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Abstract

This thesis explores fog of war concepts through three submitted journal articles.

The Department of Defense and U.S. Air Force are attempting to analyze war sce-

narios to aid the decision-making process; fog modeling improves realism in these

wargame scenarios. The first article “Navigating an Enemy Contested Area with a

Parallel Search Algorithm” [1] investigates a parallel algorithm’s speedup, compared

to the sequential implementation, with varying map configurations in a tile-based

wargame. The parallel speedup tends to exceed 50 but in certain situations. The

sequential algorithm outperforms it depending on the configuration of enemy loca-

tion and amount on the map. The second article “Modeling Fog of War Effects in

AFSIM” [2] introduces the Fog Analysis Tool (FAT) for the Advanced Framework for

Simulation, Integration, and Modeling (AFSIM) to introduce and manipulate fog in

wargame scenarios. FAT integrates into AFSIM version 2.7.0 and scenario results ver-

ify the tool’s fog effects for positioning error, hits, and probability affect the success

rate. The third article “Applying Fog Analysis Tool to AFSIM Multi-Domain CLASS

scenarios” [3] furthers the verification of FAT to introduce fog across all warfighting

domains using a set of Cyber Land Air Sea Space (CLASS) scenarios. The success

rate trends with fog impact for each domain scenario support FAT’s effectiveness in

disrupting the decision-making process for multi-domain operations. The three ar-

ticles demonstrate fog can affect search, tasking, and decision-making processes for

various types of wargame scenarios. The capabilities introduced in this thesis support

wargame analysts to improve decision-making in AFSIM military scenarios.
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EXPLORING FOG OF WAR CONCEPTS IN WARGAME SCENARIOS

I. Introduction

Military leaders use battlespace intelligence and environmental information to

make timely strategic and tactical decisions that advance their operational objec-

tives while attempting to deny their opponent’s actions. Simulation programs of

computer-based wargames model battlespace events to aid decision-making so lead-

ers may choose a more optimal option, from a set of many, to efficiently accomplish

objectives. This research explores areas of uncertainty in war scenarios to find sources

of fog, that could hinder decision-making processes [4] documented in three submitted

journal articles. The article “Navigating an Enemy Contested Area with a Parallel

Search Algorithm” [1] explores fog by finding the configurations of enemy unit loca-

tions on the map that lead to the greatest speedup for a parallel search algorithm.

Solutions exist where the sequential algorithm outperforms the parallel algorithm and

these results demonstrate fog in enemy locations can be used to disrupt the search

and tasking processes. The article “Modeling Fog of War Effects in AFSIM” [2]

creates the Fog Identification and Manipulation Methodology (FIMM) to introduce

fog into sensors and communications and develops the Fog Analysis Tool (FAT) to

implement FIMM into the Advanced Framework for Simulation, Integration, and

Modeling (AFSIM) for verification. The sensors and communications contribute to a

commander’s perception of enemy forces in the battlespace. Fog distorts a comman-

der’s perception of a situation, which can skew the decision-making process and cause

mission failure. The article “Applying Fog Analysis Tool to AFSIM Multi-Domain

CLASS scenarios” [3] utilizes FAT to investigate the impact of fog effects in multi-
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ple warfighting domains and uses the trends to support the idea FAT is effective in

multi-domain operations and useful for future war analysis. FAT’s effectiveness in

multiple domains solidifies the idea that the identification and manipulation of fog in

sensors and communications are effective for providing options for military simulation

analysts to improve decision-making in wargames

1.1 Problem and Motivation

Military leaders must consider large amounts of information across multiple warfight-

ing domains to make timely decisions and further the mission. Simulation models

attempt to realistically emulate war scenarios to analyze courses of action and choose

the optimal path. A method to provide options for viewing levels of uncertainty, or

fog, in a war simulation can further the realism for war simulations. The method

needs a general definition of fog sources and how the sources can be manipulated

for simulation analysis. An implementation of the method for multi-domain analysis

verifies the method’s effectiveness for viewing the impact on future scenarios.

The problem stems from a need to create a decision aid for military leaders for

multi-domain operations. The U.S. Air Force is researching an intuitive sensing grid

concept that uses fused sensor data from multiple platforms to provide decision makers

information about contested environments [5]. The sensing grid provides leaders at

the strategic and tactical levels to gain and maintain a decision advantage against

adversaries. The grid assumes sensors collect the information and transmit it through

communication links to reach a centralized processing entity. Leaders want the most

accurate depiction of the environment possible, so the identification of fog sources

and how fog affects the decision-making process allow military analysts to account

for fog when processing the information and sending the data to decision makers.

A decision-making agent parallels to the sensing grid concept, but the agent pro-
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vides decision-making capabilities instead of being a decision aid for human decision-

makers. When collecting, processing, and forming a decision based on environmental

information, a decision-making agent could incorporate fog into a course of action

(COA) analysis. Accounting for fog in COAs may alter which option is considered

optimal. The identification and manipulation of fog for multiple domains allows for

a more realistic approach to forming decisions and decision aids.

1.2 Research Roadmap

The following roadmap provides the overall research objectives and goals.

1. Identify sources of uncertainty in wargame scenarios that affect the decision-

making process for commanders.

2. Create a method to identify and manipulate uncertainty in wargames with sen-

sors for data collection and communications for data transmission.

3. Develop a tool for an existing wargame simulation to implement the method

and verify the impact.

4. Analyze multi-domain scenarios to verify the tool’s effectiveness in disrupting

the decision-making process across all warfighting domains.

The roadmap focuses on the identification and manipulation of fog effects. The

parallel search article focuses on finding sources of uncertainty in wargame scenarios.

The paper that introduces FIMM and FAT target the second and third items. The

last article provides results to support the fourth item. Each article presented in this

paper is shown in the journal format.
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II. Background

This chapter provides a background on wargames and military simulations relating

to command and control (C2), fog of war, decision-making models and processes,

the Advanced Framework for Simulation, Integration, and Modeling (AFSIM), and

multi-domain operations. The Fog Analysis Tool (FAT) targets C2 processes and

decision-making models in AFSIM to introduce and manipulate various fog effects at

different levels. The topics discussed in this section directly apply to the methodology

of each article. The articles consider introducing fog effects for wargame scenarios in

AFSIM for disrupting decision making in joint operations.

2.1 Military Simulations and Wargaming

A wargame is an armed conflict simulation game with friendly, enemy, and control

teams. The friendly, or blue team, clashes with the enemy forces, or red team, to

accomplish opposing objectives. The control, or white team, provides adjudication,

analysis, and after-action reporting [6]. A wargame has three major components: a

map, a set of units, and rules. The map represents the battlespace and can provide

a grid or geographic view. Units represent various military formations. Rules pro-

vide the framework for playing the game, as well as various tables for the resolution

of combat and such. A wargame may aim to provide a large and realistic experi-

ence or a smaller and simpler experience depending on the needs of the analyst [7].

The following sections provide a background of wargames and the processes military

decision-makers use in war.
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2.1.1 Wargame Background

A wargame consists of the following components to provide a structure for simu-

lating war. The battlespace is the area of conflict where both teams operate. Grid

maps and geographic-based maps represent the battlespace with boundaries. The

limitations of the wargame, such as operating within map boundaries and attacking

certain units, act as the rules of engagement (ROE). ROE are directives military au-

thorities issue to control combat engagement in war across the United States armed

forces [8]. A commander makes decisions with gathered information concerning the

adversary. The commander selects courses of action that leverage centers of gravity

to affect the enemy. The centers of gravity are the sources of power that provides

moral or physical strength, freedom of action, or will to act [9]. A course of action

is a decision path that accomplishes a commander objective in support of the over-

all mission. The commander may weigh multiple courses of action against a defined

scale to choose the best one. When there are no clear winners, the commander may

spend more time deciding than acting [9]. The courses of action identify an enemy

center of gravity the commander intends to attack and the commander uses the effect

when weighing the decisions. Wargames follow a chain of command structure where

a commander issues orders to subordinates and they execute the orders. The next

section discusses C2 and how commanders structure the command chain.

2.1.2 Command and Control

Military C2 is the exercise of authority and direction by a properly designated

commander over assigned and attached forces in the pursuit of the mission [10].

Wargames utilize C2 for structuring the chains of command, logistics and decision-

making processes. C2 enhances the ability of the commander to make sound and

timely decisions and successfully execute them. C2 uses decentralized execution of

5



centralized, overarching plans to provide unity of effort over complex operations. The

C2 tenets strengthen unity of effort: clearly defined authorities, roles, and relation-

ships; mission command; information management and knowledge sharing; commu-

nication; timely decision making; coordination mechanisms; battle rhythm discipline;

responsive, dependable, and interoperable support systems; situational awareness;

and mutual trust [11]. Today, joint commanders must make rapid decisions based

on overwhelming information available to them while incorporating the tenets of C2.

The next section provides a background on fog and areas where commanders may

experience uncertainty in decision-making.

2.2 Fog of War

War is a realm of uncertainty and a fog wraps around decision-making factors in

war in a varied level of uncertainty [4]. Therefore, fog of war is the uncertainty in

situational awareness experienced by participants in military operations. The goal is

to define where fog exists and allow the analyst to manipulate fog effects in virtual

wargame frameworks such as AFSIM. This section provides definitions for fog within

different domains of combat and processes commanders use to combat the fog of war

and create their desired effects.

2.2.1 Information-Related Capabilities

Joint Pub 3-13 introduces the information environment [12]. The Joint Force Com-

mander (JFC) controls forces from different warfighting domains: air, land, maritime,

and space domains, and the information environment including cyberspace. The in-

formation environment provides a prime opportunity to introduce fog in simulations

because it includes physical, informational, and cognitive dimensions that continu-

ously interact with individuals, organizations and systems. The physical dimension
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consists of C2 systems, decision makers and infrastructure that enable individual and

organizations to create effects. Physical platforms and their communication networks

reside in this dimension. The informational dimension collects, processes, stores, dis-

seminates, and protects information. The actions in this dimension affect the content

and flow of information. The cognitive dimension encompasses the minds of those who

transmit, receive, and respond to or act on information. This dimension focuses on

individual perception and decision making and factors in cognitive influencers such as

beliefs, emotions and motivations. This dimension is the most important component

of the information environment [12].

Information-related capabilities (IRCs) are the tools, techniques or activities that

affect any of the three dimensions of the information environment. The JFC employs

IRCs to influence the information flowing to and from a target audience in the physical

and information dimensions to affect the decision-making process. The response of

the target audience contributes to the desired end state. IRCs consist of capabilities

such as operations security (OPSEC), information assurance (IA), counter-deception,

physical security, electronic warfare (EW) support, and electronic protection. These

capabilities enable and protect the JFC’s C2 of force [12]. Table 1 provides the

components for this process.

The dimensions of the information environment provide access points for influ-

encing target audiences. Joint Pub 3-13 states the purpose of IRCs are to influence a

target audience [12]. Rules, norms, and beliefs govern the behavior of individuals and

groups. Rules are explicit regulative processes such as policies and laws. Norms are

regulative mechanisms accepted by the society. Beliefs are the collective perception of

fundamental truths governing behavior. The first step to cause an effect using IRCs

is to identify the target audience. The joint force studies the rules, norms, and beliefs

of the target audience. The joint force then produces effects to modify the behavior

7



Table 1: Process of Enabling and Protecting JFC’s C2 of Forces: The components
of this process aid the JFC to affect a target audience in the information environ-
ment [12].

Component Description
Information Data in context to inform or provide meaning for action.
Data Interpreted signals that reduce uncertainty.

Knowledge
Information in context to enable direct action. Explicit knowledge
articulates through words, diagrams, formulas, etc. Tacit knowl-
edge cannot articulate through those means.

Influence
The act of power to produce a desired output or end of a target
audience.

Means
The resources available to a national government, non-nation actor
or adversary in pursuit of its ends including public and private
sector assets.

Ways
How means apply to achieve the desired state. Ways are persuasive
or coercive.

Information-
Related
Capabilities

Tools and techniques using information to create effects and opera-
tionally desirable conditions within the dimensions of the informa-
tion environment.

Target Audi-
ence

An individual or group selected for influence.

Ends A consequence of the way of applying IRCs

of the target audience based on the information. The JFC then decides which IRCs

it can apply to individuals, organizations or systems to produce the desired affect.

Figure 1 illustrates the full concept of using IRCs in the information environment.

The joint force identifies the target audience and gathers information. Then the joint

force develops ways and means to influence the target audience and specific IRCs to

accomplish the objectives. Over time, the target end state changes.

Section 2.3.2 provides more information on C2 in a cognitive modeling context.

The next section identifies fog elements in command chains through established def-

initions of C2 functions.
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Figure 1: Information Environment: This figure shows the application of information-
related capabilities to achieve influence [12].

2.2.2 Identifying Fog Elements in Command Chains

This section identifies areas where information flowing to/from the commander

and the weapon system and sensor platform subordinates may become denied, tam-

pered, or inaccurate. This requires a definition of what functions make up the char-

acteristics of C2. Martin van Creveld lists the defining characteristics of C2 as the

following eight functions [13]. These functions provide similar processes to Lawson’s
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C2 model [14] and the Observe-Orient-Decide-Act (OODA) loop [15] in terms of

collecting information, analyzing the data, making a decision, and executing a plan.

The first function from Table 2 provides multiple factors of uncertainty. Informa-

tion collection is based on different types of measurement tools, sensors, and human

intelligence. Sensors may not always provide accurate readings and it is possible for

them to experience cutouts and degradation. Many measurement tools uses various

types of sensors to collect information such as weather, temperature, and air pressure.

Therefore, an accurate analysis of the sensors requires the analyst to vary the noise

on the data collection. The second function for handling the data provides areas

for fog as well. Communication networks for this research are a linked collection of

nodes where data enters a node and exits another node linked to the first one. If data

is already corrupted when entering a node, it remains so when exiting the network.

However, if data is accurate and precise when entering the network, it may not re-

main so. The network may drop packets of information or physically lose a link to a

node. An adversary may sit at a node the data is flowing through and tamper with

Table 2: Van Creveld Functions of C2: The eight functions list the defining charac-
teristics of command and control [14].

Function Description

1
Collecting information on own forces, the enemy, the weather and
the terrain

2
Finding means to store, retrieve, filter, classify, distribute and dis-
play the information

3 Assessing the situation

4
Analyzing objectives and finding alternative means for achieving
them

5 Making a decision
6 Planning based on the decision

7
Writing and transmitting orders as well as verifying their arrival
and proper understanding by the recipients

8
Monitoring the execution by means of feedback, at which the pro-
cess repeats itself
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the information before sending it back into the network. If a subordinate is sending

a commander coordinates to an enemy location, the commander may not receive the

correct information from either an inaccurate sensor reading or an uncertainty issue

with the communication network they use. For function seven, when the commander

believes they are receiving accurate information, they may send their kinetic units

to strike the area and end up hitting nothing or the wrong target. Functions three

through six describe the process for the commander to analyzing the available data,

form a decision, and create a plan for a tasking. Function eight also ties into the

first function because the commander needs the collected information to see if the

task is successful. This section identifies the critical areas in C2 decision-making to

encompass communication and sensor assets. The sensor components provide the

environment information and the communication components provide a channel for

the information to flow to and from the commander. The next section discusses

established methods for introducing fog into wargames and war scenarios.

2.2.3 Fog Elements in Wargames

Wargaming use different methods to introduce and define fog. John Setear pro-

vides a general method for defining and simulating fog in wargames [16]. Setear

provides the sources of fog of war as uncertainty about the enemy, enemy intentions,

and enemy forces. The natural environment facing the commander and the behav-

ior of the friendly forces are also sources of fog. One last important source is the

uncertainty about the underlying laws of war that govern the clash of arms on the

battlefield. Setear stresses the sources of fog affect commanders and environments at

all levels. This applies to strategic and tactical commanders and environments such

as deserts, forests, and the sea. Setear’s following methods aid the simulation of fog

of war in paper-based and computer-based wargames.
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1. Referees Real and Simulated. A referee holds all the information in the

scenario and may delay or interfere with orders. Location-masking and strength-

masking mechanisms allow the player to search for enemy strength and location

of forces. This implements the fog source of the commander’s need to know

where the strength of the enemy resides.

2. Counters that Conceal. A counter-based method uses a single piece with a

counter value to represent an unknown number of units. For example, a single

fighter piece with a value of four represents four fighters. This method shows

players the fog of war that results from uncertainty about the enemy’s units.

The untried units method keeps the counter value of all units hidden and reveals

the counter values of two opposing units at the moment of combat to determine

who wins.

3. Counters Potentially in Play. A die roll introduces a total-force-composition

uncertainty by determining whether or when certain reinforcements enter a map

based on the value of the roll. Wargames should use this method when initial

order of battle is insignificant or when historical accuracy is unimportant.

4. The Rulebook. Rulebook tools fall into two areas of methods: modifications

to sequence of play (or the method of determining the end of a game turn)

and specific rule cases. The former methods introduce fog of war by limiting

a player’s ability to predict what the capabilities of both friendly and enemy

units are in the next turn. The latter methods introduce fog in a relatively

limited area for a relatively brief period of time. One example of Rulebook fog

is introducing weather into a wargame. The Rulebook needs specific criteria for

the type and duration of weather and the conditions for triggering it.

5. Modifying the Map. Another source of fog is the uncertainty of the terrain
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in which players fight. The outcomes of fighting on a certain terrain are based

on the rules of the scenario. However, this creates an area of importance for

both players to learn the terrain values and create strategies based on those

values. This excludes air and sea units.

6. The Laws of War. Two neglected areas of fog are the goals of the enemy and

the laws of war. Since both players know the victory conditions, the wargamer

knows the overall intentions of his opponent in all their details. History shows

commanders and politicians do not exactly know the precise idea of the aims

of their opponent. By introducing a roll or a choice of a victory condition from

a menu of goals and recording it only to that player, the intentions of each

opponent remains uncertain to an extent. The laws of war are relationships

among physical variables that determine the outcome of a given engagement

between units. A player’s first few rounds of a wargame closely simulates the

fog from the laws of war since the player is still learning how the game works.

The intent of most wargamers is not to closely simulate fog but to either best

their opponent in a competitive setting or to learn historically how a battlefield ex-

actly played out. Setear concludes rules simulating uncertainty help the efforts of a

wargamer to learn why events happen as they do and discover in the long run what

characteristics a good commander must possess [16].

Hagelback and Johansson scope the elements of fog in a real-time strategy game

into the location of the enemy bases, exploration of unknown terrain, and the un-

predictability of explored terrain [17]. Mason describes fog of war in most real-time

strategy games is a term used to describe the mechanics of making only limited por-

tions of a game map viewable for a combination of the areas immediately surrounding

the player’s character and all allied units. Unit movements shift these viewable zones

and causes previously-visited areas to fade out of sight. This mechanic dynamically
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constrains the player’s information, as areas outside their current viewing zones may

contain active entities of interest. Progression requires eventual confrontation with

whatever lies in the surrounding fog, forcing players to think strategically about how

to prepare for the unknown [18]. This fog method focuses on uncertainty about terrain

as well as the uncertain about the strength and location of enemy forces.

This section defines what fog elements are for both paper and computer wargames.

The main areas of fog are the uncertainty of the strength and location of enemy forces,

the natural environment facing the commander, behavior of the friendly forces, and

the uncertainty about the underlying laws of war. This section also discusses how

these areas of fog implement into wargames and real-time strategy games. The next

section provides the mission routing problem to illustrate an instance of uncertainty

in a scenario.

2.2.4 Mission Routing Problem

The journal article for Journal of Parallel and Distributed Computing (JPDC)

uses a variant of the mission routing problem for a pilot to navigate a contested

enemy battlespace. The mission routing problem is a type of combinatorial problem.

The problem assumes a fleet of aircraft and multiple aircraft. Each aircraft is assigned

a group of targets to visit. The problem is to determine the order in which to visit the

targets. This maps to the traveling salesman problem where the starting location is

the same as the ending city and the targets represent the cities to visit. The distance

between cities is redefined as distance between starting location and cities [19]. The

problem in the JPDC article represents the map as a grid. The tiles in the grid

represent the starting location, enemy tiles, and the targets. The aircraft must avoid

enemy tiles and reach the target. This variation of the mission routing problem

assumes none of the tiles except the starting location are known.
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2.3 Decision-Making Models and Processes

This section discusses several decision-making models and processes. These mod-

els and processes provide background for military decision-making and the C2 model

used to create the Fog Identification and Manipulation Methodology (FIMM).

2.3.1 OODA Loop

The OODA loop is a four-step approach to decision-making that focuses on fil-

tering available information, putting it in context and quickly making the most ap-

propriate decision while also understanding that changes can be made as more data

becomes available [20]. United States Air Force (USAF) Colonel John Boyd theorized

the OODA loop to originally express an approach to tactical engagement, but later

he expanded the idea to incorporate broad strategic action [15].

Maneuver warfare is a military strategy that emphasizes disrupting the oppo-

nent’s decision-making process in order to defeat the enemy. The OODA loop uses

this strategy to gain an advantage over the adversary. Mental models provide a rep-

resentation of human behavior and the orientation phase uses these models. The

decision-making phase relies on situational awareness. This concept is the compre-

hension of environmental stimuli and it involves perceiving and understanding all

components of a situation. The OODA loop aims to minimize reaction time, the time

that elapses between a stimulus and the response given to that stimulus [20].

The OODA loop consists of four main phases [21] [20] [22]. The first phase, Ob-

serve, gathers information pertinent to the decision at hand. Information appears

internally through feedback loops and externally through sensors or other informa-

tion sources. The second phase, Orient, consists of destruction and creation and

involves the greatest amount of cognitive effort. The decision maker destructs the

main problem into smaller sub-problems that he or she understands. With the un-

15



derstood knowledge of the sub-problems, the decision maker creates a plan of action

using solutions for the sub-problems and combining the actions into a unified task.

If the decision maker fails to create a plan, he/she may concede defeat. The third

phase, Decide, contemplates the plans available to the decision maker. If the decision

maker can only construct one feasible plan, the decision is simply whether or not to

execute. If there is more than one overall plan, the decision maker chooses one as a

course of action. The decision often involves weighing the risk or cost of a plan to

its potential benefit. A single superior choice results in a confident and rapid deci-

sion. However, a few or many same-level decisions result in a longer decision-making

time. The fourth phase, Act, represents the execution phase where the decision maker

executes the chosen decision. The OODA loop phases execute simultaneously, not

sequentially [22]. Figure 2 illustrates the OODA loop and its four phases.

The OODA loop provides a basic representation of the decision-making process.

The next section presents a C2 model to illustrate the recursive nature of decision

making.

2.3.2 Lawson’s Command Control Model

Joel Lawson showcased his model in 1981 to create a military C2 system deriving

from a higher national or political desire to maintain, or to change, the status quo

in a contested battlespace [14]. The C2 system incorporates the ability to perceive

or sense the state of its environment, compares the perception to a specified desired

state, and takes action to force the environment into the desired state. This approach

includes information gathering and processing as well as decision-making, similar to

the OODA loop. The model functions at different levels of the chain of command

and it requires the commander to receive some sort of visual representation of the

environment such as charts, maps or electronic displays.
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Figure 2: OODA Loop: The process consists of the four stages where the decision
maker observes the environment, forms possible decisions, makes a decision and then
executes the decision [20].

Figure 3 illustrates the Lawson C2 model process for a single unit. The individual

unit senses the environment, processes the information and then takes action. At the

same time, the commander up the chain manages multiple units and holds an array of

sensors. This allows the process to occur recursively, however, this is above the scope

of this research. Since decisions in war may save or lose lives, the cost of a wrong

decision is higher in this model than in a management model. Management is the

efficient use of resources internally to deal with a benign or neutral environment. C2 is

the effective use of resources to deal with an external hostile environment. Therefore,

time is an important parameter in this model so it introduces a time line analysis

component. The time line analysis presents the timeline from the start to finish of
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Figure 3: Lawson C2 Model: The Lawson C2 model process. The system perceives
the environment, compares it to the desired state, and takes action to force the
environment into the desired state [14].

each scenario. Each major event appears on the timeline from sensing to execution

of command [14].

2.4 Advanced Framework for Simulation, Integration and Modeling

AFSIM is an objected-oriented C++ library that is used to create simulations

that can model platform interactions in a geographic context. Platforms are top-level

objects in the simulation and represent physical entities such as vehicles, buildings

or living beings. Systems and attributes attach to platforms to provide functionality

and specialization. Platforms interact internally or externally through processes such

as sensor detections, collisions, and communications. AFSIM provides several core

applications to simulate scenario input and generate post-analysis output. The AF-

SIM ecosystem includes a suite of applications such as Wizard to provide a graphical
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user interface (GUI) for manipulation of the system [23]. This section explores the

AFSIM applications, architecture, and source code development.

2.4.1 Main Suite Applications

This section describes the function of the core AFSIM suite applications. The

general flow for a scenario consists of scripting the scenario in the Wizard integrated

development environment (IDE), executing the scripts through the constructive Mis-

sion application or real-time Warlock application then viewing the completed simula-

tion results in Mystic. The next three sections illustrate these applications and their

slight differences.

2.4.1.1 Wizard

Wizard is an IDE that provides interfaces to aid with scripting and simulation

as well as rapid platform integration. Wizard edits scenario files, executes AFSIM

scenarios and visualizes the output [24]. The application also highlights file syntax,

flags unknown commands, and provides context-sensitive documentation. It uses

an auto-completion feature and a script debugger to minimize the time required to

develop and debug models and scenarios [25].

2.4.1.2 Warlock

Warlock is the Operator-in-the-Loop (OITL) tool designed to interact with the

simulation engine for real-time analytical capabilities. This application provides

graphical views of AFSIM scenarios in real-time and allows for mid-simulation ma-

nipulation [24]. Warlock also facilitates the creation of cells of operators where each

only have access to virtual information collected by that cell’s platform. For exam-

ple, there is a Blue cell of friendly platform operators and a Red cell of adversary
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platform operators. Both cells have imperfect information about the other. AFSIM

can add further realism to the wargame by degrading the flow of information between

members of the same cell. Warlock also supports the creation of a White cell that

has perfect information about all platforms, where it leverages to control the flow of

the overall wargame [25].

2.4.1.3 Mystic

Mystic (formerly Results Visualization) displays AFSIM components and plat-

forms in a geographical context. The application allows the user to playback the

scenario results in real-time, or faster, while viewing the position of each platform as

well as platform interactions and sensor volumes [24].

2.4.2 Framework Architecture

AFSIM is an object-oriented, C++ simulation environment that emulates cus-

tomized engagement and mission level warfare simulations. The framework includes

a class hierarchy of simulation objects, including data driven platforms, movers, sen-

sors, communications networks, processors, weapons, and simulation observers. Sim-

ulation and Event classes exist to control time and event processing for AFSIM-based

models, and the logging of entity data. The framework supports a common geospa-

tial environment and terrain representation. A general-purpose scripting language

provides access to framework objects using text input files and the ability to run any

AFSIM application in both constructive (batch processing) and virtual (real-time)

modes [26]. Figure 4 illustrates the framework’s high-level architecture while Table 3

provides descriptions for AFSIM services. The framework services make up the bulk

of the simulation operations while platforms primarily use components.

Platforms are container data structures that hold components and information.
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Figure 4: AFSIM High-Level Architecture: The framework consists of services and
components that extend through extensions and plugins [27].

Platforms consist of physical components, mental components, information, attributes,

and links. Figure 5 displays the architecture of a platform and the relationships be-

tween its internal components.

Movers maintain the kinematic state (position, orientation, speed, acceleration,

etc.) of the platform. A communication device transmits and receives messages be-

tween platforms using external links. The framework allows for wired or wireless

devices, using transmitters, receivers, and antennas to capture the full physical as-

pects of the communications systems. A sensor creates measurements and transmits

them over links in track messages. Sensors often utilize transmitters, receivers, and

antennas. A weapon prevents the operation of some other object either permanently

or temporarily. A processor defines behaviors or computational algorithms much like

a human brain or computer [23].

The Warlock Framework (WKF) is the common framework written to support all
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Table 3: AFSIM Services and Descriptions: The services provide processes for creating
simulations [23] [27].
Service Description

Scenarios
Provide scenario input processing, type lists, and
scripts.

Simulations
Provide time-based event processing and maintain
platform lists.

Thread Management
Provides threading and multi-threading management
capabilities.

Extensions and Plug-Ins
Supply a generic method of adding new services and
components.

Script
Provides the infrastructure to implement and extend
the AFSIM scripting language.

Observer
Supplies a generic publish-subscribe service for ex-
tracting data from simulations.

Tasking
Allows for inter-platform tasking and behavior mod-
eling.

Tracking
Allows for track formation from sensor measurements
and track correlation and fusion.

Geospatial Data supplies terrain and line-of-sight data.
Distributed Simulation
Interfaces

Simulation Interfaces applies interface standards for
simulation interoperability (IEEE 1278 & 1516).

Utilities
Supply earth models, coordinate frames, math rou-
tines, artificial intelligence constructs, etc.

AFSIM GUI applications from section 2.4.1. Section 2.4.3 describes how plugins use

the WKF and the plugin development process [28].

2.4.2.1 Tracks

Tracks are perceptions of other object relative to a single platform. Tracks only

hold attributes for objects perceived as known and they contain information such as a

position, coordinate, speed, etc. They relay the information back to the platform that

perceives the object and owns the track. If the track does not perceive the object, it

does not show data for that object [23].

22



Figure 5: AFSIM Platform Architecture: A platform holds information about its
environment and components to interact internally and externally. Each platform
also has attributes to distinguish itself apart from other platforms. [23].

2.4.2.2 Sensors

A sensor provides the ability for a platform to detect other platforms and their

components. AFSIM contains several predefined sensors including but not limited to

Radio Detection and Ranging (RADAR), infrared, and acoustics [27]. The various

types are in Table 5. Sensors use azimuth and elevation limits to define the area of

influence and hold the abilities to detect jamming and to form tracks. The user may

define error sigmas for sensors that form tracks and the sigmas provide error margins

on the position measurements from the sensor [23].

Sensors use commands in the framework to define characteristics. Track reporting

commands define the criteria for establishing a track and the quality of information

reported in the tracks produced. Sensors take advantage of error models to provide a
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method for measuring error in the sensor object. Table 4 displays the sensor functions

related to track reporting and error models.

The azimuth, elevation, range, and range rate error sigma commands allow the

analyst to specify a standard deviation of the data based on the truth information

the sensor reports. For example, a sensor reports a truth value of 800 meters but the

error sigma for range is 20 meters. The perceived values could be any number in the

range 780 to 820 meters. The hits to establish and maintain the track is M of N hits.

This depends on the signal strength of the transmitter and if the perceived object

remains in view. The establish and maintain probability provides an additional layer

of whether the hits create or maintain the track of the perceived object.

The none error model is a dummy model equivalent to no error. The standard

sensor error model only uses the azimuth, elevation, range and range rate error sig-

mas. The radar sensor error model uses the beam errors specified by the receiver or

transmitter data.

The trimsim error model defines the various sources of error used in the Time Dif-

ference of Arrival (TDOA) algorithm. This pairs with the WSF TRIMSIM PROCESSOR.

This processor models the effect of reference system errors on data fusion for air-to-

ground targeting. The TDOA algorithm generates measurement errors of a target

point in three dimensions based on errors from various sources. These errors are ap-

plied to the detection information of the master sensor. The sensors must be passive

type sensors.

The bistatic error model uses the sensor mode azimuth error sigma and elevation

error sigma. The instantaneous measurement calculates the dynamic range sigma.

This command is mutually exclusive with range sigma, transmit only, and compute

measurement errors. This model requires a direct line of sight to both the transmitter

(direct signal) and to the target (reflected signal) to get a successful detection. AFSIM
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Table 4: AFSIM Sensor Functions: These functions provide the capabilities for ma-
nipulating tracks [23].

Function Parameters

Track Reporting Commands
azimuth error sigma [angle-value] OR [real-value] percent of true range
elevation error sigma [angle-value] OR [real-value] percent of true range
range error sigma [angle-value] OR [real-value] percent of true range
range rate error sigma [speed-value]
hits to establish track M hits of N hits
hits to maintain track M hits of N hits
establish track probability 0.0 ... 1.0
maintain track probability 0.0 ... 1.0

Error Models

error model
none OR standard sensor error OR
radar sensor error OR trimsim error OR
bistatic error

Radar Sensor Error
azimuth beamwidth [angle-value]
elevation beamwidth [angle-value]
pulse width [time-value]
receiver bandwidth [frequency-value]
doppler resolution [speed-value]

Trimsim Error
north position error sigma [length-value]
east position error sigma [length-value]
down position error sigma [length-value]
reference time error [time-value]
inter system time delay [time-value]
sensor timing error [time-value]
atmospheric refraction residual [unitless]
ground target altitude error [length-value]

Bistatic Error
realistic blurring
time reflected sigma [time-value]
time direct sigma [time-value]
transmitter position sigmas [length-value]
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uses the sensors listed in Table 5. The table lists each sensor and a short description

of the entity.

2.4.2.3 Weapons

A weapon prevents the operation of some other object either permanently or

temporarily. Most weapons are explicit where the user creates a platform for the

weapon. Implicit weapons do not represent as platforms such as the Jammer weapon.

The user defines the type of weapon, the quantity of ammunition, if applicable, firing

and reload information, and other weapon effects [23]. Weapon effects provide effects

on targets [27].

2.4.2.4 Communications

A communication object provides the mechanism for platforms to communicate

with each other as well as their own internal parts. Communication may occur in a

wired or wireless setting with transmitters receivers and antennas. WsfComm is the

Table 5: AFSIM Sensor Types: The sensors listed collect data from different
sources [23].
Type Description

Acoustic
Simple passive acoustic sensor representing human
hearing.

Composite A sensor composed of other sensors.
EOIR Baseline electro-optical or infrared sensor.
ESM Baseline passive RADAR frequency detection sensor.
Geometric Baseline sensor based on geometry.
IRST Baseline infrared search-and-track sensor.
Optical Simple electro-optical sensor.

OTH
Baseline over-the-horizon backscatter skywave
RADAR sensor.

RADAR Baseline RADAR sensor.
SAR Baseline synthetic aperture RADAR.
Surface Wave RADAR Surface-wave RADAR sensor.
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base class for all communication implementations. A message is a unit of commu-

nication, there are many derived types. Messages pass over internal links within a

platform that shows communications. Messages pass over external links when plat-

forms wish to communicate with each other [27]. Communication objects in AFSIM

use a 7-layer Open Systems Interconnection (OSI) model for implementation of com-

munication types. Each object contains an object called a protocol stack that contains

multiple layer objects that process messages sent from and received by a communi-

cation object. When an object sends a message, the message passes through every

layer in the stack and each layer may pass the message or abort it [23].

The AFSIM comm object is a device that handles the transportation of messages

between platforms. The comm object itself does not hold capabilities to modify the

data in transit. However, the comm object uses multiple functions to deny, restrict the

flow, and provide multiple paths of flow for information. Table 6 displays framework

functions for the different layers of communication related to the flow of information.

Propagation speed is the speed of the message passing through a medium. This

is by default the speed of light. Transfer rate is the amount of data able to trans-

Table 6: AFSIM Communication Functions: These functions affect the transmission
of data [23].

Function Parameters

Physical Layer
propagation speed [random-speed-reference]
transfer rate [random-speed-reference]
packet loss time [random-speed-reference]

Datalink Layer
channels [integer-value]
queue type fifo OR lifo OR priority
queue limit [queue-limit]
purge interval [time-value]
retransmit attempts [integer-value]
retransmit delay [time-value]
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mit over a given time; for example, 100 bits per second means 100 bits transmit

each second. Packet loss time introduces a delay in the information transmitted.

These commands can interrupt the decision-making process by restricting the flow of

information through the commander.

The datalink commands aid the datalink protocol to handle the scheduling and

delivery of messages. The channels command supports simultaneous channels of

transmission and therefore multiple information paths. The rest of the commands

provide a structure for limiting and ordering the transmission and retransmission of

data. These commands interact with the higher-level network membership the comm

may use. Network objects use addressing and links to connect platforms internally

or externally. The comm object may attach to a router and gateway to add another

network.

2.4.2.5 Basic Agent Modeling

Agents are artificially intelligent entities that understand the world around it

and its internal state. Agents operate in a virtual environment while making and

carrying out decisions in a feedback loop. Agents follow a loop similar to OODA where

they sense the world around them, collect knowledge about the environment, make a

decision, and then take action [29]. AFSIM uses an artificial intelligence framework

named Reactive Integrated Planning aRchitecture (RIPR) to create flexible agents

with sophisticated behaviors. Users create RIPR agent scripts using behavior tree

technology, a standard part of all script processors in the architecture [23].

RIPR agents contain a Perception processor and Quantum Tasker Processor. The

agent senses the virtual world by querying the platform and subsystems for informa-

tion. The agent builds knowledge, makes decisions, and takes action by controlling

the platform accordingly [29]. The Quantum Tasker, shown in Figure 6, is used for
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commander subordinate interaction and task deconfliction. The Quantum Tasker op-

erates by acquiring a perception of assets and a perception of threads from a cognitive

model, generating and handling tasks, then assigning tasks over communications with

a handshake [26].

A RIPR agent maintains its own perception of threats, assets, and peers. There-

fore, the agents’ brain holds limited and error-prone information. Users tune cognitive

models to represent players of varying skill. A RIPR agent uses a RIPR behavior tree

to define their behavior. A behavior is a compact modular piece of script that per-

forms some unique action. A behavior tree connects the behaviors in interesting ways

so they perform in certain orders or subsets [26]. Some agents use a Cluster Manger to

perform clustering on threat or asset perception to think of the larger sets as smaller

Figure 6: AFSIM Quantum Tasker: Quantum tasker mode of operation from com-
mander. The tasker retrieves information from the cognitive model and uses it to
calculate decisions [26].
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groups. For example, a commander groups two incoming threats into two clusters so

it sends two squadrons after separate groups [26].

2.4.3 Source Code Development

The AFSIM installation includes all source code in addition to a build of the

current version [25]. The framework directory structure provides a full Hypertext

Markup Language (HTML) documentation for the framework as well as training

PowerPoint slides are specialized for either users or developers of the framework [23].

The developer training slides hold different examples for creating plugins to modify

different pieces of the architecture. This section highlights the requirements to create

and implement a plugin. AFSIM plugin creation requires CMake and Visual Studio

for Windows. The CMake GUI allows the developer to select parts of the framework to

install. For example, a developer holds the ability to create a custom build with only

the Mission application. The custom configuration creates a solution file and Visual

Studio builds it. The build named INSTALL creates the completed AFSIM build

directory [30]. To create a plugin, the developer must navigate the plugin directory

of the intended application and create a new folder with the name of the plugin. A

standard plugin consists of a source folder, a user interface folder, a documentation

folder, and a cmake file. The cmake file specifies the plugin name and source file

path. The user interface folder provides files for the visual aspects of the plugin and

how it displays in the chosen application. The source folder contains all source files

and functionality of the plugin.

2.5 MDO and JADC2

Multi-domain operations (MDO) is a U.S. Army concept that defines the joint

force as the Army, Navy, Air Force, Space Force, and Marines and the warfighting
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domains as air, land, maritime, space, and cyberspace. MDO describes how the

joint force can counter and defeat a near-peer adversary capable of contesting the

U.S. in all domains in both competition and armed conflict. The central idea is to

compete successfully in all domains to deter a potential enemy. When deterrence

fails, the joint force penetrates enemy anti-access and area denial systems. Then

the joint force disintegrates, disrupts, degrades, or destroys enemy anti-access and

area denial systems. Then it exploits the resulting freedom of maneuver by defeating

enemy forces in all domains and attempts to re-compete to force the environment to

a favorable state to the U.S. and allies [31]. MDO focuses on the U.S. Army but it

emphasizes unifying the capabilities of the different branches of U.S. armed forces.

It also acknowledges the need for all-domain dominance to maintain deterrence of

enemies.

Joint all-domain command and control (JADC2) is a U.S. Department of De-

fense (DoD) concept to support sensor fusion of all U.S. military branches. JADC2

envisions providing a cloud-like environment for the joint force to share intelligence,

surveillance, and reconnaissance data, transmitting across many communications net-

works, to enable faster decision-making. JADC2 intends to enable commanders to

make better decisions by collecting data from numerous sensors, processing the data

using artificial intelligence algorithms to identify targets, then recommending the op-

timal weapon to engage the target. Each U.S. military branch is attempting its own

implementation of JADC2, such as the Air Force’s Advanced Battle Management

System (ABMS), the Army’s Project Convergence, and the Navy’s Project Over-

match [32].

MDO and JADC2 support the concepts of multi-domain warfighting and sensor

fusion. A joint force commander uses assets and sensor data from multiple domains to

enforce adversarial deterrence. FAT attempts to aid the simulation of war scenarios

31



by introducing battlespace fog into data collection and transmission through sensors

and communications. Incorporating fog effects into the decision-making process may

allow the commander to make more accurate choices to accomplish the objectives.

2.6 Summary

This chapter provides information about wargame simulations, fog of war, the

AFSIM framework, and multi-domain operations. This background chapter provides

the information used for the journal articles in the next few sections. Chapter III

explores the mission routing problem in a C++ based wargame environment. Chap-

ter IV discusses the development of FIMM and FAT and its verification with C2

topics and decision-making processes. Chapter V analyzes FAT use in multi-domain

scenarios using AFSIM, MDO, and JADC2.
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Navigating an Enemy Contested Area with a Parallel

Search Algorithm

Dillon Tryhorn, Laurence D. Merkle, Richard Dill

Abstract

An enemy contested area consists of a tile map where each tile identifies as
neutral, enemy or goal. The objective is to reach the goal tile without crossing
into an enemy tile. A sequential modified breadth-first search algorithm with
the Manhattan heuristic function provides an option to find a direct route
to the goal while avoiding enemy tiles. The heuristic function provides a
significant speedup to the search function. A parallel modification to the
algorithm uses OpenMP on the Air Force Research Laboratory Mustang high
performance computer to prove that the system achieves similar performance
to the sequential algorithm. However, the system also achieves a substantial
speedup with certain configurations of the tile map with respect to enemy
tile placement.

Keywords: Wargame, Parallel Search, Heuristic, DOP, DFS

1. Introduction

Computer simulations allow for strategically planning war scenarios with-
out expending manpower and unnecessary resources. The problem starts
when a command unit tasks a bomber crew with the destruction of a critical
enemy building. The bomber crew must avoid any enemy contact, mainly
surface to air missile (SAM) sites. One or more paths exist that do not travel
through enemy territory and they reach the objective. The area of engage-
ment converts into a simple game board composed of tiles. Each tile has a
x-y coordinate and an identifier of whether it is neutral or enemy territory
or the goal. The bomber crew navigates through the neutral territory to the
goal without entering enemy territory to avoid destruction (see Figure 1).

In this particular discrete-optimization (DOP) problem, the number of
available search paths corresponds to the feasible solution space S. The
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Figure 1: A problem example with a 10 x 18 tile grid.
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length of the path corresponds to the cost function f . The objective of
this problem is to find a feasible solution xopt, such that f(xopt) ≤ f(x) ∀x
∈ S or simply the shortest path to the objective without entering enemy
territory (1). When the problem becomes very large, it would take a long
time to find a route from the initial node to the goal node in a sequential
algorithm. If the search space splits into smaller processes with tasks, each
search space contributes to locating the goal node. There are different types
of search algorithms that tackle similar problems. The next section analyzes
these different types and identifies the search algorithm that the experiments
modify and evaluate.

2. Background

DOPs are non-deterministic polynomial-time (NP)-hard problems and
one may argue that there is no point in applying parallel processing to them
(1). This is because the worst-case run time can never reduce to a poly-
nomial unless there is an exponential number of processors. However, the
average time complexity of heuristic search algorithms for many problems is
polynomial time. For problems with large search spaces and real-time calcu-
lations, parallel search algorithms may be the only way to provide acceptable
performance (1).

An example 8-puzzle problem contains a 3 x 3 grid containing eight tiles,
numbered one through eight (see Figure 2). The ninth spot is the blank spot
where the other adjacent tiles can move into. The tiles may only move up,
down, left and right. The objective is to determine a shortest sequence of
moves that transforms the initial configuration to the final configuration (2).

The 8-puzzle problem introduces the Manhattan distance (2). The Man-
hattan distance represents the distance between positions (i, j) and (k, l) as
the expression |i − k| + |j − l|. In this problem, the sum of the distances
between the initial and final positions of all tiles is an estimate of the num-
ber of moves required to transform the current configuration into the final
configuration. If h(x) is the Manhattan distance between configuration x
and the final configuration then h(x) is also a lower bound on the number of
moves from configuration x to the final configuration This is also known as
an admissible heuristic (2).

Depth-first branch-and-bound (DFBB) exhaustively searches the state
space even after finding a solution path. Whenever it finds a new solution
path, it updates the current best solution path. DFBB discards inferior
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Figure 2: 8-puzzle problem instance: (a) Initial configuration; (b) Final configuration; and
(c) A sequence of moves leading from the initial to the final configuration (2).
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partial solution paths whose extensions are worse than the current best solu-
tion path. Upon termination, the current best solution is a globally optimal
solution (2).

Pearl expands on the 8-puzzle problem by creating an NxN tile grid.
Pearl claims that no effective upper cost-bounds are known for this problem,
and hence DFBB cannot solve it efficiently. Even a relatively small 15-puzzle
(N = 4) has a search space of 16!

2
= 1013 states. Generally, it takes a few

hundred million node expansions to solve a random problem instance of the
15-puzzle using the Manhattan heuristic (3).

The A* algorithm uses the lower bound function l as a heuristic evaluation
function (2). For each node x, l(x) = h(x) + g(x). The l function orders the
nodes in the open list by their value. At each step, the algorithm removes
the node with the smallest l value and expands it. The A* algorithm places
the successors into the open list based on the l value and it places the node
itself into the closed list (2). However because the memory requirement is
linear in the size of the explored search space, memory is a limiting factor in
the A* algorithm. The size of the search space is exponential in the depth
of the expanded tree (6).

Iterative deepening combines the space efficiency of DFS with the opti-
mality of breadth-first methods (4). A DFS algorithm may get stuck search-
ing a deep part of the search space when a solution exists higher up on
another branch. For such trees, an iterative deepening DFS (ID-DFS) im-
poses a bound on the depth to which the DFS algorithm searches. If the node
about to expand is beyond the depth bound, then the node does not expand
and the algorithm backtracks. If the search does not find a solution, then the
algorithms searches the entire search space again using a larger depth bound
(2).

Iterative deepening can also apply to an A* search. The resulting algo-
rithm Iterative-deepening A* (IDA*) uses the l function from A* to repeat-
edly perform cost-bounded DFS over the search space. In each iteration,
IDA* expands the nodes depth-first. If the l value of the adjacent node
is greater than the cost bound, then the process backtracks. If the itera-
tive fails to find a solution, the cost bound increases and another iteration
occurs. The algorithm terminates when the iteration expands a goal node.
IDA* simulates a best-first search by a series of depth-first searches with suc-
cessively increased cost-bounds (5). IDA* has a low space overhead of O(d)
that makes it feasible in applications where A* is unrealistic due to memory
limitations (6). With an admissible heuristic estimate function, IDA* finds
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an optimal (shortest) solution. IDA* halts after finding a first solution and
guarantees optimality by the iterative approach with the minimal cost-bound
increments (3).

Depth-first search can execute in parallel by partitioning the search space
into many small, disjunct parts (subtrees) that can expand concurrently. The
parallel multithreaded iterative deepening A* (PMIDA*) algorithm (7) ex-
tends the sequential IDA* algorithm with the extension of multithreading
and multiple processors. Figure 3 represents the PMIDA* algorithm graph-
ically.

Figure 3: Graphical representation of PMIDA* Algorithm (7)

The PMIDA* algorithm consists of two major phases. In the first phase,
one processor expands the tree, through a limited-depth BFS algorithm, to
reach a specific level whose depth is determined at run-time depending on
the nature and size of the problem and also on the number of processors.
The generated nodes at this depth separate to multiple processors, where
each processor receives the same number of nodes. In the second phase,
each processor creates multiple equivalent threads. The constructed tree
divides into equal partitions. All the created threads, concurrently, execute
the sequential IDA* algorithm, each on its tree partition. Once any thread
achieves the goal, it informs other threads in all processors to terminate. On
the other hand, the search process stops if the tree exhausts the search space
without any thread achieving the goal. Thus, until the algorithm finds the
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solution or the tree exhausts the search space, this process repeats multiple
times with a distinct increased threshold value each time (7).

This problem is similar to the mission routing problem where a pilot
selects ingress and egress routes to navigate enemy territory to accomplish
a mission. The selection of a route is optimally the shortest path between
the starting point and the target. The problem reduces to performing a
search within the domain of the threat environment. The environment is
represented as a tile map where the number of tiles determines the resolution
of the problem. A higher number of tiles in the map allows the search to
find a more routes but costs more time to search (10). This problem relates
to the mission routing problem because it uses a tile map to navigate enemy
territory to reach a target. The implementation of this problem is a C++
object-oriented approach that focuses on analyzing the effects of a sequential
heuristic algorithm versus the parallel implementation.

3. Methodology

This section introduces a formal sequential algorithm, its implementation
in Mustang, and Mustang system information and architecture structure.
The section also introduces the parallel design of the new algorithm and its
anticipated overheads and speedup with respect to the sequential algorithm.
Then the implementation of the parallel algorithm takes an objected-oriented
approach in C++ that compiles and executes on Mustang.

3.1. Sequential Algorithm

The problem solution derives from an informed modified depth-first search
algorithm. The search must check the neighbors and verify they are not
enemy territory before crossing into it. Once the search locates the target
node, it terminates and prints the search path. Using the Manhattan distance
function, the distance from the initial node to the goal node provides an
admissible heuristic. The heuristic function guides the search path to the
goal tile without iterating through branches of the search tree that move
away from the goal tile. Assume a goal tile exists and there exists at least
one path from the initial tile to the goal tile that avoids enemy tiles. Assume
the system calculates all heuristic values a priori. Algorithm 1 demonstrates
the solution.
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Algorithm 1: Modified Depth First Search with Manhattan Heuris-
tic Function
Execute
Data: tileMap, startTile
Result: boolean success
let searchPath be a list;
label startTile as discovered;
place startTile in searchPath;
if startTile is the goal then

return startTile;
end
let neighbors be adjacent tiles of startTile;
order neighbors from lowest to highest heuristic value;
for neighbor in neighbors do

if neighbor ID is not enemy ID then
if Worker(neighbor) returns goal ID then

return success;
end

end

end
return not success
Worker
Data: tile
Result: int ID
if tile is not discovered then

label tile as discovered;
place tile in searchPath;

end
if tile ID is goal ID then

return tile ID;
end
let neighbors be adjacent tiles of startTile;
order neighbors from lowest to highest heuristic value;
for neighbor in neighbors do

if neighbor ID is not enemy ID AND neighbor is not discovered
then

if Worker(neighbor) returns goal ID then
return success;

end

end

end
return neutral ID; 40



3.2. Mustang Platform
The experiments utilize the Air Force Research Laboratory high perfor-

mance computer Mustang (8). Mustang is an Hewlett Packard Enterprise
(HPE) Silicon Graphics International (SGI) 8600 system and it supports two
parallel programming models: Message Passing Interface (MPI) and Open
Multi-Processing (OpenMP) 3.1 as well as a Hybrid MPI/OpenMP program-
ming model. MPI is an example of the message or data passing models, while
OpenMP uses only shared memory on a node by spawning threads. The hy-
brid model combines MPI and OpenMP models. Mustang has MPI libraries
from HPE SGI and Intel. SGI’s Message Passing Toolkit (MPT) and Intel’s
MPI support the MPI 3.0 standard (8).

The Mustang login and compute nodes use the Intel Xeon Platinum
8168 (Skylake) processors clocked at 2.7 GHz. Intel Skylake processors
use directory-based coherency, the Opportunistic Snoop Broadcast (OSB),
HitME cache and IO directory cache. For each node, there is a Caching and
Home Agent (CHA) and the input/output (I/O) directory cache implements
as an eight-entry directory cache per CHA. Skylake also uses sub-NUMA
clustering which allows for the creation of two localized domains with each
memory controller belonging to each domain. The processor also has a three-
level cache, and each level uses a write-back protocol (9). Mustang uses the
Intel Omni-Path interconnect in a Non-Blocking Fat Tree as its high-speed
network for MPI messages and I/O traffic. Mustang has 1176 compute nodes
that share memory only on the node; nodes do not shared memory between
them. Each standard compute node has two 24-core processors (48 cores)
sharing 192 GigaBytes (109) of Double Data Rate 4 (DDR4) memory, with
no user-accessible swap space. Each large-memory compute node has two
24-core processors (48 cores) sharing 768 GigaBytes of DDR4 memory, with
no user-accessible swap space. Each login node contains 384 GigaBytes of
main memory. Each standard compute node contains 180 GigaBytes of user-
accessible shared memory. Each large-memory compute node contains 744
GigaBytes of user-accessible shared memory. Mustang rates at 4.87 peak
Peta (1015) Floating Operations Per Seconds (PFLOPS) and has 8.4 PBytes
(formatted) of parallel disk storage (8).

Considering only the standard nodes (1128 nodes) and assuming the tree
is balanced, a Fat Tree network has a bisection width of 1128

2
= 564 links.

The total number of links is 1128log2(1128) which is approximately 11438
links. The diameter is 2log2(1128) nodes which is approximately 20.28 nodes
and the arc connectivity is 1 arc (2).
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3.3. Parallel Algorithm Model

The parallel solution of this problem employs a work pool model (see Fig-
ure 4). This model dynamically maps tasks onto processes for load balancing
in which any task may potentially perform on any process (2). Since the
problem holds a search space of solutions, the parallel solution employs ex-
ploratory decomposition. This decomposition technique partitions the search
space into smaller parts and searches those parts concurrently until it finds
the solution (see Figure 5). Therefore, each task corresponds to a node to
expand.

Figure 4: Work pool model with n processors.

Each node pointer resides in a shared list. The dynamic task generation
occurs when each node expands and generates additional nodes. The map-
ping is a centralized scheme since the parallel tree search is central at the
initial node. .
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The tasks perform almost the same amount of work depending on the
number of adjacent nodes to them. As the graph becomes larger, the gran-
ularity becomes more fine-grained and the maximum degree of concurrency
becomes equal to the number of processes available to accept a task (see
Figure 6).

Each resulting task is a tile to expand. Each tile holds the same informa-
tion: (x,y) coordinate, tile identifier, heuristic value and discovered flag. The
algorithm determines these values a priori but holds the ability to change
the flag during execution. Since each task may not produce the same number
of nodes to expand, the tasks are non-uniform and dynamically generated.
Each task only generates the sub-tasks and places itself in the search path.

As a result of using the work pool model, the work pool centralizes the
mapping of tasks. Each process requests a task from the work pool, performs
the work, and repeats. The resulting search path tree that finds the goal node
performs an all-to-one reduction and stores the resulting path into the global
solution path. Once the process finds the solution, it performs a one-to-all
broadcast to let other processes know they must terminate.

Some overhead occurs when each sub-task needs a copy of the local search
path from the parent node. This produces an overhead of data replication.
Nodes need to perform a check to verify if the neighboring node is an enemy
node or if the node is already discovered. This check allows less data exchange
and frequency of interaction between nodes. There is also the search overhead
factor, the ratio of the work done by the parallel formulation to that done by
the sequential formulation, or Wp

W
(2). Thus, the upper bound on speedup

for the parallel system is p ∗ Wp
W

. The actual speedup, however, may be less
due to other parallel processing overhead. In most parallel search algorithms,
the search overhead factor is greater than one. However, in some cases, it
may be less than one, leading to superlinear speedup. If the search overhead
factor is less than one on the average, then it indicates that the serial search
algorithm is not the fastest algorithm for solving the problem (2).

3.4. Implementation in Mustang

The implementation of the sequential and parallel modified depth-first
search algorithms use the C++ coding language for an objected-oriented
structured approach and the OpenMP library for parallel thread pooling.
The tile graph class consists of tiles that fit in a X by Y grid. Each tile
holds its coordinate, identifier of whether it is neutral, enemy or goal, the
Manhattan distance for a heuristic and a Boolean flag to mark whether the
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Figure 5: Task interaction graph with 15 tasks.

Figure 6: Example task dependency graphic with 14 tasks.
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algorithm already traversed the tile. The program implements tiles as shared
pointers so all processes can access them and the memory deallocates when
the program terminates. The tile graph holds the logic for locating adjacent
tiles and returning a list. The modified depth-first search (MDFS) class
is a parent class for the sequential and parallel algorithm implementations.
The MDFS class manipulates the tile information on the tile graph such as
identifiers, discovered flags and heuristics. The MDFS class keeps track of
the global search path used for the solution and the pointer to the goal tile.
The iterative algorithm loops through the possible neighbor combinations
using the heuristic value. Since the heuristic value provides an accurate
representation of the distance to the goal, the path has a better chance of
reaching the goal faster than without the heuristic. The parallel algorithm
expands upon the sequential algorithm and uses OpenMP to parallelize the
for loops that expand the neighbors out and place the tasks in a work pool.

The experiments analyze the program performance from the start of the
search until the end of the search. This does not include the tile map creation
and goal and enemy node selections. In the parallel program, due to the
OpenMP library, once it finds the solution, the program loops through the
remaining iterations while not performing any work. This causes an overhead
of wasted computation and idling. However, since the processes pick a task
from the work pool, there is little inter-process interaction overhead.

4. Results and Discussion

This section focuses on three simulation experiments: one where the
sequential algorithm compares two version with and without the heuristic
function, one where there are no enemy tiles and one where the enemy tile
placement favors the parallel algorithm. Each experiment executes on the
Mustang system with OpenMP handling the parallel work pool using a thread
pool.

4.1. Sequential Algorithm Heuristic Improvement

This section focuses on three simulation experiments: one where the
sequential algorithm compares two version with and without the heuristic
function, one where there are no enemy tiles and one where the enemy tile
placement favors the parallel algorithm. Each experiment executes on the
Mustang system with OpenMP handling the parallel work pool using a thread
pool.
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4.2. Sequential Algorithm Heuristic Improvement

The sequential algorithm utilizes the Manhattan heuristic function to
calculate the distance to the goal node from any given tile on the tile map.
This experiment uses a 100 x 100 tile map with a goal tile at the coordinate
(86, 67) and no enemy tiles. The experiment does not compare any parallel
algorithm improvement. Table 1 provides the execution times and speedup
for the heuristic improvement with the mean taken over 10 simulations. The
mean execution times are in milliseconds.

Table 1: Table for Execution Times and Speedup for Heuristic Improvement

Configuration Average Execution Time (ms) Speedup

Non-Heuristic (baseline) 99.59 1

Heuristic 3.86 25.80

The heuristic implementation provides a substantial speedup to the se-
quential algorithm. However, under certain circumstances, the heuristic may
not produce the best result. A later experiment illustrates this idea. The
rest of the experiments compare speedups to the heuristic implementation
of the sequential algorithm and the parallel implementation of the heuristic
algorithm.

4.3. Search Without Enemy Tiles

The first experiment consists of an empty 2000 x 2000 tile grid. The
initial node is located at the coordinate (0, 0). The goal node is located at
the coordinate (954, 384). There are no enemy tiles on the map. Table 2
provides each execution time for the different number of threads with the
mean taken over 10 simulations. The mean execution times are in seconds.

The multi-threaded approach to an empty map produces little speedup.
This occurs because the sequential algorithm uses the Manhattan heuristic
to locate the goal node in the shortest path possible. The parallel algorithm
also utilizes the heuristic to guide the search towards the goal node but it
uses the multiple threads to speed up the process to a maximum of 1.43 with
32 threads. The speedup may occur from the nodes on Mustang placing and
executing the queued tasks faster than the sequential algorithm. Both the
sequential and parallel algorithm produce the same number of elements in
the search path. In the next section, the program modifies the tile map so
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Table 2: Table for Execution Times and Speedup for No Enemy Tiles

Configuration Average Execution Time (seconds) Speedup

Sequential (baseline) 25.61 1

1 thread (Parallel) 25.87 0.99

2 threads 19.92 1.29

4 threads 19.92 1.29

8 threads 19.31 1.33

16 threads 19.71 1.30

32 threads 17.92 1.43

64 threads 20.83 1.23

128 threads 20.40 1.26

256 threads 19.65 1.30

512 threads 20.61 1.24

1024 threads 22.32 1.15

that it tricks the sequential algorithm to a longer solution and allows the
parallel algorithm to attain a higher speedup.

4.4. Search That Favors Parallel Algorithm

To favor the parallel algorithm, the program must set up the tile map
to trick the sequential algorithm into thinking the solution is closer than it
actually is. This occurs when the sequential algorithm follows the heuristics
to the goal node but the goal node becomes blocked by enemy tiles. For
this experiment, the tile map is a 200 x 200 grid. The initial node is placed
at (0, 100) and a line of enemy tiles goes from (1, 100) to (198, 100) and
then from (198, 100) to (198, 0) as to create an L shape. The goal node is
located at (199, 1). This configuration manipulates the sequential algorithm
into thinking the goal node is north east, but it hits an enemy wall before
it reaches the node and it backtracks to move around the wall. The parallel
algorithm uses multi-threading to explore both paths and reach the goal in
less time than the sequential algorithm. Table 3 provides the execution times
and speedup for the different threaded configurations with the mean taken
over 10 simulations. The mean execution times are in milliseconds.
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Table 3: Table for Execution Times and Speedup for Parallel Favored Tile Map

Configuration Average Execution Time (ms) Speedup

Sequential (baseline) 4399.6 1

1 thread (Parallel) 13683.2 0.32

2 threads 90.77 48.47

4 threads 84.75 51.92

8 threads 86.60 50.81

16 threads 88.09 49.94

32 threads 87.64 52.20

64 threads 97.75 45.01

128 threads 90.11 48.83

256 threads 87.19 50.46

512 threads 96.46 45.61

1024 threads 111.53 39.45

Table 3 shows a significant speedup at two and above threads. When
the parallel algorithm executes at one thread, it runs slower than the base-
line sequential algorithm due to the overhead associated with the parallel
implementation. The speedup peaks at 32 threads with a speedup of 52.20.
The table also shows that a higher amount of threads starts to decrease the
speedup due to the overhead of creating many threads. However, only us-
ing two threads uses fewer resources and provides a significant speedup to a
single-threaded approach. This is due to the configuration of the tile map.
Different configurations of the tile map with respect to the enemy tile place-
ment determines whether the sequential algorithm or parallel algorithm is
the better option.

5. Conclusion

A heuristic algorithm provides a benefit to the sequential portion of this
problem. The heuristic provides an idea of how far away a certain tile is from
the goal tile. This idea guides the search towards the solution. However, with
this particular problem, certain configurations of the tile map with respect
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to the enemy tile placement severely affect the search execution time. With
an empty tile grid, the parallel implementation provides a small benefit over
the sequential algorithm but the benefit fails to have a significant increase as
the threads increase. This occurs because the sequential algorithm uses the
heuristic to guide the search without running into any enemy tiles. However,
when the configuration of the tile map tricks the sequential algorithm into
running into a wall of enemy tiles, the parallel algorithm provides a significant
benefit by exploring multiple paths at a given time. The sequential algorithm
is the optimal algorithm when the heuristic directly guides the search to the
goal node without hitting a wall of enemy tiles. Otherwise, the parallel
algorithm provides significant speedup to this problem.

6. Future Work

The algorithm currently has no bounded depth just as A* and IDA* do.
The search tree continues to its end until there are no tiles left to explore in
a given portion of the tile map. For example, with the simulation where the
configuration favors the parallel algorithm, a bounded depth terminates the
search tree after a certain number of iterations. When the sequential algo-
rithm hits the wall of enemies, instead of continuing to search the area until
all nodes exhaust, it reaches the bounded depth and picks the next neighbor
from the initial node and traverses the path to find the goal tile. The overall
concept requires additional map configurations to gauge the effectiveness of
the parallel algorithm. A map generator would generate a tile map with a
specified length and width and populate it with random enemy tiles while
ensuring a path exists from the initial node to the goal node. Then each
configuration would compare the speedup of the parallel algorithm to the
sequential algorithm using different numbers of threads.

The OpenMP library provides limited access to the message passing in-
terface commands but makes the process easier. An implementation of the
parallel algorithm using the Message Passing Interface could provide addi-
tional benefits to the system and less overhead with more direct function
calls. Then the OpenMP and MPI implementations compare the speedup
and execution time data between them.

A different parallel model will provide different results to this experiment.
This experiment uses a work pool model to distribute the work between
the processes. However, another model such as the task graph model could
implement the parallel algorithm. This model is typically employed to solve
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problems in which the amount of data associated with the tasks is large
relative to the amount of computation associated with them (2). Since the
nodes replicate data as the search path continues, the interaction between
tasks is low and this model holds the ability to produce different results.

7. Disclaimer

The views expressed in this paper are those of the authors and do not
reflect the official policy or position of the U.S. Air Force, the Department
of Defense, or the U.S. Government.
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Abstract
This research identifies specific communication sensor features vulnerable to fog and provides a method to introduce
them into an Advanced Framework for Simulation, Integration, and Modeling (AFSIM) wargame scenario.
Military leaders use multiple information sources about the battlespace to make timely decisions that advance their
operational objectives while attempting to deny their opponent’s actions. Unfortunately, the complexities of battle
combined with uncertainty in situational awareness of the battlespace, too much or too little intelligence, and the
opponent’s intentional interference with friendly command and control actions yield an abstract layer of battlespace
fog. Decision-makers must understand, characterize and overcome this “battlespace fog” to accomplish operational
objectives. This research proposes a novel tool, the Fog Analysis Tool (FAT), to automatically compile a list of
communication and sensor objects within a scenario and list options that may impact decision-making processes. FAT
improves wargame realism by introducing and standardizing fog levels across communication links and sensor feeds in
an Advanced Framework for Simulation, Integration, and Modeling (AFSIM) scenario. Research results confirm that FAT
provides significant benefits and enables the measurement of fog impacts to tactical command and control decisions
within AFSIM scenarios.
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1. Introduction

Military leaders must make timely strategic and tactical
decisions from battlespace intelligence and available infor-
mation. To improve real-world decision-making, comman-
ders model their operation decisions in a virtual wargame
to identify the optimal path to accomplish their objectives.
The term fog describes a military decision-makers lack of
information.1 AFSIM is a modeling and simulation soft-
ware that uses a C++ object-oriented approach to simulate
geographically-based war scenarios.2

After reviewing several cognitive decision models, the Fog
Identification and Manipulation Methodology (FIMM) was
used to identify and adjust fog levels in a command and
control (C2) scenario where sensor platforms collect and
transmit information to the commander via communication
links. The commander processes the information and
transmits it back to effect-generating platforms for execution.
Our tool, the Fog Analysis Tool (FAT), introduces fog
effects to manipulate sensor platforms and communications
links, universally. FAT is implemented as an AFSIM plugin.
Simulation results obtained using FAT serve to aid the
strategic and tactical decision-making process by introducing
uncertainty across sensor platforms and communication
objects that correspond to fog and directly support C2
functions. FAT and FIMM, in conjunction with AFSIM,
produce a behavior analysis platform to improve operational
decision-making in a contested environment. This research
expands on Setear’s ideas for introducing fog methods

into wargames and on decision-making processes such as
Lawson’s C2 model and van Creveld’s functions of C2.3 4 5

2. Literature Review
We first provide background and related research on
topics needed to scope the decision-making process into
a Command and Control (C2) context where information
transmits over sensors and communication links. The
following topics include a review of military simulations,
battlefield C2, the battlefield fog, cognitive-behavioral-
decision models, and AFSIM capabilities.

2.1. Military Simulations and Wargaming
A wargame represents a military scenario where two or more
sides play against each other to accomplish their objectives.
The battlespace is the conflict area where both teams operate,
typically consisting of a grid or geographic-based map.
The limitations of the wargame include operating within
map boundaries and attacking specific units. A commander
gathers information from the environment, forms decision

1Air Force Institute of Technology, USA
2Air Force Research Laboratory, USA
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paths, and selects a path that yields the highest probability
to accomplish the planned objectives while minimizing loss
and operational risk. Typically, the team identifies a series
of adversary centers of gravity, power sources for moral
or physical strength, freedom of action, or will to act. The
commander may weigh multiple decision paths against a
defined scale to choose the best one. When there are no clear
winners, the commander may spend more time deciding than
acting.6 A command structure chain in a wargame is where
a commander issues orders to subordinates to execute.

A few applications similar to AFSIM exist today.
Next Generation Threat System (NGTS) is a military
simulation environment produced by the Naval Air Warfare
Center Aircraft Division (NAWCAD) that provides real-
time military scenario simulations. NGTS models threat
and friendly aircraft, ground, surface, subsurface platforms,
corresponding weapons and subsystems, and interactions
in a theater environment.7 One Semi-Automated Forces
(OneSAF) is another constructive and real-time simulation
software developed by the U.S. Army for cross-domain
analysis. OneSAF holds capabilities for simulating soldiers,
logistical supplies, and communication systems.8 These
military simulation frameworks are similar to AFSIM, but
each provides its distinct capabilities. The next section
discusses military command and control (C2) and the
functions of the command chain.

2.2. Command and Control
Military C2 exercises authority and direction by a
properly designated commander over assigned and attached
forces to accomplish a mission.9 Wargames use C2 for
structuring the chain of command, logistics, and decision-
making processes. C2 enhances the commander’s ability
to make sound and timely decisions through decentralized
execution of centralized, overarching plans. Joint Publication
1 lists the tenets of C2: clearly defined authorities,
roles, and relationships; mission command; information
management and knowledge sharing; communication;
timely decision making; coordination mechanisms; battle
rhythm discipline; responsive, dependable, and inter-
operable support systems; situational awareness; and mutual
trust.10 These tenets directly support the chain of command’s
goals: clear, quick, and accurate communication between the
commander and subordinates. In contrast, these tenets also
provide opportunities to introduce fog elements, potentially
disrupting the adversary C2 capabilities. The next section
focuses on the definition of fog and how analysts introduce
fog elements in a wargame.

2.3. Fog of War
Clausewitz defines war as a realm of uncertainty. “Three
quarters of the factors on which action in war is based
are wrapped in a fog of greater or lesser uncertainty.”1

In modern warfare, battlefield fog is the uncertainty in
situational awareness experienced by participants in military
operations across multiple warfighting domains. The Joint
Force Commander (JFC) controls forces from different
warfighting domains: air, land, maritime, space domains, and
the information environment, including cyberspace.11 The
information environment provides a prime opportunity to

introduce fog in simulations because it includes physical,
informational, and cognitive dimensions that continuously
interact with individuals, organizations, and systems. The
physical dimension consists of C2 systems, decision-makers,
and infrastructure that enable individuals and organizations
to create effects. Physical platforms and their communication
networks reside in this dimension. The informational
dimension collects, processes, stores, disseminates, and
protects information. The actions in this dimension affect the
content and flow of information. The cognitive dimension
encompasses the minds of those who transmit, receive, and
respond or act on information. This dimension focuses on
individual perception and decision-making and cognitive
influencers, such as beliefs, emotions, and motivations.
Introducing uncertainty in the cognitive dimension could
directly alter a decision maker’s perception or indirectly
alter how the perception develops in a decision-maker. This
research focuses on extending the battlefield fog definition
to include uncertainty in sensor data and the communication
links that connect the commander to subordinates. The
battlefield fog alters the perception of actors in the cognitive
dimension to influence decision making.

Introducing fog effects at critical areas to deny, delay, or
disrupt data to the adversary’s decision-making processes
while protecting one’s C2 integrity is central to winning
battles. Van Creveld lists defining characteristics of C2
as eight functions in Table 1.5 These functions provide
a baseline for identifying areas where fog can affect the
collection and flow of information in a command chain. The
first and second functions in Table 1 provide an uncertainty
where information may become inaccurate during collection
and transmission from a sensor platform to the commander.
Functions three through six depend on the decision-making
process implementation of the commander. These functions
may provide areas for uncertainty but are not in the scope
of this research. The seventh function is the communication
of the commander to the effect-generating platforms. The
eighth function is the commander’s perception of the order
execution. These last two functions may become delayed,
inaccurate, or denied from orders move to and from the
commander and subordinate. The cognitive models in the
later sections discuss these functions of C2 in established
decision-making processes.

Table 1. Creveld’s eight functions list the defining
characteristics of command and control. 5

Function Description

1 Collecting information on own forces, the enemy,
the weather and the terrain

2 Finding means to store, retrieve, filter, classify,
distribute, and display the information

3 Assessing the situation
4 Analyzing objectives and finding alternative

means for achieving them
5 Making a decision
6 Planning based on the decision
7 Writing and transmitting orders as well as

verifying their arrival and proper understanding
by the recipients

8 Monitoring the execution by means of feedback,
at which the process repeats itself
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Wargames use different methods to introduce and define
fog. John Setear provides a general method for defining
and simulating fog in wargames.3 The sources of battlefield
fog are uncertainty about the enemy, enemy intentions,
and enemy forces. The natural environment facing the
commander and the behavior of the friendly forces are
also sources of fog. The last source is the uncertainty
about the underlying laws of war that govern the clash
of arms on the battlefield. Setear stresses that the sources
of fog affect commanders and environments at all levels.
This result applies to strategic and tactical commanders and
environments such as land, air, and the sea. Rules simulating
uncertainty help the efforts of a wargamer to learn why
events happen as they do and discover in the long run what
characteristics a good commander must possess.

Hagelback and Johansson state the elements of fog in
a real-time strategy game are the enemy bases’ location,
exploration of unknown terrain, and the unpredictability of
explored terrain.12 In most real-time strategy games, Mason
states fog of war is a term used to describe the mechanic
of making only limited portions of a game map viewable
for a combination of the areas immediately surrounding the
player’s character and all allied units. Unit movement shifts
these viewable zones and causes previously-visited areas to
fade out of sight. This mechanic dynamically constrains the
player’s information, as areas outside their current viewing
zones may contain active entities of interest. Progression
requires an eventual confrontation with whatever lies in the
surrounding fog, forcing players to think strategically about
preparing for these unknowns.13 These fog definitions focus
on uncertainty about the terrain and the strength or location
of enemy forces.

This section discussed fog from its definitions to its
implementations in wargames. In this research, we define
fog effects as critical areas that affect the information
collection and dissemination to and from the commander
and subordinates. These fog effects alter the development
of perception for a decision-making entity and contribute to
the enemy’s uncertainty, friendly units, and the geographic
environment. The next section discusses decision-making
models and provides areas for scoping the decision-making
process into a C2 context.

2.4. Decision-Making Cognitive Models
Decision-making cognitive models provide a process for
perceiving the environment and executing decisions to shape
the desired state. This section discusses Boyd’s Observe
Orient Decide Act (OODA) loop model and the Lawson
Command and Control (C2) model and their decision-
making processes.

The Observe Orient Decide Act (OODA) loop is a
four-step approach to decision-making that models how a
commander receives and filters information, formulates a
decision, and then refines the decision as new information
arrives.14 United States Air Force Colonel John Boyd
theorized the OODA loop to initially express an approach
to tactical engagement, but later, he expanded the idea to
incorporate broad strategic action.15

The OODA loop consists of four main phases.14 The first
phase, Observe, gathers information pertinent to the decision
at hand. Information appears internally through feedback

loops and externally through sensors or other information
sources. The second phase, Orient, consists of destruction
and creation and involves the most significant cognitive
effort. The decision-maker destructs the main problem into
smaller sub-problems that he or she understands. With the
understood knowledge of the sub-problems, the decision-
maker creates a plan of action using solutions for the sub-
problems and combining them into a unified task. If the
decision-maker fails to create a plan, he/she may concede
defeat. The third phase, Decide, contemplates the plans
available to the decision-maker. If the decision-maker can
only construct one feasible plan, the decision is whether
or not to execute. If there is more than one overall plan,
the decision-maker chooses one as a course of action. The
decision often involves weighing the risk or cost of a plan
for its potential benefit. A single superior choice results in a
confident and rapid decision. However, a few or many same-
level decisions result in a longer decision-making time. The
fourth phase, Act, represents the execution phase, where the
decision-maker executes the chosen decision. The OODA
loop phases execute simultaneously and not sequentially.16

Figure 1 illustrates the model and its four phases.

Figure 1. OODA Loop: The process consists of the four stages
where the decision maker observes the environment, forms
possible decisions, decides, and then executes the decision. 16

In 1981, Joel Lawson showcased his cognitive model to
create a military C2 system deriving from a higher national
or political desire to maintain or change the status quo in
a contested battlespace.4 The C2 system incorporates the
ability to perceive or sense the state of its environment,
compares the perception to a specified desired state, and acts
to force the environment into the desired state. This approach
includes information gathering and processing as well as
decision-making, similar to the OODA loop. The model
functions at different levels of the chain of command, and it
requires the commander to receive a visual representation of
the environment, such as charts, maps, or electronic displays.

Figure 2 illustrates the Lawson C2 model process for
a single unit. The individual unit senses the environment,
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processes the information, and then acts. Simultaneously, the
commander up the chain manages multiple units and holds
an array of sensors. The Lawson model may recursively use
multiple commanders to form a command chain. However,
the current model suffices. The next section discusses the
framework AFSIM and its simulation capabilities.

Figure 2. Lawson C2 Model: The Lawson C2 model process.
The system perceives the environment, compares it to the
desired state, and acts to force the environment into the desired
state. 4

The decision-making model in Figure 2 derives from
the processes in the OODA loop and the Lawson C2
model. The OODA loop and the Lawson C2 model provide
a basis for perceiving the environment, collecting the
environmental data, forming a decision based on objectives,
and executing the decision to produce an effect. The model
in Figure 2 uses environment perception and information
collection through sensors and information transmission
through communication links. FIMM uses the derived model
in Figure 2 to produce a process for introducing and
manipulating fog in a C2 scenario. The next section discusses
AFSIM and its capabilities to implement fog effects.

2.5. Advanced Framework for Simulation,
Integration, and Modeling
AFSIM is an object-oriented, C++ simulation environment
that prototypes customized engagement and mission level
warfare simulations. The framework includes a class
hierarchy of simulation objects, data-driven platforms,
movers, sensors, communications networks, processors,
weapons, and simulation observers. Simulation and Event
classes exist to control time and event processing for
AFSIM-based models and the logging of entity data. The
framework supports a standard geospatial environment and
terrain representation, a general-purpose scripting language
to provide access to framework objects using text files,
and the ability to execute any AFSIM application in
both constructive (batch processing) and virtual (real-time)
modes.17 Figure 3 illustrates the high-level architecture. The
services of the framework provide simulation functionality,
while the components represent physical objects in the
simulations.

A platform is a container data structure that holds physical
and mental components and information, attributes, and

Figure 3. AFSIM High-Level Architecture: The framework
consists of services and components that extend through
extensions and plugins. 18

links. Figure 4 displays the architecture of a platform and
the relationships between its internal components.

Figure 4. AFSIM Platform Architecture: A platform holds
information about its environment and components to interact
internally and externally. Each platform also has attributes to
distinguish itself from other platforms. 18

A sensor provides the ability for a platform to detect other
platforms and their components. AFSIM contains several
predefined sensors listed in Table 2. Sensors use azimuth and
elevation limits to define their area of influence and hold the
ability to form tracks.

The user may define error sigmas for sensors that
form perceptions of objects, and the sigmas provide error
margins on the position measurements from the sensor.18

Sensors use commands in the framework to define their
characteristics. Track reporting commands define the criteria
for establishing a perception of another platform and the
quality of information produced. Table 3 displays the
sensor functions related to establishing and maintaining a
perception of another platform.

The azimuth, elevation, range, and range rate error sigma
commands allow the analyst to specify the standard deviation
based on the true information the sensor reports. The error
sigma is either a percent error of true range or an error value
in units shown in the next two formulas.

Rp = Vt ± Vt ∗ Pe

Rp = Vt ± Ve
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Table 2. AFSIM Sensor Types. 18

Type Description

Acoustic Simple passive acoustic sensor
representing human hearing.

Composite A sensor composed of other sensors.
EOIR Baseline electro-optical or infrared sensor.
ESM Baseline passive RADAR frequency

detection sensor.
Geometric Baseline sensor based on geometry.
IRST Baseline infrared search-and-track sensor.
Optical Simple electro-optical sensor.
OTH Baseline over-the-horizon backscatter

skywave RADAR sensor.
RADAR Baseline RADAR sensor.
SAR Baseline synthetic aperture RADAR.
Surface Wave Surface-wave RADAR sensor.
RADAR

Rp is the range of the perceived value, Vt is the truth
value, Ve is the error sigma value with units, and Pe

is the error sigma value in percent. The following is an
example of the range error sigma function. A sensor reports
a truth value of 800 meters, but the error sigma for the
range is 20 meters. Therefore, the perceived values range
from 780 to 820 meters. Next, the hits to establish and
maintain the track are M of N hits where N ≤ 32 due
to framework constraints and M ≥ 1, while M ≤ N . To
establish and maintain probability, provides an additional
layer of whether the hits create or maintain the perceived
perception object. The off/on commands provide options for
introducing cutouts at scripted periods.

Table 3. AFSIM Sensor Functions. 18

Function Parameters

azimuth error sigma [angle-value] OR
[real-value] percent of true range

elevation error sigma [angle-value] OR
[real-value] percent of true range

range error sigma [angle-value] OR
[real-value] percent of true range

range rate error sigma [speed-value]
hits to establish track M hits of N hits
hits to maintain track M hits of N hits
establish track probability 0.0 ... 1.0
maintain track probability 0.0 ... 1.0
off/on

A communication object connects different platforms via
transmitters, receivers, and antennas. Messages pass over
internal links within a platform that shows communications
among platform components. Messages pass over external
links when platforms wish to communicate with each
other.18 Communication objects follow the 7-layer Open
Systems Interconnection (OSI) model; when an object sends
a message, the message passes through the object’s protocol
stack until the platform processes the information. The
communication object serves as a node in the network and
has various functions to deny, degrade, or change the data
flow, as Table 4 shows.

Table 4. AFSIM Comm Functions. 18

Function Parameters

Physical Layer
propagation speed [random-speed-reference]
transfer rate [random-speed-reference]
packet loss time [random-speed-reference]
Datalink Layer
channels [integer-value]
queue type fifo OR lifo OR priority
queue limit [queue-limit]
purge interval [time-value]
retransmit attempts [integer-value]
retransmit delay [time-value]

Propagation speed determines how fast a message
transmits between nodes; by default, propagation speed
is the speed of light. Transfer rate is the amount of
data transmitting over a given time, such as 100 bits
per second, while packet loss specifies the delay to any
transmission. These commands can interrupt the decision-
making process by restricting the flow of information
through the commander. The data link commands handle
the scheduling and delivery of messages. The channels
command supports simultaneous channels of transmission
and, therefore, multiple information paths. The rest of the
commands provide a structure for limiting and ordering the
transmission and retransmission of data. These commands
interact with the higher-level network membership the
communication object may use. Network objects use
addressing and links to connect platforms internally or
externally. The communication object may attach to a router
and gateway to add to another network.

3. Methodology

This section provides a process for identifying fog elements
and developing the Fog Analysis Tool (FAT) in AFSIM.
Then it defines a scenario to use for plugin verification and
analysis.

3.1. Identifying and Manipulating Fog Elements
This section defines the methodology for identifying fog
elements in a wargame scenario relating to Command and
Control (C2). The derived process in Figure 5 focuses on
making C2 decisions in a wargame environment specific to
this research. The process derives from van Creveld’s eight
functions of C2 and the Lawson model.

This loop begins with checking if the number or state
of the assets and communication links have changed. The
assets provide the commander with information to perceive
the environment and make decisions based on mission
objectives. The commander sends orders to effect-generating
assets such as weapon systems or jamming platforms. A
human player or a scripted agent may control the commander
in the wargame environment. Fog is a broad topic that spans
the uncertainty of all information the leader may or may not
have.1 The C2 contextual decision-making process scopes
fog into the information gathered through sensor platforms
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Figure 5. C2 Decision-Making Process: The commander uses sensor platforms to gather information and effect-generating
platforms to execute orders.

and the information the commander sends and receives
through communication links.

Platforms perceive and collect data from the virtual
environment via the sensors listed in Table 2. Sensor
cutouts disrupt the platform’s data flow, preventing the
commander from receiving complete, usable, or accurate
environmental data. Sensor noise or cutouts may provide the
commander with an incomplete battlespace picture, allowing
the decision-maker to fail the current objective. Sensor noise
and cutouts create uncertainty about the enemy’s actions and
forces, the friendly units’ behaviors, and the commander’s
environment

Communication links allow information to flow between
the commander and subordinate platforms. The communi-
cation object uses message objects to contain a specific
type of message for transit between nodes. Communication
nodes connect through links that have limits. A severed
link provides another type of information cutout and creates
similar uncertainty to a sensor cutout. If a link becomes
severed, a sensor needs redundant communication links to
continue to function. The transfer rate affects the speed of
the data flowing through the link. A dead link would fail to
provide a commander with the critical information needed in
the current decision cycle, and therefore the commander may
form an ineffective decision. The delay in critical data may
also occur when a communication buffer is full and waits to
dispatch data.

Figure 6 illustrates the process for identifying and
manipulating fog elements in a given C2 scenario. This
model limits the process to a single commander in charge
of sensor and effect-generating platforms. The information
between the commander and subordinate platforms flows
through communication links. Platforms may or may
not hold links between them for multiple paths to the
commander. The commander executes the decision-making
process with the information perceived with the given
configuration of cutouts, noise, and disruption on mission
execution. The effect-generating platforms execute orders
as they arrive via the communication link, and the post-
analysis views how the commander accomplishes the
mission objectives.

The Fog Identification and Manipulation Methodology
(FIMM) uses the C2 decision-making process illustrated in

Figure 6. Fog Identification and Manipulation Methodology
(FIMM): This process focuses on modifying sensor and
communication objects in a wargame scenario. It focuses
mainly on denial, disruption, and degradation of information
flowing through the commander for decision making.

this section to focus on sensor platforms and communication
links. The commander receives information from sensor
platforms through communication links. This research
assumes the effect-generating platforms execute orders
as they receive them through the communication links.
However, the information the sensors collect may be
inaccurate, and the communication links may undergo issues
to delay or corrupt the data. When subjected to inaccurate
or delayed data, the subordinates execute unintended orders
that may not match the commander’s intent. The next section
discusses an AFSIM plugin to implement FIMM from this
section to allow an analyst to manipulate fog elements for
sensor platforms and communication objects in an AFSIM
wargame scenario.
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3.2. Fog Analysis Tool
This section discusses the Fog Analysis Tool (FAT),
an AFSIM plugin that displays the current sensors and
communication components in a loaded scenario. Each
component provides options for introducing and modifying
fog effects.

The intent is for FAT to provide the wargame analyst a
direct way in AFSIM to modify sensor and communication
object values that relate to fog functions derived from
FIMM. This implementation allows the analyst to modify
multiple platforms and links at once while bypassing source
file manipulation. The tool begins by parsing the current
loaded scenario for all sensor and communication objects.
The objects populate into a window in the AFSIM Wizard
application in a tree view with a parameter-value scheme.
The analyst directly modifies the parameter’s value in the
window, and the corresponding objects update accordingly.
Figure 7 illustrates the conceptual view when interacting
with the plugin.

Figure 7. FAT Conceptual View: The window displays two lists
of communication and sensor objects. Each list displays all
objects in use by the scenario. The analyst can change the
values of each parameter instead of going through many source
files.

The development of this plugin derives from the
implementation of the Platform Details and the Type
Browser plugins. Platform Details is a Warlock framework
core class that implements into a Wizard child plugin class.
The plugin searches for the currently selected platform of
interest and displays a parameter-value list of information
about the platform. Type Browser is a unique Wizard plugin
that parses the project proxy object for all objects of all
types in a given scenario. When the analyst changes anything
in the scenario, the proxy and list of objects then update
accordingly. The plugin separates objects into categories,
such as platforms, weapons, sensors, and communications.
However, this plugin contrasts with FAT because it does not
display any information about the objects. The plugin only
opens the file location of each object when activated. Figure 8
displays the graphical representation of the two plugins.

FAT displays all sensor and communication objects in
a loaded scenario and provides options to modify their
values. Therefore, the plugin updates when a new object

Figure 8. Platform Details and Type Browser: The left displays
information about a currently selected platform. The right shows
all objects in a given loaded scenario. 18

is introduced or an existing object is modified. The plugin
must also update when the project opens, closes, or switches
to another project. FAT uses a custom interface object to
retrieve data from the framework and update it to the source
files’ corresponding object. Figure 9 provides a Unified
Modeling Language (UML) diagram of the plugin.

FAT implements framework functions that produce effects
shown in FIMM. The functions of Tables 3 and 4 provide
the effects needed. Table 3 shows that the azimuth, elevation,
range, and range rate error sigma functions directly affect the
sensors’ measurements when perceiving another platform.
The hits and probability functions affect the difficulty of
creating and maintaining a perception of another platform.
The off/on function allows for simulating cutouts of sensor
feeds. In Table 4, the functions affect information flow and
jamming perception. The functions that affect information
flow determine when the commander or subordinates receive
information. The jamming perception commands assist an
operator to detect when communications are being jammed.
FAT implements these functions to simulate noise, cutouts,
and information flow. The following section uses an AFSIM
scenario to verify the usefulness of the fog effects.

3.3. Verification Scenarios
This section examines an AFSIM scenario to verify the
chosen fog functions’ effectiveness. The scenario integrates
multiple platforms into a Blue Integrated Air Defense
System (IADS) group. The group consists of a commander
platform that manages a radar company and a SAM battalion.
The radar company uses two early warning (EW) radar
platforms to detect when the opponent bombers enter a
defined area (see Figure 10). The commander perceives
when the opponent enters the battlespace and uses an
acquisition radar (ACQ) to determine the opponent’s position
and a target tracking radar (TTR) to fire missiles from
one of the three SAM sites. The Blue team protects n
Blue tanks from m Red bombers. The results measure
nd the number of destroyed tanks out of n total tanks
after scenario execution. The scenario fails when the Red
team destroys more than 50% of the Blue tanks. The
commander platform receives sensor data from its sensor
platforms through communication objects linked into a
Blue network. This scenario allows for the manipulation
of multiple sensor platforms and communication links. The
sensor to manipulate in this scenario is the TTR platform
since it directly tracks and sends coordinates to fire upon
the Red bombers. Noise introduction to other sensors would
not affect the TTR platform’s targeting, but cutouts to other
sensors would affect if the commander activates the TTR
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Figure 9. FAT UML Diagram: The plugin displays a dock widget in Wizard to the analyst. The widget uses an interface to retrieve
and store data to and from the objects in the framework.

platform to fire upon Red bombers. AFSIM tasking messages
are implemented as zero bit messages, and therefore the only
communication fog effect to use in this scenario is cutouts of
links.

Figure 10. IADS Scenario: A Blue IADS group uses multiple
SAM launchers to defend 10 Blue tanks against five Red
bombers.

The next section provides plugin functionality results and
scenario verification results. For each simulation run, a fog
effect is measured at a specific level for x simulations as
a different seed for random generation results. The result
of nd number of tanks destroyed is the mean taken over
x simulations. The fog effects to tanks destroyed find the
bounds of fog functions where the scenario passes and fails.

4. Results
This section discusses FAT functionality and current
software development progress. The scenario designed to use
FAT shows the scenario’s success versus the specified level
of fog effect.

4.1. FAT Functionality
The FAT plugin successfully compiles for AFSIM version
2.7.0 using CMake version 3.18.0 and Visual Studio
Community 2019. The plugin populates sensor and
communication objects in the window at project parse and
loads each object’s parameter-value pairs. When the name of

the object is activated, the Wizard application opens up the
editor file. The analyst may manipulate the values of each
fog effect for each pair, and it updates accordingly. Figure 11
illustrates the plugin in the AFSIM Wizard application.

Figure 11. Fog Analysis Tool: The window provides options for
the analyst to manipulate fog effects conveniently.

4.2. IADS Verification Scenario
AFSIM simulates the scenario 100 times for each level of
fog effect and measures nd the number of tanks destroyed
for each run. The result of tanks destroyed is the mean taken
across all runs. Over 50% of tanks destroyed is a failure for
the Blue team and a Red team’s success. The scenario uses
10 Blue tanks and 5 Red Bombers. Figure 12 displays the
number of tanks destroyed versus the azimuth and elevation
error sigmas as percent error increases.

The scenario entered failing conditions between 2.5 and 3
percent error for both the azimuth and elevation error sigma
functions. These functions affect where the radar perceives
the bomber platform is. The error skews the Red bomber’s
targeting and causes the SAM launcher to launch a missile to
the wrong coordinates.
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Figure 12. Azimuth and Elevation Error Sigmas: The tolerance
for error is low due to the low viewing area of the TTR platform.

The AFSIM function for range error sigma did not produce
results for percent values, but it produced unit values in
Figure 13. The range error sigma function not producing
results for percent values is a possible framework error.
As the unit values for range error sigma increased, the
tanks destroyed showed steady growth. As the range error
increases, the missiles miss the Red bombers, and Blue tanks
are destroyed. The AFSIM function for range rate error
sigma did not produce any usable results.

Figure 13. Range Error Sigma: As range error increases, the
scenario enters the failure stage at a steady rate.

Figure 13 illustrates the scenario entering failure
conditions around 125 km of error. A growth in range error
leading to failing conditions seems consistent with the trend
that more error correlates to a failing scenario, but the missile
blast radius is 100 meters. It takes a very high amount of error
compared to the blast radius, possibly due to a framework
error or because the SAM launchers hold multiple missiles
for redundancy.

AFSIM holds a maximum value for M of 32 hits to
establish and maintain an object’s perception or track. The
hits to establish the track cause the SAM sites to fail, locking
on to the Red bombers, and more Blue tanks are destroyed
as the critical hits. In Figure 14, the hits to maintain track do
not produce any significant effect.

The hits to maintain track function may not produce any
statistical results when there are no other fog effects present
in the scenario. Further analysis of a scenario with multiple

Figure 14. Hits to Establish and Maintain Tracks: The scenario
reaches failure in the hits to establish track as the required hits
increase out of 32.

fog effects is needed to verify the hits to maintain track
function is a good fog effect.

A low probability of establishing and maintaining a
perception or track causes the SAM sites to fail to lock on.
As the probability increases in Figure 15, the Red bombers
are destroyed, and the Blue tanks are protected.

Figure 15. The probability to Establish and Maintain Tracks:
The lower probabilities end up in scenario failure (over five tanks
destroyed) but change to passing scenarios as they increase.

A slow propagation speed, 1 meter per hour compared to
the light speed, simulates communication link cutouts. When
no links fail, the simulation produces a mean of 0.25 tanks
destroyed. The simulation produces 100% tanks destroyed
when either the commander, a company leader, a sensor
platform, all SAM launchers, or the full network links fail.
When one out of three SAM launchers fails, the mean tanks
destroyed increases to 0.75. When two of the three launchers
fail, the mean tanks destroyed increases to over 50%, and the
scenario fails.

The packet loss time function introduces a delay to every
transmission by a communication object. This delay directly
impacts the transmission of data from a node in the network.
A higher delay, shown in Figure 16, produces a higher impact
on the decision-making process and allows the Red bombers
to destroy more Blue tanks.
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Figure 16. Packet Loss Time: This function introduces a delay
to every transmission by the communication object. The delay
produces more uncertainty as it increases.

The transfer rate function affects the flow of information
between communication objects in the network. The
function directly impacts the transmission of data through
bottlenecking. This function requires a definition of message
sizes. The communication objects transmit track, or
perception, messages defined at a size of 50 kilobytes.
Figure 17 illustrates the tanks destroyed versus transfer rate
with the given size for track messages.

Figure 17. Transfer Rate: The communication objects transmit
50-kilobyte track messages throughout the network with the Red
bombers’ perception information. As the transfer rate increases
to 50 kilobytes per second, the Blue IADS group detects and
eliminates Red bombers before reaching the targets.

The queue limit function provides another bottleneck for
transmitting messages. A low limit drops messages instead of
slowing the transmission rate, resulting in retransmission and
a longer wait time to reach the destination. Table 5 provides
the results for varying the queue limit.

Table 5. Queue Limit Results.

Queue Limit (messages) Mean Tanks Destroyed (of 10)

0 10
1 8.04
2 4.03
3 1.22
4 0.4
5 0.22

A zero queue limit rejects all incoming messages and
simulates a cutout similar to the propagation speed. As

the queue limit increases, more messages are transmitted
through the communication links, and the IADS group
functions successfully. The number of channels, purge
interval, queue type, retransmit attempts, and retransmit
delay functions do not produce any useful results for this
scenario. An avenue for further analysis is to perform a
combined analysis of these functions with the queue limit
function’s addition to view how the functions are dependent
on each other. The next section gives a conclusion and
provides a discussion for future work for FIMM and FAT.

5. Conclusions and Future Work

This research creates FIMM, a process for introducing
and manipulating battlefield fog in a wargame scenario,
and FAT, an AFSIM plugin that implements FIMM and
allows the analyst to apply various fog effects to AFSIM
scenarios. FAT implements into AFSIM 2.7.0 by parsing
sensor and communication objects, populating a window
with fog effects, and allowing the analyst to alter the effects.
Each of the scenarios provides a bound of fog where the
scenario stops succeeding and starts to fail. These results
may differ for different types of scenarios.

FIMM provides a process to introduce uncertainty into
the decision-making process through data collection and
transmission. Data collection through sensor objects relates
to the fog of war by controlling the commander’s perception
of the environment. More significant uncertainty in the
collected data leads to greater obscurity in the perception.
Data transmission through communication objects creates
an issue where a commander may not receive the data fast
enough to form an optimal decision. FAT verifies noisy data
collection leads to wrong decisions. Also, data transmission
link cutouts lead to incomplete or denied environmental data
for the commander.

The results of the IADS scenario enforces the idea
of redundancy in military operations. The multiple SAM
launchers allow the commander to continue the mission
when one fails. The results show that fog effects impact
scenario execution by bringing the scenario to failure as
the effects increase or decrease. The hits to maintain the
track function does not seem to produce any noticeable
results for the scenarios, but a scenario could exist where the
function does. Introducing noise to the sensor feeds affects
the targeting of enemy opponent platforms.

The U.S. military focuses on virtual decision-making
to iterate possible courses of action (COAs) to choose
the optimal path. However, fog affects decision-making in
unpredictable ways. FIMM and FAT serve as a baseline to
incorporate fog effects into decision-making analysis. The
vision is the decision-making agent accounts for various fog
levels in the process and uses the information to choose the
optimal path. Military analysts may also use FIMM and FAT
in their scenarios to view the bounds of fog a decision-maker
can handle before failing the objectives.

This research requires more scenarios to test how
other fog elements affect decision-making processes, such
as jamming, delaying, or dropping network packets in
a communication network. These scenarios prove the
effectiveness of the fog functions in AFSIM, where the
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noise can overcome the decision-making process to cause the
scenario to fail.

A possible research area for FIMM is to introduce tamper-
ing or intercepting information in transit through communi-
cation links. Tampering and intercepting information in tran-
sit requires opponent intervention and access to the network.
This area may require a separate framework specialized for
cyber warfare.

The purpose of FIMM is to provide an abstract method
for identifying and quantifying levels of uncertainty for
consideration in a decision-making agent. The agent would
follow a decision-making process such as the OODA loop
and uncertainty when forming decision paths to accomplish
mission objectives. FIMM allows the analyst to help train
an agent to overcome fog when subjected to various fog
effects. FAT is one possible implementation, and the process
spreads over multiple frameworks. Another possible research
area is, therefore, implementing FIMM on another military
simulation framework. A few possible frameworks are Next
Generation Threat System (NGTS) by the U.S. Navy, One
Semi-Automated Forces (OneSAF) by the U.S. Army, or the
Unreal Engine by Epic Games.
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Abstract: Military leaders must consider uncertainty in decision-making to accomplish mission 

objectives. Wargames and military simulations model real-world scenarios to understand 

potential outcomes for alternative courses of action to support decision-making. This research 

applies the Fog Analysis Tool (FAT) (Tryhorn et al. 2021) to Cyber Land Air Sea Space (CLASS) 

scenarios for the Advanced Framework for Simulation, Integration, and Modeling (AFSIM). The 

CLASS scenario structure supports fog analysis in multi-domain operations within AFSIM 

scenarios. The CLASS result trends support the hypothesis that increasing fog effect levels 

disrupt the decision-making and tasking processes for all warfighting domains. A crossover 

event occurs from success to failure for each fog effect as the level increases for all Cyber Land 

Air Sea Space (CLASS) scenarios. Therefore, FAT should be used for incorporating fog in multi-

domain wargame scenarios to aid commanders in course of action analysis and planners in 

modifying scenario difficulty. 

 

Keywords: Fog of War, Wargaming, Multi-Domain Operations, AFSIM 

 

 

Introduction 
Military leaders must consider the information uncertainty when making decisions in the 

battlespace to accomplish objectives. Carl von Clausewitz (1873) compares this uncertainty to 

fog: meteorological fog physically obscures a person's view as war fog figuratively conceals the 

battlespace. Fog may cause a military leader to make decisions that might cause an unintended 

tactical effect. Therefore, identifying uncertainty sources enables the decision-maker to better 

account for battlespace fog when forming courses of action to execute a plan.  

 

The decision-making process for this research involves command and control (C2) in military 

operations. A military leader follows a command chain structure where he or she reports to a 

V. Journal of Information Warfare

64



 

higher authority and commands subordinates (Department of Defense 2020). The leader uses a 

decision-making process to accomplish objectives. Military analysts use wargames to simulate 

war scenarios and associate outcomes to commander decisions. Some wargames adopt a C2 

structure where the teams each hold their C2 systems to form decisions and disseminate the 

information to subordinate platforms.  

 

This research applies the Fog Analysis Tool (FAT) (Tryhorn et al., 2021) for Multi-Domain 

Operations (MDO) and Joint All-Domain Command and Control (JADC2). MDO provides the 

United States (U.S.) Armed Forces with a strategy to execute simultaneous and sequential 

operations with continuous integration of capabilities across all warfighting domains to defeat 

adversaries in the 2025 – 2050 timeframe (Feickert 2020). JADC2 is the concept to connect 

sensors from all of the U.S. military services into a single network (Hoehn 2020). JADC2 

supports emerging ideas, such as the sensing grid concept and unified joint C2 infrastructures 

(Williams and Sotiriadis 2019). This research analyzes FAT's impact on multiple warfighting 

scenarios to form a Cyber Land Air Sea Space (CLASS) set in AFSIM. This begins by setting up 

CLASS scenarios with Blue and Red teams that each leverage platforms for multiple domains. 

Then, FAT simulates the scenarios with different levels of fog for each run and records a success 

condition. The analysis includes viewing the percentage of success at a certain fog level and 

finding the crossover value if it exists. A crossover value reinforces the idea that fog disrupts the 

normal process of the scenario. The goal is to use FAT to introduce fog in wargame scenarios 

and use result trends to support fog effectively in disrupting the decision-making process across 

all warfighting domains. 

 

Background and Related Work 
This section provides a review of topics related to the information environment, the MDO and 

JADC2 concepts, C2 decision-making, and the AFSIM framework. The Fog Introduction and 

Manipulation Methodology (FIMM) and Fog Analysis Tool (FAT) are the tools used to 

introduce and manipulate levels of fog into AFSIM scenarios to view the impact on success rate. 

This section provides the necessary topics on fog for joint warfighting in the information domain 

so that FAT can use CLASS scenarios for multi-domain operations. 

 

The information environment 
The information environment interconnects the primary warfighting domains: land, air, sea, 

space, and cyberspace.  It is responsible for collecting, processing, and disseminating 

information between the domains. Joint Publication 3-13 (2014) splits the information 

environment into three categories: the physical, informational, and cognitive (see Figure 1). The 

physical dimension comprises command and control (C2) systems, decision-makers, and 

supporting infrastructure that enable individuals and organizations to create effects. This 

dimension includes the physical platforms and interconnected communication networks. The 

informational dimension supports the storing and processing of information.  Actions here affect 

the content and flow of information. The cognitive realm refers to individuals' or groups' 

information processing, perception, and judgment; it measures how ideologies, beliefs, morals, 

and education influence these elements. In turn, measuring their influences provides an 

understanding of how to influence the decision-maker's mind best and create the desired effects. 

The introduction of fog effects directly impacts the data collection of physical platforms and 

transmission of communication links in the physical dimension. The physical dimension's fog 
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affects information data flow through the informational dimension and decision-making 

processes in the cognitive dimension.  It is essential to understand that these layers build upon 

each other because introducing uncertainty at critical times and locations could negatively impact 

how the commander fights in the information environment.  

 

MDO and JADC2 

MDO, a U.S. Army concept, defines the joint force as the Air Force, Army, Marines, Navy, and 

Space Force and the warfighting domains as air, land, maritime, space, and cyberspace (Feickert 

2020). MDO describes how the joint force could defeat a near-peer adversary in all domains.  

When deterrence fails, the joint force would then penetrate, disintegrate, disrupt, degrade, or 

destroy the enemy's anti-access and area denial systems. It exploits the resulting freedom of 

maneuver by defeating enemy forces in all domains and forces the battlespace, including the 

information environment, to a U.S favorable state. Dominance in all domains maintains enemy 

deterrence.  

 

MDO emphasizes the joint force and all-domain dominance, but JADC2 provides a method to 

unify information across domains and aid commander decision-making to accomplish the goals 

of MDO. JADC2 is a U.S. Department of Defense (DoD) concept to support all U.S. military 

branches' sensor fusion. JADC2 envisions a cloud-like environment for the joint force to share 

intelligence, surveillance, and reconnaissance data, transmitting across many communications 

networks, to enable faster decision-making. The goal is to enhance commander decision-making 

by collecting data from numerous battlefield sensors, processing the data using artificial 

intelligence algorithms to identify targets, then recommending the optimal weapon to engage the 

target. Each U.S. military branch is attempting to implement aspects of JADC2, such as the Air 

Force's Advanced Battle Management System (ABMS), the Army's Project Convergence, and 

the Navy's Project Overmatch (Hoehn 2020).  

 

MDO supports the use of assets from multiple domains to accomplish objectives. While the 

CLASS scenarios focus on a primary domain, they employ platforms from secondary domains. 

The CLASS scenarios use sensors and communciations to collect battlefield data and to send the 

data to a tasking unit similar to the concepts of JADC2. A joint force commander uses assets and 

sensor data from multiple domains to enforce adversarial deterrence. The FAT tool aids the 

simulation of war scenarios by introducing battlespace fog into data collection and transmission 

through sensors and communications. FAT uses uncertainty in CLASS scenarios to demonstrate 

how fog can affect MDO and affect the JADC2 process. 

 

Uncertainty areas with C2 
Military C2 is the exercise of authority and direction by a properly designated commander over 

assigned and attached forces to accomplish the mission (DoD 2020). Joint Publication 1 lists the 

tenets of C2, including clearly defined authorities, timely decision making, and information 

management (Joint Staff 2017). The tenets of C2 directly support the chain of command's goal to 

have clear, quick, and accurate communication between the commander and subordinates. These 

tenets also provide areas to introduce and view the impact of fog effects. The Van Creveld 

(1985) functions of C2 in Table 1 provide a detailed process of perceiving the environment and 

shaping it to accomplish objectives. 
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Function Description 

1 Collecting information on own forces, the enemy, the weather, and the terrain 

2 Finding means to store, retrieve, filter, classify, distribute, and display the 

information 

3 Assessing the situation 

4 Analyzing objectives and finding alternative means for achieving them 

5 Making a decision 

6 Planning based on the decision 

7 Writing and transmitting orders as well as verifying their arrival and proper 

understanding by the recipients 

8 Monitoring the execution via feedback, at which the process repeats itself 
 

Table 1. Van Creveld's (1985) eight defining characteristics of C2 

 

The first and second functions provide an uncertainty where the commander may collect and 

store inaccurate information. Functions three through six depend on the commander's decision-

making process and exceed the scope of this research. The seventh function introduces an 

uncertainty where the recipients may not receive the proper commands, and the eighth function 

relies on an accurate perception of the commander's environment. The functions of C2 provide 

options for identifying areas of uncertainty in C2 processes. Fog effects leverage these areas to 

disrupt the decision-making process of the commander. The uncertainty areas of C2 provide a 

structure to set up CLASS scenarios and entry points to manipulate fog in those scenarios.  

 

Related frameworks to simulate fog across multi-domain operations  
The U.S. military uses different simulations to analyze war scenarios specific to an agency's 

goals. The Advanced Framework for Simulation, Integration, and Modeling (AFSIM) is one of 

the Air Force Research Laboratory's (AFRL) solutions to simulate war scenarios in multiple 

warfighting domains and levels of fidelity (Clive et al., 2015). AFSIM uses commands to affect 

perception data and communication link transfer. The U.S. Army utilizes the framework One 

Semi-Automated Forces (OneSAF) to achieve war scenario simulation similar to AFSIM. 

However, OneSAF has more support for land-based warfare with soldiers, equipment, and 

logistical supplies (Parsons, Surdu, and Jordan 2005). The U.S. Navy develops the framework 

Next Generation Threat System (NGTS) for multi-domain war simulation. NGTS provides 

rivaling capabilities similar to AFSIM, such as communications, sensors, and data visualization 

(NAWCAD 2018). The three software packages provide capabilities to simulate war scenarios in 

multiple warfighting domains. However, FAT is designed for AFSIM due to how its sensor and 

communication objects work. While FAT is implemented on AFSIM, it is important to 

understand the method can be applied to any war simulation framework. 

 

Related methods for simulating and modeling fog 
John Setear (1989) provides a general method for defining and simulating fog in wargames. The 

sources of battlefield fog are uncertainty about the enemy, such as intentions and forces. The 

natural environment facing the commander and the behavior of the friendly forces are also 

sources of fog. The last source is the uncertainty about the underlying laws of war that govern 

arms' clash on the battlefield. Setear stresses that the sources of fog affect commanders and 

environments at all levels. This result applies to strategic and tactical commanders and 

environments such as land, air, and the sea. Rules simulating uncertainty help the efforts of a 
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wargamer to learn why events happen as they do and discover in the long run what 

characteristics a good commander needs to win in modern warfare. 

 

Berry et al. (2000) focus on modeling information and decision-making with uncertainty in 

sensors. Their model catalogs the sources of uncertainty. The sensors have performance 

limitations relating to power, range, noise, and signal return strength. The environmental effects, 

such as clutter, cloud cover, or ionospheric state, determine if the system detects a target and the 

errors associated with the measurement. Multiple sensors may disagree with the estimates of 

speed or location. The uncertainty associated with the information increases over time unless the 

system continually receives truth evidence. The model uses probabilistic analysis to account for 

uncertainty and the unpredictable behavior of targets.  

 

The Data Uncertainty Engine (DUE) is another software tool for assessing environmental data 

uncertainties for hydrological flow (Brown and Heuvelink 2007). The sources of uncertainty 

stem from imprecise measurements, sampling, interpolation, and positional errors. The engine 

incorporates the uncertainty levels into the probabilistic analysis. While these methods provide 

areas to introduce uncertainty, FIMM focuses on the wargame process with sensors and 

communication objects that disrupt the C2 process and commander decision-making. 

 

Fog Identification and Manipulation Methodology 

FIMM, as shown in Figure 1, is a process that provides options to introduce and manipulate fog 

effects with sensor and communication objects in a wargame scenario. It focuses mainly on 

denial, disruption, and degradation of information flowing through the commander for decision 

making. This model limits the process to a single commander in charge of sensor and effect-

generating platforms. The commander receives information from sensor platforms through 

communication links. Platforms may or may not hold links between them for multiple paths to 

the commander. However, the information the sensors collect may be inaccurate, and the data in 

the communication links may become delayed or denied. The commander executes the decision-

making process with the perceived environmental information. 
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Figure 1: The Fog Identification and Manipulation Methodology 

 

FIMM provides an avenue for producing fog effects in a generalized C2 scenario that leverages 

sensors and communication links. The implementation FAT leverages AFSIM to introduce and 

manipulate fog effects in framework scenarios.  

 

The information environment provides a domain, and Creveld's C2 functions provide a process 

for interfering with information collection and flow. MDO and JADC2 support multi-domain 

warfighting and using sensor fusion to aid decision-making. The military's current frameworks 

each have their capabilities for simulation war scenarios, but fog generating tools are scarce. 

Setear provides general methods for wargames, DUE focuses on hydrological flow uncertainty, 

and Berry models uncertainty for surveillance sensors. FIMM provides a unique process for 

introducing fog using sensors and communications to interrupt C2 processes. However, FIMM’s 

effectiveness in multi-domain scenarios is unverified and the methodology provides a system for 

evaluating FAT in multiple warfighting domains to support FIMM. 

 

Methodology 
This section describes the Fog Analysis Tool (FAT) for AFSIM and introduces the Cyber Land 

Air Space Sea (CLASS) set of scenarios for analyzing the impact of fog effects using FAT in 

AFSIM. FAT provides the necessary capabilities to generate and tune fog level for success rate 

analysis, while the CLASS scenarios represent a distinct combat domain so that analysts can 

learn FAT's impact on winning conditions. Each domain scenario represents a likely conflict, 

where a friendly team (e.g., Blue team) battles an adversary (e.g., Red team).  The U.S. Air Force 

performs air superiority, interdiction, and strategic bombing missions regularly. Some weapon 
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systems leverage the GPS for positioning coordinates, and the U.S. utilizes cyber operations for 

cross-domain operations (Mattis 2018).  

 

Each CLASS subsection describes the problem, set up in AFSIM, and success conditions.  FAT 

identifies the sensor and communication objects and measures the success rate at different fog 

levels. The expectation for each scenario is to produce a crossover event between success and 

failure as the fog effect's value increases. The goal is to introduce CLASS scenarios into the FAT 

process for multi-domain analysis. 

 

Fog Analysis Tool 
FAT is implemented as an AFSIM plugin that displays the current sensors and communication 

components in a loaded project, provides methods for an analyst to introduce and modify fog 

effects in both sensor and communication components. FAT intends to provide the wargame 

analyst a direct way to modify sensor and communication component values related to fog 

functions derived from FIMM. The tool begins by parsing a loaded project for all sensor and 

communication objects. The objects populate in an AFSIM window as a tree (see Figure 2) with 

a parameter-value scheme. The analyst can modify the parameter's value in the window, which 

updates the corresponding environment objects. 

 

 
 

Figure 2: The Fog Analysis Tool Conceptual View 

 

FAT uses AFSIM specific features to produce effects to implement FIMM. The sensors affect 

information collection, including position error, track hit, and probability. The sensor affects the 

establishment of perceptions and other platforms' position reports (i.e., entities and players). The 

communication objects model information transmission between links, including transfer rate, 

queuing, and packet transmission delays. The CLASS scenarios view the impact of FAT fog 

effects in different combat domains.  
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FAT capabilities in AFSIM 
FIMM provides a general process for manipulating fog in sensors, and communications and FAT 

leverages AFSIM to implement fog capabilities. The communication capabilities include link 

cutouts, transfer rate adjustment, and packet delays. Very low propagation speeds and queue 

limits of zero simulate link cutouts. The transfer rate capability allows a bit flow rate as the 

parameter. Packet delays introduce a time delay to every packet sent through the network. The 

sensor capabilities begin with positioning error for azimuth, elevation, and range shown in 

Equation 1. The positioning error is either a percent error 𝑃𝑒  or a unit value 𝑉𝑒 . The positioning 

error range 𝑅𝑝 is standard deviation based on the truth value 𝑉𝑡 of the platform perception. 

 

𝑅𝑝 = 𝑉𝑡 ± 𝑉𝑡 ∗ 𝑃𝑒  
(1) 

𝑅𝑝 = 𝑉𝑡 ± 𝑉𝑒  

 

The next capability is the hits to establish a track or perception of another platform for 𝑀 of 𝑁 

hits. AFSIM allows a maximum of 32 hits for 𝑀 and 𝑁. The last two capabilities allow a 

probability for establishing and maintaining a track for another platform. The probability is a 

normalized value from 0.0 to 1.0. The communication capabilities affect cutouts for links and 

information flow between and through links. The sensor capabilities affect information collection 

for positioning and perception establishment and maintenance.  

 

Validation and summary 
The application of CLASS scenarios to FAT in Figure 3 is a direct process. The method begins 

by loading a scenario. Then FAT simulates a fog level configuration for n runs. A script parses 

the results and stores the percentage of success at the given fog level value. The results store the 

pairs for each fog level for analysis. 

 

 
 

Figure 3: Applying FAT to CLASS Scenarios 
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FAT is a direct implementation of FIMM in AFSIM. FAT leverages AFSIM framework 

capabilities to produce fog effects. The CLASS scenarios application to FAT is a direct process 

that stores success percentage for each fog level. The next section provides the structure of each 

scenario and an analysis of the results they produce from FAT. 

 

CLASS Scenarios and Results 
The Cyber Land Air Sea Space (CLASS) set of scenarios showcase FAT usage in multiple 

warfighting domains to assess fog effects' impacts. These scenarios use AFSIM for simulation 

and results. Each domain scenario focuses on a primary domain but uses secondary elements 

from others to demonstrate MDO. 

 

Each run uses a different seed, or number, for a pseudorandom number generator for result 

generation. The results illustrate the fail rate for each scenario over 100 simulation runs. When a 

scenario fails more than 50% of the time, the results produce a crossover event and label the fog 

effect level as the maximum fog tolerance level. The communication results show the different 

trends in the CLASS scenarios, excluding the air scenario. Track and tasking messages are 

defined as having a size 𝑡𝑠 of 50 kilobits. The message size directly impacts the transfer of data 

through the link. The sensor results do not produce results in the land domain. 

 

Cyberattack 
The first scenario in Figure 4 occurs in the cyber domain scenario. The Blue team consists of a 

Blue cyber command post that uses a ground radar to detect incoming Red aircraft. The objective 

for the Blue team is to defend the Blue target. The Red team is a single Red uncrewed aerial 

vehicle (UAV) that attacks the Blue target with preset coordinates and air-to-ground missiles. 

Without interference from FAT, the Blue team locks on to the Red UAV when it comes within 

ten nautical miles of the cyber command post, and the post sends a cyber-attack to the Red UAV. 

The Red UAV has an altitude of 2500 feet and drops the air-to-ground missile at a set time no 

matter the altitude. The cyber-attack lowers the UAV to an altitude of 1000 feet. The UAV 

provides a cyber counter-measure to increase the altitude back to 2500 feet within 20 seconds, 

but it gives the Blue team enough time for the Red UAV to drop the air-to-ground missile and 

miss the Blue target. FAT introduces positioning error, hit, and probability effects in the radar 

sensor from the Blue radar site that locks on to the Red UAV. FAT tests cutouts, transfer rates, 

and packet delays for the communication link between the Blue radar site and cyber command 

post. The Blue team's objective is to defend the target. The target's destruction results in a 

mission failure. 
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Figure 4: Cyber Scenario 

 

The communication results impact data transfer, packet delay, and communication link cutouts 

(see Table 2). A link cutout between the Blue cyber command and ground radar results in the 

cyber command post not receiving the location and the Red aircraft's alert. The cyber command 

post does not launch a cyber-attack, and the simulation fails 100% of the time.  

 

Capability Parameter Blue target destruction 

No Fog Effect N/A 0% 

Link Cutout Cyber Command to Ground Radar 100% 

Transfer Rate 12500 bits/s 46% 

-- 6250 bits/s 69% 

-- 3125 bits/s 100% 

Packet Delay 1 s 6% 

-- 2 s 14% 

-- 3 s 22% 

-- 4 s 35% 

-- 5 s 36% 

-- 6 s 43% 

-- 7 s 63% 
 

Table 2: Cyber Scenario Communication Results 

 

The transfer rate at 
𝑡𝑠

16 𝑠
 or 3,125 bits/s produces a fail rate of 100%. However, once the parameter 

reaches 
𝑡𝑠

4 𝑠
 or 12,500 bits/s, the fail rate reduces to 46%. The packet delay reaches failure 

between the parameters of six and seven seconds. The transfer rate directly affects the flow of 

information through the links, while packet delay affects the rate at which information enters the 

links. Both capabilities affect the time the command post receives the coordinates from the radar 

site, and therefore they affect the timing of the cyber-attack. 

 

The sensor results impact the manipulation of positioning error, perception hits to establish, and 

perception probability of track establishment and maintenance (see Table 4). The azimuth and 

elevation error and the maintain track probability capabilities did not produce usable results. 
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Capability Parameter Blue target destruction 

No Fog Effect N/A 0% 

Range Error 1.5 km 36% 

-- 2 km 49% 

-- 2.5 km 63% 

-- 3 km 71% 

Hits to Establish Track 32 of 32 hits 38% 

Establish Track Probability 0.03 41% 

 0.02 53% 

 0.01 74% 

 0.001 99% 
 

Table 4: Cyber Scenario Sensor Results 
 

This scenario begins to fail around 2 kilometers of range error or 0.02 probability of establishing 

a track for the Blue radar sensor. The other positioning error capabilities did not produce results 

because the effect-generator is a cyber-attack. The cyber-attack in AFSIM does not require an 

accurate target position but requires a track of the target. The establishment of perception is 

essential for this scenario. If the Blue radar cannot establish a track, it fails to launch the cyber-

attack. 

 

Land strike 
The second scenario in Figure 5 occurs on land, where the Blue team consists of a ground target 

evading destruction. The Red team uses a battalion commander that manages one 160mm rocket 

platform and one 240mm rocket platform. The Red commander uses preset coordinates for the 

target and sends tasking orders to the ground rocket platforms through communication links to 

launch rockets at the target. FAT manipulates the communication links of the Red team. The 

Blue team's objective is to evade destruction successfully. The Blue target's destruction is a 

mission fail. Zero sensors are used, and results are excluded from this scenario. 
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Figure 5: Land Scenario 

 

The communication links between the commander and the subordinates transfer the position 

data. When a link is disabled, the effect-generating platform does not strike the target. This effect 

results in a zero percent fail rate. The Blue target remains stationary, so the packet delay delays 

the Red order, but the Red launchers still hit the stationary target. The transfer rate effects cause 

a 100% success rate at less than 100 bits per second. This scenario passes when the 

communication links are cut or similar to cut, such as queue limits of zero. The results show that 

stationary launchers primarily fail to hit a stationary target when information fails to transmit 

between platforms.  

 

Air search-and-destroy 
The third scenario in Figure 6, set in the air domain, happens during an aircraft search-and-

destroy mission. The Blue team consists of a single surface to air missile (SAM) site and a high-

value asset. The Red team is a single bomber that targets the Blue high-value asset with preset 

coordinates and GPS bombs. The Blue SAM site uses an attached sensor to detect and lock on to 

the Red bomber. When the Red bomber reaches the Blue SAM site radius, about 11.5 miles, the 

Blue SAM site fires a SAM to the Red bomber's coordinates and destroys the target. FAT 

analyzes the sensor of the SAM site. Since the site acts as the information gathering source and 

the effect generator, the Blue site does not use a communication link in this scenario, and FAT 

does not analyze communications. The Blue team's objective is to defend the high-value asset. 

The asset's destruction results in a mission failure. Zero communication links are used, and 

results are excluded from this scenario. 
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Figure 6: Air Scenario 

 

The sensor results impact all positioning capabilities, the perception hits to establish, and the 

perceived probability of track establishment and maintenance (see Table 5). The positioning 

error capabilities increase the failure rate as the error increases, and this is the expected result. 

The error tolerance for failure is greater than 60% of the correct range. This value is large 

because the SAM site holds multiple missiles for redundancy. 

 

Capability Parameter Blue target destroyed 

No Fog Effect N/A 0% 

Azimuth Error 30% 2% 

-- 40% 17% 

-- 50% 46% 

-- 60% 59% 

Elevation Error 60% 34% 

-- 70% 47% 

-- 80% 72% 

Range Error 25 km 26% 

-- 30 km 57% 

-- 35 km 74% 

Hits to Establish Track 32 of 32 36% 

Establish Track Probability 0.05 25% 

-- 0.025 50% 

-- 0.01 74% 

-- 0.001 99% 

Maintain Track Probability 0.25 39% 

-- 0.2 54% 

-- 0.1 88% 

-- 0.01 100% 
 

Table 5: Air Scenario Sensor Results 
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The hits to establish track capability does not exceed the fail conditions of 50% and above. The 

establish and maintain track probability act as expected. A lower probability creates a lower 

chance for the SAM site to perceive the Red bomber and prevent the Blue high-value asset's 

destruction. 

 

Sea evasion 
The fourth scenario in Figure 7 focuses on the sea or maritime domain. The Blue team is a single 

ship evading the Red team that consists of a destroyer and a helicopter. The Red helicopter uses a 

search radar to detect the Blue ship and reports the information back to the destroyer. The 

destroyer processes the information and sends a missile to the Blue ship for destruction. FAT 

areas of analysis include the communication link between the Red destroyer and helicopter and 

the search radar sensor the helicopter utilizes for detecting the Blue ship. The Blue team's 

objective is to evade destruction from the Red destroyer. The Blue ship's destruction results in a 

mission failure. 

 

 
 

Figure 7: Sea Scenario 

 

The communication results demonstrate an impact similar to the cyber scenario where FAT 

affects data transfer, packet delay, and communication link cutouts (see Table 3). A link cutout 

between the radar seeking helicopter and the destroyer causes the scenario to pass 100% of the 

time since the Blue ship evades destruction.  

 

Capability Parameter Blue ship destruction 

No Fog Effect N/A 100% 

Link Cutout Helicopter to Destroyer 0% 

Transfer Rate 1000 bits/s 68% 

-- 500 bits/s 0% 

Packet Delay 1 s 100% 

-- 10 s 100% 

-- 20 s 74% 

-- 50 s 74% 

-- 60 s 0% 
 

Table 3: Sea Scenario Communication Results 
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The sea communication results differ from the cyber scenario because the transfer rate capability 

requires less throughput for the simulation to fail. The simulation begins to fail between 500 and 

1000 bits/s rather than 12500 bits/s in the cyber scenario. The packet delay does not affect the 

Red team until around 60 seconds of packet delay. The high packet delay and low transfer rates 

are required for mission success because the Blue ship moves at ten knots. A higher Blue ship 

speed would allow a lower packet delay and higher transfer rate to stay in success conditions. 

 

The sensor results show an impact in the same areas as the air scenario (see Table 6), but the 

elevation error and maintain track probability capabilities did not produce any usable results. The 

sea scenario focuses on using the FAT fog effects to disrupt the Red team and protect the Blue 

ship. 

 

Capability Parameter Blue ship destruction 

No Fog Effect N/A 100% 

Azimuth Error 20% 62% 

-- 25% 42% 

Range Error 100 km 59% 

-- 125 km 51% 

-- 150 km 43% 

Hits to Establish Track 28 of 32 100% 

 32 of 32 0% 

Establish Track Probability 0.005 33% 

-- 0.01 60% 
 

Table 6: Sea Scenario Sensor Results 

 

The azimuth error tolerance is lower than the air scenario, but the range error tolerance is higher 

than the air scenario. The hits to establish track produces flips from a full fail rate to a zero 

percent fail rate between 28 to 32 of 32 hits. The established track probability shows a similar 

trend to the other scenarios.  

 

Space GPS denial 
The fifth scenario in Figure 8 uses assets from the space domain to simulate the global 

positioning system (GPS). The Blue team consists of a single radar site. The Red team consists 

of a surveillance aircraft and a striker aircraft. The Red team detects the Blue radar site and sends 

a striker that launches a GPS-guided missile at the Blue radar. The Blue radar detects the 

incoming missiles, jams the GPS signal, and causes the missile to miss the Blue radar. The 

atmosphere consists of many satellites that provide GPS. FAT manipulates the communication 

network of the GPS satellites and the sensor capabilities of the Blue radar site. The Blue team's 

objective is to deny the missile, so the Blue radar site does not become destroyed. The Blue radar 

site destruction results in a mission failure.  
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Figure 8: Space Scenario 

 

The scenario communications use GPS satellites to provide GPS missile coordinates to a Blue 

target. The GPS network's failure causes the missile to miss the Blue radar 100% of the time and 

allows the scenario to pass. The packet delay and transfer rate capabilities do not produce any 

useful results. 

 

The sensor results do not show any impact of fog effects for FAT except for a sensor cutout. 

Without the sensor, the Blue radar site cannot detect the incoming missile, and it fails to jam the 

GPS onboard the missile. Otherwise, the site jams the missile's GPS, and the site remains safe.  

 

CLASS analysis  

All results follow the trend where increased fog levels lead to disruption and degradation of 

tasking and decision-making where the Blue target destroys more than half the time. In the 

communication results, the two scenarios that impact positioning fog are the cyber and sea 

scenarios. The positioning fog capabilities demonstrate a low transfer rate, and a high packet 

delay disallows tasking messages to transfer in the link successfully. The air scenario does not 

use a communication link. The land scenario tracks a stationary target and therefore has an 

impact only from link cutouts. The space scenario impacts GPS failure since the missile depends 

on GPS to destroy the Blue target.  
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The sensor results from each domain scenario vary. The cyber scenario does not recognize an 

impact with some positioning capabilities, but it shows an impact with range error. The air 

scenario demonstrates an impact with all three positioning error capabilities. The sea scenario 

does not show an impact with the elevation positioning error. The land scenario does not use a 

sensor, but the space scenario only shows an impact with a sensor cutout. The hits and 

probability capabilities each show an impact for the cyber, air, and sea scenarios. Between the 

three, each fog effect's levels reach different values to achieve 50% of targets destroyed. The 

variation of these values depends on variables that were not accounted. The multi-domain nature 

of the CLASS scenarios introduces the need to account for variables in all warfighting domains. 

To reduce this complexity, FAT must analyze each scenario on a case-by-case basis. The fog 

level trends support the idea FAT effectively disrupts the tasking and decision-making process in 

multiple domains. 

 

The results demonstrate that sensors and communication links may collect and transmit data 

independently of a platform's domain. However, the levels of fog effects required to disrupt and 

degrade the tasking depend on many environmental factors, including speed of target, viewing 

field of sensor, and quantity of ammunition.  

 

Conclusion 
The CLASS scenario analysis presented in this paper demonstrates the FAT tool's capability to 

vary multiple variables to analyze a wargame scenario from five warfighting domains. CLASS 

scenarios produce a structure for an analyst to focus on a specific operation domain while 

incorporating secondary domain assets to form a multi-domain operation. FAT provides options 

for introducing and manipulating fog effects in AFSIM specific to sensors and communication 

links for CLASS scenarios. The fog effects produce a similar trend in each domain where more 

fog or error interrupts a specific team's information collection and transmission and causes a 

crossover event to mission failure as fog increases. Similar trends reinforce the idea that 

manipulating information collection and transmission can disrupt C2 processes and cause 

mission failure. The results support the idea FAT is effective in multi-domain operations and 

should be used for future war scenario analysis.  

 

Future Work 
FAT is a manual process to test and evaluate different fog levels in AFSIM for all sensor and 

communication objects in a given scenario. FAT should be converted into a test suite to test all 

possible fog levels in AFSIM in an automated fashion. The test suite conversion would require a 

few scripts to change fog levels at given intervals over a specified number of simulation runs and 

use command-line arguments for the AFSIM mission application. 

 

There is a large number of variables to consider when creating a scenario to evaluate with FAT. 

The tool must be used on a case-by-case basis to introduce fog effects and evaluate their impacts. 

There is a need to identify additional uncertainty variables and produce a standardizing 

battlespace fog beyond sensors and communication links. 

 

FAT is an implementation of FIMM in AFSIM. FIMM should be implemented on other 

wargaming or war simulation frameworks to gain more results and verify that the method 

effectively introduces and manipulates fog in sensors and communication links. 
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FIMM intends to produce more realism for wargame scenarios. A wargame decision-making 

agent could incorporate the uncertainty capabilities from FIMM to account for battlespace fog 

when processing information and making decisions. The incorporation of FIMM into an agent's 

decision-making process would require a more probabilistic analysis of fog. 
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VI. Conclusion

Fog of war in wargames occurs when a decision-maker does not have complete

information about the environment. Fog stems from a lack of knowledge about the

enemy, enemy intentions, and enemy forces. Fog can also come from the natural envi-

ronment and the behavior of friendly forces. For example, a unit that searches the en-

tire map for a target may become exhausted after many searches. Multiple units that

search for the target may divide the search time. The Fog Identification and Manipu-

lation Methodology (FIMM) provides a novel method for manipulating fog effects in

wargames related to sensors and communication links. The Fog Analysis Tool (FAT)

provides an implementation of FIMM in the Advanced Framework for Simulation,

Integration, and Modeling (AFSIM). Introducing fog into sensors and communica-

tion links affects the information the commander receives from information-collecting

platforms and disseminates to effect-generating platforms. The introduction and ma-

nipulation of fog may cause the commander to fail the scenario. Higher levels of fog

effects tend to lead to a higher fail rate. This trend also appears when analyzing

various multi-domain scenarios.

6.1 Future Work

A test suite for the search algorithm would gather more results for analyzing how

the map configuration can affect the parallel algorithm’s speedup compared to the

sequential algorithm. The test suite requires a map generator to randomly arrange

the tiles on the map while keeping the assumptions in order.

FAT is a convenient tool for AFSIM analysts to change various levels of fog for

a simulation run. However, the use of FAT is highly manual. The process could be

converted into a test suite where the tool automatically takes an AFSIM scenario and

83



finds the sensor objects and communication objects, simulates each object at different

fog levels and the number of runs, and provides a statistical report on the success/fail

rates. The test suite could eliminate the need for finding a standardized method to

use FAT, and every scenario can be treated uniquely.

The integration of FAT into the Warlock application would allow for real-time

analysis of fog effects. The analyst would be able to change a fog effect value in

real-time and view how it affects the scenario’s success. FAT with real-time analysis

could be used for fine-grained tactical strategy testing.

FAT is an implementation of FIMM in AFSIM. FIMM should be implemented

on other wargaming or military simulation frameworks to gain more extensive results

and verify that the method effectively introduces and manipulates fog in sensors and

communication links. A couple of possible frameworks are Next Generation Threat

System (NGTS) by the U.S. Navy and One Semi-Automated Forces (OneSAF) by

the U.S. Army.

FIMM intends to produce more realistic wargame scenarios. A wargame decision-

making agent could incorporate the uncertainty functions from FIMM to account

for ‘battlespace fog’ when processing information and making decisions. The in-

corporation of FIMM into an agent’s decision-making process would require a more

probabilistic analysis of fog.
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