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Abstract 

The goal of this research is to provide a performance analysis of a joint terrestrial/ 

satellite communication network. The systems of interest are the Local Multipoint 

Distribution Service (LMDS) terrestrial system and the proposed Teledesic satellite network. 

This analysis is performed using the OPNET network simulation tool. Simulations are run 

for twelve separate scenarios involving three factors which include: number of users, 

modulation type, and Quality of Service (QoS). The key metrics for characterizing 

simulation scenarios are the end-to-end delay, bit error rate, and average system throughput. 

The results obtained display the benefit of improved throughput, approximately 20 Mbps for 

the low user load and approximately 8 to 11 Mbps for the high user load, when the 

modulation schemes where changed. This improvement comes at the expense the bit error 

rate. For example, the bit error rate increased by a factor of 5 for the low user load when 

changing from BPSK to QPSK and by a factor of 1.5 for the QPSK to 8-PSK change. The 

peak end-to-end delay results, ranging from .053 seconds to .446 seconds, proved to support 

real-time voice communication for all but one scenario (BPSK/ high user load). The QoS 

proved to be a benefit for scenarios with a high user load (150 users) increasing the average 

throughput by 2 to 4 Mbps. The QoS also reduced the peak end-to-end delay, narrowing the 

range from .04 to .104 seconds. The analysis of these three main operational characteristics 

gives a fundamental look at the joint network's performance capabilities. 

Xll 



Chapter 1 

Introduction 

1.1 Research Goal 

The goal of this research was to analyze the throughput, bit error, and packet delay 

performance capabilities of a combined LMDS/ Satellite system under different user loads, 

Quality of Service requirements, and in the presence of a varying urban attenuation. 

1.2 Research Motivation 

By combining a satellite network with a terrestrial network a person gains advantages of 

both systems. The terrestrial system is capable of very high data rates with the capability of 

increased communications security. The satellite network provides increased mobility 

through the unlimited range not found with the terrestrial system, but does not have the 

dedicated bandwidth of the terrestrial network. If the systems are combined they can work 

together to provide the tactical capabilities (terrestrial) and the global capabilities (satellites) 

required by the warfighters. 

The United States Air Force has recently shown great interest in simulating all possible 

military communication systems. The J-6 (Joint Staff) is sponsoring research into modeling 

all DoD communications systems in order to analyze the communication capabilities of the 

armed forces as a whole. This project has been named the NETWARS (Networks and 

Warfare Simulation) model. The analysis of the integrated terrestrial/satellite network and 

the simulation model created for the analysis is a valuable addition to the NETWARS model. 

This research analyzes major performance characteristics of an integrated terrestrial/ 

satellite network using a network simulation tool called OPNET. For a communication 



network to be useful in a military environment, it must be designed to consider security, 

mobility, and availability. Computer simulations are a cost-effective method for analyzing a 

communication network since the hardware and setup costs are minimal. 

The goal of the research is to produce a simulation that models how the network 

performs with multiple users in a mobile environment. The simulation should be capable of 

providing key communication specifications such as end-to-end delay, data error rates, and 

throughput. Since the network includes two heterogeneous networks, the transition of a user 

from one system to the other is tracked while noting all connection delays and data loss. 

The terrestrial system modeled is an LMDS (Local Multipoint Distribution System) 

which operates like typical cellular phone networks. The satellite network modeled is a LEO 

(Low Earth Orbit) system similar to the proposed Teledesic system. 

1.3 Scope 

This thesis presents research of a performance analysis of a combined terrestrial/ 

satellite network. To analyze the performance of the network, three separate areas were 

considered: end-to-end delay, bit error rate, and throughput. The network was tested by 

varying three basic factors: number of users, modulation type, and Quality of Service (QoS). 

The simulation model is developed using the OPNET modeling tool. 

1.4 Approach 

The first step of this research was to complete a thorough literature review to gather all 

specifications and previous research concerning various LEO satellite networks and current 

LMDS networks. 

In order to test the dynamics of the integrated terrestrial/satellite network of interest in 

this thesis, a model was developed that included the satellite and a typical cellular cluster of 



LMDS cells. It was not necessary to implement the full satellite constellation since the 

simulation only required a portion of the satellite system for the duration of the simulation 

runs. 

The next stage of the research required creating a model of the partial satellite network 

(Teledesic) that was used for simulation. This task was accomplished using the Satellite 

Tool Kit produced by Analytical Graphics. This model provided the fundamental orbital 

information that will be used in the OPNET model. 

The OPNET model was then developed. The satellite orbital information was 

transferred in this model in order to control the satellite nodes. The LMDS and satellite 

nodes were then modified to mimic the theoretical, real-world integrated communication 

system. The mobile users depicted within the model were equipped to handle both 

communication formats (satellite or LMDS) and to negotiate a transfer in systems with 

minimal data loss. The simulation modeled the mobile users traveling from one LMDS cell 

to another as well as from an LMDS cell to satellite coverage areas. The key output of the 

simulation were overall delay, error-rates, and throughput evident from one mobile user to 

another mobile user. 

After the model was developed and the simulations had been executed, the data was 

analyzed and documented in the thesis. The thesis and OPNET models were the final 

product as a result of this research. 



Chapter 2 

Literature Review 

2.1    Introduction 

A hybrid network consisting of a terrestrial line-of-site (LOS) communication system 

and an advanced satellites network is the focus of this literature review. This system 

combines the high data rate advantages of the terrestrial system with the unrestricted mobility 

of a satellite communication system. The advanced satellite networks discussed within this 

literature review are the IRIDIUM network developed by Motorola and the proposed 

Teledesic network being developed by Boeing and Microsoft. The IRIDIUM network is a 

Low Earth Orbit (LEO) satellite system developed for voice, data and fax communication 

applications. The Teledesic network is a high-capacity broadband network also using LEO 

satellites. The wireless terrestrial system considered is a Local Multipoint Distribution 

System (LMDS). This system is fundamentally the same as the network used for cellular 

telephone communication since the system consists of cells. Users within the cell 

communicate through a base station. The new capability of the LMDS is near gigabit data 

rate. By combining the satellite network with the terrestrial system, users are given great 

flexibility to move while maintaining a reliable communication link. 

Several previous AFIT theses have been accomplished for analyzing the IRIDnjM 

satellite system. An analysis of algorithms used for routing within the IRIDIUM system was 

researched by Pratt [Pra99]. This research followed Fossa's [Fos98] work concerning the 

performance and survivability of the IRIDIUM system as well as Janoso's [Jan96] analysis of 

routing protocols in a LEO satellite network. The transmission path for the IRIDRJM system 

was recently researched and analyzed by Crowe [Cro99]. These theses have given extensive 



insight into this satellite system's capabilities to communicate voice, data, and fax 

information to users world wide. There is very little open research on the Teledesic system 

since it is in the developmental stage and does not have a set design. The most current 

information can be found at the Teledesic web site [Tel99]. 

The LMDS has not previously been researched by AFIT. The main research done 

throughout the world emphasizes the need to supplement the current multimedia distribution 

which includes: real time video, data and computing, database consulting, games, and 

internet browsing [SaB98]. The other main emphasis for research of LMDS involves 

studying signal attenuation (power loss) due to the urban environment. 

This literature review discusses the specifications for the IRIDIUM and Teledesic 

satellite networks including power, bandwidth, frequency, routing and orbital parameters as 

well as an analysis of LEO satellite networks. This literature review presents information 

concerning the capability of combining these satellite networks (IRIDIUM and Teledesic) 

with a terrestrial LMDS. The LMDS research provides basic characteristics for operating the 

line-of-sight (LOS) system such as frequency, bandwidth, and attenuation. The system 

specifications detailed in the literature review are used in a simulation to examine the 

performance/ survivability of the combined system. The frequency, bandwidth, and 

attenuation for the LMDS are considered within the simulation. 

2.2    Low Earth Orbit (LEO) Satellites 

A LEO satellite is characterized as such if its orbit ranges between 500 and 1500 km. 

This low altitude provides one of the major benefits of the LEO system over higher orbit 

satellite systems. Due to the low altitude the propagation time for a signal to reach the 

satellite from an earth-based user is relatively low, typically between 1.67 and 6.67 ms 



[Pra99]. The low altitude also allows the satellites to operate with reduced power 

requirements. The last major benefit of the LEO systems stems from their use in polar orbits 

enabling them to provide true worldwide coverage. 

LEO satellite networks also have negative characteristics. One being the large number 

of satellites required to establish whole-earth coverage. The number varies depending on the 

constellation design [Pra99]. LEO systems may also required more complex 

processing/networking capabilities on the satellites in order to provide dynamic routing since 

the satellites have small coverage areas and have to route through several satellites to 

establish a connection. 

2.3    Multiple Access Environment 

There are three main multiple access environments. These include Time Division 

Multiple Access (TDMA), Frequency Division Multiple Access (FDMA) and Code Division 

Multiple Access (CDMA). These forms of multiple access are designed to provide methods 

to efficiently use a specific frequency band for several users without conflict. The are two 

additional techniques that involve the design of the antenna used to transmit the signal. 

These are Space Division (SD) and Polarization Division (PD). 

TDMA allows multiple users within a certain bandwidth by establishing time slots for 

transmission. Each user transmits on the same frequencies but at different times. This 

method has the benefit of allowing the users to utilize the entire bandwidth, but for only a 

portion of the time. This method requires all of the users to have detailed synchronization 

information to ensure that they stay within the designated time slot. The full system capacity 

is also limited due to the guard time bands that are required to eliminate interference between 

time slots as seen in Figure 1. 
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Figure 1: TDMA Plot [Ska88] 

FDMA, on the other hand, allows for multiple users by splitting the available 

bandwidth into separate frequency bands for each user. This method allows the users to 

constantly transmit. But because of the reduced band for each user, the transmit rate is 

reduced in direct proportion to the number of allowed users. FDMA has approximately the 

same utilization of bandwidth as the TDMA method. FDMA also uses guard bands to avoid 

interference as seen in Figure 2. A combination of TDMA and FDMA can also be used by 

dividing the available frequency into separate bands as well as splitting each band into time 

slots. 
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Figure 2: FDMA Spectrum [Ska88] 

CDMA is the final method that will be discussed. This type of multiple access is much 

different. It assigns a specified pseudo random code to each user which uniquely identifies 

each user's signal. This unique code is applied to the data stream or waveform of the 

user's signal creating a resulting waveform that is a combination of the user's data waveform 

and the pseudo random code as shown in Figure 3. A receiver can only retrieve this modified 

data by applying the exact pseudo code used at the transmitter. CDMA allows all users to 

transmit simultaneously. The main limitation is the rate of the pseudo code which in return 

limits the data rate if the desired data rate/ pseudo rate ratio is to be maintained. 
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Figure 3: CDMA Waveform 

2.4    Modulation Techniques and Bit Error Rate 

In order to efficiently transmit a digital signal on a radio channel, it is necessary to 

modulate the digital waveform. There are several modulation techniques, but the technique 

of interest for this thesis is Phase Shift Keying (PSK) modulation. PSK uses a sinusoidal 

waveform with a unique phase to represent a bit or group of bits. The general analytical 

expression for this type of modulation can be seen in Equation 1 [Ska88]. This equation 

\2E 

"' " V  T cos(  CO 0t + 0(. (0) 0 < t < T 

i = 1, , M (1) 

0,(0 
2n i 
M 

gives the expression for each symbol for a M-ary PSK modulation scheme. The parameters 

in the equation are symbol period (T), symbol energy (E), carrier frequency (coo), and phase 

(f)i(t). For a binary PSK system, each symbol represents a single bit, where as for an M-ary 

PSK system each symbol represents log2(M) bits. 



When considering the calculation of the Bit Error Rate (BER) or Probability of bit 

error (Pb) of a digital signal, the key assumption is the existence of Additive White Gaussian 

Noise (AWGN). All fundamental calculations for signal detection are made assuming 

AWGN which has a normal distribution. The key parameter used for the calculation of the 

BER for a signal is the bit energy per noise density (Eb/N0) for the signal. In order to 

calculate the Eb/N0, the signal to noise ratio (S/N), Bandwidth (W) and data rate (R) must be 

obtained for the signal. Equation 2 details the relationship. 

Eb S 

N0 N 
<  R   J 

(2) 

For M-ary PSK, the error calculation is often done first in reference to the symbol error 

for the signal and then converted to bit error. Equation 3 displays the basic symbol error 

PE(M   )  =   20 
(     '2 E .    .       K    ^ 

sin 
N 0 M 

(3) 

equation for a coherently detected M-ary PSK signal. Equation 4 displays the conversion 

from symbol error to bit error for orthogonal signal sets. In equation 3 Es represents symbol 

energy and Q is the error function. In equation 4, k represents bits/symbol. 

ry   k -1 

PB  =  PE -4  (4) B E 2k - 1 

A common method of referencing the BER is done through Et/No versus PE or PB 

curves as shown in Figure 4. This graph displays the requirement for much more signal 

energy in M-ary systems with a large M. 
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Figure 4 : M-ary PSK Symbol Error Plot [Ska88] 

2.5    IRIDIUM Satellite Network 

The Iridium satellite network consists of 66 satellites in 6 orbital planes following a 

near polar orbit with an inclination of 86.4° and an altitude of 780 km. Each orbital plane 

has 11 active satellites, evenly spaced throughout the orbit, each weighing 1516 lbs. The 

orbital planes are spaced 31.6° apart except the for 6th and 1st planes which have 22° of 

separation. All of the orbits have an eccentricity of approximately zero resulting in circular 

orbits. The period for one revolution for each satellite (100.44 min) can be calculated using 

(5) where R is the radius of the earth, h is the altitude of the satellite and |i is the gravitational 

P = 
I 4TT2 (/? + /*) 

ß 
(3) 
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constant (3.986005 x 1014 m3/s2). The in-view time for a satellite traveling directly overhead 

can be calculated by relating the period of the satellite to the central angle (y) for the satellite. 

Equations 6 and 7 display the method for calculating the time in view. The minimum 

elevation for each satellite in reference to an earth station (Control station or user) is 

7 = cos "' (cos( Le) cos( Ls) cos( ls - le) + sin( Le) sin( Ls)) 
(6) 

2r 
In View Time = —— P 

360 (7) 

approximately 8.2°. Given this minimum elevation angle, the maximum in view time for any 

satellite can be calculated using (7) assuming direct overhead path of the satellite. The 

average in view time for all satellites (not just overhead) considering the 8.2° elevation angle 

in approximately 10 minutes [Com93]. 

2.5.1    IRIDIUM Communications Specifications 

The communication link between the IRIDIUM satellites and ground users is 

maintained in the L-Band (1616-1625.5 MHz). The Ka band is used for the earth station 

(gateway) to satellite links (19.4-19.6 GHz for downlinks; 29.1-29.3 GHz for uplinks) and 

for the Inter-satellite links (23.18-23.38 GHz) [Cro99]. The bandwidth for the user link is 

sufficient to handle 3,840 carrier channels per satellite using frequency reuse of the 10.5 

MHz maximum bandwidth available. The ground station uplink and downlink both use 100 

MHz and the ISLs (Inter Satellite Links) use 200 MHz [MaD95],[Cro99]. The user links use 

a combination of Frequency Division Multiple Access (FDMA) and Time Division Multiple 

Access (TDMA) to provide services to the full number of channels. The user voice signal is 

modulated using Quadrature Phase Shift Key (QPSK) modulation. 

12 



The total bandwidth available to the IRIDIUM network for user communication is 

10.5 MHz which is separated into 240 different 41.67 kHz channels. The system utilizes a 

frequency reuse factor of 12, which splits each satellites coverage area into four 12 cell 

clusters. Each cell is then allocated 20 of the 240 channels. The satellites 48 cells are 

arranged into four clusters which are distributed so adjacent satellite cells do not use the 

same 20 channels. An example of the cluster arrangement can be seen in Figure 5. 

Frequency Reuse Scheme: N - 12 

Figure 5: IRIDIUM Frequency Reuse [Fos98] 

Each of the 20 channels is set up to contain four TDMA users, which results in 80 

users per cell. Since each satellite operates 48 cells the resulting number of users for the 

satellite is 3840. 

Unlike most communication satellite systems, IRIDIUM is designed to use ISLs 

(Inter-Satellite Links) to aid in efficient communication and routing while a majority of the 

other satellite links use a "bent-pipe" approach which involves no dynamic routing. The 

ISLs enable the IRIDIUM system to dynamically route data between adjacent satellites in the 

same plane or adjacent planes. 

13 



The power specifications for the IRIDIUM system are different for each type of 

communication (User, ISL, and gateway) link. Table 1 displays the average power per 

satellite for each communication type. 

Table 1: IRIDIUM Power Specifications [Wer95] 

Communication Type Average Power 

User Link (-1.6 GHz) 13 W 

ISL (-23 GHz) 7W 

Gateway Link 3.9 W 

2.5.2   IRIDIUM Processing 

The method for call processing used by the system is similar to that used by the 

Advanced Mobile Phone System cellular phone system [Hub97],[Fos98]. This system is 

based on home gateways and visiting gateways. Each gateway maintains a Home Location 

Register (HLR) which contains information for all local subscribers as well as a Visited 

Location Register (VLR) which contains information for all subscribers visiting the 

gateway's area. When a user powers a handset, a signal is sent to the satellite overhead 

which establishes the user as "ready to receive". The signal is routed through ISLs until it is 

directly over the nearest gateway. When the gateway receives the signal, it determines 

whether the user is a local subscriber. If the user is local, the gateway updates the user 

information in the HLR. If the user is a visitor the gateway sends a request to the user's 

home gateway requesting permission to set up calls for the visitor. The home gateway then 

14 



sends clearance to the visited gateway and updates the HLR with the user's current location. 

[Fos98] 

The call setup for the network is performed by the gateways. When a call is made to 

a mobile user, the call is routed to the mobile user's home gateway. The home gateway then 

sends a ring signal to the satellite directly over the mobile user. When the mobile user 

responds to the ring signal, an off hook signal is routed back to the gateway which then routes 

the voice packets to the mobile user. If the link is a mobile-to-mobile link, the gateway is not 

required to route the packets. The gateway can set up the communication and drop out. 

When the mobile user is in a visited gateway, the home gateway sends a signal to the visited 

gateway to ring the subscriber. The mobile user then sends the off hook signal to the visited 

gateway which forwards the signal to the home gateway. The home gateway is then 

responsible for sending the packets to the mobile user [Fos98]. 

2.6    Teledesic Satellite Network 

The Teledesic satellite network [Tel99] is being designed to be a broadband network 

capable of global coverage. The network will use LEO satellites for the benefit of the low 

latency of the constellation. The network consists of three segments: terminals (users), 

gateways, and satellite constellation. The system is being designed to achieve 64 Mbps data 

rates for the downlink and 2 Mbps data rates for the uplink. The Teledesic network will be 

compatible with IP, ISDN, and ATM protocols. This allows for easier system adaptation to 

current terrestrial internet architectures. 

The Teledesic Network will use fast packet switching. This will be accomplished 

through the use of short fixed-length packets that contain a header that includes the 

destination address, sequence information, and header error-control as well as a payload 

15 



section containing the data [Tel99]. Since this is a dynamic network, there will be buffering 

at the terminal destinations to account for the variation in delay for all packets. 

2.6.1    Teledesic Satellite Constellation 

The current proposed satellite constellation will consist of 288 operation satellites in 12 

orbital planes at approximately 1400 km [Gav97][Tel99]. All planes have an inclination of 

89.2° and contain 24 satellites. 

The communication to the satellites is proposed to use the Ka band (18.8 - 19.3 GHz 

for downlink, 28.6-29.1 GHz for uplink). The minimum elevation angle for the entire 

service area is maintained at 40° with the ability to achieve 99.9 percent availability [Tel99]. 

Since this elevation angle is very high, the attenuation effects of the atmosphere are 

minimized. The overlapping coverage areas for the satellites allow the system to be easily 

maintained without any down time for the users. Each satellite divides its available spectrum 

into several cells and uses a frequency reuse scheme similar to that used by IRIDIUM. 

Multiple users are able to simultaneously use the resources within a single satellite cell 

through the use of TDMA. 

2.7    Local Multipoint Distribution Service (LMDS) Communication System 

A LMDS is a communication system designed to operate under LOS conditions within 

the Ka band (27.5 - 31 GHz). The available bandwidth is shared with satellite uplink 

frequencies at 28.35-28.6 GHz and 29.5-30 GHz. The purpose of LMDS networks is to 

provide a large bandwidth for communicating large quantities of data at high data rates. The 

main application driving the pursuit of LMDS is to provide advanced Internet and the new 

High Definition Digital Television (HDTV). 
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Most of the research currently being performed either involves characterizing the 

attenuation effects of the urban terrain on the LMDS signals or defining possible 

communication protocols that could be used. Some typical ranges for a LMDS network 

would be from 100 yds to 5 km for one cell [Iza99]. For example, the smaller radius would 

be for a network that would be contained within a single office building. The larger cell size 

would allow communication within a city where several cells could be joined throughout to 

form a network similar to the cellular telephone system. 

One study performed by Papazian [PaH97] considering the propagation attenuation in an 

urban environment gave a breakdown of the attenuation versus distance. These results are 

shown in Figure 6. These results give a basic loss analysis for the different distances. The 

power requirements for transmitters/ receivers used in simulation are designed to overcome 

the documented attenuation. 
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Figure 6: LMDS Urban Attenuation [PaH97] 
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A possible communication technique that could be used for a LMDS network considers 

using a CDMA technique. This technique uses a spread spectrum type signal to code each 

user with a unique spreading code allowing several users to use the same frequency band for 

communication. This technique yields better privacy of communication since the pseudo- 

random code used for spreading can be private information and thereby not allowing anyone 

to decode the transmitted signal. This type of communication is used by the cellular phone 

network. 

Another possible protocol for communication is called Contention-TDMA (Time 

Division Multiple Access) [TrV98]. This allows users to communicate »depending on 

availability, during specific time slots which are determined and controlled by the LMDS 

base station. The communication link uses ATM (Asynchronous Transfer Mode) cells 

within a specific packet to accomplish data communication. 

A large portion of the documentation concerning LMDS networks deals with the 

frequency band itself that has been allocated by the FCC. As stated previously this band lies 

primarily in the Ka band. The following exact specifications have been set by the FCC at 

27.5-28.35 GHz, 29.1-29.125 GHz and 31-31.3 GHz ranges [Gar98]. 

2.8    Summary 

In order to accomplish the integration of a LMDS system with a LEO satellite network 

(IRIDIUM or Teledesic), consideration must be made for all parameters including power, 

bandwidth, frequency, routing algorithms and orbital parameters. Much information has 

been gathered considering these items. The challenge of this thesis is to combine all aspects 

of both systems and produce a viable simulation that actually accounts for the key 

parameters. 
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Chapter 3 

Methodology 

3.1 Introduction 

This chapter discusses the methodology used to analyze a joint LMDS/ Satellite 

communication network and the design and testing of the simulation model created. Section 

3.2 gives a basic overview of the problem, covers the scope of the problem, and discusses the 

methodology used for analysis. Section 3.3 lays out all of the operational assumptions made 

in modeling the network. The computer modeling tools and the models created with each 

tool are discussed in Section 3.4. All of the parameters used within the computer models are 

covered in Section 3.5. The desired metrics are specified in Section 3.6 and the validation 

and verification of the models is discussed in Section 3.7. Section 3.8 summarizes the 

information in this chapter. 

3.2    Problem Overview 

As stated in Chapter 2, the existing literature on an LMDS system is very minimal and 

is centered around the urban attenuation and the frequency band allocation. The use of LEO 

satellite systems for communication has had considerable coverage concerning the 

IRIDIUM. With the exception of the Teledesic homepage [TelOO], very little open-literature 

research results exist for the Teledesic system. 

The purpose of this thesis is to analyze the performance characteristics of the combined 

LMDS/ Teledesic-like-LEO satellite network concerning achievable average throughput, bit 

error rates, and end-to-end delays. It is not possible to address all performance 

characteristics due to the time and resources available; therefore the scope of the thesis is 

limited as discussed in the following section. 
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3.2.1    Scope Definition 

The scope of this problem is limited because of time constraints and available 

resources. The LMDS system is limited to a single seven-cell, standard frequency reuse 

configuration. The network is also considered fully connected wherein each cell is connected 

to each other cell by a fiber optic line (-155 Mbps) which will limit the routing necessary. 

The control channel used within the LMDS network is also modified to allow easy 

connection setup and user tracking through a management node. 

The satellite network is based on a Teledesic-like constellation. The implementation of 

the satellite network is limited concerning the routing protocol, connection setup (call setup), 

signal powers, and constellation. 

In general, there are some limitations to the scope of the problem concerning the 

number of users, system failure and traffic distribution. These limitations are described 

below. 

3.2.1.1   Cell cluster 

A single seven-cell cluster is used to apply frequency reuse of the LMDS frequency 

band. This is a standard cluster configuration used for analysis. It allows a convenient 

geometric configuration of the cells as shown in Figure 7. 

Figure 7: Seven-Cell Cluster 
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3.2.1.2 LMDS Network 

The LMDS Network of seven cells is fully connected using fiber optic landline 

connections. These landline connections provide 155 Mbps data rates from cell to cell. By 

using this connection scheme, there is no need for a routing protocol since there will be 

sufficient bandwidth to route all calls from one cell to any adjacent cell. This puts the 

resource bottleneck in the cell bandwidth, which is the throughput of concern for the thesis. 

3.2.1.3 Control Function and Management Node 

The LMDS model also simulates the user tracking and connection setup through the 

user of a management cell that is connected to each of the cells. This management node 

tracks all users, tracks cell resources, and sets up all routing. This node retrieves all this 

information from each cell. 

The model uses a band of the LMDS frequency band as a control channel for passing 

information from user to cell. The communication technique used is a form of TDMA, but 

since the data communication is the point of interest of this thesis the control channel 

specifics are not considered in detail. 

3.2.1.4 Teledesic-like Constellation 

The LEO constellation used for the purpose of the analysis in this thesis is a 

Teledesic-like constellation. The functionality of the system has been scoped for the thesis in 

the areas of routing, establishing connection, power requirements, and constellation size. 

The routing is set during the simulation, assuming the most direct path. The connections are 

established to supplement the LMDS or communicate with a few select global users. These 

connections are established purely based on resources available within the nearest satellite. 
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The power requirement is not considered, since the satellite network is only being analyzed 

for its ability to supplement system throughput and effective end-to-end delay. The 

constellation size is limited to only the number of satellites required to reach each site of 

interest. 

3.2.1.5   General Limitations 

The number of users within the system is one of the factors for the analysis. By 

increasing the number of users, the available throughput is directly affected. The number of 

users that are allowed to use the system is controlled by the Quality of Service (QoS) 

specified. Without a quality of service, the number users would be limitless, but the 

throughput may be unacceptable if too many users are in a single cell. For the purpose of the 

simulation, a maximum of one hundred users are allowed to use a cell's resources at one 

time. 

Equipment failures are not considered within the scope of this thesis. The failures 

possible within the system can definitely affect the throughput. The goal of this thesis is to 

analyze the effect of the number of users, QoS, and basic processing delays on the 

throughput and system delay. 

Because of the data rates possible for the LMDS/ Satellite system, the traffic 

considered for the analysis is data traffic although the rates and delays should prove to 

support any kind of traffic (real-time or data). The distribution of the data traffic is 

considered uniform for any user to any other user within the system. The generation of 

traffic from each user is considered constant since the queuing delay within the system is not 

going to be considered. 
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3.2.2   Methodology Used 

There are three basic methods of evaluation that can be used to evaluate a systems 

performance: analytical modeling, simulation, and measurement. Simulation is the most 

appropriate for the LMDS/ Satellite network. Since analytically representing the 

probabilistic nature of the traffic is very difficult, the analytical method would be unrealistic 

and would require excessive simplifications. It is unrealistic to consider the measurement 

technique for two reasons. The first is that the only LEO satellite network capable of 

supplementing the LMDS data rates is the Teledesic Network, which is not yet operational. 

The second is that the financial resources, as well as time required to construct and test an 

adequate system, are not within the scope of this thesis. The simulation technique is 

obviously the best method, since the use of sophisticated computer simulation tools (OPNET, 

STK) allows an accurate representation of a typical system. The network simulation tool 

OPNET can model the packet generation, delays, communication specifications, and error 

analysis, while the STK satellite modeling tool can precisely create the LEO satellite models 

for use in the simulation. 

3.3    Operation Assumptions 

The simulation of the LMDS/ Satellite network was accomplished using the OPNET 

network simulation tool by MIL3. The Teledesic-like satellite orbits were created using the 

STK satellite tool kit by Analytical Graphics. Many assumptions were necessary in order to 

simulate this network since neither system is currently operational and little information was 

available concerning the technical specifications for either the satellite or LMDS system. 

The details that were available were incorporated into the model. Additional assumptions 

were also made in order to make the simulation run within the time constraints of this thesis. 
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3.3.1   LMDS Cell Size 

As discussed in the scope limitation section, the LMDS system was limited to seven 

cells for the simulation. The standard cell sizes for the LMDS networks are planned to be 

from two to five miles [Iza99]. The attenuation research [PaH97] studied LMDS signals 

extending out to 2 km. The cells for the simulation were set at 2 km radii to correlate to the 

attenuation research. Figure 6 on page 17 displays a scatter diagram of the attenuation data 

gathered by Papazian et al [PaH97]. The least squares linear fit for this data can be seen in 

Table 2. 

Table 2 : LMDS Attenuation [PaH97] 

Site (Antenna Height) Slope(dB/km) Intercept (dB) 

Northglenn (40-ft) 42.4 7.3 

San Jose (40-ft) 40.9 2.1 

San Jose (80-ft) 6.7 9.4 

From the information in Table 2, the approximate attenuation for the site can be 

estimated for the 2 km radius cells used in the simulation. Comparing the data in Figure 5 

with the slope in Table 2, one can see that there is large range above and below the linear fit 

for the attenuation. Therefore, the attenuation for the simulation was allowed to uniformly 

vary between the values as shown in Table 3. These values were obtained from the visible 

linear fit error shown at approximately 1km. 
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Table 3: Simulation Attenuation 

High Estimate Linear Fit Estimate Low Estimate 

Attenuation (dB/km) 52.4 42.4 27.4 

3.3.2 LMDS Multiple Access 

The access technique used for an LMDS network could be any of the three described in 

Chapter 2 (TDMA, FDMA, or CDMA). The FDMA technique was chosen for the 

simulation for ease of application within OPNET concerning the Quality of Service that can 

be established for all users within the network. The FDMA technique simply splits the 

available frequency into a separate band for each channel within a cell. The breakdown of 

the frequencies for each cell will be discussed within the model design section. The LMDS 

network simulation model assumed equal bandwidth for uplink and downlink, since this 

network is assumed to be used for two-way communication. This differs from most literature 

because the existing literature is based on a LMDS network designed to support a broadcast 

type service such as the new High Definition Television (HDTV). 

3.3.3 Packet Format and Size 

No open-source literature exists on the packet structures for an LMDS network. The 

main goal of the simulated network is to chose a packet size that will have small enough end- 

to-end delay to be able to accommodate any kind of traffic (data, voice, or video). The other 

main factor for choosing the packet size is the simulation time that will result, since within 

OPNET the simulation time is directly related too how many packets are created. 

Within the LMDS network, there is not a problem with delay due to the propagation 

time (maximum 1.3333xl0~5 s), but if the packet size is too large the transmission delay may 
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be too large to support video or voice applications. Also, when supporting, video or voice 

applications, care must be taken to include the longer propagation times associated with 

satellite links. This factor, used in conjunction with packet transmission times, tend to limit 

the range of useful packet sizes. 

Considering the worst case scenario for the Teledesic-like orbit which is a link 

traveling all the way around the world before reaching its destination, the propagation delay 

is calculated below: 

Orbit Altitude = 1400 km 

Around World = 2 • n ■ «(1400 + 6378) = 48870 km 

Worst Case Prop Distance = User - to - Sat + Around World + Sat - to - user 

Worst Case Prop Distance =1400 +48870 +1400 =51670 km 

Worst Case Prop Delay = Worst Case Prop Distance / Speed of Light 

Worst Case Prop Delay =51670 km /300000 km/s  =.172 sees 

The common standard for voice communication maximum delay is known to be 400 

millisecs. With this standard the LMDS/ satellite network would be allowed .228 sees for 

transmission and processing delays. Assuming 14 (isecs of processing delay per processor 

and a maximum of eleven satellites to circle the globe, this would leave .2278 sees for 

transmission of a packet. At two Mbps, this would allow for a maximum packet length of 

455,600 bits. The worst case satellite scenario would not allow for real-time video unless a 

low refresh rate is chosen for the video stream. Real-time video may be possible within the 

LMDS network since the propagation delays within the network are in the range 

microseconds. For the purpose of this thesis, a packet length of 100,000 bits was chosen 

primarily to lessen the number of events per simulation run. This packet length is not typical 
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for voice communication, but the end-to-end delay is one of the products of the thesis, 

therefore the support of voice communication will be proven/disproven through simulation. 

Since the analysis being performed is a link layer analysis, the packet format used 

within the simulation does not include details considering the network layer manipulation of 

the packet. 

3.3.4 Processing Delay 

There is not a documented processing delay for either the LMDS or Teledesic systems, 

therefore one must be assumed. For the IRIDIUM system, the processing delay is assumed 

to be 14 |isecs [Fos98]. Since IRIDIUM is an established system that uses ISLs, like 

Teledesic, it seems reasonable to use this processing delay throughout the LMDS/ Satellite 

system. This is a logically assumption since both the LMDS/ Satellite system and the 

IRIDIUM system operate using a dynamic packet routing scheme. 

3.3.5 Traffic Distribution 

The traffic for the LMDS/Satellite network was setup to be random in three areas: 

Traffic Destination, Traffic Start, and Traffic duration. The traffic destination was chosen 

from any mobile user or from three fixed sites (Wyoming, Washington, DC, and Germany). 

The traffic start time for each mobile user was randomly set for any time during the 

simulation. The traffic duration was set to be for any length of data from 100k bits to 500 M 

bits. 

The traffic destination was set to be a uniformly distributed where any user could select 

any other user or fixed site. In order to ensure the full capacity of the system was tested, 
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each destination could only be selected by one user, since the system was set to allow the 

users to accept data from only one user at a time. 

The traffic start time for each user was normally distributed in order to represent a peak 

traffic time in the simulation. This was chosen to cause a majority of calls to be within one 

specified standard deviation. Table 4 displays the mean and standard deviation chosen for 

the simulation. 

Table 4: Traffic Start Statistics 

Simulation Start (min) Mean Traffic Start(min) Standard Deviation(min) Variance 

0.0 5 2 4 

The traffic duration was also normally distributed. This was done in order to ensure 

that a majority of calls were relatively long. This would make sure that the network capacity 

and throughput was tested at a worse case type of scenario. Table 5 displays the statistics for 

the traffic duration. 

Table 5: Traffic Duration Statistics 

Mean Duration Standard Deviation Variance 

500 Mbits 200 Mbits 4xl04 

3.3.6   Satellite Constellation 

The constellation used for the simulation was assumed to be a Teledesic-like 

constellation with 288 satellites in 12 orbital planes. To maximize efficiency of simulation 

resources, the constellation was not fully constructed within the model. The reduced 

constellation size did not reduce the accuracy of the model. The constellation was 
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constructed using the STK software. The shortest path was then configured for each of the 

remote sites. This shortest path configuration was used throughout the simulation assuming a 

best-case scenario for satellite communication. The worst-case scenario was then 

implemented through inspection of the STK orbits for the constellation. This scenario was 

designed to require communication to the remote sites by traveling around the world before 

reaching the remote site. The maximum number of hops to travel this distance was also 

assumed. The delay for this worst-case scenario was then calculated and added to the best- 

case scenario model to simulate the worst-case satellite communication delay. The 

simulation, thereby, gives the worst-case or best-case delay time. This allows the use of a 

very limited number of fixed satellites to represent the constellation. 

3.3.7   Satellite Multiple Access 

As previously mentioned, the satellite network used for the simulation was modeled 

after the Teledesic system. The documented multiple access scheme used for this system is a 

FDMA/ TDMA combination for the user uplink and an asynchronous TDMA scheme for the 

downlink. The uplink was also limited to approximately 2 Mbps, and the downlink was 

limited to 64 Mbps, but since any satellite uplink is limited to approximately 2 Mbps the 

associated downlinks will also be at 2 Mbps. The simulation split the uplink frequency into 

10 channels with 7 time slots. The intersatellite links also used a TDMA scheme for packet 

routing. The downlink was simply split into appropriate time slots. For the purpose of the 

simulation, the appropriate frequency/ time slots were assigned during connection for the 

user and destination. 
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3.4    Model Designs and Operation 

The network model was modeled using OPNET 6.0 network simulation tool developed 

by MIL3. This simulation tool executes an interrupt driven program that is a combination of 

a graphically user interface and C++ programs. The satellite orbit characteristic were derived 

by analyzing a satellite constellation developed using the STK 4.0.6 (Satellite Tool Kit) by 

Analytical Graphics. 

3.4.1    OPNET Model 

The OPNET model consists of seven separate nodes consisting of seven processes and 

numerous transmitters, receivers and antennas. The nodes used within the model include a 

user node, LMDS cell node, remote site node, management node, and three satellite nodes. 

All nodes except the user node are fixed nodes. Figure 8 displays the overall model used for 

the simulation. 

Figure 8: Overall OPNET Model 
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3.4.1.1   User Node 

The user node contains a transmitter, receiver, and antenna for the LMDS system as 

well as a transmitter, receiver, and antenna for the satellite system. These transmitters and 

receivers are connected to three separate processes. The processes are also connected to each 

other. All connections within the node are made using packet streams. 

3.4.1.1.1   User Node LMDS Transmitter 

The transmitter within each user was set to have three channels, which use the uplink 

frequencies within the LMDS band plan. The first channel is used as a control channel for 

the LMDS network location update. The user sends responses back to a cell concerning 

whether the user correctly received a page from that cell. The second channel is used to send 

a resource request to the current cell and receive the resource information returned by the 

cell. The third channel is used to send the data from the user to the current cell. The channel 

specifications for the third channel are set with the information returned from the current cell. 

The frequency band plan for the LMDS simulation model can be seen in Figure 9. The 

power specification for the transmitter was set to accommodate the worst-case mean urban 

attenuation and other losses in order to achieve an Eb/No of at least 4 dB at the cell limit of 2 

km. The 4 dB Eb/No was selected to represent a received signal that could be demodulated at 

10 dB (achieves Pb of 10"5 for BPSK and QPSK systems) with a coding gain of 6 dB. A 6 dB 

coding gain can be achieved through the use of a typical six state convolutional 

encoder/decoder. The resulting power was set at 150 Watts. 
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Figure 9: LMDS Frequency Band Plan [Gar98] 

3.4.1.1.2 User Node LMDS Receiver 

The LMDS receiver within the user node also has three channels. These channels 

have the same functions as the corresponding channels within the transmitter. The receiver 

uses the downlink frequencies specified in the LMDS band plan. 

3.4.1.1.3 User Node Satellite Receiver/ Transmitter 

The satellite transmitter used within the user node has two channels. The first 

channel is used for control information for satellite communication. This channel is used to 

request resources from the satellite network. The control channel is located in the first time 
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slot of each second within each of ten uplink frequency bands. The second channel is used 

for data transmission and has a capacity of 2 Mbps. The data channel consists of the 

remaining 22 time slots. Figure 10 displays the basic frequency band plan for the satellite 

network. 

Downlink Uplink 

GHz 

18.8 19.3 

Asynchronous TDMA 

500 MHz Bandwidth 
500 Mbps Total 

2 Mbps per user 
225 - 4 msec data slots 
225 - .4 msec guard time slots 
1    - 10 msec control slot 

27 27.5 

Control Slot 

Data Slots 
w/ Guard Time 

1 se.c 
0.0 1.0 

FDMA/ TDMA 

500 MHz Bandwidth 

10-45 MHz Frequency Bands 
10-5 MHz Guard Bands 

45 Mbps total for each Band 
22 - 40.4 msec data slots per Band 
22 - 4.04 msec guard time slots per Band 
1 - 20.2 msec control slot per Band 

Figure 10: Satellite Frequency Band Plan [TelOO] 

3.4.1.1.4   LMDS/ Satellite Antenna 

All antennas used within the user node as well as all nodes throughout the simulation 

are set as omni-directional for simulation purposes. This is sufficient for the simulation since 

the gain of the antenna can be adjusted to represent a directional type antenna. 
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The LMDS Antenna gain within the user node was adjusted to simulate a dish type 

antenna with a .5 m radius. The cell antenna gain was adjusted to represent the cellular type 

antenna used in the experiments done by Papazian et al [PaH97]. 

3.4.1.1.5   User Node Processor Process 

The main processor within the user node is connected to the second and third channel 

of the LMDS transmitter/ receiver and the second channel of the satellite transmitter/ 

receiver. This processor is responsible for receiving packets and creating resource requests, 

setting transmitter/ receiver attributes, and data generation and reception. All end-to-end, bit- 

error rate, and throughput data are gathered within this processor process. 

The process consists of eight states. The first state (Init) executes all initialization for 

the process. The second state (Idle) is the holding state for the process. The third state 

(pkt_in) is responsible for retrieving all data from the receiver and determining the origin and 

purpose of the data. The fourth state (Traffic) generates all data packets for the LMDS 

network. The fifth state (setup) generates a resource request that is sent either to the current 

LMDS cell or to the current satellite. The sixth state (end_sim) executes some commands 

necessary to end the simulation. The final two states (stop and no_match) are used to ensure 

source and destination are using a common frequency. Figure 11 displays this process as 

seen in OPNET. 
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Figure 11: User Traffic Process Model 

3.4.1.1.6   User Node Location Update Process 

This process is responsible for tracking the users' positions throughout the LMDS 

network. This process is connected to the first channel of the LMDS transmitter/ receiver. It 

receives location update pages from the cells and determines if the page is from the closest 

cell. It sends a response to the cell if the propagation and processing time of the paging 

packet is within a specified time limit. 

This process consists of four states. The first state (Init) sets all initializations for the 

process and the beginning of the simulation. The second state (Idle) is the holding state 

within the process. The third state (locate) receives the paging packets from the cells and 

does a time check from the packets time-sent information and determines whether the cell is 
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the closest. The final state (st_5) executes end of simulation calculations. Figure 12 displays 

the OPNET process model. 

(ENDING) 

(PKT_REC) 

Figure 12: User Location Update Process 

3.4.1.1.7  User Satellite Traffic Node 

This process is responsible for receiving requests for satellite communication and 

relaying these requests to the nearest satellite. It receives the requests from the user traffic 

node. The process is also responsible for ending satellite communication at the end of a call 

or when the user transitions into a new LMDS cell with open resources. 

The process consists of five states. The first state is the (init) state which is 

responsible for the initial setup of the node. The second state is the holding state (idle). The 

third state is the (sat_con) state, which is responsible for receiving the requests from the user 

traffic process and requesting resources from the nearest satellite. This state also receives all 

satellite traffic for the node and collects the statistics. The sat traf state creates all the 
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packets for transmission to the satellite. The end_sim state executes final calculations at the 

end of the simulation. Figure 13 displays this process. 

(ENDING) 

Figure 13: User Satellite Traffic Process 

3.4.1.2   LMDS Cell Node 

The LMDS cell node is responsible for sending location update pages and resource 

request responses to the user node. It is also responsible receiving and relaying location 

update information, resource requests, and resource terminations to the management cell. 

The resource information sent to the users is obtained from the management cell. The LMDS 

cell node contains two radio receivers, two radio transmitters, seven point-to-point 

transmitters, seven point-to-point receivers, an antenna and two processes (dat_xfer and res). 
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3.4.1.2.1 LMDS Cell Radio Transmitter and Receiver 

The LMDS cell radio transmitter and receiver contain 102 separate channels. The 

first 100 channels are set for user data reception and transmission. These channels are 

dynamically set each time a user successfully requests resources from the cell. Each time a 

user successfully requests resources from the cell, the bandwidth for each user that is 

transmitting data is reduced to equally divide all available bandwidth among all users. For 

example, if there are currently two users, each uses 40 MHz of bandwidth. But if another 

user requests resources, all users will be reduced to 26.66 MHz. The 101st channel is 

designated as the location update channel where all paging packets are sent and all user 

responses are received. All cells use the same frequency for this channel, therefore they use 

a TDMA type of scheme where each cell transmits every 3.5 seconds. The 3.5 second 

paging interval was selected primarily to reduced the simulation time resulting from the large 

number of packets created through this location update function. The 102nd channel is used 

for resource requests and resource responses. All cells also use the same frequency for this 

channel. Therefore, a TDMA scheme is also used for this channel. Each request response is 

delayed by an amount specified by the user number. For the simulation, this delay was set at 

.0002 second multiplied by the user number. This allows enough time for the 1024 bit packet 

to be transmitted with approximately ten percent guard time. 

3.4.1.2.2 LMDS Cell Point-to-Point Transmitters and Receivers 

There are total of several pairs of point-to-point transmitters/ receivers. The first pair 

is used to communicate to the management node. The remaining six pairs are used to link 

the cells to each other. The pair that links the management node is used to relay the location 

update information an resource information that is received from the users. The links 

38 



between the cells are purely used to route data packets from cell to cell, when users are 

communicating from one cell to another. These links are set up as fiber optic links having a 

capacity of 155 Mbps. 

3.4.1.2.3   LMDS Cell Data Transfer Process 

The data transfer process is used for three main purposes. The first includes routing 

all data received from the users. The second involves receiving and tracking resource request 

information from the management cell and setting the first open channel to the appropriate 

specifications. The third function includes tracking the number of data packets received and 

forwarded for each user for reference during handoff. 

There are four states within this process. The first state (Init) sets all the initialization 

parameters for the process. The second process (Idle) is the holding state for the process. 

The third state (dat_xfer) is responsible for the main function of the process. This state 

receives all packets sent to the process and either routes the packet to the appropriate 

channel, sets channels specifications, returns packet count information, or clears a channel. 

The final state (chan_ch) periodically checks the user lists to ensure no user is registered 

incorrectly. Figure 14 displays this process. 

.^^o- 
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Figure 14: Cell Data Transfer Process 
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3.4.1.2.4   LMDS Cell Resource/ Location Update Process 

This process handles the location updates and resource requests from the users. It 

sends the location update pages every 3.5 seconds and receives the location update responses 

and routes them to the management node. The process receives all resource requests from 

the users within its coverage area and routes the requests to the management node. It then 

forwards the resource information to the user and the LMDS data transfer process. 

This process contains six states. The first state (Init) initializes the process. The 

second state (Idle) is the holding state for the process. The third state (loc_upd) sends the 

paging packet to all users every 3.5 seconds. The fourth state (loc_reg) receives all location 

update responses from the users and forwards the update to the management cell. The fifth 

state receives all resource request and response information and forwards the information to 

the user, the LMDS data transfer process, and the management node. Figure 15 displays the 

process model. 

Figure 15: Cell User Register Process 
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3.4.1.3   Remote Site Node 

The remote site node is used simply as a remote fixed destination for the users within 

the LMDS network. By including these remote sites into the simulation, the simulation can 

calculate the end-to-end delay for the satellite network where the packets must travel around 

the world. This node contains a receiver, an antenna and a single processor. 

3.4.1.3.1 Remote Site Node Receiver 

The receiver within this node has a single channel that is matched with the satellite 

that is directly overhead. It is not necessary to consider the TDMA aspect of this downlink 

because for the purpose of the simulation, there will only be one remote user at each remote 

location. 

3.4.1.3.2 Remote Site Processor 

This simply retrieves the packets received by the node and tracks the end-to-end 

delay for each packet. The processor contains four states. The first is the (Init) state which 

initializes the process. The second is the (Idle) state which is the holding state for the 

process. The third is the (sat_con) state which retrieves the packets and records pertinent 

statistics. The final state (end) is responsible for collecting the end-to-end data for the remote 

sites. Figure 16 displays the process. 
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Figure 16: Remote Site Processor 

3.4.1.4   Management Node 

The management node is responsible for receiving location update information and 

resource request information, storing necessary data, and sending the appropriate information 

to the cells concerning location updates and resources available. This node is an abstraction 

of a function that would be held within one of the cells, but for the purpose of simplifying the 

simulation, the function was placed in this node. The node contains six point-to-point 

receivers, six point-to-point transmitters, and a processor. 

3.4.1.4.1   Management Node Receivers/ Transmitters 

Each pair of transmitters/ receivers within the management node is connected to one 

of the cells by a 6 Mbps connection. If the management function was not abstracted from 

only the cells, the function would only require six MHz of the 155 Mbps fiber connection 
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between cells. All information from the processor within the management node is passed 

through one of the six receivers/transmitters to the appropriate cell. 

3.4.1.4.2  Management Node Processor 

The management node processor receives all location update and resource requests 

from the cell and sends the appropriate location or resource information back to the cell for 

distribution to the appropriate users. When a user moves from one cell to another while 

transmitting data, the management cell accomplishes the handoff function by reallocating 

resources for all necessary cells and sending resource information for all affected users 

through the appropriate cells. 

The processor contains eleven states. The first state (Init) initializes the process. The 

second state (Idle) is the holding state for the process. The third through ninth states are for a 

specific cell. These states check whether a location update is for its particular cell, updates 

the user location information, and starts the handoff procedure when necessary. The tenth 

state is responsible for allocating resources for all new resource requests and for reallocation 

resources for all handoffs. All resource information is sent to the appropriate cells from this 

state. The last state is the holding state (Idle). Figure 17 displays this process. 
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Figure 17: Management Process 

3.4.1.5   Satellite Nodes 

The satellite nodes in this simulation are based on a Teledesic-like orbit with 

stationary satellites representing the satellite that would be constantly overhead as the 

network revolved around the earth. The real world delays that would actually be encountered 

are calculated into the transmission of the packets as discussed in Section 3.3.6. The satellite 

nodes have two functions. The first is to allocate resources, if available, to a user upon 

request. The second function is to route packets to the appropriate user or remote site. The 

satellite node contains two antennas: one for uplink/ downlink and one for intersatellite 

links. The satellite node also has a receiver/ transmitter pair for uplink/ downlink, a receiver/ 

transmitter pair for intersatellite links, and a single processor. 
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3.4.1.5.1 Satellite Node Receivers/ Transmitters 

The receiver for the uplink has ten channels to represent the FDMA/ TDMA format. 

Each of the channels is connected to the processor. The frequency band plan for the satellite 

uplink/ downlink was shown in Figure 9. The first time slot in each of the channels is set 

aside for control information. The receiver for the intersatellite link has a single channel is 

set to Ka band (20 GHz) for simulation purposes and uses a TDMA scheme for all data. The 

actual frequency is unspecified for the Teledesic system. The transmitter for the downlink 

has a single channel to represent the TDMA format. The first time slot with in the channel is 

set for control information. The transmitter for the intersatellite link is set similar to the 

corresponding receiver. 

3.4.1.5.2 Satellite Node Processor 

The satellite node processor is responsible for receiving all resource request packets 

and assigning resources when available. This node is also responsible for routing all data to 

the appropriate user or satellite. All information received or sent by the node follows a 

TDMA scheme for multiple access. The node is responsible for tracking all time slots for all 

channels. This process contains four states. The first initializes the state. The second is the 

holding state. The third receives all incoming packets and determines whether the packets 

are resource information or data and either sends a resource reply or routes the data. The 

final state tracks satellites users with a specific channel. Figure 18 displays this processor. 
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Figure 18: Satellite Main Processor 

3.4.1.5.3   Other Satellite Processors 

The satellite main processor was simplified for the satellites that were only to be used 

for downlink and inter-satellite links. These processors simply received and routed packets 

to the appropriate node or satellite. 

3.4.2   STK Satellite Constellation Model 

The satellite constellation for the simulation was based on a Teledesic-like network. 

The STK (Satellite Tool Kit) by Analytical graphics was used to create a full network of 288 

satellites. From a visual inspection of the network, the number of satellites required for 

coverage was identified for the simulation. As stated in Section 3.3.6, the full constellation 

was not used for the simulation to allow for reasonable execution time for the simulation. In 

order to create the satellite orbit using STK, the software required the input of the data shown 

in Table 6. The table contains data for the first satellites for each orbital plane. 
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Table 6: Satellite Orbit Setup Parameters 

Orbit Type Inclination(°) Altitude(km) RAANH Start Time(sec) Stop Time(sec) 
Circular 89.2 1400 0 0 6826.73 

it M it 0 284.45 ti 

ti II ti 15 142.23 it 

M II it 15 426.67 ti 

ti It ti 30 284.45 ti 

it tl it 30 568.9 it 

ti It ti 45 426.68 ti 

it II ti 45 711.12 tt 

ti It it 60 568.9 ti 

it tl ti 60 853.35 ti 

ti It it 75 711.13 it 

M tt ti 75 995.57 ti 

ti II it 90 853.35 tt 

M tl ti 90 1137.8 it 

ti II it 105 995.58 ti 

it tt ti 105 1280.02 it 

ti M it 120 1137.8 ti 

M tl ti 120 1422.25 tt 

ti tl it 135 1280.03 n 

n tl ii 135 1564.47 ti 

M II tt 150 1422.25 it 

tl tl ti 150 1706.7 n 

It II tt 165 1564.48 tt 

II tl it 165 1848.92 it 

After creating the satellites with this data, the start time for each satellite was adjusted 

back to zero. But since the longitude of the ascending node was set from the start time 

entered in the beginning, the orbits were staggered appropriately for each satellite. The 

RAAN specified in the table is the Right Ascension of the Ascending Node which is the 

longitude of the satellite when it crosses the equator. 

3.5    Model Input Parameters 

This section covers the input parameters used in OPNET and STK to create and model 

the LMDS/ Satellite network. Justification for all the parameters is discussed. 
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3.5.1    OPNET Parameters 

Many of the details for the OPNET input parameters have been covered in Section 

3.4.1. The LMDS frequency band plan for the receivers and transmitters was discussed in 

Section 3.4.1.1.1. This band plan was chosen to allow for equal uplink and downlink 

bandwidth and to accommodate the 7-cell frequency reuse scheme. The cell size of 2 km 

was discussed in Section 3.3.1. It was chosen to coordinate with the previous research. The 

data connection start and length for each user was discussed in Section 3.3.5. The path that 

each mobile user follows during the simulation is set to model ground vehicles moving 

through the LMDS network. The paths are deterministic and were designed to force each 

user to traverse multiple cells. This requires the network to execute handoffs. The packet 

size and arrival rate were discussed in Section 3.3.3. The transmitter power was set at 150 W 

for the cells and the users as discussed in Section 3.4.1.1.1. The antenna gain was adjusted to 

the attenuation results achieved in previous research [PaH97] as discussed in Section 

3.1.1.1.4. The antenna height for the LMDS cells was set for 40 ft to correspond to the 

previous research discussed in Section 2.6. The processing delay was set to 14 fxsec as 

discussed in Section 3.3.4. Table 7 outlines the key parameters and their values for the 

simulation. 

The satellite network has fewer pertinent parameters since the simulation uses a 

truncated network. The frequency band plan was discussed in Section 3.4.1.1.3. This band 

plan was derived from Teledesic information [TelOO]. It did have to be modified because the 

Teledesic plan proposes using a band of the LMDS frequency band, which has already been 

allocated for LMDS purposes by the FCC. 
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Table 7: Simulation Parameters 

Simulation Parameter Value 
Cell size 2 km 

Data Transmission Start Normal Distribution 
Mean- 5 min    Std Deviation- 2 min 

Data Transmission Length Normal Distribution 
Mean- 500 Mbits     Std Deviation- 200 Mbits 

Packet Size 100,000 bits 
Transmitter Power 150 W 
User Antenna Gain 46.75 dB 
Cell Antenna Gain 14 dB 

Cell Antenna Height 40 ft 
Urban Attenuation Uniform Distribution 

From 27.2 dB to 54.2 dB 
Processing Delay 14 microsecs 

Arrival Rate Constant (Relative to data rate) 

3.5.2   Simulation Factors 

The factors affecting the simulation for the LMDS system include the modulation type 

of the transmitter/ receiver (BPSK, QPSK, etc.), urban attenuation, number of users, and the 

specified quality of service (QoS, guaranteed bandwidth). The modulation types used for 

simulation runs included BPSK, QPSK, and 8-PSK. The urban attenuation was discussed in 

Section 3.3.1 and the breakdown for the test parameters shown in Table 3. The number of 

users was adjusted from 50 to 150. The QoS was adjusted from 0 to 10 Mbps. 

The only factor affecting the satellite network in the scope of this simulation is the 

delay. This data represents best case and worst case scenarios as discussed in Section 3.3.6. 

3.6    Performance Metrics 

The simulation metrics that are of interest include bit-error rate within the LMDS 

network, end-to-end delay, and throughput. The metrics are designed to analyze the 
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performance of the network under a varying urban environment, using a variety of 

modulation types and QoS values. 

3.6.1 Bit-Error Rate 

OPNET calculates the bit errors for each packet in the receiver of each node. This 

metric identifies how many bits are in error within a single packet and overall for a specified 

receiver. The larger number of bit errors detected results in the need for either a very 

powerful error correcting device or higher transmission powers. The metric is calculated 

within OPNET by comparing the received Eb/N0 (Energy per bit/ Noise Energy per Hz) to a 

graph which is a plot of the BER versus the Eb/N0 for a specific modulation type. 

3.6.2 End-to-End Delay 

This metric is the total delay for a packet to go from the source's traffic generator to the 

destination's processor. This delay includes all transmission, propagation, and processing 

delay that a packet encountered. This metric is dependent on the change in transmission 

rates, packet size, adjusted satellite delay, and number of processors encountered. The key of 

this metric is to identify whether the delay exceeds the voice and video delay thresholds. 

3.6.3 Throughput 

This metric is the average throughput for the entire user transmission. This throughput 

is affected by the transmission rate and any delays caused by handoffs or switching to 

satellite communications. This metric displays the expected user throughput under the 

different total user loads considering the QoS specification. 
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3.7    Model Verification and Validation 

This section covers the verification tests that were accomplished to ensure that the 

simulation's logic was correct throughout the network. The validation of the simulation 

consisted of tests to determine how accurately the model represents an LMDS/ Satellite 

network. 

3.7.1   Verification 

There were verification tests accomplished to prove the logic of the simulation model 

in three main areas. The first area was the accurate assignment of resources within the 

LMDS network and within the satellite network. The LMDS system was shown to properly 

assign resources through a test which observed the receivers and transmitters of several users 

which started communication at known times. Through analysis of the corresponding 

receiver/ transmitter data it was observed that LMDS system properly divided the available 

resources among the users. Each cell correctly increased and decreased resources when new 

users began transmission as well when users ended transmission. The resources were also 

seen to be reallocated when the handoff occurred. The satellite network was tested by 

observing corresponding user transmitter/receivers as they began and terminated 

transmission. 

The second area concerned the delays evident within the entire LMDS/ Satellite 

network. This was tested by establishing a user at a fixed location with a fixed system and 

comparing the model output to the analytical calculation which includes propagation delay, 

transmission delay, and processing delay. 

The third area of interest was the switch from LMDS resources to satellite resources. 

This was tested by moving a user from a LMDS cell to outside the range of the cell. All 
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relevant receivers and transmitters were then tracked to determine the routing of the packets 

produced by the transmitting user. 

3.7.2   Validation 

The validation of the model consisted of comparing the simulation results with 

calculated worst-case limits for each of the metrics. The bit-error rate was compared to the 

calculated worse possible bit-error rate considering the transmission power, overall 

attenuation, antenna gain, and modulation type. The delay was also compared to the worst 

case and best case scenarios which included a maximum satellite hop scenario and same cell 

scenario, respectively. The throughput was correlated to the number of users transmitting 

simultaneously to ensure that the correct total resources were being used. 

3.8    Summary 

The methodology used to create a simulation model that tests basic performance 

characteristics of an LMDS/ Satellite network was covered in this chapter. Several 

simplifying assumptions and model limits were also discussed. The model details were 

covered concerning the OPNET and STK portions of the simulation. The results of the 

simulation and an analysis of these results is presented in Chapter 4. 
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Chapter 4 

Analysis 

4.1 Introduction 

This chapter presents the analysis of the simulation results obtained from the OPNET 

model. Section 4.2 covers the statistical accuracy of the data. The analysis of the LMDS/ 

Satellite network was performed concerning three operational characteristics of the network. 

The first area of concern was the packet delay experienced throughout the network. This is 

covered in Section 4.3. The second point of interest was the bit error experienced by the user 

received data. This is analyzed in Section 4.4. The final part of the analysis in Section 4.5 

concerned the average throughput achieved throughout the network. Finally an overall 

assessment of the LMDS/ Satellite network is discussed in Section 4.6. 

4.2 Statistical Accuracy 

The combined LMDS/ Satellite network was tested under multiple scenarios 

concerning modulation type, Quality of Service, and number of users. The modulation types 

used were BPSK, QPSK, and 8-PSK. The Quality of Service was set at either 0 (no service 

guarantee) or 10 Mbps. Each scenario was set to include 50 or 150 mobile users with 3 fixed 

remote sites. Four different seeds were used for each scenario to ensure statistically sound 

results for all three areas of interest. The scenarios used throughout can be seen in Table 8. 

The packet delay, bit error rate, and throughput are calculated for each user 

transmission within the network. All user results are combined to calculate an overall mean 

for each point of interest for each scenario and seed. 
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A 90% confidence interval is calculated for each of the metrics by calculating a mean 

and standard deviation for each of the four seeds. The confidence interval is calculated using 

the student's t-distribution shown in Equation 8. The confidence interval is denoted by the 

100 (1 - a)% CI  = X ±tar 
■\fn 

(8) 

100(1-a) term. The mean is represented by the X-bar in the equation. The s represents the 

sample standard deviation and the n is the number of samples. The to/2 term is the t- 

distribution value for a/2 with (n-1) degrees of freedom. 

Table 8: OPNET Test Scenarios 

Scenario Modulation Type Number of Users Quality of Service (Mbps) 

1 BPSK 50 0 

2 ti 150 0 

3 II 50 10 

4 it 150 10 

5 QPSK 50 0 

6 tl 150 0 

7 ll 50 10 

8 tl 150 10 

9 8-PSK 50 0 

10 it 150 0 

11 ti 50 10 

12 tl 150 10 

Applying the confidence interval to two scenarios for the packet delay for the BPSK 

modulation and the QPSK modulation yields the results in Tables 9 and 10. Because of the 

dynamic nature of the LMDS/ Satellite network, the standard deviation of the results proves 
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to be relatively high peaking at 40 percent of the mean as in the case of the average 

throughput of the 8-PSK,150 user,10 Mbps QoS scenario. Therefore, a 90% confidence 

interval was chosen to illustrate the statistical accuracy of the data. The 90% confidence 

interval for the BPSK packet delay data displays the dynamic nature of the simulation. The 

four seeds used for each scenario resulted in a range of .94 msec to 11.7 msec. This range 

achieved a sufficient level of confidence with the use of four seeds. The confidence interval 

for the QPSK data proves that this data is also statistically sound with the use of four seeds 

since the range is between 2.3 and 7.9 msecs. 

A t-test was also conducted when comparing data points with overlapping confidence 

intervals. Equation 9 was used to calculated the pooled estimate of the standard deviation 

[Tal92]. Equation 10 was used to calculate the t value for the two data points [Tal92]. 

2       (Wi-l)ji2+(/l2-l)j2
2 

s  =  (9) 
«j + n2 — 2 

X ,  — X 7 

'£_!_ + .£_!_ (10) 
n,       n2 

The nl and n2 in both equations represents the number of samples which is four throughout 

this analysis. The si and s2 in (9) are the corresponding standard deviations for the two data 

points. The Xx and X2 represent the corresponding data points. By calculating the t value 

for two means it is possible to determine whether they are statistically equal. 
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Table 9: Average Packet Delay for BPSK Modulation 

90% Confidence Interval 

QOS 
(Mbps) 

Users Mean 
(sees) 

Std Dev 
(sees) 

Min (sees) Max (sees) Range 
(sees) 

0 50 0.03129 0.00268 0.02813 0.03445 0.00631 

0 150 0.10460 0.00497 0.09875 0.11045 0.01170 

10 50 0.01375 0.00040 0.01328 0.01422 0.00094 

10 150 0.01496 0.00045 0.01442 0.01549 0.00106 

Table 10: Average Packet Delay for QPSK Modulation 

90% Confidence Interval 

QOS 
(Mbps) 

Users Mean 
(sees) 

Std Dev 
(sees) 

Min (sees) Max (sees) Range 
(sees) 

0 50 0.01302 0.00336 0.00907 0.01697 0.00790 

0 150 0.04675 0.00156 0.04492 0.04858 0.00367 

10 50 0.01286 0.00300 0.00933 0.01638 0.00706 

10 150 0.01304 0.00096 0.01192 0.01417 0.00225 

4.3    Packet End-to-End Delay Analysis 

The end-to-end packet delay was analyzed on two different levels. The first level 

provides a comparison of the scenarios within one modulation scheme, while the second, a 

comparison of the modulation schemes. The test scenarios for the simulation included four 

simulations for each modulation. Each scenario was executed with four different seeds. 

4.3.1   Average Delay 

A key parameter for the analysis of a communication network concerns the end-to-end 

delay that any packet experiences. The extent of this delay dictates whether the system is 

capable of handling certain applications. If the delay exceeds certain thresholds, the network 
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may not be capable of supporting real-time applications such as voice or video. The standard 

limitation for real-time voice is 400 msec. 

The mean packet delay as well as the peak delay was calculated for all scenarios 

performed for the network. A comparison of the delay for the BPSK scenarios can be seen in 

Figure 19. This figure displays the delay for four scenarios: 50 users and a QoS of 0; 150 

users and a QoS of 0; 50 users and a QoS of 10 Mbps; and 150 users and a QoS of 10 Mbps. 

From the graph it can be determined that the delay is the greatest when the largest numbers 

of users are operating with no quality of service threshold. This is as expected since the 

available bandwidth within a single cell could be divided into 100 separate and equal 

frequency blocks (800 KHz each) if 100 users establish a call at the same time. As in the 

case of the BPSK scenarios, each user would only have 400 Kbps available. The final two 

scenarios are approximately equal (.0137 and .0149 milliseconds), but when comparing the 

data the final scenario has a slightly larger delay. 
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Figure 19: BPSK Average Packet Delay 
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Figure 20 displays the QPSK delay statistics shown in Table 10. The corresponding 

scenarios for the QPSK simulations displayed the same relationship as the BPSK tests. The 

only exception is the first scenario which displayed approximately the same delay (.01302 

sec) as the third and fourth scenarios (.01286 and .01304). This can be explained by the fact 

that in the QPSK system the available bandwidth is twice as high as in the BPSK system 

allowing the QPSK system to handle the 50 user load with or without the 10 Mbps QoS. The 

data rate comparison will be discussed further in later sections. After comparing the 8-PSK 

scenarios it was noted that the relationship between the scenarios was the same as for the 

QPSK modulation. The second scenario (150 users/ QoS 0) displayed a statistically higher 

delay (.027 seconds) than the other 8-PSK scenarios (.009, .009, and .012 seconds). 
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Figure 20: QPSK Average Packet Delay 
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Comparing the delays for the different modulations, it would be expected to see 

lower delays with the higher data rate modulation schemes. Figure 21 displays a comparison 

of the modulation schemes with 50 users and zero QoS. From this data, it is shown that with 

a low user load, the BPSK scenario has approximately .02 sec longer average delay than the 

QPSK scenario which is .004 seconds longer than the 8-PSK scenario. By using a t-test it 

was determined that there is statistically insignificant difference between the QPSK and 8- 

PSK modulation schemes since with a load of only 50 users each scheme is able to maintain 

a relatively high data rate which will be discussed in Section 4.5. On the other hand when 

the user load is increased to 150 the delay for the QPSK system does become .02 seconds 

longer than the 8-PSK system as shown in Figure 22. 
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Figure 21: Ave Packet Delay with Low User Load 
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Figure 22: Ave Packet Delay with High User Load 

When including the QoS in the runs, the average delay for each of the modulation types tends 

to have only a slight difference (.001 to .002 seconds) as shown in Figure 23. This is as 

expected since the QoS forces each of the systems to maintain the same minimum throughput 

within the cells. The delay does decrease slightly (.001 to .002 seconds) since the higher rate 

modulation schemes will not redirect the mobile users to the lower data rate/higher delay 

satellite communication link. The difference for between the QPSK and 8-PSK modulation 

schemes is shown to be statistically equal. There is not a statistical difference between the 

QPSK and 8-PSK as there is between the BPSK and QPSK because the increase in data rate 

for the QPSK to 8-PSK modulation schemes is 1.5. Whereas, the increase between QPSK 

and BPSK is a factor of two. 
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Figure 23: Ave Packet Delay with QoS and High User Load 

4.3.2   Peak Packet Delay 

The area of most concern for the packet delay analysis is the peak delay. As discussed 

earlier, this is important because it determines the capability of the system to support real- 

time applications. 

After analyzing the average delay, it is shown that the scenario that could cause a large 

peak delay is the high user load (150) and zero QoS. Figure 24 displays a comparison of the 

three modulation schemes for this user load and QoS. From this plot of the peak delay data, 

it can be seen that the BPSK scenario produced a peak delay of approximately .45 sec with a 

confidence interval that exceeded .5 sec. This delay exceeds the limit for real-time voice 

communications. This proves that a packet size of 100 Kbits would not be appropriate for a 

BPSK system operating under in conditions similar to this scenario. The remaining scenarios 
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all were well under the specification. Tables 19 through 21 of Appendix A display the data 

for the peak delay. 
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Figure 24: Peak Delay for High User Load and No QoS 

4.3.3   Satellite Packet Delays 

A goal of this thesis was to establish the capability of the joint LMDS/ Satellite 

network to support a real-time application such as voice. The major concern was the satellite 

portion of the network. The simulation was set to test the satellite communication to remote 

locations under best case and worst-case scenarios. This data was collected in conjunction 

with all the LMDS scenarios. Table 11 displays the results of this simulation. 
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Table 11: Satellite Peak Packet Delays (Seconds) 

90% Confidence Interval 

Mean Delay Std Dev Min Max 

Best Case 0.040843 7.08E-07 0.040842 0.04084312 

Worst Case 0.145593 1.19E-05 0.145584 0.14560155 

The best-case delay was a result of shortest distance for satellite communication to a 

remote site located in Germany. The worst case was a result of a path from the LMDS site in 

Ohio, around the world, to a remote site in Wyoming resulting in 20 satellite hops. From the 

data, it can be seen that the delays meet the specifications for real-time voice. The reason 

that the worst-case delay was not excessive for voice communication is that the instantaneous 

data rate for the satellite network is very high resulting in short transmission delays. 

Therefore, the only delay evident is the propagation time, which as discussed in Section 3.3.3 

will remain within voice communication limits. 

4.4    Bit Error Rate (Pb) 

The bit error rate of a system is a crucial measurement. It determines the transmitter 

power and error correction techniques that may be necessary for the system. All twelve 

scenarios within the model were setup to collect data for the bit error rate. In order to make a 

direct comparison, the transmitted power was kept constant regardless of the modulation 

type. This power selection is described in Section 3.4.1.1.1. 

4.4.1   Average Bit Error 

The average bit error rate for each of scenarios was calculated and recorded. Tables 15 

through 17 display the data with the 90% confidence intervals. The data proved to have a 
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large standard deviation, which averaged 30 percent of the mean for all scenarios. This can 

be expected since the data was collected for all users independent of encountering errors. 

The average error gives an overall picture of the performance comparison between the 

modulation schemes. Figure 25 displays the data for the 50-user scenario without the QoS. 

From this plot the BPSK scenario is seen to have the lowest average bit error. By referencing 

the bit error data in Figure 25 to the bit error plots, it is possible to figure how much gain in 

Eb/No would be required to bring the systems 

0.035 - 

0.03 - 

0.025 - < > 

«      0.02 - 

o < > 

~   0.015 - 
m 

0.01   - 

0.005 - 

f 
0 - 

BPSK QPSK 

Scenario (Modulation Type) 

8-PSK 

Figure 25: Bit Error Rate for Low User Load and No QoS 

average bit error within an acceptable range of lxlO"5. By referencing Figure 4 the following 

gains were established as presented in Table 12. 
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Table 12: Required Eb/No Gains 

Modulation Type Eb/No Gain 

BPSK 4 dB 

QPSK 5 dB 

8-PSK 7 dB 

The gain in Eb/N0 could be achieved in the following ways: increased antenna gain of the 

transmitter, increased transmitted power, increased receiver antenna gain, or through error 

correction techniques. The system was designed to require a 6 dB coding gain for a worst 

case BPSK signal. 

4.5    System Throughput Analysis 

The main initiative for designing an LMDS/ Satellite network would be to provide 

users, in some cases mobile, with the capability to achieve very high data rates without the 

need for installation of landlines for each user in the system. The throughput analysis for the 

simulation was the key for the number and type of scenarios that were developed. Table 8 

gives a breakdown of all scenarios that were used for the throughput analysis as well as the 

delay and bit error analyses. 

4.5.1   Average Throughput 

The first part of the throughput analysis deals with the affect of the number of users 

and QoS for a given modulation type. One would expect to see a decrease in throughput with 

an increase in users and possibly stabilization with the addition of the QoS factor. Figure 26 

displays a comparison for the BPSK scenarios. 

65 



to 
Q. 

Q. 
£2 
CD 
3 o 
xz 
H 

1.80E+07 

1.60E+07 

1.40E+07 

1.20E+07 

1.00E+07 

8.00E+06 

6.00E+06 

4.00E+06 

2.00E+06 

0.00E+00 

50/0 

ii 

ii 

II 

 II  

150/0 50/10 

Scenario (Users / QoS) 

150/10 

Figure 26: BPSK Average Throughput 

This figure displays the expected results. The throughput decreases from the 50-user 

scenarios to the 150-user scenarios. There is also an increase from the scenarios without QoS 

to the scenarios with QoS. A t-test was used to prove a statistical difference between the 50- 

user scenarios. The average throughput also increased by 2.5 Mbps for the 150 user 

scenarios. The 50 user scenarios did show a statistically substantial increase, with the mean 

increasing by approximately 2 Mbps. 

The QPSK throughput had similar characteristics as the BPSK for the 150 user 

scenarios. As shown in Figure 27, the throughput increased for the 150 user scenario with 

the addition of the QoS, while the throughput remained the same for the 50 user scenario. 

This is expected since the network did not have to use satellite communication for the 50 user 
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scenario without QoS. The throughput ranged from 15 Mbps to 20 Mbps for the 150-user 

scenario, but remained the statistically constant at 35 Mbps for the 50-user scenario. 
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Figure 27: Average Throughput for QPSK Modulation 

For the 8-PSK scenarios detailed in Table 8, there appeared to be no significant 

increase in throughput due to the QoS. Figure 28 displays the comparison for the 8-PSK 

scenarios. The increase did not occur for this modulation, since the 150-user load is not as 

high a load for this scenario. The 8-PSK system has a much larger available throughput. 

The 50-user group displayed a mean throughput of 58 Mbps and the 150-user group achieved 

a throughput of between 27 and 30 Mbps. 
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Figure 28: 8-PSK Average Throughput 

A comparison of the modulation types, concerning throughput, gives the expected 

conclusion. As the modulation type changes from BPSK to QPSK the throughput increases 

for all scenarios. For the change from QPSK to 8-PSK, the throughput mean does change, 

but because of the high dynamic nature of the throughput during one scenario the difference 

is not statistically significant. The range of the throughput of a simulation is illustrated in 

Figure 29. This figure displays the wide range of throughput values throughout a single 

simulation which leads to the large confidence intervals. All throughput data can be seen in 

Appendix A in Tables 19 through 21. 
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Figure 29: Throughput vs. Time for 8-PSK/150 Users 

4.6    Summary of Analysis 

The delay analysis provided proof that the LMDS/ Satellite network will be capable of 

real-time voice applications for the QPSK and 8-PSK modulation schemes. The delay within 

the LMDS cells was primarily a function of the data rate, therefore if a smaller packet size is 

chosen or a QoS is selected any modulation technique will be sufficient. 

The bit error analysis displayed the increase in bit error as the modulation types were 

stepped through. Data collected gave evidence that an increase in Eb/No would be needed to 

achieve the desired Pt,. This was set into the simulation at the beginning when the 

transmitted power was set assuming a 6 dB coding gain. 

The throughput analysis displayed increases of 20 Mbps for the 50 user scenario and 7 to 

8 Mbps for the 150 user scenario when comparing the BPSK and QPSK modulation 

schemes. The analysis also showed an increase of 37 Mbps for the 50 user scenario and 18 

to 20 Mbps for the 150 Mbps scenario when comparing the BPSK and 8-PSK modulation 

shcemes. 
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Chapter 5 

Conclusions and Recommendations 

5.1 Restatement of Research Goal 

The goal of this research was to analyze the throughput, bit error, and packet delay 

performance capabilities of a combined LMDS/ Satellite system. This analysis was achieved 

by varying user loads, modulation techniques, and Quality of Service requirements in the 

presence of varying urban attenuation. 

5.2 Conclusions 

The LMDS/ Satellite network is a very flexible network concept consisting of a 

terrestrial network, that is designed around a block of the Ka frequency band, and a high 

capacity satellite network such as the proposed Teledesic system. The usefulness of this 

network depends primarily on the throughput capability and application support. The 

network achieved a throughput for all scenarios ranging from 7 to 57 Mbps depending on 

user load, modulation, and QoS. The application support depends on several factors. The 

two addressed in this thesis were the packet delays and bit errors. The system proved 

capable of achieving exceptable bit error rates with the aid of simple encoding. The packet 

delay also proved to support real-time voice applications as long as a QoS was chosen to 

ensure a data rate that would minimize the transmission delay. 

5.3 Significant Results of Research 

Very little openly published literature exists concerning either the LMDS type 

networks or high capacity LEO satellite networks (Teledesic). One of key contributions of 

this research was the analysis of a wireless high capacity network under a mobile urban 
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environment. The analysis provided an example of throughput characteristics, delay, and bit 

error that can be expected when operating within a urban environment. The research gave an 

analysis of a very dynamic environment where users would be entering and leaving LMDS 

cell resources. The results of the research yeild insight into some physical design 

characteristics that may be needed for such a system. 

5.4    Recommendation for Future Work 

The main area for further research concerning an LMDS/ Satellite network would be in 

the area of the satellite network. This research used a simplified satellite network to provide 

a basic best case/ worst case analysis of packet delay. This eliminated the dynamic nature of 

the network. Further work could analyze the complete satellite network to incorporate the 

dynamic routing that would be used. This expanded model could also incorporate a more 

complex model of the resource allocation of the satellite network. 

Another area that could be pursued is in the area of optimizing the LMDS cell sizes to 

provide the best throughput to a varying number of users. This research was set to test the 

LMDS system at two loads to develop a comparison. The user load could be increased and 

made more dynamic in order to test optimum cell sizes. 
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Appendix A 

Table 13: Average Packet Delay (Seconds) for 8-PSK Modulation 

90% Confidence Interval 

QOS 
(Mbps) 

Users Mean Std Dev Min Max Range 

0 50 0.00923 0.00259 0.00618 0.01228 0.00610 

0 150 0.02706 0.00443 0.02184 0.03228 0.01043 

10 50 0.00900 0.00234 0.00625 0.01176 0.00551 

10 150 0.01206 0.00138 0.01043 0.01368 0.00325 

Table 14: Average Bit Error Rate for BPSK Modulation 

90% Confidence Interval 

QOS 
(Mbps) 

Users Mean Std Dev Min Max Range 

0 50 0.00310 0.00077 0.00220 0.00400 0.00180 

0 150 0.00096 0.00101 -0.00022 0.00215 0.00237 

10 50 0.00463 0.00175 0.00258 0.00669 0.00411 

10 150 0.00193 0.00113 0.00059 0.00326 0.00267 

Table 15: Average Bit Error Rate for QPSK Modulation 

90% Confidence Interval 

QOS 
(Mbps) 

Users Mean Std Dev Min Max Range 

0 50 0.01779 0.00208 0.01534 0.02024 0.00489 

0 150 0.00783 0.00204 0.00543 0.01023 0.00479 

10 50 0.01639 0.00063 0.01565 0.01713 0.00148 

10 150 0.01262 0.00165 0.01068 0.01456 0.00388 
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Table 16: Average Bit Error Rate for 8-PSK Modulation 

90% Confidence Interval 

QOS 
(Mbps) 

Users Mean Std Dev Min Max Range 

0 50 0.02536 0.00609 0.01820 0.03252 0.01432 

0 150 0.01125 0.00289 0.00785 0.01464 0.00680 

10 50 0.02629 0.00509 0.02030 0.03228 0.01197 

10 150 0.01524 0.00228 0.01256 0.01792 0.00536 

Table 17: Average Throughput (bps) for BPSK Modulation 

90% Confidence Interval 

QOS 
(Mbps) 

Users Mean Std Dev Min Max Range 

0 50 13019177 989378 11855174 14183181 2328007 

0 150 8023455 808962 7071711 8975199 1903488 

10 50 15306287 1201957 13892185 16720390 2828205 

10 150 10854921 1005405 9672062 12037780 2365718 

Table 18: Average Throughput (bps) for QPSK Modulation 

90% Confidence Interval 

QOS 
(Mbps) 

Users Mean Std Dev Min Max Range 

0 50 33414123 7654985 24408033 42420213 18012180 

0 150 15446177 1082423 14172706 16719647 2546941 

10 50 35768022 5596349 29183918 42352126 13168208 

10 150 20734906 2456556 17844768 23625044 5780276 
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Table 19: Average Throughput (bps) for 8-PSK Modulation 

90% Confidence Interval 

QOS 
(Mbps) 

Users Mean Std Dev Min Max Range 

0 50 57763364 15695476 39297636 76229092 36931456 

0 150 26346383 4354044 21223851 31468915 10245064 

10 50 57800528 15911451 39080706 76520349 37439643 

10 150 30469193 3428484 26435582 34502803 8067222 

Table 20: Peak Packet Delay (Seconds) for BPSK Modulation 

90% Confidence Interval 

QOS 
(Mbps) 

Users Mean Std Dev Min Max Range 

0 50 0.11161 0.04617 0.05728 0.16593 0.10865 

0 150 0.44649 0.05951 0.37647 0.51650 0.14003 

10 50 0.04330 0.00491 0.03752 0.04907 0.01154 

10 150 0.12737 0.11750 -0.01087 0.26560 0.27647 

Table 21: Peak Packet Delay (Seconds) for QPSK Modulation 

90% Confidence Interval 

QOS 
(Mbps) 

Users Mean Std Dev Min Max Range 

0 50 0.05357 0.02271 0.02685 0.08029 0.05344 

0 150 0.19112 0.03283 0.15250 0.22974 0.07724 

10 50 0.10489 0.05073 0.04521 0.16457 0.11936 

10 150 0.09383 0.03519 0.05243 0.13523 0.08280 
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Table 22: Peak Packet Delay (Seconds) for 8-PSK Modulation 

90% Confidence Interval 

QOS 
(Mbps) 

Users Mean Std Dev Min Max Range 

0 50 0.08412 0.05062 0.02456 0.14367 0.11910 

0 150 0.13492 0.06028 0.06400 0.20584 0.14184 

10 50 0.07835 0.04965 0.01993 0.13677 0.11684 

10 150 0.07481 0.05229 0.01329 0.13632 0.12303 
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