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Abstract

Fast burst reactors are used in research environments to study super critical systems

and as a source of fast neutron pulses for use in other experiments. These reactors

fill an important role in both civilian and defense research. However, due to costs

associated with securing the highly enriched uranium fuel used by these reactors,

many have been shut down in recent years. Replacing these reactors with less ex-

pensive low enriched uranium fuel has been proposed as a solution to this problem.

However, before a fast burst reactor using this new fuel type can be constructed, it

is desirable to first determine the feasibility of such a design using numerical mod-

eling. Previous attempts have been made to develop these predictive models, but

these methods are currently lacking in verification data. Therefore, this work builds

off of one such numerical model in order to enhance the verification of this predictive

method. This effort models fast burst reactors using the one dimensional, one group

neutron diffusion equation to solve for the time eigenvalue. For this problem there

exist an analytical solution against which the numerical results can be verified. The

existing solution method is enhanced by the addition of a second order accurate finite

volume discretization, which is then used to model two separate fast burst reactors.

The results of these models are then compared to the results of previous work, the

analytical solution, and existing experimental burst width data for each of the two

reactors.
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NONLINEAR SOLUTION OF THE TIME EIGENVALUE OF A FAST BURST

REACTOR USING THE FINITE VOLUME METHOD

I. Introduction

1.1 Motivation

Fast burst reactors (FBRs) are used in research environments both to study super

critical systems themselves, and as a source of fast neutrons pulses for use in other

experiments [1]. These reactors operate by rapidly inserting reactivity into the system

to induce a super prompt critical state, producing a pulse, or burst, of neutrons before

negative temperature-reactivity feedback quenches the system, returning it to a sub-

critical state [2].

The original FBRs made use of highly enriched uranium (HEU) fuel in order

to achieve this effect [1]. However, in a 2019 report the National Nuclear Security

Administration listed HEU fueled research reactors as a security risk and stated a

programmatic objective of converting both domestic and international research reac-

tors from HEU to low enriched uranium (LEU) fuel [3]. This proliferation concern

posed by the HEU fuel has led to increasing security measures, and consequently

to increasing costs associated with operating FBRs, as attested by the office of the

USD/AT&L, which in 2005 assessed that these costs had led to the shut down of two

out of the three domestic FBRs used for defense applications in the United States [4].

Therefore, the conversion of FBRs to LEU fuel is desirable from both a security and

a cost perspective.

However, it must first be determined if it is possible to convert a given reactor

1



from HEU to LEU fuel while still fulfilling the originally intended purposes of the

reactor. It is therefore necessary to model the effects of LEU fuel on FBRs in order

to assess the effects the new fuel will have on the system and whether the bursts

produced will still satisfy research needs.

It was this problem that the Jacobian Free Newton-Krylov (JFNK) Alpha, and k

Eigenvalue Solver (JAKES) was designed to model [5]. This algorithm made use of

recent advances in nonlinear solution techniques, using a software package developed

by Argonne National Laboratory, and applied them to the FBR problem [5, 6]. These

techniques were used to develop a deterministic solution for the time eigenvalue of

a FBR modeled using the neutron diffusion equation in one dimension. The algo-

rithm also computed the k eigenvalue of the system as a way of initializing the time

eigenvalue calculation. Verification was conducted for both of these solutions, but the

verification of the time eigenvalue was more limited in scope. However, it is the time

eigenvalue that is of the most interest for the FBR problem.

1.2 Research Problem

The goal of this effort was two-fold: to enhance the time eigenvalue solution accu-

racy of JAKES by replacing the existing finite difference discretization with a finite

volume discretization; and to improve the verification of the JAKES algorithm in

order to increase its usefulness as a predictive model for innovative FBR designs. Be-

cause of this need for verification, this effort focused only on numerical problems for

which an analytical solution for comparison existed. Therefore, this effort only builds

off of previous work with the 1D neutron diffusion equation in spherical coordinates,

and ignores work with the 2D transport equation. Because of this focus, it was for 1D

spherical geometry that the finite volume method was implemented. This particular

discretization method was selected because it would enable a more accurate imple-

2



mentation of heterogeneous models in the future than the finite difference method,

while avoiding the complexities introduced by the inclusion of basis functions with

the finite element method. This was accomplished, but this effort also enhanced the

existing finite difference discretization and applied both methods in cylindrical and

Cartesian coordinates as well.

Verification was accomplished by comparing the new finite volume discretization

results to the findings for the previous version of JAKES for a model of the Go-

diva I FBR, as well as to the analytical solution to the eigenvalue problem and the

known burst width range measured for Godiva I in past experiments. This task was

accomplished during the course of this effort. Additionally, this effort attempted an

analogous verification using a model of the White Sands Missile Range (WSMR) FBR

in cylindrical coordinates. However, this result is less impactful than the Godiva I

comparison, as a 1D model of a cylindrical reactor will be inherently nonphysical.

Nevertheless, a calibration against the experimental burst width and a comparison to

the analytical solution was conducted. While the results of this WSMR FBR model

are not predictive of the real reactor, some conclusions were still drawn regarding the

nature and validity of the solution method.

1.3 Prior Work

Over the course of the 20th and 21st centuries, 13 FBRs were built in the United

States, only 2 of which remain in use [7]. Research and design of these reactors was a

popular topic in the 20th century, but their current rarity has led to reduced academic

focus in recent years [1, 4]. The current research in this field tends to focus on the

thermal and thermoelastic properties of FBRs [8, 9]. The result of this focus is that

the neutronics of FBRs are the area of their study currently in the greatest need of

refinement [8].
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For typical reactors, these neutronics problems are frequently solved using the k

eigenvalue, which reflects the criticality of a steady-state system and can be calculated

and used to describe the reactor [10]. This solution method has also been applied

to FBRs, with a recent study using the discrete ordinates code PENTRAN to model

the WSMR FBR demonstrating that the solution method resulted in an overestimate

of the criticality of the system [11]. Furthermore, the extremely transient nature of

FBRs means that the time eigenvalue, which reflects the criticality of a time-varying

system, is generally of greater use in describing the system, as the fundamental mode

of the time eigenvalue translates to the inverse period of an FBR [12].

There are two common methods of solving for the time eigenvalue of a reactor:

the first of these is to find the solution using a Monte Carlo code, such as MCNP. One

such Monte Carlo method makes use of MCNP by discretizing the model space and

taking neutron flux tallies in each cell, a process which itself can be computationally

intensive as a large number of cells will necessitate a correspondingly large number

of particles to ensure sufficient tally statistics. These tallies are then fed into a

transition rate matrix method, producing ”very large” matrices which must be stored

and processed in order to produce an eigenfunction expansion to approximate the

time eigenvalue [13]. This and other Monte Carlo methods of computing the time

eigenvalue are therefore potentially quite computationally intensive, and, additionally,

such methods do not lend themselves to readily coupling with other physics [13, 14].

For these reasons, a deterministic solution for the time eigenvalue of an FBR is

preferable.

The second common solution method is deterministic in nature. It calls for iter-

atively solving for the k eigenvalue and updating the time eigenvalue based on the

result. The most common method is to solve the diffusion equation for k, then ”guess”

a value of the time eigenvalue and adding a time absorption term, equal to α
v
, where

4



α is the time eigenvalue and v is the average neutron velocity, to the equation to

bring the effective value of the k eigenvalue to unity. The updated equation is then

solved again for k, and the process is repeated until a value of the time eigenvalue is

found that produces a result of k = 1 [15, 16]. For models with a large number of

cells, this repeated forming and solving of the diffusion equation matrix can result in

significant computational and storage requirements.

This lack of an efficient method of solving for the time eigenvalue was the im-

petus for the Jacobian Free Newton-Krylov (JFNK) Alpha, and k Eigenvalue Solver

(JAKES) [5]. This algorithm calculates a deterministic time eigenvalue solution using

a nonlinear solution method, that includes employing the neutron diffusion equation

for 1D solutions and the even-parity transport equation for 2D solutions. For a given

spatial discretization, it initializes the solution with either a k eigenvalue and eigen-

vector calculation, which is paired with an assumed neutron lifetime to arrive at an

initial value for the time eigenvalue, or else it directly calculates the fundamental

mode of the time eigenvalue for the initial conditions through an iterative power

method calculation. Previous results demonstrated that the k eigenvalue and eigen-

vector initialization resulted in the most accurate final solution [5]. Therefore this

initial k-based value of the eigenvalue and eigenvector is used to initialize the JFNK

solution, to ensure that the solution converges on the fundamental mode of alpha,

rather than on a different, less relevant eigenvalue [5]. This method is the basis of

this research effort.

JAKES was previously used to model theoretical, LEU fueled FBRs: one based on

the Godiva I, using the 1D diffusion equation with the finite difference method, and

the other based on the WSMR FBR, using the 2D transport equation with the finite

element method [5]. Both of these FBRs were modeled with both LEU and HEU

fuel. These models, including both fuel types, were then reproduced in a MCNP

5



Table 1. Previous findings for the Godiva I and WSMR FBR models using JAKES as
presented in the original work [5].
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model for comparison and to verify the results. This verification against a stochastic

method was limited in scope, however, as the effort only used MCNP to calculate

the k eigenvalue of each model, having refrained from employing the computationally

intensive method of calculating the time eigenvalue using Monte Carlo method as

discussed above [5]. The results of this verification are listed in Table 1, with the

finite difference case having been run for N=1,000 nodes, which shows that the JAKES

calculation of the k eigenvalue agreed with the MCNP results for the Godiva I case

to within 0.5%. Similarly, the WSMR FBR k eigenvalue results agreed to within

8% [5]. While these results show promise, the comparison of k eigenvalue results is

not an ideal source of verification for FBR systems, as it is a result of the steady-

state diffusion equation, while the FBR is, by definition, a highly transient system.

Therefore the time eigenvalue is a preferable metric for the verification of results [12].

Unfortunately, the only verification conducted for the JAKES algorithm’s calcu-

lation of the time eigenvalue was a comparison of the 1D, spherical finite difference

calculation of the Godiva I based model to an analytic solution. The results of this

comparison are also shown in Table 1, with an error of 3 x 10−4 µs−1, or 0.3% [5].

While this was a promising result, it did not constitute sufficient verification of the

JFNK solution for the time eigenvalue [5]. Therefore this effort expanded the verifica-

tion for the time eigenvalue, applying the 1D diffusion equation solution in cylindrical

and Cartesian coordinates, in addition to spherical coordinates, allowing for compari-

son against analytic solutions and experimental burst width data for both the Godiva

I and WSMR FBRs.

7



II. Theory

2.1 Fast Burst Reactors

The FBRs modeled in this effort are super prompt critical systems assembled by

the rapid insertion of excess reactivity into a sub-critical assembly [1]. The reactivity

excursions produced by these assemblies typically occur over the course of 10’s to

100’s of microseconds [2]. The length of these excursions are limited because of

the self-quenching property of these reactors: as fissions occur, the energy released

heats the fuel of the reactor, this temperature increase results in thermal expansion

in the fuel, reducing the density of the fuel and therefore reducing the macroscopic

fission cross-section, resulting in fewer fissions and causing a drop off in both neutron

and power production [2]. After this self-quenching reduces the power production,

a safety block assembly is removed from the FBR in order to scram the reactor [2].

This self-limiting property is what makes FBRs a desirable source of neutron bursts.

The FBRs of interest to this effort are the Godiva I and WSMR FBRs. These

two were selected because of the relative simplicity of their designs, which allows

models with both analytical and deterministic solutions, enabling an absolute error

determination to be made for verification of the solution method. The Godiva I,

shown in Figure 1, is a spherical reactor comprised of homogeneous HEU fuel. The

figure shows the sphere separated into three, sub-critical pieces on the assembly which

was used to assemble the FBR into its super critical state [17]. The WSMR FBR

was a slightly later and more advanced design, making use of a fuel of HEU alloyed

with molybdenum. It has a cylindrical design, shown in Figure 2, which was based on

the design of a successor to the Godiva I FBR, leading to it also being known as the

”Moly-G” FBR for ”Molybdenum Godiva” [1]. The homogeneity of these reactors is

what makes them easier to model, as the model is free of material boundaries, leaving

8



Figure 1. Image of the Godiva I FBR in its disassembled state [17].

Figure 2. Schematic of the WSMR FBR design [1].

9



only the boundary conditions at the edges of the fuel assemblies. Additionally, the

geometry of Godiva I lends itself well to a 1D model, which is the very reason why it

was chosen for use in the original JAKES study [5]. The properties of these reactors

are listed in Table 2.

2.2 The Neutron Diffusion Equation

In modeling these systems, this effort sought only to generate a solution to the

time eigenvalue for a one dimensional model of a FBR. This effort implemented the

ability to model FBRs in 1D in spherical, cylindrical, and Cartesian coordinates

into JAKES. Of these three coordinate systems, only spherical geometry produces

a result which could fully represent a physical system. This is because if the lone

finite dimension is taken to be the radial dimension, then symmetry can be applied

across both angular dimensions of the spherical geometry in order to produce a finite,

and therefore physical, sphere. The same cannot be said for cylindrical or Cartesian

geometries: in cylindrical geometry, angular symmetry can be applied in only one

dimension, leaving one dimension infinite; in Cartesian, no angular symmetry can

be applied, resulting in two infinite dimensions. A model with one or more infinite

dimensions is inherently nonphysical, and therefore cannot be used to represent a real

FBR. However, these geometries are still pursued in this effort as a means of further

Table 2. Properties of the Godiva I and WSMR FBRs as used in the original develop-
ment of JAKES [5].

Reactor Godiva I WSMR FBR
Geometry Spherical Cylindrical

Radius (cm) 8.6756 10.540
Density (g/cm3) 18.75 17.90

Mass (kg) 52 - 52.42 97.142
Fuel Composition 100 w/o HEU 90 w/o HEU, 10 w/o Mo

Experimental
Burst Width (µs) 35 - 50 31 - 50

10



verification of the JAKES algorithm, and as a step towards higher dimension models

which do not produce non-physicalities.

In addition to these geometric assumptions, this effort also makes simplifying

assumptions regarding neutron energies. The systems of interest to this effort are

exclusively fast reactors and, as such, all neutrons in the system can be assumed to

be born in the fast regime. Both the Godiva I and WSMR FBRs are comprised of

homogeneous, metal fuel with no additional moderating material introduced. These

pure - or near pure in the case of the WSMR FBR - uranium metal assemblies have

minimal cross-sections for moderation [18]. Therefore, it assumed for ease of calcu-

lation that all neutrons in the system share a single, average energy. For consistency

with previous work, this neutron energy value is chosen to be 1.45 MeV [5]. The

isotopic cross-sections for this energy, as used in this effort, are listed in Table 3.

Finally, this effort assumes the applicability of Fick’s law, given by [19]:

~J = −D∇φ (1)

where ~J is the neutron current, φ is the neutron flux, and the diffusion coefficient, D,

is given by

D =
1

3(σt + α
v
)

(2)

where σt is the macroscopic transport cross-section.

These assumptions allow the system to be described by the one dimensional, one

Table 3. Isotopic microscopic cross-section values as used in the original development
of JAKES [5].

ν (neutrons) β σ̃f (b) σ̃a (b) σ̃tr (b)
U235 2.60 0.0065 1.40 1.65 6.80
U238 2.60 0.0157 0.095 0.255 6.90
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group, time-dependent neutron diffusion equation:

1

v

∂φ(r, t)

∂t
−D∇2φ(r, t) + σaφ(r, t) = νσfφ(r, t) (3)

where σa and σf are the macroscopic absorption and fission cross-sections, and ν is

the average number of neutrons produced per fission. For spherical geometry, the

Laplacian, ∇2, is defined as [20]

∇2φ =
1

r2
∂

∂r
(r2

∂φ

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂φ

∂θ
) +

1

r2 sin2 θ

∂2φ

∂ϕ
(4)

which in 1D reduces to

∇2φ =
∂2φ

∂r2
+

2

r

∂φ

∂r
. (5)

In cylindrical geometry the Laplacian is defined as [20]

∇2φ =
1

r

∂

∂r
(r
∂φ

∂r
) +

1

r2
∂2φ

∂ϕ2
+
∂2φ

∂z2
(6)

which in 1D reduces to

∇2φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
. (7)

And in Cartesian coordinates the 1D Laplacian is simply [20]

∇2φ =
∂2φ

∂r2
. (8)

This difference in the definition of the Laplacian is the only term in the diffusion

equation in which the three coordinate systems used in this effort differ. Therefore,

12



a coordinate constant, a, is defined, where:

a =


2 Spherical

1 Cylindrical

0 Cartesian

(9)

Using this constant, a generic Laplacian can be defined and used with any coordinate

system:

∇2φ =
∂2φ

∂r2
+
a

r

∂φ

∂r
. (10)

Using this generic definition of the Laplacian, the diffusion equation, in the form

shown in Equation 3, can then be rewritten as

1

v

∂φ(r, t)

∂t
−D

(
∂2φ

∂r2
+
a

r

∂φ

∂r

)
+ σaφ(r, t) = νσfφ(r, t). (11)

The flux can then be split into its radial component and a time component, from

which the time eigenvalue originates [19].

φ(r, t) = φ(r)eαt (12)

Substituting these separated values into Equation 11 gives a result of

1

v

∂

∂t

(
φ(r)eαt

)
−D

[
∂2

∂r2
(
φ(r)eαt

)
+
a

r

∂

∂r

(
φ(r)eαt

)]
+ σa

(
φ(r)eαt

)
= νσf

(
φ(r)eαt

) (13)

which reduces to

α

v
φ(r)eαt −D

(
∂2φ

∂r2
+
a

r

∂φ

∂r

)
eαt + σaφ(r)eαt = νσfφ(r)eαt. (14)
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The exponential term can then be factored out of the equation, leaving equation as

solely a function of r:

α

v
φ(r)−D

(
∂2φ

∂r2
+
a

r

∂φ

∂r

)
+ σaφ(r) = νσfφ(r). (15)

This result is useful as it reduces all dependence on time in the equation to the

time eigenvalue, α. The equation can then be solved numerically, such as with the

JFNK method, or analytically to arrive at a value for this time eigenvalue and a

corresponding flux eigenvector. The analytical solution to this form of the diffusion

equation is presented for each coordinate system in Appendix A.

An alternative, simplified version of this equation is the steady-state neutron

diffusion equation [10].

−D∇2φ(r) + σaφ(r) =
1

k
νσfφ(r) (16)

In this form, there is no time dependence, and the k eigenvalue is used to represent

different steady-states at which the system can operate. This simplified form of the

neutron diffusion equation can be solved and used in the calculation of the time

eigenvalue solution. Using the definition of the Laplacian given in Equation 10, this

version of the diffusion equation can be rewritten as

−D
(
∂2φ

∂r2
+
a

r

∂φ

∂r

)
+ σaφ(r) =

1

k
νσfφ(r). (17)

Just as Equation 15 can be solved for the time eigenvalue, so can Equation 17 be

solved for the k eigenvalue. The numerical solution method used in this effort, the

power iteration, is presented in Section 3.2, and the analytical solution is given in

Appendix B.
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Both of these versions of the diffusion equation require boundary conditions before

they can be solved. These boundary conditions describe the flux of the system at the

edges of the model. As the FBRs of interest to this effort, the Godiva I and WSMR

FBRs, are both bare assemblies, the outer boundary condition can be taken to be an

extrapolated vacuum boundary. At a diffusion vacuum boundary, the flux is equal to

zero [10].

φ(R) = 0 (18)

However, R here does not occur at the outer edge of the reactor, as there would still

be fissions occurring, producing a non-zero flux throughout the FBR. R, therefore, is

defined using the extrapolated boundary condition, which is given by [10]:

Rextrapolated = Rreactor + 2D (19)

In order to simplify the problem, this boundary is defined using the value of D from

the steady-state diffusion equation, which assumes α = 0. The value of R calculated

here is then used throughout both the k and time eigenvalue calculations. This ignores

changes in D, which is dependent on α and therefore varies with each iteration of the

JFNK solution. This could then be used to calculate a new extrapolated boundary

after each update of the value of D. If this update were applied to the extrapolated

boundary at each iteration, then the size of the model, and therefore potentially the

size of the eigenvector, would change with each iteration. To avoid this complication,

the value of R is calculated only once in the JAKES algorithm, neglecting the α term

in the definition of D, and then used throughout the calculations of both the k and

time eigenvalues.

Conversely, the inner boundary represents the point at r = 0. This boundary, then,

represents the center of the FBR. The use of 1D spherical geometry, in particular,
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to represent a symmetric assembly lends itself to the use of a reflective boundary

condition at the center of the system, reflecting the symmetry that should exist at

the center of the sphere. This symmetry in flux can be represented by a zero net rate

of change in flux across the center of the model, as shown in Equation 20 [10].

dφ

dr
|r=0 = 0 (20)

These boundary conditions, coupled with Equation 15 or 17, represent a complete

system that can then be solved analytically or numerically.

2.3 The Finite Difference Method

The finite difference method is a spatial discretization scheme in which the spatial

domain is discretized into nodes [20]. Each node is a finite point in the geometry

of the system at which the flux can be approximated in relation to its neighboring

points. These relations are accomplished by approximating the derivatives of the flux

using Taylor expansions [20]. These expansions are used to define the flux and its

derivatives at each point in the discretization, defined here as spanning from i = 0 to

N, where node 0 is located at position r = 0, and node N is located at position r =

R, the outer boundary of the model. Node i is located at r = i × ∆r, where ∆r =

R/N is the distance between each node. This allows us to form a discretized version

of Equation 15, where φ(ri) is written as φi:

vD

(
∂2φ

∂r2
|i +

a

ri

∂φ

∂r
|i
)

+ (νσf − σa)φi = αφi. (21)

The relevant Taylor expansions for this equation are:

φi+1 = φi + ∆r
dφ

dr
|i +

1

2!
(∆r)2

d2φ

dr2
|i +

1

3!
(∆r)3

d3φ

dr3
|i +

1

4!
(∆r)4

d4φ

dr4
|i +O(∆r5)
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φi−1 = φi −∆r
dφ

dr
|i +

1

2!
(∆r)2

d2φ

dr2
|i −

1

3!
(∆r)3

d3φ

dr3
|i +

1

4!
(∆r)4

d4φ

dr4
|i +O(∆r5)

Where O(∆r5) refers to the order of error in the equation, as detailed in Appendix

D. Subtracting these expansions results in

φi+1 − φi−1 = 0 + 2∆r
dφ

dr
|i + 0 + 2

1

3!
(∆ri)

3 d
3φ

dr3
|i + 0 +O(∆r5)

which can be rearranged to form a definition of the first derivative of flux at node i:

dφ

dr
|i =

φi+1 − φi−1
2∆r

+O(∆r3). (22)

Similarly, adding the expansions together results in

φi+1 + φi−1 = 2φi + 0 +
1

2!
(∆ri)

2 d
2φ

dr2
|i + 0 +O(∆r4)

which can, in turn, be rearranged to form a definition of the second derivative of flux

at node i:

d2φ

dr2
|i =

φi+1 − 2φi + φi−1
∆r2

+O(∆r2). (23)

Substituting these values into Equation 21 yields the following second order ac-

curate discretized equation:

α

v
φi −D

[(
φi+1 − 2φi + φi−1

∆r2

)
+
a

ri

(
φi+1 − φi−1

2∆r

)]
+ σaφi = νσfφi (24)

This equation can be rearranged into the following form

(
vD

∆r2
+

avD

2ri∆r

)
φi+1 +

(
−2vD

∆r2
+ v(νσf − σa)

)
φi

+

(
vD

∆r2
− avD

2ri∆r

)
φi−1 = αφi.

(25)
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This same method can be applied to the steady-state diffusion equation to produce

the following result:

(
−D

νσf∆r2
− aD

2νσfri∆r

)
φi+1 +

(
2D

νσf∆r2
+

σa
νσf

)
φi

+

(
−D

νσf∆r2
+

aD

2νσfri∆r

)
φi−1 =

1

k
φi

(26)

The derivation of the steady-state diffusion equation discretization which produces

Equation 26 is given in Appendix C. Both Equation 25 and Equation 26 are given in

forms which can be readily converted into a tridiagonal matrix eigenvalue problem in

the form of

A ~φ = α ~φ (27)

where A is the matrix resulting from the terms on left side of the discretized equations.

Equation 27 represents the time eigenvalue problem, but the steady-state diffusion

equation version takes the same form, with α being replaced with 1
k
.

These equations define the interior nodes, but those nodes at the boundaries of

the model require different equations to account for the boundary conditions. This

is where the finite difference discretization implemented in this effort differs from

the discretization originally implemented in JAKES. The original JAKES discretiza-

tion used identical equations to describe the interior nodes, however it described the

boundaries using those same equations, rather than applying unique equations for

each of the boundaries [5].

The first of these boundary conditions is the outer, vacuum boundary at r = R,

given by Equation 18. This boundary is defined at node N, where φN = 0. This would

introduce an unnecessary non-linearity into the matrix, complicating the numerical

solution. Therefore, the finite difference discretization ends at node (N - 1), at which

18



Equation 21 becomes

vD

(
∂2φ

∂r2
|N−1 +

a

rN−1

∂φ

∂r
|N−1

)
+ v(νσf − σa)φN−1 = αφN−1 (28)

Writing this equation in terms of node fluxes requires defining dφ
dr
|N−1 using Equation

22 and the boundary condition that φN = 0:

dφ

dr
|N−1 =

φN − φN−2
2∆r

+O(∆r2) =
(0)− φN−2

2∆r
+O(∆r2) (29)

Likewise, Equation 23, combined with the boundary condition, results in the following

equation at this node:

d2φ

dr2
|N−1 =

φN − 2φN−1 + φN−2
∆r2

+O(∆r2) =
(0)− 2φN−1 + φN−2

∆r2
+O(∆r2) (30)

Substituting these results into Equation 28 gives

vD

[(
−2φN−1 + φN−2

∆r2

)
+

a

rN−1

(
−φN−2

2∆r

)]
+ v(νσf − σa)φN−1 = αφN−1

which simplifies to

(
−2vD

∆r2
+ v(νσf − σa)

)
φN−1 +

(
vD

∆r2i
− avD

2rN− 1
2
∆r

)
φN−2 = αφN−1. (31)

Similarly, the inner, reflective boundary at r = 0, given by Equation 20, occurs at

node 0, at which Equation 21 becomes

vD

(
∂2φ

∂r2
|0 +

a

r0

∂φ

∂r
|0
)

+ v(νσf − σa)φ0 = αφ0 (32)
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Here both r0 and ∂φ
∂r
|0 go to zero. Therefore L’Hospital’s Rule must be applied [20]:

lim
x→0

1

r

∂φ

∂r
= lim

x→0

d
dr

(
∂φ
∂r

)
d
dr

(r)
=
∂2φ

∂r2
|0

Equation 32 then becomes:

vD

[
∂2φ

∂r2
|0 + a

(
∂2φ

∂r2
|0
)]

+ v(νσf − σa)φ0 = αφ0 (33)

As with the previous case, this boundary also requires a unique term definition, this

time for d2φ
dr2
|0, which is accomplished by combining Equation 23 with the reflective

nature of this boundary. The symmetry inherent to this boundary means that the

flux at ri is the same as the flux at -ri, therefore φ−1 can be used as a ghost point

with a value equal to φ1, allowing for the following definition:

d2φ

dr2
|0 =

φ1 − 2φ0 + φ−1
∆r2

+O(∆r2) =
φ1 − 2φ0 + (φ1)

∆r2
+O(∆r2) =

2(φ1 − φ0)

∆r2

+O(∆r2)

(34)

Substituting this result into Equation 33 gives

vD

[(
2(φ1 − φ0)

∆r2

)
+ a

(
2(φ1 − φ0)

∆r2

)]
+ v(νσf − σa)φ0 = αφ0

which simplifies to

(
2vD(1 + a)

∆r2

)
φ1 +

(
−2vD(1 + a)

∆r2
+ v(νσf − σa)

)
φ0 = αφ0. (35)

Together Equations 25, 31, and 35 form the full finite difference discretization. The

corresponding discretization for the steady-state diffusion equation is derived in Ap-

pendix C and is also second order accurate.
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2.4 The Finite Volume Method

The finite volume method is a spatial discretization scheme in which the spatial

domain is discretized into cells [20]. Each cell is integrated over a finite subset of

space, in the 1D case over a finite segment of r. For spherical coordinates, when

rotational symmetry is applied to the 1D cells, the result is a series of concentric

shells, as shown in Figure 3. This integration of the diffusion equation results in a

volume averaged value of flux for each cell, with the convenient property that any

decrease in flux in one cell must be offset by an increase in an adjoining cell, such

that flux is always conserved [20]. All other properties are also cell averaged, but

because the FBRs modeled in this effort are both homogeneous, this does not change

any of the properties from what they would be in a corresponding finite difference

discretization. Were non-homogeneous FBRs modeled here, this cell integration could

produce cross-section values which differed from those of a finite difference scheme.

For the sake of consistency, the finite volume discretization presented here uses

the same indexing system as the finite difference discretization. Each node in the

finite difference scheme is a cell boundary, with cells being defined by their centroid

point. So the cell located between nodes i and (i+1) is defined as cell (i+1
2
). This

indexing system is illustrated in Figure 4. Using these definitions, Equation 15 can

be integrated across cell (i+1
2
) in Cartesian coordinates, resulting in the following:

∫ ri+1

ri

[
vD

(
d2φ

dr2
+
a

r

dφ

dr

)
+ v(νσf − σa)φ

]
dr =

∫ ri+1

ri

( αφ ) dr

vD

[
dφ

dr
|i+1 −

dφ

dr
|i +

a

ri+ 1
2

(φi+1 − φi)

]
+ v(νσf − σa)φi+ 1

2
∆r = αφi+ 1

2
∆r (36)

The terms in this equation can be defined in terms of adjoining cells using Taylor

expansions of the flux at each cell, in the same way the finite difference discretization
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Figure 3. Visualization of the spherical finite volume cells in 3D.

Figure 4. Visual representation of the finite volume indexing scheme used in this
discretization of the neutron diffusion equation.
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defined derivatives in terms of neighboring nodes. The Taylor expansions relevant to

this discretization are:

φi+ 1
2

= φi+
∆r

2

dφ

dr
|i+

1

2!

(
∆r

2

)2
d2φ

dr2
|i+

1

3!

(
∆r

2

)3
d3φ

dr3
|i+

1

4!

(
∆r

2

)4
d4φ

dr4
|i+O(∆r5)

φi− 1
2

= φi−
∆r

2

dφ

dr
|i+

1

2!

(
∆r

2

)2
d2φ

dr2
|i−

1

3!

(
∆r

2

)3
d3φ

dr3
|i+

1

4!

(
∆r

2

)4
d4φ

dr4
|i+O(∆r5)

Subtracting these two equations yields

φi+ 1
2
− φi+ 1

2
= 0 + 2

∆r

2

dφ

dr
|i + 0 + 2

1

3!

(
∆r

2

)3
d3φ

dr3
|i + 0 +O(∆r5)

which can be rearranged to give a definition of the first derivative of flux at ri, the

boundary between cells (1+1
2
) and (1-1

2
):

dφ

dr
|i =

φi+ 1
2
− φi− 1

2

∆r
+O(∆r3) (37)

Similarly, adding the two Taylor expansion equations yields

φi+ 1
2

+ φi− 1
2

= 2φi + 0 + 2
1

2!

(
∆r

2

)2
d2φ

dr2
|i + 0 +O(∆r4)

which results in a definition of the flux at the cell boundary as a function of the two

adjoining cells:

φi =
φi+ 1

2
+ φi− 1

2

2
+O(∆r2) (38)

Substituting these values into the integrated diffusion equation, Equation 36, yields:

vD

[(
φi+ 3

2
− φi+ 1

2

∆r

)
−

(
φi+ 1

2
− φi− 1

2

∆r

)
+

a

ri+ 1
2

((
φi+ 3

2
+ φi+ 1

2

2

)
−

(
φi+ 3

2
+ φi+ 1

2

2

))]

+ (νσf − σa)φi+ 1
2
∆r = αφi+ 1

2
∆r
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which simplifies to the following second order accurate equation:

(
vD

∆r2i
+

avD

2ri+ 1
2
∆r

)
φi+ 3

2
+

(
−2vD

∆r2
+ v(νσf − σa)

)
φi+ 1

2

+

(
vD

∆r2
− avD

2ri+ 1
2
∆r

)
φi− 1

2
= αφi+ 1

2

(39)

If the indexes in this equation are all subtracted by 1
2
, then this result for Cartesian

coordinates becomes identical to the finite difference discretization given in Equation

25. However, because the integration used in this finite volume discretization is spe-

cific to Cartesian coordinates, there is no need to use the multi-coordinate definition

of the Laplacian. The variable a may therefore be substituted for 0.

(
vD

∆r2i

)
φi+ 3

2
+

(
−2vD

∆r2
+ v(νσf − σa)

)
φi+ 1

2
+

(
vD

∆r2

)
φi− 1

2
= αφi+ 1

2
(40)

In Cartesian coordinates, for which a=0 in the finite difference discretization as well,

the finite difference and finite volume methods are identical for all interior points

of the model and its corresponding matrix values, with both having second order

accuracy. These two discretizations therefore only differ in their handling of the

boundary conditions of the model.

The first boundary condition discretized with the finite volume method in Carte-

sian coordinates is the outer, vacuum boundary at r = R, given by Equation 18. This

boundary occurs at the outer edge of cell (N - 1
2
), at which Equation 36 becomes

vD

(
dφ

dr
|N −

dφ

dr
|N−1

)
+ v(νσf − σa)φN− 1

2
∆r = αφN− 1

2
∆r (41)

Writing this equation in terms of cell fluxes requires defining dφ
dr
|N , which can be found
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from the following Taylor expansions

φN− 1
2

= φN +
∆r

2

dφ

dr
|N +

1

2!

(
∆r

2

)2
d2φ

dr2
|N +

1

3!

(
∆r

2

)3
d3φ

dr3
|N +O(∆r4)

φN− 3
2

= φN −
3∆r

2

dφ

dr
|N +

1

2!

(
3∆r

2

)2
d2φ

dr2
|N −

1

3!

(
3∆r

2

)3
d3φ

dr3
|N +O(∆r4)

which, noting that φN = 0, can be combined as

φN− 3
2
− 9φN− 1

2
= (0) + (−3 + 9)

∆r

2

dφ

dr
|N + (0) +O(∆r3).

This results in a definition of:

dφ

dr
|N =

φN− 3
2
− 9φN− 1

2

3∆r
+O(∆r2). (42)

Substituting this result into Equation 41 gives

vD

[ (
φN− 3

2
− 9φN− 1

2

3∆r

)
−

(
φN− 1

2
− φN− 3

2

∆r

) ]
+ v(νσf − σa)φN− 1

2
∆r

= αφN− 1
2
∆r

which simplifies to

(
−4vD

∆r2
+ v(νσf − σa)

)
φN− 1

2
+

(
4vD

3∆r2i

)
φN− 3

2
= αφN− 1

2
. (43)

Similarly, the inner, reflective boundary at r = 0, given by Equation 20, occurs at

the inner edge of cell 1
2
, at which Equation 36 becomes

vD

(
dφ

dr
|1 −

dφ

dr
|0
)

+ v(νσf − σa)φ 1
2
∆r = αφ 1

2
∆r (44)
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which, noting that dφ
dr
|0 = 0 due to the reflective boundary, gives

vD

[ (
φ 3

2
− φ 1

2

∆r

)
− (0)

]
+ v(νσf − σa)φ 1

2
∆r = αφ 1

2
∆r

which simplifies to

(
vD

∆r2

)
φ 3

2
+

(
− vD

∆r2
+ v(νσf − σa)

)
φ 1

2
= αφ 1

2
. (45)

Together Equations 40, 43, and 45 form the full finite volume discretization in Carte-

sian coordinates. The corresponding discretization of the steady-state diffusion equa-

tion is derived in Appendix C. Both of these discretizations are second order accurate.

The 1D integrals for curvilinear coordinates are slightly more complicated than

that for Cartesian coordinates, however. The spherical integration of Equation 15

across cell (i+1
2
) is given by [19]:

4π

∫ ri+1

ri

[
vD

(
d2φ

dr2
+

2

r

dφ

dr

)
+ v(νσf − σa)φ

]
r2 dr = 4π

∫ ri+1

ri

( αφ ) r2 dr

which results in:

3vD
(
r2i+1

dφ
dr
|i+1 − r2i

dφ
dr
|i
)

(r3i+1 − r3i )
+ v(νσf − σa)φi+ 1

2
= αφi+ 1

2
(46)

Substituting Equation 37 into this result produces the following discretized equation

for interior cells in spherical coordinates:

(
3vDr2i+1

∆r(r3i+1 − r3i )

)
φi+ 3

2

(
−

3vD(r2i+1 + r2i )

∆r(r3i+1 − r3i )
+ v(νσf − σa)

)
φi+ 1

2

+

(
3vDr2i

∆r(r3i+1 − r3i )

)
φi− 1

2
= αφi+ 1

2

(47)

Similarly, in cylindrical coordinates the integration of Equation 15 across cell (i+1
2
)
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is given by:

2π

∫ ri+1

ri

[
vD

(
d2φ

dr2
+

1

r

dφ

dr

)
+ v(νσf − σa)φ

]
r dr = 2π

∫ ri+1

ri

( αφ ) r dr

which results in:

2vD
(
ri+1

dφ
dr
|i+1 − ri dφdr |i

)
(r2i+1 − r2i )

+ v(νσf − σa)φi+ 1
2

= αφi+ 1
2

(48)

Substituting Equation 37 into this result produces the following discretized equation

for interior cells in spherical coordinates:

(
2vDri+1

∆r(r2i+1 − r2i )

)
φi+ 3

2
+

(
−2vD(ri+1 + ri)

∆r(r2i+1 − r2i )
+ v(νσf − σa)

)
φi+ 1

2

+

(
2vDri

∆r(r2i+1 − r2i )

)
φi− 1

2
= αφi+ 1

2

(49)

Applying these integrations to cell (N-1
2
), with outer boundary condition defined

by Equation 18 and the definition of dφ
dr
|N defined by Equation 42, results in the

following finite volume discretizations:

(
−
vD(9r2N + 3r2N−1)

∆r(r3N − r3N−1)
+ v(νσf − σa)

)
φN− 1

2
+

(
vD(r2N + 3r2N−1)

∆r(r3N − r3N−1)

)
φN− 3

2

= αφN− 1
2

(50)

(
−2vD(3rN + rN−1)

∆r(r2N − r2N−1)
+ v(νσf − σa)

)
φN− 1

2
+

(
2vD( rN

3
+ rN−1)

∆r(r2N − r2N−1)

)
φN− 3

2

= αφN− 1
2

(51)

Equation 50 represents the spherical discretization and Equation 51 the cylindrical.

Similarly, applying these integrations to cell 1
2
, with the inner boundary condition
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defined by Equation 20, results in:

(
3vD

r1∆r

)
φ 3

2
+

(
− 3vD

r1∆r
+ v(νσf − σa)

)
φ 1

2
= αφ 1

2
(52)

(
2vD

r1∆r

)
φ 3

2
+

(
− 2vD

r1∆r
+ v(νσf − σa)

)
φ 1

2
= αφ 1

2
(53)

for the spherical and cylindrical discretizations respectively. Equations 47, 50, and 52

therefore represent the full 1D, spherical finite volume discretization, while Equations

49, 51, and 53 represent the 1D, cylindrical finite volume discretization. As with the

corresponding finite difference and Cartesian finite volume discretizations, both of

these results are second order accurate. The corresponding steady-state diffusion

equation discretizations for each coordinate system are derived in Appendix C.

Both the finite volume method and finite difference method discretizations pre-

sented in this work make use of uniform mesh spacing, wherein dr is a constant value

throughout the discretization. However, other mesh spacing methods also exist. This

effort also made use of the following two non-uniform mesh spacing schemes: a vol-

umetric based spacing, and a Chebyshev polynomial based spacing. The volumetric

spacing used here is specific to spherical coordinates, and defines dr values for each

cell such that, when rotational symmetry is applied, all cells will have an equal vol-

ume. The second spacing scheme, in turn, uses the Chebyshev polynomial to define

the position of each cell boundary, with boundary position i given by [21]:

ri =

(
1− cos(

iπ

N
)

)
R

2
(54)

2.5 The JAKES Algorithm

JAKES makes use of two different solution methods: a 1D finite difference solution

to the neutron diffusion equation, and a 2D even-parity transport equation [5]. It is
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the neutron diffusion equation solution method that this effort builds on. In this

method, JAKES takes an eigenvalue problem and converts it to a nonlinear equation

to be solved using Newton’s method [5]. This step is necessary due to the nature of

the time eigenvalue. While many eigenvalue problems can be readily solved using a

power iteration, this method will only return the dominant mode of the eigenvalue

[20]. This is not sufficient for the time eigenvalue problem as the mode of interest

is the fundamental mode, being defined as the most positive eigenvalue, as this will

be the most physically meaningful for an FBR [10]. The dominant eigenvalue mode

of the FBRs modeled in this effort, however, are negative values whose absolute

values are orders of magnitude larger than the fundamental mode and which are not

of interest as physical solutions [22]. It is for this reason that Newton’s method is

applied, in order to be able to identify the eigenvalue of interest specifically, and not

merely the dominant mode. This solution would require the computing of a matrix of

Jacobians, however, JAKES instead implements a block Gaussian elimination method

in order to approximate the Jacobian matrix without ever explicitly forming it [5].

This results in a large, Jacobian-free linear system of equations. This system is

then solved using the Krylov sub-space method of generalized minimum residual

(GMRES). This GMRES method was implemented from the Portable, Extensible

Toolkit for Scientific Computation (PETSc) developed by Argonne National Labs

[6], and represents the most computationally intensive segment of the code [5]. As

a whole, this Jacobian-Free Newton-Krylov (JFNK) method forms the core of the

JAKES algorithm.

JAKES was originally built using PETSc version 3.7, but this effort is built using

the updated version 3.14 release [5]. As noted previously, it is specifically the GMRES

solver from PETSc which JAKES makes use of in its JFNK solution for the time

eigenvalue. This numerical solver has seen extensive use in multiple fields of research
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[23, 24, 25]. This widespread use allows for high confidence in its accuracy as a

numerical solver. It was for this reason that the PETSc toolkit was originally chosen

for use in JAKES, and it is for the same reason that it continues to be used in this

effort [5].

While it is the time eigenvalue result which is of greatest use for modeling FBRs,

the JFNK method must be initialized with an initial approximation of the eigenvalue

and eigenvector being solved in order for the method to be effective. It is for this

reason that the JAKES algorithm first solves for the k eigenvalue and its associated

eigenvector. The k eigenvalue can be used to approximate the time eigenvalue, which

provides a value that can then be used to initialize the JFNK solution method. This

relation is given by the following equation [10]:

α =
k − 1

l
(55)

where l is an estimate of the average neutron lifetime. And unlike the time eigenvalue,

the fundamental mode of the k eigenvalue is also its dominant mode. This allows for

a solution using the power iteration method, which for the systems examined in this

effort is computationally trivial [20]. This enables the JFNK method to be initialized

with relatively little computational cost.
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III. Methodology

3.1 Discretization

The first step in this effort was to derive spatial discretizations of the neutron

diffusion equation using the finite difference and finite volume methods. These dis-

cretizations were accomplished for both the time eigenvalue equation, as shown in

Equation 15, and the steady-state diffusion equation, shown in Equation 17. These

derivations are shown in Chapter II for the time eigenvalue equation, and in Appendix

C for the steady-state diffusion equation.

Following the derivations, these discretizations were then implemented in the

model. Before being incorporated into the full JAKES algorithm, these discretizations

were first tested for small scale models, written using Python. Once these models had

been tested, the discretizations were them implemented in JAKES itself, written in

FORTRAN. The final JAKES implementation made use of uniform mesh spacing,

but tests cases were also run using volumetric and Chebyshev polynomial spacing as

well. Once the discretizations had been completed, the algorithm could then begin

the numerical solution process.

3.2 k Eigenvalue Calculation

Using the discretization of the steady-state diffusion equation, the k eigenvalue

could be determined. This discretization results in an equation in the form of

A~φ =
1

k
~φ.

If this equation is inverted, then this becomes a straightforward eigenvalue problem.

As discussed in Chapter II, the value of the k eigenvalue which is of interest to this
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effort is the dominant mode, which can be readily solved for using the power iteration

method. This, therefore, is the numerical solution method used in this effort. The

power iteration algorithm can be written as [26]:

k~φ = ~φA−1

Make initial guess for eigenvector ~φ1

Iterate though ~φk+1 =
A−1~φk

|| A−1~φk ||
to convergence

k =
~φ∗kA

−1~φk
~φ∗k
~φk

This algorithm returns the dominant eigenvalue of k for the steady-state operation of

the FBR. This value can then be related to the time eigenvalue by Equation 55:

α =
k − 1

l

In order for this relation to be useful, a neutron lifetime must be estimated. For

the operation of an FBR, an average value can be assumed to be 10 ns [12]. This

allows us to calculate a value to serve as an initial estimate of the time eigenvalue of

the system. This numerical solution was compared to the analytic solution derived in

Appendix B, allowing for an absolute error determination to be made to determine the

accuracy of the numerical solution for the k eigenvalue. This numerical k eigenvalue

and eigenvector result was then used to initialize the JFNK solution method.

3.3 Time Eigenvalue Calculation

With the discretizations and k eigenvalue calculation in place, the final and largest

step of the JAKES algorithm to solve for the fundamental mode of the time eigenvalue.

The discretization of Equation 15, as derived in Sections 2.3 and 2.4, can be paired
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with the initial time eigenvalue estimate resulting from the application of Equation

55 to the result of the power iteration solution for the k eigenvalue. This value, paired

with the k eigenvector solution, serves to initialize Newton’s method. As discussed

in Chapter II, this is necessary because the dominant eigenvalue will most likely be

negative, and therefore is not of interest as a physical solution. The initial value

therefore is used to ensure that the solution algorithm begins close enough to the

fundamental mode that the solution converges on the desired eigenvalue.

These inputs, implemented in FORTRAN, then interface with the JFNK solver

as described in Section 2.5. The eigenvalue problem shown in Equation 27 that is

fundamentally being solved must be rearranged to be set equal to zero in order to

apply Newton’s Method. From there, the Jacobian matrix which appears in the

solution must be approximated using a block Gaussian elimination method. The

resultant system of equations can then be solved using the GMRES solver from the

PETSc package, as implemented into FORTRAN using PETSc version 3.14, in order

to solve for the time eigenvalue and its corresponding eigenvector.

3.4 Verification

Once the algorithm was fully updated with finite volume discretization, an en-

hanced finite difference discretization, and an updated PETSc numerical solver, it

was then tested as a whole for each coordinate system and discretization method and

compared to the known analytical solutions for each case. Prior to this test, however,

it was optimized for accuracy and efficiency by adjusting the values of N, the total

number of nodes or cells in the discretization, and of tolerance, the criteria for deter-

mining when the k eigenvalue power iteration solution has converged. The effects of

each of these variables on the k and time eigenvalue results were tested individually,

enabling optimal values of each to be selected.
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With these tests completed, the updated JAKES algorithm was then ready to

model the Godiva I and WSMR FBRs. Both of these cases were modeled using the

reactor properties listed in Table 2 and the cross-section values list in Table 3. Both

the spherical Godiva I and the cylindrical WSMR FBRs were modeled using both

finite difference and finite volume discretization. And the numerical solutions for each

of these cases were compared to their corresponding analytical solutions, as derived

in Appendices A and B, for both the k and time eigenvalues. The flux eigenvector

results for each problem were also compared to their corresponding analytic solutions.

The Godiva I model was the more extensive of these two comparisons. As dis-

cussed in Section 2.1, the spherical geometry of the reactor enabled it to be realistically

modeled using a 1D coordinate system. Additionally, the data collected previously

with JAKES, shown in Table 1, was directly comparable to the results from this new

model. The WSMR FBR, however, was more limited. The previous results were pro-

duced using the 2D JAKES-EVENT algorithm, and so were not directly comparable

to the result of the 1D cylindrical model. Further, due to the non-physical neutron

non-leakage introduced by modeling this cylindrical system in 1D, the results of this

model could only be compared to the analytical solution for the model, a limitation

described further in Section 2.1. Despite this, the FBR was still modeled and its

accuracy assessed with the intent of informing future work to expand this model into

higher dimensions.
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IV. Results and Analysis

4.1 Model Optimization

The first data gathered for this effort was collected as a function of tolerance and

N. Tolerance refers to the maximum acceptable residual value used by the power

iteration method when solving for the k eigenvalue. N is used to designate the size

of the discretization of the problem, indicating the number of nodes used for finite

difference or the number of cells used for finite volume. These results were gathered

first so that the values chosen for subsequent models could be optimized to achieve

maximum solution accuracy and efficiency.

This optimization was conducted using spherical coordinates, with the FBR model

having the properties of Godiva I, as shown in Table 2. The results as a function of

tolerance held N constant, and likewise the results as a function of N held tolerance

as a constant. These data were gathered for both finite difference and finite volume

discretizations. It should be noted that the run times measured in this test, as well as

all CPU times measured in this effort, were the result of running JAKES on a single

2.40 GHz processor.

The tolerance data are shown in Tables 4 and 5. The trends for finite difference

and finite volume are similar, with decreasing tolerance directly resulting in a decrease

in the residual of the power iteration calculation of the k eigenvalue. This is to be

expected, as reaching a residual lower than the tolerance is, by definition, the exit

criteria of the power iteration. To achieve this lower residual, a greater number of

iterations are required, which is also clearly shown in the tables. More relevant to the

problem to be solved, however, is the effect of the accuracy of eigenvalue calculations

for the k and time eigenvalues. The errors presented here are the absolute difference

between the eigenvalue found by the numerical calculation and the analytic solution.
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At tolerances of 10−6 and greater, the k error, and correspondingly the time eigenvalue

error, are of the same order of magnitude as the k residual. However, at lower

tolerances the magnitudes of the errors remain constant as the residual decreases.

This suggests that beyond a k error of approximately 4.38 x 10−7 for finite difference

and 5.36 x 10−7 for finite volume, an accuracy limit is reached that is unrelated to

the tolerance of the numerical solution method.

Further, it can be seen in Tables 4 and 5 that as the error in the k eigenvalue

decreases, so too does the run time of the JFNK solution method. The run time

tracks with the power iteration tolerance and residual as well until a tolerance of

10−9, beyond which the previously mentioned accuracy limit begins to show up. This

matches with our expectations that, as the k eigenvalue calculation is being used to

initialize the JFNK time eigenvalue calculation, the more accurate the k eigenvalue

input from the power iteration, the faster the JFNK calculation can converge on a

solution.

Based on these results, a tolerance of 10−12 was chosen to be used for subsequent

models. This value falls clearly within the less than 1 second JFNK run time regime,

and produces errors for both the k eigenvalue and the time eigenvalue, α, which

match the lower tolerance results to 6 digits of accuracy for both finite difference and

finite volume. Given that the original JAKES results were provided with 7 digits of

Table 4. Finite difference results as a function of tolerance for the spherical, Godiva
I model with N = 1,000. ’tol’ refers to the tolerance set on the k eigenvalue power
iteration solution, and ’Iters’ refers to the number of iterations required for the power
iteration to converge.

tol k Error k Residual Iters α Error (µs−1) Run Time (s)
1E-03 2.763711E-04 8.099910E-04 9 1.695520E-04 70.03125
1E-06 7.638021E-07 9.624999E-07 16 1.672183E-04 36.1875
1E-09 4.377989E-07 4.310737E-10 24 1.615828E-04 0.6875
1E-12 4.376530E-07 5.058176E-13 31 1.615041E-04 0.671875
1E-15 4.376529E-07 9.992007E-16 37 1.615039E-04 0.671875
1E-16 4.376529E-07 0.000000E+00 40 1.615039E-04 0.671875
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Table 5. Finite volume results as a function of tolerance for the spherical, Godiva
I model with N = 1,000. ’tol’ refers to the tolerance set on the k eigenvalue power
iteration solution, and ’Iters’ refers to the number of iterations required for the power
iteration to converge.

tol k Error k Residual Iters α Error (µs−1) Run Time (s)
1E-03 2.768460E-04 8.110052E-04 9 1.609321E-04 49.53125
1E-06 8.623037E-07 9.637198E-07 16 1.992804E-04 37.71875
1E-09 5.358541E-07 4.316222E-10 24 1.974836E-04 0.703125
1E-12 5.357080E-07 5.065948E-13 31 1.974046E-04 0.6875
1E-15 5.357078E-07 9.992007E-16 38 1.974046E-04 0.6875
1E-16 5.357078E-07 0.000000E+00 46 1.974047E-04 0.6875

accuracy for the k eigenvalue and 4 digits of accuracy for the time eigenvalue, this

level of precision in our error values should be sufficient for comparison [5].

Using this tolerance, and the same Godiva I parameters that were used to find it,

a similar set of data were then gathered as a function of N. These results are shown in

Tables 6 and 7 for the finite difference and finite volume discretizations respectively.

As expected, the residual from the power iteration calculation of the k eigenvalue had

little variation with N, and for all cases presented in these tables the k eigenvalue

calculation took 31 iterations to converge, having no variation with N. For the power

iteration solution method, k eigenvalue errors decreased by two orders of magnitude

for every order of magnitude increase in N for both discretization methods. This

behavior was expected, as both the finite difference and finite volume discretization

schemes used in this effort are second order accurate. Additionally, these k eigenvalue

results illuminate the apparent source of the ”accuracy limit” noted in the tolerance

results from Tables 4 and 5: the clear second order accuracy progression seen in the k

calculation errors relative to N explains why, for a constant N of 1,000, the tolerance

results quickly reached a limit on the order of magnitude of accuracy that could be

reached. Based on these trends, the selected tolerance of 10−12 should be sufficient

for values of N up to at least 100,000.

This expected second order accuracy trend does not appear in the time eigenvalue
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Table 6. Finite difference results as a function of N for the spherical, Godiva I model
with tol = 1E-12.

N k Error k Residual α Error (µs−1) JFNK Run Time (s)
30 2.333711E-04 4.984901E-13 8.607803E-02 0.000000
100 3.736814E-05 5.021539E-13 1.378831E-02 0.031250
300 4.678367E-06 5.054845E-13 1.726365E-03 0.078125
1000 4.376530E-07 5.058176E-13 1.615041E-04 0.640625
3000 4.915331E-08 5.043743E-13 1.811989E-05 5.765625
5000 1.791398E-08 5.081491E-13 6.603304E-06 15.953125
8000 7.105645E-09 5.060397E-13 2.611942E-06 39.546875
10000 4.625060E-09 5.091483E-13 1.362697E-06 64.515625
20000 2.725193E-09 5.201395E-13 5.483590E-07 286.171875
25000 3.421875E-09 5.110357E-13 1.869956E-06 402.437500

Table 7. Finite volume results as a function of N for the spherical, Godiva I model
with tol = 1E-12.

N k Error k Residual α Error (µs−1) JFNK Run Time (s)
30 6.245356E-04 5.421219E-13 2.301840E-01 0.015625
100 5.430077E-05 5.100365E-13 2.003537E-02 0.031250
300 5.973305E-06 5.064837E-13 2.203987E-03 0.078125
1000 5.357080E-07 5.065948E-13 1.974046E-04 0.671875
3000 5.946224E-08 5.133671E-13 2.155470E-05 6.062500
5000 2.158015E-08 5.053735E-13 7.544293E-06 16.203125
8000 8.522202E-09 5.044853E-13 2.666628E-06 41.875000
10000 5.525281E-09 5.067058E-13 1.426102E-07 67.781250
20000 2.926622E-09 5.300205E-13 2.659536E-06 482.109375
25000 3.204858E-09 5.050405E-13 3.216231E-07 419.562500
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results in the same manner as the k eigenvalue ones, however. Both discretization

methods produce time eigenvalue errors that track well with the expected accuracy

through N = 8,000. Beyond this point however, the two methods diverge. This change

is illustrated in Figure 5, which plots the absolute errors in the time eigenvalue for

both discretization methods as a function of N. At N = 30, the finite difference

result produces a 2.7 times lower absolute error for the time eigenvalue than the

finite volume result. As N increases, the relative difference in error between the two

methods decreases until at N = 8,000 there is a less than 2% difference between the

two discretizations. This evidences a trend in which the increase in accuracy gained

from a increase in the value of N is larger for the finite volume method than it is

for the finite difference method. At larger values of N, however, the errors begin to

diverge, with the finite volume method being 2.85 times more accurate than the finite

difference method at N = 10,000. At N = 20,000, however, a reversal occurs and the

finite difference method becomes nearly an order of magnitude more accurate, and at

N = 25,000 finite volume switched back to being the more accurate method again.

At values of N greater than 25,000, the JFNK method failed to converge, failing to

provide output, although the power iteration still produced k eigenvalue output. This

was likely due to hardware restraints on the computer system used for this effort.

At large values of N before this maximum limit was reached, a discrepancy can

be identified in the k eigenvalue results listed in Tables 6 and 7. The k eigenvalue

errors for both discretization methods follow the expected second order accuracy

for N ≤ 10,000. At N = 20,000 the error decreases by significantly less than the

factor of 4 predicted for second order accuracy, and at N = 25,000 the error actually

increases. This discontinuity in the expected trend indicates a maximum accuracy

limit for the power iteration on the hardware used for this effort. As discussed in

Section 2.5, any errors introduced in the power iteration solution will propagate into
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Figure 5. Absolute error in the time eigenvalue as a function of N.

the time eigenvalue solution. However, the first discontinuity in the time eigenvalue

results occurs at N = 10,000, at which point the power iteration results still follow

the second order accuracy trend. Therefore, this represents a separate error unique

to the JFNK solution, albeit compounded by the power iteration error at N ≥ 20,000.

This instability likely arises during the course of the GMRES solver as it produces

a large number of (on the order of N) Krylov vectors. As this method solves the

matrix approximated earlier by the JFNK method, a matrix which itself is ill formed

due to the lack of any preconditioning, an error likely arises in the Krylov vectors

due to hardware restraints which effects the convergence of the solution. Further

investigation of these instabilities was left for future research, and a value of N =

1,000 was selected for subsequent models so as to ensure that all results were fully

within the regime of second order accuracy for both the k and time eigenvalue solution

methods.

While the other results presented in this and subsequent sections made use of

uniform mesh spacing, a comparison was also made between this and the volumetric
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Figure 6. The plot on the left shows the width of each cell as function of its radial
position for each mesh spacing scheme for N=30. The plot on the right shows the
corresponding flux eigenvector result for each scheme.

and Chebyshev polynomial spacings. These three cases were all implemented and

compared using finite volume discretization for a spherical Godiva I case, the results

of which are shown in Figure 6. A significant deviation in the flux eigenvector values

can be seen for the two non-uniform mesh spacings relative to the analytic and uniform

spacing eigenvectors. Additionally, these mesh spacing schemes were used to compute

the time eigenvector for a N = 1,000 Godiva I case. The Chebyshev polynomial

spacing resulted an eigenvalue absolute error which was larger than the error of the

uniform spacing case by a factor of 2.97660 x 105. The volumetric spacing had 1.98

times larger error still, differing from the uniform spacing case by a factor of 5.88212

x 105. As shown in Figure 6, the effect of these non-uniform mesh spacing schemes is

to reduce dr at one or both boundary conditions, for the volumetric and Chebyshev

polynomial schemes respectively, at the expense of larger dr values elsewhere in the

discretization. From these results, it is clear that any increase in accuracy gained

from the lower dr values at the boundary is offset by the decrease in accuracy from

the larger dr values elsewhere in the discretization.
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4.2 Coordinate System Comparison

Next, a comparison was made between the three coordinate systems implemented

in JAKES. The original spherical coordinate system with updated finite difference and

finite volume discretizations was compared to the two newly introduced cylindrical

and Cartesian systems. All three of these systems were run in 1D, using the properties

of the Godiva I FBR shown in Table 2, using the tolerance and N values determined

in Section 4.1. The results of this comparison are given in Table 8 for the k eigenvalue

power iteration calculation, and in Table 9 for the time eigenvalue JFNK calculation.

The first difference to be noted between these results is differences in the value of

the k and time eigenvalues. The time eigenvalue for cylindrical coordinates is two or-

ders of magnitude larger than that for spherical coordinates, and the Cartesian value

is larger still. This same pattern of increasing size from spherical as the smallest to

Cartesian as the largest can also be seen in the k eigenvalue results. This is the ex-

pected result of applying 1D geometry to these coordinate systems. While rotational

symmetry can be applied to a 1D spherical system to produce a physical 3D model,

its cylindrical and Cartesian counterparts will both be nonphysical. This is because

cylindrical coordinates only have one dimension of rotational symmetry, leaving the

third to be treated as infinite. The problem is magnified in Cartesian coordinates,

which lack any rotational symmetry, resulting in two infinite dimensions. The effect

of these infinite dimensions on our FBR models is that they will have no neutron leak-

age in these dimensions, as a neutron cannot leak through a boundary which does not

exist. This raises the criticality of the system in a nonphysical manner, resulting in

larger k and time eigenvalues for both coordinate systems, with the Cartesian values

being larger due to it having more infinite dimensions.

More interesting are the relative differences between the coordinate systems, and

how the accuracies relative to the analytic solutions varied between each combination
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Table 8. k eigenvalue results for each coordinate system using the properties of the
Godiva I model.

Spherical
Value Error Power Iterations

Analytic 1.00027941749
FDM 1.00027985515 4.37653E-7 31
FVM 1.00027995320 5.35708E-7 31

Cylindrical
Value Error Power Iterations

Analytic 1.28875597881
FDM 1.28875330117 2.67763E-6 29
FVM 1.28875622892 2.50119E-7 29

Cartesian
Value Error Power Iterations

Analytic 1.68246885560
FDM 1.68170317295 7.65683E-4 29
FVM 1.68246893428 7.86779E-8 29

Table 9. Time eigenvalue results for each coordinate system using the properties of the
Godiva I model.

Spherical
Value (µs−1) Error (µs−1) FWHM (µs) Run Time (s)

Analytic 0.10316383654
FDM 0.10332534059 1.61504E-4 34.105863865579 0.65625
FVM 0.10336124112 1.97405E-4 34.0940178539683 0.6875

Cylindrical
Value (µs−1) Error (µs−1) FWHM (µs) Run Time (s)

Analytic 70.33893033862
FDM 70.33849031168 4.40027E-4 0.0501005919288981 0.71875
FVM 70.33897129816 4.09595E-5 0.0501002493349271 0.671875

Cartesian
Value (µs−1) Error (µs−1) FWHM (µs) Run Time (s)

Analytic 116.02460045641
FDM 115.96144304745 6.31574E-2 0.0303894114059787 0.65625
FVM 116.02460688199 6.42558E-6 0.030372867400311 0.671875
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of coordinate system, discretization method, and eigenvalue solution method. For the

spherical coordinate system, the k eigenvalues from finite difference and finite volume

differ by 22.4%. Similarly, the spherical time eigenvalue results for both discretization

methods differ by 22.2%, with the absolute errors for the time eigenvalues both being

3.7 x 102 times larger than their corresponding k eigenvalue errors. The other two

coordinate systems share a trend of the time eigenvalue results being approximately

two orders of magnitude less accurate than the corresponding k eigenvalue results.

This suggests that the JFNK calculation produces a less accurate result than the

power iteration does for the Godiva I model. This is in keeping with expectations,

because, for the systems of interest to this effort, the k eigenvalue problem is well

formed, while the time eigenvalue problem is ill formed. This results in a more

efficient, and consequently more accurate, solution for the k over the time eigenvalue

when using the same discretization for both. There are, however, other differences in

the results seen in Tables 8 and 9 which cannot be attributed solely to differences in

the solution method.

The most notable difference in these results is the disparity in eigenvalue solution

accuracies, both for k and time, between the three coordinate systems. The previous

section demonstrated that the spherical finite difference and finite volume methods,

even at their greatest difference, always agreed to within an order of magnitude in

error. But for cylindrical coordinates we see the two methods producing errors which

differ by a factor of 10.7 for both the k eigenvalue and the time eigenvalue. The

Cartesian result is the most extreme, however, with a 9.73 x 103 factor of difference

for the k eigenvalue and 9.83 x 103 for the time eigenvalue. The slightly larger

difference between the JFNK results than the power iteration results suggests that

the source of the difference is being amplified by the JFNK method. But this effect

from the numerical methods is clearly much smaller in scale than the source of the
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difference between the two discretization methods.

This variable difference in the accuracies of the two discretization methods between

coordinate systems was not expected, but can be explained by examination of the

discretized matrix elements (note that the JFNK method does not fully assemble

the matrix, but it does compute each of the matrix elements in the course of the

calculation, so for this purpose the effect is the same). Particularly curious was

that this difference was most extreme in Cartesian coordinates, for which the finite

difference and finite volume discretizations have been found to be identical for interior

nodes and cells, as shown in Section 2.4. Therefore the difference in discretization

must arise from the boundary conditions for Cartesian coordinates, and likely arises

from the same source for cylindrical coordinates. The finite difference inner, reflective

boundary is described by Equation 32:

(
2vD

∆r2

)
φ1 +

(
−2vD

∆r2
+ v(νσf − σa)

)
φ0 = αφ0

and the corresponding Cartesian finite volume boundary by Equation 45:

(
vD

∆r2

)
φ3/2 +

(
− vD

∆r2
+ v(νσf − σa)

)
φ1/2 = αφ1/2.

At the outer, vacuum boundary, the finite difference result is given by Equation 28:

(
−2vD

∆r2
+ v(νσf − σa)

)
φN−1 +

(
vD

∆r2
− avD

2rN−1∆r

)
φN−2 = αφN−1

and the corresponding Cartesian finite volume boundary by Equation 43:

(
−4vD

∆r2
+ v(νσf − σa)

)
φN−1/2 +

(
4vD

3∆r2

)
φN−3/2 = αφN−1/2.

These differences are quantified for an example case in Table 10. This data demon-
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Table 10. The value of each finite volume matrix term divided by its corresponding
finite difference matrix term at each boundary for a Godiva I model with N = 300.

Cartesian Cylindrical Spherical
A(1,1) 0.49993063 0.49998628 0.49999085
A(1,2) 0.50000000 0.50000000 0.50000000
A(N,N) 2.00013874 2.03231470 2.06593921

A(N,N-1) 1.33333333 1.31401799 1.29558074

strates that at the inner boundary, the ratios between the finite difference and finite

volume matrix terms agree between each coordinate system to 4 digits of precision.

This indicates that the outer boundary, where there is less agreement between co-

ordinate systems, is the driving cause of the differences in solution accuracies seen

in Tables 8 and 9. Further examination of these differences in the handling of the

boundary conditions can be seen by comparing the eigenvectors produced by each

discretization scheme. The boundary values of the flux eigenvectors resulting from

each method are compared to the analytic solution in Table 11. The result of this

comparison in cylindrical coordinates is that the finite difference method is less ac-

curate, but with errors of the same order of magnitude, at both boundaries. In

Cartesian coordinates, the effect is more extreme, with finite difference being more

accurate by a factor of 125 at the inner boundary but less by a factor of 2.0 at the

outer boundary. In spherical coordinates, where the finite difference eigenvalue was

more accurate, the finite volume eigenvector is more accurate at both boundaries,

although with errors still on the same order of magnitude as the finite difference re-

sults, just like the cylindrical results. As can be seen in Tables 8 and 9, the result

of this is that the spherical finite difference and finite volume discretizations produce

eigenvalue results with errors of similar order, while for cylindrical coordinates finite

volume becomes an order of magnitude more accurate, and for Cartesian coordinates

finite volume becomes nearly 4 orders of magnitude more accurate than the finite

difference method.
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Table 11. The absolute error in the values of the flux eigenvector at the points closest
to the inner and outer boundaries: nodes 1 and N-1 for the finite difference method
and cells 1/2 and N-1/2 for the finite volume method for a Godiva I model with N =
1,000.

Spherical Cylindrical Cartesian
Inner Outer Inner Outer Inner Outer

FDM 3.29535E-9 9.94769E-7 2.88818E-9 1.21432E-6 2.47111E-9 1.57237E-6
FVM 1.64273E-9 5.00812E-7 1.44427E-9 6.24894E-7 3.08425E-7 7.86184E-7

4.3 Verification Cases

The final results of this effort are finite difference and finite volume discretized

models of the Godvia I and WSMR FBRs. These models were compared against

analytical solutions and existing data to serve as verification for the JAKES algorithm.

Both models used the optimized values determined in Section 4.1, with N = 1,000

and a tolerance 10−12. The properties listed in Table 2 were used to populate the

models for the two FBRs.

The Godiva I case was used as a benchmark in the original JAKES development

effort, and so had previous data to compare against [5]. This original JAKES data

was gathered using the same FBR properties, and also used an N of 1,000, so any

differences in the new results should be due to changes in the solution method, as all

external variables were the same. The results for this FBR are shown in Table 12.

For the calculation of the k eigenvalue, the finite difference discretization proved to be

22.4% more accurate than the finite volume method. These updated methods could

not be differentiated from the original JAKES results, however, as when concate-

nated to the same number of significant digits as the original result, all three results

yield the same absolute error. Therefore, the only conclusion we can make about the

effect of the new discretization methods relative to the original on the k calculation

is that they result in errors of the same order of magnitude. The JFNK solutions

yielded a more meaningful comparison. Even with concatenation, the errors from
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the new discretizations, which both round to 2 x 10−4, still represent an increase in

accuracy over the original method. Specifically, the finite difference result represents

a minimum reduction in error of 35.4%, and the finite volume result a reduction of

21.0%. Between the updated finite difference and the finite volume discretizations,

the finite difference method produced a 22.2% lower absolute error for the time eigen-

value. Additionally, the new methods produced a marginal increase in the FWHM, of

approximately 0.07 µs and 0.06 µs for finite difference and finite volume respectively,

relative to the original JAKES case. In both the original and new cases, the FWHM

falls approximately 1 µs below the range of burst widths experimentally measured

for the FBR. While the new methods produced marginally larger values, indicating

that the discretization method does have an effect on the value, the primary source

of the difference is likely due to the models used by JAKES being inherently for a

fully assembled FBR system. In reality, however, the neutron burst can occur before

the FBR is fully assembled, resulting in a larger burst width [1]. These variations in

assembly states are the reason for the experimental burst width having an associated

range rather than a single value. Therefore, the underestimate provided by JAKES

may be reflective of the model using an ideal state that was not achieved in real

world experiments. Finally, both new discretization methods resulted in increased

CPU time for the JFNK solution method, however, it should be noted that while all

cases presented in Table 12 were run using N = 1,000, the original case was not run

on the same computer as the other cases, making a direct comparison between them

difficult. The updated finite difference was, however, 2.33% faster than the finite vol-

ume discretization. In addition to this data regarding the k and time eigenvalues, the

flux eigenvector was also computed for the new finite difference and finite volume cal-

culations, and was compared against the analytic solution for the eigenvector. These

findings are shown in Figure 7. Taking the absolute error between the analytical and
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finite difference eigenvectors at each point in the discretization produced a vector of

absolute error values. The closer each element in this error vector is to 0, the more

accurate the eigenvector solution was. Similarly, the closer the norms of the error

vector are to 0, the more accurate the solution. Therefore the norms of these error

vectors were compared for both the finite difference and finite volume discretizations,

with the finite difference method producing the following norms:

||∆φFDM||2 = 0.01448230173

||∆φFDM||∞ = 0.00066584755.

While the absolute error between the finite volume eigenvector and the analytical

solution resulted in the following norms:

||∆φFVM||2 = 8.50289349977E-6

||∆φFVM||∞ = 5.01703511419E-7.

This represents a factor of 1.4 x 103 improvement in the two-norm and a factor of 9.5

x 102 improvement in the infinity-norm from the finite volume discretization over the

finite difference result. These mixed results show advantages and disadvantages to

the original JAKES algorithm and the two new discretization methods, but do show

a clear improvement in the accuracy of the time eigenvalue calculation for the new

methods over the original.

The second verification case examined in this effort was the WSMR FBR. The

usefulness of this data is limited, however, as this 1D model of a cylindrical reactor is

inherently nonphysical, with all of the associated drawbacks discussed in Section 4.2.

This model does, however, serve as a stepping stone towards a physically accurate
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Figure 7. Normalized flux results across the extrapolated boundary for the Godiva I
FBR.

representation. Therefore a comparison to the analytic solution does have value in

verifying the technique’s accuracy, if not its applicability to a real FBR. In order to

account for the neutron non-leakage problem caused by the use of 1D geometry, the

radius of the model was arbitrarily reduced until it produced a burst width value

within the experimentally determined range listed in Table 13. All other properties

of the reactor reflect the values of the actual WSMR FBR listed in Table 2, with

the JAKES properties N and tolerance set to the values determined in Section 4.1.

The results of these calculations are shown in Table 13. For the calculation of the

k eigenvalue, the finite volume discretization proved to be more accurate than the

finite difference method by a factor of 10.7. The difference in the JFNK solutions

was slightly more pronounced, with the finite volume method outperforming finite

difference in absolute error by a factor of 10.8. This is in keeping with the results

for cylindrical coordinates discussed in Section 4.2. Both discretizations produced

FWHM values which fell within the range of the experimental results, but in contrast

with the Godiva I results here it was the finite difference method which produced a
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Figure 8. Normalized flux results across the extrapolated boundary for the WSMR
FBR.

slightly larger value. The JFNK run times, however, followed the trend set by the

Godiva I case, with the finite volume discretization resulting in a 2.38% longer CPU

time. In addition to the k and time eigenvalue calculations, the flux eigenvector was

also computed for both of the discretization methods, and was compared against the

analytic solution for the eigenvector. These findings are shown in Figure 8. The

absolute error between the analytical and finite difference eigenvectors resulted in the

following norms:

||∆φFDM||2 = 0.01321774673

||∆φFDM||∞ = 0.00059805152.

While the absolute error between the finite volume eigenvector and the analytical

solution resulted in:

||∆φFVM||2 = 9.17918801788E-6

||∆φFVM||∞ = 6.24894396276E-7.
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This represents a 1.4 x 103 improvement in the two-norm and a 9.6 x 102 improvement

in the infinity-norm from the finite volume discretization over the finite difference

result. Though the impact of these results is limited by the use of 1D geometry,

they do show a clear improvement in the solution to both the k and time eigenvalue

problems for the finite volume discretization over the finite difference discretization.
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Table 12. k and time eigenvalue results from the new JAKES discretizations coupled with the original JAKES results and
experimental burst width data for the Godiva I FBR.

Case k k Error Iterations α (µs−1) α Error (µs−1) FWHM (µs) JFNK Run Time (s)
FVM 1.000279953 5.35708E-7 31 0.103361241 1.97405E-4 34.094017854 0.6875
FDM 1.000279855 4.37653E-7 31 0.103325341 1.61504E-4 34.105863866 0.671875

Analytic 1.000279417 0.103163837
Original JAKES 1.000280 1E-6 0.1035 3E-4 34.034 0.131
Original Analytic 1.000279 0.1032

Experimental 35 - 50

Table 13. k and time eigenvalue results from the new JAKES discretizations coupled with the original JAKES results and
experimental burst width data for the WSMR FBR.

Case k k Error Iterations α (µs−1) α Error (µs−1) FWHM (µs) JFNK Run Time (s)
FVM 1.000255520 2.57187E-7 25 0.086235117 8.62267E-5 40.865022460 0.671875
FDM 1.000252510 2.75332E-6 25 0.085220126 9.28764E-4 41.351734118 0.65625

Analytic 1.000255263 0.086148890
Experimental 31 - 50
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V. Conclusions

This effort expanded on the existing JAKES algorithm by implementing a finite

volume discretization, as well as an updated finite difference discretization. Both of

these methods were implemented in the original spherical coordinates, as well as in

cylindrical and Cartesian coordinates. In implementing these changes, JAKES was

updated to be compatible with PETSc version 3.14. This updated JAKES algorithm

was then used to run a number of FBR models.

The first of these models was intended to optimize the tolerance parameter to

maximize the solution accuracy and efficiency. These results demonstrated the de-

pendence of the JFNK time eigenvalue solution accuracy on the accuracy of the power

iteration calculation of the k eigenvalue and eigenvector. This matched with expec-

tations, as the power iteration result is used to initialize the JFNK solution method.

During these results, a limit in solution accuracy was identified. The next set of

data collected illuminated the source of that limit. This data set was gathered to

optimize the N parameter, which is the number of nodes used for the finite difference

discretization or the number of cells used for finite volume. These results demon-

strated that the k eigenvalue calculation followed the trend expected for a second

order accurate method for both finite difference and finite volume, with the finite

difference method being more accurate at low values of N and the relative difference

in the accuracies of the two discretization methods decreasing as N increased. The

time eigenvalue solution, however, demonstrated instabilities in accuracy at large val-

ues of N. At values of N up to 8,000, the two discretization methods produced time

eigenvalue results in agreement in the same manner as the k eigenvalue results. For

N ≥ 10,000, however, the accuracies of the discretization methods began to fluctuate.

These fluctuations are likely the result of computational hardware restraints, a factor

which arises as the ill-formed matrix for the time eigenvalue problem causes instabili-
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ties in the JFNK method at large values of N. Following this, a comparison was made

between three different mesh spacing schemes: uniform, volumetric, and Chebyshev

polynomial spacings. The result of this test was that uniform mesh spacing produced

time eigenvalue errors which were orders of magnitude lower than those of the other

schemes.

The next data that were collected demonstrated the differences between the origi-

nal spherical coordinate system and the two new coordinate systems which this effort

added to JAKES. These results demonstrated the non-physical nature of using a 1D

model for cylindrical and Cartesian coordinates, confirming the expected behavior

that cylindrical models were more critical than spherical models of the same param-

eters, with the effect being amplified for Cartesian models. Beyond this basic result,

the data also revealed differences between the finite difference and finite volume dis-

cretizations within each coordinate system. While the spherical coordinate system

had already been demonstrated to have agreement to within an order of magnitude

between the two discretization methods for N = 1,000, the time eigenvalue result for

finite volume method was found to be more accurate by a factor of 11 for cylindrical

coordinates and more accurate by a factor of 9.8 x 103 for Cartesian coordinates. The

reason for this disparity was explored and identified as being a result of differences

in the handling of the boundary conditions between the two discretization methods.

This difference in accuracies could prove useful in future work to expand this method

into 2D and 3D geometries. A Cartesian model in particular, given the significant

difference in accuracy, would benefit from use of finite volume discretization rather

than using the finite difference method.

The final set of data gathered was for two FBR models for verification purposes.

A model of the Godiva I FBR was run which compared this new version of JAKES

to the original, as well as compared the eigenvalue and eigenvector solutions to the
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analytic solution and compared the burst widths of the models to those measured

experimentally. Due to limitations in the existing data, the only conclusion that could

be made about the power iteration solution for the k eigenvalue is that the new JAKES

methods produce errors on the same order of magnitude as the original method. The

JFNK solution for the time eigenvalue and its associated flux eigenvector, however,

yielded more meaningful results. The new results represent a minimum reduction in

error of 35.1% for the time eigenvalue from the original to the new finite difference

result, with the finite volume method producing a 22.2% reduction in error from the

original method. The flux eigenvector solutions, however, revealed a larger difference

between the two discretization methods, with the absolute error of the finite volume

discretization producing a 1.4 x 103 lower two-norm and a 9.5 x 102 lower infinity-norm

than the finite difference discretization. These findings indicate that the new JAKES

algorithm yields no improvement over the original algorithm for the k eigenvalue

solution, but does produce a more accurate time eigenvalue solution for this FBR

model. Within the new algorithm, the finite difference and finite volume results only

marginally differ in their eigenvalue solution accuracies for the Godiva I case, but

the finite volume method does produce a non-negligible increase in accuracy in the

eigenvector solution.

The second of these verification models was for the WSMR FBR. The results of

this model are less impactful than the Godiva I case, as the 1D model of a cylindrical

geometry is inherently non-physical. A comparison was still made to the analytic

solution, however, enabling certain conclusions to be drawn. As expected from the

earlier comparison of the different coordinate systems, the finite volume discretization

produced k and time eigenvalues which were an order of magnitude more accurate

than the corresponding finite difference based solutions. Additionally, this model

produced eigenvector accuracies similar to those of the Godiva I case. The two-norm
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was 1.4 x 103 lower and the infinity-norm 9.6 x 102 lower for the absolute error of

the finite volume result than for that of the finite difference discretization. While

these results do not reflect a true, physical FBR, they do indicate a clear advantage

in accuracy when using the finite volume discretization for this type of geometry.

Future work with this method should therefore focus on finite volume over finite

difference discretization for models using cylindrical geometry.

5.1 Future Research

This effort implemented an organic discretization method in JAKES and expanded

its applicability to additional geometries, but more work is necessary to improve the

validity of the algorithm. JAKES would benefit greatly from expansion into 2D

and 3D, especially for the cylindrical and Cartesian coordinate systems. For these

two geometries in particular, efforts should be focused on implementing the finite

volume over finite difference discretization, given the order of magnitude difference

in accuracies seen between the two methods in 1D for these geometries.

Additionally, future researchers would be well served to identify and address the

source of the instabilities in time eigenvalue accuracies identified in the JFNK method

results at large values of N. Indeed, JAKES would likely benefit from the implemen-

tation of an organic numerical solution method that does not rely on PETSc. This

could serve to help identify and eliminate both the instability in accuracy and the

limitation on N size. Removing such restrictions could enable significantly higher

accuracies to be reached, as the instabilities at N ≥ 10,000 are the limiting factor in

the accuracy of the time eigenvalue solution. Such large N models would require more

computational resources, either in terms of run time or processing power. But this

need could be at least partially reduced by applying preconditioning to the discretized

matrix. In its current state, the matrix created - or effectively created - by JAKES is
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ill formed. Applying preconditioning to this matrix could increase the computational

efficiency of the method.

Finally, the new discretization methods implemented in JAKES lend themselves

as easily to non-homogeneous models as they do to the homogeneous FBRs modeled

in this effort. Application of non-homogeneous FBRs, particularly the inclusion of

reflective materials, would enhance the applicability of JAKES to modeling real world

problems. This addition should be the simplest of the suggestions made here, as it

would primarily consist of vectorizing the cell properties, and then modifying the input

method to match. The discretization and solution methods themselves, however,

would not require any changes to enable this new geometry. These changes would

serve to further improve the accuracy and applicability of the JAKES algorithm to

modeling new and existing FBRs.

58



Appendix A. Time Dependent Neutron Diffusion Equation
Analytical Solutions

The time eigenvalue form of the neutron diffusion equation, as given in Equation 15:

α

v
φ(r)−D

(
∂2φ

∂r2
+
a

r

∂φ

∂r

)
+ σaφ(r) = νσfφ(r)

and, coupled with a reflective inner boundary condition:

dφ

dr
|0 = 0

and a vacuum outer boundary condition:

φ(R) = 0

can be solved analytically for α and φ. The equation can be rearranged in the form

of:

d2φ

dr2
+
a

r

dφ

dr
+B2φ = 0

where B2 is given by:

B2 =
νσf − σa − α

v

D
.

A general solution to this equation can then be found, and then the system solved

using the boundary conditions. However, the form of this general solution varies with

the value of a, resulting in a unique solution for each coordinate system.
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Spherical Solution

The general solution for spherical coordinates, where a = 2, is:

φ =
c1e
−iBr

r
− ic2e

iBr

2Br
.

Applying the reflective inner boundary gives:

dφ

dr
= −c1

r2
e−iBr +

−iBc1
r

e−iBr +
ic2

2Br2
eiBr +

c2
2r
eiBr

0 =
dφ

dr
|0 = −c1e0 + 0 +

ic2
2B

e0 + 0

resulting in:

c1 =
ic2
2B

.

Substituting this value of c1 into the general equation for φ gives:

φ =
1

r
(
ic2
2B

)e−iBr − ic2
2Br

eiBr

φ =
ic2

2Br
(e−iBr − eiBr)

φ =
ic2

2Br
[(cos(Br)− i sin(Br))− (cos(Br) + i sin(Br))]

φ =
ic2

2Br
[0− 2i sin(Br)]

φ =
c2
Br

sin(Br)

This results in a normalized solution for the eigenvector φ of:

φnorm =
sin(Br)

r
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Applying the vacuum outer boundary to this normalized solution gives:

0 = φ(R) =
sin(BR)

R

BR = sin−1(0) = nπ

Bn =
nπ

R

This results in a general, normalized eigenvector solution of:

φnorm =
sin(Bnr)

r

and a solution for the time eigenvalue of:

(nπ
R

)2
= B2

n =
νσf − σa − α

v

D

α = v

(
νσf − σa −D

(nπ
R

)2)
The dominant eigenvalue and eigenvector pair of this solution, which occur at n = 1,

are given by:

φ1 =
sin( π

R
r)

r

α1 = v

(
νσf − σa −

Dπ2

R2

)

Cylindrical Solution

The general solution for cylindrical coordinates, where a = 1, is:

φ = c1J0(Br) + c2Y0(Br)
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where J0 and Y0 are Bessel functions of the first and second kind, respectively. Ap-

plying the reflective inner boundary gives:

dφ

dr
= −Bc1J1(Br)−Bc2Y1(Br)

0 = −Bc1J1(B(0))−Bc2Y1(B(0))

resulting in:

c2 = 0.

Substituting this value of c2 into the general equation for φ gives:

φ = c1J0(Br) + (0)Y0(Br)

φ = c1J0(Br)

Applying the vacuum outer boundary to this equation gives:

0 = φ(R) = c1J0(BR)

0 = J0(BR)

BR = ±j0,n = ±2.4048...,±5.5201...,±8.6537...,±11.7915...

Where j0,n is the nth zero of J0.

Bn = ±j0,n
R

This results in a general, normalized eigenvector solution of:

φnorm = J0

(
±j0,n
R
r

)
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and a solution for the time eigenvalue of:

(
±j0,n
R

)2

= B2
n =

νσf − σa − α
v

D

α = v

(
νσf − σa −D

(
±j0,n
R

)2
)

The dominant eigenvalue and eigenvector pair of this solution, which occur at n = 1,

are given by:

φ1 = J0

(
2.4048...

R
r

)

α1 = v

(
νσf − σa −

D(2.4048...)2

R2

)

Cartesian Solution

The general solution for Cartesian coordinates, where a = 0, is:

φ = c1cos(Br) + c2sin(Br).

Applying the reflective inner boundary gives:

dφ

dr
= −Bc1sin(Br) +Bc2cos(Br)

0 = −Bc1sin(B(0)) +Bc2cos(B(0))

resulting in:

c2 = 0.

Substituting this value of c2 into the general equation for φ gives:

φ = c1cos(Br) + (0)sin(Br)
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φ = c1cos(Br)

Applying the vacuum outer boundary to this equation gives:

0 = φ(R) = c1cos(BR)

BR = cos−1(0) =
nπ

2

Bn =
nπ

2R

This results in a general, normalized eigenvector solution of:

φnorm = cos(
nπ

2R
r)

and a solution for the time eigenvalue of:

(nπ
2R

)2
= B2

n =
νσf − σa − α

v

D

α = v

(
νσf − σa −D

(nπ
2R

)2)
The dominant eigenvalue and eigenvector pair of this solution, which occur at n = 1,

are given by:

φ1 = cos(
π

2R
r)

α1 = v

(
νσf − σa −

Dπ2

4R2

)
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Appendix B. Steady-State Neutron Diffusion Equation
Analytical Solutions

The steady-state neutron diffusion equation, as given in Equation 17:

−D∇2φ+ σaφ =
1

k
νσfφ

and, coupled with a reflective inner boundary condition:

dφ

dr
|0 = 0

and a vacuum outer boundary condition:

φ(R) = 0

can be solved analytically for k and φ. The equation can be rearranged in the form

of:

d2φ

dr2
+
a

r

dφ

dr
+B2φ = 0

where B2 is given by:

B2 =
1
k
νσf − σa
D

.

With the exception of the definition of B2, this problem is identical to that of the

time eigenvalue solution derived in Appendix A. The general solutions and resultant

general flux equations are, therefore, identical for these two problems. The duplicated

steps are therefore skipped in this derivation, and each coordinate systems’ unique k

eigenvalue is then derived.
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Spherical Coordinates

In spherical coordinates, the normalized flux result is:

φnorm =
sin(Br)

r

Applying the vacuum outer boundary to this normalized solution gives:

0 = φ(R) =
sin(BR)

R

BR = sin−1(0) = nπ

Bn =
nπ

R

This results in a general, normalized eigenvector solution of:

φnorm =
sin(nπ

R
r)

r

and a solution for the k eigenvalue of:

(
nπ

R
)2 = B2

n =
1
k
νσf − σa
D

k =
νσf

(nπ
R

)2D + σa

The dominant eigenvalue and eigenvector pair of this solution, which occur at n = 1,

are given by:

φ1 =
sin( π

R
r)

r

k1 =
νσf

π2D
R2 + σa
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Cylindrical Coordinates

In cylindrical coordinates, the normalized flux result is:

φnorm = J0 (Br)

Applying the vacuum outer boundary to this normalized solution gives:

0 = φ(R) = J0 (BR)

BR = ±j0,n = ±2.4048...,±5.5201...,±8.6537...,±11.7915...

Bn = ±j0,n
R

This results in a general, normalized eigenvector solution of:

φnorm = J0

(
r
j0,n
R

)

and a solution for the k eigenvalue of:

(
j0,n
R

)2

= B2
n =

1
k
νσf − σa
D

k =
νσf(

j0,n
R

)2
D + σa

The dominant eigenvalue and eigenvector pair of this solution, which occur at n = 1,

are given by:

φ1 = J0

(
2.4048...

R
r

)
k1 =

νσf
D(2.4048...)2

R2 + σa
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Cartesian Coordinates

In Cartesian coordinates, the normalized flux result is:

φnorm = cos(Br)

Applying the vacuum outer boundary to this normalized solution gives:

0 = φ(R) = cos(BR)

BR = cos−1(0) =
nπ

2

Bn =
nπ

2R

This results in a general, normalized eigenvector solution of:

φnorm = cos(
nπ

2R
r)

and a solution for the k eigenvalue of:

(nπ
2R

)2
= B2

n =
1
k
νσf − σa
D

k =
νσf(

nπ
2R

)2
D + σa

The dominant eigenvalue and eigenvector pair of this solution, which occur at n = 1,

are given by:

φ1 = cos(
π

2R
r)

k1 =
νσf

π2D
4R2 + σa
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Appendix C. Steady-State Neutron Diffusion Equation
Discretizations

The steady-state neutron diffusion equation, as given in Equation 17:

−D
(
d2φ

dr2
+
a

r

dφ

dr

)
+ σaφ =

1

k
νσfφ

is discretized below using both the finite difference and finite volume methods. The

indexing follows the scheme shown in Figure 4.

Finite Difference

Using finite difference indexing, the generic equation is:

−D
(
d2φ

dr2
|i +

a

ri

dφ

dr
|i
)

+ σaφi =
1

k
νσfφi

The following definition, derived in section 3.2 as Equations 22 and 23, can then be

substituted into the integrated equation

dφ

dr
|i =

φi+1 − φi−1
2∆r

+O(∆r2).

d2φ

dr2
|i =

φi+1 − 2φi + φi−1
∆r2

+O(∆r2)

which results in the following:

−D
[(

φi+1 − 2φi + φi−1
∆r2

)
+
a

ri

(
φi+1 − φi−1

2∆r

)]
+ σaφi∆r =

1

k
νσfφi∆r
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Resulting in:

(
−D

νσf∆r2
− aD

2νσfri∆r

)
φi+1 +

(
2D

νσf∆r2
+

σa
νσf

)
φi

+

(
−D

νσf∆r2
+

aD

2νσfri∆r

)
φi−1 =

1

k
φi

This equation satisfies the interior cells, but it still must be coupled with a discretiza-

tion of each of the boundaries. The first of these is the outer vacuum boundary at

r = R, indexed as i = N , is given by:

φN = 0

Here we make use of Equations 29 and 30:

dφ

dr
|N−1 =

(0)− φN−2
2∆r

+O(∆r2)

d2φ

dr2
|N−1 =

(0)− 2φN−1 + φN−2
∆r2

+O(∆r2)

These values, along with the vacuum boundary condition itself, can then be substi-

tuted into the governing equation for node (N - 1):

−D
[
d2φ

dr2
|N−1 +

a

rN−1

dφ

dr
|N−1

]
+ σaφN−1∆r =

1

k
νσfφN−1∆r

−D
[ (
−2φN−1 + φN−2

∆r2

)
+

a

rN−1

(
−φN−2

2∆r

) ]
+ σaφN−1∆r =

1

k
νσfφN−1∆r

Resulting in:

(
− D

νσf∆r2
+

aD

2νσfrN−1∆r

)
φN−2 +

(
2D

νσf∆r2
+

σa
νσf

)
φN−1 =

1

k
φN−1
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Similarly, the reflective boundary at r = 0, given by:

dφ

dr
|0 = 0

Using Equation 34:

d2φ

dr2
|0 =

2(φ1 − φ0)

∆r2
+O(∆r2)

This and previous definitions can then be substituted into the integrated diffusion

equation for node 0 :

−D
[
d2φ

dr2
|0 +

a

r0

dφ

dr
|0
]

+ σaφ0∆r =
1

k
νσfφ0∆r

−D
[ (

2(φ1 − φ0)

∆r2

)
+
a

r0
(0)

]
+ σaφ0∆r =

1

k
νσfφ0∆r

Resulting in: (
−2D

νσf∆r2

)
φ1 +

(
2D

νσf∆r2
+

σa
νσf

)
φ0 =

1

k
φ0

With these results, the steady-state diffusion equation forms a full finite difference

discretization system of equations in 1D coordinates for 0 ≤ r ≤ R.

Finite Volume: Cartesian

The first step of the finite volume method is to integrate the equation across each

cell. The following notation is for cell i+ 1
2
:

∫ ri+1

ri

[
−D

(
d2φ

dr2

)
+ σaφ

]
dr =

∫ ri+1

ri

(
1

k
νσfφ

)
dr
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−D
[
dφ

dr
|i+1 −

dφ

dr
|i
]

+ σaφi+ 1
2
∆r =

1

k
νσfφi+ 1

2
∆r

The following definition, derived in Section 3.3 as Equation 37, can then be substi-

tuted into the integrated equation

dφ

dr
|i =

φi+ 1
2
− φi− 1

2

∆r
+O(∆r2)

which results in the following:

−D

[(
φi+ 3

2
− φi+ 1

2

∆r

)
−

(
φi+ 1

2
− φi− 1

2

∆r

)]
+ σaφi+ 1

2
∆r =

1

k
νσfφi+ 1

2
∆r

Resulting in:

(
−D

νσf∆r2

)
φi+ 3

2
+

(
2D

νσf∆r2
+

σa
νσf

)
φi+ 1

2
+

(
−D

νσf∆r2

)
φi− 1

2
=

1

k
φi+ 1

2

This equation satisfies the interior cells, but it still must be coupled with a discretiza-

tion of each of the boundaries. The first of these is the outer vacuum boundary at

r = R, indexed as i = N , is given by:

φN = 0

Here we make use of Equation 42:

dφ

dr
|N =

φN− 3
2
− 9φN− 1

2

3∆r
+O(∆r2).
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This value, along with the vacuum boundary condition itself, can then be substituted

into the integrated diffusion equation for the outer-most cell, indexed as cell (N - 1
2
) :

−D
[
dφ

dr
|N −

dφ

dr
|N−1

]
+ σaφN− 1

2
∆r =

1

k
νσfφN− 1

2
∆r

−D

[(
φN− 3

2
− 9φN− 1

2

3∆r

)
−

(
φN− 1

2
− φN− 3

2

∆r

)]
+ σaφN− 1

2
∆r =

1

k
νσfφN− 1

2
∆r

Resulting in:

(
−4D

3νσf∆r2

)
φN− 3

2
+

(
4D

νσf∆r2
+

σa
νσf

)
φN− 1

2
=

1

k
φN− 1

2

Similarly, the reflective boundary at r = 0, given by:

dφ

dr
|0 = 0

This and previous definitions can then be substituted into the integrated diffusion

equation for the inner-most cell, indexed as cell 1
2

:

−D
[
dφ

dr
|1 −

dφ

dr
|0
]

+ σaφ 1
2
∆r =

1

k
νσfφ 1

2
∆r

−D

[(
φ 3

2
− φ 1

2

∆r

)
− (0)

]
+ σaφ 1

2
∆r =

1

k
νσfφ 1

2
∆r

Resulting in: (
−D

νσf∆r2

)
φ 3

2
+

(
D

νσf∆r2
+

σa
νσf

)
φ 1

2
=

1

k
φ 1

2

With these results, the steady-state diffusion equation forms a full finite volume

discretization system of equations in 1D Cartesian coordinates for 0 ≤ r ≤ R.
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Finite Volume: Spherical

The first step of the finite volume method is to integrate the equation across each

cell. The following notation is for cell i+ 1
2
:

4π

∫ ri+1

ri

[
−D

(
1

r2
d

dr

(
r2
dφ

dr

))
+ σaφ

]
r2dr = 4π

∫ ri+1

ri

(
1

k
νσfφ

)
r2dr

∫ ri+1

ri

−D d

(
r2
dφ

dr

)
+

∫ ri+1

ri

σaφ r
2dr =

∫ ri+1

ri

1

k
νσfφ r

2dr

−D
(
r2
dφ

dr

)
|ri+1

ri
+ σaφi+ 1

2

r3

3
|ri+1

ri
=

1

k
νσfφi+ 1

2

r3

3
|ri+1

ri

−3D
(
r2i+1

dφ
dr
|i+1 − r2i

dφ
dr
|i
)

(r3i+1 − r3i )
+ σaφi+ 1

2
=

1

k
νσfφi+ 1

2

The following definition, derived in Section 3.3 as Equation 37, can then be substi-

tuted into the integrated equation

dφ

dr
|i =

φi+ 1
2
− φi− 1

2

∆r
+O(∆r2)

which results in the following:

−3D

(r3i+1 − r3i )

[
r2i+1

(
φi+ 3

2
− φi+ 1

2

∆r

)
− r2i

(
φi+ 1

2
− φi− 1

2

∆r

)]
+ σaφi+ 1

2
=

1

k
νσfφi+ 1

2

Resulting in:

(
−3Dr2i+1

∆r(r3i+1 − r3i )νσf

)
φi+ 3

2
+

(
3D(r2i+1 + r2i )

∆r(r3i+1 − r3i )νσf
+

σa
νσf

)
φi+ 1

2

+

(
−3Dr2i

∆r(r3i+1 − r3i )νσf

)
φi− 1

2
=

1

k
φi+ 1

2

This equation satisfies the interior cells, but it still must be coupled with a discretiza-
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tion of each of the boundaries. The first of these is the outer vacuum boundary at

r = R, indexed as i = N , is given by:

φN = 0

Here we make use of Equation 42:

dφ

dr
|N =

φN− 3
2
− 9φN− 1

2

3∆r
+O(∆r2).

This value, along with the vacuum boundary condition itself, can then be substituted

into the integrated diffusion equation for the outer-most cell, indexed as cell (N - 1
2
) :

−3D
(
r2N

dφ
dr
|N − r2N−1

dφ
dr
|N−1

)
(r3N − r3N−1)

+ σaφN− 1
2

=
1

k
νσfφN− 1

2

−3D

(r3N − r3N−1)

[
r2N

(
φN− 3

2
− 9φN− 1

2

3∆r

)
− r2N−1

(
φN− 1

2
− φN− 3

2

∆r

)]
+ σaφN− 1

2

=
1

k
νσfφN− 1

2

Resulting in:

(
3D(3r2N + r2N−1)

∆r(r3N − r3N−1)νσf
+

σa
νσf

)
φN− 1

2
+

(
−D(r2N + 3r2N−1)

∆r(r3N − r3N−1)νσf

)
φN− 3

2
=

1

k
φN− 1

2

Similarly, the reflective boundary at r = 0, given by:

dφ

dr
|0 = 0
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This and previous definitions can then be substituted into the integrated diffusion

equation for the inner-most cell, indexed as cell 1
2

:

−3D
(
r21

dφ
dr
|1 − r20

dφ
dr
|0
)

(r31 − r30)
+ σaφ 1

2
=

1

k
νσfφ 1

2

−3D

(r31 − (0)3)

[
r21

(
φ 3

2
− φ 1

2

∆r

)
− (0)2 (0)

]
+ σaφ 1

2
=

1

k
νσfφ 1

2

Resulting in:

(
−3D

r1∆rνσf

)
φ 3

2
+

(
3D

r1∆rνσf
+

σa
νσf

)
φ 1

2
=

1

k
φ 1

2

With these results, the steady-state diffusion equation forms a full finite volume

discretization system of equations in 1D spherical coordinates for 0 ≤ r ≤ R.

Finite Volume: Cylindrical

The first step of the finite volume method is to integrate the equation across each

cell. The following notation is for cell i+ 1
2
:

2π

∫ ri+1

ri

[
−D

(
1

r

d

dr

(
r
dφ

dr

))
+ σaφ

]
rdr = 2π

∫ ri+1

ri

(
1

k
νσfφ

)
rdr

∫ ri+1

ri

−D d

(
r
dφ

dr

)
+

∫ ri+1

ri

σaφ rdr =

∫ ri+1

ri

1

k
νσfφ rdr

−D
(
r
dφ

dr

)
|ri+1

ri
+ σaφi+ 1

2

r2

2
|ri+1

ri
=

1

k
νσfφi+ 1

2

r2

2
|ri+1

ri

−2D
(
ri+1

dφ
dr
|i+1 − ri dφdr |i

)
(r2i+1 − r2i )

+ σaφi+ 1
2

=
1

k
νσfφi+ 1

2
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The following definition, derived in Section 3.3 as Equation 37, can then be substi-

tuted into the integrated equation

dφ

dr
|i =

φi+ 1
2
− φi− 1

2

∆r
+O(∆r2)

which results in the following:

−2D

(r2i+1 − r2i )

[
ri+1

(
φi+ 3

2
− φi+ 1

2

∆r

)
− ri

(
φi+ 1

2
− φi− 1

2

∆r

)]
+ σaφi+ 1

2
=

1

k
νσfφi+ 1

2

Resulting in:

(
−2Dri+1

∆r(r2i+1 − r2i )νσf

)
φi+ 3

2
+

(
2D(ri+1 + ri)

∆r(r2i+1 − r2i )νσf
+

σa
νσf

)
φi+ 1

2

+

(
−2Dri

∆r(r2i+1 − r2i )νσf

)
φi− 1

2
=

1

k
φi+ 1

2

This equation satisfies the interior cells, but it still must be coupled with a discretiza-

tion of each of the boundaries. The first of these is the outer vacuum boundary at

r = R, indexed as i = N , is given by:

φN = 0

Here we make use of Equation 42:

dφ

dr
|N =

φN− 3
2
− 9φN− 1

2

3∆r
+O(∆r2).
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This value, along with the vacuum boundary condition itself, can then be substituted

into the integrated diffusion equation for the outer-most cell, indexed as cell (N - 1
2
) :

−2D
(
rN

dφ
dr
|N − rN−1 dφdr |N−1

)
(r2N − r2N−1)

+ σaφN− 1
2

=
1

k
νσfφN− 1

2

−2D

(r2N − r2N−1)

[
rN

(
φN− 3

2
− 9φN− 1

2

3∆r

)
− rN−1

(
φN− 1

2
− φN− 3

2

∆r

)]
+ σaφN− 1

2

=
1

k
νσfφN− 1

2

Resulting in:

(
2D(3rN + rN−1)

∆r(r2N − r2N−1)νσf
+

σa
νσf

)
φN− 1

2
+

( −2D( rN
3

+ rN−1)

∆r(r2N − r2N−1)νσf

)
φN− 3

2
=

1

k
φN− 1

2

Similarly, the reflective boundary at r = 0, given by:

dφ

dr
|0 = 0

This and previous definitions can then be substituted into the integrated diffusion

equation for the inner-most cell, indexed as cell 1
2

:

−2D
(
r1

dφ
dr
|1 − r0 dφdr |0

)
(r21 − r20)

+ σaφ 1
2

=
1

k
νσfφ 1

2

−2D

(r21 − (0)2)

[
r1

(
φ 3

2
− φ 1

2

∆r

)
− (0) (0)

]
+ σaφ 1

2
=

1

k
νσfφ 1

2

Resulting in:

(
−2D

r1∆rνσf

)
φ 3

2
+

(
2D

r1∆rνσf
+

σa
νσf

)
φ 1

2
=

1

k
φ 1

2
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With these results, the steady-state diffusion equation forms a full finite volume

discretization system of equations in 1D cylindrical coordinates for 0 ≤ r ≤ R.

79



Appendix D. Error Notation

This effort uses ”big O notation” to denote the order of magnitude of a mathe-

matical term. Using this notation, a function f(x) equal to O(x) is on the order of x,

meaning that there exists some positive constant, c, for which 0 ≤ f(x) ≤ cx [27]. By

this definition, f(x) = 2x2 + x can be said to be f(x) = O(x2).

The following Taylor expansion of φi+1 about point i:

φi+1 = φi + ∆r
dφ

dr
|i +

1

2!
(∆r)2

d2φ

dr2
|i +

1

3!
(∆r)3

d3φ

dr3
|i +

1

4!
(∆r)4

d4φ

dr4
|i + . . .

could therefore be rewritten using big O notation as:

φi+1 = φi + ∆r
dφ

dr
|i +

1

2!
(∆r)2

d2φ

dr2
|i +

1

3!
(∆r)3

d3φ

dr3
|i +O(∆r4)

or as:

φi+1 = φi + ∆r
dφ

dr
|i +

1

2!
(∆r)2

d2φ

dr2
|i +O(∆r3)

where the O(∆r3) term represents a larger error than O(∆r4), but both of the equa-

tions represent the same Taylor expansion [21]. When this Taylor expansion is trun-

cated to the following:

φi+1 = φi + ∆r
dφ

dr
|i +

1

2!
(∆r)2

d2φ

dr2
|i +

1

3!
(∆r)3

d3φ

dr3
|i

it can be said to be fourth order accurate, because its error is given by the term

O(∆r4). Therefore when the largest error term in a discretization is O(∆r2), the

discretization is said to be second order accurate [21].
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