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Abstract

Alternative navigation is an area of research that employs a variety of sensor

technologies to provide a navigation solution in Global Navigation Satellite System

degraded or denied environments. The Autonomy and Navigation Technology Center

at the Air Force Institute of Technology has recently developed the Autonomous and

Resilient Management of All-source Sensors (ARMAS) navigation framework, which

utilizes an array of Kalman filters to provide a navigation solution resilient to sensor

failures. The Kalman filter array size increases exponentially as system sensors and

detectable faults are scaled up, which in turn increases the computational power

required to run ARMAS in a real-world application. In an effort to engineer a real-

time ARMAS system, this study developed C++ CPU and CUDA GPU versions to

examine the performance trade-offs as system sensors and detectable faults are scaled

up. Small sensor size configurations proved to be faster on a CPU, while a 3.5 order

of magnitude speedup was achieved by the GPU ARMAS implementation over the

CPU version on a large sensor system configuration. Also, a novel ARMAS software

model is presented that uses layered ARMAS subsystems requiring less processing

power than a single ARMAS system architecture instantiation. Results show promise

that a real-time ARMAS system can be achieved for large scale applications through

parallel processing on a many-core processor architecture and efficient software design.
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OPTIMIZING BANKS OF KALMAN FILTERS FOR NAVIGATION INTEGRITY

USING PARALLEL COMPUTING AND EFFICIENT SOFTWARE DESIGN

I. Introduction

1.1 Background

For the last three decades, the United States Air Force has maintained air dom-

inance in military engagements throughout the world. The ability to strike targets

accurately and precisely is dependent on the navigation and timing solutions avail-

able to the warfighter. Modern navigation systems rely heavily on Global Navigation

Satellite Systems (GNSS) to provide an accurate navigation solution under the as-

sumption that GNSS are available in the area of operations. This is an assumption

that may not hold in future contested environments where GNSS transmissions can be

degraded or denied by near-peer adversaries. In light of this, the Air Force Institute

of Technology’s (AFIT) Autonomy and Navigation Technology (ANT) Center is a

forward-looking research center seeking to address this type of challenging navigation

problem through alternative all-source navigation technology.

Alternative all-source navigation technology is an area of research which employs

a variety of sensor technologies to provide a navigation solution in GNSS degraded

or denied environments. Recently, the ANT Center has developed the Autonomous

and Resilient Management of All-source Sensors (ARMAS) navigation framework,

which provides a navigation solution resilient to sensor failures [1]. Configuring GNSS

satellites as individual sensors in an ARMAS system can equip warfighters with a

coherent navigation solution as they transition and operate into highly contested

1



environments. Currently, the ARMAS framework is implemented in the MATLAB

computing environment for academic research and development.

1.2 Problem Statement

In an effort to transition the academic software into an operational system, the

current ARMAS framework must be optimized to meet the real-time constraints of

modern navigation systems. In particular, ARMAS requires a nontrival amount of

processing power to maintain an array of unique Kalman filters, which identify faulty

sensors through a general consensus. The size of the Kalman filter array depends

on the number of system sensors and detectable system sensor faults specified by the

user. As a general approximation, the Kalman filter array size increases exponentially

as system sensors and detectable faults are scaled up linearly, which in turn increases

the computational load required to run ARMAS in a real-world application. This

thesis answers the over-arching investigative question: How can the academic ARMAS

software be optimized towards an operational real-time system?

1.3 Research Objectives

The primary purpose of this research is to explore software design techniques to

optimize the execution of at least 10,000 Kalman filter instances within the ARMAS

framework. The computational complexity of running the Kalman filter instances

will be analyzed to efficiently allocate the computational load across available devices

on a heterogeneous platform. The focus will be to exploit collaboration advantages

between a Central Processing Unit (CPU) and Graphics Processing Unit (GPU) for

efficient workload processing. The goal of this investigation is to engineer software

models for different conditions that can scale up while maintaining performance and

identify key system criteria that distinguishes the most efficient software model to

2



use.

1.4 Hypothesis

Acknowledging that developing a singular software model that produces the opti-

mal result for all possible conditions is highly improbable, this research hypothesizes

that a GPU parallel processing model is advantageous in ARMAS systems configured

to detect multiple faults for large quantity of system sensors. ARMAS systems con-

taining a small quantity of system sensors are expected to see superior results with a

CPU sequential processing model. Research results will quantify the amount of sys-

tem sensors and faults associated with identifying the sequential to parallel processing

efficiently cross-over point.

Furthermore, it proposes that a single ARMAS system instantiation is less compu-

tationally efficient than an association of smaller ARMAS systems working collectively

to produce the same output under a set bounded conditions. The smaller ARMAS

systems are formed with different subsets of sensors together forming the superset of

sensors used in the single ARMAS system instantiation. The computational efficiency

will be a measure of the overall execution time of an ARMAS program.

1.5 Assumptions/Limitations

The experiments accomplished in this study were performed on a Dell Preci-

sion 7720 workstation configured with a Intel Core I7-7920HQ CPU and an NIVIDA

Quadro P5000 GPU. The Intel Core I7-7920HQ operates at 3.10 GHz with 8 MB of

Cache. The workstation system total RAM contained 32 GB. The NIVIDA Quadro

P5000 GPU is comprised of 2048 CUDA Cores operating at 1.51 GHz with 16 GB of

GDDR5 memory. The optimization results presented in this thesis are particular to

this hardware. However, the techniques in parallel computing and efficient software

3



model designs discussed in this thesis are valid optimization approaches for computer

system with comparable hardware.

1.6 Thesis Contributions

The following are contributions made in this thesis:

1. The first C++ sequential processing implementation of ARMAS.

2. The earliest parallel processing implementation of ARMAS on a GPU device.

3. An identification of ARMAS system parameters where sequential to parallel

processing efficiency cross-over points occur.

4. A novel ARMAS software model that:

• uses layered ARMAS subsystems, and

• requires less processing power than a single ARMAS system architecture

instantiation.

1.7 Thesis Structure

This document is organized in the scholarly article thesis format. Chapter II pro-

vides a detailed explanation of relevant background information. This information is

condensed into summarized versions in both scholarly articles contained in this thesis

to support stand-alone publication. Chapter III is the first scholarly article that de-

tails the process of accelerating the ARMAS framework through parallel computing

performed on a GPU device. Chapter IV is the second scholarly article that presents

a novel software model that utilizes multiple ARMAS subsystems to generate a nav-

igation solution with less computational demand. Finally, Chapter V discusses the

conclusions drawn from the results.

4



II. Literature Review

This chapter presents the fundamental background information used to support

the software design decisions in the subsequent chapters. Section 2.1 outlines the C++

programming language. Section 2.2 describes the heterogeneous computing model

and parallel programming. Section 2.3 summarizes how the Kalman Filter uses state

estimation to provide navigation solutions. Section 2.5 describes the Autonomous and

Resilient Management of All-source Sensors (ARMAS) framework. Lastly, Section 2.6

discusses related research conducted.

2.1 C++ Programming Language

C++ is a general purpose programming language that supports objected-oriented

programming and data abstraction [2]. It was first developed in 1979 in the Com-

puting Science Research Center of Bell Labs in Murray Hill, New Jersery by Bjarne

Stroustrup, with the first commercial release occurring in October 1985 [3][4]. C++

is now one of the most popular and widely used programming languages for system

development [5][6]. There are an estimated 4.5 million C++ developers worldwide

[7][8].

C++ is a superset of the C programming language (C11 standard), where most

differences stem from C++’s greater emphasis on type checking. The greater empha-

sis on type checking allows a compiler to detect type errors, enabling programmers

to easily correct typing mistakes or catch conceptual design flaws during early de-

bugging. C++ is a complied language that supports low-level operations [3], which

allows for direct interaction with hardware [5]. This provides a programmer with the

capability to efficiently utilize available hardware resources for C++ programs. C++

is a flexible language that does not have inherent limitations that prevent particular

5



kinds of programs from being written, allowing for a large range of applications [2].

The versatility of the language allows it to be used in embedded systems, servers,

investment banking, games, manufacturing, and even web applications [6][8][9].

The C++ programming language has a guiding principle that focuses on pro-

viding zero-overhead abstraction. This means a C++ program is not burdened by

unused features of the language and it is optimized in such a way that eliminating the

abstraction qualities of the code base will not increase performance [8][9]. Compara-

tive studies have shown these defining characteristics enable C++ to achieve higher

speed performance than other languages [10]. Additionally, C++ allows for the most

memory-efficient program models with the least variability. Nevertheless, these ad-

vantages come at a cost as C++ programs tend to be two to three times as the length

of scripting languages, such as Perl, Python, and Rexx [11]. Ultimately, the severity

of this drawback can be offset by the programmer’s ability to drive efficiency [12].

2.2 Heterogeneous Computing Model and Parallel Programming

In the early days, computers only contained a single Central Processing Unit

(CPU), called a processing core, to run general computing tasks. The computing

tasks were discrete series of calculations that executed in a successive order forming a

sequential program that solved an overall problem. A CPU core is designed to handle

very complex control logic that optimizes the execution of sequential programs [13]. A

sequential program directly benefits from a CPU’s ability to minimize the execution

latency attained through short-latency cache memory accesses, low-latency arithmetic

units, and sophisticated operand delivery logic [14].

Historically, this benefit allowed software developers to rely on hardware advances

to increase the speed of their sequential programs. These early performance advances

were achieved by continuously increasing the transistor count on a chip and the clock
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rate frequency. This chip design improvement method slowed in 2003 due to energy

consumption and heat dissipation issues [14][15]. Instead, researchers showed that

better power efficiently could be achieved by having two cores running at lower fre-

quencies than a single core operating at double the frequency of the two cores, while

completing the same number of instructions in both instances [16][17]. This lead to

a multi-core architecture, where multiple processing cores are on a single chip system

[13].

The multi-core architecture eliminated the typical performance increase seen on

new generations of CPUs with sequential programs as they were only able to run on

one of the processing cores. Software developers adapted to these new architectures

by implementing parallel programs instead. Parallel programs allow multiple threads

to cooperate by performing calculations concurrently to complete a computing task

faster [14][18]. Currently, parallelism is a driving force for computer architecture

design. The multi-core architecture has now evolved to the manycore architecture,

which describes chips with tens or hundreds of cores [13].

Graphical Processing Units (GPUs) represent a manycore architecture, which im-

plements multiple levels of parallelism [17]. GPUs were originally only used for com-

puting a large number of calculations required for displaying graphics [15]. The nature

in which graphics computations are required led GPU chip designers to maximize the

number of processing cores on a GPU chip at the expense of the cache memory size.

The smaller cache memory on a GPU results in long latency memory accesses. In

turn, the large number of processing cores increases the total execution throughput

capability of the device[14].

In 2007, NVIDIA introduced the Compute Unified Device Architecture (CUDA),

which opened up general purpose computing on GPUs (GPGPU). GPGPU allows for

general computation for wide range of problems, not just those within the graphics
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domain. GPGPU is ideal for problems involving large amounts of data parallelism

[15]. Data parallelism emerges when there are many data elements that can be op-

erated on independently. The large number of programmable cores within a GPU

permit the independent operations to be done simultaneously. This has increased

workload efficiency of parallel programs on data-parallel computation-intensive tasks

[13].

The advantages of GPGPU has lead to a heterogeneous computing model that uses

a suite of processor architectures to execute a computer program. A heterogeneous

application seeks to run specific portions of a program on hardware components that

computationally accelerate the execution of the overall application [13][19][20]. GPUs

have become the most commonly used accelerator on computer systems [21], but other

devices like Digital Signal Processors (DSPs) and Field-Programmable Gate Arrays

(FPGAs) can also be used.

2.3 Kalman Filter in Navigation Applications

Navigation solutions based on accurate estimation of a vehicle’s system states can

be determined via model estimation. The Kalman Filter algorithm, developed by

Rudolf E. Kalman in 1960 [22], is used in modern navigation systems to perform

recursive model estimation for a process (dynamics) model in the form,

ẋ(t) = Fx(t) + Bu(t) + Gw(t), (1)

where x is the system state vector, u is the system input control vector, and w

is the white noise components vector. F, B, and G are linear operator matrices

with constant coefficients for the state vector, control input vector, and noise vector,

respectively. The discretization of the Kalman Filter equations using the Van Loan
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method [23] allows the algorithm to be used in modern navigation systems to estimate

a vehicle’s system states.

Linear discrete sensor measurements modeled, is given by

zk = Hxk + vk, (2)

where z is the sensor measurement, H is the observation model that maps measure-

ments to the states, and v is the white noise function, are used to update the state

estimate at timepoint k. The discrete Kalman Filter algorithm estimates system

states by propagating an initial state estimate using

x̂−
k+1 = Φx̂+

k + Bduk, (3)

P−
k+1 = ΦP+

k ΦT + Qd, (4)

where x is the state estimates, Φ is the discrete state transition, and P is the as-

sociated state error covariance matrix. The states and covariance are updated by

combining propagated state estimates and measurement readings via the Kalman

gain, K, using

Kk = P−
k HT

[
HPkH

T + R
]−1

, (5)

x̂+
k = x̂−

k + Kk

[
zk − Hx̂−

k

]
, (6)

P+
k = (1 − KkH)P−

k , (7)

where R is the measurement error covariances.

In summary, given a correctly-modeled state transition and measurement system

representations, an optimal stochastic estimation of a vehicle’s system states can be

determined by recursively implementing the Kalman Filter algorithm. A single it-
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eration of the Kalman Filter algorithm is performed in two phases: propagate and

update. The propagate phase computes Equations 3 and 4. The update phase exe-

cutes Equations 5 through 7 [24].

2.4 Extended Kalman Filter

Navigation systems that use non-linear dynamics or measurement models may not

always achieve optimal results from implementing the linear Kalman filter equations.

In certain cases, the non-linear systems can be transformed in linear approximations

to produce accurate solutions. In these cases, the non-linear systems employ the

Extended Kalman filter (EKF) [25][26] which uses the non-linear system dynamics

equation in the form,

ẋ(t) = f [x(t),u(t), t] + G(t)w(t), (8)

where f is a vector that contains functions that represent the system. The non-linear

measurement model is given by,

zk = h[xk, tk] + vk, (9)

where h is a vector of functions that models the system sensor. To linearize the

non-linear system, the states are converted using the perturbation model given by,

δx(t)
∆
= x(t)− x̂(t), (10)

where δx(t) is the difference between the state estimate and the true state vector. To

propagate the system to the time of the next measurement, the EKF integrates the
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non-linear dynamics equation over the time difference using

x̂−
k+1 =

∫ tk+1

tk

f [x(t),u(t), t]dt + x̂+
k . (11)

The state covariance propagation does not change and continues using Equation (7),

while the linearized dynamics model matrix is described by

Fk =
∂f

∂x

∣∣∣∣
x̂+
k

. (12)

To update the state estimates using sensor measurement which may be non-linear,

the measurement is initially predicted by evaluating the measurement model equation

with the most recent estimate using

ẑk = h[x̂−
k , tk], (13)

δzk = zk − ẑk, (14)

where δzk is named the pre-update measurement residual which describes the differ-

ence between the actual and predicted measurements. By linearizing the non-linear

measurement function h using

Hk =
∂h

∂x

∣∣∣∣
x̂−
k

(15)

where H is the linearized matrix, the propagated and measured state estimates can

be combined by calculating the Kalman gain using Equation (5), reducing the mea-

surement update equation to

δx̂+
k = Kkδzk, (16)

by utilizing perturbation state estimates and measurements.

The perturbation state δx̂, starts at zero during each filter iteration and is updated
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using Equation (16). It is then added to the nominal trajectory to produce a nominal

estimate. The perturbation state is then reset to zero after each filter iteration.

2.5 Autonomous Resilient Management of All-source Sensors (ARMAS)

Developed in 2018, ARMAS is a generalized framework for real-time manage-

ment of heterogeneous, asynchronous all-source sensors [1]. The framework identifies

corrupt signals from mismodeled, uncalibrated, and/or faulty sensors through sen-

sor validation, Fault Detection and Exclusion (FDE), recalibration, and remodeling

modes via single software package. ARMAS utilizes a set of SCORPION [27] plug-

gable EKF estimators that provide a navigation solution to problems in the nonlinear

form,

ẋ(t) = f [x(t), ε(t),u(t), t] + G(t)w(t), (17)

where x is a N × 1 state vector of a vehicle’s position, velocity, and attitude. The

measurement error states vector ε is of dimension M × 1, u is the control input

vector, G is an (N + M) × W linear operator, and w is a W × 1 white noise process

described by a W × W continuous process noise strength matrix, Q.

The state estimates are propagated by using the non-linear state dynamics model

and measurements updates from j = 1...J available sensors. The measurement model

for the jth sensor is characterized by

z
[j]
k = h[j][x(t), ε[j](t),u(t), t,p[j]] + v

[j]
k , (18)

where h[j] is the nonlinear measurement function for the jth sensor, ε[j] is an L x 1

subset of ε that contains additional error states required to process sensor measure-

ments, p[j] is a P × 1 user-selectable model parameter vector for h[j], and v
[
kj] is a Z

× 1 discrete white noise process with covariance defined by matrix R
[j]
k .
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The Z × 1 measurement Kalman Filter residual, r
[j]
k , for sensor j, is defined by

r
[j]
k = z

[j]
k − h[j][x̂−

k , ε̂
[j]−
k ,uk, tk, p̂

[j]
k ], (19)

where x̂−
k , ε̂

[j]−
k , and p̂

[j]
k are estimated quantities. Assuming white Gaussian noise,

the residual vector from Equation 19 is expected to follow the distribution

r
[j]
k ↪→ N (0Nx1,S

[j]
k ), (20)

S
[j]
k = H

[j]
k P−

k H
[j]T

k + R
[j]
k , (21)

where P−
k is the (N + M) × (N + M) state estimate error covariance matrix at time

tk and H
[j]T

k is the Z × (N + M) Jacobian of h[j].

Sensors are initialized as trusted or untrusted. Untrusted sensors are placed in

sensor validation mode before they are accepted into monitoring mode. The validation

mode in ARMAS utilizes the likehood function

LNk
=

k∑
i=k−N+1

− log(|2πΣi|)−
1

2
rTi Σ−1

i ri, (22)

where

Σi = HP−
i HT + R (23)

and the N is the most recent residuals, to monitor the statistical distribution of a

user-defined monitoring period comprised of recent Kalman pre-update residuals. A

Chi-squared, X ∗, statistic test is used to detect abberations outside a user-defined

threshold over a specified sampling duration. Sensors in validation mode are excluded

from the main state estimate results.

Conversely, trusted sensors are immediately brought online into monitoring mode.
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In monitoring mode, sensor measurements are directly used to update the main state

estimates. The same pre-update residual likelihood function used in the validation

mode is utilized to monitor sensor performance. The ARMAS monitor mode will be

discussed in-depth in the section 2.5.1.

If an abnormality is detected during sensor performance monitoring, the sensor

becomes “untrusted” and is quarantined from affecting the core navigation state

estimates solution, x̂[j]. ARMAS will attempt to reinitialize the untrusted sensor

through validation mode. If this fails, ARMAS will then try to repair and recover the

untrusted sensor via two separate modes: sensor calibration and remodeling.

In calibration mode, user-selectable sensor parameters, p[j], and/or ε[j] are re-

estimated using residual monitoring from trusted sensors that have observability of

the core navigation state estimates solution. When a single calibration parameter

exist, ARMAS tries to correct the calibration with residual monitoring and moves the

sensor back to validation mode. When linked extrinsic calibration parameters exist

(e.g. camera lever arm and camera orientation within p[j] or ε[j]), each calibration

parameter is estimated individually and sequenced based on convergence of the state

covariance to maintain state observability.

If the calibration mode fails to bring the sensor back online, the sensor is moved to

the remodeling mode where ARMAS attempts to alter the measurement model, h[j],

based on 1...S user-defined measurement models. S simultaneous filters, each with

a unique measurement model, are generated and a specified period of measurement

residuals is compared against the core navigation state estimates solution. The filter

that best matches the prescribed distribution described by Equation (20) during the

specified period is selected as the new sensor measurement model and the sensor

is moved to validation mode. If the remodeling mode fails to select a new sensor

measurement model and the Resilient Sensor Recovery (RSR) option in ARMAS is
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active, the sensor re-enters validation mode after a user-selectable time frame in an

effort phase out temporal anomalies. Figure 1 shows the state transition diagram of

the discussed modes. The result is a software framework that supports heterogeneous,

asynchronous all-source sensors resilient against various sensor calibration, modeling,

and temporal faults.
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Figure 1: ARMAS Framework State Diagram [1]
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2.5.1 Monitoring Mode: Sensor-Agnostic All-source Residual Moni-

toring (SAARM)

The ARMAS monitoring mode employs SAARM to detect multiple sensor failure

modes, such as, bias, mismatched model, and/or miscalibration. To detect a single

sensor failure, J = I differently configured navigation subfilters are maintained for

comparison. This configuration is subsequently extended to provide resiliency to

multiple simultaneous faults with the utilization of more processing power.

SAARM operates on a system of the form

ẋ(t) = f [x(t), ε(t),u(t), t] + G(t)w(t), (24)

where x is a N × 1 state vector of a vehicle’s position, velocity, and attitude. The

measurement error states vector ε is of dimension M × 1, u is the control input

vector, G is an (N + M) × W linear operator, and w is a W × 1 white noise process

described by a W × W continuous process noise strength matrix, Q.

SAARM estimates system states using J individual subfilters. At time t = tk, the

system state vector and state estimate covariance matrix are characterized by

x̂[j](tk) and P
[j]
x̂x̂(tk) for j = 1...J individual subfilters. (25)

Each of the individual subfilters incorporates a subset of I-1 sensors. At time t = tk,

the ith sensor supplies measurements defined by

z[i](tk) = h[i][x̂[j](t−k ),u(tk), tk] + v[i](tk), (26)

where h[i] is the nonlinear measurement function, u(tk) is the control input function,

and v[i](tk) is a Zi × 1 discrete white noise process with covariance defined by matrix
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R[i](tk).

The pre-update measurement estimate for sensor i from filter j is given by

ẑ[i,j](t−k ) = h[i][x̂[j](t−k ),u(tk), tk], (27)

where the estimated covariance matrix is described by

P
[i,j]
ẑẑ (t−k ) = H[i](t−K)Px̂x̂(t−K)H[i](t−K)T. (28)

Using Equations (27) and (28), the “pre-update residual” vector between sensor i and

filter j, r[i,j] and its associated covariance matrix, P
[i,j]
rr are generated using

r[i,j](tk) = z[i](tk)− ẑ[i,j](t−k ), (29)

P[i,j]
rr (tk) = R[i](tk) + P

[i,j]
ẑẑ (t−k ). (30)

ARMAS fault detection involves calculating a moving average of recent residual-

space test statistics formed by pre-update residual vectors from Equations (29) and

(30). This calculation enables ARMAS to detect three types of faults: a bias, an

incorrectly stated noise covariance, or an incorrectly stated measurement model. The

likelihood function uses a single residual-space statistic which determines if a set of

observed residuals between a specific sensor-filter pair are adhering to their expected

distribution. The single residual-space statistic is based on the Mahalanobis distance,

d, defined by

d2 = (y − µ)TΣ−1(y − µ), (31)

where µ is the mean and Σ is the covariance of a Zi-dimensional Gaussian distribution.

Given that a sum of M independent d2 distances follows a X ∗ distribution with Z

18



degrees of freedom [28] shown by

X ∗ =
k+M∑
s=k

d2(ts), (32)

d2(tk) = rT(tk)[Prr(tk)]−1r(tk), (33)

the set of pre-update residuals is known to be a zero-mean, white sequence [25]. The

fault detection test for M pre-residuals is composed of the following hypotheses:

H0 : X ∗
[i,j] < X 2(1− α/2,M x Zi), (34)

H1 : X ∗
[i,j] > X 2(1− α/2,M x Zi), (35)

where α is the probability of false alarm and M is the number of averaged pre-residual

samples. H0 is the hypothesis where the fault is not present in filter j. H1 is the

hypothesis where a fault is present in filter j. The resulting hypothesis test forms the

foundational principle behind the fault detection algorithm.

Once a fault is detected, a consensus of multiple subfilters is utilized to distinguish

the faulty sensor. With J = I subfilters, SAARM can only exclude single faults within

each residual monitoring time frame (i.e. M -sample moving average). In this case,

each subfilter is comprised by a different subset of I−1 sensors, therefore each subfilter

is missing a unique single sensor. This assumes that all states are observable by all

subfilters. In addition to J = I subfilters, a main filter is maintained in ARMAS

to generate a full navigation solution for user output. Accordingly, cross-covariance

terms between the main filter and any other filters are not used for any computation.

For this case, SAARM guarantees, under the assumption that, at most, one sensor

can fail simultaneously, at least one of the J subfilters will be completely unaffected

by faulty measurements [1].
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The fault identification procedure registers a T-matrix of dimension I x J using

T(i, j) =


0, Sensor i not associated with filter j

0,X ∗
[i,j] < X 2(1− α/2,M x Zi), No Fault Detected, H0

1,X ∗
[i,j] > X 2(1− α/2,M x Zi), Fault Detected, H1

(36)

Figure 2 depicts the association of I sensors and J subfilters used to establish the

consensus of subfilters for faulty sensor identification. The rows correspond to the i =

1...I sensors, while the columns coincide to the j = 1...J subfilters. Each row incorpo-

rates measurements, Z[i], and measurement error covariances, R[i] from the ith sensor.

Each column incorporates the estimated measurements, ẑ[i,j], and its associated error

covariances, P
[i,j]
ẑẑ .

Figure 2: SAARM T-Matrix for i = 1...I Sensors [1]
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Based on this procedure, a fault is declared when T contains any non-zero entries.

This means at least one subfilter detected H1. Once a fault is declared, the remaining

subfilters reach a consensus that leaves a single subfilter fault-free. This faultly sensor

is identified by determining the sensor not included in the fault-free subfilter. This

elevates the fault-free subfilter to “main filter” status. The new main filter distributes

the state estimate and covariance to the rest of the subfilter in order to re-initialize

them. This effectively eliminates the faulty sensor from the navigation solution as

each subfilter now contains I−2 sensors. The faulty sensor is then moved to validation

mode following the state diagram transition shown in Figure 1. The procedure can

be repeated to detect multiple serial faults under the assumption that the successive

faults do not occur during the first M samples after re-initializing the subfilters.

In order for ARMAS to detect and manage multiple simultaneous faults, multiple

layers of subfilters must be maintained. The number of concurrent subfilters, JN ,

required to handle N simultaneous faults for I sensors is calculated using

JN =

(
I

I−N

)
=

I!

N!(I−N)!
. (37)

Given the formula above, one can see that the computing power required as sensors

and faults are scaled up becomes significant very quickly. This research seeks to ad-

dress this computation requirement by efficiently distributing the computational load

across available hardware resources in an effort to maximize the processing capability.

2.6 Related Work

Although the Kalman Filter algorithm can be traced back to 1960 [22], it is

only until recently that the acceleration of the algorithm on computer systems has

been explored. In 2011, Min-Yu Huang et al. [29] showed how the algorithm could
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be accelerated by parallelizing the Kalman Filter matrix computations on a GPU.

The study decomposed the algorithm into the individual math operations required

for a full iteration and analyzed the clock cycles required for each operation. The

matrix inversion operation was shown to be the most time-consuming, followed by

matrix multiplication. Transferring these types of calculations to the GPU decreased

computation times as the data dimensions increased from 1000 to 7000. Final results

demonstrated a GPU implementation provided significant improvement over a CPU,

achieving a maximum speedup of 7398x when the observation dimension was 6000 and

the state dimension was 4500. This approach has been utilized on multiple different

applications [30][31][32][33][34][35].

An alternate method was present by Rosen in [36] and [37], which breaks data

dependencies by reordering the Kalman Filter equations. This allows for an almost

completely parallel algorithm implementation, however it is only applicable to spe-

cialized Kalman filter applications. Thein and Kaung showed a similar approach

[38] could be used for general Kalman Filter application by computing decoupled

equations on separate processors decreasing overall execution time of the algorithm.

Karimipour and Dinavahi presented a systematic process in [39] that also consid-

ered the application employing the Kalman Filter algorithm to maximize the extrac-

tion of task and data parallelism. These portions of the software were then executed

on a multi-core processor to accelerate the system. Results showed a total speed up

of 15x over a sequential application.

Lastly, [40] and [41] are the studies most comparable to this research. Both studies

implemented multiple Kalman Filter instances on a GPU. Results in [40] showed a

20 to 30 percent performance increase over a CPU. However, the study conducted by

Yussiff et al. [40] disclosed few implementation details which in turn had minimal

contribution to this research work. On the other hand, the study done by Amamra
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and Aouf [41] detailed the GPU kernel code that was utilized, the CPU to GPU data

transfer method, and the data layout in memory. This information bolstered the

software design decisions in the ensuing chapters.

In conclusion, this research is unique in that it builds off Dr. Juan Jurado’s

development of the ARMAS framework [1], which uses Kalman Filters to provide a

navigation solution resilient to sensor failures. For this research work, a sensor can

be any entity that provides navigation readings including a GPS satellite. Detecting

sensor failures requires a bank of multiple Kalman Filter instances running in the

background in addition to a main Kalman Filter which is responsible for providing the

navigation solution to the user. When a sensor failure occurs, the main Kalman Filter

is replaced by the appropriate Kalman Filter in the bank to exclude the failed sensor

from the navigation solution. This requires additional logic and control routines that

have not been implemented in Kalman Filter optimization studies discussed in this

section.
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III. Scholarly Article: Optimizing a Bank of Kalman Filters
for Navigation Integrity using Parallel Computing

Abstract

Alternative navigation is an area of research that employs a variety of sensor

technologies to provide a navigation solution in Global Navigation Satellite System

degraded or denied environments. The Autonomy and Navigation Technology Center

at the Air Force Institute of Technology has recently developed the Autonomous and

Resilient Management of All-source Sensors (ARMAS) navigation framework which

utilizes an array of Kalman filters to provide a navigation solution resilient to sensor

failures. The Kalman filter array size increases exponentially as system sensors and

detectable faults are scaled up, which in turn increases the computational power

required to run ARMAS in a real-world application. In an effort to engineer a real-

time ARMAS system, this study developed C++ CPU and GPU versions to examine

the performance trade-offs as system sensors and detectable faults are scaled up.

Small sensor size configurations proved to be faster on a CPU, while a 3.5 order of

magnitude speedup was achieved by the GPU ARMAS implementation over the CPU

version on a large sensor system configuration. Results show promise that a real-

time ARMAS system can be achieved for large scale applications through parallel

processing on a many-core processor architecture.

3.1 Introduction

Alternative navigation is an area of research which employs a variety of sensor

technologies to provide a navigation solution in Global Navigation Satellite System

(GNSS) degraded or denied environments [42]. The Autonomy and Navigation Tech-

nology (ANT) Center at the Air Force Institute of Technology (AFIT) has recently

24



developed the Autonomous and Resilient Management of All-source Sensors (AR-

MAS) navigation framework which produces a navigation solution resilient to sensor

failures [1]. ARMAS employs a sensor fault detection and exclusion procedure that

utilizes a bank of overlapping, but unique, Kalman filters which identify faulty sensors

through a general consensus. One key benefit of this procedure is that an uncorrupted

Kalman filter always exists within an ARMAS system properly configured to handle

sensor fault case.

To transition the academic software to an operational real-time system, the non-

trivial computational power required to run ARMAS must be addressed. In spe-

cific, ARMAS utilizes an array of unique Kalman filters which identify faulty sensors

through a general consensus. The size of the Kalman filter array depends on the

number of system sensors and detectable system sensor faults specified by the user.

As a general approximation, the Kalman filter array size increases exponentially as

system sensors and detectable faults are scaled up linearly, which in turn increases

the computational load required to run ARMAS in a real-world application.

In an effort to engineer an operational real-time ARMAS system, this study de-

veloped sequential and parallelized versions of ARMAS to examine the performance

trade-offs as system sensors and detectable faults are scaled up. This research aims to

identify advantageous software design specifications for a real-time ARMAS system.

3.2 Background

3.2.1 Kalman Filter

The Kalman filter, developed by Rudolf E. Kalman in 1960 [22], is used to perform

recursive state estimation for a continuous-time process model in the form,

ẋ(t) = Fx(t) + Bu(t) + Gw(t), (38)
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where ẋ is the system state vector, u is the system input control vector, and w

is the white noise components vector. F, B, and G are linear operator matrices

with constant coefficients for the state vector, control input vector, and noise vector,

respectively. The discretization of the Kalman filter equations using the Van Loan

method [23], allows the algorithm to be used in modern navigation systems to estimate

a vehicle’s system states.

Linear discrete sensor measurements modeled by

zk = Hxk + vk, (39)

where, z is the sensor measurement, H is the observation model which maps mea-

surements to the states, and v is the white noise function, are used to update the

state estimate at timepoint k.

The Kalman filter algorithm is performed by iterating over 2 phases: propagate

and update. The Kalman filter propagate phase is the numerical integration of Equa-

tion (38) for a state state estimate and state error covariance from timepoint k to

k + 1, using

x̂−
k+1 = Φx̂+

k + Bduk, (40)

P−
k+1 = ΦP+

k ΦT + Qd, (41)

where x is the state estimates, Φ is the discrete state transition, and P is the as-

sociated state error covariance matrix. The states and covariance are updated by

comparing actual measurements with estimated measurements modeled by Equation

(39) and using the Kalman gain, K, using

Kk = P−
k HT

[
HPkH

T + R
]−1

, (42)
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x̂+
k = x̂−

k + Kk

[
zk − Hx̂−

k

]
, (43)

P+
k = (1 − KkH)P−

k , (44)

where, R is the measurement error covariances.

3.2.2 Extended Kalman Filter

Systems that use non-linear dynamics or measurement models may not always

achieve optimal results from implementing the linear Kalman filter equations. In

certain cases, the non-linear systems can be transformed in linear approximations

to produce accurate solutions. In these cases, the non-linear systems employ the

Extended Kalman filter (EKF) [25][26] which uses the non-linear system dynamics

equation in the form,

ẋ(t) = f [x(t),u(t), t] + G(t)w(t), (45)

where f is a vector that contains functions that represent the system. The non-linear

measurement model is given by,

zk = h[xk, tk] + vk, (46)

where h is a vector of functions that models the system sensor. To linearize the

non-linear system, the states are converted using the perturbation model given by,

δx(t)
∆
= x(t)− x̂(t), (47)

where δx(t) is the difference between the state estimate and the true state vector. To

propagate the system to the time of the next measurement, the EKF integrates the
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non-linear dynamics equation over the time difference using

x̂−
k+1 =

∫ tk+1

tk

f [x(t),u(t), t]dt + x̂+
k . (48)

The state covariance propagation does not change and continues using Equation (44),

while the linearized dynamics model matrix is described by

Fk =
∂f

∂x

∣∣∣∣
x̂+
k

. (49)

To update the state estimates using sensor measurement which may be non-linear,

the measurement is initially predicted by evaluating the measurement model equation

with the most recent estimate using

ẑk = h[x̂−
k , tk], (50)

δzk = zk − ẑk, (51)

where δzk is named the pre-update measurement residual which describes the differ-

ence between the actual and predicted measurements. By linearizing the non-linear

measurement function h using

Hk =
∂h

∂x

∣∣∣∣
x̂−
k

(52)

where H is the linearized matrix, the propagated and measured state estimates can

be combined by calculating the Kalman gain using Equation (42), reducing the mea-

surement update equation to

δx̂+
k = Kkδzk, (53)

by utilizing perturbation state estimates and measurements.

The perturbation state δx̂, starts at zero during each filter iteration and is updated
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using Equation (53). It is then added to the nominal trajectory to produce a nominal

estimate. The perturbation state is then reset to zero after each filter iteration.

3.2.3 ARMAS

ARMAS is a software framework that provides autonomous sensor management

for navigation systems [1]. The ARMAS framework for this study is primarily de-

signed around the Extended Kalman Filter but can be adapted to other similar filter-

ing techniques, such as the traditional Kalman filter or unscented Kalman filter. The

state estimates are propagated by using the state dynamics process model and up-

dated using measurements from j = 1...J available sensors as described in Equations

(40)-(44).

ARMAS provides sensor failure resiliency through statistical residual monitoring

based on a Mahalanobis distance likelihood function. This approach requires ARMAS

to maintain an array of uniquely configured Kalman filters to detect sensor failures in

addition to a main filter that produces the navigation solution for the user. To detect

sensor failure(s) in a system, a set of J uniquely configured Kalman filters obtain a

consensus output that identifies the faulty sensor(s). To detect a single sensor fault,

J = I (number of system sensors). In this situation, each Kalman filter contains a

unique subset of I − 1 sensors, thus allowing a different sensor to be excluded in each

filter. For this condition, under the assumption that at most one sensor can fail for

this case, at least one of the J Kalman filters will be completely unaffected by the

faulty measurement. The faulty sensor procedure populates a test results matrix, T ,

with

T(i, j) =


0, Sensor i not associated with filter j

0,No Fault Detected

1,Fault Detected

(54)
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as illustrated in Figure 3.

In order for ARMAS to detect and manage multiple simultaneous faults, multiple

layers of subfilters must be maintained. The number of concurrent subfilters, JN ,

required to handle N simultaneous faults for I sensors is calculated using

JN =

(
I

I−N

)
=

I!

N!(I−N)!
. (55)

Given the I choose (I−N) formula above, one can calculate that the computing power

required as sensors and faults are scaled up becomes significant very quickly. This

research seeks to address this computation requirement by efficiently distributing the

computational load across available hardware resources in an effort to maximize the

processing capability.

Figure 3: SAARM Test Matrix for i = 1...I Sensors [1]
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3.3 Related Work

Although the Kalman filter algorithm can be traced back to 1960 [22], it is only

until recently that the acceleration of the algorithm on computer systems has been

explored. In 2011, Min-Yu Huang et al. [29] showed how the algorithm could be

accelerated by parallelizing the Kalman filter matrix computations on a GPU. The

study decomposed the algorithm into the individual math operations required for a

full iteration and analyzed the clock cycles required for each operation. The matrix

inversion operation was shown to be the most time-consuming, followed by matrix

multiplication. Transferring these types of calculations to the GPU decreased com-

putation times as the data dimensions increased from 1000 to 7000. Final results

demonstrated a GPU implementation provided significant improvement over a CPU,

achieving a maximum speedup of 7398x when the observation dimension was 6000 and

the state dimension was 4500. This approach has been utilized on multiple different

applications [30][31][32][33][34][35].

An alternate method was present by Rosen in [36] and [37], which breaks data

dependencies by reordering the Kalman filter equations. This allows for an almost

completely parallel algorithm implementation, however it is only applicable to spe-

cialized Kalman filter applications. Thein and Kaung showed a similar approach

[38] could be used for general Kalman filter applications by computing decoupled

equations on separate processors decreasing overall execution time of the algorithm.

Karimipour and Dinavahi presented a systematic process in [39] that also consid-

ered the application employing the Kalman filter algorithm to maximize the extraction

of task and data parallelism. These portions of the software were then executed on

a multi-core processor to accelerate the system. Results showed a total speed up of

15x over a sequential application.

Lastly, [40] and [41] are the studies most comparable to this research. Both studies
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implemented multiple Kalman filter instances on a GPU. Results in [40] showed a 20

to 30 percent performance increase over a CPU. However, the study conducted by

Yussiff et al. [40] disclosed few implementation details which in turn provided minimal

contribution to this research work. On the other hand, the study done by Amamra

and Aouf [41] detailed the GPU kernel code that was utilized, the CPU to GPU data

transfer method, and the data layout in memory. This information bolstered the

software design decisions in discussed in the ensuing sections.

This research is unique in that it builds off the development of the ARMAS frame-

work [1], which uses Kalman filters to provide a navigation solution resilient to sensor

failures. For this research work, a sensor can be any entity that provides naviga-

tion readings including a GPS satellite. Detecting sensor failures requires an array

of multiple Kalman filter instances running in the background in addition to a main

Kalman filter which is responsible for providing the navigation solution to the user.

When a sensor failure occurs, the main Kalman filter is replaced by the appropriate

Kalman filter in the array to exclude the failed sensor from the navigation solution.

This requires additional logic and control routines that have not been implemented

in Kalman filter optimization studies discussed in this section. This paper details the

first C++ implementation of ARMAS and the earliest parallel processing of imple-

mentation of ARMAS on a GPU device. Finally, the research results will identify

the sequential to parallel processing efficiently cross-over points in terms of system

sensors, faults, and Kalman filters instances.

3.4 CPU Implementation

The sequential ARMAS implementation was programmed in C++. C++ is a

complied language that supports low-level operations [3], allowing direct hardware

interaction with zero-overhead abstraction [5][8]. Comparative studies have shown
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this programming language feature enables C++ to achieve higher speed performance

than other languages [10]. Additionally, C++ allows for the most memory-efficient

program models with the least variability [11]. The performance benefits of C++

facilitates identifying a distinct boundary when it becomes more advantageous to

perform computations on a GPU over a CPU.

The Eigen linear algebra library [43] was used for the matrix data containers.

The high-level C++ interface provided easy-to-use data structures that have built-in

input/output interfaces for simpler code readability. Although, the Eigen library is

capable of performing the required computations needed for ARMAS on a CPU, its

expression templates metaprogramming technique is not able to run directly on a

GPU. For this reason, Intel Math Kernel Library [44] was used as the Basic Linear

Algebra Subprograms (BLAS) library for the ARMAS CPU version. Using a BLAS

library on both the CPU and GPU allows for a sequential vs parallel comparison of

performance given that equivalent math routines are executed.

Pre-generated simulated sensor measurements were processed one at a time. The

overall execution of the CPU program was kept purely sequential, avoiding the use

of multi-threading and strictly using for-loops to iterate through computations. This

allowed us to distinguish ARMAS code segments that are best suited for either se-

quential or parallel processing.

3.5 GPU Implementation

The parallel ARMAS design was constructed to run on an NVIDIA GPU using

the CUDA computing platform model [45]. Early designs attempted the use of the

OpenCL framework [46] as the programming interface for cross-platform modularity.

Unfortunately NVIDIA limits OpenCL support to version 1.2 on their GPU devices

reducing the range of capabilities to a sub-set of the latest OpenCL specification. To
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take full advantage of the processing power on the available NVIDIA hardware, the

GPU ARMAS program utilizes the CUDA application programming interface.

CUDA conveniently works with the C and C++ programming languages. This

permitted the GPU code design to follow the same program logic flow as the CPU code

with the added feature of being able to execute specified sections of code concurrently.

The ARMAS GPU program was built to be as stand-alone as possible with minimal

interaction with the CPU avoiding costly memory transfers. Additionally, this tested

the concept of being able to run ARMAS unobstructed in the background freeing up

main system resources in real-world application.

3.5.1 Parallelization Approach

3.5.1.1 Concurrent Filter Execution

The number of Kalman filters required to be maintained by an ARMAS system

escalates quickly as system sensors and detectable simultaneous faults are scaled up.

For example using Equation (55), a system with 40 active sensors that can detect

3 simultaneous faults requires 10,700 filters (40 filters for 1 fault, 780 filters for 2

simultaneous faults, and 9880 filter for 3 simultaneous faults) in addition to the main

filter which outputs the navigation solution to the user. The sequential execution of

computations required to maintain each filter lowers the possibility of running this

size of ARMAS system on common cost-efficient computer systems, such as the CPU

used in this study, for real-time use.

Performing these computations in parallel for each filter on a GPU device can

accelerate the overall execution as illustrated in Figure 4, if the number of Kalman

filters is large enough to hide the long latency memory accesses. To achieve this po-

tential improvement, the propagate and update functions were converted into CUDA

kernels, allowing each thread that is launch to correspond to a single Kalman filter.
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Figure 4: Parallel Kalman Filter Instances on a GPU device.

3.5.1.2 Concurrent Test Matrix Construction

A unique feature to ARMAS, when compared to other Kalman filter estimation

software, is its ability to detect sensor failures during the update phase of the algo-

rithm. ARMAS evaluates residual vector measurements for a specified time window

to determine if sensor history measurement readings fail to be within an expected

distribution. A test matrix is comprised of these results to attain a consensus which

identifies the faulty sensor. A result is needed for all sensors in each filter as shown

in Figure 5, where the blue arrows are the same set of computations performed on

the different sensor data sets.

This collection of identical computations on different data elements becomes an

ideal computing problem appropriate for GPU processing. The construction of this

test matrix occurs as long as there is enough residual vector measurement data to fill

the specified time window. Short specified time windows results in more test matrix

generations in a given ARMAS system.
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Figure 5: Test Matrix Construction Diagram

3.5.1.3 Parallel BLAS Execution

A finer-grain level of parallelism was obtained on the math operations performed

within ARMAS with the help of the CUBLAS library [47]. CUBLAS is a parallel

equivalent of the BLAS library used to perform matrix arithmetic on NVIDIA GPU

devices [31]. This is achieved by partitioning data to different CUDA threads and

computing the math routines concurrently, when possible. Such is the case with

matrix operations like matrix-matrix addition and matrix-matrix multiplication.

3.6 Test Procedure

3.6.1 Testing Hardware

The test cases were evaluated on a Dell Precision 7720 workstation configured

with a Intel Core I7-7920HQ CPU and an NIVIDA Quadro P5000 GPU. The Intel
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Core I7-7920HQ operates at 3.10 GHz with 8 MB of Cache. The workstation system

total RAM contained 32 GB. The NIVIDA Quadro P5000 GPU is comprised of 2048

CUDA Cores operating at 1.51 GHz with 16 GB of GDDR5 memory. The results

presented in this paper are particular to this testing hardware. However, the parallel

processing techniques discussed in this paper are valid optimization approaches for

CUDA compatible hardware devices.

3.6.2 Test Setup

For all test scenarios, a ẋ(t) is a ten system state vector defined as

ẋ(t) =

[
˙xpx(t) ˙xpy(t) ˙xpz(t) ˙xvx(t) ˙xvy(t) ˙xvz(t) ˙xax(t) ˙xay(t) ˙xaz(t) ẋc(t)

]T
(56)

where xp is the vehicle’s three-dimensional position in [m], xv is the three-dimensional

velocity in [m/s], xa is the three-dimensional acceleration in [m/s2], and xc is a clock

error bias.

The initial position state estimates were set to zero for the x and y direction and

200 [m] in the z direction. The initial velocities were 4.25 [m/s] for the x direction,

5.03 [m/s] for the y direction and zero [m/s] for the z direction. These values were

randomly generated for the first test scenario and used for the subsequent test runs.

The initial acceleration state estimates were set to zero. The initial clock error bias

was also randomly generated for the first test scenario and again, used for the sub-

sequent test runs. The initial randomly generated clock error bias was (4.4083×103)

[m].

The initial state estimation error covariance was set to 102 [m2] in position, 102

[m2/s2] in velocity, (1×10−2)2 [m2/s4] in acceleration, and 80002 [m2] for the clock

error bias. Each trial was propagated using ∆tk = 0.5 [s], starting at ∆tk = 0 [s]

with induced faults occurring at ∆tk = 300 [s], and ending at ∆tk = 600 [s]. The
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false alarm test significance level was set to α = 1/500000 = 2.0 × 10−6, while the

test epoch was set to M = 2400 samples, which is equivalent to 1200 [s], for all test

experiments.

Each ARMAS subsystem used sensor models inherited from the original ARMAS

implementation [1] that included one three-dimensional position sensor modeled by,

z
[1]
k = s� xpk

+ v
[1]
k , (57)

v
[1]
k ∼ N

(
0

3x1
,1002 I

3x3

)
, (58)

where s = [sx sy sz]
T is a three-dimensional scale factor, � symbolizes the Hadamard

product, and I is an identity matrix. Pseudorange sensors modeled by,

z
[2...9]
k = |0t[2...9] − xpk

|0 + bk + v
[2...9]
k , (59)

v
[2...9]
k ∼ N

(
0,102

)
, (60)

where t is a three-dimensional position of the satellite, xpk is the three-dimensional

position of the vehicle at tk and bk is a First Order Gauss-Markov process simulating

a simple receiver clock error with a time constant τ = 3600 [s] and σ2 = 80002 [m2].

Lastly, a three-dimensional velocity sensor modeled by,

z
[10]
k = s� xvk

+ v
[10]
k , (61)

v
[10]
k ∼ N

(
0

3x1
,502 I

3x3

)
. (62)

.

All ARMAS system test configurations included one three-dimensional position

sensor, one three-dimensional velocity sensor, and pseudorange sensors that varied
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in size as they scaled up in order to increase the computational load. For instance,

the smallest system sensor size consisted of one three-dimensional position sensor,

one three-dimensional velocity sensor, and eight pseudorange sensors that simulated

GNSS satellites. To increase the computational load, the next system sensor config-

uration consisted of one three-dimensional position sensor, one three-dimensional ve-

locity sensor, and 12 pseudorange sensors. This trend was continued until the largest

system sensor size of 40 (one three-dimensional position sensor, one three-dimensional

velocity sensor, 38 pseudorange sensors) was reached.

Each system sensor size configuration was constructed 3 times to respectively

detect 1, 2, and 3 simultaneous fault(s), each requiring an increasing amount of

Kalman filter that need to be maintained as shown by the table in Figure 6. This

purses an ideal situation, where ARMAS identifies the most simultaneous faults as

possible in a time step resulting in the most accurate state estimate result.

All test cases were initiated with warm up cycles to optimize and stabilize memory

operations. After the warm up, 20 iterations of each test case were recorded for

execution time and the results were averaged for a final value.
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Figure 6: Kalman filters required by sensor size and detectable simultaneous faults.
Blue indicates the test cases that were performed.
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3.7 Results

Figure 7: Total program run time test results for an ARMAS system configured to
detect at most one sensor fault.

Figure 8: Speedup achieved for 1 fault ARMAS configuration.
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Test results showed smaller system sensor configurations to be faster on a CPU.

As the system sensors size and number of faults increased, the GPU exhibited greater

efficiency with the increased computational load. Figure 7 shows this efficiency cross-

over point from the CPU to GPU for a full system simulation occurs when the sensor

size is 33 and detectable faults is one. Figure 9 shows the efficiency cross-over point

occuring when the sensor size is 25 and the detectable faults is two. Figure 11 shows

this point occurs when the sensor size is 21 and detectable faults are three.

Figures 8, 10, and 12 show the achieved speed up with each full test case. The

GPU ARMAS implementation was able to achieve a approximate maximum speedup

of 3.5x in total execution time over the CPU in the most stressing case of a 40 sensor

system configured to detect at most three simultaneous faults as shown in Figure

12. Although the speedup is significant, it can be assessed that the ARMAS version

created for this study is unsuitable for real-time applications after the sensor size is

greater than 21 sensors for system designed to detect three or more simultaneous faults

on the current hardware. This information is represented in Figure 13, where the

green color represents faster ARMAS CPU times, orange represents faster ARMAS

GPU times, and red shows execution times over real-time application constraints.

Similarly, we can estimate this software will reach this same overexertion point for

real-time constraints when the system sensor size is 93 sensor for the one fault case

and 45 sensors for the two simultaneous faults case. Section 3.8 addresses potential

methods to further accelerate this software.

Notably, software timer measurements revealed the construction of sensor fault

test matrix was able to exploit advantages from parallelizing the computing tasks

as the test matrix elements scaled up to a size of 1600, ultimately achieving a 1.44

speedup over the CPU implementation as shown in Figure 15. The GPU test matrix

building function was able to achieve a logarithmic growth when a system was con-
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Figure 9: Total program run time test results for an ARMAS system configured to
detect at most two simultaneous sensor faults.

Figure 10: Speedup achieved for 2 fault ARMAS configuration.
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Figure 11: Total program run time test results for an ARMAS system configured to
detect at most three simultaneous sensor faults.

Figure 12: Speedup achieved for 3J fault ARMAS configuration.
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Figure 13: ARMAS execution time color diagram. Green represents faster CPU
times, orange represents faster GPU times, and red are execution times over real-
time application constraints. Blue indicates the test cases that were performed.
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figured to detect one fault as shown in Figure 14. Alternatively, the CPU test matrix

building function grew linearly for the same one fault case. The CPU remained faster

up until the matrix element size reached 1102. Matrices larger 1102 achieved quicker

matrix construction times on the GPU. This optimization is primarily responsible for

faster GPU execution times seen in the Figures 7 and 9, where the total number of

Kalman filter in the ARMAS system remains below 1000.

Furthermore, parallelizing the Kalman filter instances saw benefits after the filter

array size grew larger than 1005 as shown in Figure 16. The time to complete one

sensor measurement update for all system filters on the CPU grew at an approximate

exponential rate as the filter array size increased, while remaining practically linear on

the GPU for systems containing up to 10701 filters. This improvement becomes the

main execution time enhancement in the three simultaneous fault case as calculating

Equations (42) through (44) for all system filters becomes the most time consuming

task of the program. This can be seen by the 4X speedup achieved in the ARMAS

instance that maintained 10701 Kalman filters as shown in Figure 17.

Finally, the ARMAS system state logic demonstrated no improvement by off-

loading this work on the GPU. The CPU ARMAS system state logic run time was

between 2-3x faster on average than the GPU ARMAS logic run time, but overall this

is a negligible difference as the CPU system state logic accounted for less than one

percent of the overall execution time and GPU state logic was less then two percent.
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Figure 14: ARMAS execution time graph for building the sensor fault test matrix.
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Figure 15: Speedup for building the sensor fault test matrix.
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Figure 16: ARMAS execution time per sensor measurement graph.
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Figure 17: Speedup per sensor measurement graph.
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3.8 Future Works

Throughout this study, the following key areas were identified as potential follow-

on work.

3.8.1 Improved GPU eigen solver

Developing an ARMAS GPU implementation that was largely a stand-alone GPU

program proved much harder than expected given the set of GPGPU development

tools available. The goal was to be able to launch a CUDA thread and have the

program run autonomously with minimal interaction with the CPU. This requires

most of the code to be called strictly from the device side. Conversely, the traditional

GPGPU Heterogeneous computing model relies on the CPU to initiate function calls

from the host side. This limited the available libraries that could be used out of the

box. The device side cuBLAS library supported in CUDA 9.0 was used for most of the

required computations, but the cuSOLVER library needed to solve for the eigenvalues

and eigenvectors of matrix is only a host callable library. Early attempts to adapt

the existing cuSOLVER code base for our purposes lead to constant compiler errors

that ultimately became unsolvable with the available time. As an alternative, an

eigen solver using the Jacobi eigenvalue algorithm obtained from Dr. John Burkardt

web-page [48] was modified to run as CUDA function. This provides an area of

improvement in future ARMAS GPU implementations by simply altering the eigen

solver code to the more efficient QR algorithm.

3.8.2 Implement Traditional Heterogeneous Computing Model

As stated in the previous subsection, developing a stand-alone GPU program is

difficult as it is usually not optimal for most cases. Complex control logic operations

perform better on CPUs, while GPUs should be mainly reserved for tasks with high
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computational cost and high data parallelism. Extracting the logic control currently

implemented on the device side for the purposes of this study and off-loading it to

the CPU while keeping the BLAS computations on the GPU, allows the specified

hardware to run the software more efficiently at the cost of using up more CPU

resources and requiring expensive memory transfers.

3.8.3 Smarter Configuration of Kalman Filters

Taking into account an operational wartime scenario, one can assume a batch of

sensors in an ARMAS system could be a satellite constellation. Additionally, the

assumption can be made that a constellation of satellites normally all operate under

the same frequency bands. Therefore, under a jamming situation, one can expect that

entire constellations would be unavailable to user as opposed to arbitrary satellites.

Using this rationale, we can avoid the burden of detecting continuous simultaneous

faults by immediately disregard satellites in the same constellation that begin to show

measurement errors. This type of logic can be achieved by having multiple ARMAS

subsystems in one application. Each ARMAS subsystem would represent a different

GNSS constellation that would be configured to detect a manageable number of faults

(i.e. one fault detection). If more than the specified faults occur, then the integrity of

the ARMAS subsystem fails excluding that set sensors from the navigation solution.

Initial proof of concept trails have shown lower computational loads while maintaining

an acceptable level of accuracy.

3.9 Conclusion

In conclusion, this research presented an approach that parallelized Kalman filter

instances and other computation tasks to accelerate the ARMAS framework. Test

cases incrementally scaled up the system sensor size and detectable system fault to

52



evaluate computational load and measure execution time. This study provided a

deep understanding of the ARMAS processing power requirements. Small sensor

size configurations proved to be faster on a CPU, while an approximate 3.5 order of

magnitude speedup was achieved by the GPU ARMAS implementation over the CPU

version on a large sensor system configuration. The information lead to the system

modeling of computing loads with respect to sensor size and detectable sensor faults.

Results show promise that a real-time ARMAS system can be achieved for large scale

applications through parallel processing on many-core architectures.
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IV. Scholarly Article: Fusing multiple ARMAS frameworks
for an overall lower computational demand

Abstract

Alternative navigation is an area of research that employs a variety of sensor

technologies to provide a navigation solution in Global Navigation Satellite System

degraded or denied environments. The Autonomy and Navigation Technology Center

at the Air Force Institute of Technology has recently developed the Autonomous and

Resilient Management of All-source Sensors (ARMAS) navigation framework which

employs an array of Kalman filters to provide a navigation solution resilient to sensor

failures. The Kalman filter array size increases exponentially as system sensors and

detectable faults are scaled up, which in turn increases the computational power re-

quired to run ARMAS in a real-world application. In an effort to engineer a real-time

ARMAS system, this study presents a novel approach that utilizes multiple ARMAS

subsystems to generate a navigation solution with less computational demand.

4.1 Introduction

Alternative navigation is an area of research that employs a variety of sensor

technologies to provide a navigation solution in Global Navigation Satellite System

(GNSS) degraded or denied environments [42]. The Autonomy and Navigation Tech-

nology (ANT) Center at the Air Force Institute of Technology (AFIT) has recently

developed the Autonomous and Resilient Management of All-source Sensors (AR-

MAS) navigation framework, which produces a navigation solution resilient to sensor

failures [1]. ARMAS employs a sensor fault detection and exclusion procedure that

utilizes a bank of overlapping, but unique, Kalman filters which identify faulty sensors

through a general consensus. One key benefit of this procedure is that an uncorrupted
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Kalman filter always exists within an ARMAS system properly configured to handle

sensor fault case.

To transition the academic software closer to an operational real-time system,

the nontrivial computational power required to run ARMAS must be addressed, as

demonstrated in Chapter III. Specifically, the initial ARMAS design utilizes an array

of unique Kalman filters which identify faulty sensors. The size of the Kalman filter

array depends on the number of system sensors and the desired detectable simultane-

ous sensor faults specified by the user. As a general approximation, the Kalman filter

array size increases exponentially as system sensors and detectable faults are scaled

up linearly, which in turn increases the computational load required to run ARMAS

in a real-world application.

In an effort to engineer an operational real-time ARMAS system, this study

presents a novel approach which utilizes multiple ARMAS subsystems to generate

a navigation solution with less computational demand while still providing the same

levels of navigation integrity. This research takes into account a hypothetical opera-

tional scenario where it can be assumed that the sensors in an ARMAS sub-system

are composed of the psuedoranges from a single frequency of a single satellite con-

stellation, e.g. GPS L1 pseudoranges grouped in one ARMAS sub-system. Under

a jamming situation, one would then expect that the entire constellation operating

in the targeted frequency band would be unavailable to the user, thus causing a

simultaneous failure of many sensors.

Using this rationale, the burden of detecting continuous simultaneous faults can

be avoided by immediately disregarding satellites in the same constellation and fre-

quency band that begin to show measurement errors. This type of logic can be

achieved by having multiple ARMAS subsystems in one application. Each ARMAS

subsystem would represent a different GNSS constellation frequency band that would
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be configured to detect a manageable number of sensor faults (i.e. one or two fault

detection). If more than the specified faults occur, then the integrity of the ARMAS

subsystem fails and the overall framework can exclude the grouped set of sensors from

the navigation solution.

Conversely, the current ARMAS model is a single system architecture that must

detect and identify every faulty sensor that is to be excluded from the navigation solu-

tion. This creates a high computational demand when multiple simultaneous sensor

faults must be detected and identified. This paper details an ARMAS subsystem

model implementation and the results of a simulated scenario.

The rest of this paper is organized as follows. Section 4.2 provides background

information, section 4.3 summarizes related work, and section 4.4 provides system

implementation details. Section 4.5 and 4.6 presents the test scenario and initial

results. Lastly, section 4.7 and 4.8 discuss future works and the main conclusions of

this work.

4.2 Background

4.2.1 Kalman filter

The Kalman filter, developed by Rudolf E. Kalman in 1960 [22], is used to perform

recursive state estimation for a continuous-time process model in the form,

ẋ(t) = Fx(t) + Bu(t) + Gw(t), (63)

where ẋ is the system state vector, u is the system input control vector, and w

is the white noise components vector. F, B, and G are linear operator matrices

with constant coefficients for the state vector, control input vector, and noise vector,

respectively. The discretization of the Kalman filter equations using the Van Loan
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method [23], allows the algorithm to be used in modern navigation systems to estimate

a vehicle’s system states.

Linear discrete sensor measurements modeled by

zk = Hxk + vk, (64)

where, z is the sensor measurement, H is the observation model which maps mea-

surements to the states, and v is the white noise function, are used to update the

state estimate at time point k.

The Kalman filter algorithm is performed by iterating over 2 phases: propagate

and update. The Kalman filter propagate phase the numerical integration of (63)

for a state state estimate and state error covariance from timepoint k to time point

k + 1, using

x̂−
k+1 = Φx̂+

k + Bduk, (65)

P−
k+1 = ΦP+

k ΦT + Qd, (66)

where x is the state estimates, Φ is the discrete state transition, and P is the as-

sociated state error covariance matrix. The states and covariance are updated by

comparing actual measurements with estimated measurements modeled by (64) and

using the the Kalman gain, K, using

Kk = P−
k HT

[
HPkH

T + R
]−1

, (67)

x̂+
k = x̂−

k + Kk

[
zk − Hx̂−

k

]
, (68)

P+
k = (1 − KkH)P−

k , (69)

where, R is the measurement error covariances.
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4.2.2 Extended Kalman Filter

Systems that use non-linear dynamics or measurement models may not always

achieve optimal results from implementing the linear Kalman filter equations. In

certain cases, the non-linear systems can be transformed in linear approximations

to produce accurate solutions. In these cases, the non-linear systems employ the

Extended Kalman filter (EKF) [25][26] which uses the non-linear system dynamics

equation in the form,

ẋ(t) = f [x(t),u(t), t] + G(t)w(t), (70)

where f is a vector that contains functions that represent the system. The non-linear

measurement model is given by,

zk = h[xk, tk] + vk, (71)

where h is a vector of functions that models the system sensor. To linearize the

non-linear system, the states are converted using the perturbation model given by,

δx(t)
∆
= x(t)− x̂(t), (72)

where δx(t) is the difference between the state estimate and the true state vector. To

propagate the system to the time of the next measurement, the EKF integrates the

non-linear dynamics equation over the time difference using

x̂−
k+1 =

∫ tk+1

tk

f [x(t),u(t), t]dt + x̂+
k . (73)
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The state covariance propagation does not change and continues using Equation (69),

while the linearized dynamics model matrix is described by

Fk =
∂f

∂x

∣∣∣∣
x̂+
k

. (74)

To update the state estimates using sensor measurement which may be non-linear,

the measurement is initially predicted by evaluating the measurement model equation

with the most recent estimate using

ẑk = h[x̂−
k , tk], (75)

δzk = zk − ẑk, (76)

where δzk is named the pre-update measurement residual which describes the differ-

ence between the actual and predicted measurements. By linearizing the non-linear

measurement function h using

Hk =
∂h

∂x

∣∣∣∣
x̂−
k

(77)

where H is the linearized matrix, the propagated and measured state estimates can

be combined by calculating the Kalman gain using Equation (67), reducing the mea-

surement update equation to

δx̂+
k = Kkδzk, (78)

by utilizing perturbation state estimates and measurements.

The perturbation state δx̂, starts at zero during each filter iteration and is updated

using Equation (78). It is then added to the nominal trajectory to produce a nominal

estimate. The perturbation state is then reset to zero after each filter iteration.
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4.2.3 ARMAS

ARMAS is a software framework that provides autonomous sensor management

for navigation systems [1]. The ARMAS framework for this study is primarily de-

signed around the Extended Kalman filter but can be adapted to other similar fil-

tering techniques, such as the traditional Kalman filter or unscented Kalman filter.

The state estimates are propagated by using the state dynamics process model and

updated using measurements from i = 1...I available sensors as described in (65)-(69).

ARMAS provides sensor failure resiliency through statistical residual monitoring

based on a Mahalanobis distance likelihood function. This approach requires ARMAS

to maintain an array of uniquely configured Kalman filters to detect sensor failures in

addition to a main filter that produces the navigation solution for the user. To detect

sensor failure(s) in a system, a set of J uniquely configured Kalman filters obtain a

consensus output that identifies the faulty sensor(s). To detect a single sensor fault,

J = I (number of system sensors). In this situation, each Kalman filter contains a

unique subset of I − 1 sensors, thus allowing a different sensor to be excluded in each

filter. For this condition, under the assumption that at most one sensor can fail for

this case, at least one of the J Kalman filters will be completely unaffected by the

faulty measurement. The faulty sensor procedure populates a test results matrix, T ,

with

T(i, j) =


0, Sensor i not associated with filter j

0,No Fault Detected

1,Fault Detected

(79)

as illustrated in Figure 18.

For ARMAS to detect and manage multiple simultaneous faults, multiple banks

of sub-filters must be maintained. The number of concurrent sub-filters, JN , required
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Figure 18: SAARM Test Matrix for i = 1...I Sensors [1]

to handle N simultaneous faults for I sensors is calculated using

JN =

(
I

I−N

)
=

I!

N!(I−N)!
. (80)

So, for example, a three sensor ARMAS system set up to detect up to two simultane-

ous faults would require a array of Kalman filters configured as shown in Figure 19.

Note that Equation (80) is used twice to calculate the number of filters needed for

when N = 1 and N = 2, in addition to a main filter resulting in seven total system

Kalman filters.

In this example, all three sensors are initialized as “trusted” and thus included

in the main filter, which outputs the navigation solution to the user. Kalman filters

1 - 3, all have a unique sensor missing allowing the detection and identification of
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a single sensor fault. In the scenario where two simultaneous sensor faults occur,

Kalman filters 1 - 3 would all be affected and the ARMAS system logic would continue

checking the next bank of Kalman filters to try and find a single unaffected filter. The

unaffected filter identifies the culprits through the missing sensors in that particular

Kalman filter. Figure 19 shows Kalman filters 4 - 6 with two unique sensors missing

for the two simultaneous sensor faults scenario in this example.

When a sensor fault is detected and identified, the faulty sensor is removed from

the main Kalman filter and thus also removed from the navigation solution, until the

sensor recovers and verified as fully operational. If more than two simultaneous sensor

faults occur in a system only configured to detect one sensor fault, the integrity of the

ARMAS subsystem fails and the user is alerted. If more than one Kalman filter in the

array is unaffected, ARMAS alerts the user that a sensor(s) fault(s) has occurred but

is unable to identify the culprit(s) and continues regular operation until the sensor(s)

can be identified.

Using Equation (80) as shown in section 4.2.3, one can calculate that the com-

puting power required as sensors and faults are scaled up becomes significant very

quickly. For example, using the test scenario later described in section 4.5 and Equa-

tion (80), a single ARMAS architecture with 26 sensors that is configured to detect

up to 8 simultaneous faults would require 2,533,987 Kalman filters to be maintain

throughout the lifetime of the application! This research seeks to address this compu-

Kalman filter array
Sensor Main KF1 KF2 KF3 KF4 KF5 KF6

1 • • • •
2 • • • •
3 • • • •

Figure 19: Kalman filter array configuration for system detecting two simultaneous
faults.
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tation requirement by utilizing multiple ARMAS subsystems to generate a navigation

solution with less Kalman filters to maintain.

4.3 Related Work

The detection and exclusion of sensor faults has been widely studied through

different facets. Conventional methods used to achieve multi-sensor fault detection

and exclusion often include the statistical interpretation of redundant snapshot mea-

surements, solution separation vectors, or filtered residuals. The redundant snapshot

measurements method presented in [49][50][51] use inconsistencies between calculated

solutions based on measurement subsets from various GNSS satellites that form a lin-

ear least-squares solution matrix to detect and potentially identify the faulty sensor.

The solution separation vectors approach seen in [52][53][54][55][56][57][58] evaluate

the difference between horizontal position estimates and covariances for fault detec-

tion and uses a bank of parallel sub-filters for faulty sensor identification. Lastly,

filtered residual methods outlined in [59][60][61][62] averages time sequence Kalman

filter residuals to detect a sensor fault and identify the culprit.

Studies in [63][64][65] are the most comparable sensor fault detection methods to

ARMAS, which specifically utilize a bank of Kalman filters to monitor test statis-

tics. If the test statistics fall outside an expected chi-square cumulative distribution

function threshold, a fault alarm is produced. Although these are similar works, the

method used in ARMAS referred to as Sensor-Agnostic All-source Residual Monitor-

ing (SAARM) is unique in that it:

• Does not constrain faults to only biases,

• Can be scaled for multiple simultaneous sensor faults,

• Detects faults (sensor model mismatches) in and across multiple domains,
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• Does not require simultaneously redundant sensors to provide fault detection

and identification,

• Provides fault exclusion without the need to compute cross-filter covariances,

and

• Provides a robust measure of system integrity without constraining the fault

type [1]

Furthermore, the ARMAS framework has multiple operating modes, as listed in

Figure 20, which allows sensor recovery through self-correcting methods. This work

leverages the ARMAS framework to introduce an approach which utilizes multiple

ARMAS subsystems to generate a navigation solution with a lower workload than a

one ARMAS system instantiation.
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Figure 20: ARMAS operating modes [1]
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4.4 System Implementation

This section details the implementation of a software system comprised of multiple

ARMAS subsystems which henceforth will be referred to as the ARMAS subsystem

model. The ARMAS subsystem model overview is first presented followed by the as-

sumptions used in the engineering of this new model. Lastly, the software components

that build the ARMAS subsystem model are discussed.

4.4.1 ARMAS Subsystem Model Overview

In this new implementation model, an ARMAS application wrapper encapsulates

a top level controller, solution filters, and the ARMAS subsystems as shown in Fig-

ure 21. The original ARMAS system implementation model was a singular system

architecture, as described in Chapter III. The layered approach detects and identifies

sensor faults at the subsystem layer while processing the information at the top level

to generate the most accurate solution to the user.

4.4.2 Applicable Scenario

The ARMAS system developed for this study is designed to support a probable

operational scenario. In this type operational scenario, a vehicle equipped with the

ARMAS subsystem model has access to multiple GNSSs relaying geo-spatial posi-

tioning data, along with an Inertial Navigation System (INS) to incorporate into an

all-source navigation solution. In this paper, a satellite constellation is defined as

GNSS satellites operating under the same frequency band. Therefore, in a GNSS de-

graded or denied environment, it would be probable that entire satellite constellation

would be unavailable to the user, as opposed to loosing single satellites. By model-

ing GNSS satellites as ARMAS system sensors, this rationale can used to eliminate

batches of sensors that respresent satellite constellations from the navigation solution
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Figure 21: ARMAS subsystem model diagram.

while only detecting the initial fault(s) of the sensor batch. This approach reduces

the size of the Kalman filter array, thus also reducing the computation workload of

the system. For this test concept, the sensor fault detection was limited to one fault

for clarity of presentation, however the system would not be limited in this way could

be increased given the available computational power. This GNSS scenario is utilized

as an interesting application to illustrate this novel capability, but this approach can

be applied to any ARMAS system that can segregate sensors into batches/groups.

4.4.3 Assumptions

This study takes into account the following assumptions: First, it is assumed that

ARMAS system sensors can be categorized into groups. Second, if one sensor in a

group experiences a sensor fault, then it is highly probable that the other sensors in the

same group will experience the same type of fault. Furthermore, this study assumes
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at least one sensor group is available to provide accurate navigational data to the

user at any given time. Lastly, ARMAS relies on the assumption that measurements

provide full state observability.

4.4.3.1 ARMAS subsystem

Each ARMAS subsystem operates autonomously with a different arrangement of

sensors and maintains an awareness of its own navigation integrity. This feature is

important as the top level controller does not have sensor fault detection capabilities

and instead relies on the information provided by the ARMAS subsystems to excluded

sensors from the navigation solution.

Each ARMAS subsystem instantiation is comprised of a sensor group. For this

test concept, a sensor group is composed of GNSS satellites that operate in the same

frequency band and from the same constellation. For example, GPS satellites would

require three ARMAS subsystems to accommodate the L1 (1575 MHz), L2 (1227

MHz), and L5 (1176 MHz) frequency bands. Each ARMAS subsystem may also

include additional on-board vehicle sensors that provide alternative navigation inputs.

For the simulated scenario, each ARMAS subsystem included one three-dimensional

position sensor (e.g. as from a vision-map-matching navigation system for example)

and one three-dimensional velocity sensor in addition to the satellite pseudoranges to

demonstrate this capability.

Given the likelihood that adversary jamming and/or spoofing capabilities would

affect all satellites transmitting in the targeted frequency band, identifying all simulta-

neous faults at a time instance would become computationally expensive redundant

information. Minimizing the computational burden associated with detecting and

identifying multiple simultaneous faults for this scenario, each subsystem is config-

ured to only detect and identify one sensor fault as shown in Figure 22, where each
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filter is missing a unique sensor. Future applications can tune the fault detection

configuration to accommodate specific resources. If more than one sensor fault oc-

curs in an ARMAS subsystem, the integrity of the subsystem has failed, raising an

alarm flag. The flag is only lowered when all sensors fully recover and zero sensor

measurement errors are detected. The status of this integrity flag is the output by

each subsystem to the top level ARMAS controller.

4.4.3.2 Top Level Control Logic

The top level ARMAS controller is designed to output the most accurate nav-

igation solution to the user. Taking into account that each ARMAS subsystem is

reporting integrity of their respective sensors, the top level controller monitors these

outputs for any subsystem failures. A set of solution filters account for the different

subsystem failure possibilities. From the set of solution filters, the top level controller

selects a Kalman filter that excludes the sensors associated with the faulty subsystem

which generates the navigation solution to the user. This process allows the navi-

gation solution to be generated from an uncorrupted filter regardless of subsystem

failure under the assumption that there will always be at least one ARMAS subsystem

online.

For example, using an ARMAS application with three subsystem as shown in

Figure 21, the set of solution filters would consist of the seven filters as presented in

Figure 23. In this example, Kalman filter 1 (SKF1) is used when all subsystem are

running normally, Kalman filter 2 (SKF2) would be used when ARMAS subsystem

three is down, Kalman filter 3 (SKF3) would be used when ARMAS subsystem two

is down, and so on.
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ARMAS Subsystem 1, Simulating frequency 1
Kalman filter array

Sensor Main KF1 KF2 KF3 KF4 KF5 KF6 KF7 KF8 KF9 KF10
1 • • • • • • • • • •
2 • • • • • • • • • •
3 • • • • • • • • • •
4 • • • • • • • • • •
5 • • • • • • • • • •
6 • • • • • • • • • •
7 • • • • • • • • • •
8 • • • • • • • • • •
9 • • • • • • • • • •
10 • • • • • • • • • •

ARMAS Subsystem 2, Simulating frequency 2
Kalman filter array

Sensor Main KF1 KF2 KF3 KF4 KF5 KF6 KF7 KF8 KF9 KF10
1 • • • • • • • • • •
2 • • • • • • • • • •
3 • • • • • • • • • •
4 • • • • • • • • • •
5 • • • • • • • • • •
6 • • • • • • • • • •
7 • • • • • • • • • •
8 • • • • • • • • • •
9 • • • • • • • • • •
10 • • • • • • • • • •

ARMAS Subsystem 3, Simulating frequency 3
Kalman filter array

Sensor Main KF1 KF2 KF3 KF4 KF5 KF6 KF7 KF8 KF9 KF10
1 • • • • • • • • • •
2 • • • • • • • • • •
3 • • • • • • • • • •
4 • • • • • • • • • •
5 • • • • • • • • • •
6 • • • • • • • • • •
7 • • • • • • • • • •
8 • • • • • • • • • •
9 • • • • • • • • • •
10 • • • • • • • • • •

Figure 22: ARMAS subsystem configuration for test scenario described in section 4.5,
where Sensor 1 is a position sensor, sensor 2-9 are pseudorange sensors, and sensor
10 is a velocity sensor. 70



Solution Filters
ARMAS Subsystem SKF1 SKF2 SKF3 SKF4 SKF5 SKF6 SKF7

1 • • • •
2 • • • •
3 • • • •

Figure 23: Solution Kalman filters for an ARMAS application with three subsystems
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4.5 Simulated Scenario

A simulation scenario was performed to investigate the behavior of the ARMAS

subsystem model. The scenario was set to simulate three frequency bands being

spoofed at different time intervals. This required three ARMAS subsystems running

autonomously while the top level controller outputs the most accurate navigation

solution to the user. The top level controller used a set of solution filters configured

identically to arrangement shown in Figure 23.

To model a spoofing scenario, pseudorange sensor measurements were altered with

an added distance bias. Spoofing the different ARMAS subsystem at different time

intervals, as shown in Figure 24, examines the ability of the overall application to

intelligently switch from a corrupt navigation solution over to an accurate solution.

Additionally, it tests the autonomy of the entire system down to the subsystem levels.

The desired output solution for the spoofing scheme shown in Figure 24 should be

a vehicle flight path that closely follows the true flight given that there is always a

batch of sensors in the scenario that are not being spoofed.

Figure 24: Test scenario timeline

The navigation solution for the test scenario was the vector ẋ(t), a ten system
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state vector defined as

ẋ(t) =

[
˙xpx(t) ˙xpy(t) ˙xpz(t) ˙xvx(t) ˙xvy(t) ˙xvz(t) ˙xax(t) ˙xay(t) ˙xaz(t) ẋc(t)

]T
, (81)

where xp is the vehicle’s three-dimensional position [m], xv is the velocity [m/s] for

the three-dimensions, xa is the acceleration [m/s2] for the three-dimensions, and xc

is a clock error bias.

The initial position state estimates were set to zero for the x and y direction and

200 [m] in the z direction. The initial velocities were 4.25 [m/s] for the x direction,

5.03 [m/s] for the y direction and zero [m/s] for the z direction. These values were

randomly generated for the first test scenario and used for the subsequent test runs.

The initial acceleration state estimates were set to zero. The initial clock error bias

was also randomly generated for the first test scenario and again, used for the sub-

sequent test runs. The initial randomly generated clock error bias was (4.4083×103)

[m].

The initial state estimation error covariance was set to 102 [m2] in position, 102

[m2/s2] in velocity, (1×10−2)2 [m2/s4] in acceleration, and 80002 [m2] for the clock

error bias. Each trial was propagated using ∆tk = 0.5 [s], starting at tkstart = 0 [s]

and ending at tkend
= 1200 [s], with induced faults continuously occurring during the

spoofing time intervals shown in Figure 24. The false alarm test significance level was

set to α = 1/500000 = 2.0 × 10−6, while the test epoch was set to M = 2400 samples,

which is equivalent to 1200 [s], for all test experiments.

Each ARMAS subsystem used sensor models inherited from the original ARMAS

implementation [1] that included one three-dimensional position sensor identified as

Sensor 1 modeled by,

z
[1]
k = s� xpk

+ v
[1]
k , (82)
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v
[1]
k ∼ N

(
0

3x1
,1002 I

3x3

)
, (83)

where s = [sx sy sz]
T is a three-dimensional scale factor, � symbolizes the Hadamard

product, and I is an identity matrix. Sensors 2 - 9 are pseudorange sensors modeled

by,

z
[2...9]
k = |t[2...9] − xpk

|+ bk + v
[2...9]
k , (84)

v
[2...9]
k ∼ N

(
0,102

)
, (85)

where t is a three-dimensional position of the satellite, xpk is the three-dimensional

position of the vehicle at tk and bk is a First Order Gauss-Markov process simulating

a simple receiver clock error with a time constant τ = 3600 [s] and σ2 = 80002 [m2].

Lastly, sensor 10 is a three-dimensional velocity sensor modeled by,

z
[10]
k = s� xvk

+ v
[10]
k , (86)

v
[10]
k ∼ N

(
0

3x1
,502 I

3x3

)
. (87)

The described sensors correspond to the sensor arrangements in Figure 22.

Each subsystem was configured to only detect one sensor fault. This required

10 Kalman filters that need to be maintained by each ARMAS subsystem. Alterna-

tively, single ARMAS system architecture, as described in section 4.2.3, would require

2,533,987 Kalman filters to be maintain to exclude one subsystem set of faulty pseu-

dorange sensor (8 sensors) from the navigation solution.

The ARMAS subsystem model test scenario was initiated with warm up cycles

to optimize and stabilize memory operations. After the warm up, 20 iterations of

the test case was recorded for execution time and the results were averaged for a

final value as shown in Figure 25. The iteration max time was the longest execution

time taken to complete one ∆tk worth of data. This data point was used to analyze
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whether the ARMAS subsystem model could execute under the real-time constraint

of reading sensor measurement data every .5 seconds.

Figure 25: ARMAS subsystem model test scenario run times
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4.6 Results

The test scenario using the ARMAS subsystem model exhibited encouraging re-

sults. The navigation solution output by the overall system follows the true path with

slight deviations due to the simulated measurement process noise as shown in Figure

29. The ARMAS subsystems were able to function autonomously and self identify

when the integrity of the subsystem failed. More importantly, when faulty sensors in

the subsystems recovered, the subsystems were able to ascertain when its navigation

solution was free from corrupt measurements.

Figures 26, 27, and 28, show the navigation solution output of each subsystem.

As each subsystem experienced more than 1 sensor fault, the subsystem is unable

to identify the faulty sensors due to the limited size of the Kalman filter array and

therefore unable to remove them from the navigation solution output, however, each

ARMAS instance is still able to determine that there is an integrity problem with

the solution and “self-eliminate”. The integrity alarm flag gets raised alerting the

top level controller of the failure occurring in the subsystem. The corrupt sensor

measurements cause the navigation to deviate from the true flight path. Even though

the solution is excluded from the final solution, each ARMAS instance continues to

attempt to recover.

The top level controller functioned as designed by excluding the faulty sensors

associated with the fail subsystem and generating navigation solution from an un-

corrupt filter, maintaining navigation integrity at a much lower computational cost

than the original ARMAS design would require. The final output to the user shows

a navigation solution without significant divergence from the true flight path.
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Figure 26: ARMAS Subsystem 1 Navigation Solution
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Figure 27: ARMAS Subsystem 2 Navigation Solution
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Figure 28: ARMAS Subsystem 3 Navigation Solution
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Figure 29: ARMAS Final Navigation Solution
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4.7 Future Works

The ability to fully characterize the behavior of an ARMAS subsystem model

depends largely on the test cases perform. Subjecting the new ARMAS model dis-

cussed in this paper to a wider range of scenarios would provide better insight into

the strengths and weaknesses of the approach. Enhancing the experiments with

real-world test data would assess the ARMAS subsystem for operational suitability.

Additionally, it would allow a comparison between experimental results and existing

navigation outputs to validate the benefits, if any, for the end user.

4.8 Conclusion

This research presented a novel approach of multiple instantiations of ARMAS to

obtain a navigation solution with integrity that is robust to multiple simultaneous

sensor failures of GNSS pseudoranges. The approach demonstrated that running 37

simultaneous filters provided equivalent performance to the 2,533,987 simultaneous

filters that would be required under the original formulation of ARMAS. This study

provided an initial proof of concept for a modified ARMAS implementation model

under the assumptions outline in section 4.4.3. The information in this paper leads

to the recognition that operational situations may alleviate the computational bur-

den required to produce a practical navigation solution given expected sensor fault

behavior. Results show promise that a real-time ARMAS system can be achieved

for large scale sensor applications through the segregation of system sensors by func-

tional characteristics and fusing results from multiple ARMAS subsystem into one

navigation solution.
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V. Conclusions

This chapter consolidates the conclusions discussed in Chapter III and Chapter IV

respectively into an overall evaluation focused on answering the research question

presenting in Chapter I.

5.1 Conclusions of Research

The over-arching investigative question was: How can the academic ARMAS soft-

ware be optimized towards an operational real-time system?

Chapter I hypothesized that a parallel processing software model implemented on

a GPU device could optimize the overall execution time of a program application after

an ARMAS system sensor size and detectable fault configuration reaches a substantial

quantity, otherwise a CPU sequentially processing model would produce superior

results. Additionally, it was proposed that a single ARMAS system instantiation is

less computationally efficient than an association of smaller ARMAS systems working

collectively to produce the same output under a set bounded conditions.

Chapter III presented a software model that used parallel processing on a GPU to

accelerate program execution time. The approach parallelized Kalman filter instances

and other computation tasks to improve the ARMAS framework performance. Test

cases incrementally scaled up the system sensor size and detectable system faults to

evaluate computational load and measure execution time. Small sensor size configu-

rations proved to be faster on a CPU, while a 3.5 order of magnitude speedup was

achieved by the GPU ARMAS implementation over the CPU version on a large sensor

system configuration. Therefore, the results show the current academic ARMAS soft-

ware can optimize the execution of large scale ARMAS applications through parallel

processing.

82



Chapter IV presented a novel approach that utilized ARMAS subsystems to ob-

tain a navigation solution. An initial test case scenario demonstrated an ARMAS

subsystem model could output an accurate navigation solution while reducing the

computation demand when compared to a single ARMAS system architecture. This

study provided an initial proof of concept for a modified ARMAS implementation

model under the assumptions outline in section 4.4.3. Recognising that operational

situations may alleviate the computational burden required to produce a practical

navigation solution given an expected behavior, the ARMAS subsystem model can

optimize computational resources through selective fault detection.

Overall results show promise that a real-time ARMAS system can be achieved

for operational navigation systems in the near future with the optimization method

discussed in this thesis and continued advancements in hardware technology.

5.2 Future Work

Throughout this research, the following key areas were identified as potential

follow-on work.

• Implement an improved GPU eigen solver using the more efficient QR algorithm

to decrease overall runtimes.

• Analyze a traditional heterogeneous computing model to suit workload with

appropriate hardware

• Expand testing scenarios for the ARMAS subsystem model

• Develop a navigation fusion approach in the top layer controller for the ARMAS

subsystem model
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OPTIMIZING BANKS OF KALMAN FILTERS FOR NAVIGATION INTEGRITY

USING PARALLEL COMPUTING AND EFFICIENT SOFTWARE DESIGN

A. C++/CUDA Code

Available upon request: luis.sepulveda@us.af.mil or robert.leishman@afit.edu
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B. Accelerating the ARMAS framework Result Tables
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