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Abstract 

This research explores the implementation of a "medium fidelity" radar 

simulation using the Entity-Component-System (ECS) architecture. The radar 

implemented mimics the fundamental characteristics of entities in the open-source Mixed 

Reality Simulation Platform (MIXR) project, supporting real-time interaction.  Previous 

research has shown the potential benefits of using an ECS-based architecture to support 

improved execution performance relative to Object-Oriented Programming (OOP) 

approaches, thus improved real-time interaction requirements [1], [2]. This research 

implements a well-documented radar model that supports the development of soft real-

time human-based interaction simulations [3]. The radar system modeled in this research 

mimics the "out-of-the-box" fidelity defined in the OOP-based MIXR architecture [4]. 

This research creates components (i.e., data) to represent antenna patterns, target cross-

sections, and emissions. The systems (i.e., computer logic or behavior) create and 

compute so-called "emission" data processed in phases that represent initial transmission 

and reception. Validation of the model was accomplished by creating test scenarios and 

comparing outputs with calculated values. 
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DESIGNING AND BUILDING A RADAR SIMULATION USING THE ENTITY 

COMPONENT SYSTEM 

 

I.  Introduction 

1.1 Background 

 Object-Oriented Programming (OOP) has been the central programming 

paradigm used and taught in software development. Data-Oriented Programming (DOP), 

a less popular, well-established programming paradigm, reduces computer code 

complexity and improves execution performance. DOP has gained popularity through the 

use of Entity-Component-System (ECS), an architecture based on DOP principles, in-

game development. The ECS architecture is famous in the gaming world, as it has proven 

itself to be influential in the development of high quality, efficient game engines [5]. 

Many believe that this architecture could be used in other fields besides games to 

improve software performance and software aging [6]. 

 High fidelity radar simulations are computationally expensive and must become 

more efficient to improve usability [7]. The expense is not a problem unique to radar 

simulations, but it shows a need for efficient simulation design across many domains. 

Studies have shown that developing simulations with the ECS architecture could improve 

computational efficiency [2], [8]. While these studies are helpful and necessary, a full 

simulation is different from an experiment because problems can occur in a real 

simulation unseen in the experiments. The problems would most likely be large design 

patterns or behaviors unique to simulations seen in the composition of concepts rather 

than these concepts isolated in an experiment. 
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1.2 Problem Statement 

ECS is an organizational design pattern or architecture used in games to improve 

games' execution and maintainability. Through the lens of software design, games and 

simulation have much in common, but unlike gaming, the simulation world has not seen a 

practical ECS architecture implementation [2]. Studies show the proposed benefit of 

using the ECS architecture in the simulation world instead of OOP, but no practical 

military simulation exists to legitimize the architecture's use [2], [8]. Experimental 

research reveals the use in a controlled environment, but an implementation can show 

how the architecture works under real conditions, giving it more legitamcy to be 

implemented in the real word [9]. This research investigates the use of this pattern to 

model a radar system that supports military simulations. 

1.3 Research Questions 

This research hopes to answer the following questions regarding the use of the 

ECS architecture in a simulation:  

• Can a radar simulation be implemented using ECS at the same fidelity as 

the MIXR package? 

• Can this model be implemented with a pure ECS architecture? 

• How can cross-system communication be avoided in the ECS architecture 

to promote strong decoupling? 

• Does tension exist between a pure ECS design and the granularity of 

systems and components? 
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This research answers these questions to understand ECS's use within a 

simulation system. The questions should show the strengths and weaknesses of ECS with 

simulations, provide a reputable source for more knowledge on the subject, and provide a 

way to increase software effectiveness in the military and other domains. 

1.4 Research Goals 

This research designs and builds a radar simulation organized using the ECS pattern. ECS 

is a fundamentally different data-oriented computer science pattern from Object-Oriented 

Programming (OOP) approaches to software design. It was defined and is used in the gaming 

world to construct games that consist of hundreds, if not thousands, of interactive entities. 

1.6 Contributions 

 This thesis contributes to the fields of: 

• Modeling & Simulation: ECS is a commonly used architecture in games that has 

scarcely been implemented in simulations. There is active research to move ECS 

into simulations, but the literature is limited [10], [11]. This research directly 

impacts the modeling and simulation fields for military simulations. 

• Software Design: This research evaluates the advantages and disadvantages of 

using an ECS in a real, interactive simulation. The application of this architecture 

clarifies the areas that it performs well. 

1.5 Hypothesis 

The expected result is a working simulation that executes faster (than a 

comparable OOP design) and easily integrates with other represented aspects typically 

modeled in a military domain (e.g., a flight dynamics model to control movement). The 
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expected experimental results are better execution performance (due to data 

organization), especially as the number of represented entities grows.  

1.7 Thesis Overview 

This thesis divides into five chapters. Chapter II provides background information 

about the programming concepts and tools to develop the simulation and relevant 

background on the radar system. Chapter III covers the characteristics and design of the 

simulated model. It considers the MIXR program and its characteristics and the 

applications of many concepts introduced in Chapter II. Chapter IV discusses the 

simulation structure, implementation of MIXRs characteristics, consideration of design 

decisions, and subjective analysis of the ECS architecture in simulations. Chapter V is a 

summary of the research and details future applications. 
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II. Background 

2.1   Overview 

This chapter describes the different architectures applied, the programming 

language used, and a radar simulation background.  

2.2   Radar 

This section covers a high-level overview of radar. The purpose is to cover the 

aspects of radar that are necessary to understand this research. Radar is an acronym for 

the term "radio detection and ranging" and is described by in the following quote: 

"A radar is an electrical system that transmits radio-frequency (RF) 

electromagnetic (EM) waves toward a region of interest and receives and detects 

these EM waves when reflected from objects in that region" [12]. 

This quote identifies two areas of interest that the background research covers: the radar 

itself and the environment in which it interacts. This research is not concerned with 

modeling every aspect of a radar system in great detail; only a few components of a radar 

system are modeled, covered later in this section.  

The environment is the system outside of the radar where electromagnetic (EM) 

waves and other entities exist. Most of the simulation is responsible for simulating the 

behaviors and interactions of these entities and waves.  

Two subsections follow: an overview of how EM waves carry information and 

how the radar interacts and uses that information. 
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Figure 1. The radar system interacting with the environment [12]. 

2.2.1   Environment 

The radar system interacting with the environment in Figure 1 provides a 

visualization of a basic radar. The antenna emits an EM wave that reflects off the target 

back to the antenna. The rain cloud is an essential feature because it introduces the idea 

that its environment affects the signals propagating or passing through it. The 

environment contains many random EM waves (e.g., noise). Principle of Modern Radar 

notes that any object "with a temperature above absolute zero will be radiating EM waves 

at, collectively, almost all frequencies" [12]. In addition to noise, the EM wave reflects 

off many objects, not just the target, producing other signals that the antenna picks up. 

These various reflections are known as clutter and might be an essential aspect of the 
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environment. A model must also consider the EM wave's interaction with the 

environment. This paper divides this interaction into two categories: EM wave 

propagation in terms of transmission and reflection. Both are covered, but understanding 

EM waves are necessary to model the interactions. 

2.1.1.1   Electromagnetic Radiation 

An electromagnetic wave is a self-propagating wave made up of an electric field 

and magnetic field perpendicular to one another [12]. Each field creates the other with a 

little less energy until the entire wave dissipates. The self-propagation allows it to move 

through space at the speed of light, c. Many different properties can describe an EM 

wave, but this research focuses on wavelength, λ; frequency, f; and intensity, Q. Intensity 

can be modeled by Equation 2. 

 𝑄 =  
𝑃𝑡

4𝜋𝑅2
 Eq. 1 

Pt is the transmitted power, and R is the distance from the antenna. An EM wave can be 

modeled in a simulation by the above variables. 

An EM wave is unique to the model because of its speed. An EM wave moves at 

a fixed rate of 3.0 × 108 𝑚

𝑠
 , the universal "speed limit," and is the only entity that travels 

at these speeds. Modeling each wave could be possible but modeling them individually at 

a meter resolution would require a fast simulation due to the EM waves' speed. Every 

frame would need to execute within three nanoseconds at this speed, which is fast even 

for a high-end, business computer. Add in that many EM waves exist within an 

environment, and the simulation can soon slow down by trying to model them 

individually. Instead, the EM waves can be abstracted and modeled as groups to allow for 
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a robust simulation that can model more than just EM waves. Abstracting EM waves into 

groups also requires an abstraction of how they interact with the environment as a group 

instead of individually. 

2.2.1.2   Propagation 

This section specifically discusses the propagation of an EM wave through a 

medium, not including clutter. EM wave propagation can become detailed, but this 

section serves as a basic overview of topics necessary to understand the simulation's 

functionality. The medium that an EM wave travels through has different mechanisms, 

some of which can exist simultaneously, affecting the EM waves travel. Examples of 

these mechanisms are atmospheric absorption, atmospheric refraction, or surface 

multipath. [12]. Each of these mechanisms contributes to the EM wave model. 

Atmospheric absorption is an example that shows these factors. An EM wave is 

attenuated, or loses amplitude, through an atmosphere. The attenuation is dependent on 

two factors: absorption and scatter [12]. Absorption occurs when objects within the 

atmosphere absorb energy, in the form of heat, from the EM wave [12]. Scatter occurs 

when a particle reflects the EM wave away from the receiver [12]. The behavior of an 

EM wave changes depending on either the presence or the precision of these factors. It 

could also add in different types of conditions to the same scenario. These would change 

the EM wave's behavior and, ultimately, the signal the radar would receive. 

2.2.1.3   Reflection 

Reflection is a complex phenomenon with many factors. This section only focuses 

on the result of the EM wave's interaction with a target. This research assumes that a 

target is an object of interest. Reflections from features in the environment are considered 
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clutter. At first glance, it may seem sensible to add in the physics for the target's 

response, but adding these can be complex and unnecessary [13]. The goal is not a 

simulation to find the radar-cross-section (RCS) of a target but to simulate one already 

found. 

Reflection can be represented through many different levels of detail, which 

makes the concept difficult to understand. From a general perspective, a wave is scattered 

in all directions, mimicking an asymmetrical gain pattern. Representing this scatter in all 

directions is complicated and depends on the fidelity required of the model. Looking at a 

reflection as a function of the incident angle is much easier and can still represent an 

object's real RCS [13].  

2.2.2   Radar Components 

 This section covers the physical components of a radar and how the radar 

interacts with EM waves. 

2.2.2.1   Radar Architecture 

 A radar is made up of a transmitter, receiver, antenna, and signal processor. 

Figure 1 shows the components of the radar in a simple format [12]. While Figure 1 

contains more components than described, this research abstracts the mixer component 

because its unessecary to represent the desired behaviour. Radars can be configured in 

many ways, but this paper focuses on a monostatic radar (e.g., a radar with the transmitter 

and receiver connected to the same antenna). These types of radars traditionally use 

pulsed radar, a radar that transmits EM waves in pulses. The length of a pulse is defined 

by the pulse width, τ, and is typically 0.1 to 10 microseconds [12]. Understanding the 

speed at which the pulses are transmitted, in conjunction with the previous discussion on 
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EM waves, one can see how the model can be slowed down by many EM waves in a 

short amount of time and the need for abstraction. 

2.2.2.2   Signal Reception 

A typical radar transmits a pulse for the pulse width duration, and then the 

receiver listens for any reflections. The previous sections cover what occurs in the 

environment during this time, but now the focus must turn to the radar itself. As covered 

in section 2.2.1, the world is full of EM noise. The radar cannot detect which received 

EM waves are related to those it transmitted. Instead, the receiver listens for EM waves 

covering the frequency at which it transmits and tries to differentiate the reflected signal's 

environmental noise. To differentiate a signal from a target and noise from the 

environment, radar designers must create and modify the signal power relative to the 

noise. This ratio is called the signal-to-noise ratio and is vital in detecting targets using 

radar [12]. The radar range equation is a volatile equation that can change to fit the 

radar's need and fidelity. This equation finds the signal-to-noise and signal-to-

interference ratio for the radar. 

 Many factors can also define this how the radar receives EM pulses. Radar can 

measure the target position, polarization, and resolution. These different measurements 

can all be precise if desired but come at the expense of performance. For instance, the 

smaller the radar's resolution, the faster the simulation must process each frame. 

Modeling the smaller details required to represent a finer resolution takes more 

processing power.  
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2.2.2.3   Antenna Gain Pattern 

 One of the critical aspects of radar is the gain pattern. The gain pattern determines 

the area in which an antenna transmits and receives EM waves; in other words, it shows 

the area where an antenna can detect a target. It shows details such as the main lobe and 

side lobes. The main lobe is where most of the antenna's power is directed. The side lobes 

are areas where unintentional radiation is emitted. The invisible nature of EM waves is 

difficult to imagine because they are invisible. In this same way, an antenna covers a 

particular area, and the gain pattern determines the strength or weakness in which an 

antenna transmits or receives a signal at a specific location.  

Since the antenna transmits in a three-dimensional space, the gain pattern is also 

three-dimensional. The gain pattern used to be represented by two-dimensional polar 

graphs conveys the gain pattern, but today, three-dimensional representations are more 

helpful with technology. Figure 2 shows two types of gain patterns: symmetrical and 

asymmetrical. The asymmetrical patterns are more complex and are not widely used in 

radar antennas; instead, the symmetrical ones are preferred to detect and track a target 

more accurately. This accuracy happens because a more definite, precise beam gives a 

better indication of the target's location. 
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Figure 2. Three-dimensional representation of gain patterns [14]. 

2.3   Data-Oriented Programming 

Data-Oriented Programming (DOP) requires a different way of thinking 

compared to a traditional Object Oriented Programmin (OOP). DOP is relatively new and 

does not have as much popularity as other programming paradigms such as OOP, nor 

does it have as much research [15]. Almost every computer science student learns OOP, 

but few learn DOP in college courses. It has gained more popularity due to the 

architectures, such as ECS, organized and based on separating data from programming 

logic or code. Its novelty is not well defined and can have slightly different ideas 

depending on the developer. The best way to understand the general principles of DOP is 

to compare it to OOP. 

2.3.1   Object-Oriented Programming 

 OOP is a paradigm where the programmer focuses on objects. Objects are 

groupings of data and code, or members and methods. Objects, in simple terms, are 
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"grouped code associated with some internal state." [16] The members define this state, 

and the methods change the state.  To correctly design objects, OOP has four essential 

pillars: encapsulation, inheritance, polymorphism, and abstraction [2]. 

Encapsulation hides the details of a system. In OOP, the class structure hides the 

complexity of the members and methods. When presented with an object, a user only 

needs to know how to use it, not the details of how it works. Encapsulation is used to 

achieve abstraction, which is the simplification of a system to its essential parts. 

Continuing with the same example, the interface that the object presents to the user 

would be an abstraction. Abstraction is about presenting the necessary components so 

that an object can be used with encapsulation.  

The principle of inheritance is similar to how inheritance works in the real world. 

An object, called the child, inherits specific methods and members from another object, 

called the parent. Inheritance is a means to implement the last principle, polymorphism.  

Polymorphism occurs when an object can take many forms given the same 

interface (e.g., a shape object changing into a specific triangle, square, or circle). The 

details may be different, but each maintains the essential shape functionality. For 

instance, a circle would have a radius while a square would have a length, but they can 

both be drawn. Each shape could have an individual interface, but this would be 

inconvenient as each shape would have separate implementations, such as drawSquare() 

or drawCircle(). It would be convenient for each object to implement the same draw 

function, then a draw() function can be used without specifying which shape is being 

accessedd. Polymorphism, in this way, can help implement the abstraction principle 

defined earlier. Inheritance is a useful tool to implement polymorphism. Continuing with 
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the shape example, the parent could be a shape, whereas the child would be a specific 

shape. The parent class would create the draw() method, and the children would inherit 

this method and implement it themselves. This allows for the user to create a shape, 

specify the type, and use the same interface for each type, with the possibility of a few 

exceptions. While this is a summary and does not dive into the intricate details of OOP, it 

gives an adequate understanding to compare against DOP. 

2.3.2   Differences of DOP 

 Llopis argues that programming is simply a way of processing data, so it should 

focus on the data itself, not an abstraction of the data as in OOP [16]. The focus on data is 

the core tenant of DOP. Instead of organizing data into objects, DOP organizes data into 

homogeneous groups. The primary, tangible advantage of DOP comes from efficiently 

utilizing cache.  

Because OOP is organized around objects, anytime data from an object needs to 

be accessed, the entire object must be brought into cache even if the whole dataset is 

unneeded. Table 1 shows the storage location of two objects that contain members for 

height and width. Each object is listed as eight bytes long and starts at the lowest listed 

address. 

Table 1 

0x04 0x00 0x14 0x10 

Height Width Height Width 

Object 1 Object 2 
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Table 1 shows how objects are stored together. If the program just modified the width 

data, it would also bring the height into the cache. Instead, DOP emphasizes grouping 

data based on similarities over grouping objects. Table 2 shows the implementation of the 

two objects in DOP format. 

Table 2 

0x40 0x60 0x44 0x64 

Height Width Height Width 

Object 1 Object 2 

 

The two 'objects' are merely an index for two different arrays, a height and width array. 

The member data is stored continuously in memory. An example that shows the 

advantages of DOP would be a change in position. If two objects need to have a position 

change, OOP would separately load each object into cache. The DOP approach would 

simultaneously load both positions and then operate on them, saving both memory and 

time. This DOP principle assumes similar data is usually processed at the same time. For 

instance, DOP assumes that if one object's position changes, then all object's positions 

also change. While this difference may seem subtle, it can have impacts when dealing 

with large amounts of data. This way of processing data is especially helpful in a 

simulation where code execution tends to happen in frames. Typically, updates to all 

entities with similar attributes happen at discrete times within these frames. In the 

position example, the position data for all objects are updated by a certain function. 
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 This organization of code and data is especially beneficial in parallel 

programming. Instead of worrying about modifying objects and race conditions, the 

programmer can see what kind of data is being modified and avoid the race conditions. 

While this does not eliminate the difficulty of parallel programming, it does make it 

easier.  

DOP is a way of thinking that sets up principles for a programmer to use. While a 

programmer can choose to implement it in many ways, architecture can create different 

structures and definitions to create a program. 

2.4   Entity Component System 

 This section will cover the details of ECS. It will cover the structure, history, and 

benefits of using ECS. 

2.4.1   History 

 ECS first became popular in gaming. The Entity-Component architecture, as used 

by Unity, is often confused with ECS [10]. This confusion is due to the lack of 

knowledge and standardization surrounding ECS, which creates difficulty in 

understanding the principles and design of ECS. A discussion of the history of ECS will 

help with understanding its principles and why it was chosen as the focus of this research. 

The four principles of OOP led to several problems in gaming. In her talk Rust for 

Game Development, Catherine West points out a few of these issues [17]. The first is for 

the responsibility of interactions. Catherine asks two questions: if, in a game, a player 

touches another player, which of the two objects initiates the touch? To whom does the 

touch belong? Secondly, inheritance and encapsulation tend to create massive classes that 



17 

contain too much information [18]. Encapsulation causes this problem by requiring extra 

code to be created to handle any extra members. inheritance has a rigidity problem. For 

instance, what happened if a project needed a combination of two different parents? 

Inheritance does not deal with this arrangement easily. In this instance, it led to a type of 

blob class. These classes were bloated with members and methods that were unnecessary, 

and it became a huge resource strain because unnecessary data was being brought into the 

cache.  

The design principle of composition over inheritance became popular to mitigate 

these issues. This design idea stressed creating classes from different components instead 

of inheriting from a parent, whenever possible. While this design method helped, issues 

with decoupling still existed that section 2.4.6 further discusses. Different developers 

started using the ECS architecture around this same time without knowing about the other 

developers' work. While it did not have an official release date, ECS was created to 

implement DOP principles in a clear architecture. Understanding each part of ECS is vital 

to understand how the architecture works. 

2.4.2   Entity 

 An entity is anything that is not part of the environment. For example, in a game, 

an entity could be any object composed of simpler parts, such as a player or monster. The 

entity is a simple concept to link different components together. The entity is similar to 

an object instance in OOP, except that it does not contain any data or methods. In some 

cases, this could be accomplished with an identification number or a name.   
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2.4.3   Component 

 The component is the structure that holds data and is modeled as a struct. The 

data inside the struct is the same as member variables in OOP. They keep the state for the 

different entities; however, the components are stored differently in OOP. Components 

are all stored together in an array instead of storing objects in an array in OOP. This 

storage method allows the data to be manipulated simultaneously and saves on execution 

time, as discussed in the DOP section.  

2.4.4   System 

 Looking at the ECS from the OOP perspective, if the entity is the object 

instantiation and the component is the equivalent of the object's state, then the system is 

the object's methods. In ECS, the system holds code that manipulates and transforms the 

components. Each system has a different focus and allows the designer to determine how 

the systems function. Few, if any, design patterns or standards exist for how to create 

systems. The only guiding principle is that systems are to be kept simple and singular in 

their tasks. The goal should be to operate on as few components as possible to avoid 

bringing too much data into the cache at one time. For instance, a movement system 

would contain the code for transforming the position data based on velocity or 

acceleration. The systems, in most cases, operate on all the components at one time.  

While decoupling does have many benefits, when used in practice, it creates some 

difficulty. It does not allow an entity to know about another. Nor do the systems know 

anything about entities; they only know about raw data, the components. This separation 

makes communication between entities, also known as message passing, difficult. While 

message passing is not impossible, the functionality is limited and is difficult to setup. 
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One of the benefits of the ECS architecture is the ease of parallel programming. 

DOP already improves the parallelization of the code, but the ECS architecture adds to it. 

The clear separation of code and data allows for a more organized way to parallelize 

code. When looking at an EM wave's properties, one system could focus on changing 

position while another would focus on changing power. The two systems can quickly run 

in parallel as they would not change the same data. In OOP, the two systems would 

change the same object and create a race condition that must be accounted for and 

handled.  

2.4.5   Composition 

 Section 2.14.1 introduced that composition is the idea that an entity would be 

composed of multiple components instead of having objects inherit from a parent. 

Composition allows for more flexibility when creating entities. If an entity needs a 

different feature, adding the component is easy and requires no change to a hierarchy. It 

also stops large class structure as entities only contain what they need. The ECS is 

designed around the idea of composition over inheritance and effectively implements it. 

The entities are merely a composition of components. Systems are the way to transform 

and process these components. 

2.4.6   Software Aging 

 Software aging refers to how a codebase changes over time. Software that is 

difficult to maintain and change would age poorly. Software functionality inevitably 

changes, and these changes can create more costs and problems if not designed to age 

well. As software ages and different functionality is required, programmers and designers 

eventually need to change the source code. One aspect of how software is designed that 
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has a large impact on aging is coupling. As defined by the International Standard, 

coupling is the "manner and degree of interdependence between software modules." [19] 

Tight coupling is when modules are highly dependent on one another, meaning that a 

change in one requires a change in the other. When large software programs are tightly 

coupled together, a change in the software has a rippling effect throughout the rest of the 

program. The rippling effect requires a large amount of work for one change. It also 

provides room for errors to occur if one of the dependent components was not 

considered, which is a common problem.  

The DOP and the ECS architecture is designed around the loose coupling. A 

change in one system should not affect the other systems. Neither should a change in one 

entity affect another since the entities know nothing about each other. While both kinds 

of coupling have their strengths and weaknesses, loose coupling is beneficial for software 

aging. ECS is often looked at through the lens of computer performance, but this paper 

also looks at the improvement of software aging. Software aging could significantly 

impact military software in the future, affecting the cost, maintenance, and software 

applications testing. 

2.5   Rust 

Rust is a relatively new systems-level programming language that focuses on 

speed and safety [20]. One of the main advantages of using Rust is the strict code quality 

that it requires. These strict regulations require the programmer to write safe code that 

mitigates data races. The language seeks to find and stop memory errors during 

compilation instead of at runtime. Many popular programming languages, such as Java 
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and C#, use a garbage collector to manage memory automatically, but Rust uses a system 

of ownership [21], [22]. This system does not occur at runtime and is not as expensive as 

a garbage collector; subsequently, making the language just as fast as languages without a 

garbage collector, but arguably, just as safe as those with garbage collection [23]. 

2.5.1   Ownership 

 In Rust, ownership is the system that allows Rust to create a memory-safe 

program without using garbage collection. While the system works for primitive types, 

such as chars and ints, it is mainly built for dynamically allocated classes on the heap. 

This memory is referenced via a pointer. The best way to explain ownership is through an 

example. In this example, a pointer, called str1, is created for a dynamically allocated 

string. Another variable, str2, needs to point to the same string. If a statement such as str2 

= str1 is used, a shallow copy occurs; that is, the pointer is copied to str2. Both variables 

point to the same data, a change in one would mean a change in another. Also, if memory 

is deallocated for one, the other would  become a null pointer. Rust avoids the null 

pointer problem by requiring that once the pointer of str1 is copied to str2, str2 takes 

ownership, and str1 is no longer valid. The pointer is valid when str2 gives str1 

ownership. Rust allows for borrowing within this ownership system. Borrowing allows a 

variable to use the value that another variable owns. In the previous example, if the 

programmer would still like str2 to have access to str1 without taking ownership, then 

str2 could merely borrow the pointer. In this way, both variables can access the data. 

Variables can also do a mutable borrow, although it can make things more complicated. 

Within the same scope, a reference cannot be both mutably and immutably borrowed. 



22 

While multiple immutable borrows can occur in one scope, the compiler limits the scope 

to one mutable borrow. This borrowing system precludes race conditions from occurring, 

especially in parallel code.  

2.5.2   Lifetimes 

Another vital system in Rust is the lifetime system. A lifetime is the "scope for 

which that reference is valid." [24] The main objective is to prevent dangling references, 

a reference that refers to a null value. While the ownership system and borrow checker 

can also prevent dangling references, the lifetime is another defense line that is more 

specific to the problem. Lifetimes exist in other programming languages, but they are 

implicit instead of explicit. In some cases, Rust requires the programmer to define the 

lifetime when it is unclear. The explicit declarations make the idea difficult to understand 

since this explicit definition is unique to Rust. An essential trait of lifetimes is that they 

are relative. A lifetime on its own does not tell the compiler anything. It must have 

another variable or term to compare the lifetimes. For instance, if a lifetime of g is 

defined for variables a and b, then the compiler can compare the scopes of the two 

variables and determine the produced behavior. Lifetimes are mostly useful in functions 

when returning references, and the return is dependent on a conditional. In this case, the 

compiler does not know which reference is returned and how the references' scopes relate 

to the returned value. 

2.5.3   Specs Parallel ECS 

SPECS is a Parallel ECS framework for Rust. It includes a few features that make 

it useful: component storage, system framework, and world management. The different 

types of component storage take advantage of RAM and cache efficiency. The two-
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component storage types used in this research are DenseVecStorage and HashMapStorage 

[25]. The former creates two vectors, one for the data and one for the associated entity id. 

Specs documentation explains that DenseVecStorage is best used for bigger components 

than the architecture size and components that are frequently used [25]. Using a 

redirection table, the DenseVecStorage can make bigger components than the architecture 

size efficient for RAM. The HashMapStorage is best used for entity-specific components 

and not used often because the hash insertion is expensive.  

The system framework available in specs is easy to use. It also automatically 

assumes everything runs in parallel, unless multiple systems request write access to the 

same component. This feature is appealing because writing parallel code can be 

challenging. Specs allow for specifying which components each system needs and 

whether it reads or writes to these components.  

World management takes care of the internal data structure's setup and 

maintenance. It also is responsible for holding the dispatcher, which is necessary for 

parallelizing the systems. The dispatcher keeps the systems in check that have 

dependencies so that they can run in parallel. If one system depends on the result of 

another, the dispatcher takes care of the details of running the two systems.  

2.6   Summary 

This chapter covered the basics of a radar system and the environment. It 

discussed the properties of an EM wave and how it interacts with its environment, and the 

radar system's structure. It covered how these different aspects of radar can be modeled in 

different levels of fidelity. Each component of these systems can add or subtract from the 
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fidelity. Many factors can be included and varied in the model to affect this fidelity. 

However, this section was not exhaustive but covered a breadth of different areas to 

represent the problem at hand.  

This chapter was necessary to understand the information and literature that 

supports this research. Without understanding each topic, the research methods and 

results would not make sense. Each topic contributes to the radar model this research 

simulates, the design of which is covered in Chapter 3. 

  



25 

III. Methodology 

3.1 Overview 

The purpose of this section is to describe the radar model for the simulation. The 

intent of the model is to represent radar by implementing certain charterisitcs in ECS. 

First, it introduces the model's fidelity and the Object-Oriented Programming (OOP) 

package characteristics, MIXR, from which it is based. Then it discusses the data 

necessary to represent elements of the model. Finally, an outline of how the model should 

be tested is proposed. 

3.2 Fidelity 

Chapter II demonstrated that radar could be modeled with different levels of detail 

depending on the simulation or study's purpose. The level of detail modeled is called its 

fidelity. As covered in Chapter II, a model can be made to simulate the speed at which an 

EM wave travels and track every wave created by the transmitter. This level of detail 

would slow down execution performance due to the processing and memory 

requirements that it would not achieve to simulate the entire radar process in real time 

[13]. Bowen states, "simple models that provide useful insights are prefered over 

complex models that do not achieve the goals of the model." [26] This model's fidelity 

aims to simplify the radar process to provide useful insights into the different features and 

effects of targets, environment, and radar setup. 

 The model in this research is primarily based on the fidelity described in the 

MIXR package. Outside of the basic radar model outlined in Chapter 2, "out of the box" 

models included with MIXR have six characteristics that this model accounts for:  [4] 
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• Antenna gain pattern as a function of beam angle  

• The range between a source and target(s) 

• The relative velocity between a source and target(s) (i.e., Doppler shift) 

• Electromagnetic characteristics (frequency, pulse width) 

• Target radar cross-section as a function of the relative geometry  

• Electronic countermeasures (i.e., jamming) 

These characteristics are defining factors for the fidelity of the model. Everything else 

in the simulation is made to represent and simulate these characteristics. 

3.3 Radar Process 

 Before understanding this model's different characteristics, understanding the 

stages of radar for this fidelity is necessary. The different states in which the data can 

exist is referred to as a phase, and a transformation marks the beginning and end of a 

phase. A breakdown of these phases from the perspective of radar is necessary to 

understand the model. Using the RRE, all the variables associated with detection are 

shown as follows: 

 
𝑃𝑟 =

𝑃𝑡𝐺𝑡𝐺𝑟𝜆2𝜎

(4𝜋)3𝑅4
 Equation 2 

Where, 

            Pr is the received power in watts 

Pt is the peak transmitted power in watts. 

Gt is the gain of the transmit antenna.  

Gr is the gain of the receive antenna. 

𝜆 is the carrier wavelength in meters. 
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𝜎 is the mean RCS of the target in square meters. 

R is the range from the radar to the target in meters [12] 

These terms are covered in section 2.2. In an OOP based simulation, these variables are 

often represented by objects at different levels of detail. In an ECS design, the systems 

compute the values needed using data defined by the components. The equation 2 is only 

one form of the RRE, and it assumes a collocated transmitting and receiving antennas. 

However, other situations exist with separated antennas, and so a model based on the 

above equation would have a high degree of coupling to one situation. It would not easily 

allow for another situation to be modeled correctly. Rather than using the complete form 

of the RRE to calculate the desired values, it would be better to calculate different aspects 

in phases. 

    The first phase would be the power density, Qi, at the range of the target from the 

transmitting antenna: 

 
𝑄𝑖 =

𝑃𝑡 𝐺𝑡

4𝜋 𝑅2
 Equation 3 

 

This calculation represents the transmitted wave from the perspective of the target. The 

second phase would be the reflection of that perceived wave from the target into the 

environment. This reflected wave is simply the product of the power density at that 

distance and the RCS value of the target: 

 
𝑃𝑟𝑒𝑓𝑙 = 𝑄𝑖𝜎 =  

𝑃𝑡  𝐺𝑡𝜎

4𝜋 𝑅2
 Equation 4 
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From the receiving antenna's perspective, the power received considers the range between 

the target and antenna and the receiving antenna's gain, bringing the model to equation 1. 

 The goal of this simulation is to model the process through these different 

perspectives. This approach should allow for a high degree of decoupling and division of 

labor between the different systems necessary within the ECS architecture. Each system 

is also responsible for transforming the data in each phase without interfering with other 

systems' transformations. As a complete simulation, these systems accurately model the 

six characteristics presented in MIXR. 

3.4 Model Characteristics 

 MIXR is an OOP-based radar simulation framework that allows for radar 

implementation tailored to an intended purpose [4]. A discussion of the six significant 

radar characteristics modeled with MIXR defines a clear methodology for how this 

research's simulation is modeled.   

 The first characteristic addresses an antenna's gain patterns. The antenna gain 

pattern could be modeled by simple shapes like a prism to a highly complex 3D model 

with varying directivity at certain angles. This model's fidelity hopes to achieve a simple 

pattern with the main beam and average sidelobes. 

 The second and third characteristics identify the range and the relative velocity 

between a source and a target, respectively. These characteristics seem straightforward as 

a simple equation could calculate the values; however, this method would not accurately 

model a radar because it does not have perfect information, as these equations require. 
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Instead, these characteristics largely depend on how the EM waves are abstracted. Each 

of these is dependent on data extracted from EM wave detection.  For instance, a radar 

calculates range by measuring the time between when a pulse was sent and when the 

radar detects the pulse's reflection, multiplied by c. The travel time needs to be abstracted 

with the rest of the EM wave and affects these calculations' accuracies. While the 

calculations may be simple, they are tightly coupled with complex abstractions that affect 

how the data is represented. 

 The fourth is an abstraction of EM wave characteristics. The model should 

abstract the number of pulses, time, and reflections of EM waves through this 

characteristic. A transmitter can create many pulses in the span of a few milliseconds, and 

the goal is to simulate them in lumps, which give similar results to real-world effects.  

 The fifth, target radar cross-section (RCS), is a function of relative geometry. 

Similar to the antenna gain pattern, this characteristic can be represented in many 

different ways. A highly detailed approach explores the physics behind reflections and 

scattering to provide a highly accurate RCS. This model represents these detailed 

characteristics through a data file given by the user. It only extracts values calculated 

using these complex methods and applies them. In this way, the model is not responsible 

for the calculations but can still use and represent a high fidelity if necessary. A target has 

a set of values for RCS at certain angles and returns the values illuminated by a radar. 

 The last characteristic to be modeled is electronic countermeasures, otherwise 

known as jamming. This model should be able to emit EM waves that interfere with 

received EM waves. In this way, the transmitting signal does not accurately interpret the 

signals from the environment. 
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3.5 Data 

Along with the characteristics, the model must contain two entities: radar and 

targets at the most basic level. Without these two entities, a radar model cannot exist. An 

analysis of these elements in each stage is important to understand the data necessary to 

represent them. 

The first stage is from the antenna to the target. The antenna has a set of basic 

parameters that must be implemented to characterize the EM waves it would send. This 

data includes power, wavelength, and gain. In this first stage, the data must be combined 

with the environment, range, and power density at the target's location. This stage also 

includes external factors that could impact the transmission of the wave through the 

atmosphere.  

 The second stage includes transforming the data that the target sees from the 

antenna to reflection data. This stage is much different from the last because the data sent 

back needs to be processed individually. Beforehand, the data could be transformed as a 

whole EM wave. Now, the target affects each piece of data differently. The frequency is 

affected by the doppler effect, but this does not affect the reflection wavelength. The RCS 

is affected by the angle representing the EM wave hitting the target, but it does not affect 

any other data. Each piece of data should be processed individually, achieving high 

modularity, thus having little to no effect on other parts of the program if these individual 

transformations do not occur. 

 The third and last stage is the signal reception stage and is similar to the first. In 

this stage, the antennas receive the EM waves from the environment and produce some 

output. As this is a simulation, the systems may contain perfect information, but the 
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received data should not reflect this. Instead, this model should accurately reflect a real 

radar situation. The data that is written to the antennas reflects this information. 

3.6 Testing 

 This simulation needs to be tested to validate that it calculates the correct values. 

Testing is implemented using the Rust testing methods. These methods allow for unit, 

documentation, and integration testing. The unit tests are responsible for testing the 

functions basic functions that calculate values, such as a target's RCS or whether two 

objects have collided. The integration tests check that the interaction between larger 

systems produces the correct values. For instance, an integration test would check that a 

correct reflection was created after a target is illuminated. This research does not include 

documentation testing. 

3.7 Summary 

 This section covered the design of the radar model and characteristics to be 

implemented. It showed how radar will be modeled by examing the process of radar and 

how it can be divided into data structure and processes. While many implementations 

could have been chose, the characteristics were chosen from a proven radar model that 

served as a good basis to create a ECS based simulation. 
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IV.  Results and Analysis 

4.1 Overview 

This chapter presents and analyzes the the program structure. A discussion 

regarding the structure of the program is covered first. It is also necessary to cover the 

reasoning behind many design decisions, exposing underlying patterns within ECS and 

the benefits and pitfalls of the architecture. Finally, the results of the testing are analyzed 

to review the efficacy of the model. 

Table 3. Components and their attributes 

Position EMWave 

Variable Type Variable Type 

x 32-bit float azimuth_width 32-bit float 

y 32-bit float elevation_width 32-bit float 

z 32-bit float frequency 32-bit float 

direction 32-bit float power 32-bit float 

Illumination wavelength 32-bit float 

Variable Type Velocity 

angle 32-bit float Variable Type 

rcs 32-bit float x 32-bit float 

frequency 32-bit float y 32-bit float 

power 32-bit float z 32-bit float 

wavelength 32-bit float Target Illumination 

Antenna Variable Type 

Variable Type illumination Vec<Illumination> 

azimuth_width 32-bit float RCS 

elevation_width 32-bit float Variable Type 

frequency 32-bit float angles Vector<f32> 

power 32-bit float values Vector<f32> 

wavelength 32-bit float avg_rcs 32-bit float 

gain 32-bit float     
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4.2 Program Structure 

 For this program, the structure can be explained by examining the entities, 

components, and systems. Following the principles of DOP, beginning with the data is 

the best way to approach the structure. Table 3 depicts component data and how they are 

organized. For instance, the position component is made of x, y, and z variables that are a 

32-bit float type. 

 Each of these components makes the different entities. Table 4 depicts the entities 

created for this simulation and the components attributed to each.  

Table 4. Entities and their components 

Radar Target 

Antenna Position 

Position RCS 

EM Pulse Target Illumination 

EM Wave Velocity 

Position Antenna 

 

 While the components merely make up the model's data, the design's central 

portion comes from the transformations. Table 5 depicts the systems and the components 

involved in each. These systems run in a specific order (at 60 Hz), a framerate standard 

for simulations. A short discussion of these systems provides a clear understanding of the 

simulation's functionality. 
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Table 5. Systems and the components they use 

Transmit Signal InteractionDetection 

Read Write Read Write 

Antenna EMWave Position TargetIllumination 

Position Position EMWave  
RCSSystem RCS  

Read Write DopplerShiftSystem 

RCS TargetIllumination Read Write 

JammingSystem Velocity TargetIllumination 

Read Write ReflectionSystem 

TargetIllumination EMWave Read Write 

Antenna Position TargetIllumination EMWave 

Movement  TargetIllumination 

Read Write  Position 

Velocity Antenna    

 Position     

 

 The transmit signal is a system that creates an EM wave entity. The interaction 

detection system uses the created EM wave and checks for a collision with any entity that 

has an RCS component. If a collision occurs, it creates a target illumination component.  

 Once a target has an illumination, the RCS and doppler shift systems apply the 

physical effects to the illumination's RCS and frequency attributes. If a jammer exists, the 

jamming system creates an EM wave designed to interfere with the receiver that created 

the initial wave. At the same time, the reflection system creates a reflected EM wave.  

 Next, the antenna receiver system runs. This system is like the interaction 

detection system but runs from the perspective of the receiving antenna. Any reflections 

that it picks up flow through the radar system. Finally, the movement system transforms 

the position of each component based on velocity or rotation values. 
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4.3 Implementing Model Characteristics 

This section discusses and analyzes the implementation of each of the characteristics 

through the lens of the program's structure. The abstraction of electromagnetic 

characteristics was implemented first. The EM wave was created as an entity with a 

single component. The component captures the attributes of a single EM wave such as 

frequency, wavelength, and power. It represents multiple pulses as an emission. Each of 

these attributes could have been abstracted into different components to create one entity, 

making parallelization easier, however, it would make detection interactions and 

illuminations more difficult. The entity, not one component, is responsible for the 

interaction. Splitting into components and giving one attribute responsibility would not 

reflect the behavior of a real EM wave. As discussed later in this chapter, the 

illuminations must be stored differently and not as components. Recording the 

illumination would not be possible with this storage solution.  

An antenna's gain pattern as a function of beam angle was implemented through the 

antenna and a data file. The data file describes the gain at a given angle for the antenna. 

The systems apply the gain to the EM wave depending on the angle at which it was 

transmitted or received. 

The range between the targets is derived from the power level that the antenna 

receives and the abstracted time that it takes to move between the two entities. The 

simulation has perfect information about the range, but this method is used to provide a 

more accurate model as this is how a real radar calculates range. 

The Doppler shift system calculates the Doppler shift of the reflections. This system 

reads an illumination and calculates the relative velocity of the two entities. The velocity 
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can then be used to find the frequency of the reflected EM wave. This new frequency is 

written in the illumination. 

 The RCS of a target is variable depending on the angle at which a target was 

illuminated. Variable RCS was achieved through a method of mixing the doppler shift 

and gain pattern methods. The RCS is gathered from a data file that describes the RCS 

for each given angle like the gain pattern. The value is then applied to the illumination 

like the doppler shift. 

Finally, the last characteristic, electronic countermeasures, was easy to implement 

by adding a system before the reflections were created. If the target had an antenna and 

had an illumination, another EM wave would be transmitted to counter the reflected EM 

wave's signal.  

4.4 Design Analysis 

 This section analyzes the ability to base a real simulation on the ECS architecture. 

Many avenues existed to implement the model, with some fitting into the ECS 

architecture better than others. As in the design of Polyphony, a graphical user interface 

based on ECS, many issues arose with the implementation that could be mitigated by a 

less refined ECS design [27]. Collisions, data representation, processing methods, and 

modularity are three major topics that emerged, showing the advantages and 

disadvantages of ECS.  

4.4.1 Collisions 

One of the most challenging tasks in this design was creating the collision system. 

As described in section 2.4.4, systems are independent and passing information between 
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them is difficult. This independence makes collision systems difficult because they must 

pass information. Implementing this system highlights a major issue with ECS: cross-

system communication [28].  

 The collisions of interest include the EM wave and target and the EM wave and 

antenna. In any given collision, two events must occur: detection of the collision and a 

response to the collision. In a more straightforward scenario, if a ball collides with a bat, 

the program must detect the ball hitting the bat, then it must bounce the ball off the bat. 

ECS has two principles that make this difficult: division of labor and decoupling.  

The first is more of an implicit principle derived from the idea of efficiently using 

cache. Division of labor is a term used to capture the idea of breaking up the processing 

into simple tasks through different systems. Ideally, systems should be working with as 

few components as possible to accomplish simple tasks [2]. If a system is created to do 

complex tasks, it likely works on many components, which is contradictory to one of the 

main advantages of ECS and DOP, cache efficiency. If the cache tries to bring in too 

many components, it does not have enough memory to store them and result in a cache 

miss, which ECS is designed to avoid. While a complex system with multiple tasks and 

few components may be possible, this principle exists because it is not likely. Systems 

should not be designed to accomplish the most work possible; instead, they should aim to 

have as few components as possible. If a system has too many components and overloads 

the cache, the benefit of ECS is lost. For this implementation, creating an entire system 

for collisions can be complex. This division is difficult because of decoupling. Instead, 

dividing up the detection and response into different systems would be the correct 

approach.  
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Decoupling is an explicit principle that calls for independence between systems 

and entities. Entities do not need to know about other entities, and one system should not 

need to know about another system. Each system is concerned with its component data 

and nothing else, which makes communication between different systems and entities 

difficult.  

Specifically, for this program, when a radar illuminates an entity, the illumination 

must be detected by one system, then a reflection, which is the response, must be created 

by another. This division of the detection and response into two systems is problematic 

because the two cannot communicate about the details of each. The simulation could 

break either the division of labor or decoupling principles to create collisions, but SPECS 

makes this difficult. Breaking decoupling is difficult in SPECS because it has system 

classes that do not allow for any communication type. Breaking the division of labor 

principle is problematic because the system could become overloaded in the future. The 

system would work on five different components and combine four different systems: 

detection, reflections, RCS, and doppler shift. While this implementation is possible, 

caution must be exercised because future development must be considered. The system 

may be reasonable for now, but this design would make it vulnerable to bloating because 

it would contain any features desired that occur between detection and reflection.   

Another avenue that could be taken is to create a component to record the 

illumination. This component would be different from others as it only exists to record 

the collision. One issue exists with this avenue: an entity having multiple components of 

the same type. If a component is created for a collision, then the target must 

accommodate multiple collisions if more than one antenna's gain pattern covers that 
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target. Accommodating multiple components of the same type is not bad programming in 

ECS, the idea is not popular and not recommended, but besides this recommendation by 

the community, it does not have support from SPECS. When two components of the 

same type are added, the framework writes over the component added first with the 

second component. 

With all these considerations in mind, it seemed the best route would be creating a 

workaround for the multiple components. The reason is that a larger system seemed like a 

slippery slope. A blob-like system developed in OOP is highly undesirable and seemed 

much more likely if a strictness was not upheld in this labor division. Instead, the 

multiple components deviate from a pure ECS architecture, but it seems to have a small 

impact on performance than the implications of a complex system or working around the 

decoupling of systems. A workaround was created by assigning a TargetIllumination 

component to a target and giving it an attribute of a Vector. This way the vector holds 

multiple illuminations while the target still has only one component. 

The collisions were a significant design issue to overcome with ECS. The 

architecture does not accommodate this kind of behavior well and shows one of its 

weaknesses. In this situation, it does seem that an OOP representation may have been 

better suited to the problem.  

4.4.2 Data Representation 

 A pure ECS architecture is strict on the structures that exist in the program. The 

only structures that exist are components and systems. Entities are merely a way of 

organizing the components, the simulation itself does not use entities. This minimalistic 
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structure makes it difficult to model complex realities, such as an EM wave. Overall, this 

makes representing different kinds of data challenging. 

 EM waves become difficult to model because of their behavior. They are modeled 

as both instantaneous and persistent. Like a wave, they carry information through 

different objects instantaneously, but they are also modeled as gain patterns that can 

cover a set area for a whole frame. In an OOP program, these are modeled as messages, 

but ECS does not support these specifically, instead, a component must be made into a 

message. So, an EM wave can only be represented as a component or an entity. 

 As a component, it would be attached to a radar entity and represent a gain 

pattern. This structure creates a problem because the gain pattern is not an aspect of a 

radar, but instead is an aspect of an antenna, which cannot have a component because it is 

a component. The antenna must then become an entity and create communication 

problems with a radar antenna. Overall, the EM wave represented as a component creates 

a ripple of issues and is best represented as an entity where it interacts with other objects, 

just as in reality. 

 The illumination data, discussed in the collisions section, was represented as a 

component. The issue with this representation was that entities could not contain multiple 

components of the same type. This data could have been represented as an entity and 

allow for entities to have multiple illuminations, but this again creates issues with 

communication between its associated entity. 

 These issues reveal a problem in ECS with representing complex data structures. 

The multiple component issue may only exist in SPECS and not be indicative of ECS's 

ability to represent structures, but a hierarchy of components could be helpful in each of 
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these scenarios. The decoupling aspect of ECS is helpful in many situations, as covered 

later in this chapter, but can create problems when trying to communicate between 

different entities.  

4.4.3 Processing Methods 

 Another difficult process to implement was the reflection process. Realistically, 

an EM wave could produce multiple reflections. For instance, if a pulse is transmitted and 

reflects off a target, then that reflection hits another target and produces another reflection 

in a seemingly infinite loop. Traditionally, simulations run in a game loop at a set rate of 

60 Hz. At each iteration of the game loop, the systems are run in a specific order to 

promote a certain data flow. The loop makes the reflection system difficult because a 

system would need to run at each creation and propagation of the EM wave. This loop 

could run indefinitely depending on the simulation scenario, which would require a lot of 

boilerplate code in the game loop, given the decoupled nature of ECS. One avenue that 

many games take to solve this issue is an event system. Common in OOP, an event 

system invokes either a method or any other kind of function when an event occurs. In 

this case, if an emission hits a target that produces a reflection, an event would trigger the 

reflection system, which would trigger a propagation system. While this idea is possible 

to implement with ECS, it does not seem to be the best use of the architecture.  

 The problems with an event system revolve around two principles: code 

organization and cache efficiency. The first problem is minor, but still a problem. An 

event system requires some type of glue between the systems. While this was already 

somewhat violated in the collision system, this kind of design would create more tightly 

coupled systems because it would require the implementation of a callback function. The 
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system requires one system to call another, but if it does not, then it would not be an 

event system. Secondly, the ECS architecture's most attractive quality is the efficient use 

of cache and an event system does not prioritize this ideal. Cache is prioritized through 

batch processing. The systems bring in their components all at one time and process them 

together. An event system is triggered when only one target needs to produce a reflection. 

It does not address the situation where many targets produce a reflection at one time. In 

that case, the reflection system would be called for each target and would process them 

individually. In this way, an event system does not prioritize the cache in the way 

intended for an ECS architecture. While the event system could potentially produce a 

faster simulation, this research explores the implementation of an ECS architecture in a 

simulation.  

 The best implementation of this reflection process often follows the traditional 

game loop approach, though it creates a basic restraint on the simulation. It can only 

produce the number of reflections specified in the game loop. The positive of this design 

is the modularity of the ECS architecture. It allows for multiple calls of this process in the 

game loop.  

4.4.3 Modularity 

One of the benefits of using an ECS architecture is how code is decoupled. One 

avenue of research for this topic was modularity. A simulation that could have 

components and systems as plugins would be highly beneficial. This feature could allow 

for both a spectrum of fidelity and different features, depending on what the 

implementation desired, with little to no change to the rest of the code. While ECS has 
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many principles, which seem to allow this modularity, it was clear that a basic pattern 

must exist as a foundation to build. 

 The pattern can be seen in the main game loop and was discussed in the fidelity 

section. The reasoning behind this pattern has a few factors involved. First, both 

component and entity management occur in the main game loop through the world 

object. So, these different stages were influenced by where this management needed to 

occur. Secondly, these stages are fundamental to the radar process as described in 

Chapter 2. Without each of these stages, a radar simulation does not reach the minimum 

level of fidelity needed for a production level simulation. 

 Overall, this high level of decoupling did prove to be a major advantage of ECS. 

As discussed in the Software Aging section of Chapter 2, the nature of decoupled code 

makes it far easier and cheaper to maintain. This simulation showed the effectiveness of 

the decoupling by adding in systems and components with ease. The jamming system 

was added at the end of this research and did not impact other parts of the program. 
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V.  Conclusions and Recommendations  

5.1 Overview 

This chapter summarizes the research and results from this thesis. It addresses the 

original research questions considering the research results. A discussion of the impact 

this research has on simulations and recommended future work concludes this paper. 

5.2 Research Conclusions 

This research concludes that the ECS architecture can effectively be used in real-

time simulations. It successfully built a functional radar simulation based on the 

characteristics of an OOP-based counterpart, MIXR. An analysis of the implementation 

revealed patterns where the architecture is optimal and deficient, and it answered the 

research questions proposed in the introduction. 

This research shows that a simulation can be implemented using a pure ECS 

architecture. A pure ECS architecture is not ideal for radar simulations because they need 

cross-system communication, which is forbidden in a pure architecture. Pure 

implementations also struggle with representing all the data necessary for complex 

simulations. While the simplicity of ECS is a strong advantage, it is a disadvantage when 

modeling complex structures. Many characteristics of ECS can be utilized along with a 

different architecture. 

Applying ECS to a radar simulation seemed to show fundamental issues with a 

pure implementation. When using a pure ECS, communication between systems is not 

possible. If ECS is to be used in simulations that require cross-system communication, a 

blend of ECS with other architectures would be necessary. It also shows that the strict 
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data layout of entities and components may not be the most efficient layout. A tension 

exists between the strict layout and the ability to efficiently and intuitively relate complex 

data. While further studies would need to be conducted, it seems that the ability to 

separate data while keeping a relationship with each other will help with parallelization 

and not interfere with decoupling between systems.  

 It seems that the ECS architecture could be combined with OOP patterns to 

create a simulation. Using both in conjunction could help to highlight the advantages 

while mitigating their disadvantages. Using an event system or callbacks, as common in 

OOP, could help fix the strict processing loop that must be followed in ECS. Using ECS 

principles of decoupling and batch processing can improve cache efficiency and code 

maintenance that has become an issue in OOP. 

5.3 Research Significance and Future Work 

 As the hardware improvements continue to decline, the software must become 

more efficient to improve its quality and performance. The ECS architecture is a practical 

implementation of DOP that allows for this kind of software performance increase. This 

work has focused on researching, building, and analyzing the use of ECS in simulations. 

This research has shown that the ECS architecture can be used to build real-time 

simulations. A strict, pure implementation may not be ideal, but it has advantages that 

can be utilized with other patterns. 

 The ECS architecture has many areas of future work that could benefit simulation 

and the Air Force. The following suggest areas of future work: 
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Many different ECS architecture exists, both for Rust and other popular languages 

such as C++. While some research compares different ECS frameworks, few have done 

an in-depth study that shows each [28] strengths and weaknesses. A study into how each 

of these frameworks could be best used in a simulation would be helpful. Looking at how 

these frameworks tackle ECS's disadvantages would show which use case they best 

support. 

An ECS framework specific to military needs would provide a great resource for the 

Air Force. A framework suited to military needs could directly deal with common 

problems seen in ECS for military applications.  

Research into using ECS with other design patterns. This research focused on 

creating a simulation based on a pure ECS implementation. Creating a simulation with 

less rigidity to ECS principles would create a more effective program.  

A study of the execution performance of this ECS simulation could be helpful. Rust 

has packages that can aid in benchmarking. Comparing the speed to an OOP counterpart 

could provide objective evidence to it’s performance.  
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Acronyms 

 

DOP Data-Oriented Programming. 1, 21, 14, 15, 16, 17, 18, 19, 20, 33, 37, 45 

ECS Entity Component System. iv, 1, 2, 3, 4, 12, 16, 17, 18, 19, 20, 22, 25, 27, 28, 31, 

32, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46 

EM Electromagnetic. 5, 6, 7, 8, 9, 10, 11, 19, 23, 25, 29, 30, 33, 34, 35, 36, 37, 40, 41 

MIXR Mixed Reality Simulation. iv, 2, 4, 25, 28, 44 

OOP Object-Oriented Programming. iv, 1, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 

39, 40, 41, 44, 45, 46 

RCS Radar Cross Section. 9,27, 29, 30, 31, 32, 33, 34, 36, 38 

RF Radio Frequency. 5 
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