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Abstract

Event cameras use biologically inspired readout circuit architecture to offer a faster

and more efficient method of imaging than traditional frame-based detectors. The

asynchronous event reporting circuit timestamps events to 1 microsecond resolution,

but latency increases when many pixels are stimulated simultaneously. To charac-

terize this variability, the DAVIS240, DAVIS346, DVXPlorer, and Prophesee Gen3M

VGA-CD 1.1 cameras were exposed to single step-function flashes with amplitudes

from 9.3-771cd/m2, stimulating from 0.0042-100% of pixels. The Median Absolute

Deviation of pixel response times ranged between 0 and 6086µs, increasing with the

percent of pixels stimulated (PSP). The number of events generated per pixel gener-

ally decreased with increasing PSP, with all cameras producing fewer than 59 events

per pixel. Surprisingly, as stimulus amplitude increased, the DVXPlorer generated

fewer events, to as low as 0.32 events per stimulus. Short-term throughput exceeded

advertised limits in 3 of 4 cameras. While individual pixels may be able to accu-

rately detect microsecond-scale change, data bottlenecks can cause missed events or

erroneous timestamps.
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A COMPARATIVE EVALUATION OF THE FAST OPTICAL PULSE

RESPONSE OF EVENT-BASED CAMERAS

I. Introduction

1.1 Motivation

Soon after 19th Century engineers first invented the camera, the military saw

its utility. Early photographers documented battle damage and aftermath, though

few actual photographs of combat were taken due to technical limitations [1]. These

limitations likely included the long duration necessary to expose photographic plates,

leaving the equipment and photographer vulnerable to enemy fire. Early cameras

were also large and heavy, likely making transportation through combat arduous. As

camera technology developed, cameras became smaller and more sensitive, leading to

the wide-spread adoption of aerial imaging during World War I. This new capability

allowed collection and dissemination of intelligence such as troop locations and trench

maps, changing the way commanders approached battle [2].

Further technological development through World War II brought high-altitude

imaging and the dawn of space-based remote sensing, as camera weight decreased

and image quality improved. The introduction of digital camera sensors, arrays of

Charge-Coupled Devices (CCDs), in the second half of the 20th century eliminated

the need for film as images could be digitized and transmitted wirelessly. The industry

continues to improve image quality by decreasing pixel area, increasing sensor size,

improving reliability, and advancing data processing algorithms. However, certain

fundamental challenges remain, and conventional frame-based imaging systems may
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not offer the best solution in all situations.

Event-based, or neuromorphic, cameras record activity in a scene using a fun-

damentally different sensing paradigm than conventional cameras. When recording

video, digital frame-based cameras record the value of every pixel in every frame, and

each new frame is recorded at a preset interval. Event cameras, on the other hand,

only records pixels when they detect a change in illumination. When the irradiance

on a pixel increases or decreases by a preset amount, the pixel records an “event”: a

data point including the pixel’s location on the sensor, the time at which the event

occurred, and the polarity of the change (an increase or decrease). Because pixels are

not controlled by an external clock as in conventional cameras, they are considered

an “asynchronous” imaging system. This novel method of detecting and recording

information has several significant benefits.

In order to capture high speed motion, a conventional camera must have a high

frame rate, consuming significant electrical power and producing a very large amount

of data. Event cameras are able to record events seperated by only microseconds,

meaning very fast motion can be recorded accurately, without recording thousands

of redundant pictures. This reduces data processing and storage requirements by

several orders of magnitude. Additionally, high-speed cameras are very impracti-

cal for recording low-speed activity due to their excessive power consumption and

data generation rates, while low speed cameras cannot accurately record high speed

activity. This requires multiple cameras to be used if a wide variety of activity is

expected. Event cameras, due to their asynchronous readout, are able to accurately

record high-speed and low-speed activity simultaneously.

Additionally, if a camera is in a location that requires wireless transmission, such

as flying on a satellite, every reduction in data also reduces the bandwidth required

to transmit information to the user. Modern video processing and compression algo-
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rithms calculate differences between frames and delete the information which does not

change between images, in order to minimize redundant data. While this has been an

effective and popular technique, it requires additional computational resources after

the images have been recorded and moved off-chip. By only detecting and recording

changes in a scene, event-based cameras eliminate the need for compression. Finally,

rather than storing charge in an electron well like conventional cameras, leading to

the possibility of under- and over-exposure, event cameras indirectly measure the

photocurrent from each pixel. This increases the dynamic range of event cameras by

a significant amount, enabling users to record activity in very dark and very bright

conditions simultaneously. Event-based cameras provide a powerful new capability

to the imaging community.

1.2 Industry Activity

The benefits introduced above make this new technology appealing to a variety of

industries and use cases. As such, several companies are developing sensors. iniVation

is a Swiss company that released their first sensor, a 128x128 pixel sensor in 2008.

In 2014 they released a 240x180 sensor called the DAVIS240, which was capable of

recording traditional frames in addition to events. Their DAVIS346 was introduced in

2017, containing a 346x260 pixel sensor. [3] Their most recent release was the DVX-

Plorer and DVXPlorer Lite in early 2020 [4], with a VGA-resolution 640x480 array

developed in partnership with Samsung [5]. Samsung also independently released an

event camera for direct-to-consumer sales in limited markets in 2020, targeting the

home security market [6]. They also recently announced a 1280x960 pixel Gen4 sensor

which offers an expanded event-holding process[7]. Prophesee is a French company

that released their first sensor, a 304x240 array, in 2011. A Gen3 640x480 sensor was

released in 2017, followed by a Gen4 camera featuring a 1024x720 sensor in early 2020
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[8]. CelePixel is a Chinese company that has released two sensors, in 2017 and 2019.

Insightness is a Swiss company which has released one sensor in 2018, and has since

partnered with Sony [3, 9]. Notably, while the foundational technology was devel-

oped at CalTech[10], no American companies have marketed or sold any event-based

cameras to date. This may change in the next several years as government funding

becomes available for domestic development.

1.3 Problem Statement

The number of manufacturers and available camera models is expanding, and de-

fense and commercial applications will continue to grow as the technology becomes

more mature. For users to make informed decisions when seeking to buy an event

camera for their application, they need reliable and consistent metrics by which to

compare competing options. Conventional metrics for comparing frame-based cam-

era sensors do not apply due to fundamental differences in circuit operation[3], and

relevant event-based metrics are still inconsistent across the industry, likely due to

the newness of the commercial market. Additionally, physics-based models of pixel

behavior are being developed, but sensor packages are more than just a linear com-

bination of pixels: readout circuits controlling the flow of events are a critical and

still-developmental component of asynchronous architecture. Metrics used to describe

these sensors must therefore take sensor-level behavior into account, in addition to

the characteristics of individual pixels. To generate a sensor-level model, the entire

sensor needs to be evaluated, and metrics describing that sensor need to apply to the

whole system.

This thesis starts the process of characterizing devices and generating full-sensor

models. Using an optomechanical setup adapted from recent work by others [11, 12],

the proposed characterization process generates metrics which enable direct compar-
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ison between multiple event cameras. The methodology is applied to three cameras

from iniVation (the DAVIS240, DAVIS346, and DVXPlorer) and one from Prophesee

(the Gen3M VGA-CD 1.1 with PPS3MVCD sensor).

1.4 Document Overview

Chapter two introduces several key technical concepts which are necessary for

understanding the work accomplished in this thesis. It discusses the operating prin-

ciple behind event-based pixel circuits, and describes how data will be represented

in various ways to emphasize different aspects of the information contained therein.

Chapter three describes the physical setup and procedures followed to gather data

and the post-processing workflow is presented. Chapter four then presents the data

in its various representations, which is interpreted in chapter five. Finally, chapter

six reports conclusions and describes the significance of this work. A list of acronyms

is provided at the beginning of the document for reference.
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II. Background

2.1 Overview

This chapter begins by introducing radiometric and photometric terms. Section

2.3 introduces the operation of CCD and Complementary Metal-Oxide-Semiconductor

(CMOS) pixels, the traditional digital imaging technologies. Pixels in event-based

cameras use a fundamentally different architecture for transducing optical information

into digital data, and the most important concepts are described in Section 2.4. A

detailed explanation of individual circuits is beyond the scope of this document, as

their complexities require a dedicated effort to understand. The purpose of this thesis

is for comparing the overall behavior of different cameras, so the electronic details are

left for other works.

Due to the distinct nature of data produced by event cameras compared to tra-

ditional cameras, new techniques for processing, viewing, and ultimately extracting

useful information from that data are necessary. The specific techniques used in this

work are introduced in Section 2.5. A few recent publications have been critical to

developing a foundation and theoretical support for the experimental process, inter-

pretation, and understanding of this effort. Those documents are discussed in Section

2.6 to provide a thorough jumping-off point for this research.

2.2 Radiance vs Luminance

Before camera operation can be discussed, it is important to clarify several terms

which are sometimes used differently by various industries: radiance and luminance.

Radiance is the optical power per emitting area per solid angle with the symbol Le

(for “energetic”) and the units of W/m2/sr [13]. Spectral radiance is the radiant

power per wavelength of emission, which produces total radiance when integrated
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over all wavelengths. Luminance Lv is the spectral integral of spectral radiance L(e,λ)

scaled by the spectral response of the human eye (the luminosity function) ȳ(λ)

Lv = 683.002lm/W ∗
∫ ∞
0

ȳ(λ)L(e,λ)(λ)dλ (1)

and is thus considered a “photometric” unit, as opposed to the power-based radiant

units. Luminance effectively describes how bright something appears to the human

eye. The candela (cd) is the SI unit of luminous intensity, which is the photometric

equivalent of the more familiar radiant unit of watts/steradian. Thus, luminance can

be expressed as cd/m2 and can be imagined as a measure of the brightness being

emitted by a differential surface area [14].

Radiance can be accurately converted to luminance through the evaluation of

Equation 1 without any additional information, but luminance cannot be converted

to radiance without knowing the exact spectral emission function L(e,λ) of the source.

For a light source of fixed spectral emission such as an LED in the visible band,

radiance and luminance scale proportionally, so changes in luminance also describe

proportional changes in radiance. Assuming the green LEDs used in this experiment

were monochromatic with λ = 530nm and approximating ȳ(530nm) ≈ 1, one can

approximate Equation 1 as

Lv = 683.002lm/W ∗ 1 ∗ L(e). (2)

However, because the true spectral radiance of the LEDs was not able to be measured

due to laboratory hardware limitations, assuming monochromaticity reduces preci-

sion without adding significant value. Therefore this document reports luminance in

cd/m2.

Finally, radiance and luminance both refer to light leaving or passing through
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some surface. Irradiance and illuminance both specifically refer to light incident onto

a surface from some solid angle, such that illuminance Ev = cd/m2 ∗ sr. In this

document, then, luminance is a description of the light leaving the light source, while

irradiance and illuminance are the amount that actually falls on a pixel, thus enabling

creation of an image.

2.3 Traditional Pixel Principles

In order to understand the way in which event-based cameras improve the state of

imaging technology, it is important to understand how conventional camera sensors

respond to irradiance to record images. The sensing device in a conventional camera

consists of an array of detectors called pixels, which each convert light into electrical

information. Each pixel contains a photodiode which generates electrical current

proportional to the irradiance incident on that pixel. When a camera begins recording

an image, the charge accumulated by the photocurrent is stored in some manner,

typically a capacitor. At the end of what is technically referred to as the “integration

time” or “exposure time”, the storage system stops accumulating any additional

charge. At this point, the camera begins a “readout” process, during which the

accumulated charge in each pixel is transferred out of that storage area to an analog-

to-digital converter and converted to a Digital Number (DN), between 0 and 255 for

8-bit systems [15]. The combination of the maximum amount of charge each pixel

can contain, and the maximum DN produced by the converter both contribute to

the dynamic range of the camera. Cameras with a higher dynamic range are able

to accurately reproduce images with a larger difference between the brightest and

darkest regions without saturation.

Different pixel circuit architectures conduct the readout and conversion process in

different ways, differentiating CCD and CMOS sensors. Once the DN has been gen-
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erated, it is transferred out of the sensor to some electronic storage system. A picture

generated by the sensor is the grid of digital numbers translated into grayscale or

RGB color, and a video is a collection of subsequently recorded images (or “frames”),

each of which contains data for every pixel in that image.

This has proven to be an effective way of storing and communicating spatial in-

formation, as evidenced by the fact that the vast majority of consumer and industrial

digital images produced have followed this format. There is a significant challenge

that afflicts this architecture, however. When recording a video of a scene, there is

often a primary subject which fills a small fraction of the total field of view. This

subject can be expected to change between frames. The rest of the field of view

often does not add significant useful information and does not change much between

subsequent frames. An easily-imagined example of this would be an airplane flying

from the left side of an image to the right side. The pixels that see the airplane

at some point add information. The number of pixels between the front and back

of the craft describe its size, while the difference in time between the nose crossing

into one pixel then another pixel describes its velocity. However, any pixel that does

not record the aircraft is only recording a video of the sky, which may not change

significantly through the duration of the video. Thus, a pixel viewing only the sky

reports a similar DN in every frame. This creates redundant data without adding

useful information. In the case of modern high-definition sensors, relatively short

videos can contain several gigabytes of data, most of which is redundant.

One solution to this problem of highly-redundant data is to compress the video files

through post-processing. This is a popular and widely adopted practice, but increases

the computational load, and by its nature, can only be done in post-processing. This

is where event-based cameras add significant value to the industry. Event camera

pixels use a fundamentally different process of converting light to digital informa-
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tion, generating less redundant data, and recording scenes with a significantly higher

dynamic range.

2.4 Event-Based Camera Principles

The event-based pixel was first developed and presented in 1992 by Mahowald in

[10]. They were also referred to as “neuromorphic” sensors, due to their functional

similarity to biological structures such as neurons and the retina in the eye. In 2008,

the company iniVation published [16] which introduced a pixel architecture known

as a Dynamic Vision Sensor (DVS). In 2014, [17] introduced a pixel which is capable

of recording both events and traditionally-integrated CMOS-style images. This does

so by incorporating an APS circuit with the DVS circuit in each pixel unit cell. This

combination is referred to as a Dynamic and Active Pixel Vision Sensor (DAVIS)

pixel. The DAVIS240 and DAVIS346 cameras both use DAVIS pixels, while the

DVXPlorer and Prophesee VGA-CD cameras only contain DVS pixels.

2.4.1 Principles of Operation

In an event-based camera such as the DAVIS240, each pixel has a photodiode

which generates current in response to incident light. This is where the similarity

to conventional pixels ends. An arrangement of transistors generates a voltage pro-

portional to the logarithm of the photocurrent, which schematically appears as Vp in

Figure 1 [16].

Once the capacitors C1 and C2 in Figure 1(a) amplify the voltage, the compara-

tors continuously compare it to the preexisting threshold voltage, and the difference

is output as Vdiff . As activity in the field of view changes the irradiance on the

photodiode, the current and thus the voltage difference Vdiff changes. Any time the

voltage Vdiff exceeds the positive or negative threshold shown in Figure 1(b), a com-
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Figure 1. Abstracted Pixel Schematic ©2008 IEEE [16]. (a) shows a simplified event-
based pixel circuit. Light is incident on the photodiode on the left. The transistor-
amplifier combination outputs a voltage Vp proportional to the logarithm of photocur-
rent. The differencing circuit subtracts Vp from a reference to produce Vdiff , which
triggers a comparator and thus an event when it exceeds a threshold. (b) shows nomi-
nal circuit behavior in response to ongoing change in irradiance.

parator circuit triggers a digital process that records the pixel address (x,y), the the

time at which the the address was reported (t), and polarity of the change (p). The

collection of these 4 data points is referred to as an event, and is generally referred

to as an Address Event Representation (AER) described by Equation 3

E = [x, y, t, p]. (3)

The voltage Vdiff is then reset to zero and the pixel is ready to detect subsequent
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changes in the scene [16]. In this manner, only pixels which detect some change

will record any data. To construct an image, events must be processed into some

convenient visualization.

2.4.2 Pixel Arbitration

In the DAVIS240 camera developed by iniVation, the asynchronous process which

records the pixel address relies on a series of interactions between the reporting pixel

and address encoding circuits on the periphery. In this process, depicted in Figure

2, a pixel which has crossed a threshold generates a row-request (RR) signal. In the

event that several rows send requests simultaneously, an arbitration circuit (or “ar-

biter”) chooses the order in which to respond. The arbiter stores that row address

then sends a row-acknowledge signal (RA). All pixels in that row which have crossed

threshold then send a column-request-on (CRON) or column-request-off (CROFF),

depending on which comparator was triggered. These column addresses are stored,

and the arbiter generates a column-acknowledge (CA) signal. Timestamps are as-

signed to addresses in the order determined by the arbiter, after which the pixels

are reset, and the now-complete events are transmitted out of the sensor [17]. The

DAVIS240, DAVIS346, and Prophesee report events in this asynchronous method,

though specifics almost certainly differ between models. The DVXPlorer differs from

this by applying a sequential column scan readout [18]. The column scan process

results in reduced timestamp resolution (200µs), but presumably enables more pre-

dictable event handling.

2.4.3 Latency

Latency is the delay between a real stimulus occurring and the timestamp of the

event describing that activity. While there is a deterministic component due to the
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Figure 2. AER Block Diagram ©2014 IEEE[17]. When the comparators trigger an
event, the DAVIS240 pixel begins a 4-phase handshake. A row request (RR) is sent
to the row address encoder, which responds with a row acknowledge (RA) signal. All
pixels above threshold in that row then send an ON or OFF column request (CRON
or CROFF) to the column address encoder. The column acknowledge signal resets the
pixels, and the addresses are moved to the handshake state machine for timestamping.

geometry of the circuit, noise adds an element of uncertainty to latency. Event-based

cameras are plagued by the same sources of noise as traditional sensors, including

photon shot noise, thermal noise within the circuit, and fixed pattern noise on the

focal plane array [19]. This combination of noise sources can potentially increase

uncertainty of event timing to as much as 100 microseconds[20]. Figure 3 shows how

variation in voltage may cause deviations in the time at which an event is times-

tamped, thus contributing to overall latency.

In the white paper produced by iniVation[20], they recognize that while specifi-

cation sheets may report latency as low as 1 microsecond from a device, that speci-

fication may be misleading due to the conditions required to report events with such

precision. Generally speaking, as long as the rate at which events are being reported
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Figure 3. Event Time Uncertainty [20]. Threshold mismatch between pixels and ran-
dom noise sources contribute to variation in latency, referred to as jitter.

is low, the latency will also be low. However, if even 10% of pixels are stimulated

simultaneously with enough contrast to generate events, the readout latency could

increase to as much as 1 millisecond. The spread of this latency is not discussed,

aside from noting that the temporal distribution can be observed in the timestamps.

One contribution of this thesis is to reveal correlations between optical inputs and

latency variability.

2.4.4 Dynamic Range

Another central concept to event-based cameras is their larger dynamic range

compared to traditional APS camera sensors. Traditional cameras can operate over

60dB [3] where the dynamic range in decibels is defined as

DR = 20 ∗ log10(Ehigh/Elow) (4)
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where Ehigh and Elow describe the maximum and minimum values of irradiance over

which the sensor can operate. 60dB is roughly equivalent to 10 stops (1 : 210) or a ra-

tio of 1:1,000. Their logarithmic response to photocurrent allows event-based cameras

to record elements of a scene spanning more than 120dB, equivalent to roughly 20

stops or 1:1,000,000. It should be noted that there is currently no industry standard

for determining responsiveness of event cameras, and manufacturer testing procedures

and thresholds used to generate that specification may vary slightly. Additionally,

event-based cameras respond to temporal contrast, or the relative change in irradi-

ance. This causes a reduction in absolute sensitivity at the high end of the functional

range. For example, if an event-based camera has a 10% contrast threshold, it would

probably detect a change from 10cd/m2 to 11cd/m2. However, if the starting illumi-

nance was 10, 000cd/m2, the camera would be unlikely to detect any change smaller

than 1000cd/m2.

2.4.5 Throughput

A key parameter used to describe event camera behavior is the number of events

per second being recorded by a camera. This is often reported in Million Events per

Second (Meps) and depends on the number of pixels being exposed to activity, and

the number of events being generated by each pixel. Maximum reported throughput

capabilities are 12Meps for the DAVIS240 and DAVIS346, 50Meps for the Prophesee,

and 165Meps for the DV XPlorer. Note that this document will use EPS to mean

“Events per Stimulus”, referring to the testing procedure described later. When

referring to events per second in the context of throughput, this document will use

“Meps”. The unique nature of the address event representation data known as events

presents several challenges in processing, visualizing and understanding. Techniques

for doing so are presented in the following section.
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2.5 Data Comprehension

2.5.1 Time Surface

Event-based data presents a new way of understanding activity in a scene. Be-

cause the data presents information in a fundamentally different way than traditional

images, it must also be visualized and analyzed in new ways. One method of vi-

sualizing sparse event data is through a plot known as a time surface. The first

two dimensions correspond to the physical dimensions of the sensor, while the third

dimension corresponds to time. In [21], an exponential kernel is applied to the times-

tamp of events at each pixel. The result of this is that the most recent events have a

value of positive or negative 1, depending on event polarity, while older events decay

exponentially toward zero. The figure resulting from this analysis indicates peaks or

bright spots for the most recent activity, and nullity in regions without activity. This

provides a historical context for each pixel and its most recent event compared to its

neighborhood, without cluttering the image with excessive past events.

This technique is well suited for representing a long history of events in a com-

pact plot, as the exponential kernel continually emphasizes most recent events and

diminishes the visual impact of no-longer-relevant old events. An alternative way

of producing a time surface is to leave time as represented linearly rather than ap-

plying an exponential decay. Because event cameras report events with microsecond

resolution, expressing the time linearly invokes a very short limit on the depth of a

surface plot. For example, a hypothetical 8-bit image for which each pixel can con-

tain a value from 0-255 could only represent 256 microseconds of activity without

compressing time divisions by binning events and thus lowering temporal resolution.

A strength of expressing time linearly in a time surface is that small differences

between pixels are easy to detect for a sufficiently short period of interest. In the case

of this research, where the field luminance is simultaneously changing in less than
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one microsecond, the period of interest for comparing pixels is very short, and spatial

patterns emerging from the camera circuits are expected to be small.

To understand the functionality of a time surface better, an idealized example

is shown in Figure 4. Figure 4(a) shows the simulated field of view of an event

camera. In this example, the dark gray background is not changing at all, while a

light gray bar steadily expands to the right, triggering one column of events at a

time as it expands from left to right. Figure 4(b) displays a time surface generated

Figure 4. Simulated Time Surface. (a) shows a hypothetical simple scene as imaged
by an event camera, in which a light gray bar is steadily expanding to the right, with
a dark gray background. As the expanding bar crosses into each new column of pixels,
the pixels in that column report an ON event, each column with steadily increasing
timestamps. (b) shows a time surface describing those events, where the most recently-
triggered pixels are colored darker, while the first pixels to trigger are colored lighter.
Pixels that have not seen any transition do not produce any events, and are depicted
as white. If the light gray bar were to shrink, pixels would generate OFF events and
could be visualized in the same manner.

from the events produced by the expanding bar. The lightest region of the gradient

shows oldest events, and the darker pixels to the right show newer events. The white

space shows where no activity was detected so no events were generated. If the light

gray bar were shrinking instead, the pixels would generate OFF events and could be

visualized in the same manner.
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Both expansion and contraction demonstrate spatial contrast, in that an object

is moving through the scene. An example of temporal contrast would be if the entire

frame was initially black, then suddenly turned to white. This would generate a

flat and level time surface, suggesting all pixels recorded an event simultaneously. An

ordinary camera flash is a good example of high temporal contrast. Time surfaces can

be effective for qualitatively revealing spatial patterns, either from the scene or from

the sensor behavior. A more quantitative understanding can be gained by analyzing

the range of times at which pixels report events.

2.5.2 Median Absolute Deviation

Each time surface is a set of data which can be easily described by common

statistics including the mean, median, standard deviation, and a less common statistic

called the Median Absolute Deviation (MAD). Due to complexity in the scene and

noise in the sensor, time surfaces are likely to have significant outliers in addition to

any ideal patterns such as those depicted in Figure 4.

In general, datasets can be described by their magnitude and their spread. The

magnitude is commonly described using the arithmetic mean, while spread is usually

described by the standard deviation. Each metric, calculated from a sample of the

population, is a statistic that estimates the population parameter, and tells nothing

about the other metric. That is, one can learn nothing about the spread of the data

based on just the mean, and nothing about the average magnitude of the data based

on just the standard deviation.

The mean and standard deviation are not considered “robust” statistics, in that

both are significantly affected by outliers in the data. For any arbitrary set of data,

the standard deviation and mean can be made arbitrarily large by adjusting merely

one data point. This suggests that even if a data set has a small number of outliers,
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those outliers can significantly change the value of the statistics, and thus tell an

inaccurate story regarding the source of the data.

The median of a data set is a measure of magnitude that is robust to outliers, as

the actual value of any single outlier does not affect the value of the median. The

Median Absolute Deviation (MAD) is a measure of spread based on the median,

similar to how the standard deviation is based on the mean. The MAD is the median

of the deviations of the data from the data median.

In terms of time surfaces, the MAD is a way of describing the time scale over

which events are recorded following instantaneous stimulation. Figure 5 depicts how

a series of 5 events might be read out from a sensor, and how the MAD of the

recorded times would be calculated. In Figure 5, some stimulus around the reference

time stimulates 5 pixels. After some latency period, each event gets timestamped

and saved to memory. In post-processing, the algorithm finds the median event and

calculates the deviation of every other event from that median. It then calculates the

median magnitude of the deviations, resulting in the metric of spread referred to as

the MAD.

Figure 5. Graphical Depiction of MAD. The Median Absolute Deviation describes
the spread of a group of event times. It is calculated by finding the median event,
calculating the time difference (deviation) between the median event and every other
event, then finding the median of those deviations.
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Latency and temporal resolution are two often-reported metrics describing the

performance of event cameras [3], and together they give the reader an impression of

the timing accuracy of each sensor. A camera’s precision, however, is limited by both

the temporal resolution and the spread of the events being reported. Resolution is

designed and reported by the manufacturer, and spread is reported in this thesis.

2.6 Recent Publications

Four recent publications are particularly relevant to this characterization effort.

The first presents an experimental setup and process for uniformly exposing pix-

els. The second uses a simpler setup but develops a useful histogram technique

for discussing event generation rates. The third uses a similar setup as the first to

characterize the frequency response of a pixel, and develop an initial model of the

DAVIS240. The fourth expands on that model and provides additional detail on the

characteristics of event cameras.

2.6.1 Mechanical Setup

A characterization setup is proposed by Joubert et al.[11], in which LEDs were

installed in an integrating sphere. LEDs were used to stimulate the cameras because

they respond quickly to current drivers, enabling sub-microsecond radiance control.

An integrating sphere provided a means to uniformly illuminate the sensor, providing

direct comparison between pixels while minimizing features in the scene. Neutral den-

sity filters were installed to reduce the irradiance on the sensor, but high irradiances

were challenging due to power and thermal concerns regarding the LEDs and drivers.

They develop a way of quantifying initial and final irradiance, including a percent

change which is the controlled variable in the experiment. Several characteristics of

a DVS sensor were reported, but the document did not specify which camera was
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actually tested.

A similar, albeit less sophisticated arrangement was used by Hollidt in [22]. In

that work, a single white LED illuminated a brown cardboard target set on a table.

The cardboard was arranged such that it only filled a small portion of the field of view.

The motivation of that work did not require high throughput utilization so the author

actively avoided exceeding the throughput capacity of the cameras. Hollidt processed

the data using a form of temporal histogram, summarizing event generation rates

by how many events were generated within subsequent millisecond periods. That

procedure formed a foundation and starting point for the data processing workflow

used in this thesis.

2.6.2 Model Development

McReynolds[12] identified key parameters necessary to describe the behavior of

pixels in a DAVIS240. These parameters were contrast threshold, fixed pattern noise,

noise equivalent contrast, effective time constant, refractory period, pixel threshold

mismatch, and bandwidth. Each parameter was experimentally measured, and used

to create a functioning model of the sensor. In doing so, it was reported that the

pixels are able to reliably respond to repeated stimuli up to 3kHz, representing a

refractory period of approximately 330µs. McReynolds proposed that pixels can be

approximated as RC lowpass filters, described by a time constant. Temporal noise

behavior and fixed pattern noise were also replicated. This effort produced the first

model of an event camera to incorporate physics-based frequency response and noise

generation.
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2.6.3 Model Application

Delbruck et al.[23] present a more comprehensive model which can convert tra-

ditional videos into simulated event streams. This converter incorporates a pixel

model which expanded on pixel threshold mismatch, illumination-dependent band-

width, and various noise sources. The paper describes sources and characteristics of

latency and variability, or jitter. It also describes the non-instantaneous response of

a pixel to a step-function stimulus using an RC lowpass filter approximation, such

that when photocurrent changes rapidly in response to a stimulus, the voltage being

applied to the comparators approaches its new value over some relatively long period,

compared to the time of the photocurrent change. This non-instantaneous response

causes pixels to generate several events over an extended time period. Thus, as a

sharply-focused edge passes over a pixel, the pixel may still be generating new events

after the edge has passed, reducing the spatio-temporal resolution of the image of the

edge. This is effectively an event-based camera’s version of motion blur.

Jourbet et al.[11] and Hollidt[22] presented opto-mechanical setups for controlling

fast stimulation of event cameras. McReynolds[12] used a similar setup to classify

event camera pixels as an RC lowpass filter, and Delbruck et al.[23] used a similar

approximation to present a model for sensor operation. These papers have examined

and discussed characteristics of individual event cameras. Aside from some discussion

and analysis of fixed pattern noise, there has not been significant exploration of the

spatial tendencies of sensors in response to stimuli. Few papers have applied the same

test methodology to several different makes and models of cameras, resulting in few

direct comparisons between cameras. From a scientific perspective, the development

of models is highly useful. However from an application perspective, the lack of

side-by-side comparison makes selection of a specific model challenging.
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2.7 Readout Behavior

A significant amount of recent work has expanded the industry’s understanding

of pixel-level behavior in event-based cameras. While current models describe event

generation, they do not describe event timestamping or storage processes, or potential

performance limitations associated with those operations.

One question which has not received much attention in the literature regards the

maximum rate at which a camera can generate and timestamp events. Specification

sheets report maximum throughput, but do not specify if the maximum throughput

is an instantaneous limit or a long-term average. If it’s an instantaneous maximum,

cameras in this study would be limited to 12, 50, or 165 events per microsecond. If it’s

an average limit, then instantaneous events/microsecond could potentially be larger

than the limit, as long as there follows a period of low throughput to compensate.

Regardless of the instantaneous vs average limit, one should expect performance

to degrade above that limit, while performance should be in line with advertised

specifications below that limit.

Simultaneously timestamping events from many pixels could easily exceed the

throughput capabilities of these cameras, so based on the throughput capability of

the camera there is necessarily a minimum time required to read out events from

the entire array. This sets a minimum theoretical value for the Median Absolute

Deviation obtained from a full-frame time surface. For example, the DAVIS240 has

43200 pixels. If every pixel is simultaneously stimulated and only generates one event,

at the quoted rate of 12 Meps it would take 3600µs to timestamp and read out one

event from every pixel in the array. Table 1 show minimum readout times calculated

for all four cameras, defined as tr.

To determine the theoretical minimum MAD, assume that the camera timestamps

these events at a uniform rate. For every time surface generated, there will be an
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equal number of events before and after the median event, with equal and opposite

deviations from that median event. The absolute deviations from the median would

then range linearly from 0 to ±tr/2. The median of these deviations (the MAD), is

then simply the center of that set: tr/4. This is the lowest MAD one can expect with

100% of pixels reporting. If a smaller percentage of the array is generating events,

the minimum MAD would likely scale down accordingly.

Table 1. Theoretical Full-Array Readout Time (µs)

DAVIS 240 DAVIS 346 DV XPlorer Prophesee Gen3
Array Size (pixels) 43200 89960 307200 307200

Throughput (events/µs) 12 12 165 50
Readout Time tr (µs) 3600 7497 1862 6144

Min MAD tr/4(µs) 900 1874 465 1536

2.8 Summary

This chapter presented the operating principle behind dynamic vision sensor pix-

els. Readout architecture and metrics such as latency, dynamic range, and throughput

were defined. Techniques for processing data were described, establishing a common

vocabulary necessary for the rest of this document. Recent work toward characterizing

new sensors was examined, which provides a foundation for the experimental methods

used to compare the cameras in this research effort. Finally, manufacturer-provided

specifications were used to predict the minimum MAD under high event loads. The

following chapter presents the methodology used to investigate these parameters.
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III. Methodology

3.1 Overview

This chapter begins with a description of the physical setup used to evaluate the

four cameras: iniVation’s DAVIS240, DAVIS346, and DVXPlorer, and Prophesee’s

Gen3M VGA-CD 1.1. Following the mechanical setup is a description of the optical

stimulus and the electronic considerations associated with it. A brief experiment is

described which was used to verify that the characterization process was not being

influenced by external light sources, followed by the procedure implemented to con-

duct that characterization process. The chapter concludes by describing the data

processing pipeline and production of metrics described in the previous chapter.

3.2 Physical Setup

3.2.1 Pixel Stimulation Percent

In order to understand each camera’s behavior in response to different levels of

activity, it was required to stimulate various fractions of the pixel array, ranging from a

very small to a very large number of pixels. The fraction of the sensor being exposed

to the stimulus is defined as the Pixel Stimulation Percent (PSP). PSP is directly

related to the “load” being experienced by a camera and the associated consumption

of communication bandwidth: more pixels being exposed results in more events being

generated and transmitted to storage.

A consistent and repeatable stimulus was used to compare behaviors of different

cameras and configurations. In order to uniformly illuminate a controllable number

of pixels while blocking out all other light, an integrating sphere was placed inside a

light-proof enclosure. An array of ten LEDs was installed as the sole light source in

an access port previously used to hold one of the halogen light sources for the sphere.
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A 1.5 inch iris diaphragm was installed on the exit port of the integrating sphere

and opaque tape was applied between the iris and the sphere to seal the gap. The

other access ports on the sphere were also taped closed to prevent light from passing

through them. The camera being tested was positioned in front of the iris and sphere,

with the lens focused on the iris. This created an image of the iris on the camera

sensor. Black felt was placed over the integrating sphere with a circular hole cut out

for the iris, creating a nearly-constant-reflectance background. Felt was also placed

around the walls of the enclosure to minimize stray reflections.

To expose a minimum number of pixels and thus a minimal fraction of the camera

sensor, otherwise referred to as a Focal Plane Array (FPA), an additional 1.5 inch

(3.8 cm) diameter middle iris was installed 5 inches (12.7 cm) in front of the sphere

iris as depicted in Figure 6. By leaving the sphere iris fully open and adjusting the

diameter of the middle iris, stray light reflections into the camera were minimized.

Each camera under test was installed 16 inches from the middle iris, as measured

from the camera body mounting hole.

By closing the middle iris to its smallest aperture, a small number of pixels were

exposed while all other pixels image the constant black background, remaining ef-

fectively unstimulated. This enabled the capability to produce a very small source

of controlled brightness approximately 16 inches from the camera under test with a

nearly-constant brightness background. This arrangement allowed for illumination of

a very small fraction of the FPA, but its limited diameter did not allow for illumina-

tion of a large fraction of the FPA. To accomplish this, the middle iris was removed

and the camera mounting location was relocated to 2.5 inches (5 cm) in front of the

sphere iris as shown in Figure 7. In this configuration, the end of the lens was less

than one inch from the iris. This close proximity was necessary for the iris to retract

completely out of the field of view of the Prophesee camera, which had the largest
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Figure 6. Two-Iris Setup. Each camera was located 16 inches (40cm) from the middle
iris. The LEDs were mounted in a lamp access port, and the sphere iris and tape
blocked stray light from the output aperture.

field of view. This was slightly closer than the minimum focal length of the lens

used, so some slight focus error was present. Some focus error was determined to be

acceptable in order to maximize the fraction of the field of view being filled by the

source.

The integrating sphere was a 12 inch (30.48 cm) diameter Electro Optical Indus-

tries model. Due to the multiple-bounce nature of integrating sphere, the sphere’s

impulse response is of the form

e
−t
τ (5)

where t is the time after the impulse is applied. τ is a time constant calculated as

τ = −2

3
∗ Ds

c
∗ 1

ln(p)
(6)

where p = average wall reflectance, c= the speed of light, and Ds = sphere diameter

[24]. For the sphere used in this research, the time constant τ was approximately

15 nanoseconds. The rise time of the sphere output is ultimately determined by
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Figure 7. One-Iris Setup. A higher fraction of the field of view could be filled by
moving each camera to only 1 inch (2.5cm) from the sphere iris.

convolving this impulse response with the timing profile of the LED light source.

3.2.2 LED Wiring

One of the factory-installed halogen bulbs was removed from one access port and

an array of green LEDs was installed in its place. Hardware availability and circuit

complexity drove the decision to use green LEDs rather than other options, in addition

to the possible convenience of converting between radiometric and photometric units.

These LEDs were mounted on a custom plastic cylinder which was installed into the

integrating sphere in place of the 4th halogen lamp. This arrangement caused the

light from the LEDs to scatter several times inside the integrating sphere before being

captured by the camera under test, producing a uniformly-illuminated field of view

for every pixel. Uniform illumination was critical so that any differences in response

could be attributed to camera behavior rather than differences in stimulus.

A function generator drove the LED array in order to produce an “instantaneous”

impulse with which to evaluate the cameras. One additional matching LED, wired in
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parallel with the main array, was mounted outside the enclosure and aligned with a

fast photodiode (FPD). The FPD had a typical rise time of 1ns[25] and was connected

to an oscilloscope to enable real-time monitoring and recording of the radiance emitted

by the LEDs.

3.2.3 Pulse Generation

The function generator was set to produce an increasing (OFF to ON) stimulus at

approximately 10 Hz with a 50% duty cycle square wave, which left enough time be-

tween impulses for the camera under test to reach equilibrium. To adjust brightness,

the function generator amplitude and offset were adjusted such that the top voltage

was near zero, and the base voltage decreased, resulting in higher current through

the LED array. Actual base voltage was recorded through the oscilloscope and the

average and standard deviation reported over several cycles. The voltage amplitudes

and offsets were chosen to drive the LEDs near their low-power and high-power limits,

without under- or over-driving them. The indicator LED rise time, duration, and fall

time were directly measured by the fast photodiode, and the timing of the array was

correlated to the indicator timing, so effective array timing could be calculated.

3.2.4 LED Rise Time

It has been observed that several events may be generated in response to a single

moment of high temporal contrast [23]. Each camera tested in this research had a

minimum timestamp resolution of 1µs, so any activity occurring in less than one

µs would be effectively instantaneous. In order to confirm that the LED array was

generating “instantaneous” (sub-microsecond) pulses, the rise time of each individual

LED was directly measured using the FPD. The single LED left outside the enclosure

(referred to as the “indicator LED“) was also characterized.
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Each LED was aligned with a ThorLabs Fast PhotoDiode such that the out-

put voltage from the FPD was maximized without significantly distorting the square

waveform, as recorded by a Rhode & Schwartz 300MHz oscilloscope. Rise time and

fall time were automatically calculated by the oscilloscope by calculating the elapsed

time between the voltage passing 20% and 80% of the maximum value attained that

cycle. At least 1000 cycles were recorded and averaged to produce averages for each

LED. The mean rise time of all 10 LEDs was calculated to be 73 nanoseconds with

a standard deviation of 8 nanoseconds. This is assumed to be effectively “instan-

taneous” due to the 1 microsecond minimum timestamp resolution of all cameras

tested.

Figure 8 shows the optical output of one representative LED as measured by the

FPD. The upper line shows the output of the LED represented by volts generated by

Figure 8. LED Stimulus Profile. This oscilloscope trace shows the output of a rep-
resentative LED in the source array in response to the driver voltage. The vertical
scale corresponds to the photodetector voltage used to measure the LED rise time, the
horizontal scale is 80 ns/division. The driver voltage changed from 0 to roughly -5 volts
to power the LED array, and is displayed scaled down for clarity. The photodetector
voltage shows that LED rise time is less than approximately 100 nanoseconds. The
LEDs remained on for 50 milliseconds per cycle, allowing sufficient time for the camera
to reach a steady state.
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the FPD, while the lower line shows the voltage being applied to the LED array. The

overshoot and subsequent ringing were considered negligible because those effects did

not appear in the observed FPD voltage. The 15ns time constant of the integrating

sphere and the 73ns rise time of the LED array, when convolved, produce an opti-

cal impulse with a rise time significantly shorter than 1 microsecond, the minimum

temporal resolution of every camera tested.

3.2.5 Sphere Luminance

Event cameras respond to change in the logarithm of the photocurrent being

produced by the sensor[23] so

Contrast =
Lfinal − Linitial

Linitial
(7)

is a relevant metric to describe scene activity. The integrating sphere displayed the

current luminance as measured by a detector inside the sphere. However, the initial

luminance in this experiment was lower than could be detected by the integrating

sphere’s detector, so was approximated as Linitial ≈ 0. This causes a problem for

calculating contrast. Thus instead of reporting a percentage-based change, this paper

reports the magnitude of change by reporting the final luminance value

Contrast = Lfinal − Linitial = Lfinal. (8)

One could calculate a contrast by comparing the photocurrent generated by noise

versus the photocurrent generated by an illuminated pixel, but there is currently

no way to directly access the photocurrent in these cameras. Those cameras which

include an APS imaging mode could not be used to calculate contrast due to dynamic

range limitations and an observed tendency to generate noise events upon readout of
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integrated frames. However, in the case of a physical parameter such as luminance

where negative values are nonphysical, describing the magnitude of the final value is

equivalent to describing the magnitude of the change when the initial value was zero.

The integrating sphere controller reported value of luminance was in foot-Lamberts

(fLs). During normal operation, the integrating sphere controller would use this sig-

nal in its closed-loop control system to adjust the output of the various halogen lamps

to maintain a preset desired luminance. However, if the desired luminance is set to 0

fL, the controller turns off all 4 lamps, while continuing to measure and display the

luminance of the sphere. When light is then injected into the sphere by the externally-

controlled LED array, the internal sphere controller sensor displays the effective lu-

minance generated by the LEDs. In this way, the luminance generated in the sphere

by the LED array was measured. Simple dimensional analysis allowed conversion

from foot-Lamberts to the metric equivalent, cd/m2. By definition, 1fL = 1
π
candela
ft2

.

Converting to metric length gives

1
cd

m2
=

1

π

candela

ft2
∗ (1ft)2

(12in)2
∗ (1in)2

(2.54cm)2
∗ (100cm)2

m2
(9)

By Equation 9, the luminance in fL reported by the sphere was converted to cd/m2.

The function generator was not able to adjust the duty cycle of the square wave

driving the LEDs, which was set to 50%. The sphere controller only updates the

luminance display at roughly 1Hz, which meant it was averaging the luminance over

a relatively long period (approximately 1 second). Thus when the function genera-

tor was flashing the LEDs at 10Hz during the data collection, the sphere controller

was only reporting 50% of the real luminance from the LEDs. To measure the real

luminance of the sphere, the function generator was set to run the LEDs in a DC

steady-on mode. The voltage provided by the function generator was recorded with

the luminance reported by the sphere controller. To reproduce the desired luminance
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during subsequent trials, the square wave amplitude was adjusted to match the target

voltage.

While some optical characterization efforts would consider on-pixel illuminance,

measuring the flux incident on a unit surface from all solid-angles, this effort only

discusses luminance propagating outward from an “object” or source surface. The

purpose of this research is to directly compare the properties and behavior of the

entire system including each camera’s FPA, Readout Integrated Circuit (ROIC), and

associated storage architecture rather than studying each sensor at an individual-pixel

level. Therefore, reporting the illuminance on a single pixel is less informative than

reporting the luminance of the scene the array of pixels is observing.

3.2.6 Lens Selection

A Computar 8mm f/1.4 2/3” format lens was used with all 4 cameras. Each

camera’s sensor had different physical dimensions while the image produced by the

lens remained constant regardless of camera. The Prophesee camera had the largest

physical sensor, thus defining the minimum lens format required to accurately fill the

sensor. The three other cameras had smaller sensors which reduced their field of view

when compared to the Prophesee camera.

Alternately, choosing a lens optimized for the iniVation camera would underfill the

Prophesee sensor, which would result in the outer pixels experiencing lower irradiance

than the central pixels, therefore inducing nonuniformity that would effect noise rates.

This would be a contributing factor to behavior between the Prophesee and iniVation

cameras. Therefore, it was concluded that it would be better to use a lens that

adequately fills or overfills all sensors than to use one that underfills a sensor. The

aperture was left fully open in all cases.
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3.2.7 Dark Noise

In order to use absolute final radiance in place of contrast as discussed in Section

3.2.5, the initial scene radiance must be effectively zero. However, event cameras

produce “noise events” in the absence of scene activity [23], even with a lens cap on.

To confirm that the enclosure was dark-noise limited for every camera, the LED array

was turned off and events were recorded for 10 seconds. Every camera’s settings were

left on their default values.

The lens cap was installed and events recorded for another 10 seconds. The total

number of ON and OFF events recorded was divided by the length of the recording

and the number of pixels in that camera’s FPA. The result is the average events per

pixel per second, values for which are displayed in Table 2. The Percent Difference

takes the difference divided by the covered rate.

Table 2. Dark Noise Event Rate (Events/pixel/sec)

Lens Uncovered Lens Covered Difference (%)
DAVIS 240 0.1251 0.1245 0.4819
DAVIS 346 1.9989 1.9826 0.8222
DV XPlorer 0.7412 0.7143 3.766
Prophesee Gen3M 0.0471 0.0480 1.875

The Percent Difference values represent the deviation of the enclosure or “scene”

radiance from the lens cap radiance. Since there is negligible visible light being

emitted by the lens cap, and no way for light to leak around the lens assembly into

the sensor, it can be approximated that when the lens cap is installed, there is zero

optical irradiance on the sensor. Based on the small difference observed when the cap

was removed, it can be assumed that when the LEDs are off, there is effectively zero

illumination on the sensor and the camera is dark noise limited.
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3.3 Test Procedure

Cameras were tested in two phases. The first phase evaluated their response when

a very small fraction of the array was exposed. In order to evaluate their response

when a large fraction was exposed, the testbed had to be rearranged slightly before

repeating a similar process in the second phase.

3.3.1 Camera Settings

Each camera’s sensitivity and bias settings were left at their default values. Any

software filters were turned off, and the interal Inertial Measurement Units and gyro-

scopes were turned off if applicable. On the cameras capable of recording APS frames

in addition to events, the frame collection was turned off.

3.3.2 Low PSP

Cameras were installed and tested one at a time, with each camera mounted as

described in Section 3.2.1. The lens was manually focused on the middle iris. The

middle iris was set to 2mm, 4mm, then 6mm diameter for each camera. The sphere iris

was opened fully, to 43mm diameter. For each iris diameter, the function generator

output voltage was set to the predetermined amplitude and offset to generate between

9.3cd/m2 and 771cd/m2.

After installing and focusing each camera, the enclosure door was closed and

the room lights were turned off. Minimal light from the controlling computer and

oscilloscope remained present in the room but the enclosure prevented light leakage

into the test space. The function generator driving the LED array was left running

continuously, starting several minutes before the first set of data collection to allow

for mechanical warmup and stabilization.

The function generator was set to 10Hz and various voltages as determined pre-
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viously. The real frequency and amplitude of the output was measured directly by

the oscilloscope, and the output of the indicator LED was measured by the FPD and

displayed on the oscilloscope. The output from each camera was recorded for approx-

imately 5 seconds per configuration, and the oscilloscope data for both the function

generator and FPD channels from that same period was saved for later reference.

3.3.3 High PSP

After all four cameras had been tested at the 16” position, the middle iris was

removed and the camera mounting location was moved up to 2.5” (6.4cm) from the

sphere iris. At this location, the iris was slightly inside the nearest possible focus of

the lens, but the corners of the Prophesee field of view were slightly blocked by the

full-open iris, preventing 100% PSP. The location was chosen as a compromise, to

allow slight focus error in exchange for maximizing the fraction of the sensor exposed

to the integrating sphere.

For each camera, the sphere iris was set to 2mm, 5mm, 10mm, 20mm, and fully

open (approximately 43mm). The LED array was controlled in the same manner as

before. Since the DAVIS240 camera has the smallest sensor and corresponding field

of view, setting the iris to 20mm completely filled the camera’s field of view. This

meant that the recording from the 43mm setting was redundant, and is not reported.

3.4 Data Processing

The data processing pipeline consisted of two primary stages. The first stage

converted raw data from a proprietary format into an accessible and useful format

where events could be individually examined, then filtered out the irrelevant events,

leaving only those which could be attributed to the stimulus. The second stage

analyzed the set of relevant events to generate time surfaces and statistics describing
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each configuration.

3.4.1 Filtering

Each camera produced proprietary data formats. iniVation cameras output data

using a .aedat4 filetype, while the Prophesee camera generated files using the .raw

extension. Of note, this is different than the .raw files used as image files in the pho-

tography industry. Fortunately, the manufacturers published software toolboxes to

convert data into the [x,y,t,p] AER format using the Python programming language.

Many real-world applications of event cameras include activity where illuminance

first increases then decreases later. For characterization then, it was appropriate to

consider only ON events. Characterizing OFF events, generated by decreasing illumi-

nance, would likely be informative but is beyond the scope of this research. As such,

once the data was converted into the AER format, the OFF events were removed.

In an ideal event-based camera, every change in scene radiance would generate

events at the corresponding pixels, and every event would correspond to real changes

in scene radiance. Neither of these behaviors is accurate, however. As discussed in

[12], pixels cannot always keep up with changes in scene radiance if those changes are

on the order of kilohertz. As discussed in [19], pixels can also generate events even

when no real changes in radiance occur.

Diffraction through the iris caused light to fall on pixels outside the ideal image,

but at an unknown illuminance. Unsurprisingly, pixels exposed to this diffracted light

responded differently than the pixels illuminated by the ideal image. To generate

meaningful statistics, only the pixels exposed to a well-controlled stimulus could be

included in the analysis, so pixels beyond the edge of the ideal image were removed

from the datasets.

To determine which pixels to analyze, the total number of ON events generated
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by each pixel for the duration of the recording was calculated and divided by the

duration of the recording, establishing an average event rate for each pixel. When

this average rate for each pixel is displayed as an image, it was often obvious which

pixels correspond to the ideal image of the iris. An example of such an image is shown

in Figure 9. Due to the reduced magnitude of diffracted light as discussed above, the

dimmest stimulus produced the most clearly identifiable circle.

Figure 9. Pixel Event-Rate Image. When displayed as an image, the average number of
events generated per stimulus for each pixel clearly shows which pixels were stimulated
and which were not. Darker pixels suggest higher event rates. The center and radius of
the exposed area were manually selected. This particular example shows the event rate
image produced by the DVXPlorer when 3.4% of the array was exposed to a 9.3cd/m2

stimulu. The black pixels scattered across the sensor show hot pixels.

For each iris diameter, the center and radius of this circle was manually recorded

and used to generate a circular Region of Interest (ROI). All events from pixels outside

the ROI were ignored, while all events from pixels inside the ROI were included in

calculations. This algorithm was applied to the dimmest recording for each object,

which reduced the number of pixels generating events from diffracted light, while

keeping events from pixels corresponding to the ideal image projected onto the FPA.

Several individual pixels per camera generated significantly more events than their
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nearest neighboring pixels and are referred to as “hot pixels”. Events generated by

hot pixels were included in throughput calculations, but further analysis of those

defective pixels is beyond the scope of this document.

3.4.2 Analysis

As described in Section 2.5.1, time surfaces are a convenient and informative way

to visualize a large quantity of event data while maintaining temporal resolution. By

plotting the timestamps of events against the 2-D array corresponding to the FPA,

they enable the viewer to see spatial and temporal patterns in the field of view. Pixels

often generated several events in response to a single impulse. The time of the first

recorded event was used in the time surface, and all subsequent events from that pixel

were disregarded until the next stimulus period.

It was not possible with the hardware available to synchronize the timing of each

light source transition with the clock in each camera, so it was not possible to cal-

culate absolute delay between the real increase in radiance and the corresponding

events. Instead, a datum time was defined between the first and second impulse by

manually inspecting the event throughput histogram. For each pixel inside the ROI

discussed in Section 3.4.1, the difference in time between the datum and the first

event after that datum is calculated and stored as that pixel’s value in that time sur-

face. While producing each time surface, the time datum was continually advanced

to be just before the impulse response in question. This generated approximately 50

independent time surfaces for each configuration of camera, iris diameter, and scene

radiance, where each time surface depicts the response to a separate trial. In addition

to generating time surfaces, the Median Absolute Deviation (MAD) and number of

Events per Stimulus (EPS) were also calculated. Mathematical considerations for

those statistics are discussed in Chapter 4.
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3.5 Summary

Each camera was exposed to a series of flashes generated by LEDs in an integrating

sphere. The function generator drove the LEDs at amplitudes ranging from 9.3cd/m2

to 771cd/m2. Iris diameters were adjusted to stimulate between 0.0042% and 100%

of pixels. For each trial, the LEDs were initially off and the entire field of view of

the camera was completely dark. The LEDs rose to the high-power state in less

than 1 microsecond, which was fast enough to be considered “instantaneous” due to

each camera’s one-microsecond minimum temporal resolution. The LEDs remained

on long enough for the event readout rate to normalize to a static-scene background

noise level. For the four cameras tested, 50 milliseconds was sufficiently long. After

this time, the LEDs were turned off for 50 milliseconds, to allow the event readout

rate to normalize again. This pattern was repeated continuously for approximately 5

seconds, resulting in 21 independent trials per configuration.

Events produced by each camera in response to this repeated stimulus were

recorded. In post-processing, time surfaces for each positive (increasing) stimulus

were generated as described in Chapter 2 and the number of ON events produced by

each pixel per stimulus was calculated.
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IV. Results

4.1 Overview

Events generated in response to stimuli can be analyzed in many ways, depending

on the application and required information. Four metrics are presented here to

describe the behavior of the cameras. The first metric used to understand camera

behavior is the time surface generated in response to a stimulus. Time surfaces

show spatial-temporal relationships between pixels, revealing physical patterns and

tendencies associated with each sensor. A flat or low-contrast time surface suggests

a high degree of simultaneity in the temporal repsonse of a subset of pixels, while a

higher contrast or more sloped time surface suggests larger deviation in event timing.

The second metric used to describe camera behavior is throughput. This describes

the rate at which a camera generates events, and provides insight into how the arbiter

in each camera handles a large number of pixels reporting events in a short period of

time.

The third metric presented here is the Median Absolute Deviation (MAD), as

introduced in Section 2.5.2. The MAD quantifies the level of simultaneity between

pixels responding to a stimulus. While the MAD removes all spatial information,

it enables the reader to quickly compare camera responses to a variety of stimuli.

Finally, the number of ON events generated by each pixel in response to each impulse

is presented, referred to as the Events per Stimulus (per pixel) (EPS). This metric

describes the pixel sensitivity and determines bandwidth needed by the camera to

report activity. The number of pixels inside the stimulated ROI is the other driving

element.
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4.2 Uncertainty

Two values required a formal treatment of uncertainty. The luminance generated

by the LEDs in the sphere was a directly measured value to which standard uncer-

tainty applies. The number of pixels in the ROI was exact, but there was some error

due to the indistinct border between the exposed and unexposed pixels.

Luminance was manually recorded at the time of data collection. The limit of

precision for stimulus luminance was based on the readout of the integrating sphere

controller. Standard uncertainty was used as defined in Equation 10

u =
a√
3

(10)

where a is the half-width of the range of reported values, and u is the reported

uncertainty [26].

For example, luminance measurements for the brightest stimulus ranged between

220fL and 230fL across configurations. The standard uncertainty associated with

those measurements according to Equation 10 is 2.89fL. Converting each value to

cd/m2 gives measured values between 754 ± 9.89cd/m2 and 788 ± 9.89cd/m2. Thus

the range of actual luminance is between 751 − 9.89 = 744cd/m2 and 788 + 9.89 =

798cd/m2. The center of this range is 771cd/m2 with an uncertainty of (798−771) =

27cd/m2, which is 3.5% of 771. Thus the reported value is 771cd/m2±3.5%. The other

three luminance uncertainties are calculated in the same manner and shown in Table

3. The lowest luminance shows a high degree of uncertainty because the instrument

Table 3. Luminance Uncertainty

Lv(cd/m
2) ±%

9.3 19
204 4.7
511 5.3
771 3.5
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was approaching the low end of its functional range, between 2.2 and 3.3fL, so even

a slight variation in readout ultimately caused a large percent uncertainty.

Pixel Stimulation Percent (PSP) was manually determined by selecting a center

and radius of a circle of responding pixels (see Figure 9). While the number of

selected pixels could be counted exactly, selecting the correct pixels was less precise

and invoked some degree of error. While the border of the stimulated region was not

sharply defined, the region was easily definable to within 5% of its radius, so error

bars are calculated based on the relative error of radius = r±5% in pixels. The pixel

count is the area a = πr2. Because the relative error follows r which is squared, the

error gets multiplied by 2 such that

a = πr2 ± 10%, (11)

where a is the number of pixels being stimulated[27]. To normalize for the varying

sensor array size between cameras, a is divided by the number of pixels Npix−tot in

the entire array and multiplied by 100% in Equation 12:

PSP =
a

Npix−tot
∗ 100%. (12)

This term appears on the horizontal axes of Figures 15, 16, and 17. Error bars are

included in those figures, but due to the compressive nature of log scales, most are

smaller than the markers themselves.

4.3 Time surfaces

In this section, time surfaces for one scene luminance are presented for every PSP

for each camera. The time surfaces for the largest stimulus showed the observed

tendencies most clearly, so the surfaces for lower stimuli are excluded. Significant
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trends for each camera are highlighted and discussed.

As introduced in Section 2.5.1, a time surface is one way of visualizing the events

generated by a camera in response to activity in the scene. The time surfaces often

have a slight positive skew, meaning that the last reporting pixel is farther from

the median than the first reporting pixel. This is consistent with the discussion and

Figure 3 in [20]. The result is that zero deviation is often not in the exact center

of the scale for the time surfaces. One time surface was generated for each of 21

stimuli. Combining them to create an “average” time surface destroyed patterns that

are obvious in individual surfaces, so individual surfaces were selected for presentation

that are representative of observed behavior.

Every time surface appears slightly different though general trends are apparent.

Only the time surfaces produced in response to the brightest stimulus, 771cd/m2, are

shown. Time surfaces from dimmer stimuli demonstrated similar but less obvious

behavior. For the sake of brevity, they are excluded from the main discussion. In all

time surfaces presented, earlier pixels are colored lighter while later pixels are colored

darker.

4.3.1 DAVIS240

The DAVIS 240 camera sensor was subjected to 100% PSP by both the 20mm

and 40mm iris diameters, making the 40mm data redundant. The 40mm data was

therefore excluded from analysis. Time surfaces from the DAVIS240 are shown in

Figure 10. Parts (a) through (e) do not show any apparent spatial patterns. Parts

(f) and (g) show a gradient generally increasing from top to bottom. There is a

row below which the timestamps appear to drop to near the global minimum within

that surface, then continue increasing with lower rows. Detailed inspection of time

surfaces from sets associated with (f) and (g) shows that 2-4 rows are often recorded
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simultaneously, with most pixels in those rows receiving similar timestamps. While

the trend is for lower (larger index) rows to report later, row timestamps do not

increase monotonically, i.e. there are occasional rows or sets of rows which have

slightly earlier timestamps than the row immediately above them. Occasionally pixels

within each row report significantly earlier or later timestamps, with no apparent

spatial pattern between outlying pixels.

4.3.2 DAVIS346

For low PSPs seen in Figure 11 parts (a) through (d), the DAVIS 346 appears

to show a tendency for more central pixels to report events sooner than outer pixels.

Beginning with 5.6% exposure in Part (e), columns begin to report events with similar

timestamps. Parts (f) through (h) show a clear tendency for columns of pixels to

report similar timestamps, non-monotonically increasing from right to left. Similarly

to the DV240 timesurfaces, in parts (f), (g), and (h) there appears to be a small region

of columns to the left of which the timestamps drop significantly then continue to

increase. The location of this region of “reset” columns seems to randomly change

between subsequent time surfaces, and is one reason that averaging several time

surfaces was not useful. Though this reset region did not appear in every time surface,

it was common enough to obscure the gradient in an average surface. Also similarly

to the DV240, sets of 2-10 columns seem to report nearly simultaneously, with a

subsequent set of columns sharing a later timestamp, though this behavior is not

monotonic. Subsequent sets of columns differ in time by 10 to 100 microseconds.

4.3.3 XPlorer

The XPlorer shows a significant departure in behaviour from the DAVIS240 and

DAVIS346. Figure 12 parts (a) through (d) show highly ordered columns of equal time
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(a) 0.025% PSP (b) 0.067% PSP

(c) 0.11% PSP (d) 4.9% PSP

(e) 18% PSP (f) 66% PSP

(g) 100% PSP

Figure 10. DAVIS240 Individual Time Surfaces. Time surfaces show the relative time
at which stimulated pixels produce their first event in microseconds. Parts (a) through
(g) show an increasing percentage of the array being exposed to the 771cd/m2 stimulus.
Note the appearance of a gradient in Parts (f) and (g), revealing a row-wise readout
process. Each time surface shown is representative of the time surfaces generated from
each configuration. The exposed area is circular, and the white space in the corners
indicates pixels for which no data was recorded, which the exception of part (g)
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(a) 0.014% PSP (b) 0.032% PSP

(c) 0.090% PSP (d) 2.0% PSP

(e) 5.6% PSP (f) 17% PSP

(g) 59% PSP (h) 100% PSP

Figure 11. DAVIS346 Individual Time Surfaces. Time surfaces show the relative time
at which stimulated pixels produce their first event in microseconds. Parts (a) through
(h) show an increasing percentage of the array being exposed to the 771cd/m2 stimulus.
A gradient appears in part (e), suggesting that the camera transitions to an ordered
readout process around 5.6% PSP. Each time surface shown is representative of the
time surfaces generated from each configuration. The exposed area is circular, and the
white space in the corners indicates pixels for which no data was recorded, which the
exception of part (h).
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increasing from right to left, including even the lowest PSP. In each case, sets of 3 to

5 columns report the exact same timestamp, separated by only 1 or 2 microseconds.

Unlike the previous cameras, these sets of columns do increase monotonically in time.

That is, each set of columns is greater than the set immediately to its right. There

are occasional pixels scattered throughout the region which report earlier or later

than the rest of their column. The deviation of timestamps between columns is

significantly lower for the XPlorer than it was for either previous camera, and there

are far fewer outlying pixels that do not follow the column-wise pattern. Another

significant departure of behavior is seen beginning with the 3.4% exposure shown

in Part (e) and increasing through Part (h): broken columns of seemingly missing

data. The columns of broken white space indicate pixels which did not report an

event within approximately 100 milliseconds of the stimulus. Each time surface in a

set had seemingly random columns containing missed events, indicating there was no

apparent preference for some columns to miss events over others.
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(a) 0.0042% PSP (b) 0.016% PSP

(c) 0.064% PSP (d) 0.64% PSP

(e) 3.4% PSP (f) 17% PSP

(g) 67% PSP (h) 100% PSP

Figure 12. XPlorer Individual Time Surfaces. Time surfaces show the relative time at
which stimulated pixels produce their first event in microseconds. Parts (a) through
(h) show an increasing percentage of the array being exposed to the 771cd/m2 stimulus.
Each time surface shown is representative of the time surfaces generated from each
configuration. The exposed area is circular, and the white space in the corners indicates
pixels which were not stimulated and thus not included in the time surface. The white
pixels inside the circular region, however, indicate pixels which did not generate events
for that stimulus.
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The total time difference between the first and last columns was as small as 2

microseconds for the smallest PSP (0.0042%) and increased to approximately 800

microseconds for the full array (100%). The time seemed to increase proportionally

to the number of columns exposed to the stimulus.

Similarly to the DV346, in Parts (e) through (g), the outermost pixels tend to

report events later than the majority of the center pixels, generating the thin dark ring

around the periphery. These pixels may report events later due to lower illuminance.

Unlike the previous cameras, there does not appear to be a tendency for timestamps

to shift significantly at some boundary. For this reason, an average time surface

is representative of the individual time surfaces, and columns typically have similar

deviations between trials.

Parts (g) and (h) show a unique feature: an off-center circular region where fewer

pixels report events, with a smaller radius than the defined ROI. This structure does

not appear in time surfaces from any other camera. Since the same lens and physical

setup was used for all four cameras, this feature is believed to be an artifact induced

by the XPlorer camera itself. A series of back-reflections between the lens and the

protective glass cover on the sensor may be responsible for this artifact.

4.3.4 Prophesee

The Prophesee camera produced time surfaces showing similarities to both the

DAVIS346 and XPlorer sensors. As seen in Figure 13 parts (a) through (c), at low

PSPs there do not appear to be spatial patterns in timestamps. Beginning at 1.3%

exposure in Part (d) and continuing through Part (h), rows share timestamps. Part

(d) shows a clear gradient increasing from top to bottom with the exception of the

upper third.
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(a) 0.0042% PSP (b) 0.0094% PSP

(c) 0.037% PSP (d) 1.3% PSP

(e) 4.1% PSP (f) 14% PSP

(g) 47% PSP (h) 100% PSP

Figure 13. Prophesee Individual Time Surfaces. Time surfaces show the relative time
at which stimulated pixels exposed to the 771cd/m2 stimulus produce their first event
in microseconds. Parts (c) and (d) show the transition from asynchronous to ordered
readout behavior. Moving to part (e) shows the rapid reduction in detection rate.
Parts (f) through (h) show that rows tend to be either simultaneous or don’t report
events at all. Each time surface shown is representative of the time surfaces generated
from each configuration. The exposed area is circular, and the white space in the
corners indicates pixels which were not stimulated and thus not included in the time
surface. The white pixels inside the circular region, however, indicate pixels which did
not generate events for that stimulus.
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Parts (e) through (h) show an increasing number of rows containing pixels which

did not report events, in a similar manner to those columns from the XPlorer. Like

the XPlorer’s columns, there was not a preference toward specific rows regarding

which pixels did or did not report an event.

4.4 Throughput

Event throughput describes the number of events being timestamped per mi-

crosecond. It is plotted here as a function of time, by creating histograms of number

of events per microsecond on the vertical axis, versus time in microseconds on the

horizontal axis. In order to explore sensor behavior under maximum load, Figure

14 presents data from 771cd/m2 stimuli exposing 100% PSP. Every camera demon-

strated non-uniform throughput, though the DAVIS240 and DAVIS346 did appear

to operate in a consistent repeating pattern. The long-term (100-µs-scale) average

throughput is reported in Table 4. Figure 15 shows the peak throughput with respect

to the maximum specified throughput, experienced at each PSP and each stimulus

amplitude.

Table 4. Effective Throughput (Meps)

DAVIS 240 DAVIS 346 DV XPlorer Prophesee Gen3
Advertised 12 12 165 50

Observed 6.25 8.67 113 10
Observed Peak 223 260 478 50

4.4.1 DAVIS240

The DAVIS240 demonstrated a spike of roughly 200 events every 32 microseconds,

clearly visible in Figure 14(a). This is equivalent to a long-term average of 6.25 Million

events per second (Meps), falling short of the advertised throughput capability by
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(a) DAVIS240 (b) DAVIS346

(c) DVXPlorer (d) Prophesee

Figure 14. Event Throughput. The histograms of events per microsecond versus time
shows delays experienced by each camera when reading out events from the full array.
The red horizontal line in each plot shows the maximum advertised event throughput
for each camera (12, 12, 165, and 50 events/µs respectively). The DAVIS240, DAVIS346,
and DVXPlorer all exceed their advertised throughput on single-microsecond scales,
while the Prophesee never exceeds its advertised throughput. In all cameras, the
100-µs-scale average throughput was lower than the advertised maximum throughput.
These data were taken from the 771cd/m2, 100% PSP trials.

roughly half. The interval between event spikes is very consistent, varying only by a

few microseconds.

4.4.2 DAVIS346

The DAVIS346 produced a spike of precisely 260 events every 30 microseconds in

Figure 14(b). Its similarity to the DAVIS240 is not surprising to due the extensive

similarities in design between the two cameras. Its long term average event rate is
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(a) DAVIS240 (b) DAVIS346

(c) DVXPlorer (d) Prophesee

Figure 15. Event Throughput vs PSP. The peak throughput of each camera com-
pared to the manufacturer-specified maximum throughput. Both the DAVIS240 and
DAVIS346 exceeded their rated maxima by a factor of 20 at high PSP. The DVXPlorer
exceeded its maximum rated throughput by a factor of 3. The Prophesee only ex-
ceeded its maximum throughput at 4.1% PSP. However, the actual time at which the
throughput exceeded the limit could not be found, so it is suspected that it did not
actually happen and an error in the processing code is responsible for the two points
above 100%.

8.67 Meps, closer to but still short of the advertised throughput.

4.4.3 XPlorer

The DVXPlorer demonstrates a significant departure in behavior from the other

iniVation cameras in Figure 14(c). This is not surprising due to its readout archi-

tecture being substantially different. The camera produced two spikes of nearly 500

events then quickly settled down to spikes of approximately 230 events each. While

difficult to discern at the presented scale, close inspection of the cluster from the 50µs
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to 140µs marks shows there are typically 2-4 microseconds with roughly 230 events

each, followed by 1-3 microseconds of zero events, repeating several dozen times before

relatively long period (10-50 microseconds) of zero events. In the particular sample

shown in here, 15587 events occur before the 150µs mark, averaging to a long-term

rate of 91 to 113 Meps, depending on if the 33µs gap at the 150µs mark is included.

4.4.4 Prophesee

Notably, the Prophesee displays significantly different behavior than the other

cameras. Again this is unsurprising as it was designed by a separate company than the

first three. The Prophesee never exceeded its advertised throughput of 50 events/mi-

crosecond, and only met that throughput limit irregularly. In Figure 14(d), the first

cluster contains 8181 events, the second contains 4090, the third 6337, with 28482

total events shown in the frame, resulting in a long term average of roughly 11 Meps,

only 22% of its advertised event throughput. This demonstrates the need for stan-

dardizing industry terms. While iniVation seems to define maximum throughput as

a long-term average, Prophesee uses it to describe a limit on instantaneous rates. It

would be beneficial to the industry to clarify these terms.

4.5 Median Absolute Deviation (MAD)

In this section, the Median Absolute Deviation is described in the context of

event-based time surfaces. The MADs for all cameras and configurations tested are

presented graphically in Figure 16 and general trends are highlighted. Then key

observations regarding each camera are described. Specific data for each camera is

included in tables for detailed comparison.

The Median Absolute Deviation condenses the temporal information from an en-

tire time surface into a single statistic by calculating each pixels’ deviation from the
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median timestamp, then calculating the median of those deviations as previously seen

in Figure 5 of Section 2.5.2. The MAD is a measure of spread, much like the standard

deviation. However, where the standard deviation relies on the arithmetic mean, the

MAD relies on the median. Using the median makes the metric less sensitive to

outliers. As can be observed in the time surfaces in the previous section, there are

often pixels with timestamps significantly different than the majority of pixels in their

neighborhood. This relatively large number of outliers would significantly skew the

mean and standard deviations, and so those statistics would not accurately describe

the behavior of the cameras.

Functionally, the MAD describes the variability in latency, or timing accuracy,

of each camera when exposed to a spatially-extended simultaneous stimulus. The

MAD is a single number which summarizes the camera’s response to a stimulus. In

order to describe the behavior of the cameras with high confidence that only real

tendencies are reported, the MAD was calculated individually for n = 21 stimuli

(trials) per configuration, and the mean of that set of 21 values is reported in this

section. The standard deviation σ of the set was calculated and used to report the

standard uncertainty u of the set as defined in Equation 13:

u =
σ√
n
. (13)

The mean is used to describe this set of 21 MADs because there were no severe outliers

that would skew the mean. Figure 16 shows the MAD calculated for each camera. The

vertical axis shows the MAD in response to increasing PSP from left to right in each

plot. All four levels of source luminance are depicted in each plot. Uncertainty bars

are included for both horizontal and vertical axes based on the calculated uncertainty

u, though in most cases the uncertainty bars are smaller than the markers themselves.

Tables 5-8 give the precise values. When the uncertainty was smaller than 0.01, it
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was listed as 0. The lower PSPs tend to have larger uncertainty in MAD, due to

the small number of pixels illuminated and the corresponding increase in standard

deviation σ. Figure 16 summarizes the following subsections. The deviation tends to

increase with PSP for all cameras at all stimulus intensities.

(a) DAVIS240 (b) DAVIS346

(c) DVXPlorer (d) Prophesee

Figure 16. Median Absolute Deviations. The MAD of every camera tends to increase
with pixel stimulation percent (PSP). Error bars for both horizontal and vertical axes
are calculated for each point, but are smaller than the markers in most cases. Parts
(a), (b), and (d) are log-log scales, while Part (c) uses an adapted log-log scale in which
the range between 0 and 1 on the vertical axis is linear. The deviation is precisely zero
at the lowest PSP for the XPlorer sensor.

4.5.1 DAVIS240

Figure 16(a) shows that for low PSPs, the DAVIS240 deviation is highly dependent

on scene illuminance. Table 5 contains the data shown in Figure 16. The DAVIS240’s

lowest deviation was 268µs at 0.11% exposure, when subjected to the 511cd/m2
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stimulus. The highest deviation was 1655µs at 100% for the same luminance. This

is nearly twice the predicted MAD for these conditions.

Table 5. DAVIS240 Median Absolute Deviations (µs)

Pixel Stimulation Percent (PSP)
Lv (cd/m2) 0.025% 0.067% 0.11% 4.9% 18% 66% 100%

9.3 636±109 340±16 322±10 920±13 568±6 1154±17 1639±15
204 315±21 283±15 297±11 415±5 501±16 1552±16 1639±20
511 301±22 302±11 269±11 417±4 504±20 1449±32 1655±19
771 274±22 266±12 290±14 416±5 495±18 1348±32 1682±16

4.5.2 DAVIS346

The DAVIS346 generated the highest MAD of all cameras. Table 6 shows the high-

est deviation was 6780µs at 17% PSP to 511cd/m2. The lowest deviation was similar

to the DAVIS240, at 248µs with minimal (0.014%) exposure to 511cd/m2. When

100% of the array was stimulated, the maximum deviation was 6086µs responding to

the 771cd/m2 stimulus, more than 3 times larger than the predicted MAD of 1874µs.

Table 6. DAVIS346 Median Absolute Deviations (µs)

Pixel Stimulation Percent (PSP)
Lv (cd/m2) 0.014% 0.032% 0.09% 2.0%

9.3 552±51 478±20 720±29 767±4
204 289±23 286±14 412±12 287±2
511 248±27 293±21 532±26 286±2
771 277±23 292±23 686±25 349±2

Lv (cd/m2) 5.6% 17% 59% 100%
9.3 464±2 1309±239 7009±998 3868±265
204 859±146 5287±2096 2463±337 2713±27
511 3600±805 6780±2055 5155±737 5634±97
771 5646±1507 5937±1930 3592±299 6086±58
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4.5.3 XPlorer

The XPlorer demonstrated the lowest deviation overall, with zero deviation from

the median at 0.0042% in response to both 511cd/m2 and 771cd/m2 stimuli. It

maintained extremely low deviations for subsequent PSPs. The highest deviation

demonstrated by the XPlorer was 3771µs when 100% of the array was exposed to

9.3cd/m2. The MAD was 609, 310, and 262µs for increasing luminance. The expected

minimum MAD was 465µs. However, Section 5.2 discusses why a direct comparison

may not be appropriate. Additionally, the XPlorer is the only camera for which the

lowest scene luminance always generated the highest deviation for all PSPs. Table 7

contains the specific datapoints.

Table 7. XPlorer Median Absolute Deviations (µs)

Pixel Stimulation Percent (PSP)
Lv (cd/m2) 0.0042% 0.016% 0.064% 0.64%

9.3 226.9±16 177.6±13 217.3±13 524.8±39
204 10.0±10 0.7±0 1.0±0 5.0±0
511 0.0±0 0.5±0 1.0±0 13.8±9
771 0.0±0 0.5±0 1.1±0 4.0±0

Lv (cd/m2) 3.4% 17% 67% 100%
9.3 190.9±1 434.2±8 2831.3±52 3771.1±54
204 18.6±0 71.2±0 536.9±15 609.4±12
511 19.0±0 52.6±0 230.0±5 310.4±8
771 18.9±0 57.8±2 197.6±6 262.4±7

4.5.4 Prophesee

The Prophesee sensor produced the lowest deviation (17µs) when the smallest

fraction of the array (0.0042%) was exposed to the brightest stimulus (771cd/m2).

This was the second smallest deviation after the XPlorer. The Prophesee’s largest

deviation was 3734µs when 47% of the array was exposed to the 511cd/m2 stimulus.
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The minimum predicted MAD was 1536µs, which the Prophesee exceeded by more

than a factor of 2. Table 8 contains the specific datapoints.

Table 8. Prophesee Median Absolute Deviations (µs)

Pixel Stimulation Percent (PSP)
Lv (cd/m2) 0.0042% 0.0094% 0.037% 1.3%

9.3 76±11 30±1 120±4 128±15
204 20±2 20±1 27±1 42±2
511 20±1 18±1 24±1 37±1
771 17±2 19±1 23±1 35±2

Lv (cd/m2) 4.1% 14% 47% 100%
9.3 354±95 603±267 3286±81 2987±14
204 102±6 1458±278 2994±248 2587±52
511 1162±207 2216±273 3734±325 2512±67
771 1024±105 2825±352 3449±283 2748±39

4.6 Events Per Stimulus

In this section, the mean number of events generated by each pixel in response to

a stimulus is described. The data is graphically summarized in Figure 17, and the

data for each camera is broken out in Tables 9 though 12.

To calculate the number of events per pixel per stimulus (EPS), the total number

of ON events generated by each pixel for the duration of the recording was divided

by the number of stimuli to which the camera was exposed. This produced an EPS

for each pixel in the entire ROI. The mean and standard deviation of that set was

calculated. The mean is reported in the following section, and the standard deviation

was used to calculate the standard error for the uncertainty bars as in Section 4.5.

The PSP is plotted on a logarithmic axis, while the events per stimulus is plotted on

a linear axis.

It is well established by previous work that such characteristics as refractory period
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and sensitivity are controlled by various user-adjustable bias settings [23]. Since both

of those parameters have a direct affect on the production of events in response to

a stimulus, adjusting the bias settings of a camera will probably change the shape

and magnitude of the curves shown in Figure 17. These data were recorded using the

factory default settings for all parameters.

Every camera showed a decrease in reported events as PSP increased. Both the

XPlorer and Prophesee dropped to less than 1 event per stimulus at the higher per-

centages, corresponding to the broken white row and/or columns seen in Figures 12

and 13, where many pixels did not produce an event for every impulse. The Prophesee

camera produced the most events overall, nearly 8x more than the XPlorer, which

produced the fewest events overall. The DAVIS346 produced slightly more events per

stimulus than did the DAVIS240, in general. For all cameras, low PSPs increased the

influence of scene luminance. Higher PSPs reduced the effect of luminance on event

generation.

It’s not possible to predict bandwidth utilization based on these numbers, be-

cause these only apply to the pixels in the ROI. Pixels outside the ROI produced

highly varied numbers of events per stimulus. In the case of higher PSPs, for ex-

ample, the pixels outside the illuminated ROI produced several events per stimulus

while the pixels inside the ROI dropped to below 1 event per stimulus. In order to

predict bandwidth requirements, the event generation rate of the entire array must

be considered. In general though, higher PSP and higher illuminance both increase

bandwidth utilization.

4.6.1 DAVIS240

The DAVIS240 generated between 4 and 12 events per stimulus at the lowest

luminance amplitude of 9.3cd/m2, and produced between 8 and 27 events per stimulus
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(a) DAVIS240 (b) DAVIS346

(c) DVXPlorer (d) Prophesee

Figure 17. Events per Stimulus (per pixel). The EPS of every camera tends to decrease
with pixel stimulation percent (PSP). Error bars for both horizontal and vertical axes
are calculated for each point, but are smaller than the markers in most cases.

at the highest luminance. For each scene luminance amplitude, the camera produced

the most events when 0.11% of the array was exposed. Higher scene luminance caused

a higher EPS for every PSP except 18%. Table 9 shows the mean event statistics.

4.6.2 DAVIS346

The DAVIS346 followed a similar trend as the DAVIS240. It generated between

1 and 11 events per stimulus at low luminance amplitude, and between 3 and 29

events per stimulus at the highest luminance amplitude. For all PSPs except 4.9%,

an increased scene luminance corresponded to increased event generation. For every

scene luminance step amplitude, an increasing PSP corresponded to generally reduced
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Table 9. DAVIS240 Mean Events Per Stimulus

Pixel Stimulation Percent (PSP)
Lv (cd/m2) 0.025% 0.067% 0.11% 4.9%
9.3 7.05±1.40 10.53±0.75 12.18±0.35 8.53±0.04
204 14.74±1.94 19.19±0.95 21.41±0.42 17.17±0.04
511 17.87±2.06 22.57±1.02 24.89±0.48 19.59±0.04
771 19.17±2.19 24.26±1.1 26.87±0.54 20.57±0.05

Lv (cd/m2) 18% 66% 100%
9.3 10.94±0.02 5.89±0 4.80±0
204 17.42±0.02 7.59±0 7.04±0
511 17.51±0.02 8.53±0 8.24±0
771 15.84±0.02 9.49±0 8.68±0

event generation. Table 10 shows the exact mean event statistics.

Table 10. DAVIS346 Mean Events Per Stimulus

Pixel Stimulation Percent (PSP)
Lv (cd/m2) 0.014% 0.032% 0.090% 2.0%
9.3 8.91±1.42 10.43±0.89 9.30±0.62 9.84±0.04
204 18.75±1.75 20.58±1.13 19.38±0.77 19.30±0.06
511 23.31±2.29 26.04±1.55 24.33±1.04 23.02±0.07
771 25.64±2.56 29.10±1.80 27.18±1.21 24.51±0.09

Lv (cd/m2) 5.6% 17% 59% 100%
9.3 13.07±0.03 2.07±0 1.35±0 2.75±0
204 7.80±0.03 2.50±0.01 2.54±0 4.35±0
511 6.59±0.05 2.86±0.01 5.07±0 7.24±0
771 6.11±0.04 3.32±0.01 7.02±0 7.52±0

4.6.3 XPlorer

The XPlorer produced the fewest events per stimulus of all the cameras. It was

also unique in that scene luminance amplitude was negatively related to event gen-

eration. The lowest luminance generated the most events per stimulus (8.49 events

per stimulus at 0.0042%), and for increasing luminance, the number of events per
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stimulus monotonically decreased to 0.32 events per stimulus at 100% exposure. The

XPlorer was also unique from the other cameras in that the rate of change of events

per stimulus was lower with respect to PSP, particularly for higher scene luminance.

Table 11 shows the exact mean event statistics.

Table 11. XPlorer Mean Events Per Stimulus

Pixel Stimulation Percent (PSP)
Lv (cd/m2) 0.0042% 0.016% 0.064% 0.64%
9.3 8.49±0.17 8.49±0.08 8.26±0.06 7.96±0.03
204 2.20±0.08 2.04±0.03 2.54±0.08 3.92±0.04
511 1.13±0.05 1.08±0.02 1.37±0.05 2.23±0.02
771 1.00±0 1.00±0 1.19±0.03 1.66±0.02

Lv (cd/m2) 3.4% 17% 67% 100%
9.3 8.40±0.01 4.97±0.01 2.63±0 2.10±0
204 2.08±0 1.47±0 0.90±0 0.68±0
511 1.02±0 0.71±0 0.52±0 0.38±0
771 0.94±0 0.52±0 0.41±0 0.32±0

4.6.4 Prophesee

The Prophesee camera generated the most events per stimulus of any camera at

low PSPs, for all amplitudes of scene luminance. When 0.016% of the array was

exposed to the 771cd/m2 stimulus, 59.38 events were generated. When 100% of the

array was exposed to any stimulus, between 0.39 and 0.42 events were generated. The

Prophesee camera tended to generate the fewest events at PSPs greater than 10%,

with only the 9.3cd/m2 stimulus producing more than 1 event per stimulus with 17%

of the array exposed. Table 12 shows the exact mean event statistics.
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Table 12. Prophesee Mean Events Per Stimulus

Pixel Stimulation Percent (PSP)
Lv (cd/m2) 0.0042% 0.016% 0.064% 0.64%
9.3 20.65±2.97 28.65±1.28 22.60±1.08 23.16±0.09
204 42.68±3.43 49.96±1.69 43.75±1.28 30.27±0.08
511 48.96±3.70 57.17±1.88 51.08±1.41 29.84±0.08
771 52.71±3.85 59.38±1.92 50.14±1.28 28.41±0.05

Lv (cd/m2) 3.4% 17% 67% 100%
9.3 14.26±0.02 3.80±0 0.78±0 0.41±0
204 8.65±0 0.35±0 0.38±0 0.39±0
511 2.78±0 0.43±0 0.42±0 0.41±0
771 1.35±0 0.45±0 0.43±0 0.42±0

4.7 Summary

In this chapter, three key metrics of characterization were presented. Time sur-

faces for the highest scene luminance show spatial patterns associated with each

sensor. It was noted that all four cameras demonstrated row- or column-wise readout

tendencies when large fractions of the array were exposed. The Median Absolute

Deviation described the spread of pixel response times for varying PSP and scene

luminance. It was found that the MAD increased significantly for increasing PSP.

Finally, the average number of events generated by each pixel in response to each

stimulus was reported. The EPS for every camera dropped as larger fractions of

each array was exposed. In the following chapter, relationships and trends will be

presented and analyzed, resulting in several general conclusions.
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V. Discussion

5.1 Overview

In the last chapter, visualizations of raw data in the form of time surfaces were

presented. The information gleaned from these time surfaces was condensed into

three metrics: throughput, the Median Absolute Deviation (MAD), and the Events

per Stimulus per pixel (EPS). The MAD and EPS in response to configurations of

varying PSP and scene luminance were reported. This chapter discusses key findings

and trends arising from that data. The following sections propose possible reasons

for these trendsand explore the implications for various applications. Finally, general

conclusions are presented.

5.2 Throughput

Both the DAVIS240 and DAVIS346 showed spikes of high throughput when 100%

of pixels were exposed to the stimulus. In the DAVIS240, roughly 200 events were

reported simultaneously every time, corresponding to the simultaneous rows observed

in the time surfaces. The DAVIS346 displayed the same tendency in columns. This

suggests that when the event load on these cameras exceeds some threshold, the

arbiter circuit transitions from the asynchronous process and behaves more like a

rolling-shutter type system. The DVXPlorer follows a synchronous readout pattern,

though that is not apparent in the throughput plot. It is possible that there is a form

of on-chip memory that serves as a sort of buffer. The gaps in event transmission

around the 40 and 150 µs marks may indicate where that buffer reached capacity,

preventing the timestamping of any subsequent pixels until the queue was sufficiently

reduced. However, because the long-term average event rate was well under the

advertised limit, it is not clear why that capacity would have been reached. The
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Prophesee showed similar gaps, suggesting that there is a maximum throughput that

is lower than the advertised value. Overfilling a buffer is one possibility to describe

the limited capability.

5.3 MAD

The median absolute deviation (MAD) describes the spread of time required for

each pixel to respond to a stimulus and is one measure of timing precision. The MAD

was more sensitive to PSP than to scene luminance. While this research provided

sufficient data to describe relationships between these variables, confounding variables

prevent formal statements of causality.

In every camera except the DVXPlorer, the MAD exceeded its predicted value

under high throughput. It has been reported that if the arbiter circuit receives addi-

tional events while still processing prior events, those events queue up and lose their

arrival order. This means secondary events from some Pixel A could be timestamped

prior to the first event from some other Pixel B, if the sensor is experiencing a high

throughput. McReynolds [12] described the pixel cutoff frequency as 3kHz.

Assuming this applies similarly to all cameras, this suggests a minimum event

generation period of 333µs. If a pixel continues generating events while the rest of

the array is being read out, that pixel could generate between 5 and 20 additional

events in the times shown in Table 1, before the sensor even finishes reading out

the first events from other pixels. If the order of readout of secondary and primary

events is random, this would cause some events to be timestamped much later than

predicted, and force the MAD to be higher than the theoretical minimum.

While the DVXPlorer’s MAD was lower than predicted, its pixels were only pro-

ducing events in response to roughly 30% of stimuli. This means the event throughput

was not as high as was assumed when making the prediction, so the comparison is
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not meaningful. Because the camera demonstrated the ability to timestamp events

at a higher instantaneous throughput than advertised, the reduction in detection rate

cannot be attributed to that throughput limitation.

5.3.1 MAD vs Luminance

There is a weak correlation between MAD and luminance amplitude. At low

PSP, the lowest scene luminance resulted in a noticeably higher MAD. However, at

PSPs greater than 1%, and for scene luminance greater than 9.3cd/m2, there does

not appear to be a significant correlation between luminance and MAD. This suggests

that the luminance of a scene is not the most significant predictor of timing precision.

5.3.2 MAD vs PSP

Pixel Stimulation Percent has a far more significant affect on timestamp precision.

There appears to be a correlation between median absolute deviation and PSP, such

that MAD increases with PSP. It is suggested that this is because the timestamping

mechanism is not specific to each pixel, so when many pixels report events nearly

simultaneously, the timestamping circuit is unable to keep up and thus delays are

incorporated into those events. To date, the timestamping function has been shared

between pixels due to spatial limitations in pixel design. However, if each pixel were

to independently generate its own timestamp, the timing accuracy with increasing

PSP could be improved.

With each pixel conducting its own timestamping, the timing accuracy would be

limited only by the time response of each pixel’s analog circuit, which could then be

tuned by the user for their specific application. This would result in consistent timing

accuracy for all ranges of PSP, including up to 100% of pixels. A detailed cost-benefit

analysis could be done by the designer or perhaps a sufficiently-funded customer to
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compare the expense associated with increased complexity and explore what addi-

tional timing accuracy could be possible with that architectural modification.

Based on the right-to-left increase in timestamp seen on the XPlorer, it is predicted

that the timing accuracy over the breadth of the stimulus would strongly depend on

the orientation with respect to the sensor. For example, if the XPlorer imaged a

lightning bolt stretching from top to bottom, there would likely be a microsecond-

scale MAD, as a majority of events would fall within a few columns and thus get read

out nearly simultaneously. On the other hand, if a lightning bolt stretched from side

to side, the MAD would likely be much higher due to the image spanning the entire

width of the sensor.

While a clear relationship exists between the MAD and the PSP, it cannot be

said that PSP directly causes an increase in deviation. In general, declaring that X

causes Y requires three elements: proving that X came before Y, that Y wouldn’t

have happened if not for X, and there is nothing else that accounts for the relation-

ship between X and Y [28]. The challenge here lies in the third element. In this

research, the PSP only describes a number of pixels without regard to number of

rows/columns or the spatial distribution of those pixels, which may be significant.

In other words, the number of pixels might not be the cause of increased MAD, the

number of stimulated rows/columns might be. This is particularly easy to visual-

ize with the XPlorer and Prophesee. As discussed above, it appears likely that an

asymmetric object generating events would produce different deviations depending

on whether was oriented parallel or perpendicular to the direction of column readout.

Thus, the spatial arrangement of stimulated pixels could reasonably have an affect

on MAD, which confounds the effect of the number of pixels and prevents any formal

claim of causality.
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5.4 EPS

The number of events generated by each pixel per stimulus was clearly affected

by both scene luminance and array fraction. It was also observed that the XPlorer

displayed a significantly higher number of ”hot“ pixels than the other cameras. Ap-

proximately 30 hot pixels each produced several hundred times more events than

pixels exposed to the real image. Other cameras did not have nearly as many hot

pixels of this nature, or filtered out those events through an intermediate filter. Each

camera produced several events per stimulus under various configurations, though the

XPlorer did not follow the same trend as the other cameras.

5.4.1 EPS vs Luminance

Illumination step size had a significant effect on the number of events generated

per stimulus. The model proposed in [23] says that ”If the change [in brightness] is

multiple times the threshold, then multiple DVS events are generated“. This appears

to be consistent with the findings in this research, with the notable exception of

the XPlorer. Each pixel in the XPlorer generated the most events in response to the

dimmest stimulus and generated fewer events for each increase in stimulus magnitude,

which seems to be directly counter to the model suggested in [23] and opposite the

behavior of every other camera tested.

Not only was the XPlorer’s strange behavior apparent when comparing different

stimuli, it was also apparent within individual trials, confirming that it is a real phe-

nomenon and not a error in data processing. In all stimuli throughout this research,

the central region of the image on the sensor was evenly intense (spatially homoge-

neous), and the circular edges of the image dropped off in intensity according to the

usual diffraction around a sharp edge, fading into the dark, unstimulated region on

the periphery. Thus for every stimulus of every amplitude, there is a ring of decreasing
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illumination with increasing radius.

Figure 18 shows the average number of events produced per stimulus for every

pixel in the XPlorer’s sensor. The example shown was for 3.4% PSP, 204cd/m2. The

brightest central region caused pixels to produce roughly 4 events per stimulus. The

ring of of reduced brightness produced more events, nearly 10 events per stimulus,

while most unstimulated pixels produced no events. Detailed analysis of individual

pixels in all three regions showed that the vast majority of events generated in these

regions were concurrent with each other, suggesting that this behavior is a response

to the stimuli and not from external stray light. The author is not aware of any

pixel-level model which suggests a maximum event generation rate dependent on

illumination. While it is beyond the scope of this document to analyze circuit-level

behavior, this finding suggests the sensitivity of the DVXPlorer is highly dependent

on the amplitude of the stimulus.

In Ryu’s talk given in 2019 [18], he describes response time increasing under low

illumination, resulting in more events being generated by moving edges. It is possible

that the same circuit-level phenomenon causing that challenge is responsible for the

negative relationship between luminance and EPS in the XPlorer camera. In his talk,

Ryu suggests that implementing a global hold technique solved their problem, so it’s

likely that adjusting camera settings would have an affect on the EPS for the XPlorer.

5.4.2 EPS vs PSP

At low PSP, only the DAVIS240 and Prophesee demonstrated a noticeable rela-

tionship between PSP and the number of events generated per stimulus. However,

above 1% exposure, every camera showed a significant drop in EPS with increasing

exposure. At high exposures, both the XPlorer and the Prophesee showed a tendency

for groups of rows or columns of pixels to miss stimuli, which is likely responsible for
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Figure 18. XPlorer Event-Rate Image. In this plot of the XPlorer’s entire sensor,
the average number of events produced by each pixel is represented by color. The
luminance at the center of the stimulus was spatially homogeneous, and decreased at
the edges due to diffraction until there was no detectable light beyond the edges of the
circular region. The orange central region shows a low event generation rate, roughly
4 events per stimulus, when exposed to the relatively high luminance. The dark ring
around the edge shows an increased event generation rate as luminance decreases,
at nearly 10 events per stimulus. The light yellow majority of the image shows the
“background” event generation rate, where there was effectively zero stimulation and
zero events. This indicates that sensitivity is nonlinearly dependent on stimulus. This
particular example shows the average event rate of the DVXPlorer when exposed to a
3.4% PSP, 204cd/m2 stimulus.

the drop in EPS. Both of those cameras produced, on average, less than one event

per pixel per stimulus. In several cases, the pixels produced fewer than 0.5 events

per stimulus, suggesting that under those conditions, the probability of a pixel failing

to respond is greater than 50%. This could be a significant concern for applications

which require a consistent high quality image throughout the entire frame. On the

other hand, that is still only representing individual pixels. As is clear in the time

surfaces, even when many pixels do not respond, a large portion of the sensor does

respond. If an application was attempting to detect a large and extremely fast event,

then, it is likely that many pixels would respond, and the artifacts could potentially

be used to suggest the nature of the detected activity.
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Another key observation is that in most cases, each camera produced several

events per stimulus. This is worth noting because each camera has a limited event

throughput, and a major benefit of event-based cameras as a technological family is

the inherent sparsity of data. If several events are generated from a single stimulus,

those events produce excessive throughput and require additional storage space. Un-

less some information can be extracted from the number of events generated, such

as the magnitude of change of the scene luminance or probability of real activity,

the extra events are redundant and lower the overall efficiency of the system. Any

application in which an event camera is used in orbit may be highly sensitive to

this redundancy. Because strict downlink bandwidth limits may require maximum

data-to-information efficiency, the size and contrast of anticipated targets should be

predicted, and biases adjusted such that redundant event generation is minimized.

5.5 Detection Rate

When a large percentage of the DAVIS240 and DAVIS346 pixels were exposed to

the stimulus, timing precision dropped but every pixel continued reporting events.

In the XPlorer and Prophesee, when the PSP was high, a large and discontinuous

fraction of the array stopped reporting events entirely. This effect appears in the time

surfaces of Figures 12 and 13 as broken white rows or columns of no data.

The detection rate describes the fraction of stimuli to which a row or column of

pixels generates events. Recall in Figures 12 and 13, where beginning at 3.4% and

4.1% respectively, individual rows or columns appeared not to generate events. To

determine if each camera exhibits a preference toward dropping one region of rows

or columns over another, the fraction of stimuli to which a row/column responded

was calculated. This effect was most significant when cameras were exposed to the

771cd/m2 stimulus, so further analysis focuses on that case. To calculate this metric,
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each time surface’s center row or column for the XPlorer or Prophesee, respectively,

was assumed to be a cross-section of the array, representative of the behavior of all

rows or columns. This can be verified by visual inspection of the time surfaces in

Figures 12 and 13.

For each pixel in that representative row (column), the number of times it gen-

erated at least one event in response to a stimulus was counted and divided by the

number of stimuli, producing a metric ranging from 0 to 1. For example, if a pixel’s

detection rate was 1, it generated at least one event for every stimulus. If a pixel’s

detection rate was 0, it generated no events for any stimulus (though this was never

actually observed). This is similar to the Events per Stimulus metric used previously.

The detection rate, however, provides spatial information regarding row (column)

preference, whereas the EPS did not. This metric reveals a spatial tendency for a

camera to stop reporting events from one region over another.

(a) 3.4% PSP (b) 17% PSP (c) 67% PSP (d) 100% PSP

Figure 19. XPlorer Column Detection Rates. This data for the DVXPlorer’s response
to the 771cd/m2 stimulus shows that once 3.4% of columns were stimulated in (a), the
left-most columns began responding to fewer stimuli. As a larger fraction of the array
was stimulated, parts (b), (c), and (d) show fewer columns responding to every stimulus,
and the diminished columns responding to fewer stimuli resulting in a progressively
lower detection rate.

At 3.4% PSP, the XPlorer camera’s left-most columns begin missing stimuli. This

is shown by the dip in Figure 19(a). As PSP increases through Figure 19(b) through

(d), columns further and further right begin to miss stimuli, until at 100% exposure,
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only a very small number of columns consistently respond to every stimulus.

Comparing detection rate to the throughput shown in Figure 15(c) and (d), it

appears that detection rate begins to drop once the instantaneous throughput meets or

exceeds the manufacturer’s specified limits. This suggests that the maximum specified

throughput limit describes a limit of reliability, rather than pure functionality. Careful

inspection of the time surfaces in Figures 12 and 13 shows that while a majority of a

skipped column may not get read out, several pixels within that column may, so the

phenomenology is not as simple as whole columns or rows being skipped entirely.

The pattern in column dropping in the XPlorer is similar to the time surface

patterns of increasing timestamp from right to left. This is further evidence to suggest

the camera reads out events from right to left, until the throughput limit is exceeded.

Once the limit has been exceeded, sections of columns appear to be skipped almost

at random.

The Prophesee camera behaves differently under high throughput than the XPlorer.

In Figure 20(a), the 4.1% exposure shows a slight tendency for rows on the upper and

lower edges to detect fewer stimuli. Figures 20(b) through (d) show a variable but

generally consistent detection rate across all rows. This suggests that the Prophesee

camera does not have a preference toward which rows to drop when the throughput

limit is exceeded. It was observed that groups of adjacent rows got read or skipped

together; only rarely was a single row treated differently than its neighbors.

The arbiter circuit in each camera is likely responsible for determining which

columns or rows get skipped at high PSPs. In the time surface in Figure 13(e), there

are several dozen pixels scattered throughout whose events are much later than their

neighbors. In the bottom half of the figure between rows 100 and 120, where the rows

got skipped, those individual pixels still respond later than one would expect the rest

of the row to respond, had it been recorded. Assuming the Prophesee follows the
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(a) 4.1% PSP (b) 14% PSP (c) 47% PSP (d) 100% PSP

Figure 20. Prophesee Row Detection Rates. Because the Prophesee read out simul-
taneous rows instead of columns like the XPlorer, row detection rates are considered
instead, thus causing the plot format to be rotated 90◦. In contrast to the XPlorer,
when exposed to the 771cd/m2 stimulus, the Prophesee did not show a tendency for
some rows to become less responsive. Rather, it appears that all rows lost responsive-
ness with some random variation.

same 4-phase request-acknowledge handshake described earlier, it’s possible that the

row request went unacknowledged, and yet all pixels in that row reset themselves.

Approximately 3000µs later, a few late-coming pixels triggered their first events and

sent a row request, which was acknowledged as the camera “caught up”.

The drop in detection rate at high PSPs has a significant effect on the quality

and completeness of an image recorded by these cameras. Current models describing

sensor operation, such as that described in [23], do not include this behavior, as the

models are primarily focused on individual pixel behavior, and the drop in detection

rate is likely an arbiter-based phenomenon. It will be important to accurately describe

and account for this behavior in future models. Real world activity which is likely

to produce this response includes any scene which changes illumination rapidly. This

could include turning lights on or off in an enclosed room, a camera flash illuminating

a space, a streetlight turning on at dusk, lightning illuminating an outdoor scene at

night, or an explosion or electric arc illuminating a space. Given the wide possibilities

for real world activity to cause a reduction in detection rate, it will be beneficial to

the industry to understand and model the behavior of the arbiter under a high load.
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Specifically, determining the process by which some pixels do not get sampled could

be influential the development of future sensors designed for specific tasks where this

phenomena could detract from system performance.

5.6 Limitations

Several methodological limitations restrict the scope and accuracy of the work

presented. Experimentally, the pixel selection process was suboptimal. Restricting

analysis to exclusively ON events potentially hid useful information that could be

gained from including OFF events. Finally, the step-function stimulus profile only

enabled characterization of these nonlinear cameras in a limited range of their oper-

ational capability.

In order to control the number of pixels being stimulated, an iris was opened and

closed, thereby creating an image on the sensor. While focus and stray light were

well-controlled, diffracted light stimulated pixels beyond the edges of the ideal image.

Uncertainty bars presented in Figures 16 and 17 describe this variability. One possible

technique for controlling PSP more precisely could be to directly illuminate the focal

plane array with a low-power laser, whose beam diameter is carefully determined.

Additionally, stimulated pixels generated both ON and OFF events. This research

did not analyze the nature or behavior of OFF event generation, nor were OFF events

included in the statistics. The bias settings play a significant role in determining pixel

response and tendency toward generating ON or OFF events. Based on experience,

it appears that positive and negative stimuli produce similar results, though this

was not been systematically evaluated. In a linear system, a single impulse response

can be used to describe the system response under all conditions. Event cameras

are fundamentally nonlinear and therefore cannot be completely described by just

one impulse response. This research only considered one form of stimulus: from
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near-zero illuminance to some higher illuminance. Since event cameras respond to

the logarithm of the change in illuminance, to fully characterize each camera would

require applying stimuli which start at progressively higher levels of illuminance.

Therefore, this research cannot be used to quantitatively predict the response to a

stimulus beginning at a nonzero luminance, though it is likely that overall trends in

behavior would persist. Despite these limitations, several broad conclusions can be

made with high confidence.

5.7 Summary

The XPlorer and Prophesee demonstrated a lower MAD and thus higher timing

precision compared to the DAVIS240 and DAVIS346, in all configurations. An ad-

vantage enjoyed by the DAVIS240 and DAVIS346 over the XPlorer and Prophesee is

that they did not show spatial patterns associated with column-wise readout at low

PSPs. However, their timing precision at those exposures was significantly worse.

One key advantage demonstrated by the DAVIS240 and DAVIS346 which was not

matched by either the XPlorer or the Prophesee was their event reporting reliability

at high PSPs. Both the XPlorer and Prophesee began to drop events at high exposure

fractions, while the DAVIS240 and DAVIS346 continued to generate events from 100%

of pixels that were stimulated. This presents a tradeoff: the increased timing accuracy

with the XPlorer and Prophesee comes with the high probability of significant artifacts

under high load. If high timing accuracy is a priority, the XPlorer and Prophesee may

be most appropriate. However, their poor reliability responding to high load makes

the DAVIS346 a better option if full-field reliability is a priority.

In addition to skipping pixels, more familiar rolling-shutter artifacts like distortion

are likely to appear if scene activity occurs on the 100-microsecond time scale. Every

camera tended to read out rows or columns in order, at high PSPs. If activity occurs
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on a similar time-scale to the readout period of the arrays, on the order of 100-

500µs, distortion is likely. Manufacturers have noted this and implemented various

forms of global shutter controls in the software. Users should consider the expected

scene activity and plan for distortion if that activity is on the order of hundreds of

microseconds. However, for the DAVIS240 and DAVIS346, this behavior only began

to apply at large PSP fractions. So if a scene is largely static with only a small object

moving through the field of view, it is unlikely that the camera would switch into

the ordered readout regime, so the small object’s motion would get sampled at the

maximum rate allowed by the camera. However, if the scene is largely dynamic such

that a large fraction of the array is attempting to report an event simultaneously, the

motion of the object through that scene would begin to be sampled according to the

ordered process.

Additionally, event latency will depend on activity orientation with respect to the

sensor. For the DVXPlorer and DAVIS346, broad objects producing high throughput

with respect to pixel columns will have more latency variability, while narrower objects

with respect to pixels columns will have less latency variability. The DAVIS240 and

Prophesee would exhibit similar behavior with respect to rows. Arbiter behavior has

not yet been given much attention in the neuromorphic community, but arbiters have

the potential to significantly impact the quality of data being produced by event

cameras. Models for arbiter behavior should be developed and published in order to

ensure further adoption of event cameras into widespread use, and to ensure they can

withstand the scenarios that test performance limits.
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VI. Conclusion

The first two-dimensional images depicting 3-dimensional space and time were cre-

ated in caves tens of thousands of years ago. Those individuals wishing to document

activity in their surroundings progressed to more familiar formats such as painting on

canvasses, recording light directly onto film, then eventually digital sensors. While

the mechanics of imaging improved with time, the static-frame-based principle did

not change in a significant way until the late 1800s, when several still pictures were

combined to create the illusion of motion. Still today, visualizing motion relies on

displaying a rapidly-updated series of static 2-D images. Event-based cameras offer

a new technique for recording and displaying motion throughout a scene, by asyn-

chronously recording only the elements of the scene that change. Departing from

the 2-dimensional paradigm of imaging has required significant effort in technologi-

cal development, but also in interpretation of AER data and application of this new

capability.

6.1 Significance of Work

In this thesis, four event cameras from two manufacturers were exposed to a

controlled, repeating, step-function light source. The various responses to this simple

stimulus provide a significant amount of insight into the characteristics of the cameras,

revealing strengths, weaknesses, and novel behaviors not yet described by leading

scientific models. This research rigorously subjected four separate cameras to the

same test conditions. This head-to-head testing accomplished three main tasks in

pursuit of expanding the application of event based imaging.

First, time surfaces compiled from the first event from each exposed pixel revealed

clues about the functional nature of each camera’s readout arbiter. Spatial patterns
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were apparent, showing that fixed pattern noise is not the only spatial consideration

applicable to non-uniformity in event camera output, and that in all cases, arbiters

prefer one side of each focal plane array when under a sufficiently high instantaneous

load. Additionally, rolling shutter artifacts have been predicted by previous work.

The time surfaces generated in this thesis showed over what speeds those artifacts may

occur, and in which orientation they would occur. These time surfaces also revealed

a new finding that has not previously been described in the literature: the detection

rate of the DVXPlorer and Prophesee Gen3 drops significantly at high instantaneous

load, potentially impacting image quality in certain high-speed applications. Current

models focus on pixel-level behavior and do not describe this behavior.

Second, quantifying the duration over which a time surface extended described

the deviation in latency, or jitter, of each camera. This effectively describes the

timing precision of each camera. It was discovered that increasing the number of

pixels subjected to a simultaneous stimulus significantly reduces timing precision.

This effect became particularly apparent above roughly 1% PSP. Finally, measuring

the number of events produced in response to a single stimulus described the level

of redundancy exhibited by each camera. This presents an opportunity for impactful

follow-on research, as the event generation rate is directly controlled by user-adjusted

bias parameters.

Most naturally lit scenes would rarely change quickly enough for these behaviors to

be a concern. However, artificial lighting or various natural phenomena could cause

a rapid stimulation of the entire sensor and produce artifacts. Possible examples

where an event camera could be vulnerable include dim rooms when lamps or strobe

lights such as fire alarms turn on, an outdoor night scene that is illuminated by a

bolt of lightning, or a suburban roadway night scene when the streetlights turn off.

While these examples are not every-day occurrences, they are far from extraordinary.
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For example, if a vehicle was using an event camera for navigation at night and

the streetlights fail, causing a momentary degradation in image quality, it is easy to

imagine how the situation could quickly become dangerous. Further research should

be done to examine the susceptibility of event cameras to artifacts from occurrences

such as these.

6.2 Recommendations for Future Work

Event cameras are becoming commercially available on a large scale. This avail-

ability is going to rapidly accelerate the growth of applications and in interest in this

unique technology. In order to ensure maximum utilization of the novel capabilities

provided by these cameras, significant research must still be done to understand their

behavior, and to develop methods for using AER data efficiently and effectively.

6.2.1 Illumination Techniques

It was noted during processing that array statistics were sensitive to which pixels

were discarded and which were kept. This suggests that the technique used in this

thesis is not the most optimized method of describing the nature of these cameras

in a realistic and accurate manner. If future characterization efforts require the

stimulation of a small fraction of the array, it is recommended that the pixel exposure

process be improved. The method presented in this thesis caused some amount of

diffracted light to expose pixels beyond the edges of the reported areas, though the

amount of exposure was not quantified. Other focal plane array characterization

efforts have placed a physical mask on the sensor itself [29], which might work well in

this application. In the event that 100% PSP is required, a strategy more consistent

with standard industry practices would be to remove the lens and expose the sensor

to a radiating disc 8x farther from the sensor than its diameter [30]. In order to
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expose a small fraction of the array, a laser and careful beam conditioning could be

used to precisely illuminate specific pixels while minimizing stray light incident on

neighboring pixels.

6.2.2 Event Redundancy

The characterization of throughput redundancy through measuring the number of

events generated per stimulus would be extremely beneficial to the industry. Event

generation rates can be controlled through various bias configurations, but there is

currently no rigorous discussion describing the detailed effects of the various param-

eters. This characterization process should be a high priority for near-term work in

the neuromorphic imaging community.

While physics-based models exist for a few models of event cameras, significant

effort must be put in to fully characterize their response to various stimuli. Several

phenomena are reported in this work which are only introduced at the empirical level,

let alone understood at a component engineering level. An accurate physics-based

electrical circuit model should be developed, or the nature of various artifacts will

remain difficult to understand.

6.2.3 Event Suppression

The DVXPlorer demonstrated the surprising tendency to produce fewer events

as luminance increased. This could have significant impacts on behavior and image

quality under a wide variety of applications. Currently there is no description of the

camera that would motivate this behavior. Such a significant tendency ought to be

explored before the camera is installed in significant applications.
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6.2.4 Data Processing

The nature of AER data makes the data processing pipeline prone to using loops.

This was a source of significant computational load, causing processing times to be

exceedingly long. It is well established that vectorizing data formats can lead to

significantly faster processing depending on the programming language used. Since

AER data is initially produced in a list, it is very efficient in terms of bandwidth and

storage space requirements, but it is resistant to vector-based processing. A possible

solution for this is that once data is no longer size-critical, the events could be sorted

into a 3-D array of (x,y,t) for further processing. This would reduce the necessity of

looping through events and enable further vectorization and time optimization.

6.2.5 Arbiter Preference

All four cameras demonstrated a tendency to read columns or rows from one side

to the other when under sufficient load. Previous publications have alluded to arbiter

circuits fairly choosing the order in which to respond to requests, but there has not

yet been a thorough description of the logic implemented, or at what point that logic

is overwhelmed. It would be quite useful if the manufacturers could release more

information regarding the nature of the arbiter circuits, enabling end users to predict

and plan for the mode of failure of fair arbitration. In the absence of this data from

the manufacturer, further characterization of these cameras under high load may be

able to generate an empirical model which satisfies the same requirement.

6.3 Summary

This thesis considers three metrics of performance to create one reference which

describes the span of behavior of event cameras. Four cameras were included in the

study, and the procedure could easily be applied to other cameras in the future.
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This head to head comparison enables end users to make informed decisions when

choosing a sensor for their potential applications, based on observed performance in

response to well-defined stimuli. It also enables researchers to target their efforts in

prioritizing future work, such that the most valuable characteristics and applications

of these novel cameras can be exploited.
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