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Abstract

The Global Positioning System (GPS) is the primary solution for outdoor navi-

gation. However, the signals from these satellites are blocked in indoor environments

leading to the need for alternative indoor solutions. The goal of this thesis is to

evaluate a new indoor navigation technique by incorporating floor plans along with

monocular camera images into a Convolutional Neural Network (CNN) as a potential

means for identifying camera position. Building floor plans are widely available and

provide potential information for localizing within the building. This work sets out

to determine if a CNN can learn the architectural features of a floor plan and use

that information to determine a location.

In this work, a simulated indoor data set is created and used to train two CNNs. A

classification CNN, which breaks up the floor plan into 100 discrete bins and achieved

76.1% top 5 accuracy on test data. Also, a regression CNN which achieved a distance

error of 25.4 meters or less between the truth and predicted position on 80% of the

test data. The models are further improved by combining them with a filter solution.

The best performing classification CNN is evaluated on real world data captured via

a TurtleBot 3, demonstrating the potential for this solution to be useful to real world

Air Force indoor localization problems.
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INDOOR NAVIGATION USING CONVOLUTIONAL NEURAL NETWORKS

AND FLOOR PLANS

I. Introduction

1.1 Problem Background

Navigation is fundamental in many aspects of our lives. Global Navigation Satel-

lite System (GNSS)s make this possible in an outdoor environment, however signals

from these satellites are not receivable in indoor environments. Therefore, other so-

lutions need to be presented to make this possible and convenient. Indoor navigation

technology is very important to many consumers such as security forces and first re-

sponders because it can provide them the means to handle dangerous situations more

easily. Many techniques have been developed to provide indoor navigation solutions.

Pedestrain Dead Reckoning (PDR) is one of the most common used technologies

for smartphone-based pedestrian indoor navigation [1]. This technique estimates the

users’ location based on step detection, step length and heading via sensors on the

smart phone. However, this approach can start to become inaccurate over time due

errors in the step length, heading and step count. Other solutions involve using the

buildings wireless transmitters to triangulate a users’ position. Common techniques

include Wireless Fidelity (WiFi) fingerprinting [2] and Bluetooth Low Energy (BLE)

[3]. However, these techniques can suffer from signal attenuation and require the de-

vices to be available and maintained, which may not always be the case. Vision-based

navigation encompasses many different techniques such as Simultaneous Localization

And Mapping (SLAM) [4] and Visual Odometry (VO) [5] and require the use of
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optical sensors.

With current advancements in the field of deep learning, it has been shown that

Artifical Neural Networks (ANN) can be used for navigation purposes [6], [7], [8]. A

Convolutional Neural Network (CNN) is a specific type of ANN that is suited for

analyzing and extracting features from images. Features of an indoor building could

include doors, windows and hallways and this idea can be exploited for navigation

purposes. The Air Force provides Geographic Information System (GIS) map data for

most bases. With the GIS map data, a floor plan for a particular building on base can

be extracted which depicts the aforementioned features. By matching architectural

features in an image to its corresponding floor plan, a users location inside the building

may be ascertained.

1.2 Research Objectives

The goal of this research is to evaluate the viability of a CNN incorporating floor

plans along with monocular camera images as a potential means for indoor navigation.

The research will attempt to answer weather or not a CNN can learn the features of

a building floor plan and fuse that information with an image taken from inside the

building to predict a users’ location. To train a CNN for this kind of task, a large

number of unique floor plans will need to be analyzed. This data set will need to

be generated in a simulated environment due to time constraints. However, small

amount of real world data will also be collected and used to further analyze the

CNNs viability. The CNN metrics will be analyzed and discussed to determine if this

concept can be a potential indoor navigation solution. If so, the solution could give

Air Force first responders potentially safer and faster response times to crises as well

as provide the Air Force with an additional use for GIS map data.

2



1.3 Assumptions

This work is not attempting to beat the location accuracy of the current state-of-

the-art navigation solutions. It is trying to determine the viability of a new technique

for indoor localization by using a multi-input CNN to fuse information from an image

and a floor plan. Additionally, the simulated buildings were designed simple in nature.

This could make the generalization to real data less accurate. Also, in order to

reduce the computational burden of training a CNN with the large number of training

samples generated, the input image sizes are defined to be 100 × 100 × 3 and 101 ×

101 × 3 for building images and floor plan images respectively. Images larger than

this would need to be formatted to this size. Finally, in terms of floor plan positions,

the locations are defined by a two-dimensional Cartesian coordinate system beginning

at the bottom left corner of the floor plan image.

1.4 Document Overview

The remainder of this thesis is organized as follows: Chapter II provides the

relevant background information needed to understand the content of this thesis.

Chapter III discusses the processes that were used to produce and process the data.

CNN architectures and network training are discussed. Also, particle filter implemen-

tations are explained. Chapter IV analyzes the results of the different experiments

conducted. Finally, Chapter V provides a summary of the work that was done as well

as future improvements to the techniques developed.

3



II. Background and Literature Review

This chapter provides background information necessary to understand the method-

ology in Chapter III. Topics covered include Machine Learning, Artifical Neural Net-

works (ANN), Convolutional Neural Network (CNN), U-Nets and Particle Filters.

Furthermore, additional information will be presented on alternative indoor naviga-

tion techniques.

2.1 Machine Learning

Machine learning is a subset of the field of Artificial Intelligence (AI) and can be

broadly defined as the study of designing algorithms that use experience to improve

performance and make accurate decisions. The experience comes from exposure to

training data. The main objective of machine learning is to be able to generalize

to previously unseen data which comes from having learned meaningful patterns in

the training data. Common machine learning tasks include classification, regression,

ranking, clustering and manifold learning [9].

2.2 Artificial Neural Networks

ANNs are a powerful machine learning model loosely inspired by the human brain.

They are a collection of interconnected neurons organized into layers. The first layer

is the input layer. It consumes the raw data, processes it and passes information on

to the next layer as output. A common type of layer in a network is a dense layer, or

fully-connected layer. This layer will take as input, the outputs of all the neurons in

the previous layer. Information flows through the network until it reaches the output

layer which makes a prediction. When information is only passed as the output of

one layer to the input of another it is considered a feed-forward neural network [10].

4



Layers in between the input and output layers are called hidden layers. Typically,

when a network contains multiple hidden layers they are refereed to as deep neural

networks [11]. A simple example of a basic neural network and deep neural network

are shown in Figure 1.

Figure 1: The figure on the left depicts a simple neural network with one hidden
dense layer. The figure on the right depicts a deep neural network. Notice that this
network has multiple hidden layers in between the input and output layers.

2.2.1 Weights and Bias

Each layer of a neural network is made up of one or more neurons. A neuron can

have one or more inputs and one output. The inputs to the neuron are multiplied by

their respective weights and then summed. A bias term is added to the summation

and the result is fed into an activation function. The bias term serves to apply an

affine transformation to the summation and can be thought of as how easy it is for

a neuron to fire [10, 12]. This concept is illustrated in Figure 2. The output of the

activation function is the output of the neuron. The weights and bias of a neuron are

the parameters that need to be adjusted during training to make the network more

accurate.

5



Figure 2: Structure of artificial neuron: the inputs to the neuron are multiplied by
their respective weights and summed. A bias is added to the summation and the
output is passed through an activation function.

2.2.2 Activation Function

The purpose of the activation function is to limit the range of possible outputs of a

neuron and add non-linearity to the network which helps it learn complex patterns in

the data. There are a number of different activation functions that can be used. This

research focused on Rectified Linear Unit (ReLU), Hyperbolic Tangent (tanh) and

softmax activation functions [13], [14], [15]. ReLU is defined as f(x) = max(0, x). It

is one of the most widely used activation functions due to its fast computation and

ability to alleviate the vanishing gradient problem. ReLU can experience a problem

sometimes during training in which some of the gradients will die, causing a neuron

to never activate again. This is known as the dying ReLU problem and can be fixed

by using a smaller learning rate during training [16]. ReLU is depicted graphically in

Figure 3.

The tanh function is given by f(x) = ( e
x−e−x

ex+e−x ). Its range is between -1 and 1 and

its main advantage is that it can help with the back-propagation process by providing

zero centered output [16]. The tanh function is depicted graphically in Figure 4.

The softmax function is defined as f(xi) = exp(xi)∑
j exp(xj)

. The softmax function takes
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Figure 3: Graphical representation of the ReLu function. This function is represented
mathematically by the expression f(x) = max(0, x)

Figure 4: Graphical representation of the tanh function. This function is represented
mathematically by the expression f(x) = ( e

x−e−x

ex+e−x )

a vector of real numbers and converts them into a probability distribution. Each

output is in the range 0 to 1 and the sum of all the probabilities is equal to 1. It is

usually used as the last layer activation for a classification problem [16]. The softmax
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function is depicted graphically in Figure 5.

Figure 5: Graphical representation of the softmax function. This function is repre-
sented mathematically by the expression f(xi) = exp(xi)∑

j exp(xj)

2.2.3 Objective Function

The objective function is what needs to be minimized or maximized during training

of a neural network. When it needs to be minimized it is referred to as the loss function

[17]. The loss function computes the error of the network by comparing the predicted

output with the expected output. The error is used by the optimizer to update the

weights and biases of the network in order to improve the error. There are a variety

of loss functions that can be used and should be chosen to match the problem type.

For a regression problem the common choice is Mean Squared Error (MSE) defined

as:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (1)

MSE computes the square difference between the networks prediction ŷ and the
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expected output y, squares it and averages it out of all the training samples N . MSE

gets smaller the closer the predicted output is to the expected output.

For a problem involving multi-class classification, where the output is a vector of

scalars representing a valid probability distribution over all the classes, the Categorical

Cross-Entropy (CCE) loss function is typically used. To calculate the CCE loss for

one training sample the following equation would be used [10]:

CCE = −
X∑
i=1

yi · log ŷi (2)

where X is the total number of classification classes, yi is the i-th scalar value in

the truth output and ŷi is the i-th predicted scalar value. The negative sign makes

sure that the loss gets smaller as the probability distributions get closer together.

This loss would be summed together with all other training samples in the batch to

calculate the overall loss of the batch.

2.2.4 Training

The weights and biases of an ANN are learned during the training process which

involves the use of an optimizer. There are a number of available optimizers for

example Root Mean Square Propagation (RMSprop), Adaptive Gradient Algorithm

(Adagrad) and Adaptive Moment Estimation (Adam) to name a few [18]. The opti-

mizer utilizes a form of Gradient Descent to minimize the error of the loss function.

There are three variants of Gradient Descent; Batch Gradient Descent, Stochastic

Gradient Descent, and Mini-batch Gradient Descent [18]. These variations differ in

the amount of training samples that are used to compute the gradient. Batch Gra-

dient Descent computes the gradient for the entire training set whereas Stochastic

Gradient Descent computes the gradient for a each training sample. The preferred

algorithm is Mini-batch Gradient Descent which involves computing the gradient for
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a small batch of training samples typically ranging in size from 50 to 256 [18]. The

gradient is a partial derivative of the loss function with respect to each learnable

parameters [19], and is found via a process called Back Propagation (BP) in which

the derivative chain rule is applied to all the weights while remembering previously

calculated values [20]. Once the gradient is computed, the optimizer updates all the

weights in the negative direction of the gradient in order to minimize the error of the

network. An arbitrary learning rate can be multiplied by the gradient to control how

large the weight change will be [20]. When all the training samples have had a chance

to pass through the network and update the weights, one epoch has been completed.

Another important concept of training is weight initialization. Poor initial weights

can lead to vanishing or exploding gradients. In these cases, the gradients are either

too small or too large to flow backwards beneficially. If the gradients are to small,

weights in the initial layers may receive small weight updates which will lead to slower

training or even stop the network from learning at all. If the gradients are too large,

due to large initial weights, the network will spend the majority of its time trying

to decrease these weights. Both problems lead to the network struggling to converge

to the optimal solution along with longer training times [21]. Common initialization

strategies include Glorot Normal and Glorot Uniform. Glorot Normal is the one used

in this thesis and works by initializing weights with values from a random uniform

distribution as shown in (3) [22].

W ∼ U [−
√

6
√
nj + nj+1

,

√
6

√
nj + nj+1

] (3)

Where nj represents the number of incoming connections to the layer and nj+1

represents the number of outgoing connections from that layer.
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2.2.5 Training, Validation and Test Sets

Training a network also involves splitting the available data into three different

sets. The training set is the data that the network will learn from and use to update

weight values. The validation set is used to evaluate the network configuration.

This data does not impact the weights, but instead is used as a metric to tune the

hyperparameters of the network. Finally, after the network has been fully trained it is

evaluated on test data. Some common schemes for spitting the data up are hold-out

validation, k-fold validation and iterated k-fold validation with shuffling [11].

2.2.6 Overfitting and Regularization

The goal of training an ANN is that it generalizes to new data that it hasn’t seen

before. This goal is hindered in the event of overfitting. A network that is overfitting

has modeled the training data too well, meaning it is learning patterns that are

specific to the training data only and irrelevant when it comes to new data [23].

Regularization techniques combat the overfitting problem. Some of these techniques

include adding weight regularization, adding dropout, batch normalization and data

augmentation [11].

Weight regularization is the process of penalizing the network for having large

weights by adding a cost value to the loss function. There are two popular kinds of

costs, L1 regularization and L2 regularization. L1 regularization is when the cost is

proportional to the absolute value of the weight coefficients and L2 regularization is

when the cost is proportional to the square of the value of the weight coefficients. The

penalty is controlled by a hyperparameter which determines the amount to penalize

the network. This hyperparamter can be sent to a value between 0.0 meaning no

penalty, and 1.0 meaning full penalty.

Dropout is a common regularization technique and is applied to a layer. It works
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by randomly setting weights in the layer to zero, which basically means that the

neuron is deactivated. This deactivation of neurons is done per batch. The number of

neurons selected for dropout is specified by the dropout rate and is typically between

0.2 and 0.5. Dropout effectively introduces noise into the network and forces it to be

more robust.

Batch normalization is a type of layer that can be added to the network which

normalizes the input of the following layer. The batch normalization layer does this

by storing two parameters, the current mean and standard deviation of the batch.

These parameters are learned as part of the training process. Not only does this

layer help with overfitting, but also improves the gradient flow through the network

allowing for deeper networks [19].

Data augmentation is very common and easy to perform on image data. It consists

of creating more training data for the network to learn from by augmenting the

existing training data. This is done by applying different kinds of transformations to

the images such as rotations, translations and shearing. Not only does this increase

the size of the training data but also provides examples of different aspects of the

same features which helps the network to generalize [11].

The main idea with regularization techniques is that they help a network be

resistant to memorizing the noise in the training data which forces it to learn more

about the underlying concepts present in the training data [10].

2.3 Convolutional Neural Networks

CNNs are a sub branch of deep ANNs. CNNs are specific for handling data that

has a grid-like topology, such as images. CNNs work on multiple channels and are

designed to be able to learn spatial hierarchies of patterns in data. CNNs have become

the main approach for solving complex image classification and object detection tasks
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[24]. A CNN is usually made up of three kinds of layers; convolution, pooling and fully

connected. Convolution and pooling layers perform feature extraction by generating

a desired number of feature maps. Feature maps represent extracted characteristics

found in the data. The output of the feature maps are fed into a fully connected layer

typically for classification purposes [19].

The convolutional layer is responsible for feature extraction. It does this using

the convolution operation. The convolution operation works by sliding a convolution

kernel across every location in the input data and doing a dot product between the two

matrices. The output is fed into an activation function and the result is a pixel on the

feature map, which is repeated for each slide position to make a full feature map. The

convolution operation is illustrated in Figure 6. Two important parameters for this

operation are the kernel size and number of kernels to use. Common kernel sizes are

3×3, 5×5 or 7×7. The number and type of kernels used will determine the number

of feature maps created, each of which will represent a different characteristic of the

input data [19]. Feature maps allow a CNN to learn small local patterns in the data

and are translation invariant. By chaining convolutions together a CNN can learn

and recognize increasingly complex patterns [11]. The weights of the kernels are what

need to be refined during the training process. Additional common hyperparameters

of the convolution layer include stride and padding. Stride determines how far the

convolution kernel moves between steps. A stride larger than 1 will downsize the

resulting feature map. Padding is the process of adding additional rows and columns

of zeros to the input data so that the convolution kernel is able to capture the edges

of the data. The resulting feature map will be the same size as the kernel [19].

A pooling layer is used to summarize the the major features detected in the data.

The pooling layer is applied to all feature maps and creates a new set of feature maps

which are usually smaller in size. The smaller size reduces the number of learnable
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Figure 6: Convolution operation: 3x3 convolution kernel with no padding and a stride
of 1 applied to input tensor and generating the resulting feature map.

parameters in the network, leading to an increase in computational efficiency. The

pooling layer is also what provides the network with translation invariance for features

found in the data. The pooling layer involves choosing a type and size of pooling

operation. There are two common types of pooling operations, max pooling and

average pooling [19]. Max pooling creates a new feature map from the maximum

values of each patch specified by the pool size, whereas average pooling takes the

average value of each pool size patch and uses that in the new feature map [25]. The

max pooling and average pooling operations are illustrated in Figure 7.

After the last convolution or pooling layer, the final features maps are typically

flattened into a 1D vector and then connected to a dense layer as described in 2.2.

From there the dense layer can easily map to the needed number of final outputs for

the given problem [19].
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Figure 7: The max pooling operations is shown to the left and the average pooling
operation is shown to the right. The pooling filter size is 2 × 2 with a stride length
of 2. The resulting feature map is reduced by a factor of four after the operation.

2.4 U-Nets

U-nets are a sub branch of CNNs with a particular type of architecture. The design

was originally developed by Ronneberge et al. for biomedical image segmentation

[26]. A key concept of u-nets is that they can provide not only image object detection

but also localization of the feature in the image. The architecture consists of two

paths; the contracting path and the expansive path. The contracting path follows

a typical CNN architecture using stacks of convolutions and max pooling operations

that reduces the image size and generates a number of feature maps to identify what’s

in the image. The symmetric expansive path uses transpose convolution to upsample

the size of the image, decrease the number of feature maps and concatenate the

feature maps of the correspondingly level in the contracting path. This maintains the
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localization ability of the network. The final layer uses 1 × 1 convolution to match

the output feature maps to the desired number of classes for classification. This

architecture is shown in Figure 8.

Figure 8: Example u-net architecture: 32x32 pixels at the lowest resolution. The
number of feature maps is shown on top of each box. The bottom left value denotes
image size. White boxes represent copied features. The arrows denote the different
operations.

2.5 Particle Filter

Particle filters are a popular solution for localization problems [27], [28], [29].

Particle filters use Sequential Monte Carlo (SMC) methods to estimate non-Gaussian,

non-linear, Markovian state space [20]. The basic idea is to estimate the posterior

probability of some state of a system given the distribution of a number of of samples,

or particles, in state space. A particle represents a possible state in the system and

has an associated weight. The weight represents the probability of that particle in

relation to the other particles in the system. In a dynamic system, the state equation

can be described as:
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xk = f(xk−1, vk−1) (4)

In this equation, f represents the state transfer equation, xk represents the state

of the system at time step k, and vk represents the system noise at time step k. The

observation equation can be expressed as:

zk = h(xk, wk) (5)

In this equation, h is the observation function, xk is the state of the system at time

step k, and wk is the observed noise at time step k. Given these equations, a basic

particle filter would start off by initializing N particles according to the initial state

p(x0). The initial state is assumed to be known. The weights of all the particles would

initially be set to 1/N . Next, for each particle at time step k − 1, calculate the next

state of the particle at time step k via the state transition equation xk = f(xk−1, vk−1)

or the state transition probability p(xk|xk−1). Next, update the weight of the particle

to be wk = p(zk|xk) according to the observed value zk at time step k. The weight

should then be normalized. After that, resampling of the particles should occur.

Resampling is the process of replacing particles that have small weights with ones

that have larger weights, or in other words, replace particles that are bad predictions

with ones that are more likely. Resampling helps particle filters avoid the degeneracy

problem, in which the majority of the particles have been assigned negligible weights

[30]. Resampling does not necessarily need to be done every iteration. A way to

determine if resampling is required is to compute the effective sample size Neff . This

can be done via the equation:

Neff =
1∑N

i=1w
2
i

(6)
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Where N is the number of particles and w is the weight of the particle. If Neff falls

below a predefined threshold, then resampling should occur [31]. After resampling the

particles, the current estimated state of the system can be calculated by computing

the weighted average mean of all the particles in the system [32].

2.6 Localization with ANNs

The problem of indoor localization has many kinds of solution possibilities with

various degrees of accuracy. Some of these techniques include Pedestrain Dead Reck-

oning (PDR) [33], Wi-Fi [34], Bluetooth [35] and Radio-Frequency Identification

(RFID) [36] based methods to name a few. Image-based localization is another tech-

nique that incorporates the use of images to determine position. The authors in [37]

developed a relocalization system called PoseNet. This system is designed to regress

the 6-DoF camera pose from a single RGB image using a CNN and can operate both

indoors and outdoors. The authors utilized a technique called Structure from Motion

(SfM) to generate the truth labels for their training data. This was done by applying

the SfM technique on videos captures of the locations and regressing camera poses

from the images. The authors used transfer learning techniques with the GoogLeNet

[38] architecture to train their 23 layer CNN. The GoogLeNet architecture was modi-

fied to perform regression instead of classification and the authors were able to achieve

results within two meters and five degrees of the truth labels. Another image based

solution is called ICPS-net [39]. This architecture uses a tandem of two CNNs to de-

termine camera position and quaternion information for a given image. The authors

took images of an indoor building and separated them into different scenes found in

that building. The first CNN was based on the EfficientNet [40] architecture and

was trained as scene classifier. The role of this CNN was to determine which scene

an image belonged to and then its output was fed into the second CNN. The second
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CNN was based on the MobileNet [41] architecture and was trained as the position

regressor. This CNN was used to determine the XY Z position and quaternion infor-

mation of the image in the scene it was belonging to. The authors were able to attain

accuracy of 98.099% on test data.

2.7 Indoor Localization with Maps

The before mentioned techniques did not attempt to incorporate widely available

building floor plans into the localization prediction. A floor plan is a top down scale

drawing of a building that depicts architectural features. Features could include walls,

hallways, rooms, doors and windows. Knowing the layout of these types of features

can allow a person to figure out where they are on a floor plan. Furthermore, sig-

nage such as bathroom and exit signs will be present in a building which can provide

information about landmarks that are nearby, again allowing for a person to deter-

mine where they are in a building. Floor plans can provide useful information that

can aid with various types of indoor localization techniques, such as particle filters.

With a particle filter, a user’s position can be modeled by a set of particles. When

incorporating a floor plan, particles can be penalized for violating map constraints

such as particles crossing over wall segments leading to a more accurate prediction.

This technique can be seen in [42, 43, 31]. In [44] the authors developed a robot lo-

calization system that estimates a robots pose on a floor plan. The authors estimate

the vanishing lines in the monocular image using the algorithm defined in [45] and

then overlay that information back onto the original image. The authors are then

able to predict room layout edges using a CNN based upon the AdapNet++ architec-

ture. Next they used the harris corner detector implementation of OpenCV to extract

room information from a floor plan. The authors used a particle filter to match the

extracted edges to the given floor plan. This solution achieved an average linear and
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angular root-mean-square error of (223± 126) mm and (2.3± 2.0)◦ respectively.
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III. Methodology

The objective of this research is to determine if a Convolutional Neural Network

(CNN) could learn the architectural features of a floor plan and use that information

to make a prediction based off what it sees in an image of the inside of that building.

In order to test this, two models were created and evaluated. A discrete model, which

predicted the grid locations on the floor plan where an image could have been taken

from, and a regression model, which predicted the XY location of the camera. This

chapter discusses the techniques used to generate and process the needed data. It

also discusses the model architectures and training. Lastly, discrete and continuous

particle filter implementations are defined.

3.1 Simulated Data Collection

For a CNN to be accurate, extensive training data needs to be accessible. For this

problem, the training data needed to be generated for different floor plans. The simu-

lated data was generated using the AftrBurner engine, a cross-platform visualization

engine developed as the successor to the STEAMiE educational game engine [46].

The engine provides the ability to create virtual 3D worlds complete with complex

lighting and texturing, as well as modules for creating and working with virtual cam-

eras among many other things. To provide a CNN enough examples to learn from,

building architectures were procedural generated using a Binary Space Partitioning

algorithm and inserted into the virtual environment. The building was partitioned

until a ratio of 40% hallway area to building area was achieved. The hallway width

and wall height were defined to be 3 meters. The size of the building was set to 100 x

100 meters and only single story buildings were created. Randomness was added to

the building in the form or adding doors and windows to arbitrary locations within
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the building. Data collection points were identified by traversing the hallways at a

distance of 1.5 meters from the wall. The distance between each point in the sequence

is 1 meter. Room interiors were not used for data collection points. This concept is

illustrated in Figure 9.

Once the building and the first texture were rendered, the camera was placed at

each data collection point. For each point, 8 images were taken by rotating the camera

45deg. The image size was 100 × 100 pixels. This image size was chosen to prevent

having to perform a prepossessing step later to make the image size compatible with

the models. The images were labeled with the XY Z location of the camera as well

as the normalized XY Z unit vector defining the look direction of the camera. Once

all points had been visited and the images saved to disk, the next building texture

was applied and the process was repeated. In total there were three different building

textures used. These textures are shown in Figure 10.

Once all textures had been completed the generated floor plan was saved to disk.

The floor plan image size was 101x101 pixels. Black lines represent wall segments,

Figure 9: Placement of camera locations inside the building: Each green sphere
depicts a location where the camera would capture images from.
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Figure 10: Building textures used for the simulated data. Each row depicts the same
location in a building with the three different textures applied.

blank spaces in the wall segments represent doors and grey segments along the exterior

wall represented windows. An example floor plan is shown in Figure 11. In total 13

million interior pictures were generated which consisted of 1000 different floor plans.

Each floor plan, along with its corresponding imagery, was stored in its own directory.

This process took approximately three days to complete.
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Figure 11: Example generated floor plan: 101x101 pixels. Wall segments are rep-
resented by black lines. Blank spaces in the wall segments represent doors. Grey
segments along the exterior walls represent windows.

3.2 Real Data Collection

In order to collect real data, a TurtleBot 3 Waffle Pi equipped with a ZED Mini

stereo camera, D435I RealSense RGB-D camera, wheel odometry and 2D Light De-

tection and Ranging (LIDAR) was used. An image of the TurtleBot 3 is shown in

Figure 12.

The robot gathers navigation data and images of the environment, and then using

the Real-Time Appearance-Based Mapping (RTAB-Map) [47] module in Robot Op-

erating System (ROS), creates a map database of image features. The images from

this database were extracted and named with the XY Z and RPY pose information

determined by the wheel odometry. The 3rd floor of building 640 at the Air Force

Institute of Technology (AFIT) was chosen as a data collection site. The path that

the robot collected data from is shown by the blue lines in Figure 13.

In total, 446 images were collected. The size of the images captured by the

TurtleBot 3 were 1280 × 720. These images were resized to 100 × 100 to make them
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Figure 12: TurtleBot 3 used to collect real data imagery.

compatible with the models. Finally, an image of the floor plan was taken with a

Samsung Galaxy Note 8. The size of that image was 4032 × 1960 and was then resized

to 101 × 101 to make it compatible with the models. Example imagery captured from

Figure 13: Floor plan of third floor of building 640 at AFIT. The blue line represents
the path that the TurtleBot 3 collected imagery from.

25



the TurtleBot 3 is shown in Figure 14.

Figure 14: Example imagery captured from the TurtleBot 3.

3.3 Data Processing

After data creation, the data needed to be processed into the correct format for

the given model. Due to the large amount of data generated and for the model

to train on the data efficiently, the decision was made to convert all of the data

into TFRecords. TFRecords are a binary file format that make reading from disk

during training more efficient which in turn reduces the training time. TFRecords

are composed up of TensorFlow example objects which are created from TensorFlow

features. When initially creating the data, all images pertaining to the same floor

plan were saved into the same directory along with the floor plan image. To create

the corresponding TFRecords, each floor plan directory was processed by reading in

and storing all image file names from that directory. The file names were shuffled and

then each image was processed as follows: The RGB pixel values of the image were

normalized to values between 0 and 1. Data augmentation was performed to create

three new images for every original image. The first transformation randomly rotated

the image by an angle between -10 and 10 degrees. the second transformation applied

a random vertical translation between -10 and 10 pixels. The final transformation

applied Gaussian-distributed additive noise to the image. The XY Z position as well

as the XY Z look direction was extracted from the image file name. To work with

the classification model, the floor plan was divided into a grid of 100 blocks. Each
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grid block spanned a 10 × 10 pixel region of the floor plan. The XY position was

converted into a single scalar value representing the grid location on the floor plan

via Equation 3.

g =
(⌊ y

10

⌋
× 10

)
+
⌊ x

10

⌋
(7)

This scalar was then converted into a binary class matrix of length 100. This

process is known as one-hot encoding and is a common technique when working with

categorical data. The matrix will have a 1 at the index corresponding to the scalar

value and zeros in all other indexes. At this point the data was ready to be written

to disk in TFRecord format. To do this, a feature object for each image was created

which contained the image, the corresponding floor plan and the binary class matrix

representing its position. For the regression model, instead of the grid position the

original XY position was stored in the feature. A TensorFlow example was created

from each feature and then written to the corresponding TFRecord file on disk. Each

TFRecord file contained a batch of 400 examples. This was done to take advantage

of parallel disk I/O features of TensorFlow data sets. This research used hold-out

validation. 90% of the floor plan directories were used as training data and the

remaining 10% were used as validation data. Additional building floor plans were

later generated for testing purposes.

3.4 Model Architecture

The models in this research consisted of a two input CNN based upon the U-Net

architecture described in Section 2.4. These models were built with version 2.3 of

the TensorFlow machine learning platform utilizing the Keras functional Application

Programming Interface (API). The programming language used was Python version

3.6.9. The left side of the model pertained to the image of the indoor environment.
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The input tensor to this side had a shape of (100, 100, 3). Each layer used Rectified

Linear Unit (ReLU) activation and same padding. The kernel weights used Glorot

normal initialization and a kernel size of 3. The right side of the model pertained

to the floor plan image. The shape was (101, 101, 3). This side of the model used

the same hyperparameters as the left side with the exception of the layer activations.

For this side, Hyperbolic Tangent (tanh) activations were used due to the limited

possible pixel colors of the floor plan images. For each side of the model the U-Net

architecture was utilized via three stacks of three convolution layers. Each stack

was followed by a max pooling layer that down-sampled the image to a final size of

25× 25 pixels. The filter sizes of for each convolution block was 16, 32 and 64. The

combination of up-sampling layers with a kernel size of 2 and concatenation layers

were used to form a final shape of (100, 100, 32). At this point the output from each

side of the model was concatenated along the feature map axis, forming a shape of

(100, 100, 64). Next, 1D convolution with ReLU activations was performed to blend

the feature maps while maintaining the spatial information. Then the output was

shrunk to a size of (10, 10, 1) via two more max pooling layers with ReLU activations

and kernel sizes of 5 and 3 respectively and a convolution layer with 1 filter, kernel

size of 1 and ReLU activation. Finally, a flatten layer was applied and the output

was fed into a dense layer of 100 neurons. For the classification model, this layer

used softmax activation and the output pertained to the possible grid locations on

the floor plan that the image could have been taken from. For the regression model,

the final dense layer of 100 neurons was modified to use ReLU activation and another

dense layer with two neurons was appended afterwards which used linear activation.

The output of this model pertained to the XY location of the floor plan where the

image could have been taken from.

To increase generalization and fight overfitting, dropout layers with a rate of
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0.1 were placed after each max pooling and concatenation layers. Also, two batch

normalization layers were added after the final two convolution layers. The total

number of weights in the classification model was 278,969. The total number of

weights in the regression model was and 279,171. Both models were trained using

the RMSProp optimizer with a learning rate of 0.0001. The loss function for the

classification model was categorical crossentropy and the metric of the top 5 was

calculated. For the regression model, the loss function was set to Mean Squared

Error (MSE) and the metric used was root-mean-square error (RMSE). Simplified

versions of these architectures are shown in Figure 15 and Figure 16. The complete

model details can be found in Appendix A.
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Figure 15: Simplified Classification Model. The model mimicked a U-Net architec-
ture. The red UNet blocks correspond to three convolution layers with the beginning
filter size specified by f. The kernel size was 3x3. The blue convolution blocks repre-
sent a convolution layer with the filter size specified in the block. The output of this
model was 100 units corresponding to individual floor plan block probabilities.
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Figure 16: Simplified Regression Model. The model mimicked a U-Net architecture.
The red UNet blocks correspond to three convolution layers with the beginning filter
size specified by f. The kernel size was 3x3. The blue convolution blocks represent a
convolution layer with the filter size specified in the block. The output of this model
was 2 units corresponding to the XY position prediction.31



3.5 Model Training

Due to the large data set, extensive Graphics Processing Unit (GPU) resources

were needed to train these models. The Navigational Hyperspectral Learning (NHL)

cluster located at AFIT provided the needed processing power. The models were

trained on a GPU rack mounted server running Ubuntu version 18.04 with an AMD

EPYC 7H12 with 256 cores, 1519 Gigabytes (Gb) of Random-access memory (RAM),

four Nvidia Quadro RTX 6000s each with 24 Gb of RAM, and an Nvidia V100 with

16 Gb of RAM. The models were trained for 100 epochs with batch sizes of 32. The

learning rate was configured to be reduced by a factor of 0.1 if the validation loss did

not improve after ten epochs. Also, in order to find the best solution possible, model

check pointing was used. For the classification CNN, the model with the highest

validation categorical accuracy was saved. For the regressions CNN, the model with

the lowest validation RMSE was saved.

3.6 Particle Filters

To improve the accuracy of both CNNs, two different particle filters were devel-

oped. The problem with the CNNs is that they do not take in to account any previous

information. They simply makes a prediction based off the features in the image and

try to correlate that with the floor plan image. This could lead to inaccurate predic-

tions because there may be multiple feasible locations on the floor plan that match

what is seen in the image. The goal of a particle filters is to estimate a new state

based off previous states and measurements. For the classification CNN, this concept

was applied to the grid of blocks, with the idea being that a new location prediction

should be close to the last predicted block. For the regression CNN, a continuous

particle filter was designed that incorporated wall constraints from the floor plan.
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3.6.1 Discrete Particle Filter

A simple discrete particle filter was developed to be used in conjunction with the

classification CNN. A 1D array of length 100 is used to represent the the particle filter

predictions for the grid locations. The initial location is known and that position is

given 100% probability. Next, the cells adjacent to the current location are computed.

5% probability is added to each of those cells and the cell corresponding to the current

location has its probability reduced by 0.05 × the number of adjacent cells. In the

particle filter sense, this could be thought of as the dynamics update that disperses

the particles from their current location. The image predictions from the classification

CNN are then multiplied by the particle filter array, which fuses together the model

predictions and previous possible positions. This array is normalized and the highest

probability cell becomes the new prediction for that image. The resulting array of

probabilities is then used for the next prediction. This process is repeated until all

the images are processed.

3.6.2 Continuous Particle Filter

A continuous particle filter was developed to try and improve the accuracy of the

regression CNN. In this particle filter, each particle represented a possible XY loca-

tion of an image with a corresponding weight. The weight represented the probability

that the particle was the true position. To start off, 1,000 particles were initialized

with a uniform position that was ± 20 meters from the known starting location. The

weight for each particle was initialized to 1/1000. The particle filter would run for

each image prediction by the regression CNN. This involved iterating over all the

particles to predict their next states, update their weights, resample and compute the

combined particle filter prediction.

To compute the next state of a particle, the particle position was moved 2.5 meters
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in a random direction. Next, the weight of the particle was updated. The new weight

was calculated by taking the reciprocal of the Euclidean distance between the XY

position predicted by the regression CNN and the newly computed particle position.

This allowed for particles that were closer to the prediction to be assigned a higher

weight. Also, to take advantage of the provided floor plan, wall constraints were

incorporated. If a particle tried to move over a wall segment on the floor plan, then

the weight of that particle was reduced by a factor of 100. The new weight of the

particle was then multiplied by the old weight and saved. After all particles had

been processed, the weights were normalized. Next the effective sample size Neff was

computed to determine if resampling should occur. If the computed value was less

than N ∗ 0.75, then systematic resampling was applied to the particles. The value

N ∗ 0.75 was set as a predefined threshold and was discovered through trial and error

as the best value for this particular problem [43]. Lastly, the weighted average mean

of all the particles was computed and used as the particle filter prediction for that

image. This process was repeated for each prediction by the regression CNN.
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IV. Results and Analysis

This chapter analyzes the training results of the models described in 3.5. Next, the

models are evaluated on the test data set and their performance is discussed. In order

to improve the accuracy of the Convolutional Neural Network (CNN)s, discrete and

continuous particle filters were added to create a more complete navigation solution.

The results on five simulated floor plan data collections are evaluated with those

combined solutions. Finally, the classification CNN is evaluated with real data that

was collected as described in 3.2.

4.1 Training Results

Initially, this research attempted to solve this problem with a typical double input

CNN architecture. However these models did not yield accurate location predictions.

Therefore, the decision was made to apply the U-Net architecture described in 2.4.

The idea was that the U-Net architecture would allow for better localization by iden-

tifying where on the floor plan particular features existed, as opposed to considering

the floor plan as a whole. In this research, two CNNs were designed for this problem.

They were trained as described in 3.5. The results of that training is described below.

At first, the localization problem was broken down into a more simple represen-

tation by breaking the floor plan down into 100 discrete blocks, which represented a

set of XY positions. For this representation of the problem, the classification CNN

was used to predict the blocks that it believed the image to have been taken from.

The model was trained for 100 epochs with Categorical Cross-Entropy (CCE) as the

metric. Recall that CCE will assign a probability to each block to show the models

confidence in that block as the possible truth location. On training data, the model

attained 77.3% categorical accuracy. It achieved a categorical accuracy of 76.5% on
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validation data. The overall training loss was reduced to a value of 1.99, whereas the

validation loss was reduced to 1.97. These results are shown in Figures 17 and 18.

There are two noticeable jumps in the training and validation losses that occurred at

epoch 53 and 65. The model was configured to reduce the learning rate in the event

that the validation loss stagnates after ten epochs. Those jumps are related to the

learning rate being adjusted by a factor of 0.1 at those epochs. After the learning

rate was adjusted, the validation loss continued to decline.

The second CNN trained for the purposes of regression. The task for this model

was to predict the XY position for an image relative to the given floor plan. This

model was trained for 100 epochs and achieved a validation root-mean-square error

(RMSE) of 13.57. On training data, this model achieved an RMSE of 13.39. The

training loss was reduced to 280.43, whereas the validation loss was reduced to 277.82.

These results are shown in Figures 19 and 20. Table 1 shows the captured metrics

for both models.

Classification CNN Regression CNN
Optimizer RMSprop RMSprop

Loss Function Categorical Crossentropy Mean Squared Error (MSE)
Learning Rate 1e−4 1e−4

Training Loss 1.99 280.43
Validation Loss 1.97 277.82
Training CCE 77.3% NA

Validation CCE 76.5% NA
Training RMSE NA 13.39

Validation RMSE NA 13.57

Table 1: Summary of the captured metrics for the classification CNN and the regres-
sion CNN.
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Figure 17: Training and validation loss plot for the classification CNN over 100 epochs.

Figure 18: Training and validation CCE plot for the classification CNN over 100
epochs.
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Figure 19: Training and validation loss plot for the regression CNN over 100 epochs.

Figure 20: Training and validation RMSE plot for the regression CNN over 100
epochs.
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4.2 Discrete Simulated Data Results

4.2.1 Classification Model Results

The performance of these models were evaluated on a new simulated test data set

generated via the AftrBurner engine. This test set contained 4,614 test samples. For

the classification CNN, a heat map was generated that showed the top 5 blocks that

the model predicted for the given image. Redder shading of the block indicates a

higher probability of the models confidence in that prediction, whereas bluer shading

indicates less confidence. Figures 21 and 22 show examples of this. In these figures,

a blue rectangle around the block represents the true location.

In Figure 21, the models top choice is the true location. In this situation the

model seems to be keying off of tight hallways that lack doors and windows in the

image and selecting locations that might match that. The image was taken from the

vantage point showing the corner of a room which may have been the key to getting

this prediction right.

In Figure 22, the true location of the image was not in the top 5 choices predicted

by the model, however all the predictions were along the same hallway. In this image,

windows are visible and the model would need to select locations that are close to

exterior walls.

The other heat maps are omitted for brevity, but the total results of the 4,614

predictions are shown in Figure 23. In 28% of the test images, the first choice by the

model was the true location of the image. The top 5 accuracy for these images was

76.1% which is inline with the model training results discussed in 4.1.

A distance metric was also computed for the 4,614 images. The distance metric

was computed by summing the weighted average position predictions for each image

and then computing the average predicted block. Then, assuming the discrete esti-

mate is the center of the block, the distance between the truth block and predicted
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Figure 21: Heat map showing a correct prediction for the test image shown to the
left.

Figure 22: Heat map for the image on the left. In this case the top choice by the
model was not the true location of the image.

block is computed. For these 4,614 images, the average position error was 31.58 me-

ters off of the truth position with a standard deviation of 21.1 meters. The median

position error was 30 meters.

4.2.2 Classification Model Results with New Floor Plan Representa-

tions

To further test the robustness of the classification CNN, an experiment was con-

ducted to see how the model responded when the color of the walls on the floor plan
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Figure 23: Bar plot depicting the number of correct predictions for each class on the
4,614 test data samples.

were changed to something other than black. Using the same test samples as before,

the classification CNN was evaluated with red, green and blue representations of the

original black floor plan. The results of that experiment are shown in Figure 24. For

the most part the model wasn’t bothered by the fact that the walls were represented

by a different color. However, the floor plan that used red walls had the worst top 5

categorical accuracy which was 73.6%. The original black floor plan achieved a top

5 categorical accuracy of 76.1%. When the model was evaluated with the green floor

plan, the average distance error was the highest at 32.06 meters, compared to the

original black floor plan distance error which was 31.58 meters.

4.2.3 Classification Model Results with Floor Plan Rotations

This research also tested how the classification CNN performed when the floor

plan image was rotated left or right by some degree. For the real data collection
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Figure 24: Bar plot depicting the number of correct predictions for each class on the
4,614 test data samples for each color floor plan.

portion of this research, the floor plan images were captured by hand with a cell

phone as described in 3.2. In those cases, the floor plan image would most likely have

some rotation to it. The classification CNN was evaluated four more times with the

same test samples as before, except the floor plan images were rotated. The floor plan

rotations tested were −10◦, −5◦, 5◦ and 10◦. Table 2 shows the results. In all cases

where the floor plan was rotated, the top 5 categorical accuracy was worse than when

it wasn’t rotated. Furthermore, the larger the rotation, the worse the top 5 accuracy

became. Also, the average distance error between the truth and predicted position

was increased when compared to the original floor plan that was not rotated.
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Rotation (Degrees) % in Top 5 Avg Distance Error (m)
-10 59.65% 32.43
-5 66.67% 33.85
0 76.1% 31.58
5 64.65% 34.65
10 62.25% 33.64

Table 2: Summary of the results when floor plan image was rotated for the classifi-
cation CNN.

4.3 Continuous Simulated Data Results

Next, the regression CNN was evaluated on the same 4,614 test samples. Predict-

ing the XY position was a more difficult problem than the classification CNN was

tasked to solve. This is due to the bimodal nature of the floor plan problem. Con-

sider an image of a hallway. In the simulated data, multiple hallways could appear

similar. The classification CNN would be able to assign higher probabilities to blocks

in different hallways, which could still lead to an accurate top 5 categorical accuracy.

However, with the regression CNN, when having to decide about similar hallway rep-

resentations, it would have to predict the average of the positions. This would lead to

it picking an XY position somewhere in between the predicted hallways, which would

yield an inaccurate XY position prediction. Figure 25 shows the cumulative position

error for the 4,614 test samples. The maximum distance error was 83.8 meters. 80%

of the test samples had a position error of 25.4 meters or less.

43



Figure 25: Cumulative Distribution Function plot showing the position error over the
4,614 test data samples.

4.4 Discrete Particle Filter Results

The discrete particle filter implementation discussed in 3.6.1 was evaluated five

new simulated floor plans generated with the AftrBurner engine. All five floor plans

along with the data collection paths are show in Appendix A. To test this with the

simulated data, a sequence of images were selected from each floor plan directory data

to simulate walking through that building. The total number of test images selected

was 728. First, the classification CNN evaluated the images alone. Next, the discrete

particle filter was added and the same images were evaluated again. The results are

compared in Tables 3 and 4.

In all five experiments, the top 5 categorical accuracy was improved with the

addition of the discrete particle filter. In experiment 2 the top 5 categorical accuracy

was improved by over 11%. In this experiment, a large portion of the walked path

was through tight hallways on the floor plan. The classification CNN did not perform
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Experiment % Top 1 % Top 2 % Top 3 % Top 4 % Top 5 % Other
Exp 1 no filter 41.53 33.05 11.02 7.63 3.39 3.39

Exp 1 with filter 45.76 42.37 11.02 0.0 0.85 0.0
Exp 2 no filter 27.05 17.07 10.37 7.93 9.76 26.83

Exp 2 with filter 40.24 14.63 15.24 6.71 7.93 15.24
Exp 3 no filter 52.41 16.55 9.66 6.90 2.76 11.72

Exp 3 with filter 47.59 20.0 8.28 6.21 6.90 11.03
Exp 4 no filter 56.12 20.14 2.88 2.88 1.44 16.55

Exp 4 with filter 64.75 7.91 8.63 1.44 1.44 15.83
Exp 5 no filter 59.26 16.05 4.32 3.70 6.79 9.88

Exp 5 with filter 72.22 21.60 3.70 1.85 0.0 0.62

Table 3: Summary comparison of the top 5 results for the classification CNN with
and without the discrete particle filter over the five different floor plans.

as well on these types of floor plans as compared to floor plans that contained larger

open areas. This could be due to hallways appearing similar in different areas of

the floor plan. However, with the addition of the discrete particle filter, predictions

that were too far away from a previous prediction would have had its probability

reduced. This would help the system eliminate incorrect predictions and ultimately

improve the overall navigation solution. The average distance error of the predictions

were also compared. Table 4 shows these results. In all five experiments the average

distance error between the truth and predicted positions were reduced when the

discrete particle filter was utilized. Most notable in experiment 1 where the average

distance error was reduced by 29.9 meters.

To better visualize the discrete particle filter experiments, Figure 27 shows the

heat map results of experiment 5. In that figure, the green dots represent the true

location of the sequence of images that made up the walked path. The different colors

represent the aggregated probability of all the test images. Red colors indicate high

probability locations, whereas blue colors indicate low probability locations. With

the addition of the particle filter, many of the predictions that were far off from the

walked path were eliminated. Also, the confidence in the images near the walked path
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Classification CNN
Experiment Average Distance Error (m) Standard Deviation (m)

Experiment 1 without filter 35.13 19.32
Experiment 1 with filter 5.23 9.13

Experiment 2 without filter 40.07 25.24
Experiment 2 with filter 25.20 27.28

Experiment 3 without filter 30.25 17.94
Experiment 3 with filter 14.63 17.40

Experiment 4 without filter 21.07 23.37
Experiment 4 with filter 15.72 20.58

Experiment 5 without filter 32.23 21.89
Experiment 5 with filter 11.17 16.81

Table 4: Summary comparison of average distance error and standard deviations
for the classification CNN with and without the discrete particle filter over the five
different floor plans.

were increased.

Figure 26: The heat map to the left shows the aggregated predictions of all test image
by the classification CNN without the discrete particle filter for experiment 5. The
heat map to the right shows the results when the particle filter is added. The truth
positions of the walked path are shown by the green dots. With the addition of the
particle filter the confidence in the walked path is increased, while also eliminating
the number of low probability predictions. The white blocks on the bottom portion
of the right heat map had a probability lower than 0.001 and were not shaded.
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4.5 Continuous Particle Filter Results

The continuous particle filter described in 3.6.2 was developed to be used in con-

junction with the regression CNN. The continuous particle filter was evaluated using

the same five generated floor plans and test images that discrete particle filter used.

First, the regression CNN evaluated the images alone. Next, the continuous particle

filter was added and the images were evaluated again. A comparison of these results

are shown in Table 5. In all five experiments, 80% of the test samples had a decrease

in the average distance error when the continuous particle filter was included. Also,

the maximum distance error was reduced in every experiment. In experiment 4, the

maximum distance error was reduced by 66%. In that experiment, the predictions

became inaccurate in the middle portion of the of the run. However, given the move-

ment of the particles being at 2.5 meters, the average of the particle cloud was able to

adjust for the bad predictions and reduce the maximum error for those predictions.

To illustrate how the continuous particle filter was used refer to Figure 27. This

image shows the first nine particle clouds of experiment 5 overlaid on top of the floor

Average Distance Error (m) for % of Test Samples
Experiment 20% 40% 60% 80% Max Error

Experiment 1 without filter 2.8 5.9 9.0 12.9 33.7
Experiment 1 with filter 2.5 5.6 9.1 12.3 24.8

Experiment 2 without filter 22.4 27.9 32.2 37.3 76.9
Experiment 2 with filter 21.7 25.9 30.9 33.9 41.1

Experiment 3 without filter 11.6 17.4 20.9 24.6 36.7
Experiment 3 with filter 11.4 17.4 20.5 23.8 30.7

Experiment 4 without filter 4.6 7.0 11.6 21.9 75.9
Experiment 4 with filter 4.9 6.8 9.1 13.5 24.6

Experiment 5 without filter 4.1 7.2 12.8 18.5 94.8
Experiment 5 with filter 3.3 6.3 9.7 14.8 59.0

Table 5: Summary of the distance error for the five floor plan experiments conducted.
The table shows the performance of the model alone and then with the addition of
the continuous particle filter.
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plan. The particles are represented by the red dots. Initially, they are all positioned

around the known starting truth position. The blue dot represents the XY position

prediction by the regression CNN for the given image. The black dot represents

the truth position for that image. For each image, the particles begin to converge

towards the predicted position. In the floor plan at the bottom right hand corner,

it can be seen how the weighted average position of the particles are closer to the

truth position than the prediction by the regression CNN alone. Thus, improving the

initial measurement.
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Figure 27: Starting from the top left and moving across, this image shows the con-
vergence of the particles towards the predicted position for the first 9 test images.
The black dot represents the truth position. The blue dot represents the position
prediction by the regression CNN. The particles are represented by the red dots.

4.6 Comparing the Discrete and Continuous Particle Filters on Simulated

Data

Table 6 shows the average distance errors for both the classification CNN and

regression CNN with their respective particle filters for the five particle experiments.
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In each experiment, the combined particle filter solution reduced the average distance

error of the initial raw predictions by their respective models. The regression CNN

alone had lower error metrics than the classification CNN in all experiments. However,

the regression CNN combined with the continuous particle filter did not have a lower

average error than the discrete particle filter in experiments 1, 2 and 3. The continuous

particle filter included wall constraints from the floor plans, which made it difficult

for particles to cross over wall segments. However, it was possible for particles to

cross a wall segment and then be selected for resampling. When this happened,

it was observed that the particle cloud could become trapped inside of a room for

some time due to being bounded by the same wall constraints. The majority of the

particles would remain there until the dynamics and resampling allowed the particles

to escape. This could cause the particle cloud to begin to lag behind the predictions

of the regression CNN, leading to less accurate position predictions. An example of

this concept is shown in Figure 28.

Average Distance Error (m)
Experiment Classification CNN Regression CNN

Discrete PF Continuous PF
Experiment 1 without filter 35.13 8.95

Experiment 1 with filter 5.23 8.05
Experiment 2 without filter 40.07 31.95

Experiment 2 with filter 25.20 27.92
Experiment 3 without filter 30.25 18.53

Experiment 3 with filter 14.63 17.96
Experiment 4 without filter 21.07 13.94

Experiment 4 with filter 15.72 8.47
Experiment 5 without filter 32.23 15.2

Experiment 5 with filter 11.17 10.37

Table 6: Comparison of average distance errors for the classification CNN and re-
gression CNN with and without their respective particle filters over the five different
floor plans.
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Figure 28: This figure shows an example of when particles became trapped inside of
a room on the floor plan. The particles were initially draw into the room due to an
inaccurate prediction by the regression CNN, and due to the wall constraints of the
floor plan, remained there until the right happenstance of dynamics and resampling
occurred for them to escape.

4.7 Real Data Results

The performance of the classification CNN was evaluated on real data. This data

was collected with the TurtleBot 3 as described in 3.2. Initially, the classification

CNN did not perform well with real data, achieving 4.8% top 5 accuracy. However,

given the fact that the model was not trained with imagery of this detail this was

expected. Another point to mention is that the images taken from the TurtleBot 3

were from a lower perspective than the ones taken in the simulated environment.

In order to improve the results, modifications were made to the the data set and

the model was retrained in the same manner as before. A small amount of real training

data was added to the data set. This data was procured by mapping a portion of

the first floor of building 644 at the Air Force Institute of Technology (AFIT) with
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the TurtleBot 3. After using the data augmentation techniques as described in 3.3,

a total of 2,304 real data images were generated for training. Another observation

that was made after the first real data experiment, was the difference in lighting

that appeared in the images. To incorporate that into training, 20% of the original

simulated data set was altered to include darkened images. This augmentation was

done with the ImageEnhance module of Pillow, a Python imaging library. After

retraining the classification CNN with the new data set, the module was evaluated

again on the real data collected from building 640. The top 5 accuracy was improved

from 4.8% to 10.7%. This demonstrates the ability of this solution to transition to

real world data, if enough real world training data can be ascertained.

Another item that was believed to be an issue during this experiment was the

quality of the floor plan after being resized to 101 × 101. Given its initial high

resolution and due to the image interpolation process, the resulting floor plan was

quite blurry which can have an effect on the models ability to interpret the floor plan.

The floor plan also contained different colors and symbols for doors and windows

than the simulated floor plans had, which would also be confusing for the model as

it had not been trained to identify these features. To verify this, the a new floor plan

of building 640 was generated to resemble the style of floor plans that the model was

trained with. This floor plan is shown in Figure 29. The new data set along with this

newly created floor plan yielded a top 5 accuracy of 16.6%, an improvement of almost

6% over the experiment that used the true floor plan. As with the real images, the

model was not trained with these types of floor plans and demonstrates the need to

develop a data set that includes the type of data that would be seen in the real world.
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Figure 29: A portion of the floor plan for the third floor of building 640 recreated in
the same style as the simulated floor plans.
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V. Conclusions

The purpose of this research was to explore the viability of a Convolutional Neural

Network (CNN) incorporating floor plans along with monocular camera images as a

potential means for indoor navigation. A simulated training data set was created that

modeled 1,000 building floor plans. Two CNN models were developed that attempted

to localize an image on the given floor plan. The first CNN performed classification

and achieved 76.1% top 5 categorical accuracy on test data. The second CNN was

a regression model and achieved a max distance error of 25.4 meters or less on 80%

of test data. This solution is unique compared to other navigation solutions, in that

it doesn’t require the use of inertial measurement unit (IMU) sensors or wireless

transmitting devices. Nor does it require mapping a building ahead of time in order

to make accurate position predictions. However, the floor plan of the building that is

being navigated is required.

To improve the results of the models and to demonstrate the potential to incorpo-

rate them with other navigation solutions, a discrete and a continuous particle filter

were both implemented. Through the course of five experiments, both particle filter

implementations were able to reduce the average distance error between the truth

and predicted positions of the original models. Finally, the classification CNN was

evaluated with real data. Initially, the model only achieved a top 5 accuracy of 4.8%.

After retraining the model with a small of amount of real imagery, the model was able

to achieve 10.7% top 5 accuracy on the test data. While these are not great results,

the amount of real data needed to improve these metrics could not be procured at the

given time. However, the results from the real data experiment do indicate that the

model could achieve similar results as the simulated data if given enough real data to

learn from.
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5.1 Future Work

This research showed that it is possible for a CNN to learn features of a building

floor plan and incorporate them in a localization prediction. However, this work was

not comprehensive and additional work can be done to improve the results. Possible

improvements are as follows:

• Acquire a more real data to train with. This would involve imaging a large

number of buildings in order for the models to generalize to the different building

architectures and their associated floor plans. The location of the captured

image would also need to be known relative to the floor plan.

• If real data is not able to be collected, then improving the existing simulated

data set could also improve the results. This can be done by generating more

types of building architectures other than rectangular shapes. Also, specify-

ing different symbols for features such as doors and windows could help with

generalization. Furthermore, depicting additional features inside of the simu-

lated buildings such as exit signs and bath room signs could provide additional

ways to determine an image location against the associated floor plan. Finally,

using more realistic textures for the indoor environment could help the model

generalize better to real data.

• A better process for downsizing the real data floor plan image to the needed

input size of 101 × 101 needs to be explored. Possible solutions could be

capturing the floor plan at a lower resolution and then downsizing or utilizing a

better sharpening filter to increase the precision of lines in the floor plan image.

• Utilizing hyper-parameter optimization algorithms to further improve the learn-

ing process.
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• Improve the continuous particle filter implementation. This research incorpo-

rated floor plans into the continuous particle filter by penalizing particles that

crossed over wall segments on the floor plan. However, this lead to issues were

particles could become trapped inside of rooms. A possible improvement would

be to not allow particles to cross wall segments at all. Instead have the particles

bounce of the walls and remain in the hallways.
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Appendix A. Additional Results

Table 7: Classification Model Hyperparameters.

Layer Name (Type) Size Activation Output Shape Connected To

input 2 (InputLayer) (None, 100, 100, 3)

input 1 (InputLayer) (None, 101, 101, 3)

conv2d 15 (Conv2D) 3x3 ReLu (None, 100, 100, 16) input 2

conv2d (Conv2D) 3x3 tanh (None, 101, 101, 16) input 1

conv2d 16 (Conv2D) 3x3 ReLu (None, 100, 100, 16) conv2d 15

conv2d 1 (Conv2D) 3x3 tanh (None, 101, 101, 16) conv2d

conv2d 17 (Conv2D) 3x3 ReLu (None, 100, 100, 16) conv2d 16

conv2d 2 (Conv2D) 3x3 tanh (None, 101, 101, 16) conv2d 1

max pooling2d 2 (MaxPooling2D) 2x2 (None, 50, 50, 16) conv2d 17

max pooling2d (MaxPooling2D) 2x2 (None, 50, 50, 16) conv2d 2

dropout 4 (Dropout) (None, 50, 50, 16) max pooling2d 2

dropout (Dropout) (None, 50, 50, 16) max pooling2d

conv2d 18 (Conv2D) 3x3 ReLu (None, 50, 50, 32) dropout 4

conv2d 3 (Conv2D) 3x3 tanh (None, 50, 50, 32) dropout

conv2d 19 (Conv2D) 3x3 ReLu (None, 50, 50, 32) conv2d 18

conv2d 4 (Conv2D) 3x3 tanh (None, 50, 50, 32) conv2d 3

conv2d 20 (Conv2D) 3x3 ReLu (None, 50, 50, 32) conv2d 19

conv2d 5 (Conv2D) 3x3 tanh (None, 50, 50, 32) conv2d 4

max pooling2d 3 (MaxPooling2D) 2x2 (None, 25, 25, 32) conv2d 20

max pooling2d 1 (MaxPooling2D) 2x2 (None, 25, 25, 32) conv2d 5

dropout 5 (Dropout) (None, 25, 25, 32) max pooling2d 3
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dropout 1 (Dropout) (None, 25, 25, 32) max pooling2d 1

conv2d 21 (Conv2D) 3x3 ReLu (None, 25, 25, 64) dropout 5

conv2d 6 (Conv2D) 3x3 tanh (None, 25, 25, 64) dropout 1

conv2d 22 (Conv2D) 3x3 ReLu (None, 25, 25, 48) conv2d 21

conv2d 7 (Conv2D) 3x3 tanh (None, 25, 25, 48) conv2d 6

conv2d 23 (Conv2D) 3x3 ReLu (None, 25, 25, 32) conv2d 22

conv2d 8 (Conv2D) 3x3 tanh (None, 25, 25, 32) conv2d 7

up sampling2d 2 (UpSampling2D) 2x2 (None, 50, 50, 32) conv2d 23

up sampling2d (UpSampling2D) 2x2 (None, 50, 50, 32) conv2d 8

concatenate 1 (Concatenate) (None, 50, 50, 64) conv2d 20

up sampling2d 2

concatenate (Concatenate) (None, 50, 50, 64) conv2d 5

up sampling2d

dropout 6 (Dropout) (None, 50, 50, 64) concatenate 1

dropout 2 (Dropout) (None, 50, 50, 64) concatenate

conv2d 24 (Conv2D) 3x3 ReLu (None, 50, 50, 32) dropout 6

conv2d 9 (Conv2D) 3x3 tanh (None, 50, 50, 32) dropout 2

conv2d 25 (Conv2D) 3x3 ReLu (None, 50, 50, 24) conv2d 24

conv2d 10 (Conv2D) 3x3 tanh (None, 50, 50, 24) conv2d 9

conv2d 26 (Conv2D) 3x3 ReLu (None, 50, 50, 16) conv2d 9

conv2d 11 (Conv2D) 3x3 tanh (None, 50, 50, 16) conv2d 25

up sampling2d 3 (UpSampling2D) 2x2 (None, 100, 100, 16) conv2d 26

up sampling2d 1 (UpSampling2D) 2x2 (None, 100, 100, 16) conv2d 11

concatenate 2 (Concatenate) (None, 100, 100, 32) conv2d 17

up sampling2d 3
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concatenate 3 (Concatenate) (None, 100, 100, 32) conv2d 2

up sampling2d 1

dropout 7 (Dropout) (None, 100, 100, 32) concatenate 2

dropout 3 (Dropout) (None, 100, 100, 32) concatenate 3

conv2d 27 (Conv2D) 3x3 ReLu (None, 100, 100, 16) dropout 7

conv2d 12 (Conv2D) 3x3 tanh (None, 100, 100, 16) dropout 3

conv2d 28 (Conv2D) 3x3 ReLu (None, 100, 100, 24) conv2d 27

conv2d 13 (Conv2D) 3x3 tanh (None, 100, 100, 24) conv2d 12

conv2d 29 (Conv2D) 3x3 ReLu (None, 100, 100, 32) conv2d 28

conv2d 14 (Conv2D) 3x3 tanh (None, 100, 100, 32) conv2d 13

concatenate 4 (Concatenate) (None, 100, 100, 64) conv2d 29

conv2d 14

dropout 8 (Dropout) (None, 100, 100, 64) concatenate 4

conv2d 30 (Conv2D) 1x1 ReLu (None, 100, 100, 64) dropout 8

bn (BatchNormalization) (None, 100, 100, 64) conv2d 30

max pooling2d 4 (MaxPooling2D) 5x5 (None, 20, 20, 64) bn

conv2d 31 (Conv2D) 1x1 ReLu (None, 20, 20, 1) max pooling2d 4

bn 1 (BatchNormalization) (None, 20, 20, 1) conv2d 31

max pooling2d 5 (MaxPooling2D) 2x2 (None, 10, 10, 1) bn 1

flatten (Flatten) (None, 100) max pooling2d 5

dense (Dense) 100 softmax (None, 100) flatten
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Table 8: Regression Model Hyperparameters.

Layer Name (Type) Size Activation Output Shape Connected To

input 2 (InputLayer) (None, 100, 100, 3)

input 1 (InputLayer) (None, 101, 101, 3)

conv2d 15 (Conv2D) 3x3 ReLu (None, 100, 100, 16) input 2

conv2d (Conv2D) 3x3 tanh (None, 101, 101, 16) input 1

conv2d 16 (Conv2D) 3x3 ReLu (None, 100, 100, 16) conv2d 15

conv2d 1 (Conv2D) 3x3 tanh (None, 101, 101, 16) conv2d

conv2d 17 (Conv2D) 3x3 ReLu (None, 100, 100, 16) conv2d 16

conv2d 2 (Conv2D) 3x3 tanh (None, 101, 101, 16) conv2d 1

max pooling2d 2 (MaxPooling2D) 2x2 (None, 50, 50, 16) conv2d 17

max pooling2d (MaxPooling2D) 2x2 (None, 50, 50, 16) conv2d 2

dropout 4 (Dropout) (None, 50, 50, 16) max pooling2d 2

dropout (Dropout) (None, 50, 50, 16) max pooling2d

conv2d 18 (Conv2D) 3x3 ReLu (None, 50, 50, 32) dropout 4

conv2d 3 (Conv2D) 3x3 tanh (None, 50, 50, 32) dropout

conv2d 19 (Conv2D) 3x3 ReLu (None, 50, 50, 32) conv2d 18

conv2d 4 (Conv2D) 3x3 tanh (None, 50, 50, 32) conv2d 3

conv2d 20 (Conv2D) 3x3 ReLu (None, 50, 50, 32) conv2d 19

conv2d 5 (Conv2D) 3x3 tanh (None, 50, 50, 32) conv2d 4

max pooling2d 3 (MaxPooling2D) 2x2 (None, 25, 25, 32) conv2d 20

max pooling2d 1 (MaxPooling2D) 2x2 (None, 25, 25, 32) conv2d 5

dropout 5 (Dropout) (None, 25, 25, 32) max pooling2d 3

dropout 1 (Dropout) (None, 25, 25, 32) max pooling2d 1

conv2d 21 (Conv2D) 3x3 ReLu (None, 25, 25, 64) dropout 5
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conv2d 6 (Conv2D) 3x3 tanh (None, 25, 25, 64) dropout 1

conv2d 22 (Conv2D) 3x3 ReLu (None, 25, 25, 48) conv2d 21

conv2d 7 (Conv2D) 3x3 tanh (None, 25, 25, 48) conv2d 6

conv2d 23 (Conv2D) 3x3 ReLu (None, 25, 25, 32) conv2d 22

conv2d 8 (Conv2D) 3x3 tanh (None, 25, 25, 32) conv2d 7

up sampling2d 2 (UpSampling2D) 2x2 (None, 50, 50, 32) conv2d 23

up sampling2d (UpSampling2D) 2x2 (None, 50, 50, 32) conv2d 8

concatenate 1 (Concatenate) (None, 50, 50, 64) conv2d 20

up sampling2d 2

concatenate (Concatenate) (None, 50, 50, 64) conv2d 5

up sampling2d

dropout 6 (Dropout) (None, 50, 50, 64) concatenate 1

dropout 2 (Dropout) (None, 50, 50, 64) concatenate

conv2d 24 (Conv2D) 3x3 ReLu (None, 50, 50, 32) dropout 6

conv2d 9 (Conv2D) 3x3 tanh (None, 50, 50, 32) dropout 2

conv2d 25 (Conv2D) 3x3 ReLu (None, 50, 50, 24) conv2d 24

conv2d 10 (Conv2D) 3x3 tanh (None, 50, 50, 24) conv2d 9

conv2d 26 (Conv2D) 3x3 ReLu (None, 50, 50, 16) conv2d 9

conv2d 11 (Conv2D) 3x3 tanh (None, 50, 50, 16) conv2d 25

up sampling2d 3 (UpSampling2D) 2x2 (None, 100, 100, 16) conv2d 26

up sampling2d 1 (UpSampling2D) 2x2 (None, 100, 100, 16) conv2d 11

concatenate 2 (Concatenate) (None, 100, 100, 32) conv2d 17

up sampling2d 3

concatenate 3 (Concatenate) (None, 100, 100, 32) conv2d 2

up sampling2d 1
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dropout 7 (Dropout) (None, 100, 100, 32) concatenate 2

dropout 3 (Dropout) (None, 100, 100, 32) concatenate 3

conv2d 27 (Conv2D) 3x3 ReLu (None, 100, 100, 16) dropout 7

conv2d 12 (Conv2D) 3x3 tanh (None, 100, 100, 16) dropout 3

conv2d 28 (Conv2D) 3x3 ReLu (None, 100, 100, 24) conv2d 27

conv2d 13 (Conv2D) 3x3 tanh (None, 100, 100, 24) conv2d 12

conv2d 29 (Conv2D) 3x3 ReLu (None, 100, 100, 32) conv2d 28

conv2d 14 (Conv2D) 3x3 tanh (None, 100, 100, 32) conv2d 13

concatenate 4 (Concatenate) (None, 100, 100, 64) conv2d 29

conv2d 14

dropout 8 (Dropout) (None, 100, 100, 64) concatenate 4

conv2d 30 (Conv2D) 1x1 ReLu (None, 100, 100, 64) dropout 8

bn (BatchNormalization) (None, 100, 100, 64) conv2d 30

max pooling2d 4 (MaxPooling2D) 5x5 (None, 20, 20, 64) bn

conv2d 31 (Conv2D) 1x1 ReLu (None, 20, 20, 1) max pooling2d 4

bn 1 (BatchNormalization) (None, 20, 20, 1) conv2d 31

max pooling2d 5 (MaxPooling2D) 2x2 (None, 10, 10, 1) bn 1

flatten (Flatten) (None, 100) max pooling2d 5

dense (Dense) 100 ReLu (None, 100) flatten

dense 1 (Dense) 2 Linear (None, 2) dense
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Figure 30: Top Layers of Classification Model
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Figure 31: Bottom Layers of Classification Model
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Figure 32: Top Layers of Regression Model
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Figure 33: Bottom Layers of Regression Model
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Figure 34: The floor plan that was used for experiment 1. The green dots show the
true locations of the images for the walked path.

67



Figure 35: The floor plan that was used for experiment 2. The green dots show the
true locations of the images for the walked path.
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Figure 36: The floor plan that was used for experiment 3. The green dots show the
true locations of the images for the walked path.
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Figure 37: The floor plan that was used for experiment 24. The green dots show the
true locations of the images for the walked path.
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Figure 38: The floor plan that was used for experiment 5. The green dots show the
true locations of the images for the walked path.
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