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Abstract 

The Space domain is becoming increasingly more important with each 

passing year.  For decades, object detection in space has been done so by some 

organizations using a simple algorithm, the point detector.  This detection 

algorithm is used more so to reduce the amount of false positive images of 

expected space objects collected. 

Since the point detector was created, other detection algorithms have been 

created that increase the probability of detection, while still keeping the same 

probability of false alarm.  The main difference between the point detector 

and other detection algorithms is that the point detector does not need to 

know the point-spread function (PSF) of the object it is looking for.  

The matched filter correlator (MFC) detector has been used in many 

studies, and is reliant on prior knowledge of the PSF.  This has been an issue 

in cases where the PSF information is potentially inaccurate or unknown.   

This thesis utilizes MFC detector in a manner that it has never been used 

before, along with a new detection algorithm, the Pearson’s correlation 

coefficient (PCC) detector, in order to estimate Fried’s Seeing Parameter (r0) 

for a captured image  

This new method of estimating r0 could yield higher probability of 

detection rates among certain space objects with little or no prior knowledge 

about the space object in question.   
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ENHANCED SPACE OBJECT DETECTION WITHOUT PRIOR 

KNOWLEDGE OF THE POINT SPREAD FUNCTION 

 

I.  Introduction 

The Space domain is becoming increasingly more important with each 

passing year.  For decades, object detection in space by some organizations 

has been done so using the point detector.  This detection algorithm is used 

more so to reduce the amount of false positive images of space objects 

collected, also known as a false alarm.  However, by reducing the probability 

of false alarm, the probability of detection for certain objects, especially those 

that are fainter, are reduced greatly.  Because one goal of the space 

community is to continually get better at detecting space objects, this 

algorithm has very limited uses. 

Since the point detector was created, other detection algorithms have been 

created that increase the probability of detection, while still keeping the same 

probability of false alarm.  The main difference between the point detector 

and other detection algorithms is that the point detector does not need to 

know the point-spread function (PSF) of the object it is looking for.  But what 

if the other detection algorithms did not require prior knowledge of the PSF 

either?  The matched filter correlator (MFC detector) detector has been used 

in many studies, but is reliant on prior knowledge of the PSF.  This has been 



an issue in cases where the PSF information is potentially inaccurate or 

unknown.   

With space domain awareness (SDA) becoming increasingly more 

important, detection algorithms must continue to improve if America’s new 

United States Space Force (USSF) plans to dominate the space domain.  This 

improvement in detection can be accomplished through a creation of new 

detection algorithms, by enhancing current detection techniques, or by 

utilizing already established algorithms through different means than what 

they were intended to be used for to achieve a desired result.  

 

1.1  Motivation 

Robust and reliable operations in the space domain are increasingly 

important to the United States (U.S.).  According to the 2011 U.S. National 

Security Space Strategy, “Space is vital to U.S. national security and our 

ability to understand emerging threats, project power globally, conduct 

operations, support diplomatic efforts, and enable global economic viability.” 

[1].  The U.S. National Space Policy also expressed the importance to develop 

technologies to “detect, identify, and attribute actions in space that are 

contrary to responsible use and the long-term sustainability of the space 

environment” [2].  Finally, the U.S. Congress mandated that the National 

Aeronautics and Space Administration (NASA) coordinate with the 



Department of Defense (DoD) and all other organizations to catalogue 90% of 

all asteroids and comets larger than 140m that are in a trajectory close to 

earth by the year 2020 [3].  With such a massive importance put on detecting 

objects in space, any research that can make gains in this area is valuable to 

the U.S.   

This thesis will be focused on estimating Fried’s Seeing Parameter (r0) for 

an image with no prior knowledge of the PSF.  Three different detection 

algorithms will be thoroughly explored, the point detector, the MFC detector, 

and a newly created Pearson’s correlation coefficient (PCC detector) detector.  

The point detector has been used to conduct space object (SO) detection for 

decades among many in the space community.  However, in order to reduce 

the probability of false alarm to an acceptable level, the probability of 

detection is also reduced, which leads to imaging systems missing some of the 

dimmer or smaller SO.  

In recent years, new detection algorithms, such as the MFC detector, have 

been created in order to increase the probability of detection while 

maintaining the same probability of false alarm.  When comparing the MFC 

detector to the point detector, it is not a fair comparison because the MFC 

detector assumes there is prior knowledge of the PSF in question, while the 

point detector has no such requirement.  In this comparison, the MFC 

detector, along with the PCC detector will attempt to estimate the r0 of the 

PSF in order to even the playing field between these algorithms and the point 



detector.  Peak correlation and signal-to-noise ratio (SNR) will be metrics of 

comparison. 

1.2  Thesis Overview 

Accurately estimating the seeing parameter of an unknown PSF has 

never been considered when utilizing the MFC detector and could allow the 

space community the ability to increase the probability of detection compared 

to the current detection method.  

Chapter II dives deep into the background information required to 

understand current detection algorithms, as well as create a new detection 

algorithm.  The chapter is wrapped up with a preliminary comparison 

between the three detection algorithms used during this study. 

Chapter III explains how the detection algorithms are used with 

simulated data in order to get the results for this study.  This chapter also 

covers how probability of detection and probability of false alarm are 

calculated for all algorithms used in this research, and explains how the 

results of the simulated data are analyzed for both the MFC detector and the 

PCC detector.  The chapter is summed up with a discussion of the results 

from the simulated data. 

Chapter  follows trends from , but instead of using 

simulated data, measured data sets are used.  Although the code used for 

both simulated and measured data have many similarities, there are also 



some differences, which are called out in this chapter.  Results of the 

measured data are covered to conclude this chapter.   

Chapter V will sum up all of Chapter IV’s results into conclusions and 

key takeaways from the comparisons of the three detection algorithms.  

Potential for future work is also discussed.  



II.  Literature Review 

Chapter Overview 

The purpose of this chapter is to go over the Poisson distribution, 

fundamentals of Fourier optics [4], and the probability of detection and the 

probability of false alarm will be defined in regards to space object detection.  

Finally, this chapter will delve into the three detection algorithms used in 

this research: the point detector [5], MFC detector [6], and PCC detector.   

2.1)  The Poisson Distribution 

“The Poisson random variable is extremely important as it describes 

the behavior of many physical phenomena… the Poisson random variable 

plays a fundamental role in our development of a probabilistic description of 

noise” [7].  Noise is present in every image taken of space, and thus will be 

adequately represented in all simulations and measured data throughout this 

study.   

The Poisson distribution expresses the probability of a certain number 

of events occurring within a fixed time with each event being independent of 

the next.  When looking at a captured image, each pixel is considered 

independent of the rest, and the noise within each pixel is random.   

No manipulations of the Poisson distribution are required for this 

study, rather just an understanding of why image data is considered Poisson 



when making assumptions for the PCC detector.  The probability mass 

function of the Poisson distribution can be described with (1) below [7].  

k
b

X

b e kP k k
k

     (1) 

Where a discrete random variable (X) has a Poisson distribution with a mean 

value (b) greater than zero for realization values k = 0, 1, 2…  It is important 

to note that b is equal to the expected value (mean) of X and also the 

variance.  These principles of the Poisson distribution will be crucial for 

simplifying equations used within the PCC detector later on in Chapter II.  

2.2)  Fundamentals of Fourier Optics 

Fourier optics is the study of optics using Fourier transforms (FTs), in 

which the waveform being considered is thought to be made up of a 

combination of plane waves.  “The Fourier transform is perhaps the most 

important analytical tool needed for work in statistical optics, or for that 

matter in the field of modern optics in general” [8].  Goodman defines the one-

dimensional and two-dimensional Fourier transforms below in (2) & (3). 

j xF f x e dx        (2) 

x yj x y
x yF f x y e dxdy          (3) 



Where ( x y ) is the spatial frequency in the x and y directions, 

f x y  is the signal undergoing a Fourier Transform, and x yj x ye is the 

phase component. 

The inverses of (2) and (3)  are shown in (4) and (5). 

j xf x F e d       (4) 

x yj x y
x y x yf x y F e d d   (5) 

There are a number of relationships that can be useful to manipulate 

Fourier transforms that Goodman provides the reader.  Many of these are 

useful, but this research will highlight the two-dimensional autocorrelation 

theorem shown in (6). 

x yh h x y d d H      (6) 

The h  represents a function of one or two variables,  H  represents the 

Fourier transforms of h and ( .  This manipulation is 

used in both the MFC detector and PCC detector detection algorithms, which 

will be discussed later in Chapter II.  The significance of the Fourier 

transform in space object detection comes into play when discussing PSFs 

and optical transfer functions (OTF).  



A PSF is defined as an imaging system’s impulse response, or single 

point object.  It is the spatial domain version of the OTF of an incoherent 

imaging system.  The OTF specifies how the spatial frequencies are handled 

by the imaging system.  Goodman defines an OTF with (7) below [4]. 

j fxu fyuh u v e dudv
H fx fy

h u v dudv
   (7) 

Where h u v is the field impulse response at image coordinates u v

The numerator is in the form of a Fourier transform, and the denominator 

normalizes the function.  Converting an OTF into a PSF is then as simple as 

performing an inverse Fourier transform on the OTF.  This relationship is 

exploited within the MATLAB code in order to create PSFs for simulations 

conducted for this research.  See the Appendix  for the full MATLAB code. 

2.3)  Atmospheric Effects & Fried’s Seeing Parameter (r0) 

Atmospheric turbulence is an irregular air motion caused by winds 

that vary in both speed and direction.  This turbulence reduces image quality 

of objects being viewed through even the most advanced optical systems.  

Fried’s seeing parameter is a measure of the quality of optical transmission 

through the atmosphere due to random inconsistencies in the atmosphere’s 

refractive index.  This is mainly caused by temperature variations, of both 



small and large scales.  The Fried’s seeing parameter is typically a measure 

of length in units of centimeters and can be defined by : 

n

r
zC      (8)

In this equation  is the atmospheric turbulence strength,  is the 

average wavelength of the light source, and z is the distance between the 

light source and the aperture.  Telescopes with apertures smaller than r0 are 

less affected by atmospheric seeing than diffraction due to the telescope's 

small aperture.  However, the resolution of telescopes with apertures much 

larger than r0 will be limited by atmospheric turbulence.  For the purposes of 

this study, it is assumed the system is a ground-based telescope, and a r0 

value that spans from 0-25 cm, which covers the majority of all ground based 

seeing parameter values viewable from Earth’s surface.  These  values can 

then be used to help solve for the OTF of long-exposure atmosphere as shown 

in (9). 

fu
r

atmH u e     (9)

 

In this equation,  is, again, the average wavelength of the light 

source,  is the radial spatial frequency,  is the focal length, and  is the 



Fried’s seeing parameter [8].  The use of this Equation will be discussed in 

Chapter III. 

2.4)  Aperture & Zernike Polynomials 

The aperture function is crucial for determining the image quality of an 

optical system.  Any flaws or aberrations within it can have significant effects 

on the captured images.  Aberrations can be described through Zernike 

polynomials, which will produce the refraction error.  These polynomial 

functions are defined over a circular support area, typically the pupil planes 

in optical imaging systems made up of lenses and mirrors of a certain finite 

diameter.  Zernike polynomials are orthogonal to one another and are used to 

parameterize specific phase aberrations.  Each polynomial carries coefficients 

to weight their respective type of aberration.  The types of aberrations that 

Zernike polynomials can describe are piston, tilt, focus, astigmatism, coma, 

and more shown in Figure 1. 



 

Figure 1.  Phase Descriptions of the First 21 Zernike Polynomials 

For the purposes of this study, all Zernike polynomials will be ignored 

when creating the OTF for the aperture.  However, future studies could take 

different aberrations into consideration to see how it effects the estimation of 

the Fried’s seeing parameter.  The OTF of the aperture will be discussed in 

Chapter III. 

2.5)  Fourier Optics Fundamentals Wrap-up 

With these Fourier optics fundamentals, detection algorithms can be 

created.  The PSF and OTF are crucial for creating simulated data to 

analyze.  This is split into two separate OTFs: the OTF of the atmosphere 

and the OTF of the aperture.  The OTF of the atmosphere is dependent on 



the seeing parameter, and the OTF of the aperture is dependent on the 

aberrations.  These OTFs can then be converted into a PSF by multiplying 

the aperture and atmospheric OTFs together, and inverse Fourier 

transforming them.  The PSF can then be used in a specified detection 

algorithm to test whether an object is considered present within the 

simulated image.  

This study will focus on three detection algorithms: the point detector, 

the MFC detector, and a newly created algorithm which will be referred to as 

the PCC detector.  The sections following section 2.6 will describe each in 

detail, and Chapter III will explain how each detection algorithm is used in 

this study. 

2.6)  Probability of Detection and False Alarm 

Probability of detection and probability of false alarm are defined first 

and foremost by the likelihood ratio test (LRT).  The LRT is a statistical test 

of how well data fits between two models based on the ratio of their 

probabilities.  The two models used for this LRT are H1 and H0, and defined 

as the case when an object is present in an image (H1), and the case when an 

object is absent from an image (H0).  This test can be calculated with 

Equation 10 below [9].   

P D H
P D H

    (10) 



From Equation 10, P D H  is the probability mass function (PMF) 

for the case when an object is present in the image, and P D H  is the PMF 

for the case when an object is absent from the image.  In this case, it is 

assumed that the LRTs are Gaussian random variables.  Because the mean is 

equal to the variance, the PMF has the form shown below in Equation 11 [9]. 

D B
BP D H e

B
    (11) 

Where B is a non-zero background value and D is the measured signal of S 

and B combined.  Although S is not denoted within this equation, it is the 

mean value of the target object it can be calculated simply by subtracting the 

background value (B) from the measured value (D) [9]. 

Probability of detection is the chance that a detector will find the object 

when it is present within the image (H1 is true) and can be described for 

discrete PMFs by Equation 12 below [9]. 

D D
P D H      (12) 

In this equation, Object is the set of values for which the LRT is less than 1.  

For given values S and B, the set of values that caused the LRT to be less 

than 1 could be determined.  In this way, object is determined as a function of 

these signal and background parameters.  With objects identified, Equation 12 

can be used to compute the probability of detection [9]. 



Probability of false alarm is the chance that if the object is not present, 

an object will be falsely detected within the image (H0 is true).  It can be 

computed using Equation 13 below [9]. 

D D
P D H      (13) 

The threshold set, DNB, is chosen so that the right side of the equation 

is equal to the specified probability of false alarm, Pfa.  The strategy here 

involves summing over the probability of the measured data, given that no 

object is present.  This PMF is a function of only the average value of the 

background, B.  Although S requires an object to be present, the background 

can be measured without an object present.  With the ability to measure the 

background, this makes it possible to find the PMF P(D|H0) so that the set 

DNB, that provides the proper probability of false alarm, can be calculated [9]. 

In the following sections the LRT for each detection algorithm will be 

explained and compared against one another.   

2.7)  The Point Detector 

The point detector is a binary hypothesis test (BHT) in which the 

detection decision is made on a single pixel in a given frame of data.  The 

SNR level is used to make a classification decision (which hypothesis is to be 

chosen from the observation) using the equations  below. 



d

d cx cy B
H SNR cx cy     (14) 

d

d cx cy B
H SNR cx cy     (15) 

Where (cx,cy) represents the pixel location on the CCD array of the 

image data, d.  B is the background, which is the median value of the image 

in question, and d  is the standard deviation of the image.  Off to the left of 

the Equation, the H1 and H0 signify two different potential outcomes.  For the 

H1 case, the SNR value must exceed , (the threshold value selected for the 

detection algorithm) which would result in the point detector marking the 

pixel in question as having an object present in the image.  If, however, the 

SNR is less than , (H0 case) then the algorithm would consider the image to 

have no object in the image.  

Because this is all based on the outcome from a single pixel, this could 

yield unfavorable or inaccurate results if a noise spike is present at the test 

location.  It is common for organizations to set a threshold value ( ) that is 

very high to greatly reduce the chance of a false alarm occurring.  This safe 

approach also significantly reduces the probability of detection as an adverse 

effect.  Figure 2 displays an example of the receiver operator characteristic 

(ROC) curve for the point detector.  It displays the probability of detection 

versus probability of false alarm of the detection algorithm.  The ROC curve 

will be explained in more detail in . 



 

 

Figure 2.  Point Detector ROC Curve Example 

In the above figure, the values represent percentages.  A value of 0 

represents 0%, whereas a value of 1 represents 100%.  As the probability of 

false alarm gets very small ~0.01, there is a probability of detection of ~0.02, 

which means that on average, there would be 1 false alarm every 100 images, 

while the algorithm would only detect 2 objects successfully out of every 100 

images.   

2.8)  The Matched Filter Correlator Detector 

The MFC detector is another BHT, but instead of using a single point 

to make the detection decision like the point detector, it instead takes every 



pixel within the image into consideration.  It does this by double summing 

the image in both the x and y directions rather than selecting one pixel from 

the image.  Another significant difference between the point detector and the 

MFC detector is the fact that the MFC detector requires prior knowledge of 

the PSF.  Because of this issue, the point detector is still used for some object 

detections where no prior data is available on an object in question.  shown 

below represents the MFC detector BHT.  

 

MFC
x y d h

d x
H

y B h x y h
SNR          (16) 

MFC
x y d h

d x
H

y B h x y h
SNR          (17) 

As stated earlier, double summing the image in both the x and y 

directions and subtracting the background value of the image (B), and then 

divided by the standard deviation of the total captured data ( d ).  This is 

then multiplied with the difference between the known or hypothesized PSF 

h x y  and its average value,  , and finally dividing by the square root of the 

double sum of h x y  which can be calculated as shown in (18)  below.   

h
x y

h x y      (18) 



If the result is greater than the threshold ( ), an object is considered 

to be present in the image (H1 case).  If the result is less than , then no 

object is found in the image (H0 case).   

Those familiar with the MFC detector would argue that it has a higher 

probability of detection, but that is because the MFC detector must have 

prior knowledge of the actual PSF, whereas the point detector does not 

require knowledge of the PSF.  In Chapter III, the MFC detector will be used 

in a manner where the PSF is not known and compared against the point 

detector.   

2.9)  The Pearson’s Correlation Coefficient Detector 

 The PCC detector measures linear correlation between two variables, 

 and .  The value of the PCC detector is always between +1 and -1, where 

=+1 is perfect positive linear correlation, 0 is no correlation, and -1 is a 

perfect negative correlation.  It is defined as the covariance of the two 

variables divided by the product of their standard deviations, as shown  

below [2].  

                                (19) 

In this equation, 

The covariance in can be rewritten as 

shown below. 

E                               (20) 



By substituting into the numerator the following equation  is produced 

[8]. 

E
,     (21) 

where  is the mean of , and  is the mean of .   can then be 

altered for an image, where d x y is substituted in for , with a mean of d  

and a standard deviation of d , and similarly, h x y  substituted in for , 

with a mean of h and a standard deviation of h  as shown below: 

h d

E d x y d h x y h
    (22) 

The numerator in (22) can be approximated as the double sum of x and 

y divided by the number of pixels squared as shown in (23). 
N N

x y
E d x y d h x y h d x y d h x y h N     (23) 

Substituting (23)  back into the numerator of (22)  produces the final 

form of the PCC detector as shown in (24). 
N N

x y

h d

d x y d h x y h N
PCC     (24) 

The threshold value for the BHT can now be calculated.  To begin, (25) 

below shows the expected value for the PCC detector given the H0 case.   

N N

x y
E PCC H d x y d h x y h N    (25) 



As (25)  shows, the expected value when no object is present is zero.  

With a mean ( ) of zero, the calculation of the variance is simplified to (26)  

below. 

N N

x y
C

h d

E d x y d h x y h N
E C H      (26) 

The square of the double summation in the numerator can be 

separated into two similar components, with sums over points x y  and 

z w .  Each component has a h x y h N  term that is not random and 

can move outside the expectation.  This movement and substitution yields 

(27) below. 

N N N N

x y z w

h d

h x y h h z w h x z y w E d x y d d z w d
N   (27) 

The dirac functions are present because when , the 

equation results in a value of zero, due to the assumption that the data is 

statistically independent from point to point.  However, when x = z and y = w, 

the value shown  below is the result.  

N N

x y
C

h d

h x y h E d x y d
N

E C H     (28) 

Equation (28) can be further simplified by finishing the expected value 

calculation in the numerator.  E d x y d is actually the variance of  



d x y , and because the data is Poisson, it is equivalent to d , so it can be 

simplified as shown in (29) below. 

N N

x y
C

h d

h x y h d
N

E C H         (29) 

Continuing on with the simplifications, the double sum in the 

numerator over N  is equivalent to h .  This leaves an N  in the 

denominator, allowing the h  terms to cancel out.  It was stated earlier, d  is 

equivalent to d  due to the data being Poisson, so those terms cancel out as 

well.  The final simplification of C is shown in Equation (30). 

h

h
C

h d h d

d dNE C H N
N    (30) 

With the variance calculated, a simple square root calculation can be 

conducted, leaving the standard deviation to be simply N .  This standard 

deviation allows the MFC detector and PCC detectors to be evenly compared 

against one another, which is very important when comparing the probability 

of detection of both detection algorithms after setting the probability of false 

alarm to be the same.   



2.10)  Detection Algorithm Review 

 Seeing the different methods used by each detection algorithm goes to 

show there are many ways that space object detection can be accomplished.  

It is likely that there are better methods out there that have yet to be 

discovered.   

Chapter III will dive deeper into the MATLAB simulations ran using 

these detection algorithms in order to attempt to estimate r0 for the MFC 

PCC detection algorithms when the PSF is unknown. 



III.  MATLAB Simulation 

Chapter Overview  

In this chapter, simulation via MATLAB R2019b was used to test, 

evaluate and compare the three detection algorithms described in Chapter II.  

One PSF was generated for this simulation, and was used for all three 

detection algorithms.  The methodology for its creation will be described in 

the following section.  The main purpose of this chapter is to showcase the 

different detection algorithms using a controlled and known PSF, with the 

only variation from one run to the next being random Poisson noise.  After 

evaluating each detection algorithm individually, this chapter will conclude 

with a comparison between all three detection algorithms in a controlled 

simulated environment.  

3.1)  MATLAB Simulation Methodology 

This section will dissect and explain the MATLAB code used to run the 

simulation that was used to compare each algorithm at the end of this 

Chapter.  Each simulation was run with 1000 trials in order to have a large 

enough sample size to give confidence in results, but small enough so that the 

processing time was not significant. 



3.1.1)  Setup 

For the remainder of this section, refer to the MATLAB code in the 

Appendix.  Starting at the top of the code in Section One, the photon count 

(k_bar) was set to 1000.  Based on descriptions of the detection algorithms 

from Chapter II, this value was selected to be low so that all detection 

algorithms did not have perfect detection rates, which would allow for a 

comparison to be made among the algorithms.  Because the PCC detector is 

normalized, initial results were expected to be comparable to the MFC 

detector and better than the point detector when using a low photon count.  

A background value (B) was set to 10.  It is important that this value is 

a nonzero value, but not so high as to compete with the photon count from the 

object.  In the H0 case for all three detection algorithms, if the background 

value plus random noise exceeds the set threshold, a false alarm would be 

recorded.  Due to the nature of the space object detection custody problem, 

recording false alarms can be very costly.  Because of this, the probability of 

false alarm is set to be very low, which reduces the probability of detection as 

well.  Probability of false alarm can be set through the threshold value for 

each detection algorithm.  The threshold values are calculated differently for 

each detection algorithm, as shown in Chapter II, so in order to compare the 

algorithms’ probability of detection, the threshold values used for each 

algorithm must be fine-tuned so that the probability of false alarm is the 

same for each detection algorithm.  Higher threshold values equate to a lower 



probability of false alarm, because it takes more noise in order to overcome 

the higher threshold set for the data being analyzed.  For the photon count 

and background value set for this simulation, the detection rates are expected 

to be high among the MFC detector and PCC detectors, and lower for the 

point detector.  

In order to decrease processing time further, a 100x100 window (m) is 

used, as opposed to a larger window, such as 1000x1000.  Larger window 

sizes are important when the telescope has a larger aperture, as it would 

result in a loss of resolution.  This window size is sufficient for the size of the 

simulated telescope used, with an aperture diameter of 10 cm.  

In order to introduce a simulated image with atmospheric turbulence, 

the  and  MATLAB scripts were implemented using 

   ( & Equation 9 from  and as shown in the 

Appendix.  The atmospheric OTF is created by the Make_long_otf.m script.  

There are four variables called out in the  function: r1 is the 

radius of the receiver aperture in units of centimeters and was set to 5 cm so 

that the maximum seeing parameter, 5 cm, being estimated could be 

achievable with the data tested, dx is the width of the pixel in the pupil plan, 

and is chosen so that the number of pixels in your source array is greater 

than 4 times the number of pixels in your aperture radius which was set to 

0.002 meters, si is the number of pixels across the array and was set to the m 

value of 100, and r0 is the seeing parameter of the atmosphere and varied 



from 1 cm to 5 cm in increments of 1 mm, which are typical lower quality 

seeing parameter values from Earth’s surface, typically at low elevation or 

near cities. 

The aperture function was created by using the  MATLAB 

script, which utilizes five input arguments.  The first is r1 which is the radius 

of the aperture.  For the purposes of this study, it was set to 25 pixels, and 

was not changed for the entirety of testing.  The second is r2, which is meant 

to describe the radius for obstructions in the pupil plane like a secondary 

mirror.  Obstructions can be described through Zernike polynomials as 

described in Chapter II, but for the purposes of this study, the obstruction 

value was set to 0, and was not changed throughout testing.  The si term is 

the same as the one used for the Make_long_otf.m function, which is the 

number of pixels across the array (m=100).  The function is not scaled, so that 

value is set to 1.  For the purposes of this study, the phase term was set to all 

zeros across the 100x100 array.  Future work could implement a phase 

component into the optical OTF to further test the efficacy of the MFC 

detector and PCC detector detection algorithms.  These parameters were 

chosen to mimic the specifications of a small telescope used to collect 

measured data to test the algorithms under study in this thesis. 

3.1.2)  PSF Figures 

This Section displays the background image and the actual PSF image 

that both the MFC detector and PCC detector attempt to estimate.  For this 



simulation, the PSF was tested at five different r0 values, 1 cm to 5 cm, as 

stated in Section 3.1.1.  Figures 5 through 7 show the background image, the 

PSF with an r0 value of 1 cm, which is the worst quality image in this test, 

and the PSF with an r0 value of 5 cm, which is the best quality image for this 

test.  The PSFs shown in the figures are pictured with no noise acting upon 

them.  

 

Figure 3.  Background Image (No PSF Present) 



 

Figure 4.  PSF with r0 Value of 1 cm 

 

Figure 5.  PSF with r0 Value of 5 cm 



When comparing these images, the PSF with a r0 value of 1 cm 

appears much larger than the PSF with a r0 value of 5 cm.  Recall back to  

  ( in Chapter II where the Fried’s Seeing Parameter (r0) was 

explained.  As the atmospheric turbulence increases, the r0 value decreases.  

This decreased r0 value correlates to larger PSF sizes, which can be described 

as increased distortion of the light source being imaged.  The sharper the 

image (higher r0 values), the more concentrated the intensity of the PSF 

becomes, which should lead to an increase in the probability of detection of 

the light source being imaged.  This theory will be confirmed later in this 

chapter during a review of the results. 

3.1.3)  H0 Case 

The seeing parameter estimation is described in this section and is 

accomplished through a series of functions spreading over the next few 

sections.  This begins with a for loop that creates a matrix of PSFs with 

varying r0 values ranging from 0.1 cm to 5 cm in iterations of 0.1 cm.  This 

matrix is used later on in the section after noise is added to the image being 

tested.  Because this section is testing the H0 case, there is no PSF present in 

the image, and a matrix of zeros is used.  

Once the noise has been added to the matrix of zeros, and the median 

and standard deviation have been calculated for the image, the point detector 

algorithm can be run.  Figure 6 below is an example image for the H0 case 

with randomly generated noise. 



Moving on to the MFC detector and PCC detector detection algorithms, 

these are calculated using (16) & (24) respectively and as shown in the 

MATLAB code.  These algorithms are run using the PSF matrix created 

earlier in Section Three, which creates values for both MFC detector and 

PCC detector to be compared against their respective threshold values.  Once 

all datasets have been calculated for each r0 value and for both the MFC 

detector and PCC detector, the maximum value for each of the 1000 trials for 

both algorithms are then stored for later usage.  

 

 



3.1.4)  H1 Case 

The H1 case contains much of the same code as Sub-Section Three, 

however, there are a few very important differences.  Instead of adding noise 

to a matrix of zeros, the PSF that was created in Sub-Section 1 is utilized.  

An example image for the H1 case can be seen below in Figure 7.   

 

With an object present in the image, the r0 estimation can be 

conducted.  But first, instances where no object was detected in the image 

must be removed prior to locating the maximum values from each trial 

among the dataset.  The mean of all 1000 trials multiplied by the step size 

change per trial (1 mm) will then yield the estimated r0 value based on the 

data collected.  



3.1.5)  ROC Curves 

Receiver operating characteristic (ROC) curves are very useful tools 

that plot the probability of detection versus the probability of false alarm.  As 

stated in Dr. Stephen Cain’s Direct-Detection LADAR Systems, “These plots 

are used to compare the performance of one detector or detection scheme 

versus another.  In general, a detection method with an ROC value that is 

higher than another method’s ROC value indicates that for the same 

probability of false alarm, the first method has a higher probability of 

detection than the second” [9]. Both probabilities are a function of the 

threshold that defines the presence of an object, and the background image 

only.  “Since the threshold varies, the probability of detection and probability 

of false alarm change.  A graph can be constructed to demonstrate the 

probability of detection versus the probability of false alarm” [9].  These 

graphs are generated for the simulated data and shown for the r0 = 0.01 trial 

below in Figure 8.  



 

Figure 8.  Point Detector ROC Curve 

 

 

Figure 9.  MFC detector ROC Curve 



 

Figure 10.  PCC detector ROC Curve 

 

Figure 11.  Detectors Comparison ROC Curve 



The final figure (Figure 11) shows the comparison of all three detection 

algorithms.  In this Figure, the MFC detector and PCC detector far 

outperform the point detector.  But upon further inspection, the MFC 

detector has a higher probability of detection than the PCC detector.  

Although the PCC detector does not outperform the MFC detector in regards 

to the probability of detection for this specific test, there may be other uses 

for the PCC detector where it could outperform the MFC detector.  This 

theory will be further explored within this study, and it could also be 

expanded upon in future work. 

3.2)  Simulation Results 

The simulation was run for r0 values varying from 1 cm to 5 cm.  Five 

tests were conducted and recorded for the r0 estimation.  The results of these 

tests are shown below in Table 1 and averaged in Table 6.  

Table 1.  Estimated r0 Values for Simulated Data Test 1 

Detector Estimated r0 Values (cm) 

Actual 1 2 3 4 5 

MFC 1.00 2.20 3.20 3.70 5.00 

PCC 1.00 2.30 3.10 3.70 5.00 

 

 

 

 



 

Table 2.  Estimated r0 Values for Simulated Data Test 2 

Detector Estimated r0 Values (cm) 

Actual 1 2 3 4 5 

MFC 0.90 2.00 2.90 4.10 4.90 

PCC 0.80 2.00 2.90 4.10 4.80 

 

Table 3.  Estimated r0 Values for Simulated Data Test 3 

Detector Estimated r0 Values (cm) 

Actual 1 2 3 4 5 

MFC 1.10 2.00 3.00 4.10 5.00 

PCC 1.00 2.00 3.00 4.10 5.00 

 

Table 4.  Estimated r0 Values for Simulated Data Test 4 

Detector Estimated r0 Values (cm) 

Actual 1 2 3 4 5 

MFC 1.20 2.00 3.20 4.50 4.70 

PCC 1.10 2.00 3.30 4.40 4.70 

 

Table 5.  Estimated r0 Values for Simulated Data Test 5 

Detector Estimated r0 Values (cm) 

Actual 1 2 3 4 5 

MFC 0.90 1.90 2.80 4.00 5.00 

PCC 0.90 1.90 2.80 4.00 5.00 



 

Table 6.  Averaged r0 Estimation Values 

Detector Estimated r0 Values (cm) 

Actual 1 2 3 4 5 

MFC 1.02 2.02 3.02 4.08 4.92 

PCC 0.96 2.04 3.02 4.06 4.90 

 

These results show that estimation of the r0 value is possible, and 

quite accurate with 1000 trials per run.  These results boast an impressive 

variance (averaged across all r0 values) of approximately 0.025 cm and a 

standard deviation of approximately 0.15 cm further validating the accuracy 

of this estimator.  The MFC and PCC detectors had negligible differences 

between them as shown above in Table 6, with only a 0.1 cm difference as the 

largest gap between their estimations, and an average difference of only 

0.024 cm.  If these estimators can maintain values this precise under a 

multitude of different images, this could be an incredibly powerful tool for 

space object detection.  In the next chapter, this estimation technique will be 

put to the test once more using measured data.  



IV.  Polaris A & B Data Test 

Chapter Overview 

This chapter focuses on using the code established in Chapter III to 

evaluate measured data collected of well-known stars, Polaris A and Polaris 

B, in order to test the validity of the seeing parameter estimation on 

measured image data.  After evaluating each detection algorithm 

individually, this chapter will conclude with a comparison between the MFC 

and PCC detection algorithms in this real-world environment. 

4.1)  Measured Data Description & Methodology 

Simulated data can be tailored so that the intended result is achieved, 

however, it is important to use measured data with a detection algorithm to 

see how well it performs in a real-world environment.  For this chapter, the 

PCC detector, MFC detector, and point detector will be tested on measured 

image data collected through a telescope.  Polaris A and Polaris B were 

observed through a CelestronXLT telescope with a 2.8 meter focal length.  

The telescope had an aperture of 11 inches, but was only opened to 2 inches 

during data collection.  The data was collected by Dr. Stephen Cain in 

Dayton, Ohio.  The Fried’s seeing parameter for that night was 

approximately 2.5 cm, which is shown in Figure 12 below.  This was produced 



by plotting the Polaris A image across its center against the modeled PSF of 

the average PSF when r0 is 2.5 cm.   

 

Figure 12.  PSF Model at r0 2.5 cm vs. Polaris A Images 

One-thousand images were taken of Polaris A, without Polaris B 

present in the image as shown by an image of their average in Figure 13.  An 

additional one-thousand images were taken of Polaris A with Polaris B 

present in the image, which is shown by their average in Figure 14 below. 



 

Figure 13.  Average Image Data of Polaris A Only 

 

 

Figure 14.  Average Image Data of Polaris A with Polaris B Present 



 

 Upon close inspection, Polaris B can be seen in the center of Figure 13.  

This faint star is the space object in which each detection algorithm 

attempted to detect within each captured image.  The collected data was 

input into MATLAB R2019b, which was used to test, evaluate and compare 

the three detection algorithms.  The methodology is very similar to Chapter 

III, with the main difference being within the setup.  Because measured data 

are used instead of simulated data, the lines that created the simulated data 

were removed, and the data was imported prior to running the code.   

The main purpose of this chapter is to check the validity of the seeing 

parameter estimation using measured image data, but a tertiary goal is to 

compare PCC detector vs MFC detector for detection of a dimly lit space 

object with other brighter objects within the image.   

4.2)  Results 

4.2.1)  Detections vs. False Alarms 

The Polaris data collected was evaluated with a PCC detector 

threshold set at 3 standard deviations.  The MFC detector’s threshold was 

then selected so that the false alarms for the MFC detector was equal to the 

false alarms for the PCC detector.  The detections for each algorithm were 

then compared as shown in Table 7. 

 



Table 7.  Polaris B Detection and False Alarm Results 

Detector Algorithm Detections False Alarms 

PCC 94 3 

MFC 30 3 

 

Based on this data set, it is clear that the PCC detector outperformed 

the MFC detector in detections when false alarms were set to be the same.  

This could be due to the normalization that occurs within the PCC algorithm.  

The MFC detector is more dependent on intensity, whereas the PCC detector 

is more dependent on the shape of the PSF.  Because Polaris B is much 

dimmer than Polaris A, the MFC detector struggles to detect it, and due to 

the brightness of Polaris A in the images where Polaris B is not present, 

there are significantly more false alarms than the PCC detector reports.  

ROC curves were also created for each detection algorithm based on 

the data provided.  These ROC curves are shown below in Figure 15.  Polaris 

B Point Detector ROC Curve.  Figure 18 then shows all three ROC Curves 

together for a side-by-side comparison. 



 

Figure 15.  Polaris B Point Detector ROC Curve 

 

 

Figure 16.  Polaris B MFC ROC Curve 



 

 

Figure 17.  Polaris B PCC ROC Curve 

 

Figure 18.  Polaris B Combined ROC Curves Comparison 



As Figure 18 shows, the MFC detector is only a small step up in 

performance from the point detector in this dataset, however, the PCC 

detector shows its detection prowess in this situation.  The results from this 

test suggests that the PCC detector may be better at space object detection 

while other brighter objects are near the space object being analyzed.  

Further testing should be done to explore this practical use for the PCC 

detector.  

4.2.2)  Seeing Parameter Estimation 

The seeing parameter estimation experienced some issues with this 

test data, specifically for the MFC detector.  Table 8 shows the results for the 

seeing parameter estimation using the Polaris image data. 

Table 8.  Polaris Seeing Parameter Estimation Results 

Detector Algorithm Seeing Parameter Estimation 

PCC 2.28 cm 

MFC 0.15 cm 

 

In this case, the PCC detector detected an object in 94 out of 1,000 

images, and the MFC detector only detected an object in 30 out of 1,000 

images, which is 9.4% and 3% respectively.  The difference in detections did 

not seem large enough to give the PCC detector a significant advantage in 

calculating the seeing parameter.  Further testing with more measured data 



of other space objects is recommended to see if the MFC detector struggles to 

estimate the seeing parameter of measured image data.  

The PCC detector’s seeing parameter estimation of 2.28 cm appears to 

be accurate based on the r0 value of 2.5 cm modeled in Figure 12.  The PCC 

detector seems to be more robust than the MFC detector in dealing with non-

ideal PSF shapes. Further testing of different space objects is recommended 

for future tests to confirm the accuracy of the PCC detector seeing parameter 

estimation.  

 



V.  Conclusions and Recommendations 

As the space domain becomes increasingly contested, it motivates 

researchers to create more effective methods for space object detection.  The 

point detector has been used as a niche detection algorithm for decades for 

space objects with no prior knowledge of the object in question.  The PCC 

detector has also shown promise for faint object detection in images with 

brighter objects present that should be explored further.   

5.1)  Conclusions of Research 

In this thesis, both the PCC detector and MFC detector outperformed 

the point detector in both the simulated and measured data tests.   

When comparing the PCC detector versus the MFC detector using the 

simulated data, the MFC came out on top, boasting the highest detection 

rates, and an equally accurate r0 estimation.  But, when comparing both 

algorithms again using measured data, the PCC detector significantly 

outperformed the MFC detector in both detection, and r0 estimation.  This 

discovery could show a practical use for the PCC for dim space object 

detection while other brighter objects or stray light is present within the 

image.  It is worth noting there were quite a few differences between the two 

data sets.  The measured data had more noise in the image, and there is also 

the possibility of aberrations in the imaging system.  The simulated data did 

have random noise throughout the data, but not to the same extent, and was 



operating under the assumption that the aperture had no aberrations.  

Another glaring difference was the fact that the simulated data was focused 

on a single centered PSF with no other objects in the image, whereas the 

measured data had two objects in the image, and the star being observed, 

Polaris B, was much dimmer than the star next to it, Polaris A.  It is believed 

that due to these specific circumstances, the PCC detector was poised to 

outperform the MFC detector.  By reviewing more types of measured data in 

future work, these detectors can be compared further, and possibly combined 

in order to make a detection algorithm that works effectively under most 

conditions.  

5.2)  Significance of Research 

The findings of this research bring forth some useful improvements 

upon current space object detection methods.  The long, and widely used 

point detector is now one step closer to retirement after decades of use across 

many organizations.  There are still some applications where the point 

detector can be useful.  This is mostly in cases where there is insufficient 

processing power available to implement the more advanced detectors.  With 

the use of the r0 estimator, the MFC and PCC detectors can be used to 

accurately estimate the seeing parameter, which allows both detectors to be 

used on newly discovered or undocumented space objects.  This makes these 



detection algorithms more practical, since historically, the main objection to 

the MFC detector was that the PSF must be known. 

Based on the results of the measured data evaluated, it appears the 

PCC detector could be significantly more effective at faint object detection 

than the MFC detector.  If this proves to be true for more cases, the PCC 

detector could serve a crucial role in some faint object detection cases.   

5.3)  Recommendations for Future Research 

Future work could be done to combine the MFC and PCC algorithms, 

and to find a way to decipher which is more applicable to use depending on 

the circumstances of the image being analyzed.  

In the measured data test, the PCC detector was found to significantly 

outperform the MFC detector.  In this test, Polaris B was the target object, 

which was being overshadowed by Polaris A.  It is assumed that due to the 

brightness of Polaris A, this negatively impacted the MFC detector, which 

works purely off of the brightness level as the detection method.  The PCC 

detector has a normalization factor to it, which is likely the reason to its 

success over the MFC detector in this case.  This should be tested further in 

future work with other measured and simulated data to confirm this 

assumption.  

 



Appendix 

A.1)  Simulated Data MATLAB Code 

Section 1 - Variable Setup & PSF defined 
close all; 
clear all; 
 

T = 1000; %number of trials 
T2 = 50; %number of r0 steps increasing by 1 mm per step 
k_bar = 1000; %value of photon, can be adjusted to fit the needs of the detector (25K 
works well for PD vs MFC, 500-2000 for PPCC vs MFC) 
B_true = 10;%background value 
m = 100; %number of pixels in one dimension of the window 
cx = m/2; %pixel of x location on PSF 
cy = m/2; %pixel of y location on PSF 
 

otf_opt=Make_otf(25,0,m,1,zeros(m,m)); 
D=.1; 
 

for step=1:5 
  
r0=.01*step; 
otf_atm=Make_long_otf(D/2,2*D/m,m,r0); 
 

psf=fftshift(ifft2(otf_opt.*fftshift(otf_atm))); 
 

psf_real=psf; 
 

h_bar = mean(psf_real(:)); 
sig_h = std(psf_real(:)); 
sq_sum_hsq=sqrt(sum(sum(psf_real(:).^2))); 
threshold = 6/m; %6 Standard Deviations 
 

h_0=zeros(m,m); %MxM array of background 
 

Section 2 - Images 
figure(1) 



imagesc(h_0) %image of background 
title('Background Image'); 
colormap ('gray'); 
 

figure(2) 
imagesc(psf) %image of PSF 
title('PSF'); 
colormap ('gray'); 
 

Section 3 - Matched Filter/Correlator for H0 
 for its=1:T2 
% %  
%  
r0=.001*its; 
otf_atm = Make_long_otf(D/2,2*D/m,m,r0); 
% %  
psf_mat(:,:,its)=real(fftshift(ifft2(otf_opt.*fftshift(otf_atm)))); 
                       
 end 
for i = 1:T 
     
    data_0 = poissrnd(k_bar.*h_0 + B_true); 
    window_0 = data_0(cy-m/2+1:cy+m/2,cx-m/2+1:cx+m/2); 
    B_0 = median(window_0(:)); 
    d_bar_0 = mean(window_0(:)); 
    sig_0 = std(window_0(:)); 
    point_detector_0(i)=(window_0(m/2+1,m/2+1)-B_0)/sig_0; 
    for its=1:T2 
psf_100=psf_mat(:,:,its); 
h_bar = mean(psf_100(:)); 
sig_h = std(psf_100(:)); 
sq_sum_hsq=sqrt(sum(sum(psf_100(:).^2))); 
    ExV_0 = sum(sum((window_0-d_bar_0).*(psf_100-h_bar)/m^2)); 
 

    image_PC_0(its,i) = ExV_0/(sig_0*sig_h); 
    Keep_image_PC_0(its,i) = ExV_0/(sig_0*sig_h)>threshold; 
     
    correlator_0 = sum(sum(((window_0-B_0)./sig_0).*(psf_100./(sq_sum_hsq)))); 
 

    store_correlator_0(its,i) = correlator_0; 
     
    sig_Pfa_Mfc = std(store_correlator_0(:)); 
    threshold_mfc = 6.06*sig_Pfa_Mfc; 
     
    detect_corr_0(its,i) = ((correlator_0) > threshold_mfc); 



    end 
    temp1=store_correlator_0(:,i); 
    MFC_output_0(i)=max(temp1); 
     
    temp2=image_PC_0(:,i); 
    PCC_output_0(i)=max(temp2); 
    end 
  
h_0_done=1 
 

Section 4 - Matched Filter/Correlator for H1 
 for i = 1:T 
     
    data_1 = poissrnd(k_bar.*psf + B_true); 
    window_1 = data_1(cy-m/2+1:cy+m/2,cx-m/2+1:cx+m/2); 
    B_1 = median(window_1(:)); 
    d_bar_1 = mean(window_1(:)); 
    sig_1 = std(window_1(:)); 
    point_detector_1(i)=(window_1(m/2+1,m/2+1)-B_1)/sig_1; 
    for its=1:T2 
psf_100=psf_mat(:,:,its); 
h_bar = mean(psf_100(:)); 
sig_h = std(psf_100(:)); 
sq_sum_hsq=sqrt(sum(sum(psf_100(:).^2))); 
    ExV_1 = sum(sum((window_1-d_bar_1).*(psf_100-h_bar)/m^2)); 
 

    image_PC_1(its,i) = ExV_1/(sig_1*sig_h); 
    Keep_image_PC_1(its,i) = ExV_1/(sig_1*sig_h)>threshold; 
     
    correlator_1 = sum(sum(((window_1-B_1)./sig_1).*(psf_100./sq_sum_hsq))); 
 

    store_correlator_1(its,i) = correlator_1; 
 

    detect_corr_1(its,i) = ((correlator_1) > threshold_mfc); 
     
    combined_PCC(its,i) = (Keep_image_PC_1(its,i)+0.00001).*image_PC_1(its,i); 
    combined_MFC(its,i) = (detect_corr_1(its,i)+0.00001).*store_correlator_1(its,i); 
    end 
      
    temp1=store_correlator_1(:,i); 
    MFC_output_1(i)=max(temp1); 
    idx_1(i)=find(temp1==max(temp1)); 
     
    temp2=image_PC_1(:,i); 
    PCC_output_1(i)=max(temp2); 



    idx_2(i)=find(temp2==max(temp2)); 
 

    temp2x=combined_PCC(:,i); 
    PCC_output_1x(i)=max(temp2x); 
    idx_2x(i)=find(temp2x==max(temp2x)); 
 

    temp1x=combined_MFC(:,i); 
    MFC_output_1x(i)=max(temp1x); 
    idx_1x(i)=find(temp1x==max(temp1x)); 
 end 
 

h_1_done=1 
 

MFC_avg_ro_est(step)=mean(idx_1)*.001 %estimation of r0 value for MFC 
PCC_avg_ro_est(step)=mean(idx_2)*.001 %estimation of r0 value for PCC 
 

MFC_avg_ro_estx(step)=mean(idx_1x)*.001 %estimation of r0 value for MFC 
PCC_avg_ro_estx(step)=mean(idx_2x)*.001 %estimation of r0 value for PCC 
 

Section 5 - ROC Curves 
PCCm1=mean(PCC_output_1); 
 

PCCm0=mean(PCC_output_0); 
 

PCCs1=std(PCC_output_1); 
 

PCCs0=std(PCC_output_0); 
 

PCC_thresh_max=max(PCC_output_1*50); 
 

PCC_thresh_min=min(PCC_output_0*50); 
 

PCC_step=(PCC_thresh_max-PCC_thresh_min)/10000; 
 

PCC_thresh=PCC_thresh_min:PCC_step:PCC_thresh_max; 
 



PCC_Pd_comb=1-cdf('norm',PCC_thresh,PCCm1,PCCs1); 
 

PCC_Pfa_comb=1-cdf('norm',PCC_thresh,PCCm0,PCCs0); 
 

MFCm1=mean(MFC_output_1); 
 

MFCm0=mean(MFC_output_0); 
 

MFCs1=std(MFC_output_1); 
 

MFCs0=std(MFC_output_0); 
 

MFC_thresh_max=max(MFC_output_1*50); 
 

MFC_thresh_min=min(MFC_output_0*50); 
 

MFC_step=(MFC_thresh_max-MFC_thresh_min)/10000; 
 

MFC_thresh=MFC_thresh_min:MFC_step:MFC_thresh_max; 
 

MFC_Pd_comb=1-cdf('norm',MFC_thresh,MFCm1,MFCs1); 
 

MFC_Pfa_comb=1-cdf('norm',MFC_thresh,MFCm0,MFCs0); 
 

PD_m1=mean(point_detector_1); 
 

PD_m0=mean(point_detector_0); 
 

PD_s1=std(point_detector_1); 
 

PD_s0=std(point_detector_0); 
 

PD_thresh_max=max(point_detector_1*50); 
 



PD_thresh_min=min(point_detector_0*50); 
 

PD_step=(PD_thresh_max-PD_thresh_min)/10000; 
 

PD_thresh=PD_thresh_min:PD_step:PD_thresh_max; 
 

Pd_short=1-cdf('norm',PD_thresh,PD_m1,PD_s1); 
 

Pfa_short=1-cdf('norm',PD_thresh,PD_m0,PD_s0); 
 

plot(log10(Pfa_short),Pd_short,'g') 
title('Point Detector ROC Curve', 'fontsize', 20); 
ylabel('P_{detection}') 
xlabel('Log 10 P_{false alarm}') 
 

plot(log10(MFC_Pfa_comb),MFC_Pd_comb,'r') 
title('MFC ROC Curve', 'fontsize', 20); 
ylabel('P_{detection}') 
xlabel('Log 10 P_{false alarm}') 
 

plot(log10(PCC_Pfa_comb),PCC_Pd_comb,'b') 
title('PCC ROC Curve', 'fontsize', 20); 
ylabel('P_{detection}') 
xlabel('Log 10 P_{false alarm}') 
 

plot(log10(PCC_Pfa_comb),PCC_Pd_comb,'b',log10(MFC_Pfa_comb),MFC_Pd_comb,'r',lo
g10(Pfa_short),Pd_short,'g') 
title('Detectors Comparison ROC Curve', 'fontsize', 20); 
legend('Pearsons Correlation Coefficient','Matched Filter','Point Detector', 
'location','SouthWest') 
ylabel('P_{detection}') 
xlabel('Log 10 P_{false alarm}') 
end 
 

 



A.2)  Measured Data MATLAB Code 

Section 1 - Variable Setup & PSF defined 
T = 1000; %number of trials 
T2 = 50; %number of r0 steps increasing by 1 mm per step 
 

m = 100; %number of pixels in one dimension of the window 
cx = m/2; %pixel of x location on PSF 
cy = m/2; %pixel of y location on PSF 
 

data_0_avg = 0; 
for i = 1:1000 
    data_0_avg = data_0_100(:,:,i)+data_0_avg; 
end 
data_0_avg = data_0_avg./1000; 
 

imagesc(data_0_avg) 
colormap('gray') 
colorbar 
 

data_avg = 0; 
for i = 1:1000 
    data_avg = data_100(:,:,i)+data_avg; 
end 
data_avg = data_avg./1000; 
 

imagesc(data_avg) 
colormap('gray') 
colorbar 
 

otf_opt=Make_otf(25,0,m,1,zeros(m,m)); 
 

D=.1; 
 

h_bar = mean(psf_100(:)); 
sig_h = std(psf_100(:)); 
sq_sum_hsq=sqrt(sum(sum(psf_100(:).^2))); 
threshold = 3/m; %3 Standard Deviations 
 

h_0=zeros(m,m); %MxM array of background 



 

Section 2 - Images 
imagesc(h_0) %image of background 
title('Background Image'); 
colormap ('gray'); 
 

imagesc(psf_100) %image of PSF 
title('PSF'); 
colormap ('gray'); 
 

Section 3 - Matched Filter/Correlator for H0 
 for its=1:T2 
% %  
%  
r0=.001*its; 
otf_atm = Make_long_otf(D/2,2*D/m,m,r0); 
% %  
psf_mat(:,:,its)=real(fftshift(ifft2(otf_opt.*fftshift(otf_atm)))); 
                       
 end 
for i = 1:T 
     
    data_0 = data_0_100(:,:,i); 
    window_0 = data_0(cy-m/2+1:cy+m/2,cx-m/2+1:cx+m/2); 
    B_0 = median(window_0(:)); 
    d_bar_0 = mean(window_0(:)); 
    sig_0 = std(window_0(:)); 
    point_detector_0(i)=(window_0(m/2+1,m/2+1)-B_0)/sig_0; 
    for its=1:T2 
psf=psf_mat(:,:,its); 
h_bar = mean(psf(:)); 
sig_h = std(psf(:)); 
sq_sum_hsq=sqrt(sum(sum(psf(:).^2))); 
    ExV_0 = sum(sum((window_0-d_bar_0).*(psf-h_bar)/m^2)); 
 

    image_PC_0(its,i) = ExV_0/(sig_0*sig_h); 
    Keep_image_PC_0(its,i) = ExV_0/(sig_0*sig_h)>threshold; 
     
    correlator_0 = sum(sum(((window_0-B_0)./sig_0).*(psf./(sq_sum_hsq)))); 
 

    store_correlator_0(its,i) = correlator_0; 
     
    sig_Pfa_Mfc = std(store_correlator_0(:)); 
    threshold_mfc = 4.2357*sig_Pfa_Mfc; 



     
    detect_corr_0(its,i) = ((correlator_0) > threshold_mfc); 
    end 
    temp1=store_correlator_0(:,i); 
    MFC_output_0(i)=max(temp1); 
     
    temp2=image_PC_0(:,i); 
    PCC_output_0(i)=max(temp2); 
end 
 

Section 4 - Matched Filter/Correlator for H1 
 for i = 1:T 
     
    data_1 = data_100(:,:,i); 
    window_1 = data_1(cy-m/2+1:cy+m/2,cx-m/2+1:cx+m/2); 
    B_1 = median(window_1(:)); 
    d_bar_1 = mean(window_1(:)); 
    sig_1 = std(window_1(:)); 
    point_detector_1(i)=(window_1(m/2+1,m/2+1)-B_1)/sig_1; 
    for its=1:T2 
psf=psf_mat(:,:,its); 
h_bar = mean(psf(:)); 
sig_h = std(psf(:)); 
sq_sum_hsq=sqrt(sum(sum(psf(:).^2))); 
    ExV_1 = sum(sum((window_1-d_bar_1).*(psf-h_bar)/m^2)); 
 

    image_PC_1(its,i) = ExV_1/(sig_1*sig_h); 
    Keep_image_PC_1(its,i) = ExV_1/(sig_1*sig_h)>threshold; 
     
    correlator_1 = sum(sum(((window_1-B_1)./sig_1).*(psf./sq_sum_hsq))); 
 

    store_correlator_1(its,i) = correlator_1; 
 

    detect_corr_1(its,i) = ((correlator_1) > threshold_mfc); 
     
    combined_PCC(its,i) = (Keep_image_PC_1(its,i)+0.00001).*image_PC_1(its,i); 
    combined_MFC(its,i) = (detect_corr_1(its,i)+0.00001).*store_correlator_1(its,i); 
    end 
      
    temp1=store_correlator_1(:,i); 
    MFC_output_1(i)=max(temp1); 
    idx_1(i)=find(temp1==max(temp1)); 
     
    temp2=image_PC_1(:,i); 
    PCC_output_1(i)=max(temp2); 



    idx_2(i)=find(temp2==max(temp2)); 
 

    temp2x=combined_PCC(:,i); 
    PCC_output_1x(i)=max(temp2x); 
    idx_2x(i)=find(temp2x==max(temp2x)); 
 

    temp1x=combined_MFC(:,i); 
    MFC_output_1x(i)=max(temp1x); 
    idx_1x(i)=find(temp1x==max(temp1x)); 
 end 
 

MFC_avg_ro_estx=mean(idx_1x)*.001 %estimation of r0 value for MFC 
PCC_avg_ro_estx=mean(idx_2x)*.001 %estimation of r0 value for PCC 
 

Section 5 - ROC Curves 
PCCm1=mean(PCC_output_1); 
 

PCCm0=mean(PCC_output_0); 
 

PCCs1=std(PCC_output_1); 
 

PCCs0=std(PCC_output_0); 
 

PCC_thresh_max=max(PCC_output_1); 
 

PCC_thresh_min=min(PCC_output_0); 
 

PCC_step=(PCC_thresh_max-PCC_thresh_min)/10000; 
 

PCC_thresh=PCC_thresh_min:PCC_step:PCC_thresh_max; 
 

PCC_Pd_comb=1-cdf('norm',PCC_thresh,PCCm1,PCCs1); 
 

PCC_Pfa_comb=1-cdf('norm',PCC_thresh,PCCm0,PCCs0); 
 

MFCm1=mean(MFC_output_1); 



 

MFCm0=mean(MFC_output_0); 
 

MFCs1=std(MFC_output_1); 
 

MFCs0=std(MFC_output_0); 
 

MFC_thresh_max=max(MFC_output_1); 
 

MFC_thresh_min=min(MFC_output_0); 
 

MFC_step=(MFC_thresh_max-MFC_thresh_min)/10000; 
 

MFC_thresh=MFC_thresh_min:MFC_step:MFC_thresh_max; 
 

MFC_Pd_comb=1-cdf('norm',MFC_thresh,MFCm1,MFCs1); 
 

MFC_Pfa_comb=1-cdf('norm',MFC_thresh,MFCm0,MFCs0); 
 

PD_m1=mean(point_detector_1); 
 

PD_m0=mean(point_detector_0); 
 

PD_s1=std(point_detector_1); 
 

PD_s0=std(point_detector_0); 
 

PD_thresh_max=max(point_detector_1); 
 

PD_thresh_min=min(point_detector_0); 
 

PD_step=(PD_thresh_max-PD_thresh_min)/10000; 
 



PD_thresh=PD_thresh_min:PD_step:PD_thresh_max; 
 

Pd_short=1-cdf('norm',PD_thresh,PD_m1,PD_s1); 
 

Pfa_short=1-cdf('norm',PD_thresh,PD_m0,PD_s0); 
 

plot(log10(Pfa_short),Pd_short,'g') 
title('Point Detector ROC Curve', 'fontsize', 20); 
ylabel('P_{detection}') 
xlabel('Log 10 P_{false alarm}') 
 

plot(log10(MFC_Pfa_comb),MFC_Pd_comb,'r') 
title('MFC ROC Curve', 'fontsize', 20); 
ylabel('P_{detection}') 
xlabel('Log 10 P_{false alarm}') 
 

plot(log10(PCC_Pfa_comb),PCC_Pd_comb,'b') 
title('PCC ROC Curve', 'fontsize', 20); 
ylabel('P_{detection}') 
xlabel('Log 10 P_{false alarm}') 
 

plot(log10(PCC_Pfa_comb),PCC_Pd_comb,'b',log10(MFC_Pfa_comb),MFC_Pd_comb,'r',lo
g10(Pfa_short),Pd_short,'g') 
title('Detectors Comparison ROC Curve', 'fontsize', 20); 
legend('Pearsons Correlation Coefficient','Matched Filter','Point Detector', 
'location','NorthWest') 
ylabel('P_{detection}') 
xlabel('Log 10 P_{false alarm}') 
 

Section 6 - Comparing MFC vs PPCC 
PD - PSF 
EPd = mean(image_PC_1(:)); 
sig_Pd = std(image_PC_1(:)); 
EPd_Mfc = mean(store_correlator_1(:)); 
sig_Pd_Mfc = std(store_correlator_1(:)); 
 

Pd_PCC = 1-cdf('norm', 3/m, EPd, sig_Pd) % Probability of Detection with 3 std 
Pd_MFC = 1-cdf('norm', 4.2357*sig_Pfa_Mfc, EPd_Mfc, sig_Pd_Mfc) % Probability of 
Detection to match PCC 
PFA - H_0 
PCC_False_Alarms = sum(Keep_image_PC_0(:) == 1) 



MFC_False_Alarms = sum(detect_corr_0(:) == 1) 
 

PCC_Detections = sum(Keep_image_PC_1(:) == 1) 
MFC_Detections = sum(detect_corr_1(:) == 1) 
 

EPfa_PCC = mean(image_PC_0(:)); 
sig_Pfa_PCC = std(image_PC_0(:)); 
EPfa_MFC = mean(store_correlator_0(:)); 
sig_Pfa_MFC = std(store_correlator_0(:)); 
 

Pfa_PCC = 1-cdf('norm', 3/m, EPfa_PCC, sig_Pfa_PCC) % Probability of False Alarm 
with 3 std 
Pfa_Mfc = 1-cdf('norm', 4.2357*sig_Pfa_MFC, EPfa_MFC, sig_Pfa_MFC) % Probability of 
False Alarm to match PCC 
 

 

 

 

 

 

 

 

 

 

 

 

 



A.3)  Make_Long_OTF MATLAB Code 

function [otf] = make_long_otf(r1,dx,si,ro) 
% [otf,apeture] = make_long_otf(r1,dx,si,ro); 
% r1 is the radius of the receiver apertue in units of centimeters 
% dx is chosen so that the number of pixels in your source array is 
% greater than 4 times the number of pixels in your aperture radius 
% si is the number of pixels across the array 
% si*dx>4*r1 
% dx>4*r1/si 
% ro is the seeing parameter of the atmosphere the effect aperture 
diameter 
% of the atmosphere for resolution purposes 
  
mi = floor(si/2); 
mi=mi+1; 
otf = zeros(si,si); 
for i = 1:si 
  
for j = 1:si 
  
dist = sqrt((i-mi)^2+(j-mi)^2); 
if(dist<=2*r1/dx) 
  
otf(i,j)=exp(-3.44*((dist/(ro/(dx)))^(5/3))); 
  
end  
end 
end 
end 
 
 
 
 
 
 
 
 



A.3)  Make_OTF MATLAB Code 

function [otf,apeture] = make_otf(r1,r2,si,scale,phase) 
% [otf,apeture] = make_otf(r1,r2,si,scale,phase); 
  
mi = floor(si/2); 
mi=mi+1; 
apeture = zeros(si,si); 
for i = 1:si 
  
for j = 1:si 
  
dist = sqrt((i-mi)^2+(j-mi)^2); 
if(dist<=r1) 
  
if(dist>=r2) 
apeture(i,j) = 1; 
  
end 
end  
end  
end 
  
pupil = apeture.*cos(phase) + sqrt(-1)*apeture.*sin(phase); 
psf = real(fft2(pupil).*conj(fft2(pupil)));  
psf = scale*psf/sum(sum(psf)); 
  
otf = fft2(psf); 
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