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Abstract

Computer Network Exploitation (CNE) is the process of using tactics and tech-

niques to penetrate computer systems and networks in order to achieve desired effects.

It is currently a manual process requiring significant experience and time that are in

limited supply. One way to supplement the shortage is through automation. This

thesis presents the Automated Network Discovery and Exploitation System (ANDES)

which demonstrates that it is feasible to automate the CNE process. The uniqueness

of ANDES is the use of Bayesian decision networks to represent the CNE domain and

subject matter expert knowledge. ANDES conducts multiple execution cycles, which

build upon previous action results. This process simulates the iterative thinking pro-

cess of human attackers. Cycles begin by modeling the current belief state using

Bayesian decision networks. ANDES uses these networks to select and execute an

expected best action. Observed results are used to update the systems current belief

state before the next cycle begins. ANDES was tested in a live-execution event, tak-

ing place within a virtual network environment. The target network mimics a small

business’ internal network. ANDES successfully performed a series of information

gathering and remote exploit actions, across multiple network hosts to gain access to

the target.

iv
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AUTOMATED NETWORK EXPLOITATION UTILIZING BAYESIAN

DECISION NETWORKS

I. Introduction

1.1 Background

The 2018 National Cyber Strategy identified four pillars the federal government

deemed critical to “advance an open, secure, inoperable, and reliable cyberspace [1]”.

Pillar three establishes “preserving peace and security by strengthening the ability

of the United States, its partners, and allies to deter and punish those who use

cyber maliciously” as one of the critical steps the United States must take. Speaking

at the Department of Homeland Security Cybersecurity and Infrastructure Security

Agency’s second annual Cybersecurity Summit in 2019, Former Defense Secretary

Mark Esper espoused on how the Department of Defense (DoD) fits into this strategy.

“But winning in cyberspace requires an offensive strategy. We need to
do more than just play goal line defense. As such, the department’s 2018
Cyber Strategy articulates a proactive and assertive approach to defend
forward of our own virtual boundaries.” [2]

Two out of the five DoD lines of effort identified to meet this national directive focus

on cultivating and retaining talent. The country as a whole has a talent shortage

that continues to grow in highly technical fields [3], Computer Network Exploitation

(CNE) is no different. One way to help alleviate some of the demand for highly skilled

technical labor is to utilize advances in the field of computer automation.

Researchers have consistently explored Automated CNE over the past two decades,

however it has never moved towards mainstream adoption [4]. One cause for the lack
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of adoption is the complexity of the decision space and dynamic nature of CNE sce-

narios. Previous automation attempts have relied upon modeling entire networks

and completely solving an attack plan prior to execution [4]. This approach is not

representative of the iterative approach employed by human attackers. Attackers

leverage tools and techniques to gain valuable information throughout their attack,

which informs future decision making. The development of Automated Network Dis-

covery and Exploitation System (ANDES) is an attempt to create an automated CNE

system that aligns with the human attacker process.

Given the closely related nature of the CNE field and Vulnerability-Assessment

and Penetration Testing (VA-PT) both problem domains are considered throughout

this work. Unless otherwise specified the reader may assume references to either

problem domain is applicable to both.

1.1.1 Existing Systems

With an average of only 2 research papers per year applying artificial intelligence

to automated VA-PT being published between 2002-2017, and with only 32.26% being

peer reviewed journal papers [4] it is easy to see how there is room for innovation. Of

those papers 84% fall into three general AI disciplines:

• Contingent planning using Planning Domain Definition Language (PDDL)

• Markov Decision Process (MDP) / Partially Observable Markov Decision Pro-

cess (POMDP) Reinforcement Learning

• Attack Graph / Trees.

These approaches and their associated strengths and weaknesses are examined in

Chapter II.
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Within the published work only a single group of researchers have focused on

producing a system capable of live-network execution [5][6]. Their work focused on

developing systems using POMDP capable of capturing the non-deterministic nature

of the VA-PT domain to enable live-execution. Sarraute et al have integrated portions

of their research into the commercial product Core Insight Enterprise distributed by

Core Security, allowing for limited automation of VA-PT events [5]. Unfortunately,

several of the assumptions made by [5][6] while operating in the VA-PT domain make

their systems non-transferable to the CNE domain. ANDES attempts to build upon

these previous works to produce an automated CNE system.

1.2 Research Objectives

The hypothesis is that using Bayesian decision networks to capture the CNE

domain and Subject Matter Expert (SME) knowledge, combined with an iterative

execution cycle, allows for functional automated CNE systems capable of augmenting

human operators. This hypothesis was broken into several sub-goals:

• Develop and evaluate a Bayesian decision network which represents the CNE

domain and incorporates SME knowledge and preferences.

• Develop and evaluate a decision making system which utilizes developed Bayesian

decision networks to select system actions which correspond to SME action se-

lection.

• Develop and evaluate a software system capable of conducting information gath-

ering and exploitation actions in a live network environment.

• Develop and evaluate a software system capable of conducting iterative exe-

cution cycles, capturing previous action’s output as input for future decision

making.

3



• Test the developed system in a virtual environment, designed to enable live-

execution test events.

Evaluation of the hypothesis included the development and thorough testing of AN-

DES. ANDES was tested within a virtual network range developed for this purpose.

The virtual network range represents the uncertain, non-deterministic environment

encountered by CNE operators.

1.3 Methodology

To accomplish the proposed objectives the author developed the Automated Net-

work Discovery and Exploitation System (ANDES). The first innovation is ANDES’s

usage of Bayesian decision networks to effectively capture and model the CNE do-

main. The second innovation is the iterative approach ANDES utilizes during execu-

tion. Each execution cycle ANDES undertakes is an isolated event whose observed

outcome is utilized to inform all future decisions. In this way ANDES is able to react

to an uncertain environment and mimic the human decision making process of first

gathering information, deciding what is the best course of action, and finally taking

that action and observing the outcome. ANDES does not operate without making

several assumptions regarding its domain, which come with associated limitations.

1.4 Overview of System Assumptions

It is critical to remember that the goal of ANDES is to demonstrate the feasibility

of utilizing Bayesian decision networks along with iterative execution cycles to enable

automated Computer Network Exploitation (CNE). Results presented in this work

must be evaluated with the knowledge of these goals. ANDES was able to successfully

operate in an unknown network, chaining together numerous information gathering

and various exploitation actions, ultimately achieving access to an objective host.
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The environment itself was simplified to include four target hosts, and three different

remote exploit actions to be chosen. It is the author’s belief these limitations do not

detract from ANDES capability to demonstrate the goals it was developed to fulfill.

The author acknowledges that ANDES is incapable of operating in a realistic target

environment a CNE operator would face today. Future development and research is

required to achieve this critical milestone, but the author believes ANDES is a step

in the right direction that other contributors can build upon.

1.5 Results

Testing of ANDES shows it was able to achieve all of the desired research ob-

jectives. ANDES successfully and autonomously executed in a live-execution test

network, gaining access to a target host. Throughout execution ANDES made sensi-

ble decisions that matched expected output of the Subject Matter Expert (SME) who

designed the Bayesian decision network. Additionally it accounted for, and reacted

appropriately to action failures, chaining together actions to compromise multiple

hosts and reach the target host which was hidden within the target network, inacces-

sible from the external attack network. These results show the feasibility of the ideas

introduced by ANDES and form the foundation for future work in the field.

1.6 Overview

The rest of this work walks the reader through the process of developing and

testing ANDES, including the results obtained. Chapter II expands upon the relevant

previous work in the field of automated CNE and VA-PT, before identifying gaps in

that research. It also includes an introduction to Bayesian decision networks and how

they function. In Chapter III the methods ANDES uses to accomplish the defined

objectives are explored. The functionality of ANDES is broken down into three

5



distinct systems, the Control Component, the Decision Component and the

Execution Component. Each Component’s architecture and responsibilities are

explored. Testing of the system’s functionality is reported in Chapter IV. ANDES

underwent several rounds of testing throughout development, the most relevant of

which are reported in this work. Reported results primarily focus on a culminating

test, which saw ANDES operating within a live-execution target environment seeking

to gain access to a hidden host via a series of information gathering and remote

exploit actions. This work concludes in Chapter V with a summary of ANDES’s

contributions, results, and avenues of future research that would build upon this

work.
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II. Concepts and Background

Understanding the current state of applying Artificial Intelligence (AI) to the

Vulnerability-Assessment and Penetration Testing (VA-PT) domain requires examin-

ing previous attempts at creating autonomous systems. This thesis work builds upon

some of the works presented here, as well as avoiding many of the limitations previous

systems had by consciously choosing to take different approaches. This chapter also

serves as an introduction to critical concepts employed within Automated Network

Discovery and Exploitation System (ANDES) .

This chapter begins with an overview of the Vulnerability-Assessment and Pen-

etration Testing (VA-PT) process and the various methods of automation previous

researchers have applied to the problem. Previous systems are broken down by the

AI discipline applied within their systems, as well as the systems functionality. Spe-

cial attention is given to systems capable of live-execution events as this most closely

aligns with this works hypothesis. A formal definition of Bayesian decision networks

is presented, to include an example network. This chapter concludes by identifying

research trends which highlight gaps in the existing body of research, which this thesis

attempts to fill.

2.1 Vulnerability Assessment and Penetration Testing (VA-PT)

As the complexity and criticality of computer systems continues to increase across

all facets of our lives, the importance of securing these systems correspondingly in-

creases [7]. One process to measure a computer system’s security is through Vulnerability-

Assessment and Penetration Testing (VA-PT). VA-PT is the process of analyzing

systems, looking for vulnerabilities or other weaknesses that allow the system to be

exploited or misused in some way, ultimately enabling some type of attack [7].

7



The VA-PT processes can be extremely resource intensive as it typically requires

highly trained and experienced personnel dedicating time and resources to the prob-

lem. These limitations led researchers to explore to the idea of automating VA-PT

actions, using computer based systems to either augment or replace trained security

professionals. The major difficulties facing automated VA-PT systems is the ability to

capture the Subject Matter Expert (SME) knowledge of security professionals, as well

as their ability to synthesize observed information into optimal decision policies. This

last capability of adapting to the observed state of the domain proves particularly

difficult and is a major focus addressed in this work.

It must be remembered that ANDES has been designed with automated Computer

Network Exploitation (CNE) as the primary objective. The similarities between VA-

PT and CNE are a closely-related research problems, allowing for sharing knowledge

between the two applications of the technology. CNE problems, if anything, are more

difficult than corresponding VA-PT problems due to having additional constraints on

the knowledge domain and additional risks of detection. Given the nature of non-

permissive CNE, in contrast to VA-PT, there is a general lack of widely available

research related to the specific field. This lack of available research led to the fo-

cus on automated VA-PT research examined in this work instead of works detailing

automated CNE research.

2.2 Attempts at Automation

There has been a variety of methods applied to the problem of automating VA-

PT [4]. This work focuses on those applying Artificial Intelligence (AI) and Machine

Learning (ML) to the problem. For the purposes of this work, AI is defined as the

employment of a rational agent within the problem domain. For an agent to be

rational it “acts so as to achieve the best outcome or, when there is uncertainty, the
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best expected outcome.” [8]. It should be noted, most of the previously presented

systems do not behave as an ‘actor’, instead they largely model a static environment

with no mechanism for interacting with their environment or observing action and

event outcomes. This fact alone disqualifies most of systems from feasibly enabling

automated CNE events.

Defining how the CNE / VA-PT process can be broken down into individual steps,

which can subsequently be automated provides insight into the research problems that

past researchers have been trying to solve. Those steps are defined by [9] and consist

of:

• Pre-engagement Interactions

• Intelligence Gathering

• Threat Modeling

• Vulnerability Analysis

• Exploitation

• Post Exploitation

• Reporting

Of those steps, the first and last steps are considered outside the scope of current

automation and correspond to system development and analysis.

Previously explored solutions can be divided into a number of categories related

to foundational AI/ML principles. The categories are classical planning (constraint

satisfaction), probabilistic planning, adversarial planning (min-max), live-execution,

and adaptive planning (learning-models). The work conducted by McKinnel et al.

in [4] presents a recent review of contributions to the research field. The following
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section highlights prominent works across these various categories as well as evaluates

their relative contributions to the advancement of the field.

2.2.1 Classical Planning

The earliest attempts to apply a level of automation to VA-PT came from work

into developing what is known as “Attack Graphs” or “Attack Models”. In [10] the

authors describe Attack Graphs as a succinct way to represent the various paths

through a system available to an attacker that allows them to achieve their desired

goals. Various methods have been used to create these Attack Graph models, but

they all generally model the network in a manner that allows the application of

Constraint Satisfaction Problem (CSP) algorithms to find viable attack paths through

the network [10][11][12][13][14][15][16]. The CPS algorithms are able to match exploits

to vulnerabilities, configurations to misuse, etc., until an attack chain is found. These

systems generate all possible attack chains that could theoretically compromise a

critical host or achieve a designated objective.

These early models were an application of classical planning to the problem of

VA-PT. The models contained a description of the network as state variables, a

starting condition as the initial state, critical hosts / data as the goal condition,

and available exploits as the set of available actions. Each action (exploit) required

an existing vulnerability or pre-condition to be met and generated some effect or

post-condition [16]. As is the case with classical planning, the solutions generated by

these algorithms were directed graphs showing paths from an uncompromised network

(initial condition) and ending at a compromised network. A simple example of one

round of this type of action selection / execution can be seen in Figure 1.
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Node State
Vulnerabilities: {SMB,

HTTP}
Access: False

Node State
Vulnerabilities: {SMB,

HTTP}
Access: True

Action: SMB Attack

Post-Condition:
Access: True

Pre-Condition:
Vulnerabilities: SMB

Figure 1: Shown here is an example of how the planning algorithms would match a
pre-condition for an action to a node’s state, conduct that action, and apply the post-
condition to produce the node’s new state. In this case the algorithm is performing
the SMB attack algorithm to gain access to the host.

2.2.2 Probabilistic Planning

These early classical planning models were extended to allow for probabilistic

planning. Probabilistic planning adds the capability to account for uncertainty within

the VA-PT domain to existing classical planning models. Probabilistic planning for

VA-PT led to several new avenues of research.

One avenue explored was the introduction of models attempting to solve not only

the binary question of whether a given network is secure, but to quantify how secure

a target network is [17][18][19][20]. This is most exemplified within [17] which chose

to represent the networks as a standard Bayesian network. Given this adaptation for

how to represent the problem domain, common solvers for Bayesian networks could

be applied to the problem. Additionally, the generated solutions are no longer merely

binary states of whether a system is vulnerable or not, but show a measure of how

vulnerable the network is. This is accomplished by solving for the likelihood certain

state variables would exist within Bayesian networks, and considering that as the

likelihood existing vulnerabilities might lead to successful exploitation in the VA-PT

problem domain.

Expanding these earlier models of probabilistic planning allowed for the introduc-

tion of state uncertainty. To accommodate the desire for state uncertainty researchers

11



looked towards the introduction of Partially Observable Markov Decision Process

(POMDP) as the domain model used to represent the VA-PT problem. This applica-

tion allows the system to represent both imperfectly known states as well as account

for uncertain dynamics (the domain changing outside of agent interactions.) Within

[5] and [6] we see the introduction not only of POMDPs applied to the problem of

automated VA-PT, but also initial attempts to deal with state uncertainty.

A severely limiting assumption of all previously referenced models has been their

assumption of perfect knowledge of their target networks and their corresponding do-

main states. While this assumption simplifies the problem space it does not accurately

represent the state of most real-world computer networks. The system developed by

Sarraute et al. [5] introduced information gaining as possible actions choices for the

system. These actions allow the system to attempt to turn uncertainty into known

states. These actions are necessarily associated with a cost which is reflected in the

POMDP’s reward calculations.

Despite the introduction of information gaining actions, the developed system is

still limited in capability to model unknown environments. The main limitation in

the model is their reliance upon a known initial starting state for the domain [5]. The

developed system begins with a complete initial knowledge of the problem domain and

proceeds to artificially introduce state uncertainty into the system. This serves as an

attempt to mimic a changing / dynamic network environment. While this proposed

solution could be considered adequate in the usage of conducting recurring VA-PT

events in a known customer’s network, it is a limiting assumption when dealing with

our desired case of automated non-permissive CNE. It should be noted, that given the

systems information gathering capabilities it could theoretically be adopted to work

in unknown environments, however the method by which the POMDP is constructed

and solved would need to be fundamentally altered.
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Another serious limiting factor of the system proposed by [5] is the computational

complexity associated with solving POMDPs. The authors’ attempted to mitigate

this issue by developing a clever way of decomposing the network into subgraphs of

connected systems within [6]. This allows for optimal solutions of the decomposed

sub-problems to be combined into an approximate fully-optimal solution for the entire

system. This helps mitigate the complexity problem, but for very large domains it is

still a limiting factor.

2.2.3 Machine Learning

Previously discussed models rely upon expert knowledge being imparted during

domain model construction and are static during employment. The work by [21] pro-

poses and evaluates an AI-based VA-PT system which makes use of machine learning

techniques to allow the automated VA-PT system to learn and update characteristics

about the domain as execution progresses. Specifically the authors recommend us-

ing Reinforcement Learning (RL) to learn and reproduce both average and complex

penetration testing activities. Just as past research has done, [21] utilize a POMDP

to model the complex and dynamic nature of VA-PT. Acknowledging the limitations

automated systems have had in the past, these authors proposed a system capable

of being trained by capturing human expertise throughout numerous learning events.

The system learns by observing human experts’ actions, as well as asking human ex-

perts for decision choices during its own execution and remember those choices. The

aim of this learning model is to produce a system that can not only reproduce the

human levels of effectiveness but build upon them. The aim is to allow the system to

cleverly and quickly take learned knowledge and applying it in novel ways to future

penetration testing events leading to a more efficient, effective and scalable system

eventually able to operate without relying upon human expertise. The combination
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of live execution, reinforcement learning, POMDP model solving and development of

‘policies’ (chains of individual actions to achieve some desirable effect) are all novel

in their approach and represent the culmination of many years and previous threads

of research. One aspect the authors have still assumed is nearly complete knowledge

of the target network and a pre-built world model upon which to operate. While

their POMDP model allows for some level of uncertainty regarding absolute states

and probabilistic outcomes (live execution leads to a level of stochasticity that has to

be accounted for) the model is solved with the assumption of perfect knowledge and

probabilistic actions. The system generates an entire attack plan prior to execution.

Execution feedback is fed into the solver after each action execution and the attack

plan is updated according to observed results. This serves to merely create a new

complete plan from the current state instead of truly dynamic and iterative model

solving.

Most critically however is the fact the work presented within [22] and [21] is

aspirational. Many of the learning features are still being developed and implemented.

The authors have proposed a long-term project with many developmental goals still

to be met in the future, with nearly non-existent results currently presented. In this

sense the work should be thought of as a guiding document for what features a robust

system should contain, and roughly how that development and learning process might

look.

2.3 Real-World Execution

Even with the capabilities provided by POMDP models allowing systems to more

accurately model the real world, very few systems are capable of functioning within

non-simulated environments. Those that do interact with real-world environments,

nearly universally operate off domain snapshots as opposed to interacting with the
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dynamic nature of the environment. The working assumption is that an accurate

representation of the target network will be provided as input into the system. Often

the requirements of the system represent an unrealistic perfect knowledge of the entire

network domain. Given the domain in which ANDES is intended to operate within,

it can be assumed this level of knowledge is functionally unattainable.

The first real attempt at incorporating these research concepts into a usable prod-

uct was seen in [23]. This work used the Metric-FF planner [24], an extension of clas-

sical PDDL planning systems, and applied it to automated VA-PT. To accomplish

this goal the authors integrated the planning system with an existing penetration

testing tool, Core Impact. The objectives accomplished was the ability to convert the

internal state of Core Impact into the language of the PDDL planning tool and to

convert the attack plan output back into a format usable by Core Impact. As seen

previously though this system once again considered an entire target network as a

whole and generated an attack plan designed to traverse the entire target network,

assuming deterministic outcomes. The key contributions were the ability to take the

state of a real-world VA-PT tool and utilize it as the input to a planning system, and

the capability to take the planning systems output and execute it in a real network.

Realizing a main weakness of the system came from the inability for the planning

system to account for uncertainly and these limitations ultimately led the authors

to pursue the work shown in [5] and [6]. Unfortunately the authors never adapted

the POMDP systems of [5] and [6] into a working system capable of interacting with

a live network. This is perhaps due to the fact that several of the assumptions the

authors made while developing the system are incompatible with live execution and

would need to be redesigned.

Regarding the current state of implementation, the current version of the Core

Impact tool offers what they call Rapid Penetration Test (RPT)s which automate
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portions of the VA-PT process [25]. Specifically, you are able to provide the tool a

computer system as a target and it will automatically conduct information gathering

actions, develop an attack profile, conduct those attack steps and ultimately report

the results. The system is incapable of using gathered information or access to pursue

additional network targets and simply provides a summary of the results as the out-

put. The system does not attempt to identify a ‘best’ point of access to the system,

but merely attempt all exploits meeting certain system thresholds determined by the

user’s chosen rule-set (level of risk, type of exploit, etc.). Core Security, the develop-

ers of Core Impact, do not elaborate upon what underlying planning system, if any

they are utilizing for their commercial product, presumably to protect their commer-

cial interests. However, based upon their descriptions and the systems capabilities it

can be assumed that at the very most a PDDL planning system is being utilized as

shown in [23], but very likely it is a simple constraint satisfaction type system due to

the behavior of attempting all ‘valid’ exploits instead of reasoning the ‘best’ option.

Another difficulty towards allowing systems to operate within real-world envi-

ronments is the creation of the system’s domain representation. The starting state

of the network, required for most of the presented systems, needs to be externally

produced and provided to the automated systems prior to execution. One solution

to this limitation as presented in [13] relied upon commercial network vulnerability

scanning products. These products rely upon having administrative credentials and

knowing the layout of the target network. The results of the commercial scanning

products were imported into a model building system. This solution severely limits

the applicability to unknown environments or non-cooperative VA-PT scenarios.
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2.4 Bayesian Decision Networks

From the outset Bayesian decision networks, also known as influence diagrams,

have been explored as a solution to deal with uncertainty and incomplete knowledge

within the AI community. A foundational description of Bayesian decision networks is

presented by [26]. The authors describe an easy way to conceptualize these Bayesian

decision networks are as Directed Acyclic Graph (DAG)s in which “(i) nodes repre-

sent individual variables, (ii) arcs demonstrate influence among the nodes, and (iii)

functions associated with the arcs indicate the nature of that influence.” As evidenced

by the name, Bayesian decision networks are an extension to the standard Bayesian

networks. The introduction of additional variable types allows these networks to

capture domain knowledge and decision maker preferences.

A valuable example highlighting the capacity for these Bayesian decision net-

works to capture the preferences of decision makers and automate the decision mak-

ing process exists within the medical community. Here Bayesian decision networks

are actively employed to help produce consistent and mathematically sound decision

making. The work of [27] shows how Bayesian decision networks are implemented

within Elvira, a tool for building and evaluating graphical probabilistic models. Elvira

is used to help teach medical decision makers probabilistic and repeatable decision

making skills [27]. ANDES follows the same mathematical principles as Elvira during

network construction, the details of which are presented in the following section.

2.4.1 Formal Description of Bayesian Decision Networks

For this work it is important to understand the mathematical principles that

underline Bayesian decision networks as well how to formally define them. These

principles are used in Chapter III when describing the ANDES decision network and

are critical to understanding how ANDES functions.
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2.4.1.1 Notation and Definitions

Notation within Bayesian decision networks is derived from DAG notation. Each

node within the DAG represents a variable within the Bayesian decision network.

Variables have several ways to reference them. A capital V represents a variable,

while a lowercase v represents a value of V. A bold capital V represents a set of

variables while a bold lowercase v represents a configuration of V.

Useful definitions include a finding f , which corresponds to a value a chance

variable can take on. In the case of ANDES, a finding corresponds to a belief ANDES

maintains about a specific target. For example, ANDES might ‘find’ a target host is

running the Windows 7 Operating System. The set of all available findings results in

evidence e, which is a certain configuration of observed variables E [27].

Bayesian decision networks contain three types of variables: chance variables VC ,

decision variables VD, and utility variables VU . Chance variables are those which

represent domain states the decision maker has no direct control over. Decision

variables are those which represent actions directly controlled by the decision maker.

Lastly utility variables represent the decision maker’s preferences. Since variables are

represented as nodes within the graphical representation, the terms variable and node

are used interchangeably [27].

2.4.1.2 Network Structure

To produce the graph structure of the Bayesian decision networks, nodes are

connected via directional arcs. Every node must be connected to at least one other

node and no cycles may exist, fulfilling the requirements of the DAG designation. An

incoming arc’s meaning is determined by the type of connected node:

• Arcs into a decision node represent information known at the time of the decision

• Arcs into a chance node represent probabilistic dependence
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• Arcs into a utility node represent functional dependence, i.e., which node values

are used to calculate utility

Another characteristic of Bayesian decision networks is the requirement a directed

path exists which includes all decision nodes, indicating the order of the decision

nodes. This ordering produces a partition of VC such that for a network having n

decisions {D0, ..., Dn−1}, there are n + 1 subsets {C0, ..., Cn}. Each subset Ci is the

set of chance variables C such that there is a link C → Di and no link C → Dj with

j < i [27]. This means Ci represents the set of chance variables which are known for

Di but are unknown for any previous decisions. The final set Cn is the set of variables

which have no link to any decision. These sets allow the informational predecessors

of Di to be determined. Denoted as IPred(Di) it represents the variables known to

the decision maker when deciding on Di. Assuming the decision maker remembers

all previous observations and decisions this results in the following property:

IPred(Di) = IPred(Di−1) ∪ {Di−1} ∪Ci. (1)

Similarly every utility node U has functional predecessors FPred(U) which define

the domain of the utility function. For a standard Bayesian decision networks this

simply means the FPred(U) = Pa(U).

Once the Bayesian decision network has been defined, the quantitative values

associated with the variables must be set. Each chance node C requires a probability

distribution P (c|pa(C)) for each configuration of its parents. This is most commonly

represented as a Conditional Probability Table (CBT) listing the probability the event

will occur given every possible configuration of the node’s parents. Each utility node

U requires a function ψU(pa(U)) which maps every possible configuration of the utility

node’s parents onto a real number. This utility function is also commonly displayed

as a table in graphical form.
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2.4.2 Bayesian Decision Network Example

Using the properties of Bayesian networks, along with the described extensions

provided by decision networks, one can calculate utilities for all combinations of possi-

ble decisions. The decision network is populated with available evidence, the evidence

is propagated, and the network is repeatedly solved for every combination of decisions.

This principle is shown in the following equation

P (vC : vD) =
∏

C∈VC

P (c|pa(C)). (2)

In theory, the optimal decisions are those that lead to the maximum utility value,

a measure which captures the decision network creator’s preferences via the utility

value function. The exact method of how decision networks have been applied to the

VA-PT problem within ANDES will be covered in Chapter III.

2.4.3 Example Network

The example network shown in Figure 2 demonstrates how a Bayesian decision

network can be used to make decisions in the face of imperfect knowledge, while

accounting for operator preferences. This network is an extension of the common

Bayesian network example showing the probability of the grass being wet, given the

given the presence of a sprinkler or rain. In this case, the state of the sprinkler is

no longer a chance variable and instead is a decision variable, representing whether

the operator of the sprinkler system chooses to turn on the system in the morning or

not. The operator must make the decision without knowledge of whether it is going

to rain, but they are aware of whether the grass was properly watered the previous

day. The network has been designed to balance the cost of running the sprinkler

system with the grass’s requirement of being properly watered. The utility function
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GrassWet

Rain
T F

Sprinkler

Sprinkler Rain T F

F F 0.01 0.99

F T 0.9 0.1

T F 0.99 0.01

T T 0.99 0.01

GrassWet

Sprinkler WetYesterdayT F

0.2 0.8

Rain T F

0.6 0.4

WetYesterday

SprinklerUtility

GrassWet Sprinkler WetYesterday Value

F F F -75

F F T 50

F T F -100

F T T -75

T F F 100

T F T 25

T T F 75

T T T -25

SprinklerUtility

Figure 2: Sprinkler Utility: This Bayesian decision network has been constructed to
aid the decision maker in choosing whether to turn on their sprinkler system or not.
It takes into account decision maker preferences regarding how often they wish the
grass to be watered. Shown are the nodes, connections and associated CBTs.

is constructed in such a manner as to favor the grass being watered every other day,

and will penalize both too frequent or too infrequent watering. The network consists

of three chance variables shown as nodes on the graphical representation. Each of

these variables is either true or false.

VC = {VRain, VGrassWet, VWetY esterday} (3)

Of these variables, two of them are directly observed as evidence.

E = {Rain,WetY esterday} (4)
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There is a single decision variable, the decision to turn on the sprinkler system or not

(encoded as true or false).

VD = {Sprinkler} (5)

Finally there is a single utility variable which calculates the networks overall utility

given the observed states.

VU = {SprinklerUtility} (6)

Associated probabilities and values for all variables can be found in Figure 2 in the

CBTs and utility function. As mentioned previously incoming arcs to chance nodes

represent conditional relationships, incoming arcs to decision nodes represent infor-

mation predecessors, and incoming arcs to utility nodes represent functional prede-

cessors. Within this network only VGrassWet is conditionally dependant upon other

variables.

Pr(VGrassWet) = Pr(VRain)Pr(VSprinkler) (7)

The only information the operator has access to when deciding whether to turn on

the sprinkler system is whether the grass was properly watered the previous day.

IPred(VSprinkler) = {VGrassWet} (8)

When determining the value of the network’s configuration, the utility function will

consider whether the grass will be sufficiently watered, whether the sprinkler system

is running, and whether the grass was properly watered the previous day.

FPred(VSprinklerUtility) = {VGrassWet, VSprinkler, VWetY esterday} (9)
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The process of using this Bayesian decision network to determine whether the operator

of the sprinkler system should turn on the sprinklers demonstrates the ease of use.

Given an observed evidence, the network is solved all possible decision choices (in this

case there are only two, true or false) and the decision choice yielding the greatest

expected utility is selected. For instance assume our evidence is

e = {vRain = T, vWetY esterday = F}. (10)

Propagating the evidence throughout the network and solving for each decision choice

yields the Expected Utility (EU) value of each decision. Evidence propagation in the

case of Bayesian decision networks is synonymous with computing the posterior prob-

ability of each variable given the available evidence [27]. Starting with the choice to

run the sprinkler system, the EU can be calculated by examining the given probability

tables and combing all possible outcomes. In this case that results in:

(Pr(GrassWet = T |Rain = T, Sprinkler = T )

× ψUSprinklerUtility(GrassWet = T, Sprinkler = T,WetY esterday = F ))

+ (Pr(GrassWet = F |Rain = T, Sprinkler = T )

× ψUSprinklerUtility(GrassWet = F, Sprinkler = T,WetY esterday = F )) = EU

(11)

which evaluates to

(0.99× 75) + (0.01×−100) = 73.25. (12)
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In the case the sprinkler system is turned off the EU is calculated as

(Pr(GrassWet = T |Rain = T, Sprinkler = F )

× U(USprinklerUtility|GrassWet = T, Sprinkler = F,WetY esterday = F ))

+ (Pr(GrassWet = F |Rain = T, Sprinkler = F )

× U(USprinklerUtility|GrassWet = F, Sprinkler = F,WetY esterday = F )) = EU

(13)

which evaluates to

(0.9× 100) + (0.1×−75) = 82.5. (14)

Given the observed evidence of VRain being true and VWetY esterday being false, the

decision with the Maximum Expected Utility (MEU), with a value of 82.5 is to leave

the system off. This process can be repeated for any combination of observed evi-

dence and unknown evidence, yielding an expected optimal decision for any network

configuration. This is what allows Bayesian decision networks to make decisions in

the face of unknown information and probabilistic outcomes.

2.5 Limitations of Previous Systems

Out of the previously proposed systems, the ones most similar in the approach

presented by this thesis are those utilizing POMDP models to account for uncertainty.

The works of [5] and [6] developed an initial system utilizing a POMDP to enable

automated VA-PT. Unfortunately their approach had several main limiting factors

which prevent the direct application to a live execution system. First their system

still assumes knowledge of network topology, system configurations and a system’s

inherent value (required for the reward functionality.) The system assumes the target

network is static during execution, outside of the agent’s interactions, and they assume
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the system’s actions are deterministic given a known configuration. Combine these

assumptions with the well documented complexity issues of POMDP models [6] and

you realize the system was not designed to operate in a live network environment.

These POMDP model approaches could potentially be modified to eliminate many of

the assumptions made, however this thesis proposes that instead utilizing Bayesian

decision networks provides many of the same advantages, without the accompanying

issues.

Another trend that presents itself within the previous work is their systems of

performance and evaluation. The authors have focused on comparing their systems’

computational performance to previous approaches, showing how their new approach

can handle more complex networks, or solve the problems quicker. The work of

McKinnel et al. in [4] identifies the need for researchers to move towards a more

qualitative performance metric. If an automated VA-PT system is to be valuable

to real world operators it should be a given it is able to operate in the real-world

environment, with all of its complexities. Instead the performance metric of newer

systems should be attempting to capture the measure of value they provide to the

operator, or attempt to capture how ‘well’ they perform the automated VA-PT tasks,

and not simply whether they ‘can’ theoretically solve the mathematical problem of

the tasks. The work presented in this thesis attempts to follow the advice provided

by McKinnel et al. and move towards filling the gap of a system that is useful to a

real world VA-PT operator.

2.6 Summary

Across all of these approaches, general trends appear regarding which portions

of the automation problem they attempt to solve and how they attempt to solve

them. With very few exceptions the systems could all be classified as planning agents
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attempting to produce some type of plan output, capable of leading to an end-state

achieving some VA-PT objective, usually a compromised target system. While this

work does not change that general dynamic, it approaches the problem instead not

as a single planning problem, but instead as a series of decision points. The results of

executing the chosen actions can then be observed by the agent and used to inform

future decision making.

This work presents ANDES to fill this gap in existing systems by developing

an automated system capable of network enumeration, model generation, sequential

decision making, and plan execution. Previous research has focused on simulating

automated VA-PT, this means the systems were designed to operate under differ-

ent conditions and assumptions than ANDES. This focus on simulation means these

systems are fundamentally different in their objectives and operations than a system

focused on enabling live execution required for automated CNE events. This solution

allows for real-time, live exploitation events, as well as being capable of operating

within previously unknown environments. Since ANDES begins with only a knowl-

edge of its own initial state and desired outcome, the previous examples which have

attempted to develop complex network models prior to beginning execution are not

feasible or even necessary for this solution. Instead ANDES relies upon Bayesian

decision networks to model its environment and iterative execution cycles as will be

seen in Chapter III.
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III. Methodology

This chapter provides an in-depth look into how Automated Network Discovery

and Exploitation System (ANDES) accomplishes the different objectives that make

up the Computer Network Exploitation (CNE) process. Understanding the methods

ANDES uses to accomplish the CNE process is critical to understanding how it dif-

fers from previous approaches and how its contributions are valuable to the field of

automated CNE research.

ANDES can be logically separated into three major components as seen in Figure

3, each enabling a critical element of the CNE process. For the purposes of this

work the process of CNE consists of examining the current understanding of the

environment, viewing all possible decision choices, comparing those decisions with

the context of prior knowledge and current beliefs, before finally choosing the action

with the greatest chance of leading to objective completion. The first component is

the Control Component which guides the flow of execution between the various other

components and manages ANDES knowledge of the world and ANDES own internal

state. Next is the Decision Component which receives the Control Component’s

current beliefs about the domain and decides the best next action for ANDES to

take. The final component, the Execution Component, is the portion of ANDES that

directly interacts with the target domain. The inner workings of those components,

and how they differ from previous approaches is presented here. Appendix C contains

technical information regarding the systems installation and dependencies.
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Control Component
Internal State

Domain Beliefs

Control Logic

Decision Component
Bayesian Decision Networks

Decision Logic
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Exploitation Subsytem

Scanning Subsystem

Figure 3: ANDES three components work together to accomplish required objectives.
The Control Component provides current beliefs to the Decision Component which
determines the next action for the system to take. The Control Component processes
the selected action and tasks the Execution Component accordingly providing requi-
site targeting information. The Execution Component provides action results which
are captured by the Control Component before beginning the cycle anew.

3.1 Purpose and Goals of ANDES

The primary purpose of ANDES is to evaluate the hypothesis that using Bayesian

decision networks to capture the CNE domain and Subject Matter Expert (SME)

knowledge, combined with an iterative execution cycle, allows for functional auto-

mated CNE systems capable of augmenting human operators. Given ANDES is a

research project, meant to solely demonstrate feasibility of the employed concepts, it

is critical to view ANDES capabilities through this lens. All methodologies presented

here focus on achieving the sub-goals of this research:

• Develop and evaluate a Bayesian decision network which represents the CNE

domain and incorporates SME knowledge and preferences.

• Develop and evaluate a decision making system which utilizes developed Bayesian

decision networks to select system actions which correspond to SME action se-

lection.

• Develop and evaluate a software system capable of conducting information gath-

ering and exploitation actions in a live network environment.
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• Develop and evaluate a software system capable of conducting iterative exe-

cution cycles, capturing previous action’s output as input for future decision

making.

• Test the developed system in a virtual environment, designed to enable live-

execution test events.

The nature of ANDES means it makes several critical assumptions accompanied by

various limitations that impact its ability to operate within the complexities of a real

world network.

3.1.1 Assumptions and Limitations

The single largest assumption ANDES makes is that it only needs to successfully

operate within a controlled test environment. ANDES is able to execute within any

standard TCP/IP network, but if no profitable actions are available for ANDES it

will terminate execution prior to objective completion. Currently ANDES terminates

execution once the objective host has been compromised, it does not support deliver-

ing CNE post-exploitation effects to the objective host. These assumptions introduce

the following limitations:

• Target network must be designed to have existing vulnerabilities ANDES is able

to exploit.

• ANDES assumes all hosts in the target network share a subnet.

• ANDES only conducts remote service exploit actions, no host-based exploits

are employed.

• If ANDES is to achieve the desired objective, an attack path must exist between

the initial target host and the objective host.
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• ANDES does not employ any Deny, Degrade, Disrupt, Destroy, or Manipulate

(D4M) capabilities.

3.2 Control Component

The Control Component of ANDES guides system execution and coordinates in-

formation flow between the other two components. The Control Component also

maintains and updates the systems internal belief state and domain knowledge. The

process of capturing and utilizing information gained from previous execution cycles

allows ANDES to conduct multiple, isolated actions to accomplish incremental goals.

As long as ANDES Decision Component has properly defined utility functions, the

culmination of individual goals should come together to the accomplish ANDES’s

user defined objective. Prior to any of this happening however ANDES must be able

to capture an internal representation of the domain its operating within.

3.2.1 Domain Representation

One of the first tasks in developing an autonomous agent is determining the state

representation, or how to best capture the domain in which it operates. The agent

must be able to capture relevant information about the world in some kind of internal

representation. ANDES is designed to operate within a standard IP based computer

network. The critical components of a computer network that ANDES captures are

the details of the computer systems themselves and the connections between them.

ANDES represents both computer systems and their connections within ANDES host

objects. Host objects are a custom data structure which capture not only various

possible configurations of computer systems such as their operating system, hostname,

IP address, etc. but also captures ANDES relationship to the system. Possible

relationships are whether ANDES has performed a scan of the host, results from
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Figure 4: The ANDES host object captures applicable information about ANDES
target systems. Host attributes are populated as information is acquired during in-
formation gain actions, such as conducting a remote scan. Attribute values represent
ANDES current beliefs regarding the hosts state.

any previous scans, what type of access ANDES has to the host, if any, and any

known neighbors of the host. Currently ANDES does not capture any additional

metadata about the target network, and all observations / sensed information about

the environment is captured only within ANDES host objects. A complete view of

an ANDES host is provided in Figure 4.

Additional information regarding ANDES own internal state and the status of

execution is captured, but is stored separate from the domain representation. The

format of ANDES internal state is described later in this chapter.

3.2.2 Populating and Updating Target Network

During initialization of ANDES, the user must provide initial targeting informa-

tion (entry point into target network) and a terminating objective. The minimum

information required for both target systems is simply their IP addresses, however
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any additional information the user knows about the network could also theoretically

be provided. If ANDES is unable to access the entry point provided by the user, exe-

cution will be terminated. When ANDES learns about a new target system (whether

via initial target information provided by the user, or as the result of an informa-

tion gathering action) it creates an associated Host object as described above. Host

objects are stored in an unsorted list representing the entirety of the target network

as currently observed by ANDES. Host objects are accessed via their associated IP

addresses, which means any observed systems with matching IP addresses are as-

sumed to be the same target host. In the case where newly observed information

is associated with a previously observed host, the existing belief states are updated

with the newer information. Any previous belief states that are not in conflict with

new information are retained. When new information conflicts with previous belief

states, the old information is assumed to be outdated and is replaced with the up-

dated belief states. This is a minor limitation as separate systems could theoretically

be configured to share external IP addresses, such as in virtual environments.

3.2.3 Execution Cycle

Once ANDES has a populated target network, containing at least one host object,

it can begin conducting execution cycles. Figure 5 shows an overview of this process

and the seven individual steps. Each execution cycle begins with a decision selection

process and ends with checking for objective completion. More detailed explanations

of each individual step are included in the responsible Component section.

3.2.3.1 Decision Selection

Step 1 begins when the Decision Component receives the system state from the

Control Component. As discussed, ANDES utilizes Bayesian decision networks as its
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Decision Component
1 - Construct and solve
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6 - Update State / Beliefs

7 - Check for objective completion
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7b - Initiate Execution Cycle
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Figure 5: Execution Cycle: This figure shows the flow of execution during ANDES’s
execution cycle. Prior to initial execution ANDES performs initiation actions to
include setting the user provided objective and initializing network starting targets.
Execution is terminated when either no productive actions are available or ANDES
has reached its objective state.

decision mechanism. The Control Component provides the Decision Component ac-

cess to every ANDES host object currently in the target network as well as ANDES’s

internal state. In turn the Decision Component creates a Bayesian decision network

for each host object. The Decision Component calculates the Maximum Expected

Utility (MEU) as well as the associated decision(s) for each target system (Host ob-

ject). Step 2 utilizes selection logic to determine which target and action combination

is expected to yield the greatest utility. These results are returned to the Control

Component. In Step 3 the Control Component will first determine what targeting

information is required to carry out the selected action. Once this information is

compiled it will be passed to the appropriate Execution Component subsystem.
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3.2.3.2 Action Execution

Step 4 begins when the Execution Component receives this targeting information

and begins preparing for the appropriate action. Currently the Execution Component

consists of two subsystems, each responsible for various types of actions. Information

gathering actions are split across both subsystems, the Scanning Subsystem conducts

network scans and the Exploitation Subsystem conducts local information gathering

actions on compromised targets (post initial compromise). In the case of an exploita-

tion action, the Exploitation Subsystem is always utilized. Details on these subsys-

tems are found in the Execution Component section. Once the action is prepared

the Execution Component launches the action and prepares to observe the results.

Step 5 consists of observing and processing the results in an attempt to determine the

actual action outcome. Step 5 concludes when the results are recorded and passed

back to the Control Component.

3.2.3.3 Results Analysis

In Step 6 the Control Component takes the results from Step 5 and updates any

applicable Host objects or internal belief states. This step is also provides a chance

to perform internal status checks and updates. One such example that ANDES

currently employs is ‘pinging’ all target hosts it believes it has active connections

with. If the connections respond appropriately no action is required, however if the

hosts do not respond appropriately ANDES can assume the connection has somehow

been interrupted and should update the target’s host object’s belief state accordingly.

In Step 7, using this updated system state the Control Component will check to

determine whether ANDES has reached the user defined objective. If the objective

state has not been reached, Step 7b begins the cycle anew passing the system state to

the Decision Component. If the objective state has been reached, Step 7a will begin
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the process of terminating execution, alerting the user to objective completion and

conducting the required shutdown actions.

3.2.4 Execution Cycle Advantages

It is this iterative process which enables ANDES to take advantage of information

gained during execution, as well as to account for unexpected results. An added

benefit of this method is the decision space (and corresponding solution space) is kept

very small allowing for efficient solving. The size of any specific Bayesian decision

network never grows, only the number of networks generated grows (as number of

target hosts increases.) This means the decision making time grows linearly as the

target network grows. As highlighted in the related-works section the downfall of

similar Partially Observable Markov Decision Process (POMDP) approaches is that

as network complexity grows, associated POMDP models can quickly grow intractable

[4].

3.3 Decision Component

The Decision Component represents the thinking portion of ANDES. When com-

bined with the supporting infrastructure provided by the Control Component, the

methods employed within are the true contributions of ANDES to this field of re-

search. ANDES utilizes Bayesian decision networks to model each individual decision

point. This is in contrast to previous solutions which have attempted to represent the

entire decision space as a single problem [4]. In previous systems the solution yields

an entire attack chain, starting from target information and terminating at objective

completion. ANDES instead selects a single action at each decision point, which it

then executes, observes the outcome, updates the belief state and repeats the process.

ANDES still starts with target information, and terminates at objective completion,
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but does so iteratively. This method allows for easy handling of non-deterministic

actions as well as account for any domain uncertainty. Bayesian decision networks

represent a way to account for uncertainty of knowledge and probabilistic outcomes,

and also as a way to capture and utilize expert knowledge within the system. The

core principle ANDES attempts to accomplish is automating the decision making

process in a manner as closely as possible to how human operators approach their

decisions process.

Decision Network(s)

MEU +
Decision
Values

MEU +
Decision
Values

MEU +
Decision
Values

Calculates
highest overall

MEU

Decision Component

Chooses
Associated

Action

Control Component

Best Action

Control Component

Internal State

Host Object(s)

Figure 6: The Decision Component receives the Control Components current beliefs
about the domain in the form of ANDES host objects. These host objects are used to
construct and populate Bayesian decision networks, one for each host. The Decision
Component will individually solve each network, compare maximum values across the
networks, and ultimately return the next best action for the Control Component to
take.

3.3.1 Bayesian Decision Network Overview

Employing a Bayesian decision network requires developing a model that accu-

rately represents the agent’s problem domain. Once the environment is represented,

injecting critical decision points, developing a usable utility function, and attempt-

ing to capture relevant expert knowledge are key to producing an effective decision

network. ANDES represents each available target host as its own Bayesian decision

network, populating each network with observed evidence from ANDES’s current

belief state of that target.

The Bayesian decision network ANDES utilizes contains the three general node

types as described in Chapter II, a refresher of each node type and how they are

utilized within ANDES follows.
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• Chance nodes: Capture the probability of a variable and are present in two

distinct types. Observed chance nodes directly capture observable attributes of

the host and are directly populated by ANDES during network initiation. The

second type, contingent chance nodes, attempts to capture domain knowledge

regarding expected outcomes, given observed evidence and potential decisions.

The ‘compatible exploit’ chance node is an example of a contingent chance node

as it combines the observed evidence for the operating system and vulnerabilities

to calculate the probability of whether ANDES contains a compatible exploit

given observed evidence. In this way it introduces outside knowledge regard-

ing exploit and operating system compatibility, as well as potential chances of

success given various operating systems and vulnerability combinations.

• Decision nodes: Represent potential decisions ANDES could make. ANDES’s

networks contain two decision nodes corresponding to whether ANDES should

acquire information (scan) or attempt to acquire new access (exploit).

• Utility nodes: Evaluate the expected utility of a given network configuration.

This utility node is what allows ANDES to make ‘rational’ selections for poten-

tial actions. By evaluating the expected utility for each combination of potential

decisions, given the current evidence state, ANDES can select the decision(s)

which corresponds to the highest value of the utility function. In this way the

utility node serves as the heuristic for ANDES. This utility function can and

should be modified by ANDES operators to account for preferences and desired

behavior. For instance the utility node’s values could be adjusted to value infor-

mation more highly in an attempt to minimize taking risky uninformed actions.

Figure 7 shows a visual representation the primary network ANDES produces,

without any evidence population.

This next section contains the details of the Bayesian decision networks designed by

37



the subject matter expert SME and which ANDES implements during execution.

Vul2

ED
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Vul1

OS

Vul3

CE2 CE3

Access

ADSR

Scan

Neighbor

AR

TN

CE1

Figure 7: Depicted is the visual representation of the Bayesian decision network.
Oval nodes represent chance nodes, square nodes represent decision nodes and the
diamond node represents the utility node. Chance nodes with no incoming arcs are
observed nodes which can be directly observed and populated by ANDES, all other
nodes values are calculated during solving.

3.3.2 Bayesian Decision Network Construction

To aid in the prototyping of a Bayesian decision network representing a target

host, the author used the Java application UnBBayes [28]. UnBBayes contains a

Graphical User Interface (GUI) for constructing Bayesian decision networks. Using

the GUI the author was able to develop the initial network configuration, produce

initial probability tables, and tune utility values. Additionally, the GUI allows for

real time network solving and a visual representation of evidence propagation. These
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capabilities were employed to conduct initial testing of network performance and

ensure desired behavior prior to implementation within the ANDES framework. The

visual representation also aided in ease of troubleshooting and seeing how network

changes impacted utility outcomes. Once the author finalized the network design in

UnBBayes, it was converted into Python3 code leveraging the pyAgrum [29] software

library. pyAgrum itself is a Python3 wrapper for the aGrUM C++ library which

implements various graphical models, including Bayesian decision networks.

UnBBayes saves its networks in a text-based format, enabling a direct conversion

between the prototype network file into applicable Python3 code. This allowed the

author to import the prototype network into ANDES as well as enabling other users

of ANDES to more easily modify the Bayesian decision network as required using the

UnBBayes GUI as opposed to directly editing the pyAgrum code. Currently ANDES

is only capable of using this predefined network, instead of being able to dynamically

generate new networks and associated probabilities. This limitation manifests itself as

ANDES only being able to represent whether specific attributes have been observed,

rather than dynamically generating nodes for every attribute of a scanned system.

For instance, if the scan module detected ten running services on a target host, if

ANDES only recognizes three of those services the information gain from those other

seven services is currently wasted. Dynamic network generation was explored, but

was abandoned due to the complexity of not only dynamically generating a proper

network, but also the supporting code required. The network would need to be

dynamically populated with initial probabilities, observed evidence would need to

be dynamically populated, decision and utility functions would need to account for

network changes, etc. The author determined this line of development unfeasible

for Bayesian decision networks. This represents one of the disadvantages of using

Bayesian decision networks, while easy to understand and solve they do not allow for
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as much flexibility as more complicated domain models.

3.3.3 Bayesian Decision Network Formal Description

Examining the Bayesian decision network ANDES utilizes, as depicted in Figure

7, provides insight into how ANDES captures its domain. Utilizing the formal nota-

tion as described in Chapter II, the influence diagram employed by ANDES can be

represented in the following manner.

The network contains 13 chance variables represented as 13 nodes,

VC = {OS, V ul1, V ul2, V ul3, Scan,Neighbor, Access, TN, SR,AR,CE1, CE2, CE3}.

(15)

Of those 13 variables, 8 are observed variables representing some state ANDES could

potentially observe during execution. These variables are represented by the set

E = {OS, V ul1, V ul2, V ul3, Scan,Neighbor, Access, TN}. (16)

An explanation of what those variables represent within ANDES follows:

• vOS = {Win7,Win2k19, Linux, Unknown} : Observed Operating System

• vV ul1/2/3 = {T, F} : Does the corresponding vulnerability potentially exist?

• vScan = {None, Unfiltered, F iltered} : Has the target been scanned and were

any results likely to have been filtered?

• vNeighbor = {T, F} : Does the target have a neighbor within the network ANDES

has access to?

• vAccess = {T, F} : Does ANDES have access to the host via a Metasploit session?

• vTN = {T, F} : Is the target within ANDES’s target’s subnet?
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The remaining five chance variables, which are not observed variables, represent con-

tingent chance variables. Contingent chance variables provide a method to introduce

domain knowledge into the network. By observing the incoming arcs it can be deter-

mined which other variables influence the calculated probabilities. An explanation of

these variables follows:

• vSR = {None, Unfiltered, F iltered} : If the target is scanned, what is the

likelihood additional information will be gained?

• vAR = {T, F} : Given the chosen actions and current state, what is the likeli-

hood ANDES will have access to the host post execution?

• vCE1/2/3 = {T, F} : Given observed Operating System and potential vulnera-

bility, what is the likelihood ANDES has a compatible exploit?

The final three variables represent ANDES’s decision points and its utility function.

The two decision variables:

VD = {AD,ED} (17)

and the single utility variable:

VU = {AU}. (18)

Observing the incoming arcs to decision nodes represents what information is available

at the time the decision is made, while observing the incoming arcs to the utility node

represent what state information is used to calculate the final utility of that network

configuration. These arcs show the utility variable’s functional predecessors,

FPRED(AU) = {SR,AR,Access, TN}. (19)

In the case of the decision variables these arcs represent informational predecessors.

In this network the decision variables are ordered such that D0 = vAD and D1 = vED.
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From this the information the chance variables can be divided into three sets (number

of decisions + 1) such that:

C0 = ∅ (20)

which represents the variables known before AD is determined. The next set:

C1 = {CE1, CE2, CE3, AD} (21)

represents the information known before ED is determined. The final nodes are part

of the set:

C2 = {OS, V ul1, V ul2, V ul3, AR, TN, Scan, SR,Neighbor, Access} (22)

which represent the variables who have no direct connections to a decision variable

which means their true values are never fully known at any decision point [27]. An

explanation of what these three non-chance variables represent within ANDES follows:

• vAD = {Exploit, Scan} : Should ANDES conduct an information gathering

action or attempt to exploit the target?

• vED = {Exploit1, Exploit2, Exploit3} : If ANDES conducts an exploit action,

which potential exploit should be chosen?

• vAU = ψAU(SR,AR,Access, TN) : What is the expected utility of the network’s

resulting state? Considers the current combination of known states, chosen

actions, and calculated probabilities.

Due to a software limitation in the pyAgrum getMEU function, ANDES sometimes

employs two separate networks for each host. During the course of testing the au-

thor discovered an error in the pyAgrum library which leads to incorrectly reported
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decision preferences when two sequential decisions are present. This manifested it-

self when ANDES would correctly identify whether a scanning action or an exploit

action would be more advantageous, but would always select the first exploit from

the available list. Further investigation led the author to discover the network was

being solved properly and no errors existed in the solving algorithm, however pyA-

grum would incorrectly report the exploit decision which led to its calculated MEU.

To accommodate this error, the SME designed a second network whose sole purpose

is to determine which of the available exploits led to the reported MEU, once it had

already been determined an exploit is the most valuable course of action. Using this

network, in combination with the previously shown network, allows ANDES to an-

swer both decision points properly. This secondary network is shown in Figure 8,

but will not be discussed at length since it merely is a minimization of the already

explored network.

Vul2

ED AU

Vul1
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Vul3

CE2 CE3
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CE1

Figure 8: Visual representation of the minimized network used to determine which
exploit action leads to the greatest MEU. Only employed once it has been determined
an exploit action leads to the greatest MEU. Nodes represent same values as in the
original network.
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3.3.4 Solving the Bayesian Decision Network

Once the construction of the network has been completed as described above, the

solving of each network is fairly trivial, as it is enabled by the pyAgrum library. Uti-

lizing the ANDES host objects maintained by the Control Component, the Decision

Component generates a new instance of a Bayesian decision network for each host

object. To solve each network ANDES encodes the current belief state of the host

object into the network. This is accomplished by populating associated evidence e

into the corresponding network variable vc. For example, if a previous scan action

resulted in the finding the host was running Windows Server 2019

f = Win2k19, (23)

the corresponding Operating System (OS) variable would be set to Windows Server

2019

vOS = Win2k19. (24)

Populated evidence propagates throughout the network, producing a Bayesian deci-

sion network representing ANDES current belief state, fused with the outside knowl-

edge encoded into the network structure itself. In this manner the Bayesian decision

network is able to account for both uncertainty of state (missing evidence) and un-

certainty of outcome (actions are not guaranteed to succeed.) The solution algorithm

repeatedly solves the network for every possible combination of the decision variables

until the combination resulting in the greatest MEU is determined.

Once all of the target hosts’ Bayesian decision networks have been evaluated for

their MEUs and associated actions, an additional layer of meta-analysis is conducted.

This additional meta-analysis is a mechanism ANDES employs to account for internal

state conditions outside of the Bayesian decision networks themselves. Utilizing the
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internal state of ANDES, as well as predetermined preferences the Decision Com-

ponent selectively adds or subtracts from the raw MEUs returned by the Bayesian

decision networks. ANDES keeps a record of previously performed action/target

pairs, subtracting from a potential action’s MEU if it represents a repeated action.

The current discount is tuned in such a manner that if a valid exploit fails due to

chance, it should still be selected again. The main goal of this discount is to pre-

vent lines of execution in which ANDES repeats the same unproductive action ad

nauseam. This process also includes an associated check that should all available

actions fall below a set utility threshold, ANDES will terminate execution prior to

objective accomplishment, returning a ‘No Productive Actions Available’ message as

well as the execution chain that led to ANDES current state. Another mechanism

used to modify the raw MEUs is more advanced targeting information and system

user preferences. In the current implementation of ANDES the only positive MEU

modification is one applied to the target’s MEU when the target matches ANDES

defined terminating objective. That is, only when the target is ANDES objective

does it receive a bonus.

These modifications to the raw MEUs returned by the Decision Component rep-

resent a trade-off between Bayesian decision network complexity and post-processing

complexity. The data stored within ANDES internal state could theoretically also

be captured within the ANDES host objects and utilized as inputs into the Bayesian

decision networks. In the case of the MEU bonus given to the target associated with

ANDES’s objective, it can easily be seen how an ANDES host object could capture

whether it was associated with ANDES’s objective. The state of whether the target

was the objective could be represented as a chance variable with binary state options,

easily represented within the Bayesian decision network. If that were the case the

utility function associated with the utility node within the Bayesian decision network
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would capture the value of the state variable and return an MEU relatively higher

than a similar system which is not directly associated with ANDES objective. In

this case the raw MEU would not need to be adjusted by the Decision Component

to account for the objective preference. Without comprehensive testing regarding

computation times it is difficult to know whether increasing complexity within the

Bayesian decision networks is better, or whether having a more complex decision

selection process within the Decision Component is more efficient. In the current

version of ANDES the author chose to reduce Bayesian decision network complexity

and instead increase the complexity of the Decision Component.

Once all post-processing as been accomplished and final MEUs for every target

host have been determined the Decision Component can return the best next action

for ANDES to undertake. From here the Decision Component waits for the next

round of execution to begin, at which point the process will begin anew. Every time

the Decision Component acts it is an isolated event and it maintains no knowledge

about previous decision making cycles. Only the Control Component keeps track

of any type of past or current events. Armed with the decision from the Decision

Component it is now up to the Control Component to determine which subsystem of

the Execution Component will accomplish the task at hand.

3.4 Execution Component

The current version of ANDES contains two separate subsystems that combine to

make up the Execution Component. Each subsystem performs disparate tasks but

combine to enable all the actions ANDES has access to. At a high level the Scanning

Subsystem accomplishes network scanning actions and the Exploitation Subsystem

accomplishes both remote exploitation as well as local information gathering actions.

Both subsystems are initialized during ANDES initialization process and both rely
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upon external software libraries to accomplish their tasks. The following subsections

explore how each subsystem functions as well as their capabilities.

3.4.1 Scanning Subsystem

libnmap parserTarget(s) libnmap host(s)libnmap process
(Nmap) ANDES host(s)libnmap report

Input Outputlibnmap pipeline

Figure 9: The pipeline utilized by the network scanner subsystem to automatically
produce ANDES host objects from target information.

A critical component of all Artificial Intelligence (AI) agents is their ability to

sense their environment [8]. Traditionally in computer networks this corresponds to

enumerating the computer systems within that network. ANDES leverages the libn-

map Python3 library, which implements a Python3 API for the open-source Network

Mapper (Nmap) project [30]. Nmap is a trusted industry standard network scanning

tool, employed throughout the CNE and VA-PT communities. Nmap was selected for

the scanning capability of ANDES due to wide usage, ease of use, and demonstrated

capabilities.

When the Decision Component decides the optimal action is to initiate a scan of a

remote host, the Scanning Subsystem is tasked. The type of scan and the target’s IP

address are given to the subsystem as the sole inputs. Taking the target information,

the subsystem employs the libnmap library to initiate an Nmap scan, storing and

parsing the results as they are returned. The parsed results ultimately produce a

libnmap.host object which contains all the desired information. Information currently

utilized by ANDES is the host’s operating system, open ports and associated services,

and the system’s hostname. Relevant information is captured in a custom ANDES

Host object returned to the Control Component to enable easy access to the rest of

the ANDES system. Figure 9 shows how this process works in practice. ANDES
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typically executes a scan action as its first action when encountering a new target,

as this provides the system with baseline information which informs future decision

making.

ANDES is also able to leverage the capabilities of Nmap and those contained

within the exploit subsystem to enable scanning remote targets via a remote proxy.

When tasked to conduct a scan of a remote target, ANDES will first determine

whether the target has any neighbors. If any neighbors have been identified, those

neighbors are examined to see if any of them have an active connection with an

established proxy implant module. All of these attributes are stored as state variables

within the ANDES host object. If a neighbor exists, which also has an active proxy

connection available, Nmap will conduct the network scan through the proxy tunnel.

The rest of the scanning process is handled as normal and the fact the traffic is

proxied is transparent as far as Nmap is concerned once the scan is initiated. This

enables ANDES to leverage access inside of a target network for improved information

gathering and to bypass certain security measures.

3.4.2 Exploitation Subsystem

To enable exploitation actions ANDES interfaces with a remotely running Metasploit-

4.19.0 RPC server [31] via the Pymetasploit3 Python3 library [32] (the server can be

co-located with the ANDES host or on a networked system reachable by the AN-

DES host). During ANDES’s initialization actions it checks to ensure the Metasploit

RPC server is running, if it is not ANDES will start a local instance of the server.

Once it has confirmed the remote RPC server is running, ANDES creates a persis-

tent RPC client utilizing the Pymetasploit3 library, and establishes a connection to

the Metasploit RPC server. ANDES uses this RPC client to conduct its exploit ac-

tions, utilizing the capabilities inherent to the Metasploit framework. Metasploit is a
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publicly available exploitation framework developed and maintained by Rapid7 that

is an industry standard exploitation tool within the VA-PT community. Metasploit

contains both an exploitation and post-exploitation framework enabling numerous

remote exploitation attacks, payload delivery, and interactions with compromised

systems. Metasploit was chosen as the exploitation capability for these reasons, as

well as ease of use and integration with the Python3 codebase.

ANDES is able to conduct remote exploitation actions, interact with returned

sessions, conduct limited host enumeration activities, and establish proxy pivots on

compromised hosts. The remote exploits selected for inclusion were meant to be

representative of the various types of remote exploit options. One of the available

exploits targets a vulnerable third-party service (Dup Scout Enterprise), one targets

a vulnerable operating system service (SMB) and another targets a weak security

policy (remote root SSH logon) enabling remote brute-force logon attempts to an

SSH server.

When the Decision Component has determined exploitation to be the best action,

the Control Component compiles required targeting information and passes control

to the Exploitation Subsystem. Using the targeting information from the Control

Component, the subsystem begins populating the exploit module. Once the exploit

module is configured with the proper targeting information, in conjunction with the

desired exploit payload, the Exploit Subsystem utilizes the RPC client to request the

listening Metasploit server launch the exploit. The RPC server responds with a status

message, letting the client know if the exploit was successfully launched. This return

message only serves to inform the client whether the exploit was initiated properly,

not whether the exploit itself was successful. Determining whether the exploit was

successful requires a slightly convoluted process. To determine whether an exploit

was successful, the subsystem must capture the state of active Metasploit sessions
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prior to the exploit, then, once the exploit has completed, determine whether a new

active session is present. The subsystem assumes that if a new session is identified,

the new session is the result of the exploit. This highlights one of the main issues

with the Pymetasploit3 library and the Metasploit RPC server.

The Metasploit RPC server is mostly silent when it comes to sending the RPC

client information regarding server status and action results. The RPC server re-

mains silent when an exploit is unsuccessful, a session is lost, or when numerous

other events occur. The main contributing factor to this non-optimal behavior is a

lack of official support for this usage case by Metasploit developers. A more feature

rich RPC server & client is available to Metasploit Pro users, a paid version of the

software. Additionally the Pymetasploit3 library is a community developed open-

source implementation of a Metasploit RPC client and does not fully implement all

of the functionality available even in the free version of the API. For ANDES pur-

poses these limitations can be worked around, but show how a more closely integrated

system would hold advantages when developing a production systems.

In the event a new session has successfully been obtained, ANDES automatically

conducts a host survey to gather additional information about the compromised tar-

get. Currently the survey focuses on querying the host’s ARP table in an effort to

locate potential new targets within the network. As a filtering process any ARP table

entries corresponding to IP addresses outside the target objective’s local network are

ignored.

When a new session is obtained on a remote host, the Metasploit RPC client

creates a session object which contains a handle to the active session which resides

within the RPC server. A reference to this session object is stored in the target’s

ANDES host object, tying the target and session together. This enables the Exploit

Subsystem to interact with active sessions in the future by accessing the targets via
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their associated ANDES host object. The only other post-exploit action currently

available within the Exploit Subsystem is the ability to establish a proxy pivot on the

compromised host. This enables future scanning actions from the Scanning Subsys-

tem, as well as future remote exploits, to be routed through the target’s session in an

attempt to avoid external security measures.

The capabilities described above represent only a portion of the capabilities Metas-

ploit provides. Given the research purposes of ANDES, the author determined this

feature set was robust enough to demonstrate feasibility of the concepts presented

without developing a full feature-rich system that would be required for a production

system. A critical component that has been partially implemented is a robust exploit

execution feedback module. This module is responsible for updating the systems be-

lief state to reflect the real-world result of Metasploit frameworks execution. This is

what allows ANDES to deal with the many possible outcomes associated with con-

ducting a live execution event (exploits can fail, implants can disconnect, services be

crashed,etc.). While ANDES is not an attempt to develop a production system capa-

ble of automated CNE, it should demonstrate how such a system could navigate more

difficult network environments corresponding to a more complex decision landscape.

The capabilities present in ANDES demonstrate the potential success of production

systems employing the same underlying principles.

3.5 Summary

This chapter explored how the three components of ANDES function, as well as

how they come together to accomplish the required portions of CNE events. The dif-

ferences between the system presented here, compared to those presented in Chapter

II should be apparent. The next chapter contains the results of testing the systems

performance in a live-execution event, and how the novel techniques presented here
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combine to produce a working system.
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IV. Results and Analysis

The testing of Automated Network Discovery and Exploitation System (ANDES)

was performed with the sole objective of proving the viability behind the principles

and concepts employed. This qualitative approach of evaluation is in contrast to

performance metrics presented in previous works. This is in line with the avenues

for potential research directions within [4] who advocates that systems should both

move towards live-execution testing and a more qualitative approach of assessing the

systems performance regarding the benefits of the system.

Evaluating a system based upon its capability to quickly process large target

networks is only valuable as long as systems exist that can not meet the threshold

of being usable in the real world due to computational constraints. Once it can be

assumed that presented systems are capable of handling real world environments,

it is then much more valuable to assess how useful is the automation system at

accomplishing its objectives in the Vulnerability-Assessment and Penetration Testing

(VA-PT) / Computer Network Exploitation (CNE) domains. To this end ANDES

is evaluated not on whether it meets any quantitative performance metrics such as

execution time or computational complexity, but instead is evaluated on whether it

could feasibly provide value to an operator wishing to automate CNE tasks to help

alleviate resource shortages.

Results provided here are not meant to prove the commercial viability of ANDES

as the system currently stands or even that ANDES itself represents an optimal

solution. To accomplish this goal two stages of testing were performed, the first stage

of decision network testing was conducted to show the correctness of the underlying

Bayesian decision network. The second stage of testing, System Performance Testing

demonstrates the ability of ANDES to accomplish Computer Network Exploitation

(CNE) goals. As a final note regarding all testing performed, because of stated
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objectives, the correctness of performance results is entirely subjective to the author’s

intents for the system. ANDES is designed to capture a Subject Matter Expert’s SME

knowledge and utilize it in unknown environments to reproduce their decision making

process and skills. Given these factors the metric ANDES is held to is whether, when

presented with the same domain knowledge, ANDES makes the same choices as the

SME whose knowledge was encoded into the system. By meeting this criteria, the

system demonstrates its potential capability to augment the SME operator during

normal VA-PT / CNE events, providing a force multiplying effect.

4.1 Decision Network Testing

The first test evaluates the Bayesian decision network’s ability to capture the CNE

domain, as well as incorporate SME knowledge and preferences. UnBBayes was used

to compile the developed network and introduce various iterations of evidence into

the network. Network performance validation consists of ensuring the network makes

the same decisions as a SME when given the same evidence. Once this validation

of the Bayesian decision network was confirmed, testing could be moved within the

ANDES framework to ensure the network was reproduced properly. This stage of

testing corresponds to the research objective of developing and evaluating a Bayesian

decision network which represents the CNE domain and incorporates SME knowledge

and preferences.

4.1.1 Decision Network Testing Methodology

Once the Bayesian decision network design was finalized in UnBBayes, testing was

performed to ensure the network’s output matched expected decisions when provided

selected inputs.The process of testing each network begins by populating observed

chance variables with select findings, propagating observed evidence throughout the
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rest of the network, and solving for the network’s maximum expected utility. Figure

10 shows the Bayesian decision network with no populated findings. To interpret

these images, the chance variables with populated evidence are shown in grey, while

unobserved variables are shown in yellow. The utility values, shown within the bold

black rectangles, represent the expected utility associated with the corresponding

decision choice. The highest expected utility value for each network represents the

action with the greatest expected utility for the populated evidence. These results

were used to confirm the network was selecting the expected decision actions for the

input evidence. This process was repeated for numerous combinations of findings

representing potential configurations of hosts ANDES might encounter during execu-

tion. If the network returned an unexpected result the network’s utility function and

contingent chance variables conditional probability tables could be adjusted as nec-

essary by the subject matter expert. Additional screen captures showing the testing

of various combinations of Bayesian decision network configurations are contained in

Appendix A.

Once the network was confirmed to be behaving as expected, testing was moved

into the ANDES framework. Within ANDES this same process was repeated utilizing

the pyAgrum library and the getMEU function. Evidence was manually generated

and populated into a test network, the network was then compiled and solved us-

ing the getMEU function which returns the network’s Maximum Expected Utility

(MEU) and associated decisions, given a provided evidence state. Generated val-

ues were compared to those received from the UnBBayes software to confirm the

designed network was properly reproduced. The expected utility values associated

within decision choices are irrelevant in the absolute sense, these values have no set

scale or outside values to compare them to. The values of the expected utilities will

vary greatly depending on the utility function produced by the network’s author.
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Figure 10: This network shows the Bayesian decision network with no populated
findings. This test confirmed the network was structurally sound and could be com-
piled. All required components of network construction were completed and variable
Conditional Probability Table (CBT)s were filled in.

The usefulness of the expected utility function is that it allows the network to deter-

mine what decisions lead to the maximum value among all decision choices, given the

current evidence.

4.1.2 Decision Network Testing Results

The final results of the decision network testing confirmed the networks functioned

as expected. It should be noted decision network testing was performed throughout

the Bayesian decision network development process, the results of which were used

to adjust chance variable probability tables and utility function values. Certain un-

expected results were observed during this initial development stage, but values were

adjusted accordingly until the network output actions that aligned with the SME

selections.
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One critical thing was discovered during the pyAgrum portion of functionality

testing. This testing discovered the reporting error present in the getMEU function

of pyAgrum referenced in Chapter III. This error causes the incorrect decision choice

to be reported as the optimal choice associated with the network’s maximum expected

utility (MEU). This error led to the development of a secondary Bayesian decision

network. This second network is utilized for determining which exploitation action

was associated with the network’s MEU. This current method, while non-optimal,

allowed the pyAgrum model to achieve the correct results as had been seen in the

UnBBayes model.

4.2 System Performance Testing

Once validation of the Bayesian decision network’s capability to produce proper

action choices was completed, testing was performed on the entirety of the ANDES

system. This stage of testing corresponds fulfills the research objectives to test the

entire developed system within a live-execution environment. Testing consisted of

repeatedly running ANDES through increasingly complex CNE scenarios and observ-

ing the outcomes. Tests were considered successful if ANDES completed the scenario

successfully multiple times(reached objective state), while simultaneously making de-

cisions deemed rational by a SME. Measured criteria are qualitative in nature and

leave future quantitative measures to be performed on a more production representa-

tive system. All performance testing was completed in a virtual environment designed

to emulate a real-world target network. Details of the testing environment are shown

in the following subsection.
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Figure 11: A visual representation of the target network developed for ANDES test-
ing. The dotted line represents the Firewall rule which only allows access to the
FileServer system from the User system.

4.2.1 System Performance Testing Environment

Figure 11 shows the virtual testing environment used to safely conduct live-

execution tests of ANDES. The network is a simplified network meant to mimic

an environment an attacker might encounter in a small business network. The net-

work consists of four possible targets, each with a unique configuration. The network

contains:

• Two user machines running Windows 7 corresponding to employee workstations.

• Machine running Windows Server 2019 and acting as the Windows Domain

Controller and internal DNS Server.

• Ubuntu host serving as a file server, utilized by the business to store company

data.

Every system has been configured to be vulnerable to at least one of the exploits

58



available to ANDES with the exception of the WinServer. The WinServer system

is running a vulnerable service, however the advanced protections included in the

Windows Server 2019 Operating System prevent the service from being successfully

exploited. This system serves to show how ANDES reacts to non-vulnerable hosts.

Table 1 provides an overview of each system’s configuration and potentially ex-

ploitable software. One important thing to note is that the FileServer system is

running a host-based firewall which drops all traffic that does not originate from the

User system. This means the User system is the only host capable of reaching the

FileServer. Additionally only the User system knows about the existence of the

FileServer (disregarding the internal virtual networking switch). The entire virtual

environment was hosted on an instance of VMware Workstation 16 Pro.

Table 1: Target Network Host Configurations

Name Operating System OS Version Relevant Software

EntryPoint Windows 7 SP 1 - Build 7601 Dup Scout Enterprise v10.0.18

Attack Platform Kali Linux Kali-Rolling 2020.3
Pymetasploit3 3-1.0.3
libnmap 0.7.0
pyAgrum 0.18.2

WinServer Win Server 2019 Build 17763 Dup Scout Enterprise v10.0.18

User Windows 7 SP 1 - Build 7601

FileServer Ubuntu 20.10 openssh server 1.8.3p1-1

4.2.2 System Performance Testing Methodology

A series of tests were performed on ANDES in an attempt to validate the devel-

oped capabilities, each test was repeated multiple times to confirm system consistency.

Each test focused on validating capabilities critical towards enabling automated Com-

puter Network Exploitation (CNE). The culminating test combined all previous ob-

jectives to create a scenario designed to mimic a simplified real-world problem a CNE

operator might face. ANDES was tasked to traverse the target network in search of
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the FileServer system, enabling future data exfiltration from the target. The re-

sults from one execution of that final scenario are presented here, as this test covered

all five test objectives. Individual testing was performed to validate objectives one

through four prior to the culminating event, however those results are subsumed by

the results presented here. Results of individual tests can be found in Appendix B.

• Objective 1 - Exploit Functionality Testing

– Objective 1a: Validate functionality of Dup Scout Enterprise - ’Login’

Buffer Overflow.

– Objective 1b: Validate functionality of MS17-010 EternalBlue SMB Re-

mote Windows Kernel Pool Corruption.

– Objective 1c: Validate functionality of SSH Brute-Force Login Scanner.

• Objective 2 - Host / Information Discovery: Validate ANDES is able to acquire

new targets during execution from information gained during execution within

the network.

• Objective 3 - Dealing with Failure: Validate ANDES is able to account for

unsuccessful action outcomes and adapt accordingly.

• Objective 4 - Bypassing Security Measures (pivoting): Validate ANDES is able

to bypass restricted network connectivity, in this case a host-based firewall.

• Objective 5 - Full Attack Chain: Validate ANDES is able to combine all of the

previous objectives to traverse through the target network and compromise the

objective system.
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4.2.3 System Performance Testing Results

Table 2 shows the entire series of actions ANDES performed during an instance

of the culminating test. The final column includes references to when each objective,

as defined previously, was achieved during execution. During initiation of the test

event ANDES was provided with only two pieces of information, the IP Address of

the EntryPoint host and the IP Address of the FileServer as the objective target.

Table 2: System Performance Test Results
# Action Target Results Comments & Objective Demonstrated
1 Scan EntryPoint Success Initial Target
2 Exploit1 EntryPoint Success Dup Scout BOF - Obj 1a
2.1 HostSurvey EntryPoint Success Added WinServer, User to targets- Obj 2
3 Scan WinServer Success
4 Exploit1 WinServer Failure Dup Scout BOF - Obj 3
5 Scan User Success
6 Exploit2 User Success EternalBlue - Obj 1b

6.1 HostSurvey User Success
Added FileServer to targets- Obj 2
Found Target Objective

7 Pivot User Success Added pivot to internal network through ‘User’
8 Scan FileServer Success Scan conducted through pivot - Obj 4
9 Exploit3 FileServer Failure Attack conducted through pivot - Obj 4, Obj 3
10 Exploit3 FileServer Failure Attack conducted through pivot - Obj 4, Obj 3

11 Exploit3 FileServer Success
SSH Brute Force - Obj 1c.
Target Objective Reached

12 Shutdown N/A Success Performed clean-up actions

As expected ANDES chose to begin execution by conducting a remote network

scan of the initial target (1). From here ANDES detected the EntryPoint host

was running the vulnerable Dup Scout Enterprise service, as well as being potentially

vulnerable to the EternalBlue exploit. The SME knowledge captured within ANDES’s

Bayesian decision network led ANDES to chose to attempt to remotely exploit the

Dup Scout Enterprise service as it had a higher chance of success (2). The action

was successful and ANDES gained access to the EntryPoint host. When ANDES

gains access to a host it conducts a host survey in an attempt to discover additional

targets, ultimately hoping to find a route to the objective host (2.1). This host
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survey resulted in ANDES discovering the EntryPoint host had connectivity to the

WinServer host and the User host, both of which were then added into ANDES

target network. The next action selected was to perform a remote network scan

of the WinServer host (3). Given the fact ANDES did not have any additional

information besides the hosts’ IP Addresses at the time, and neither host was an

objective, selecting to scan either of the two new targets represents a reasonable

decision. From the scan ANDES determined the WinServer host was also running

the vulnerable Dup Scout Enterprise service. Armed with this information, and still

having no additional information about the User host, ANDES decision to attempt

to exploit the WinServer is rational (4). As expected given the WinServer host’s

operating system protections the exploit was unsuccessful, which resulted in ANDES

detecting action failure. Following this unsuccessful exploit attempt, and lacking

any additional vulnerabilities on the WinServer host, ANDES decided to scan the

User host (5). Without knowledge of any differentiating value between the two

targets ANDES does not have access to, the decision to scan the alternative after

unsuccessfully exploiting the WinServer host is rational. This scan revealed to

ANDES the User host may be susceptible to the EternalBlue exploit. Armed with

that information ANDES then decided to attempt to exploit the User host (6).

The EternalBlue exploit was successful and ANDES gained access to the User host,

after which it conducted the standard host survey (6.1). This host survey reveals

that the User host has connectivity to the WinServer host, ANDES’s objective

host. Additionally, the access afforded by the EternalBlue exploit is sufficient to

allow ANDES to establish a Pivot on the host. Armed with the information from

the host survey, ANDES proceeds to create a pivot which will forward traffic to the

User host’s neighbors (7), in this case the FileServer host. Having located the

objective host ANDES selects to perform a remote network scan of the FileServer
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target (8), which will be sent through the pivot established on the User host. This

scan revealed the fact that the SSH service is reachable on the FileServer from

the User host. Armed with this information ANDES then proceeded to choose to

launch an SSH Brute Force attack against the FileServer, which will once again be

forwarded through the User host pivot. The first two attempts at this exploit fail

(9+10). ANDES continues to attempt this exploit until it is eventually successful

on the third attempt (11). ANDES has now reached the desired objective host and

without further objectives will proceed to gracefully shutdown, including terminating

all active connections with compromised hosts (12).

An item to note is ANDES’s willingness to repeat attempts at exploiting the File-

Server host following previous failed attempts. This is in contrast to the previously

failed exploit against the WinServer host, after which ANDES proceeded to pursue

a different action. This version of ANDES highly favors taking actions against the

objective host, which led to ANDES attempting the exploit multiple times before it

would eventually discount the action enough to pursue alternative options. It should

be noted that a brute force logon attempt is not normally an exploit that is commonly

repeated, but in this virtual environment, coupled with the behavior of the Metasploit

SSH Login Scanner through a proxy, this attack routinely will eventually work after

previously failed attempts.

4.3 Analysis

From a test perspective the results are extremely positive. ANDES was able to

demonstrate all five test criteria being accomplished, which in turn shows ANDES’s

functional capabilities. Examining more closely the decisions ANDES made reveals no

obviously incorrect or irrational decisions. When accomplishing the same test during

target range validation, the human SME took nearly an identical route through the
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network only deviating when ANDES chose to scan the WinServer host prior to

the User host. In this case the human SME knew the User host was the proper

path to the FileServer, knowledge unknown to ANDES during execution. With the

functional capabilities of ANDES confirmed it is important to consider whether this

test is sufficient to accomplish ANDES designated purpose.

Remembering the the hypothesis of this thesis is to determine the feasibility of

utilizing Bayesian decision networks along with iterative execution cycles to enable

automated Computer Network Exploitation (CNE), results must need to be viewed

through this lens. ANDES was able to successfully operate in an unknown network,

chaining together numerous information gathering and various exploitation actions,

ultimately achieving access to an objective host. The environment itself was obviously

simplified with only four target hosts, and three different remote exploit actions to

be chosen, but it still demonstrated the goals ANDES was developed to fulfill. First,

it demonstrated ANDES was able to successfully represent the CNE domain, and

leverage captured SME knowledge to make reasonable decisions. Second, it demon-

strated ANDES capability to operate within a live-execution environment, to include

accounting for domain uncertainty and non-deterministic actions. Finally, it demon-

strated how multiple rounds of iterative execution, guided by proper a utility function,

can accomplish a multi-step objective. These facts demonstrate how the usage of the

principles introduced by ANDES combine to create a system with the capacity to

successfully augment human CNE operators.
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V. Conclusions

The Automated Network Discovery and Exploitation System (ANDES) repre-

sents a shift in the fundamental design philosophy towards automated Vulnerability-

Assessment and Penetration Testing (VA-PT) and Computer Network Exploitation

(CNE) systems. Examining the previous body of work reveals only one true attempt

at creating a system capable of conducting live execution events in [12].

The introduction of representing each host within a target network as Bayesian

decision networks addresses previous issues with computational complexity as the

target network size grows. This choice, along with chaining together isolated decision

points, allows ANDES to mimic the decision making process employed by human

Subject Matter Experts Subject Matter Expert (SME) when conducting VA-PT /

CNE events. The five steps of the VA-PT process [9] ANDES automates are:

• Intelligence Gathering

• Threat Modeling

• Vulnerability Analysis

• Exploitation

• Post Exploitation

Based on the results demonstrated in Chapter IV it is the author’s belief ANDES

has successfully proved the hypothesis that using Bayesian decision networks to cap-

ture the CNE domain and Subject Matter Expert (SME) knowledge, combined with

an iterative execution cycle, allows for functional automated CNE systems capable

of augmenting human operators. The author also believes the proposed method of

performing multiple rounds of execution, each of which builds upon the knowledge
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gained from previous actions and observations of the agents domain, is critical in

producing systems capable of autonomously operating within the CNE domain.

The current body of research exploring automated CNE / VA-PT is sparse com-

pared to most other areas of computer security research. It is the author’s hope this

work encourages additional research in the field, ultimately helping to bring about

production systems capable of augmenting the highly skilled workforce that is in

such demand today. The final section presents several such areas of potential future

research.

5.1 Future Work

In ANDES’s current state, it contains the minimum functionality required to con-

duct automated CNE events. It serves the purpose of demonstrating the concepts

introduced in this research but should not be taken as the foundation for any produc-

tion system. Presented here are several additional avenues of research that build upon

the ideas presented here and which the author believes would be valuable additions

to the body of research.

5.1.1 Unified Automated CNE System

While ANDES as a system is quite limited in its potential applications, the de-

velopment of a more robust system utilizing the same underlying principles seems

reasonable and valuable. The most important area of additional development would

be a concerted effort to produce a robust and complex Bayesian decision network

which captures vast amounts of SME and domain knowledge. Development of such

a network however is limited by information availability. The Bayesian decision net-

work can only consider domain elements that are at least partially observable to the

CNE system and chosen actions must be reasonably executed by the system. ANDES
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reliance upon external libraries and tools greatly aided in the ease of development,

but also severely limited options available to ANDES. The development of a unified

system with robust information gathering capabilities allows for a more complicated

Bayesian decision network with a greater number of observed chance variables. This

translates into allowing SMEs a greater capability to introduce more knowledge into

the system, which ultimately results in a much more refined and nuanced decision

making process.

5.1.2 Probabilistic Evidence

Another valuable extension to the existing Bayesian decision network models

would be the utilization of more of the probabilistic capabilities of observed chance

variables. Currently when ANDES populates decision networks with observed evi-

dence it does so in a binary fashion. Either ANDES observed a chance variable state

or it did not, it currently will not utilize probabilistic evidence (i.e., 60% chance of

being a Windows 7 host.) It should be noted however when evidence is not populated

for a given chance node it maintains the originally populated probability, derived from

it’s Conditional Probability Table (CBT).

5.1.3 Machine Learning

Another potential area of future research would be to combine the field of learn-

ing models with ANDES’s method of Bayesian decision networks. Currently, chance

variable probabilities are determined during network construction by the SMEs and

remain consistent throughout execution. In this case if environmental factors change,

which impact previously observed probabilities, the network would need to be man-

ually adjusted by the SME. One such example is a software developer releasing a

patch for a vulnerable version of their software. Previously the associated exploit
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could have had an 80% chance of success, but after the patch the probability of suc-

cess would dwindle as the patch is distributed across the software user-base. In this

case the Bayesian decision network developer would have to manually adjust the asso-

ciated chance variables’ probabilities. Instead of this manual process, a system which

observed and stored action outcomes corresponding to domain beliefs could automati-

cally update chance variable probabilities. An additional benefit of this type of system

would be to eliminate much of the burden of developing an initial Bayesian decision

network from the SME. Instead of the SME populating all chance variables’ associ-

ated CBTs, they could be generated through an initial learning process conducted in

a training environment. The system could be exposed to a training environment and

run through scenarios again and again while observing action outcomes, updating

applicable CBTs.

5.1.4 Post-Exploitation Capabilities

Currently ANDES only is capable of very limited post-exploitation actions, greatly

limiting ANDES capacity to achieve most real-world desirable objectives. The addi-

tional of a comprehensive post-exploitation component would allow ANDES to accom-

plish objectives associated with normal CNE campaigns, as well as gather additional

information to help inform future decision making processes. This area of exploration

is less-so an area for future research and much more a development that must take

place before any automated system would be useful for real-world applications.
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Appendix A. Bayesian Decision Network Test Results

This appendix includes screen captures of the Bayesian decision network testing

that was performed via UnBBayes. Each figure represents a network presented with

different findings and shows the maximum expected utility for each decision choice.

The significance of each example is included in the figures caption.

Figure 12: This network shows the results of testing a network configuration which
represents an ANDES host which has just been discovered by conduction a host
survey of a compromised target. The evidence e = {OS = Unknown, Scan =
None,Neighbor = True,Access = False, TN = True} is populated and propa-
gated throughout the network. Given ANDES lack of knowledge about the system,
you can see the expected utility (EU) for an exploit action against the host is -67.9,
while a scanning action has an EU of 83.75. If this host is selected as ANDES next
target it would conduct a scanning action which aligns with subject matter expert
(SME) behavior.
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Figure 13: This network shows the results of testing the network configuration
corresponding to ANDES scanning a target host and discovering a vulnerabil-
ity which the system has the potential capability to exploit. The evidence e =
{OS = Win10, Scan = Unfiltered,Neighbor = False, Access = False, TN =
True, V ul1 = True, V ul2 = False, V ul3 = False} is populated and propagated
throughout the network. Given the level of information ANDES has captured about
the host, and the host resides in the same target network as the objective host, a
SME would choose to conduct the Exploit 1 action against. The decision network
came to this same conclusion, the MEU for the AD decision node (100) corresponds
to Exploit and the ED decision node MEU (100) corresponds with Exploit1.
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Figure 14: This network shows the results of testing the network configuration
corresponding to ANDES scanning a target host and discovering a potential vul-
nerability, but due to captured SME knowledge it recognizes the potential exploit
is incompatible with the observed Operating System (OS). ANDES also has rea-
son to believe the scan results were filtered by a security device. The evidence
e = {OS = Win10, Scan = Filtered,Neighbor = False, Access = False, TN =
True, V ul1 = False, V ul2 = True, V ul3 = False} is populated and propagated
throughout the network. The SME evaluation says given the available information,
taking an exploit action against the system seems unwise. A scanning action has
the potential to discover additional information that ANDES could use for additional
targeting, however pursing a different target might be more fruitful. The decision
network came to this same conclusion, as can be seen by the relatively smaller EU
values of the exploit (61.75) and scan (66.25) actions compared to previous network
tests.
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Appendix B. Detailed System Performance Test Results

Prior to the culminating testing event presented in Chapter IV, smaller individual

tests were performed on the ANDES system within the virtual range environment.

The results of these tests served to validate the functionality of the ANDES system

as well as help tune the Bayesian decision network behavior. These tests helped

identify any Component failures prior to the culminating test. The results of the

final individual tests are presented here in the same table format used in Chapter IV.

Table 3: Exploit 1 Validation Test Results
# Action Target Outcome
1 Scan User Nmap Scan Report
2 Exploit1 User Meterpreter Session
3 Shutdown N/A ANDES Shutdown

Table 4: Exploit 2 Validation Test Results
# Action Target Outcome
1 Scan FileServer Nmap Scan Report
2 Exploit3 FileServer SSH Session
3 Shutdown N/A ANDES Shutdown

Table 5: Exploit 3 Validation Test Results
# Action Target Outcome
1 Scan EntryPoint Nmap Scan Report
2 Exploit1 EntryPoint TCP Shell Session
3 Shutdown N/A ANDES Shutdown

Table 6: Host Discovery (Information Gain) Test Results
# Action Target Results Comments
1 Scan User Success
2 Exploit2 User Success EternalBlue
2.1 HostSurvey User Success Added FileServer to targets
3 Pivot User Success Added pivot to internal network through ‘User’
4 Scan FileServer Success Scan conducted through pivot
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Table 7: Dealing With Failure Test Results
# Action Target Results Comments
1 Scan EntryPoint Success Initial Target
2 Exploit1 EntryPoint Success Dup Scout BOF
2.1 HostSurvey EntryPoint Success Added WinServer, User to targets
3 Scan WinServer Success
4 Exploit1 WinServer Failure Dup Scout BOF
5 Scan User Success

Table 8: Pivoting Test Results
# Action Target Results Comments
1 Scan User Success
2 Exploit2 User Success EternalBlue
2.1 HostSurvey User Success Added FileServer to targets
3 Pivot User Success Added pivot to internal network through ‘User’
4 Scan FileServer Success Scan conducted through pivot
5 Exploit3 FileServer Success Attack conducted through pivot
6 Shutdown N/A Success Performed clean-up actions
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Appendix C. Software Dependencies and Install Instructions

Due to pre-installation of software packages and configuration of services the au-

thor recommends running ANDES on a Kali Linux system.

3.1 Software Dependencies

• Python3

• Metasploit Framework

• Nmap Framework

3.2 Python3 Library Dependencies

• libnmap 0.7.0 or newer

• pyAgrum 0.18.2 or newer

• pysploit3 3-1.0.3 or newer

3.3 Installation Instructions

ANDES consists of various Python3 files which must all be available to the

Python3 environment when running the system. On the first execution of ANDES

run the following command:

sudo -E python3 ANDES.py -i -s <Metasploit RPC Server IP Address>

This will attempt to install any missing required Python3 libraries as well as attempt

to create a local DNS record utilized by the ANDES system.
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3.4 Execution Instructions

ANDES requires root privileges to execute properly, because of this it is recom-

mended to run ANDES via the sudo command. To initiate execution of ANDES

the user must provide a starting target -t and an objective host -o. The command

execution will look as follows:

sudo -E python3 ANDES.py -t <Target Host IP Address> \\

-o <Objective Host IP Address>
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Find Optimal Attack Paths in Nondeterministic Scenarios General Terms Secu-

rity. 2011.

13. Alaa T. Al Ghazo, Mariam Ibrahim, Hao Ren, and Ratnesh Kumar. A2g2v: Auto-

matic attack graph generation and visualization and its applications to computer

and scada networks. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, pages 1–11, 5 2019.

14. L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian. Computer-attack graph

generation tool. volume 2, pages 307–321. Institute of Electrical and Electronics

Engineers Inc., 2001.

15. Sudip LP Saha Bloomberg, Anil S Kumar Vullikanti, Mahantesh Halappanavar,

Sudip Saha, and Samrat Chatterjee. Identifying vulnerabilities and hardening

attack graphs for networked systems. Conference: 2016 IEEE Symposium on

Technologies for Homeland Security (HST), 2016.

16. Cynthia Phillips and Laura Painton Swiler. A graph-based system for network-

vulnerabilty analysis. ACM Proceedings, pages 1–79, 1998.

17. Lingyu Wang, Tania Islam, Tao Long, Anoop Singhal, and Sushil Jajodia. An

attack graph-based probabilistic security metric. IFIP Annual Conference on

Data and Applications Security and Privacy, 2008.

18. Anoop Singhal and Xinming Ou. Security risk analysis of enterprise networks

using probabilistic attack graphs. 2017.

77



19. Ni Gao, Yiyue He, and Beilei Ling. Exploring attack graphs for security risk

assessment: A probabilistic approach. Wuhan University Journal of Natural

Sciences, 23:171–177, 4 2018.

20. Ben Thorne. Using attack graphs to understand vulnerabilities. 2018.

21. Mohamed C. Ghanem and Thomas M. Chen. Reinforcement learning for efficient

network penetration testing. Information (Switzerland), 11, 1 2020.

22. Mohamed C. Ghanem and Thomas M. Chen. Reinforcement learning for intelli-

gent penetration testing. 2019.

23. Jorge Lucangeli Obes, Carlos Sarraute, and Gerardo Richarte. Attack planning

in the real world. SecArt’2010 at AAAI 2010, 2010.

24. Jorg Hoffman. Metric-ff.

25. Core Security. Core impact’s rapid penetration tests.

26. Izhar Matzkevich and Bruce Abramson. Decision analytic networks in artificial

intelligence, 1995.

27. Carmen Lacave, Manuel Luque, and Francisco Javier Dı́ez. Explanation of

bayesian networks and influence diagrams in elvira. IEEE Transactions on Sys-

tems, Man, and Cybernetics, 2007.

28. Unbbayes, 2020.

29. agrum/pyagrum.

30. Gordon Lyon. Nmap.

31. Metasploit.

32. Dan McInerney. Pymetasploit3, 2020.

78



Acronyms

AI Artificial Intelligence. 7, 8, 47

ANDES Automated Network Discovery and Exploitation System. 2, 4, 7, 27, 53,

65

API Application Programming Interface. 47

ARP Address Resolution Protocol. 50

BOF Buffer Overflow. 61

CBT Conditional Probability Table. viii, 19, 56, 67

CNE Computer Network Exploitation. 1, 4, 8, 27, 53, 65

CSP Constraint Satisfaction Problem. 10

D4M Deny, Degrade, Disrupt, Destroy, or Manipulate. 30

DAG Directed Acyclic Graph. 17

DNS Domain Name System. 58

DoD Department of Defense. 1

EU Expected Utility. 23

GUI Graphical User Interface. 38

MDP Markov Decision Process. 2

MEU Maximum Expected Utility. 24, 33, 55

79



ML Machine Learning. 8

Nmap Network Mapper. 47

OS Operating System. 44

PDDL Planning Domain Definition Language. 2

POMDP Partially Observable Markov Decision Process. 2, 12, 35

RL Reinforcement Learning. 13

RPC Remote Procedure Call. 48

RPT Rapid Penetration Test. 15

SME Subject Matter Expert. 3, 5, 8, 28, 54, 65

TCP/IP Transmission Control Protocol / Internet Protocol. 29

VA-PT Vulnerability-Assessment and Penetration Testing. 2, 7, 53, 65

80



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

03–02–2021 Master’s Thesis Sept 2019 — Mar 2021

Automated Network Exploitation
Utilizing Bayesian Decision Networks

Graeme M. Roberts

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-21-M-076

Air Force Research Laboratory
Information Exploitation and Operations Division
525 Brooks Rd Rome Lab
AFB NY 13441
COMM 315-330-2575
Email: Chad.Heitzenrater@us.af.mil

AFRL/RIG

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Computer Network Exploitation (CNE) is the process of using tactics and techniques to penetrate computer systems and
networks in order to achieve desired effects. It is currently a manual process requiring significant experience and time
that are in limited supply. This thesis presents the Automated Network Discovery and Exploitation System (ANDES)
which demonstrates that it is feasible to automate the CNE process. The uniqueness of ANDES is the use of Bayesian
decision networks to represent the CNE domain and subject matter expert knowledge. ANDES conducts multiple
execution cycles, which build upon previous action results. Cycles begin by modeling the current belief state using
Bayesian decision networks. ANDES uses these networks to select and execute an expected best action. Observed results
are used to update the systems current belief state before the next cycle begins. ANDES was tested in a live-execution
event, taking place within a virtual network environment. ANDES successfully performed a series of information
gathering and remote exploit actions, across multiple network hosts to gain access to the target.

Cyberspace Network Exploitation, Vulnerability Assessment, Penetration Testing, Artificial Intelligence, Bayesian
Decision Networks, Influence Diagrams, Automation, Autonomous Agent, Automated Decision Making

U U U UU 93

Dr. Gilbert Peterson, AFIT/ENG

(937) 255-6565, ext 4281; Gilbert.Peterson@afit.edu


	Automated Network Exploitation Utilizing Bayesian Decision Networks
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Existing Systems

	Research Objectives
	Methodology
	Overview of System Assumptions
	Results
	Overview

	Concepts and Background
	Vulnerability Assessment and Penetration Testing (VA-PT)
	Attempts at Automation
	Classical Planning
	Probabilistic Planning
	Machine Learning

	Real-World Execution
	Bayesian Decision Networks
	Formal Description of Bayesian Decision Networks
	Bayesian Decision Network Example
	Example Network

	Limitations of Previous Systems
	Summary

	Methodology
	Purpose and Goals of ANDES
	Assumptions and Limitations

	Control Component
	Domain Representation
	Populating and Updating Target Network
	Execution Cycle
	Execution Cycle Advantages

	Decision Component
	Bayesian Decision Network Overview
	Bayesian Decision Network Construction
	Bayesian Decision Network Formal Description
	Solving the Bayesian Decision Network

	Execution Component
	Scanning Subsystem
	Exploitation Subsystem

	Summary

	Results and Analysis
	Decision Network Testing
	Decision Network Testing Methodology
	Decision Network Testing Results

	System Performance Testing
	System Performance Testing Environment
	System Performance Testing Methodology
	System Performance Testing Results

	Analysis

	Conclusions
	Future Work
	Unified Automated CNE System
	Probabilistic Evidence
	Machine Learning
	Post-Exploitation Capabilities


	Bayesian Decision Network Test Results
	Detailed System Performance Test Results
	Software Dependencies and Install Instructions
	Software Dependencies
	Python3 Library Dependencies
	Installation Instructions
	Execution Instructions

	Bibliography
	Acronyms

