universal

Approximation Theorem) has provided the theoretical justification that has driven

neural network research to the present day. A representation of an MLP is shown in

Figure 3, and [13] provides an overview of MLPs and other common neural network

structures.

2.1.1 The Backpropagation Algorithm

Although artificial neural network architectures have existed since the mid-twentieth

century, researchers found them to be computationally expensive to use and imprac-

tical for most applications. As a result, neural network research was largely stagnant

until 1986, when Rumelhart et al. [39] introduced the backpropagation algorithm for

6



training a neural network. The algorithm developed by Rumelhart et al. extended

several key ideas that Werbos [46] presented in his unpublished doctoral dissertation.

The basic steps of the backpropagation algorithm are to:

1. Process all of the training data through the neural network, calculating the loss

at the final output layer of the network. This is referred to as a forward pass

through the network.

2. Use the chain rule to calculate the gradient of the loss function at each layer

of the network. This determines an improving direction in which to “move”

the network. The partial derivatives at each layer calculated by the chain rule

indicate the amount of error that each individual weight contributes to the total

error in the network. This is referred to as the backpropagation step, since

the loss function gradients are calculated layer-by-layer through the network,

starting at the output layer and working backwards.

3. Perform a gradient descent step to update each weight in the network using the

error gradients.

The backpropagation algorithm has proven to be a straightforward, easy to under-

stand, and easy to implement algorithm that has enabled efficient implementations

of neural networks across a wide-range of problem sets. In fact, backpropagation has

proven so successful that modern deep learning practitioners have developed special-

ized neural network structures to solve specific problems and overcome shortfalls of

the MLP. Examples of custom architectures include convolutional neural networks

(CNNs) for processing image data, recurrent neural networks (RNNs) for processing

sequence data, and generative adversarial networks (GANs) which have been used in

recent years to create deep fakes and very convincing counterfeit data [22].

7



2.1.2 Shortfalls

Artificial neural networks have achieved state-of-the-art results in a truly breath-

taking array of problem domains. However, ANNs are not without their shortfalls.

First, ANNs often require a vast amount of training data. Because of this, training

an ANN requires a large amount of computer resources, in terms of both RAM and

processing time. Additionally, the backpropagation algorithm requires a significant

amount of low-level computational power in order to perform the matrix multiplica-

tions for each forward and backward pass. While GPUs have proven to be particularly

well-suited for this task, many of the current large-scale ANN research applications

require prohibitive amounts of computer memory and GPU hours.

Finally, ANNs (and MLPs in particular) can struggle to maintain any sort of

spatial relationships that are present within the training data. A simple example of

this is seen in color image processing. In general, each of the three color channels of

an RGB image are processed separately in an MLP since the 3-dimensional matrix

representation of the image must first be flattened into a vector for the network

forward pass step. This results in the loss of the spatial relationship between the

red, green, and blue pixel intensities at each pixel. Yin et al. [49] highlight the fact

that this spatial hierarchy can be maintained when using higher-dimensional number

systems such as quaternions as opposed to real numbers and is a significant motivation

for this paper. Matsui et al. [26] demonstrated similar experimental results on a

3-dimensional affine transformation problem, showing that quaternion-valued deep

neural networks were able to recover the spatial relationships between 3-dimensional

coordinates. Section 2.2 provides a brief summary of hypercomplex number systems,

along with a review of their use and success in advanced neural network applications.

8



2.2 The Quaternions

The quaternion numbers (denoted by H) are a four-dimensional extension of the

complex numbers. Complex numbers have the form x+ iy, consisting of a real part x

and an imaginary part y, and can be thought of as an isomorphism of R2. That is, the

complex numbers contain two copies of the real number line, allowing a single complex

number to encode twice as much information as a single real number. Complex

numbers are particularly useful for describing motion in 2-dimensional space, since

there is a very succinct analogue between complex multiplication and rotations in the

plane [7].

Quaternions are referred to as hypercomplex numbers. Each quaternion q consists

of a real part and three imaginary parts, so that the quaternions form an isomorphism

with R4 with basis elements 1, i, j, and k:

q = r + xi + yj + zk. (1)

Quaternions form a generalization of the complex numbers, where the three imaginary

components i, j, and k follow the same construct as i in C:

i2 = j2 = k2 = −1. (2)

However, the three imaginary basis components must also satisfy the following rules:

jk = −kj = i (3)

ki = −ik = j (4)

ij = −ji = k. (5)

These rules clearly demonstrate that quaternion multiplication is non-commutative.

9



However, since the multiplication of any two basis elements is plus or minus another

basis element, the quaternions under these rules form a non-abelian group, denoted

Q8. The group Q8, along with the operations of addition and multiplication form a

division algebra, which is an algebraic structure similar to a field where multiplication

is non-commutative.

The 4-dimensional structure of each quaternion number indicates that quaternions

are capable of encoding four copies of the real number line into a single quaternion

number, analogous to the two copies of R encoded in the complex numbers. Quater-

nions were discovered by the Irish mathematician Sir William Rowan Hamilton in

1843 [15], hence why the set of quaternions is referred to as H and the quaternion

notion of multiplication, described below, is referred to as the Hamilton Product.

2.2.1 Quaternion Algebra

The quaternions form a division algebra, meaning that the set of quaternions along

with the operations of addition and multiplication follow 8 of the 9 field axioms (all

but commutativity). Quaternion addition is defined using the element-wise addition

operation. For two quaternions q1,q2 ∈ H, where

q1 = r1 + x1i + y1j + z1k

and

q2 = r2 + x2i + y2j + z2k.

The sum q1 + q2 is defined as,

q1 + q2 := (r1 + r2) + (x1 + x2)i + (y1 + y2)j + (z1 + z2)k. (6)

10



Quaternion multiplication, referred to as the Hamilton Product, can easily be derived

using the basis multiplication rules in equations (3) - (5) and the distributive property.

In reduced form, the Hamilton product of two quaternions q1 and q2 is defined as:

q1 ∗ q2 :=(r1r2 − x1x2 − y1y2 − z1z2)

+(r1x2 + x1r2 + y1z2 − z1y2)i

+(r1y2 − x1z2 + y1r2 + z1x2)j

+(r1z2 + x1y2 − y1x2 + z1r2)k.

(7)

2.2.2 Quaternion Conjugates, Norms, and Distance

The notion of a quaternion conjugate is analogous to that of complex conjugates in

C. The conjugate of a quaternion q = r+xi+yj+zk is given by q∗ = r−xi−yj−zk.

The norm of a quaternion is equivalent to the Euclidean norm in R and is given by

||q|| :=
√
qq∗ =

√
r2 + x2 + y2 + z2. (8)

With this quaternion norm, one can also define a notion of distance d(q,p) between

two quaternions q and p as

d(q,p) := ||q− p||. (9)

2.2.3 Quaternionic Matrices

Since the set of quaternions H form a division algebra under addition and the

Hamilton product, they also form a non-commutative ring under the same operations.

Hence, quaternionic matrix operations can be defined as for matrices over an arbitrary

ring. Given any two quaternionic matrices A,B ∈ HM×N , the sum A + B is defined

11



element-wise

(A+B)ij := Aij +Bij. (10)

Similarly, for any quaternionic matrix A ∈ HM×N and B ∈ HN×P , the product

AB ∈ HM×P is defined as

(AB)(m, p) :=
N∑

n=1

A(m,n)B(n, p), ∀m = 1, . . . ,M, p = 1, . . . , P. (11)

As with matrix multiplication over an arbitrary ring, quaternionic matrix multiplica-

tion is non-commutative. Additionally, great care must be taken to ensure the proper

execution of the Hamilton product when multiplying each row of A with each column

of B, since the Hamilton product itself is non-commutative.

2.3 Quaternion-valued Neural Networks (QNNs)

Many practical applications of machine learning techniques involve data that are

multidimensional. With the mathematical machinery described in Section 2.2, the

quaternions provide a succinct and efficient way of representing multidimensional

data. Additionally, when applied to neural network architectures, quaternions have

been shown to preserve spatial hierarchies and interrelated data components that are

often separated and distorted in real-valued MLP architectures. This section provides

a brief review of QNN research, starting with a brief note on some of the issues in QNN

construction stemming from quaternionic analysis and quaternion calculus. Then, the

development of QNNs is traced chronologically from early works to the state of the

art.

12



2.3.1 A Note on Quaternion Calculus and Quaternionic Analysis

Quaternionic analysis is a relatively unexplored field. As such, there are very few

analytic functions of a quaternion variable. To account for this, quaternion networks

generally utilize “split” activation functions, where a real-valued activation function

is applied to each quaternion coefficient. For example, the split quaternion sigmoid

function [5] for a quaternion q = r + xi + yj + zk is given by

σ(q) = σ(r) + σ(x)i + σ(y)j + σ(z)k, (12)

where σ(·) is the real-valued sigmoid function. Similar definitions hold for any real-

valued activation function, and many QNNs utilize these split activation functions

even when quaternionic functions are available such as the quaternion-valued hyper-

bolic tangent function. Research has shown that true quaternionic activation func-

tions can improve performance over split activation functions [43], but they require

special considerations since their analyticity can only be defined over a localized do-

main, and the composition of two locally analytic quaternion functions is generally

not locally analytic [48], providing limited utility in deep neural networks. Addi-

tionally, many complex and quaternion-valued elementary transcendental functions,

including the hyperbolic tangent, are unbounded and contain singularities [24] that

make neural network training difficult.

These issues, along with the non-commutativity of quaternions, also affect the

gradient descent algorithm employed in many quaternion networks. Generally speak-

ing, the non-commutativity of quaternions precludes the development of a general

product rule and a quaternion chain rule to compute quaternion derivatives and par-

tial derivatives. Thus, quaternion networks must employ split loss functions and

the partial derivatives used in the backpropagation algorithm are calculated using a

13



similar “split” definition. The split partial derivative used in training a Quaternion

Multilayer Perceptron (QMLP) network, first defined by [5], is given by

∂E

∂W l
=

∂E

∂W l
r

+
∂E

∂W l
x

i +
∂E

∂W l
y

j +
∂E

∂W l
z

k, (13)

where E is the loss function and W l is the weight matrix at layer l. Some researchers

refer to this as a “channelwise” [43] or vectorized implementation.

In 2015, Xu et al. [47] developed the generalized Hamilton-Real (GHR) calculus,

which presents a novel product and chain rule using left- and right- directional deriva-

tives to account for the non-commutativity of the quaternions. Following this, [48]

developed several quaternion-valued equivalents for some of the most popular neural

network learning algorithms, including a Quaternion Gradient Descent algorithm, a

Quaternion Gauss-Newton algorithm, and a Quaternion Levenberg-Marquardt algo-

rithm. However, the authors demonstrate the effectiveness of each algorithm on a

very small toy problem, and as of this writing, the GHR calculus and the associated

learning algorithms have yet to be applied to any real-world machine learning dataset

with a deep quaternion network.

Calculus-based learning algorithms aside, the lack of QNN implementations with

locally analytic, quaternion-valued loss or activation functions is a substantial obsta-

cle to current QNN research. While QNNs with split activation functions have shown

some empirical improvements over their real-valued equivalents, the mathematical

justification for using such functions has yet to be proven in the quaternion domain

(although the universal approximation theorem has been proven in the complex do-

main [6]). Furthermore, the split backpropagation algorithm requires a substantial

amount of computing resources over the relatively straightforward and simple real-

valued backpropagation algorithm, effectively negating any computational runtime

gains that QNNs should have over real-valued networks due to the smaller number of

14



nodes, weights and biases.

This work attempts to address this issue directly, using a genetic algorithm to

train a quaternion-valued neural network with fully quaternion activation functions

at each layer of the network. The genetic algorithm circumvents the need for the

convoluted calculus rules that one must use in QNNs due to the non-commutativity

of quaternions and the locally analytic nature of the activation functions. While not

yet proven in the quaternion domain, this approach has a strong theoretical basis

that is supported in both the complex- and real-valued domains ([24], [9], and [16]).

2.3.2 Quaternion Neural Networks

The QMLP was first introduced by Arena et. al. [5] in 1994, as noted in Section

2.3.1. The initial QMLP used split sigmoid activation functions and a version of the

Mean Square Error (MSE) loss function E, formed by substituting quaternions into

the real-valued MSE equation. For a network with l = 1, . . . ,M layers and 1 < n < Nl

nodes per layer, the output of each node n in each layer l is computed as

yln = σ(Sl
n), (14)

where σ is any split sigmoidal activation function and Sl
n is the linear combination of

network weights, biases, and the output of the l − 1 layer computed as in a normal

MLP

Sl
n =

Nl−1∑
m=0

wl
nm ∗ yl−1m + bln. (15)

15



For each Sl
n, the weights, biases, and y-values are all quaternions. Thus, ∗ represents

the Hamilton Product. The loss function E is given by

E =
1

N

N∑
n=1

(tn − y(M)
n )2, (16)

where t represents the target (truth) data and y(M) represents the neural network

output at the Mth layer.

The authors also introduced a simple learning algorithm using the split or “chan-

nelwise” partial derivatives discussed in Section 2.3.1, where the gradient ∆l
n at the

output layer is simply the output error of the network (tn − y
(M)
n ) and the error at

each prior layer l is calculated using the formula

∆l
n =

N l+1∑
n=1

w∗l+1
hn ∗ (∆l+1

n · σ′(Sl+1
n )), (17)

where w∗l+1
hn represents the quaternion conjugate of the weight connecting node h in

the lth layer to node n in the l + 1st layer. Additionally, (·) represents the compo-

nentwise product, not the Hamilton product between the gradient at the l+ 1st layer

and the channelwise partial derivative of σ(·). Using this gradient rule, the biases at

each layer are updated according to the normal backpropagation process

bln = bln + ε∆l
n, (18)

where ε is the learning rate. Note, however, that the weights are updated using the

rule

wl
nm = wl

nm + ε∆l
n ∗ S∗l−1m , (19)

16



where S∗l−1m represents the conjugate of the input to the lth layer Sl−1
m .

Although the quaternion backpropagation algorithm bears similarities to the real-

valued backpropagation algorithm, it is unique in several ways. The first is the use of

split derivatives in the weight and bias update step. Although the use of split deriva-

tives may seem like a trick to bypass a true quaternion derivative definition, it builds

on [6], which proved that split activation functions and derivatives in the complex

domain could universally approximate complex-valued functions. While unproven in

the quaternion domain, Arena et. al. demonstrated the effectiveness of this network

on a small function approximation problem, where a quaternion network was used to

approximate a quaternion-valued function. Additionally, the weight update and the

gradients leverage the quaternion conjugate, which improves training performance.

Since the introduction of the QMLP and its associated training algorithm, re-

searchers have used QMLPs for a variety of tasks. In particular, QMLPs have been

used as autoencoders [19], for color image processing [14], text processing [35], and po-

larized signal processing [8]. Another natural application of quaternions is in robotic

control [11], since quaternions can compactly represent 3-dimensional rotation and

motion through space. Parcollet et al. [36] note that in every scenario, QMLPs always

outperform real-valued MLPs when processing 3- or 4-dimensional signals. These

simple networks have driven further research in more advanced network architectures

such as convolutional neural networks and recurrent neural networks, both of which

have shown promise in the quaternion domain for advanced image processing [12],

speech recognition [37], and other tasks.

2.4 Metaheuristic Optimization Techniques

While the backpropagation algorithm discussed in Section 2.1.1 has dominated

nearly all neural network research since it was first introduced, recent work has

17



shown that heuristic search methods can also effectively train neural networks at

a scale comparable to gradient descent and backpropagation. Metaheuristic opti-

mization encompasses a broad range of optimization techniques that do not provide

guarantees of algorithmic closure or convergence, but have shown empirically to per-

form well in a variety of complex optimization tasks. In contrast to gradient-based

methods such as the backpropagation algorithm, many metaheuristics do not require

any gradient information. Instead, metaheuristic algorithms utilize rules to generate

search patterns [31]. Metaheuristic algorithms are often inspired by natural processes

that are reflected in the names of various algorithms such as Evolutionary Search, Ant

Colony Search, Whale Optimization, and the Bat Algorithm (among many others).

Perhaps the most famous application of a metaheuristic approach in training neu-

ral networks is the NeuroEvolution through Augmenting Topologies (NEAT) [41]

process, which uses a genetic algorithm to simultaneously train and grow neural net-

works through the evolutionary process. NEAT has proven to be a very effective

neural network training tool, and subsequent variants of NEAT have successfully

evolved neural networks with millions of weight and bias parameters [40]. More re-

cently, researchers with Uber’s OpenAI Labs have shown that even basic Genetic

Algorithms can compete with backpropagation in training large networks with up

to four million parameters [42]. Several other metaheuristic implementations have

shown promise in training neural networks and optimizing the hyperparameters of

neural networks. See [30] for a full review of metaheuristic optimization in neural

network design.

Metaheuristic optimization methods have also been applied to a limited number of

search problems in the quaternion domain. A quaternion variant of the Firefly Algo-

rithm [10] demonstrated comparable performance to the real-valued Firefly Algorithm

in optimizing nonlinear test functions. In addition, [34] introduced a quaternion-based

18



Harmony Search algorithm, demonstrating the algorithm’s performance on a similar

range of nonlinear test functions. The hypothesis of both approaches is that the

search space in the hypercomplex domain is smoother than the search space in R.

While not proven, [32] summarizes the approach. Additionally, Khuat et. al. [23]

introduced a quaternion genetic algorithm with multi-parent crossover that was used

to optimize a similar set of nonlinear test functions. Finally, [33] used the Harmony

Search algorithm introduced in [34] to fine-tune the hyperparameters of a neural net-

work. However, as of this writing, quaternion metaheuristic search methods have yet

to be applied to more complex tasks, such as optimizing a large number of weights

and biases in a quaternion neural network.

Given the difficulties in defining globally analytic quaternion loss functions, acti-

vation functions, and quaternion partial derivatives, metaheuristic optimization pro-

vides an ideal method of training quaternion neural networks. Chapter III outlines a

novel quaternion genetic algorithm for training the weights and biases of quaternion

neural networks. The algorithm does not require gradient information and makes

no assumptions on the analyticity of the activation functions of the network at each

layer, allowing for a broader range of quaternion activation functions than have been

available in prior works.

19



III. Solution Methodology

This chapter describes the test methodology employed in comparing the perfor-

mance of real-valued MLPs to quaternion-valued MLPs in several multidimensional

function approximation tasks. First, Section 3.1 describes the test functions selected

for use in the study. Section 3.2 outlines the structure of the neural networks, includ-

ing an overview of the nodes, layers, and total trainable parameters of each network.

Section 3.3 details the genetic algorithm used to train the real- and quaternion-valued

networks. Finally, Section 3.4 concludes the chapter with a description of the evalu-

ation strategy and key comparison metrics.

3.1 Test Functions

Demonstrating the ability of a neural network to approximate an arbitrary non-

linear function is a crucial step in the development of any ANN structure. Cybenko’s

Universal Approximation Theorem [9], discussed in Section 2.1, provides the theo-

retical underpinning for all modern ANN research and has legitimized many of the

ANN applications to date. While still unproven for the quaternion domain, this re-

search demonstrates that quaternion neural networks with elementary transcendental

activation functions and a genetic training algorithm can effectively approximate arbi-

trary nonlinear functions, using the Ackley function and the Lorenz Attractor chaotic

system as test cases.

3.1.1 The Ackley Function

The Ackley function is a non-convex test function that is often used to test global

optimization algorithms. It was first introduced by David Ackley [1] and has since

been included in a standard library of optimization test functions. In three dimen-

20



sions, the function is characterized by an elevated eggcrate-like surface, with a global

minimum in the center of the function that sinks down to zero. The Ackley function

is a good test case for quaternion networks since it can easily be defined in any num-

ber of dimensions. A vector representation of the function is given in Equation (20),

where a, b, and c are constants and n represents the dimensionality of the vector x.

Additionally, a three dimensional plot of the Ackley function is shown in Figure 4.

f(x) = −a exp

−b
√√√√ 1

n

n∑
i=1

x2i

− exp

(
1

n

n∑
i=1

cos(c · xi)

)
+ a+ exp(1) (20)

This research uses a 4-dimensional Ackley function, with the a, b, and c coefficient

values set to 20.0, -0.2, and 2π, respectively. The function’s x, y, and z values are

generated over the range [−5, 5], using a meshgrid with a spacing of 0.5 between

each point. With a three-dimensional input, this results in 9,261 data-points. The

coordinate values are then translated from R into H by taking the coordinates of each

point and casting them into the three imaginary parts of a quaternion. For example,

the point (−5,−5,−5)⇒ q1 = 0r − 5i− 5j− 5k.

Finally, the data is split into a training set and a test set. The purpose of this split

is to ensure that the neural networks are producing functions with good generalization

capabilities. The data points are randomly shuffled and 80% of the data points are

retained as training data while 20% of the data points are split into the test set.

3.1.2 The Lorenz Attractor Chaotic System

The Lorenz Attractor is a deterministic system of differential equations first pre-

sented by Edward Lorenz [25]. The Lorenz Attractor is a chaotic system, meaning

that while it is deterministic, the system never cycles and never reaches a steady state.

Additionally, the system is very sensitive to initial conditions. When represented as a

21



Figure 4. 3D Ackley Function

set of 3-dimensional coordinates, the Lorenz Attractor produces a mesmerizing graph

often referred to as the Lorenz butterfly. A static representation of this is shown in

Figure 5.

The Lorenz Attractor is governed by the following system of differential equations:

dx

dt
= σ(y − x) (21)

dy

dt
= ρx− y − xz (22)

dz

dt
= xy − βz (23)

where σ, ρ, and β are constants. For this experiment (and in Figure 5), σ = 10, ρ = 28,

22



and β = 8
3
. Quaternions are naturally well-suited to predicting chaotic time series,

including the Lorenz Attractor, since the problem involves both a multidimensional

input and a multidimensional output. Split quaternion neural networks have proven

quite successful at chaotic time series prediction based on small training datasets ([4],

[3], [2], and [44]).

Figure 5. Lorenz Attractor

The data for the Lorenz Attractor was again split 80%/20% between training

and test datasets. Additionally, both the inputs and the outputs were cast into

the quaternion domain. This allowed for a direct output error calculation using

the quaternion distance metric defined in Section 2.2.2. The full details of the loss

function, the activation functions, and the nodes and layers of the networks used in

both experiments are discussed in Section 3.2.

23



3.2 MLP Network Topologies

3.2.1 Function Approximation

The function approximation experiment focused on the relative performance of

real-valued network architectures to quaternion networks with pure quaternion activa-

tion functions. The comparison experiment operated on three distinct network archi-

tecture and training algorithm combinations. The first is the Quaternion Multilayer

Perceptron trained with a genetic algorithm (from here on referred to as QMLP+GA).

This network consists of an input layer, two hidden layers, and an output layer.

Between each layer of the network, a “normalization” step was added, where the

output of each layer is individually normalized. Since the training data-points were

encoded into quaternion values, the input and output layer require a single node each.

The two hidden layers of the network contain 3 nodes each, resulting in a total of 22

trainable weights and biases for the network. The pure-quaternion hyperbolic tangent

(tanh) function was selected as the nonlinear activation function for the input layer

and both hidden layers. The tanh function in the quaternion domain is defined as

tanh(q) =
e2q − 1

e2q + 1
, q ∈ H. (24)

To determine the loss at the output layer, the final output is first mapped from H

into R using the norm defined in Section 2.2.2. This mapping allows for the use of

any real-valued loss function, and the Mean Absolute Error (MAE) loss function was

selected due to its simplicity. The Mean Absolute Error is given by

1

N

N∑
i=1

|ŷ − y|, (25)

where N is the number of data-points, ŷ is the predicted value, and y is the truth or

24



target value.

To provide a baseline comparison for the QMLP+GA network, an equivalent real-

valued network is constructed and trained using the same genetic algorithm as the

QMLP+GA. Finally, an identical MLP is constructed and trained using the gradient

descent (GD) algorithm. These two variants are referred to as the MLP+GA network

and the MLP+GD network, respectively. The layers, nodes per layer, and total

parameters of each of the three networks are summarized in Table 1. The real-

valued hyperbolic tangent was used as the activation function on the input layer and

both hidden layers, with a Mean Absolute Error loss function. However, since the

hyperbolic tangent is globally analytic in R, the normalization layers from the QMLP

were removed. The learning rate η for the gradient descent algorithm was set to

η = 0.03. The real-valued MLPs contained a total of 136 trainable weight and bias

parameters, a six-fold increase over the QMLP.

Table 1. Neural Network Topologies for Ackley Function Approximation

Network Input Hidden 1 Hidden 2 Output Parameters
QMLP+GA 1 3 3 1 22
MLP+GA 3 9 9 3 136
MLP+GD 3 9 9 3 136

3.2.2 Chaotic Time Series Prediction

Chaotic time series prediction of the Lorenz attractor requires multidimensional

input data as well as multidimensional output data. It is a notoriously difficult prob-

lem, especially considering the system’s sensitivity to initial conditions. In contrast

with the function approximation experiment, the time series prediction experiment

focused on the ability of quaternion networks to learn complex multidimensional non-

linearities. To that end, the time series prediction experiment centered on optimizing

a set of quaternion network hyperparameters and did not consider any equivalent

25



real-valued networks.

To test the predictive capabilities of a simple QMLP+GA network, a set of 500

time series inputs were generated using a fixed-timestep 4th-order Runge-Kutta Ordi-

nary Differential Equation (ODE) solver. The first 400 time series formed the training

dataset, while the last 100 were held out for the test set. The starting point for each

time series was randomly generated using a uniform U[−10.0, 10.0] distribution for

the x- and y-coordinates and a uniform U[0.0, 10.0] distribution for the z-coordinates.

Initial tests focused on relatively short time series inputs. Each series was generated

over a range of 20 timesteps, and the first 10 values of each series formed the input

training data, while the last 10 values formed the target values for training. Subse-

quent tests involved larger prediction windows, and both the 10-step and 100-step

results are discussed in Chapter IV.

Figure 6 illustrates the sensitivity of the Lorenz system to initial starting condi-

tions. Several initial starting points were generated using the distributions defined

above for the x-, y-, and z-coordinates. Each system was then solved for 500 timesteps,

starting at the initial position in 3-space. While each curve exhibits the characteris-

tic “butterfly” shape, the individual coordinates of each series at each time step are

drastically different.

Initial experiments showed that simple, smaller networks performed better with

the genetic algorithm then larger networks. A 4-layer network was constructed for

the time series prediction experiment. The structure of the network closely resembles

an autoencoder network, where large input layers are scaled down throughout the

network before being scaled back up for the output layer. This structure proved

successful over several rounds of experimentation in predicting the 10-step ahead

x, y, and z coordinates for the test set data. As a final experiment, a QMLP was

created to predict the Lorenz coordinates 50 steps ahead based on in input time series

26



Figure 6. Impact of Initial Conditions on Lorenz System

of 25 steps. The layers, nodes per layer, and total parameters of each network are

summarized in Table 2.

Table 2. Neural Network Topology for Chaotic Prediction

Network Input Hidden 1 Hidden 2 Output Parameters
QMLP+GA 10 3 3 10 85
QMLP+GA 25 5 10 50 740

Before processing, the training and test datasets were cast into the quaternion do-

main using a vectorized approach. For an input vector τi, the corresponding quater-

nion input vector was constructed using the following approach:

τi =



~x1

~x2
...

~x10


=⇒ τqi =



0.0 + x1i + y1j + z1k

0.0 + x2i + y2j + z2k

...

0.0 + x10i + y10j + z10k


(26)

Additionally, the target values were cast into quaternions. At each iteration, a quater-

27



nionic form of the Mean Absolute Error measured the fitness of each solution. Only

the imaginary components of each input and target vector contained coordinate infor-

mation, so this experiment introduced a QMAEimag calculation, defined in Equation

(27) below.

QMAEimag : =
1

N

N∑
i=1

||ŷqi
− yqi

||imag

=
1

N

N∑
i=1

||(x̂ii + ŷij + ẑik)− (xii + yij + zik)||

=
1

N

N∑
i=1

(√
(x̂i − xi)2 + (ŷi − yi)2 + (ẑi − zi)2

)2
.

(27)

Since this experiment did not consider any real-valued networks, several quater-

nion activation functions were utilized during testing that are not available in the

real-domain. In particular, [20] notes that quaternionic functions with local analytic

conditions are isomorphic to analytic complex functions. Additionally, [24] demon-

strate that hyperbolic and inverse hyperbolic trigonometric functions are universal

approximators in the complex domain. This experiment explored the use of several

quaternionic elementary transcendental functions and found the inverse hyperbolic

tangent, defined in [29], to provide the best performance:

arctanh(p) :=
ln(1 + p)− ln(1− p)

2
. (28)

While the Lorenz prediction QMLP+GA networks required a slightly different

network structure than the Ackley function approximation networks, both networks

employed an identical genetic algorithm in the training phase. This approach elimi-

nated the need for differentiability of both the loss function and the activation func-

tions of the network. Additionally, it eliminated the need for a quaternion partial

derivative calculation, which is a notoriously difficult problem. Section 3.3 describes

28



the details of the algorithm, while Chapter IV discusses the results and performance

of the algorithm in both experiments.

3.3 Quaternion Genetic Algorithm

This section describes the quaternion genetic algorithm that was developed to

train the QMLP-GA. A simple change of the underlying data type from quaternions

to real-valued inputs, weights, and biases enabled the training of the MLP-GA with

an identical algorithm. This research took a similar approach to Uber’s OpenAI Labs

genetic algorithm training process [42], opting for a very basic algorithm with minimal

enhancements to demonstrate the proof-of-concept. Based on the success of this

approach in Uber’s experiments as well as in the quaternion domain presented here,

a more advanced algorithm incorporating any of the many algorithmic improvements

would likely improve on the baseline results discussed in Chapter IV.

Figure 7. Genetic Algorithm/Genetic Programming Process

A general diagram of the genetic algorithm process flow is shown in Figure 7. A

genetic algorithm is a population-based search method, operating on a population

29



of solutions to iteratively find better and better solutions. In this case, an individ-

ual neural network, defined by its weights and biases, represents a single solution.

To initialize the algorithm, a population of N = 20 distinct neural networks were

instantiated, with all weights and biases randomly generated following a Uniform

distribution over [−1, 1].

After instantiation, the algorithm measures the fitness of each solution. For each

neural network, the entire training dataset is processed through the network, captur-

ing the total MAE for each network. The networks are then rank-ordered based on

the lowest MAE value.

Algorithm 1 Quaternion Genetic Algorithm

1: Instantiate Pm parent networks, m ∈ N = {1, . . . , 20}, input mutation function
ψ.

2: for i ∈ N do
3: Evaluate population fitness Fi

4: end for
5: for g = 1 to G generations do
6: Sort population ← Fi

7: Select best parents Pg−1
n , n = 1, . . . , 5

8: for j = n+ 1 to N do
9: Generate k = UniformInt(1, n)

10: Pg
j = ψ(Pg−1

k ).
11: end for
12: end for
13: Return final population PG

m for m ∈ N .

In the selection step, the n best solutions are retained as the “parents” for the

next generation of the algorithm. In this research, n = 5 networks were retained

as the parent generation in each iteration of the algorithm. While many advanced

selection techniques exist, this work employed a simple rank selection, which selected

the five best networks from each generation.

Finally, to generate a new population of solutions, the genetic algorithm performs

a random mutation step, where a parent solution is randomly selected from the n = 5

30



best parent solutions. Then, the algorithm creates a “child” solution by mutating

roughly half of the weights and biases of the parent solution with random noise. In

this case, the generating distribution for the random noise was the standard Normal

distribution, N (0, 1). This process repeats for N − n = 20 − 5 = 15 times to create

the new generation of solutions.

This process is commonly referred to as a genetic program, where generations are

created solely through the mutation process. Often, genetic algorithms will include

an additional crossover step prior to mutation, where new child solutions are created

using a selection of features from separate parent solutions. Crossover was omitted

from this algorithm, since mutation alone provided good baseline performance, reiter-

ating the fact that the most simple genetic algorithms are competitive to the popular

backpropagation algorithm. A summary of the algorithm is shown in Algorithm 1.

3.4 Evaluation & Analysis Strategy

Each of the networks described in Section 3.2 processed the training data from

the Ackley function and the Lorenz Attractor system. At each training epoch, the

algorithms either recorded the MAE of the overall system in the case of the gradient

descent network, or the MAE or (QMAE) of the best solution for the genetic algo-

rithm networks. Additionally, several computational metrics were recorded including

memory allocations and computational runtime. Finally, each of the trained models

processed the test data, recording the test set percentage error for each instance.

Chapter IV contains a discussion of network performance in each problem instance

for each network in regards to these metrics.

31



IV. Results and Analysis

This chapter presents the results and analysis of the function approximation and

chaotic time series prediction experiments described in Chapter III. This chapter is or-

ganized as follows. First, Section 4.1 describes the principal results from the function

approximation experiment, noting that the results demonstrate the viability of both

quaternion-valued networks and the quaternion genetic training algorithm. Then,

Section 4.2 summarizes the results of the chaotic time series prediction experiment,

describing the initial results and their significance.

All computations presented here were performed on a desktop workstation running

Windows 10 Enterprise with 64 GB of RAM and dual Intel Xeon Silver 4108 CPUs.

Each CPU contained 8 physical cores running at 1.80 GHz. Coding was performed in

Julia 1.5.3 using the Quaternion.jl package and Flux.jl [18] for the MLP+GD network.

4.1 Function Approximation Results

The focus of the function approximation test was twofold. First, the function

approximation task served as a proof-of-concept for the QMLP-GA. While quaternion

neural networks and metaheuristic neural network training algorithms both exist

separately in the literature, this work demonstrates the first use of metaheuristics to

effectively train quaternion neural networks. Second, this experiment demonstrated

some of the computational benefits that quaternions provide.

In keeping with these two goals, the three neural networks employed default pa-

rameters and very basic training algorithm implementations. No attempt was made

to tune the hyperparameters of any of the models; instead, the results speak for them-

selves. The training set error for each of the three networks versus epoch is shown in

Figure 8.

32



Figure 8. Training Set Mean Absolute Error for Each Network

The QMLP+GA initialized using the random uniform weight initialization scheme

described in Chapter III had the lowest initial prediction error, at roughly 50% in

the first epoch. In contrast, the MLP+GA started with nearly 60% initial error,

while the MLP+GD was above 70%. The genetic algorithm improved rapidly, show-

ing significantly faster initial algorithmic improvement versus the gradient descent

algorithm. Both GA-trained networks showed rapid improvements over the first 25

training epochs, while the MLP+GD network searched for nearly 75 epochs before

catching up to the GA-trained networks. The MLP+GD eventually caught up to the

other two networks, but the prediction error remained slightly higher for the gradient

descent network throughout the entire training process.

Table 3. Neural Network Comparison Results

Network Runtime (sec) Memory (GB) Parameters Test Error
QMLP+GA 17.421 10.238 22 11.01%
MLP+GA 18.069 9.497 136 11.15%
MLP+GD 955.040 778.027 136 11.23%

Table 3 shows the test set performance for each of the three networks across several

33



measures of merit. In each column, the best results are highlighted in bold text. The

quaternion network had the fastest overall runtime, resulting in the lowest test set

error with the fewest number of trainable parameters. The real-valued MLP had sim-

ilar performance and required less overall system memory throughout the runtime of

the algorithm, but required nearly six times the number of trainable parameters. Fi-

nally, the gradient descent-trained MLP had the worst performance in every category.

While the test set error was comparable to the other two networks, the MLP+GD

took more than 50 times as long to run with over 70 times as much memory allocated

to store the gradient and error information for the backpropagation process.

These results, while cursory, clearly demonstrate the viability of quaternion net-

works trained with genetic algorithms. The quaternion network showed the fastest

overall improvement, lowest final error, and lowest computational cost (in terms of

runtime) when compared to two comparable networks. Additionally, the two GA-

trained networks outperformed the gradient descent network across all measures of

merit. These results validate the use of genetic algorithms in neural network train-

ing and show that quaternion networks can easily outperform equivalent real-valued

networks involving multidimensional input data.

4.2 Time Series Prediction Results

Whereas the function approximation results demonstrate a viable proof-of-concept

for quaternion neural networks, the chaotic time series prediction task illustrates the

power of QNNs in the difficult task of predicting noisy systems. Additionally, chaotic

time series prediction provides a natural multidimensional input + multidimensional

output test that is almost tailor made for quaternion networks. In each of the figures

displayed in this section, the orange graph represents the true chaotic time series,

while the blue graph represents the predicted values. The final prediction results

34



presented in Figure 9 are far from current state-of-the-art results using deep recurrent

neural networks (RNNs) or Long-Short Term Memory (LSTM) networks, yet they

illustrate the ability of simple QNNs to learn complex nonlinearities over time.

Figure 9. 10-Step Ahead Predicted Coordinate Values

This experiment utilized two distinct QNN network topologies. The first network

predicted the Lorenz attractor for 10 timesteps in the future based on an input time

series of 10 timesteps. The second network predicted the Lorenz attractor for 50

timesteps in the future based on an input of 25 observations. The structure of each

network is listed in Table 2, while the results for both networks are listed in Table 4.

The test error percentage listed in Table 4 was measured using the Mean Absolute

Percentage Error (MAPE) for time series forecasting, defined in Equation (29), where

et is the unscaled prediction error for observation t and yt is the target value at t.

MAPE = mean

(∣∣∣∣100
et
yt

∣∣∣∣) (29)

Early tests indicated that smaller networks performed better with the genetic

algorithm. The final two networks contained comparatively few nodes in each layer

and were structured as autoencoder networks, which perform a type of downsampling

and subsequent upsampling as information passes through the network. Each network

was trained for 50,000 epochs, which equated to roughly 28 minutes for the 10-step

prediction network and around 4 hours for the 50-step prediction network.

The test set error listed in Table 4 indicates that on average, individual predicted

values were off by about 11%. The actual versus predicted x-, y-, and z-coordinates

35



Table 4. Lorenz Prediction Results

Prediction Steps Runtime (sec) Memory (GB) Params Test Error
10 1668.565 947.304 85 10.89%
50 14769.069 2.815 (TB) 740 9.59%

for one of the test set time series are shown in Figure 9, while two 3-dimensional

path predictions are shown in Figure 10. While the test error is relatively high, the

QMLP+GA performs remarkably well on future predictions, especially in the long

sweeping sections of the Lorenz attractor curves. The errors understandably grow and

compound in the two “wings” of the curve, where the graph circles closely around

each pole of the attractor.

Figure 10. 10-Step Ahead Path Predictions

The final experiment tested the ability of the QMLP to predict long sequences

based on a relatively short input. The network was trained over 50,000 epochs to

predict 50 observations based on an input sequence of length 25. Table 4 summarizes

several measures of merit for the network, while the x-, y-, and z-coordinate results

for a representative test set sequence are shown in Figure 11.

In each coordinate direction, there is some clear noise at each prediction step,

but the network accurately predicts the general motion of each variable. The motion

of each prediction path is even more evident in the 3-dimensional plots shown in

Figure 12, which shows two path predictions for two series from the test set data.

36



Figure 11. 50-Step Ahead Predicted Coordinate Values

As with the 10-step prediction model, the 50-step model makes the best predictions

along the long sweeping arcs of the system, with errors compounding near the two

“wings” of the attractor.

Figure 12. 50-Step Ahead Path Predictions

Finally, the unscaled training error plots for both networks are shown in Figure

15. The genetic algorithm showed similar performance in both time series prediction

tasks as it did in the function approximation task, with dramatic initial improvements

and slow but consistent improvements as the iterations progressed.

4.3 Discussion

In the first experiment, the three networks all utilized a random uniform weight

initialization scheme. However, the quaternion network had between 10-20% lower

initial prediction error than the real-valued networks. This is likely due to the fact

that the quaternion network employed six times fewer weight and bias parameters

37



than the real-valued networks. The quaternion network maintained the lowest train-

ing set error across the entire 100-epoch training period, resulting in the best test

set performance. The larger networks constructed in the second experiment demon-

strated similar training characteristics and test set performance. Surprisingly, the

50-step prediction experiment resulted in lower test set prediction error than the

10-step prediction network, likely due to the scale of each predicted value.

Figure 13. 10-Step Predictions Figure 14. 50-Step Predictions

Figure 15. Unscaled QMAE Training Error

The genetic algorithm removes the need for expensive gradient calculations, re-

sulting in better memory performance and more than 50x faster runtime in the first

experiment versus the real-valued gradient descent algorithm. Given the difficulty of

calculating quaternion gradients, the improvement over a quaternion gradient descent

algorithm would likely be even greater. However, a genetic programming approach

does come with some drawbacks. In the naive approach presented here, the algo-

rithm would sometimes stall for several iterations while searching for an improving

solution. There are many existing techniques designed to mitigate this stalling, but

the literature on genetic algorithms is much less developed compared to comparable

work on gradient descent optimization.

Finally, the genetic algorithm opened the aperture on viable activation functions

and loss functions for use with quaternion networks. This is perhaps the most sig-

38



nificant contribution of this research. The results from [20] indicate that any locally

analytic complex-valued activation function can be extended and used in the quater-

nion domain, but this work presents the first successful implementation of inverse

hyperbolic trigonometric functions in quaternion networks. The success of the inverse

hyperbolic tangent function in the chaotic time series prediction task demonstrate the

value of using gradient free optimization methods in the quaternion domain. Chapter

V presents the final conclusions of this work, along with several recommendations for

future work.

39



V. Conclusions and Recommendations

5.1 Conclusions

In summary, this research presented a novel approach to training quaternion neural

networks using a simple genetic algorithm. This approach provides two crucial im-

provements over current processes. First, the genetic algorithm allows for the use of a

wide range of quaternion-valued loss and activation functions, including non-analytic

functions and elementary transcendental functions. Current quaternion networks are

restricted to either a small set of pure quaternion functions such as the hyperbolic

tangent, or split activation functions which provide suboptimal performance. Second,

the genetic algorithm approach removes the need for quaternion calculus rules, since

the GA-based approach does not require any gradient information. This provides a

significant improvement in terms of computational cost and overall network complex-

ity. The preliminary results presented here demonstrate the viability of this process

in two multidimensional learning tasks, with the potential to improve on current neu-

ral network structures in terms of computational runtime, storage requirements, and

network simplicity.

5.2 Recommendations

The quaternions and quaternion neural networks are relatively unexplored com-

pared to real analysis and real-valued neural networks. While certain applications

in image processing and other domains have driven research in the quaternions and

QNNs, there is still room for significant improvement in both the theoretical and

practical aspects of quaternions. Going forward, the following lines of research will

be crucial for continued innovation in the quaternion domain.

First, a solid foundation of quaternionic analysis is crucial to theoretically sound

40



QNN research. While a handful of researchers have published works on quaternionic

analysis, the corpus is quite thin. Research in novel quaternion activation func-

tions, quaternion differentiability, quaternion analytic conditions, and novel quater-

nion training algorithms could significantly enhance both the current understanding

of quaternion optimization as well as quaternion implementations of common machine

learning models. Additionally, the quaternion Universal Approximation Theorem for

either split or pure quaternion activation functions is an outstanding problem that is

vital for establishing the legitimacy of quaternion networks from a theoretical point

of view. Proving either variant of the Universal Approximation Theorem would be a

substantial contribution to the field.

Finally, this research simply provided a proof-of-concept for GA-trained quater-

nion neural networks. The two examples presented were limited in scope and future

work should build on these results to demonstrate the viability of GA-trained net-

works in large-scale optimization problems. In particular, quaternions are particularly

well-suited to the fields of image processing and robotic control, both of which have

a plethora of neural network-related application opportunities.

41



Bibliography

1. Ackley, D. [2012], A connectionist machine for genetic hillclimbing, Vol. 28,
Springer Science & Business Media.

2. Arena, P., Baglio, S., Fortuna, L. and Xibilia, M. [1995], Chaotic time series
prediction via quaternionic multilayer perceptrons, in ‘1995 IEEE International
Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st
Century’, Vol. 2, IEEE, pp. 1790–1794.

3. ARENA, P., CAPONETTO, R., FORTUNA, L., MUSCATO, G. and XIBILIA,
M. G. [1996], ‘Quaternionic multilayer perceptrons for chaotic time series predic-
tion’, IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences 79(10), 1682–1688.

4. Arena, P., Fortuna, L., Muscato, G. and Xibilia, M. G. [1998], Neural Networks
in Multidimensional Domains: fundamentals and new trends in modelling and
control, Vol. 234, Springer.

5. Arena, P., Fortuna, L., Occhipinti, L. and Xibilia, M. G. [1994], Neural networks
for quaternion-valued function approximation, in ‘Proceedings of IEEE Interna-
tional Symposium on Circuits and Systems-ISCAS’94’, Vol. 6, IEEE, pp. 307–310.

6. Arena, P., Fortuna, L., Re, R. and Xibilia, M. G. [1993], On the capability of
neural networks with complex neurons in complex valued functions approxima-
tion, in ‘1993 IEEE International Symposium on Circuits and Systems’, IEEE,
pp. 2168–2171.

7. Brown, J. W., Churchill, R. V. et al. [2009], Complex variables and applications,
Boston: McGraw-Hill Higher Education,.

8. Buchholz, S. and Le Bihan, N. [2006], Optimal separation of polarized signals by
quaternionic neural networks, in ‘2006 14th European Signal Processing Confer-
ence’, IEEE, pp. 1–5.

9. Cybenko, G. [1989], ‘Approximation by superpositions of a sigmoidal function’,
Mathematics of control, signals and systems 2(4), 303–314.

10. Fister, I., Yang, X.-S., Brest, J. and Fister Jr, I. [2013], ‘Modified firefly algorithm
using quaternion representation’, Expert Systems with Applications 40(18), 7220–
7230.

11. Fortuna, L., Muscato, G. and Xibilia, M. G. [2001], ‘A comparison between hmlp
and hrbf for attitude control’, IEEE transactions on neural networks 12(2), 318–
328.

42



12. Gaudet, C. J. and Maida, A. S. [2018], Deep quaternion networks, in ‘2018 In-
ternational Joint Conference on Neural Networks (IJCNN)’, IEEE, pp. 1–8.

13. Géron, A. [2019], Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems,
O’Reilly Media.

14. Greenblatt, A., Mosquera-Lopez, C. and Agaian, S. [2013], Quaternion neural
networks applied to prostate cancer gleason grading, in ‘2013 IEEE International
Conference on Systems, Man, and Cybernetics’, IEEE, pp. 1144–1149.

15. Hamilton, W. R. [1844], ‘Lxxviii. on quaternions; or on a new system of imagi-
naries in algebra: To the editors of the philosophical magazine and journal’, The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
25(169), 489–495.

16. Hornik, K., Stinchcombe, M. and White, H. [1989], ‘Multilayer feedforward net-
works are universal approximators’, Neural networks 2(5), 359–366.

17. Hosseini, S. H. and Samanipour, M. [2015], ‘Prediction of final concentrate grade
using artificial neural networks from gol-e-gohar iron ore plant’, American Journal
of Mining and Metallurgy 3(3), 58–62.

18. Innes, M. [2018], ‘Flux: Elegant machine learning with julia’, Journal of Open
Source Software .

19. Isokawa, T., Kusakabe, T., Matsui, N. and Peper, F. [2003], Quaternion neural
network and its application, in ‘International conference on knowledge-based and
intelligent information and engineering systems’, Springer, pp. 318–324.

20. Isokawa, T., Nishimura, H. and Matsui, N. [2012], ‘Quaternionic multilayer per-
ceptron with local analyticity’, Information 3(4), 756–770.
URL: https://www.mdpi.com/2078-2489/3/4/756

21. James, G., Witten, D., Hastie, T. and Tibshirani, R. [2013], An introduction to
statistical learning, Vol. 112, Springer.

22. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J. and Aila, T. [2020],
Analyzing and improving the image quality of StyleGAN, in ‘Proc. CVPR’.

23. Khuat, T. T. and Le, M. H. [2017], ‘A genetic algorithm with multi-parent
crossover using quaternion representation for numerical function optimization’,
Applied Intelligence 46(4), 810–826.

24. Kim, T. and Adalı, T. [2003], ‘Approximation by fully complex multilayer per-
ceptrons’, Neural computation 15(7), 1641–1666.

43



25. Lorenz, E. N. [1963], ‘Deterministic nonperiodic flow’, Journal of atmospheric
sciences 20(2), 130–141.

26. Matsui, N., Isokawa, T., Kusamichi, H., Peper, F. and Nishimura, H. [2004],
‘Quaternion neural network with geometrical operators’, Journal of Intelligent &
Fuzzy Systems 15(3, 4), 149–164.

27. McCulloch, W. S. and Pitts, W. [1943], ‘A logical calculus of the ideas immanent
in nervous activity’, The bulletin of mathematical biophysics 5(4), 115–133.

28. Minsky, M. and Papert, S. A. [2017], Perceptrons: An introduction to computa-
tional geometry.

29. Morais, J. P., Georgiev, S. and Sprößig, W. [2014], Real quaternionic calculus
handbook, Springer.

30. Ojha, V. K., Abraham, A. and Snášel, V. [2017], ‘Metaheuristic design of feed-
forward neural networks: A review of two decades of research’, Engineering Ap-
plications of Artificial Intelligence 60, 97–116.

31. Oliva, D., Abd Elaziz, M. and Hinojosa, S. [2019], Metaheuristic algorithms for
image segmentation: theory and applications, Springer.

32. Papa, J. P., de Rosa, G. H. and Yang, X.-S. [2018], On the hypercomplex-based
search spaces for optimization purposes, in ‘Nature-Inspired Algorithms and Ap-
plied Optimization’, Springer, pp. 119–147.

33. Papa, J. P., Rosa, G. H., Pereira, D. R. and Yang, X.-S. [2017], ‘Quaternion-based
deep belief networks fine-tuning’, Applied Soft Computing 60, 328–335.

34. Papa, J., Pereira, D., Baldassin, A. and Yang, X.-S. [2016], On the harmony
search using quaternions, in ‘IAPR Workshop on Artificial Neural Networks in
Pattern Recognition’, Springer, pp. 126–137.

35. Parcollet, T., Morchid, M., Bousquet, P.-M., Dufour, R., Linarès, G. and De Mori,
R. [2016], Quaternion neural networks for spoken language understanding, in
‘2016 IEEE Spoken Language Technology Workshop (SLT)’, IEEE, pp. 362–368.

36. Parcollet, T., Morchid, M. and Linares, G. [2020], ‘A survey of quaternion neural
networks’, Artificial Intelligence Review 53(4), 2957–2982.

37. Parcollet, T., Ravanelli, M., Morchid, M., Linarès, G., Trabelsi, C., De Mori,
R. and Bengio, Y. [2018], ‘Quaternion recurrent neural networks’, arXiv preprint
arXiv:1806.04418 .

38. Rosenblatt, F. [1958], ‘The perceptron: a probabilistic model for information
storage and organization in the brain.’, Psychological review 65(6), 386.

44



39. Rumelhart, D. E., Hinton, G. E. and Williams, R. J. [1985], Learning internal
representations by error propagation, Technical report, California Univ San Diego
La Jolla Inst for Cognitive Science.

40. Stanley, K. O., D’Ambrosio, D. B. and Gauci, J. [2009], ‘A hypercube-based
encoding for evolving large-scale neural networks’, Artificial life 15(2), 185–212.

41. Stanley, K. O. and Miikkulainen, R. [2002], ‘Evolving neural networks through
augmenting topologies’, Evolutionary Computation 10(2), 99–127.
URL: https://doi.org/10.1162/106365602320169811

42. Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O. and Clune,
J. [2017], ‘Deep neuroevolution: Genetic algorithms are a competitive alterna-
tive for training deep neural networks for reinforcement learning’, arXiv preprint
arXiv:1712.06567 .

43. Ujang, B. C., Jahanchahi, C., Took, C. C. and Mandic, D. [2010], ‘Quaternion
valued neural networks and nonlinear adaptive filters’.

44. Ujang, B. C., Took, C. C. and Mandic, D. P. [2010], ‘Split quaternion nonlinear
adaptive filtering’, Neural Networks 23(3), 426–434.

45. US Department of Defense, U. [2019], ‘Summary of the 2018 department of de-
fense artificial intelligence strategy: Harnessing ai to advance our security and
prosperity’.

46. Werbos, P. [1974], ‘Beyond regression:” new tools for prediction and analysis in
the behavioral sciences’, PhD dissertation, Harvard University .

47. Xu, D., Jahanchahi, C., Took, C. C. and Mandic, D. P. [2015], ‘Enabling
quaternion derivatives: the generalized hr calculus’, Royal Society open science
2(8), 150255.

48. Xu, D., Zhang, L. and Zhang, H. [2017], ‘Learning algorithms in quaternion
neural networks using ghr calculus’, Neural Network World 27(3), 271.

49. Yin, Q., Wang, J., Luo, X., Zhai, J., Jha, S. K. and Shi, Y.-Q. [2019], ‘Quaternion
convolutional neural network for color image classification and forensics’, IEEE
Access 7, 20293–20301.

45



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

25–03–2021 Master’s Thesis August 2019 — March 2021

Meta-Heuristic Optimization Methods for Quaternion-Valued Neural
Networks

Bill, Jeremiah P., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENS-MS-21-M-143

Air Force Research Laboratory
Dr. Trevor Bihl, Senior Electronics Engineer
2241 Avionics Cir
Wright-Patterson AFB, OH 45433
trevor.bihl.2@us.af.mil

AFRL/RYAR

Distribution Statement A. Approved for Public Release; Distribution Unlimited.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

In recent years, real-valued neural networks have demonstrated promising, and often striking, results across a broad
range of domains. This has driven a surge of applications utilizing high-dimensional datasets. While many techniques
exist to alleviate issues of high-dimensionality, they all induce a cost in terms of network size or computational runtime.
This work examines the use of quaternions, a form of hypercomplex numbers, in neural networks. The constructed
networks demonstrate the ability of quaternions to encode high-dimensional data in an efficient neural network structure,
showing that hypercomplex neural networks reduce the number of total trainable parameters compared to their
real-valued equivalents. Finally, this work introduces a novel training algorithm using a meta-heuristic approach that
bypasses the need for analytic quaternion loss or activation functions. This algorithm allows for a broader range of
activation functions over current quaternion networks and presents a proof-of-concept for future work.

machine learning, evolutionary computation, quaternion metaheuristics

U U U UU 57

Dr. Lance E. Champagne, AFIT/ENS

(937) 255-3636, 4646; lance.champagne@afit.edu


	Meta-Heuristic Optimization Methods for Quaternion-Valued Neural Networks
	Recommended Citation

	Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation and Background
	Organization of the Thesis

	Literature Review
	Neural Networks & Multi-Layer Perceptrons
	The Backpropagation Algorithm
	Shortfalls

	The Quaternions
	Quaternion Algebra
	Quaternion Conjugates, Norms, and Distance
	Quaternionic Matrices

	Quaternion-valued Neural Networks (QNNs)
	A Note on Quaternion Calculus and Quaternionic Analysis
	Quaternion Neural Networks

	Metaheuristic Optimization Techniques

	Solution Methodology
	Test Functions
	The Ackley Function
	The Lorenz Attractor Chaotic System

	MLP Network Topologies
	Function Approximation
	Chaotic Time Series Prediction

	Quaternion Genetic Algorithm
	Evaluation & Analysis Strategy

	Results and Analysis
	Function Approximation Results
	Time Series Prediction Results
	Discussion

	Conclusions and Recommendations
	Conclusions
	Recommendations

	Bibliography

