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Abstract

One of the fundamental problems of robotics and navigation is the estimation of

relative pose of an external object with respect to the observer. A common method

for computing the relative pose is the Iterative Closest Point (ICP) algorithm, where

a reference point cloud of a known object is registered against a sensed point cloud

to determine relative pose. To use this computed pose information in down-stream

processing algorithms, it is necessary to estimate the uncertainty of the ICP out-

put, typically represented as a covariance matrix. In this thesis a novel method for

estimating uncertainty from sensed data is introduced. This method was exercised

in a virtual simulation of an automated aerial refueling (AAR) task. While prior

work assumed the sensor itself had been carefully characterized a-priori, the intro-

duced method learns the sensor uncertainty from live data, making the proposed

approach more computationally efficient and robust to sensor degradation than prior

techniques.
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ACCURATE COVARIANCE ESTIMATION FOR POSE DATA FROM

ITERATIVE CLOSEST POINT ALGORITHM

I. Introduction

This research is motivated by the problem of Automated Aerial Refueling (AAR).

Aerial refueling is the process of transferring fuel from one aircraft (the tanker) to

the receiving aircraft while in-flight and is a key enabler of Air Forces around the

world. Currently, a human operator is needed to guide the “boom” (a large pipe that

protrudes from the back of the tanker) into the correct spot on the receiving aircraft.

AAR proposes to automate the task of guiding two aircraft together and requires a

very accurate relative pose between the tanker and receiving aircraft.

To compute this relative pose, one method is to use stereo computer vision. Two

cameras are mounted on the tanker and observe the receiver as it flies in for refueling.

The cameras generate a pair of images that are run through stereo block matching

to create a point cloud representing the 3D information sensed by the camera pair.

Then, iterative closest point (ICP) is used to match a known model of the receiver

against the visually generated point cloud. The translation and rotation of the best

fit is then output as the relative pose estimate between the tanker and receiver.

1.1 Problem Statement

In the AAR application, it is not sufficient to have just a pose estimate from

ICP. There must also be guarantees that the pose estimate is sufficiently accurate to

avoid in-air collisions. Therefore, the uncertainty associated with the ICP-generated

pose is also necessary to make effective use of the ICP result. The uncertainty of the
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generated ICP pose is also required to enable sensor fusion between the ICP outputs

and other sensors (such as inertial measurement, GNSS, etc.). In this thesis, this

uncertainty is represented by a covariance matrix.

One example of a sensor fusion application is the Extended Kalman Filter(EKF).

A necessary input of the EKF is the covariance matrix associated with the Stereo

Vision pose estimate. An accurate assessment of this covariance matrix would enable

Kalman filter sensor fusion with other sensors and thus allow Stereo vision to be part

of a multi-sensor solution to AAR instead of relying on Stereo Vision to be the sole

sensor for pose estimation.

1.2 Contribution

The primary contribution of this work is an improved method for computing the

uncertainty, in the form of a covariance matrix, for the ICP process. We demonstrate

that the naive process (discussed in Section 2.7.1) results in covariance matrices that

are significantly optimistic (the real errors are much larger in magnitude than the

covariance matrices say they should be). Using a simulation of the AAR problem, we

explore the reasons behind this significant error in uncertainty estimates and propose

a new method for estimating uncertainty.

While prior work [5] [10] [17] has also introduced methods for improving covariance

matrix accuracy, our technique has two primary advantages over their work. First,

our work is significantly faster. We found that our technique generally runs 1-2 orders

of magnitude quicker. Second, prior techniques assumed that the noise of the sensor

is accurately known a-priori. This requires a careful calibration of the sensor, in a

variety of operating conditions, and may not be feasible. Our technique introduces

a method for learning the sensor uncertainty from the collected data. This makes

our approach more robust and feasible for deployment in a real-world scenario. For

2



example, if the cameras were to degrade during operations, the calculated covariance

would reflect that and prevent an attempted mate under unsafe conditions.

While the work in this thesis is focused on point clouds generated by stereo cam-

eras for AAR, we believe the methods proposed in this thesis can be applied to any

point cloud ICP application regardless of the method of sensing the point clouds.

Applications using Light Detection and Ranging (LIDAR), Structured Light and 3D

scanners can also benefit from using these methods to calculate their covariance.

A large portion of this work was previously presented at the Institute of Navigation

(ION) International Technical Meeting 2021. [20]

1.3 Scope and Assumptions

While this work focuses on the AAR problem, there are many aspects of the AAR

problem that we are assuming have been previously solved. A complete solution to

the AAR problem will entail a well-calibrated stereo camera system with an accurate

reference model. The starting point of this thesis is that the stereo camera system

has all its needs satisfied to output a reasonable pose estimate. Characterizing the

steady state error of the stereo vision pose estimate is outside the scope of this thesis.

This thesis focuses on finding the covariance of the distribution of pose estimates for

each position, instead of the error from truth.

Several assumptions are made to the problem of AAR to simplify the simulation.

The first assumption taken by this thesis is that the receiver aircraft is rigid and

static. In real aircraft, the wings would flex under load. Given that the wings make

up a large percentage of the visible surface of reciever, even a small deflection in

the wings may cause significant errors the pose estimation. Real aircraft may also

not be static. ”Moving parts” such as the radar on an AWACS, sensor pods on ISR

platforms, or even the control surfaces of any aircraft may offset the fit of the model

3



to sensed data. The receiver aircraft may also be carrying varied loadouts of payloads

and weapons which would need to be accounted for.

This research assumes that the same “face” of the receiver is always facing the

cameras. This enables the reference model to consist of only points from the top-front

of the receiver aircraft and enables a better fit. As the receiver approaches the tanker,

the visible face may tilt slightly but not to a large degree. If there were a large change

in the visible face of the receiver, that would mean the receiver is not in the expected

orientation and would quickly fly out of range of the cameras.

1.4 Overview

This paper is divided into 5 chapters. Chapter I serves as the introduction and

motivation for this thesis. Chapter II further expands on the background necessary

to understand this research and the prior work that this builds upon. Chapter III

describes the methodology used and the design of a novel covariance estimation tech-

nique for ICP. Chapter IV analyses the results of the methods introduced. Chapter V

is the Conclusion to this thesis and discusses the overall effectiveness of the methods

proposed and avenues for future work.

4



II. Background and Literature Review

This chapter explores the relevant background and related work that this thesis is

built upon. Section 2.1 describes the overall Automated Aerial Refueling environment

that motivates this work. Section 2.2 explains the pinhole camera model which is

the foundation for transforming pixel information into spatial information. Section

2.3 overviews camera calibration, which transforms imperfect real cameras to fit the

pinhole model. Section 2.4 discusses image rectification and stereo block matching

which is used to generate a 3D point cloud from stereo images. Section 2.5 describes

how ICP is used to fit a sensed point cloud onto a known model to compute a relative

pose estimate. Section 2.6 is a primer on the Kalman filter which is used to track

state estimate uncertainty. Finally, Section 2.7.2 describes previous approaches to

ICP covariance estimation.

2.1 Automated Aerial Refueling

Aerial Refueling is an operation wherein a tanker aircraft transfers fuel to a re-

ceiver aircraft while both are in flight. It is a technology that is essential for the

strategic projection of air power. Aerial refueling enables greater range and loiter

time, allowing greater flexibility in the mission capability of the Air Force. The next

step in the evolution of aerial refueling technology is the implementation of auto-

mated aerial refueling, further increasing the power of this technology to support the

mission. With automated aerial refueling (AAR), new possibilities are opened up,

reducing personnel and equipment costs.

In the case of remotely piloted aircraft (RPA), the latency between the pilot and

the aircraft makes aerial refueling unsafe and infeasible. With AAR, this limitation

is removed and RPAs would be able to extend operations and flight time nearly

5



indefinitely.

One of the primary technical bottlenecks of AAR is the determination of relative

pose between the tanker and receiver aircraft. This relative pose must be measured

to centimeter level accuracy to ensure a successful mate instead of hazardous collision

between the two aircraft. [6] To accurately estimate relative pose, our research group

has proposed using stereo computer vision [9] where two cameras are mounted to the

underside of the tanker aircraft. Stereo block matching is applied to the two images

from the cameras to generate a point cloud representing the object in the visual

field. Then, ICP is used to fit a known model of the aircraft against the visually

generated point cloud to estimate the output pose. This process is outlined in Figure

1. Noise may be introduced at multiple levels throughout this process. There may

be pixel error in the cameras or incorrect features may be matched in stereo block

matching. To guarantee safe operation of the AAR application, the uncertainty in

the system must be carefully evaluated and characterized. The covariance estimation

methods proposed in this paper were tested on a complete simulation environment

of the AAR application, enabling us to identify and evaluate the uncertainty due to

different sources of error in the pipeline.

Figure 1. Stereo Vision Pipeline

2.2 Pinhole Camera Model

The pinhole camera model is a way to extract geometric meaning to the pixel

location of features in the camera’s field of view. The model represents the camera

at its local coordinate system’s origin. A virtual screen is placed in front of the

6



camera’s point of origin. This screen represents the pixels in the camera’s image and

the camera’s field of view. For each pixel, (u, v) a line can be drawn from Fc, through

(u, v), and towards infinity. The feature identified in this pixel may be anywhere

along that line. [1]

Figure 2. Pinhole Camera Model

2.3 Camera Calibration

Camera calibration can be divided into two segments, intrinsic camera calibration,

and extrinsic camera calibration.

Intrinsic camera calibration can be thought of as fitting the camera to match the

pinhole camera model. The camera calibration matrix (A) projects 3D points (Pc) in

the camera’s reference frame into the 2D pixel space of the image such that:

λ


u

v

1

 = APc (1)
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The intrinsic camera calibration matrix can be described as:

A =


fx 0 cx

0 fy cy

0 0 1

 (2)

Where cx and cy are the pixel locations of the image center and fx and fy are the

focal lengths of the camera.

Real cameras have lenses that can introduce distortion into the image. This can

take the form of radial distortion or tangential distortion. Radial distortion occurs

when light is bent more at the outer edge of the image than at the center. Tangential

distortion occurs when the image sensor and the lens are not perfectly aligned.

The external calibration represents the transformation from the world frame to

the camera frame. This is defined by the parameters R and t such that:

Pc =

R t

0 1




Xw

Yw

Zw

1


(3)

Altogether, any point in the 3D world frame can be transformed into the 2D pixel

location of the camera through:


u

v

1

 = A

R t

0 1

Pw (4)

Camera calibration is performed by capturing multiple images of of a known pat-

tern such as a chessboard. The straight lines and standard sizes of the chessboard

allow for the various camera calibration parameters to be solved for. Typically, twenty
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to thirty pictures of this chessboard taken at various angles and ranges will produce

best results for camera calibration.

Figure 3. Camera Calibration Chessboard

2.4 Image Rectification and Stereo Block Matching

In the pinhole model, a feature detected at a pixel location can exist at any point

along a line. Detecting that same feature in a second camera will produce another line

constraining the feature’s position. The feature can then be placed at the intersection

of the two lines. This is the fundamental concept behind stereo vision. [19]

For a pair of stereo cameras, each pixel on the left camera has a corresponding

epipolar line on the right camera. Image rectification transforms the images so that
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Figure 4. Epipolar Geometry [14]

all of the epipolar lines are parallel and horizontal across the image.

Stereo block matching can then be applied to the rectified image pair. For each

block of pixels on the left image, A scan is run along its epipolar line on the right

image. The pixel location of the best match is found and the depth of that pixel is

calculated from the disparity between the two images. Running this process for the

entire image pair produces a depth map. Each pixel of this depth map can then be

converted into a point in a 3D point cloud.

2.5 Iterative Closest Point

One of the key algorithms used when working with 3-D point clouds is the iterative

closest point (ICP) algorithm introduced by Besl and McKay [3]. Since then, ICP

has been used in many robotics applications such as search and rescue, powerplant

inspection, shoreline monitoring, and autonomous driving [16]. It is also used in 2D

or 3D self localization methods such as SLAM. Input data for ICP can come from

LIDAR, monocular, or stereo vision sensors.

The ICP algorithm consists of iterating through the following two steps:
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1. For every point in the measured point cloud, find the closest point in the refer-

ence point cloud.

2. Compute the best 6-D pose to align each measured point with its closest refer-

ence point. Note that finding the best 6-D pose to align points with a 1-to-1

correspondence can be solved in closed form using quaternions or the SVD of a

3x3 matrix (e.g. [7, 8, 2]).

By iteratively executing this process, the ICP algorithm outputs the best fit position

and orientation as well as the correspondence between the sensed and reference points.

The second step of the ICP algorithm is based on finding the relative pose that

minimizes the sum of squared distances between the reference points and the sensed

points. This step optimizes for the following cost function[11]:

arg min
R,t

n∑
i=1

||ps,i −Rpr,φ(i) − t||2 (5)

where R and t are the relative rotation and translation between the reference and

sensed points, ps,i is the i’th sensed point, φ(·) is a function that takes in an index

to a point in the sensed cloud and returns an index to a matching (the closest) point

in the reference cloud, and pr,φ(i) is the position of the φ(i)’th point in the reference

cloud.

After the rotation and translation from step 2 is applied, a better match of closest

points can then be found by step 1 which then allows for a more accurate rotation

and translation. This loop continues until a local minimum is reached and the cost

function no longer decreases with each loop.
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2.6 Kalman Filter

The Kalman filter is a recursive data processing algorithm used to combine infor-

mation from multiple independent measurements into a single refined estimate. The

Kalman filter incorporates all the information available to it by applying each sensor

measurement to the dynamics model, measurement models and noise models of the

system. It is widely used in Guidance, Navigation and Control applications to track

the position and velocity of systems.

The Kalman filter is recursive because its outputs, an N state vector and a N by N

covariance matrix, are fed back into the algorithm for the next time step. Thus, the

filter only needs to keep track of the current state and not all the previous information.

The algorithm is initialized with dynamics model of the system and takes in

inputs of all the independent measurements. The Kalman filter consists of two steps:

propagate and update. In the propagate step, the system state estimate is moved

forward in time based on the inputs and the dynamics model. In the update step,

this estimate is corrected based on sensor data. [12] [13]

For the Kalman filter, the state changes over time according to a discrete dynamics

model defined as

xt = Ftxt−1 +Btut + wt (6)

where xt is the function of the state vector at time t, Ft is the state transition matrix,

Bt is the input model, ut is the input, and wt is the process noise sampled from:

wt ∼ N (0, Qt) (7)

whereQt is the covariance of multivariate gaussian probability distribution from which

wt is sampled from
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The first step in the Kalman filter is to propagate the system forward one time

step to predict the next state vector:

x̂t = Ftxt−1 +Btut (8)

Note that the state estimate propagation step ignores the random variable wt

because it is an estimate of the mean. The randomness of the system dynamics are

accounted for in the propagation step for P, the covariance matrix of x:

Pt = FtPt−1F
T
t +Qt (9)

After the system state vector and covariance matrix are propagated through the

dynamics model Ft, the covariance matrix P can only have increased due to the effects

of the Qt, the dynamics noise model.

To reduce P and increase the accuracy of x̂(t), the measurements are incorporated

in the update step. The measurement model is defined as:

zt = Htxt + vt (10)

Where vt is sampled from:

vt ∼ N (0, Rt) (11)

The first step of the update step is to calculate the measurement residual or the

difference between the measurement and the expected measurements given :

ỹt = zt −Htx̂ (12)

This represents the difference between the measured result and the predicted mea-

surements.
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The innovation covariance St is calculated by:

St = HtPtH
T
t +Rt (13)

The innovation covariance is then used to calculate the Kalman gain:

Kt = PtH
T
t S
−1
t (14)

Finally, the state vector and the covariance are updated:

x̂t = x̂t +Ktỹt (15)

Pt = (I −KtHt)Pt (16)

In summary, the full Kalman Filter algorithm is as follows:

Algorithm 1: Kalman Filter Algorithm

Kalman Filter( xt−1, Pt−1, ut, zt):

x̂t = Ftxt−1 +Btut

Pt = FtPt−1F
T
t +Qt

ỹt = zt −Htx̂

St = HtPtH
T
t +Rt

Kt = PtH
T
t S
−1
t

xt = xt +Ktỹt

Pt = (I −KtHt)Pt

Return (xt, Pt)

2.6.1 Extended Kalman filter.

In the case that the state transition model or the measurement model are non-

linear, the Extended Kalman Filter (EKF) is applicable. The state transition model
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and the measurement model are instead represented by the functions:

xt = f(xt−1, ut) + wt (17)

zt = h(xt) + vt (18)

In the EKF, the state transition models and the measurement models can be

linearized by taking their respective Jacobians with respect to x

Ft =
∂f

∂x
| x̂t−1, ut (19)

Ht =
∂h

∂x
| x̂t−1 (20)

The full EKF algorithm is described in Algorithm 2:

Algorithm 2: Extended Kalman Filter Algorithm

Extended Kalman Filter( xt−1, Pt−1, ut, zt):

Ft = ∂f
∂x
| x̂t−1, ut

Ht = ∂h
∂x
| x̂t−1

xt = f(xt−1, ut)

Pt = FtPt−1F
T
t +Qt

ỹt = zt − h(xt−1)

St = HtPtH
T
t +Rt

Kt = PtH
T
t S
−1
t

xt = xt +Ktỹt

Pt = (I −KtHt)Pt

Return (xt, Pt)

The difference between the EKF and the linear Kalman filter is that Ft and
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Ht are recalculated each time the EKF is run instead of being statically defined

for the Kalman Filter. The EKF uses its non-linear state transition function to

update its state vector estimate and its non-linear measurement model to calculate

its measurement residual. However, it is not possible to use the non-linear functions

to update the covariance, P, so the Jacobians of those functions are used instead.

2.7 Previous Methods

In this section, previous methods for estimating the covariance of ICP are re-

viewed. The first approach is the naive method which is used as the starting point

for developing a more accurate covariance estimate. Another approach examined is

an ICP covariance estimation method published by Prakhya which our approach will

be compared against.

2.7.1 Naive Method.

The second step of the ICP algorithm is based on finding the relative pose that

minimizes the sum of squared distances between the reference points and the sensed

points defined in Equation 5.

Assuming φ(i) is a constant, Equation 5 can be solved in closed form as described

in [7, 8, 2]. To understand the uncertainty resulting from this step, we will instead
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represent this step as a normal, least-squares equation, yielding:

Jx = z

z =



z1,x

z1,y

z1,z
...

zn,z


(21)

where zi = ps,i −Rpr,φ(i) − t is a 3-vector and consists of an x, y, and z element; x is

a vector of changes to the relative pose expressed as

x = [∆t1 ∆t2 ∆t3 ∆r1 ∆r2 ∆r3]
T (22)

where tj is the j’th element of the 3-element translation vector, rj is the rotation

around the j′th axis; and J is the differential change in y w.r.t. tj and rj. Specifically,

J =



∂z1,x
∂t1

∂z1,x
∂t2

∂z1,x
∂t3

∂z1,x
∂r1

∂z1,x
∂r2

∂z1,x
∂r3

∂z1,y
∂t1

∂z1,y
∂t2

∂z1,y
∂t3

∂z1,y
∂r1

∂z1,y
∂r2

∂z1,y
∂r3

∂z1,z
∂t1

· · · · · · · · · · · · · · ·
...

...
. . .

...

∂zn,z

∂t1

∂zn,z

∂t2

∂zn,z

∂t3

∂zn,z

∂r1

∂zn,z

∂r2

∂zn,z

∂r3


(23)

The weighted least-squares problem solution can be solved as

x = (JTWJ)−1JTWz, (24)

where W is the weighting matrix. For data with a known covariance cov(z), W =
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cov(z)−1 which also means W is symmetric. To find the covariance of X

E[xxT ] = E
[
(JTWJ)−1JTWyyTW TJ(JTWJ)−1

]
(25)

= (JTWJ)−1JTWE[yyT ]W TJ(JTWJ)−1 (26)

= (JTWJ)−1JTWΣW TJ(JTWJ)−1 (27)

= (JTWJ)−1JTWJ(JTWJ)−1 (28)

= (JTWJ)−1 (29)

We refer to finding the covariance in this manner the “Jacobian” method.

In an idealized situation, the first step of ICP would perfectly match every sensed

point to the correct point in the reference model. With real data, however, there are

two sources of error that are not considered by the Jacobian method. First, because

the reference model consists of a set of points, there may not be a point at the exact

location that the sensed point represents. Second, even if there was a reference point

at the exact noise-free source of the sensed point, step 1 of the ICP algorithm may

match the sensed point to the wrong reference point. Note, that both of these noise

sources consist of mismatching from one reference point to another reference point. If

we model the reference points all lying on a surface, these noise sources are constrained

to lie within the surface. Noise perpendicular to the surface will be independent of

these two noise sources due to step 1 of the ICP algorithm. Therefore, in Sections

3.2 and 3.3, we introduce two possible techniques to compensate for this inability to

distinguish noise “within” the surface.
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2.7.2 Current Research.

Prakhya [17] implements a closed form method of estimating uncertainty of an

ICP fit. The output covariance is calculated through Equations 30 and 31.

C =
n∑
i=1

||ps,i −Rpr,φ(i) − t||2 (30)

cov(x) =

(
∂2C

∂x2

)−1(
∂2C

∂z∂x

)
cov(z)

(
∂2C

∂z∂x

)T (
∂2C

∂x2

)−1
(31)

In this method, the covariance of the output pose is calculated as cov(x) where C is

the cost function optimized by ICP, z is the input point vector, and x is the output

state vector.

Derivation: Let F be the ICP function where x = F (z). The first order Taylor

series approximation at z = z0 is then defined as:

x =

(
F (z)

∣∣∣
z=z0

)
≈ F (z0) +

∂F

∂z0
(z − z0) (32)

x =

(
F (z)

∣∣∣
z=z0

)
≈ F (z0) +

∂F

∂z0
(z)− ∂F

∂z0
(z0) (33)

To take the covariance of this form, the constants F (z0) and ∂F
∂z0

(z0) can be ignored.

Substituting into the expression cov(Bz + c) = Bcov(z)BT , the covariance can now

be defined as:

cov(x) ≈ ∂F

∂z0
cov(z)

∂F T

∂z0
(34)

However, F is not in closed form and it is difficult to compute the partial derivative

of A with respect to z0. Censi [5] solves this problem with the implicit function

theorem:

∂F

∂z0
= −

(
∂2C

∂x2

)−1(
∂2C

∂z∂x

)
(35)
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Thus, substituting Equation 35 into Equation 34 yields the solution in Equation

31.

This approach has been applied in many applications [10] [4], especially in robot

navigation scan matching problems. However, in those applications the input covari-

ance from the sensors is know a-priori. This is not feasible in the AAR application

because the sensor noise can vary by more than an order of magnitude depending

on range from the cameras. Additionally, with high resolution stereo cameras, algo-

rithmic efficiency is critical to achieve real-time results. We will be comparing the

performance of our introduced method against Prakhya’s implementation.
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III. Methodology

This chapter details the methodology used to achieve our covariance estimation.

Section 3.1 overviews the Extended Kalman Filter Method for calculating ICP covari-

ance. Section 3.4 details how the input sensor noise is computed. Section 3.2 describes

the Point to Point variation of the EKF method and Section 3.3 describes the Point

to Plane variation. Section 3.5.2 discusses support functions to enable successful ICP

covariance estimation including ICP outlier rejection and output covariance calibra-

tion.

3.1 Extended Kalman Filter Method

This thesis introduces an Extended Kalman Filter (EKF) inspired approach for

tracking the uncertainty in the ICP solution. Our solution is outlined in Algorithm

3.
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Algorithm 3: Kalman Filter Method

ComputeCov(Sen, Ref):

P = 1e6 ∗ I6

R = 1/n
∑n

i=1 ||Seni − Refi||2

for (ps, pr) in (Sen,Ref) do

~N = Compute ~N()

δroll =


0 0 0

0 0 1

0 −1 0

 pr

δpitch =


0 0 −1

0 0 0

1 0 0

 pr

δyaw =


0 1 0

−1 0 0

0 0 0

 pr
H =

[
~Nx

~Ny
~Nz δroll · ~N δpitch · ~N δyaw · ~N

]
S = HPHT +R

K = PHTS−1

P = (I6 −KH)P

end

return P

In Algorithm 3, Sen and Ref are the registered set of sensed and reference points

respectively, ps and pr are an individual pair of matched points, P is the output

covariance, ~N is the normal vector constraining the noise, R is the measurement

noise, and H is the measurement model. The algorithm has two sets of inputs: Sen

and Ref. Sen is the set of all sensed points and Ref is the list of reference points.

Ref has the same length as Sen and each point in Ref at index i is matched to its
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corresponding point in Sen.

The first step in the algorithm is that P is initialized to a large starting value

that will be refined by incorporating sensor data. Then, R is calculated based on the

method in Section 3.4. With the setup done, the algorithm loops through each sensed

point and applies an EKF update step to P, reducing the output covariance based on

the information provided by the sensed point.

The key working principal is that the measurement model, H, is constructed so

that each sensed point only provides information in the direction of its normal vector.

The underlying assumption is that if there were any error orthogonal to the normal

vector, that error would cause the sensed point to be registered to the “next point

over”. Thus, all the information orthogonal to the norm is hidden from the ICP

algorithm while the information parallel to the norm is preserved. Here, the measure-

ment model is tailored to reflect this effect. H is a 1× 6 row vector, representing a 1

dimensional measurement along the normal vector instead of a 3 dimensional point

measurement. For the translational states, H is composed of ~N . For the rotational

states, given that the reference cloud’s center of mass is at (0,0,0), B represents a

vector from the center to the surface. pr is multiplied by the rotational component

derivative matrices to get the rotational component derivative vector at that point

on the surface. These vectors are projected onto ~N to get the rotation components

of the measurement model.Section 3.2 and Section 3.3 describe two approaches to

computing the normal vector, ~N .

3.2 Point to Point Constraint

The point to point approach is the simplest method for finding the normal vector.

~N is calculated as the normalized vector between ps and pr as shown in Equation 36

and Figure 5.
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~N =
ps − pr
||ps − pr||

(36)

Figure 5. Point to Point Normal

This method assumes that the point to point vector is a good approximation for

the local normal vector. This assumption is the most accurate when the sensor noise

is high (ps is far from pr) and the reference model is high in resolution. If the opposite

is true (sensor noise is low and reference resolution is low), then the sensed points may

lie in between the reference points and cause the normal vector to be perpendicular

to the true surface normal. This error is shown in Figure 6

Figure 6. Point to Point Worst Case

3.3 Point to Plane Constraint

Another approach to calculate the normal is to use the point to plane vector

instead of the point to point vector. To implement this change, the vector ~N in

Algorithm 3 is instead assigned to the unit surface normal vector at point B on the

reference model. This is shown in Figure 7.
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Figure 7. Point to Plane Normal

In this application, ~N was found using a brute force method. From the reference

point cloud, the set C is populated from the closest points to B. For each combination

of two points in set C, a plane is defined between B and the two points. The plane

normal vector closest to the point to point vector is defined as the new ~N

The advantage of point to plane is that it reduces the effect of the sampling rate

of the reference model. A potential weakness of this approach is that the reference

model is assumed to be smooth and continuous. Information from points sensed past

the edge of the reference model may not be properly accounted for. This case is

shown in Figure 8.

Figure 8. Point to Plane Worst Case

3.4 Measurement Noise Estimation

Any approach to calculate the output noise must have a good understanding of

the input noise. An inherent property of point clouds generated from stereo cameras
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is that the noise is strongly and non-linearly dependent on range. Thus, it is necessary

to re-compute the input noise of the sensor for each image pair.

A weakness in previous approaches [17] [5] is the requirement to pre-compute the

input covariance of the measured points beforehand. Characterizing the covariance

matrix of a visually sensed point cloud is not a trival task. Not only does the covari-

ance of the sensed points vary with camera setup, it is also highly sensitive to the

range from the camera and location within its field of view. In a previous Automated

Aerial Refueling application by Johnson [9], this error needed to be characterized

every 0.5m from 30 to 100m away from the camera.

Instead of attempting to pre-characterize the noise, we propose estimating the

input noise from the data itself. Specifically, we can estimate the measurement noise,

R, as the mean squared error of the distances between the matched points.

R = 1/n
n∑
i=1

||Seni − Refi||2 (37)

Given that the ICP algorithm has converged onto the correct global minimum,

R should accurately reflect the variance of the sensor noise orthogonal to the local

surface.

There are a few assumptions that enable this calculation. The converged solution

is assumed to be very close to the truth. The mean squared error of the sensed points

from the ICP solution should be very close to the mean squared error of the points

from the true surface being measured. Another assumption is that the sensor noise

is evenly distributed in all directions. Assuming that the sensed point error follows

a spherical Gaussian distribution that is identical for each sensed point, R can be

represented by a single scalar value instead of a 3n by 3n covariance matrix. Finally,

all the sensed points are assumed to be independent of each other.
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3.5 Support Functions

3.5.1 Outlier Rejection.

Because ICP optimizes for a least squares cost function, it is very susceptible to

outlier points. Unfortunately, outliers are very common in visually generated point

cloud scans and in 3d scans in general. Fine tuning camera calibration parameters

can reduce the number of outlier points however, it is extremely difficult to completely

eliminate them. Thus, it is necessary to process the visually sensed point cloud in

order to reject outliers.

The method chosen to reject outliers was examined by Rusinkiewicz et al. [18].

During each iteration in ICP, the standard deviation of the matched point distances

are calculated. The pairs that are more than 6 standard deviations away from each

other are then rejected as outliers. The advantage of this method is that it is deter-

ministic unlike RANSAC based methods. Additionally, this method minimizes the

number of points rejected, leaving more points to collect information from.

Figure 9 demonstrates this process in action. In the first iteration of ICP, the

outer-most cluster of outliers are immediately identified and rejected. However, the

second cluster of outliers cannot yet be identified. As ICP converges onto a better

solution, the pairing distances become shorter and the second outlier cluster starts

to emerge from the point to point distance distribution plot. Finally, all the outliers

are eliminated and the ICP algorithm converges on a very accurate solution.
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Figure 9. Outlier Rejection in Action

3.5.2 Calibration.

A real 3d visual sensor may have imperfections that break some of the assumptions

proposed in this thesis. Most notably, the error in each sensed point is not uniformly

distributed in every direction. A stereo camera system has more uncertainty in its

depth axis than in any direction parallel to its image plane. To account for this, a
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layer of calibration is needed.

The calibration transformation takes the form:

Pcalibrated = CPCT (38)

Where C is the calibration matrix. C is a 6× 6 diagonal matrix that takes the form

of:

C =



Cx 0 0 0 0 0

0 Cy 0 0 0 0

0 0 Cz 0 0 0

0 0 0 CR 0 0

0 0 0 0 CP 0

0 0 0 0 0 CY


(39)

Each term of the calibration matrix of the calibration matrix is calculated through:

Cx =

(
n∏
i=1

PxxMC/PxxPred

)1/(2n)

(40)

Cy =

(
n∏
i=1

PyyMC/PyyPred

)1/(2n)

(41)

Cz =

(
n∏
i=1

PzzMC/PzzPred

)1/(2n)

(42)

CR =

(
n∏
i=1

PRRMC/PRRPred

)1/(2n)

(43)

CP =

(
n∏
i=1

PPPMC/PPPPred

)1/(2n)

(44)

CY =

(
n∏
i=1

PY YMC/PY Y Pred

)1/(2n)

(45)
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where each term in the calibration matrix is the square root of the geometric mean

of the Monte Carlo covariance diagonals divided by the predicted diagonals. PMC is

the Monte Carlo covariance matrix and PPred is the predicted covariance matrix.
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IV. Results and Analysis

4.1 Experimental Setup

Testing was conducted in the AfterBurner engine developed by Nykl et al. [15] The

Afterburner engine enables visualization of objects in a 3 dimensional world as well

as simulating stereo camera data. Section 4.2 tests the Jacobian, Point to Point, and

Point to Plane methods in an ICP testbench on simple geometric shapes. Section 4.3

tests the results of our approach against that of Prakhya’s method. Section 4.4 tests

our method in a simulated stereo vision aerial approach scenario. Section 4.5 applies

a calibration to the aerial approach results. Section 4.6 tests covariance estimation

performance on degraded sensors.

4.2 ICP Testbench

In this section the ICP cov estimation methods are run on primitive shapes, a

1x2 rectangular X-Y plane, and a 1x2x3 cuboid. Sensed points are sampled from the

mathematical definitions of the shapes and then corrupted with spherical Gaussian

noise. A sweep of this noise value is performed over a logarithmic range to demon-

strate behavior at different noise levels. For the Jacobian method, this known noise

level is fed directly into Equation ??. At each noise level, 100 runs of ICP are sampled

to generate a Monte Carlo covariance.

The diagonals of the covariance matrices are plotted on a log-log graph to examine

performance of each method. The Monte Carlo results are plotted in solid lines and

the predicted results for each method are plotted in dashed lines. The goal is for

the prediction to accurately match the Monte Carlo and thus, the dashed lines to

closely follow the solid lines. If the prediction were to fall below the Monte Carlo,

the prediction can be said to be optimistic and if the prediction were to be above, it
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would be pessimistic.

4.2.1 1x2 Plane.

In the case of running ICP on a flat rectangle in the X-Y plane, it is expected that

Z is the most well defined axis in translation while roll and pitch are well defined in

rotation. The results of this test are shown in Figures 10, 11, and 12.

Figure 10. Jacobian method translation and rotation estimates on an X-Y plane (All
translational predictions are identical)

In the Jacobian method, the translational diagonals of the predicted covariance

matrices are all identical to each other. Because all the translational terms of J are
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calculated to be the identity matrix in Equation 23, the output translational diagonals

of the Jacobian method must all be equal if the input noise is spherical and Gaussian.

However, the covariances in the rotational states are differentiated from each other

due to the effect of object geometry on the Jacobian matrix.

The Jacobian method’s in the Z direction are accurate. However, the X and Y

estimates are optimistic a few orders of magnitude. In the rotational domain, the

Roll and Pitch estimates are accurate but Yaw is optimistic. Overall, the Jacobian

method is very optimistic in this case.

Figure 11. Point to Point method translation and rotation estimates on an X-Y plane
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The point to point method accurately estimates Z but has inconsistent results for

X and Y. X and Y are optimistic at low noise levels and pessimistic at high noise

levels. The reason for this is that as the input noise decreases, it reaches an error case

described in Figure 6. When this happens, a “pinch point” error occurs as the normal

vectors point in every direction and the algorithm becomes unable to determine what

direction the uncertainty is coming from. The same effect is seen in the rotational

states. Roll and Pitch are accurate but Yaw is inconsistent. Yaw is optimistic at low

noise levels and pessimistic at higher noise levels. The behavior of the point to point

method is highly dependent on the ratio of the input noise to the resolution of the

reference model.
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Figure 12. Point to Plane method translation and rotation estimates on an X-Y plane.
X, Y and Yaw predictions are at large initial value and are not shown.

For the point to plane method, in the 1x2 plane case, all the normal vectors are

guaranteed to be parallel to the Z axis. Thus, for the translational states, Z is an

accurate estimate. However, because the edges of the rectangle are a discontinuity and

all the normal vectors point exactly in the Z direction, X and Y have no information

and their covariance diagonals remain at their large initial value. This is the error

case show in Figure 8 The same is true for the rotational states, Roll and Pitch

are accurate while no information is provided for Yaw. Thus, the X, Y and Yaw

predicted covariance are not shown on the plot. Overall, the Point to Plane method
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is a pessimistic predictor for the 1x2 rectangle.

Figure 13. Root Mean Squared Log Error of predictions for 1x2 plane

4.2.2 1x2x3 Cuboid.

This test case runs ICP through a convex shape in the form of a cuboid with

length 1 in the X direction, 2 in the Y direction and 3 in the Z direction. The faces

in the positive and negative X directions are the largest so X is expected to have

the lowest ICP covariance while the sides facing the Z directions are the smallest,

indicating that the Z direction’s covariance should be the highest. The results are

shown in Figures 14, 15 and 16.

Figure 14 shows the results from the Jacobian method. Like with the 1x2 rectan-

gle, the Jacobian method provides an identical estimate for each of the translational

states. Because the Jacobian method assumes perfect sensed point matching, it is

the most optimistic in its covariance estimate. A similar effect can be seen in the

rotational states.
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Figure 14. Jacobian method translation and rotation covariance estimates on a 1x2x3
Cuboid (All translational predictions are identical)
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Figure 15. Point to Point method translation and rotation covariance estimates on a
1x2x3 Cuboid
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Figure 15 shows the results from the Point to Point method. Overall, all the

predictions have lower covariance than the Monte Carlo results. This is because the

error case show in Figure 6 errs on the side of optimism. In aggregate, these optimistic

errors combine together in the EKF to result in an output covariance estimate that

is more optimistic than the Monte Carlo.

Figure 16. Point to Plane method translation and rotation covariance estimates on a
1x2x3 Cuboid

Figure 16 shows the results from the Point to Plane method. Overall, the point

to plane method is the best fit for Monte Carlo results. This is due to the fact that

it’s worst case for each individual point errs on the side of pessimism. When iterated
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over the entire model, the pessimistic errors wash out and have little effect on the

final covariance estimation.

Figure 17. Root Mean Squared Log Error of predictions for 1x2x3 cuboid

4.3 Prakhya vs Point to Plane

In this test, Prakhya’s covariance estimation method was compared against our

Kalman filter approach. This test was performed on a 1x2x3 cuboid and both methods

were in their point to plane configuration. The same method for computing normal

vectors was used for both algorithms and the mean squared error noise estimation

was adapted for use by the Prakhya method.

The results show that the two estimation techniques have virtually identical pre-

dictions for the translational covariance states. On the plot for translational predic-

tions, the Prakhya predictions and our predictions are almost perfectly overlaid. The

rotational states are also very similar but diverge slightly at higher input noise levels.

Another comparison made between the two approaches was in algorithm runtime.

Our algorithm has the advantage of approximately 2 orders of magnitude faster run-

time, it scales linearly with the number of points in the model while the existing
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Figure 18. Prakhya vs our Covariance estimates on a 1x2x3 Cuboid. The methods
produce almost identical predictions

method scales quadratically. This is due to the large matrix multiplication necessary

for Prakhya’s method. In Equation 31, the input sensor noise is represented by a

3n×3n matrix whereas in Algorithm 3, the input noise, R, is represented by a scalar.

4.4 Simulated Aerial Approach

In this test, the point to point and point to plane methods are applied to a sim-

ulated aerial approach of the receiver aircraft to the tanker. To gain a more realistic

evaluation of performance, the full vision pipeline is being simulated. Cameras in the
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Figure 19. Prakhya vs our runtime 1x2x3 Cuboid

Figure 20. ICP performed on simulated receiver aircraft

virtual world are mounted to the underside of the tanker and collect images of the

receiver aircraft model. The stereo images are passed through stereo block match-

ing to create a sensed point cloud which is then fed to ICP. Figure 20 shows the

42



experimental setup.

Because stereo camera vision is used to generate the input point clouds, it is

necessary to clean the input data and reject outliers. The outlier rejection method

described in Section 3.5.2 is applied to this test.

The receiver aircraft is initially placed at 25 meters in front of the camera and is

moved back in 1 meter increments to a distance of 60 meters. At each position, 100

trials of ICP are run on the stereo images to create a Monte Carlo truth covariance.

To inject randomness into the simulation, a small point light source is moved to a

random location around the tanker after each trial. The goal of this is to “shuffle”

the visually generated point cloud without substantially changing the simulation pa-

rameters. The results of this experiment are shown in Figures 21, 22 and 23. The log

of the Covariance matrix diagonals are plotted against range from the cameras.
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Figure 21. Jacobian method covariance estimates vs Monte Carlo on simulated tanker
approach (All translational predictions are identical)
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Figure 22. Point to Point covariance estimates vs Monte Carlo on simulated tanker
approach
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Figure 23. Point to Plane method covariance estimates vs Monte Carlo on simulated
tanker approach

46



Figure 24. RMSLE of AAR Simulation

The AAR Monte Carlo results show that the ICP covariance scales exponentially

with range from the camera (the covariances form straight lines on the logarithmic

plot), justifying the need to compute the sensor error live. The Jacobian method is

very optimistic for all cases and again does not make distinction between uncertainty

in the translational directions. This experiment reflects previous trends in that point

to plane performs the best out of the methods tested. In this test, all of the methods

tested show overconfidence. The point to point method is off by a factor of 8 on

average in its worst dimension (X) and the point to plane estimate is off by a factor

of 4 on average in its worst dimension (Z).

Because the point to plane method has performed the best, it is used as the basis

of testing for the following two sections.

4.5 AAR Calibrated

To further improve results, a calibration step was applied. First, a calibration

trial is run to compare prediction performance against the Monte Carlo and generate

calibration parameters. The results of this calibration trial are shown in Figure 25
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Figure 25. Pre-Calibration Trial

The table shows the ratios of the Monte Carlo covariance vs the Point to Plane

predictions. The greatest outliers are highlighted in yellow. Prior to calibration, the

worst case covariance estimate could is overconfident by 8.4×. Calibration parameters

are collected from this run as described in Section 3.5.2.

Then the calibration is applied to an independent run using those parameters.

48



The results of this test are shown in Figure 26.

Figure 26. Post-Calibration Trial

After calibration, The predicted state covariance have a maximum of 2.09× over-

confident and a minimum of 0.54× underconfident.

49



Figure 27. RMSLE Calibrated vs Uncalibrated

4.6 Degraded Sensor

Figure 28. Original Image vs Degraded Image

In this test, the Point to Plane method was tested under sensor degradation
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conditions. A 21x21 box filter was applied to simulate a degraded sensor by blurring

the input images. A real life analogue of this effect would be water condensation

building up on the camera lenses.

First, calibration parameters were collected under non-degraded conditions as

described in the previous section. Then, the simulated aerial approach is run with

those calibration factors with the blur filter applied. The results are shown in Figure

29.

The results show that the blur increased the Monte Carlo covariance by roughly

a factor of 4 for all the states at 25 meters range. For the majority of the states, this

was well tracked by the algorithm and the predicted covariances were increased to

account for this. The worst case states at minimum range were Y translation at 2.59

× overconfident and pitch rotation at 3.18 × overconfident. The Y and pitch states

were consistently overconfident after the blur was applied.

Overall, the prediction deivated from the Monte Carlo by a very small margin after

the blur was applied. The test shows that the increased covariance of the degraded

cameras was able to be tracked with no prior knowlege of the sensor degradation.
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Figure 29. Sensor Degraded Performance
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V. Conclusions

This thesis introduces a novel method to estimate the Covariance Matrix of an

ICP pose estimation problem. This approach uses the EKF update step to consolidate

the information generated by each point in the sensed point cloud with each point

being treated as a scalar measurement against its local surface normal vector.

This method was tested against Monte Carlo simulations of basic shapes as well as

on a fully simulated stereo vision application of Automated Aerial Refueling. Results

show that of the two methods introduced, the point to plane method consistently

is the best predictor of ICP covariance. Compared against an existing method by

Prakhya et al., this approach produced near-identical covariance estimations while

having considerably faster runtime.

In this approach, the input sensor covariance is recreated from error statistics of

the measured point cloud so that no information about the sensor setup is needed

prior to computation. This reduces the amount of calibration required to run sensor

fusion. Because the measurement noise is computed for each frame instead of of

loaded a-priori, the system is more robust to sensor degredation.

For future work, a full sensor fusion application of Automated Aerial Refueling can

be implemented using the covariance matrix from this method. More generally, this

ICP covariance estimation method can be directly applied to point clouds generated

from other sources such as LIDAR, Structured Light, or 3D scanners.

53



Bibliography

1. Camera Calibration and 3D Reconstruction OpenCV documentation. https:

//docs.opencv.org/master/d9/d0c/group__calib3d.html. Accessed: 2021-

02-12.

2. K Somani Arun, Thomas S Huang, and Steven D Blostein. Least-squares fit-

ting of two 3-d point sets. IEEE Transactions on pattern analysis and machine

intelligence, (5):698–700, 1987.

3. Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor

fusion IV: control paradigms and data structures, volume 1611, pages 586–606.

International Society for Optics and Photonics, 1992.

4. Martin Brossard, Silvere Bonnabel, and Axel Barrau. A new approach to 3D

ICP covariance estimation. IEEE Robotics and Automation Letters, 5(2):744–

751, 2020.

5. Andrea Censi. An accurate closed-form estimate of ICP’s covariance. In Pro-

ceedings 2007 IEEE international conference on robotics and automation, pages

3167–3172. IEEE, 2007.

6. Rebecca Grant. Refueling the RPAs. https://www.airforcemag.com/article/

0312rpa/. Accessed: 2021-01-18.

7. Berthold KP Horn. Closed-form solution of absolute orientation using unit quater-

nions. JOSA A, 4(4):629–642, 1987.

8. Berthold KP Horn, Hugh M Hilden, and Shahriar Negahdaripour. Closed-form

solution of absolute orientation using orthonormal matrices. JOSA A, 5(7):1127–

1135, 1988.

54



9. Daniel T Johnson, Scott L Nykl, and John F Raquet. Combining stereo vision and

inertial navigation for automated aerial refueling. Journal of Guidance, Control,

and Dynamics, 40(9):2250–2259, 2017.

10. David Landry, François Pomerleau, and Philippe Giguere. CELLO-3D: Estimat-

ing the Covariance of ICP in the Real World. In 2019 International Conference

on Robotics and Automation (ICRA), pages 8190–8196. IEEE, 2019.

11. F Landis Markley and Daniele Mortari. Quaternion attitude estimation using

vector observations. The Journal of the Astronautical Sciences, 48(2):359–380,

2000.

12. Peter S Maybeck. Stochastic models, estimation, and control. Academic press,

1982.

13. Arthur GO Mutambara. Decentralized estimation and control for multisensor

systems. CRC press, 1998.

14. Arne Nordmann. Epipolar Geometry.svg, 2006.

15. Scott Nykl, Chad Mourning, Erik Nykl, David Chelberg, and Trent Skidmore.

Jpals visualization tool. In 2012 IEEE/ACM 16th International Symposium on

Distributed Simulation and Real Time Applications, pages 3–10. IEEE, 2012.

16. François Pomerleau, Francis Colas, and Roland Siegwart. A review of point cloud

registration algorithms for mobile robotics. 2015.

17. Sai Manoj Prakhya, Liu Bingbing, Yan Rui, and Weisi Lin. A closed-form es-

timate of 3D ICP covariance. In 2015 14th IAPR International Conference on

Machine Vision Applications (MVA), pages 526–529. IEEE, 2015.

55



18. Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp algorithm. In

Proceedings third international conference on 3-D digital imaging and modeling,

pages 145–152. IEEE, 2001.

19. Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense

two-frame stereo correspondence algorithms. International journal of computer

vision, 47(1):7–42, 2002.

20. Rick Yuan, C Taylor, and S Nykl. Accurate covariance estimation for pose data

from iterative closest point algorithm. In 2021 ION International Technical Meet-

ing.

56



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

02–18–2021 Master’s Thesis Sep 2019 — Mar 2021

Accurate Covariance Estimation for Pose Data from Iterative Closest
Point Algorithm

Rick H. Yuan

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-21-M-097

AFRL/RQQC
Dan Schreiter
WPAFB OH 45433-7765
COMM 937-938-7765
Email: dan.schreiter@us.af.mil

AFRL/RQQC

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

One of the fundamental problems of robotics and navigation is the estimation of relative pose of an external object with
respect to the observer. A common method for computing the relative pose is the Iterative Closest Point (ICP)
algorithm, where a reference point cloud of a known object is registered against a sensed point cloud to determine
relative pose. To use this computed pose information in down-stream processing algorithms, it is necessary to estimate
the uncertainty of the ICP output, typically represented as a covariance matrix. In this thesis a novel method for
estimating uncertainty from sensed data is introduced. This method was exercised in a virtual simulation of an
automated aerial refueling (AAR) task. While prior work assumed the sensor itself had been carefully characterized
a-priori, the introduced method learns the sensor uncertainty from live data, making the proposed approach more
computationally efficient and robust to sensor degradation than prior techniques.

Aerial Refueling, Sensor Fusion, Computer Vision

U U U U 56

Dr. Clark N. Taylor, AFIT/ENG

(937) 668-1590; Clark.Taylor@afit.edu


	Accurate Covariance Estimation for Pose Data from Iterative Closest Point Algorithm
	Recommended Citation

	tmp.1627480556.pdf.ZFsLU

