
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-1-2000

Multiagent Systems Engineering: A Methodology for Analysis and Multiagent Systems Engineering: A Methodology for Analysis and

Design of Multiagent Systems Design of Multiagent Systems

Mark F. Wood

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wood, Mark F., "Multiagent Systems Engineering: A Methodology for Analysis and Design of Multiagent
Systems" (2000). Theses and Dissertations. 4880.
https://scholar.afit.edu/etd/4880

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4880&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F4880&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4880?utm_source=scholar.afit.edu%2Fetd%2F4880&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

Multiagent Systems Engineering: A Methodology for
Analysis and Design of Multiagent Systems

THESIS

Mark F. Wood, Captain, USAF

AFIT/GCS/ENG/OOM-26

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

Approved For Public Release; Distribution Unlimited

H'XJAi uu üjÄ£Y mmmtmiD 4

20000815 191

The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the United States Air Force, Department of Defense, or the US Government.

AFIT/GCS/ENG/OOM-26

MULTIAGENT SYSTEMS ENGINEERING: A

METHODOLOGY FOR ANALYSIS AND DESIGN OF

MULTIAGENT SYSTEMS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Mark Wood, B. S. Computer Science

Captain, USAF

March 2000

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/OOM-26

MULTIAGENT SYSTEMS ENGINEERING: A

METHODOLOGY FOR ANALYSIS AND DESIGN

OF MULTIAGENT SYSTEMS

THESIS

Mark Wood, B. S.
Captain, USAF

Approved:

ff/U^ Ou

Maj. Scott A. DeLoach (Chairman) date

Dr. Thomas C. Hartrum (Member) date

LtCol. Timothy M.iJacfc(bs (Member) date

ACKNOWLEDGMENTS

I wish to thank the members of my thesis committee, and in particular my advisor Major Scott

DeLoach, for their guidance and assistance throughout the thesis process.

I would also like to thank my peers and fellow graduating officers of the Agent Research Group

for their suggestions, critiques, humor, and dedication: Tim Lacey, Dave Robinson, and Marc

Raphael. Additional thanks as well to the lady who makes agentTool go: Jennifer Mifflin.

I thank my friends and family members who helped me by offering advice, love, support, and

proof-reading throughout the past eighteen months. Finally, special thanks to Lisa Walsh for her

patience and understanding.

Mark Wood

IV

TABLE OF CONTENTS

ACKNOWLEDGMENTS IV

TABLE OF CONTENTS V

TABLE OF FIGURES VIII

I. INTRODUCTION 1
1.1 Background 2
1.2 Problem 3
1.3 Goal 4
1.4 Assumptions 4
1.5 Areas of Collaboration 6
1.6 Overview of Thesis 6

II. BACKGROUND 8
2.1 Introduction 8
2.2 Abstract Methodologies - Analysis phase 10

2.2.1 Capturing and Structuring Goals: Analysis Patterns 11
2.2.2 A Methodology for Agent-Oriented Analysis and Design 13
2.2.3 Transitioning from Analysis to Design 15

2.3 Abstract Methodologies - Design phase 16
2.3.1 Roles and Role Models 17
2.3.2 A Methodology and Modelling Technique for Systems of BDI Agents 20
2.3.3 A Methodology for Agent-Oriented Analysis and Design 22
2.3.4 Multiagent Systems Engineering Prototype 23
2.3.5 Design Summary 27

2.4 Implementation 27
2.5 Fielded products 28
2.6 Summary 29

III. PROBLEM APPROACH 31
3.1 Requirements 31

3.1.1 Definition of a Methodology 31
3.1.2 Definition of a Multiagent Methodology 32

3.2 Scope of Research 33
3.2.1 Starting Point 34
3.2.2 Roles as a Foundation 35
3.2.3 Expanding the Methodology 36
3.2.4 Creating Phases 36

3.3 Bridging Gaps 37
3.3.1 Transforming Roles to Agent Classes 38
3.3.2 Transforming Goals to Roles 38
3.3.3 Designing Agents 40
3.3.4 Constructing Conversations 41
3.3.5 Use Cases and Sequence Diagrams 41
3.3.6 Tasks as a Design Aid 42

3.4 Creating a Prototype 44
3.5 Validating the methodology 45
3.6 Summary 46

IV. MULTIAGENT SYSTEMS ENGINEERING METHODOLOGY 47
4.1 Capturing Goals 48

4.1.1 Capturing Goals - Definitions 49
4.1.2 Capturing Goals - Rationale 51
4.1.3 Capturing Goals - Substeps 51

4.1.3.1 Capturing Goals - Identify Goals 52
4.1.3.2 Capturing Goals - Create Use Cases 53
4.1.3.3 Capturing Goals - Structure Goals 56

4.2 Transforming Goals to Roles 60
4.2.1 Transforming Goals to Roles - Definitions 61
4.2.2 Transforming Goals to Roles - Rationale 62
4.2.3 Transforming Goals to Roles - Details 62
4.2.4 Transforming Goals to Roles - Example 64
4.2.5 Transforming Goals to Roles - Tasks 65

4.3 Applying Use Cases 66
4.3.1 Applying Use Cases - Definitions 66
4.3.2 Applying Use Cases - Rationale 67
4.3.3 Applying Use Cases - Details and Example 67

4.4 Creating Agent Classes 70
4.4.1 Creating Agent Classes - Definitions 70
4.4.2 Creating Agent Classes - Rationale 71
4.4.3 Creating Agent Classes - Details and Example 72

4.5 Constructing Conversations 73
4.5.1 Constructing Conversations - Definitions 73
4.5.2 Constructing Conversations - Rationale 75
4.5.3 Constructing Conversations - Utilizing Sequence Diagrams and Tasks 75
4.5.4 Constructing Conversations - Avoiding Deadlock 76
4.5.5 Constructing Conversations - Balancing 76
4.5.6 Constructing Conversations-Example 77

4.6 Assembling Agents 79
4.6.1 Assembling Agents -Definitions 79
4.6.2 Assembling Agents - Details 80
4.6.3 Assembling Agents - Example 81
4.6.4 Constructing Conversations versus Agent Assembly 82

4.7 System Deployment 83
4.7.1 System Deployment - Definitions 83
4.7.2 System Deployment - Rationale 83
4.7.3System Deployment- Details 84
4.7.4 System Deployment - Example 85

4.8 Summary 86

V. RESULTS 88
5.1 Objectives of agentTool 89
5.2 Operation of agentTool 89
5.3 Building a Multiagent System using agentTool 92

5.3.1 Adding Agent Classes and Conversations 92
5.3.2 Constructing Conversations in agentTool 93
5.3.3 Assembling Agent Class Components in agentTool 95

5.4 Underlying Formalisms of agentTool 97
5.5 Summary 97

VI. CONCLUSIONS AND RECOMMENDATIONS 98
6.1 Conclusions 98

6.1.1 Contributions 98
6.1.2 Deficiencies 99

6.2 Future Research Areas 100
6.2.1 Tasks 100
6.2.2 Use Cases 101
6.2.3 Role Model Indexing 101

VI

6.2.4 Conversations - State table construction 101
6.2.5 Automatic Code Generation 102
6.2.6 Bridging Agent Classes and Conversations to Components 102

VII. BIBLIOGRAPHY 103

APPENDIX A - ELINT GATHERING AND DECISION SYSTEM (EGADS) 105

APPENDIX B - EXAMPLE OF MASE SYSTEM CONSTRUCTION 107
Agent-Based Collaboration - User Requirements 107
Agent-Based Collaboration - Goals 108
Agent-Based Collaboration - Goal Hierarchy Diagram 109
Agent-Based Collaboration - Roles 109
Agent-Based Collaboration - Sequence Diagram(s) 110
Agent-Based Collaboration - Roles and Agent Class Diagram 111
Agent-Based Collaboration - Conversation Creation Steps 112

VITA 114

Vll

TABLE OF FIGURES
FIGURE 1: ANALYSIS PATTERN MAP 11
FIGURE 2: STRUCTURED GOAL CASE 12
FIGURE 3: ABSTRACT ANALYSIS HIERARCHY 14
FIGURE 4: THE MEDIATOR PATTERN ROLE MODEL 18
FIGURE 5: BUREAUCRACY PATTERN 19
FIGURE 6: MASE PROTOTYPE 24
FIGURE 7: COMMUNICATION CLASS DIAGRAM 25
FIGURE 8: MASE CREATION - FIRST STEP 35
FIGURE 9: MASE WITH ROLES 36
FIGURE 10: MASE WITH GOAL ANALYSIS 36
FIGURE 11: MASE WITH PHASES 37
FIGURE 12: MASE WITH TRANSFORMATIONS 39
FIGURE 13: MASE WITH PARALLEL CONSTRUCTION OF AGENT CLASSES AND CONVERSATIONS 40
FIGURE 14: SEQUENCE DIAGRAM 42
FIGURE 15: A TASK 43
FIGURE 16: THE MASE METHODOLOGY 44
FIGURE 17: PHASES OF MASE 48
FIGURE 18: GOAL HIERARCHY DIAGRAM 50
FIGURE 19: GOALS IN LIST FORM 51
FIGURE 20: EGADS GOALS 52
FIGURE 21 STRUCTURED EG ADS GOALS 59
FIGURE 22: EGADS GOAL HIERARCHY DIAGRAM 60
FIGURE 23: A ROLE MODEL 62
FIGURE 24: EGADS ROLES 65
FIGURE 25: EGADS REGISTRATION TASK 66
FIGURE 26: SEQUENCE DIAGRAM 67
FIGURE 27: EGADS SEQUENCE DIAGRAM 68
FIGURE 28: EGADS ROLE MODEL 70
FIGURE 29: EGADS AGENT CLASS DIAGRAM 71
FIGURE 30: A COMMUNICATION CLASS DIAGRAM 74
FIGURE 31: EGADS INITIATETASKING INITIATOR 78
FIGURE 32: EGADS INITIATETASKING RESPONDER 78
FIGURE 33: GENERIC REACTIVE AGENT CLASS ARCHITECTURE 80
FIGURE 34: EGADS REGISTRAR CLASS COMPONENTS 82
FIGURE 35: EGADS DEPLOYMENT DIAGRAM 86
FIGURE 36: MASE METHODOLOGY 87
FIGURE 37: MASE IN AGENTTOOL 88
FIGURE 38: AGENTTOOL USER INTERFACE 90
FIGURE 39: AGENTTOOL POPUP MENU 91
FIGURE 40: AGENT DIAGRAM PANEL 93
FIGURE 41: AGENTTOOL CONVERSATION PANEL 94
FIGURE 42: AGENTTOOL CONVERSATION PROPERTIES DIALOG 94
FIGURE 43: AGENTTOOL CONVERSATION ERROR 95
FIGURE 44: AGENTTOOL AGENT CLASS COMPONENTS 96
FIGURE 45: AGENT-BASED COLLABORATION - GOAL HIERARCHY DIAGRAM 109
FIGURE 46: AGENT-BASED COLLABORATION - ROLES 109
FIGURE 47: AGENT-BASED COLLABORATION - SEQUENCE DIAGRAMS 110
FIGURE 48: AGENT-BASED COLLABORATION - ROLES AND AGENT CLASS DIAGRAM 111
FIGURE49: CONVERSATION INITIATOR 112
FIGURE 50: INVALID CONVERSATION RESPONDER - STEP 1 112
FIGURE 51: INVALID CONVERSATION RESPONDER - STEP 2 113
FIGURE 52: VALID CONVERSATION RESPONDER 113

V1H

ABSTRACT

This thesis defines a methodology for the creation of multiagent systems, the Multiagent

Systems Engineering (MaSE) methodology. The methodology is a key issue in the development

of any complex system and there is currently no standard or widely used methodology in the

realm of multiagent systems. MaSE to covers the entire software lifecycle, starting from an

initial prose specification, and creating a set of formal design documents in a graphical style

based on a formal syntax. The final product of MaSE is a diagram describing the deployment of

a system of intelligent agents that communicate through structured conversations. MaSE was

created with the intention of being supported an automated design tool. The tool built to support

MaSE, agentTool, is a multiagent system development tool for designing and synthesizing

complex multiagent systems.

IX

MULTIAGENT SYSTEMS ENGINEERING: A

METHODOLOGY FOR ANALYSIS AND DESIGN

OF MULTIAGENT SYSTEMS

/. Introduction

-I3T The Air Force is quickly moving towards distributed CT applications. This is clearly

delineated by visionary documents such as Joint Vision 2010 (Shalikashvili 1999), and Air Force

2025 (Kelley 1996). In each of these documents, information superiority is seen as the key factor

to success in the 21st century. The ABIS Grid is defined as "an information environment,

including communications, processing, information repositories, and valued-added services that

provide the users with an ability to find information, to obtain processing services, and to

exchange information." If the warfighters are going to trust such a system, we must ensure that

the system and its information sources are robust, reliable, and secure.

Working in joint environments suggests the need for distributed processing systems. As

these systems get larger and more complex, users are presented with new problems such as

information overload and the inability to find information. An agent is an abstraction that

encompasses many desirable characteristics of such a system, and helps solve the associated

problems. Agents are autonomous, goal-directed, intelligent, and inherently distributable in a

multiagent system (MAS).

1.1 Background

Agents have created enthusiasm recently as powerful new abstractions for designing and

creating software systems. Of particular interest is the inherent ability of agents to thrive in

distributed domains such as the Internet. Much recent agent research has focused on the internal

structures of individual agents, leading to a concept of agents as individuals rather than as merely

parts of a distributed system. However, collections of agents must work cooperatively in order to

solve complex problems, which is the principle advantage of agents. There are several

motivations for using collections of agents as a collaborative problem-solving tool (Nwana 1996).

They can solve problems too large for a single agent. They can also solve inherently distributed

problems. Finally, they can handle distributed information sources and expertise. The most

powerful tools for handling the complexity of these large systems and problems are modularity

and abstraction (Sycara 1998). MASs provide the modularity of individual agents that are

specialized to perform particular tasks. MASs are concerned with the coordinated behavior of a

collection of individual agents to achieve system-level goals.

Constructing a MAS is difficult. They have all the problems of traditional distributed and

concurrent systems, plus the additional difficulties that arise from flexibility requirements and

sophisticated interactions. Sycara (Sycara 1998) states that there are two technical hurdles to the

extensive use of multiagent systems. First, there is no proven methodology that enables designers

to clearly structure applications as MASs. Second, there are no general case industrial-strength

toolkits that are flexible enough to specify the numerous characteristics of agents.

This thesis addressed the first technical hurdle by proposing a methodology for the design

of MAS. The focus was on the construction of a MAS through an entire software development

lifecycle from problem description to implementation. For the most part, studies of this sort have

focused more on high-level descriptions and concepts than on an actual design methodology.

Other design systems do exist as general-case solutions, but these are neither tuned for nor

particularly useful in creating a system that is intended to take full advantage of agent

capabilities. Object-oriented design has achieved some maturity and therefore provides a stable

foundation to build upon. However, object-oriented methodologies are not directly applicable to

agent systems - typical agents are significantly more complex in both design and behavior than

objects.

1.2 Problem

This research focused on developing a design methodology to create a multiagent system

starting from an initial prose specification, and producing a set of formal design documents in a

graphically-based style. This methodology is the basis of AFIT's agentTool development system,

which also serves as a demonstration and validation platform, and a proof of concept. The formal

design is also further manipulated within agentTool through work in concurrent thesis research to

specify individual agents (Robinson 2000), verify agent communications (Lacey 2000), and store

design components in a knowledge base (Raphael 2000).

There are two principal strengths of the methodology developed through this research: it

is focused toward the specific capabilities of multiagent systems and it is based on a formal

language and rules. The methodology supports distributed multiagent systems by helping the

designer create structured communications between agents. This is possible because the

methodology is focused on the domain of agents, meaning that a system designer using this

system has already made the decision that the system will be agent-based. This domain

restriction also supports the creation of a graphical language, which is the basis of the graphical

user interface (GUI) used by the agentTool development system. The graphical diagrams give an

informative view to the designer of the system dimension currently being developed, and also

hide the formal constructs.

1.3 Goal

The goal of this thesis was to produce the methodology described above, a full-lifecycle

methodology for creating multiagent systems. This goal was supported by research examining

the different ways that agents have been used in the creation of software systems. The research

focus was toward design and analysis abstractions, looking at the system lifecycles, and creating

design processes. The result of this research was the construction of a methodology for creating

software systems based on multiple software agents.

1.4 Assumptions

Prior to conducting research, it was necessary to make a few assumptions in order to

narrow the scope of the methodology. The first assumption was that every system designed using

the methodology would be a closed system. Any contact external to the system is performed by

an agent created as part of the system that participates in the system communication protocols.

This eliminates consideration of introduction of conflicting goals. Since external entities can be

interfaced with via an agent, this assumption does not greatly affect the domain of possible

systems that can be designed.

The second assumption was that the scale of systems designed through this methodology

would not be very large; the target is ten or less software agent classes. There is not a hard limit

set at ten, but simply no verification or validation is done of larger systems, and no thought is

given to potential problems of such a system. The practical effects of this assumption were that

the methodology did not have to consider any potential effects of a system with a large number of

agents and the resulting complex inter-agent communications. Furthermore, in consideration of

the eventual implementation of agentTool, the diagrams used by this methodology are much

easier to reproduce graphically with a small number of agents.

The third assumption was that there is no requirement for agent mobility. A mobile agent

is one that can move between computers hosting the MAS. One method of accomplishing this

mobility is for the agent to start a new version of itself at another site, send it the state information

from the old version, then terminate and delete the old version. This creates a new copy of the

agent that continues where the old one left off. This produces several problems for the rest of the

system such as updating all other agents with the new location of the mobile agent. Also, what

happens if an agent transfer goes awry and there are multiple or no copies of an agent? The

inclusion of mobile agents may have added much complexity to the methodology, and not added

much functionality. Most of the benefits of mobile agents can be designed into a system by

simply using multiple agents.

Fourth, the methodology does not consider dynamic systems where agents can be created

and destroyed during execution. This would lead to many of the same problems as mobile agents.

An agent can be added to a system through a process such as registration that is a user-initiated

event, but not added and deleted continuously during ordinary operation.

The final assumption was that inter-agent conversations are assumed to be one-to-one, as

opposed to multicast. This assumption was made after investigation of conversation

representation, and acceptance of a graphical dual-state table representation. Substituting a series

of point-to-point messages will fulfill a requirement for a multicast message.

1.5 Areas of Collaboration

This research was conducted in conjunction with three other thesis efforts. All four

projects were aimed at constructing a tool, named agentTool, which takes a multiagent system

through the entire lifecycle from analysis to implementation utilizing formal constructs and

transformations. The goal of agentTool is to take a formal agent system specification and

produce working code. The other three projects were concerned with validating agent

communications (Lacey 2000), agent-level design (Robinson 2000), and the design and operation

of a knowledge base for agentTool (Raphael 2000).

Furthermore, the starting point of the methodology and focus for the remainder of the

research is the Multiagent Systems Engineering (MaSE) prototype developed by Maj. DeLoach

(DeLoach 1999), and described in Section 2.3.4. The methodology developed in this thesis is

named the "MaSE methodology", and uses most of DeLoach's MaSE diagrams as well as the

same engineering focus. The first MaSE paper described diagrams and concepts of MAS design.

The MaSE methodology extends those ideas, adds more concepts from the analysis and design

phases, and orders them into a methodology that covers the whole software lifecycle. For the

remainder of this thesis, the acronym "MaSE" refers to the original paper by DeLoach only when

used in Chapter 2, and otherwise refers to the methodology developed through the thesis. If used

together, the DeLoach work will be called the "MaSE prototype", and the thesis result, the

"MaSE methodology".

1.6 Overview of Thesis

The remainder of this document is organized as follows. Chapter 2 provides the

background material about agents and multiagent system design. Chapter 3 describes the process

of constructing a comprehensive methodology for multiagent system design that covers the entire

lifecycle. Chapter 4 presents the methodology and takes an example system through the design

process. Chapter 5 describes implementation of a graphically based multiagent system design

application based on the methodology. Chapter 6 discusses conclusions reached during this study

and possible future research.

//. Background

2.1 Introduction

The field of artificial intelligence (AI) is an atypical discipline, as any discussion of AI

must start by asking what is All Consider a discussion of biology or baking beginning the same

way and the point is quite clear. The recent popularity of agents as an abstraction tool for AI

faces a similar definitional dilemma. There are many differing views on what an agent is or is

not. Perhaps the only agreed upon characteristic of an agent is the one already mentioned; that an

agent is an abstraction, useful for solving problems in particular domains. In general, most

characterizations of agents involve a few specific terms that directly map into a discussion of

multiagent systems. Agents are inherently distributed. They are autonomous and goal-oriented

as well as social, and they share information with other agents interactively.

Multiagent systems (MASs) do not suffer from the same definition problem as both AI

and agents. At the macro level at least, MASs are accepted to be collections of agents that

interact to solve a problem. The general idea is that the problems they solve are too complex for

a single problem-solver. Of course with multiple agents as components, the micro level of a

MAS may be pictured quite differently in the minds of various researchers. Many principles are

the same though.

Before launching into specifics, there are many general characteristics of MASs that

appear frequently in contemporary research and in the papers discussed here. There are many

different concepts of what makes up the internals of an agent, and many share the idea of agents

fulfilling sets of roles. Roles are analogous to roles played by actors in a play or by members of a

typical company structure. The company has roles such as "president", "vice-president", and

"mail clerk" arranged in a hierarchy. The instantiation of these roles is not necessarily static.

The mail clerk may one day become the president. A role has certain responsibilities associated

with it as well, such as the "mail clerk" role that must deliver the mail. These responsibilities are

associated with particular goals, so a role can be thought of as an abstraction that encompasses a

particular goal or set of goals. An agent that plays a particular role is fulfilling those goals.

The idea of an agent "goal" is an anthropomorphism to reflect some internal purpose to

an agent's actions. A goal may also be system-level, which is the more commonly understood

context.

MASs must utilize some method of communication that links agents. These lines of

communication are comprised of conversations. A conversation is a sequence of messages

between two (or more) classes of agents that fulfills a particular goal. For example, an agent may

need to register with a registration agent when entering a system. The "registration" conversation

would involve a series of messages passing domain-specific information to complete the

registration. Typically, conversations support a particular goal or objective. It is the patterns of

conversations that determine the shape of a multiagent system and tap the power of distributed

agents.

There are several motivations for using agents as a collaborative problem-solving tool

(Nwana 1996). They can solve problems too large for a single agent. They can also solve

inherently distributed problems. Finally, they can handle distributed information sources and

expertise. In general, a distributed system has enhanced speed, reliability, and flexibility over a

centralized system. Plus, the use of multiple agents adds reusability and modularity.

MAS design is a fledgling discipline. Certainly no standard or widely used methodology

exists. Current methodologies are either entirely research-oriented, or highly specialized. Much

of the current agent-oriented design research has focused on agents as individuals, rather than as

parts of a distributed system. However, there are some recently emerging ideas about how to

model certain MAS facets such as conversations and "patterns" of agents, and a few attempts to

merge these various facets into a cohesive design methodology. This chapter discusses and

analyzes some of these emerging ideas that form the current state of the art in multiagent systems

creation.

This chapter is divided into three phases of the software lifecycle: analysis, design, and

implementation. The first part will cover some modeling abstractions that have been presented to

assist MAS design. These will be presented from first the analysis (Section 2.2) and then the

design phases (Section 2.3) of the software lifecycle. Three design methodologies that "flesh

out" the process fairly well are included. The next part will cover the sparse field of

implementation (Section 2.4) where a formal design of a MAS is transformed into code. Finally a

summary of the whole process and an attempt to draw some conclusions is presented.

2.2 Abstract Methodologies - Analysis phase

The objective of the analysis phase of the MAS software lifecycle is to transform the

system requirements into a representation of the system that can be forwarded to the design

phase. Additionally, it is important that the analyst understand the domain of the system being

built. System analyses in other contexts tend to concentrate on how a particular system will

function, perhaps using an interaction model. Kendall and Zhao suggest four analysis patterns

(discussed in Section 2.2.1 below) that focus more on what the system is trying to achieve

(Kendall & Zhao 1998). They suggest that the nature of goals create a less variable product than

a classical analysis based on tasks and activities.

10

The basic purpose of goal-based analysis patterns is to map requirements to

implementation. More specifically, a method for determining what types of agents are required

for the design phase is needed. Since agents are goal-driven entities, the product of system

analysis will consist of a collection of goals, which can then be mapped to agents or (even better

for the systems engineer) patterns of agents. Finally, constructing agent conversations to support

goals is valuable since, as mentioned above, conversations form the backbone of any MAS.

2.2.1 Capturing and Structuring Goals: Analysis Patterns

The four analysis patterns described by Kendall and Zhao (Kendall & Zhao 1998) for

focus on what a MAS should do are Capturing Goals, Goal Cases, Structuring Goal Cases, and

Goal Cases as Objects. The patterns are designed in a waterfall model as shown in Figure 1.

They are intended to be applied in series. The output of each phase is the input for the next. In

practice, the process is iterative and incremental as depicted by the arrows in the diagram. The

overall objective of this approach is to take a prose specification of a system and construct a Goal

Hierarchy Diagram, which can be used as a foundation for future modeling and "passed on" to

the design phase.

Capturing
Goals S\

<>
Goal
Cases

^

X Structuring
Goal Cases

^
Goal Cases
As Objects

Figure 1: Analysis Pattern Map

11

The first pattern, Capturing Goals, takes the initial context of the system as input. An

initial context is an informal description of requirements, perhaps structured as bullet statements.

An example might be "The system is responsible for making a class schedule for AFIT which

considers conflicts between instructors, student, and room availability." The pattern attempts to

capture what is important in an extensive set of such statements. The resulting context is an

explicit list of goals and objectives. These goals and objectives are much less likely to change

than the more detailed steps that follow in the lifecycle and as such, provide a foundation for

analysis. Example goals from the first example would be: "To schedule classes" and "to

deconflict schedules"

Goal cases are essentially goals plus the source of the goal (a use case). The context

resulting from this pattern is a combination of the goal and the text from which it was derived.

The point of this second pattern is to maintain traceability in case the requirements are revisited.

The third pattern creates a Structured Goal Case that can be pictured in the form of a tree

diagram. This adds a hierarchy to the goals. Figure 2 shows a Goal Case that is in keeping with

the example above.

1. To deconflict schedules
1.1 To deconflict rooms
1.2 To deconflict

1

1.1 1.2

Figure 2: Structured Goal Case

12

The final pattern removes redundancy from the tree in case a goal appears in more than

one place. The tree would no longer actually be a tree, but would still be a structured hierarchy.

The Goal Cases in this structure are modeled as objects. They inherit or multi-inherit from

parents in the neo-tree. Additional goals and actions can be added to subordinate goals as needed,

just as is done with objects. The advantage of applying these four patterns is that the resulting

solution captures the goals of a system. This leads to a goal-driven analysis rather than a task-

based or activity-based one. The resulting goal hierarchy diagram is more stable than a structure

based on activities or tasks.

Potential problems with this method are similar to those with other methods. The scope

of the system being modeled must be clearly defined. Furthermore, this procedure can result in a

very large number of goals, which would then have to be separated by sub-function in order to

maintain clarity (Kendall & Zhao 1998).

2.2.2 A Methodology for Agent-Oriented Analysis and Design

A more recent methodology combines some aspects of both the analysis and design

phases into a single framework. Wooldrige, Jennings, and Kinny propose taking a statement of

requirements and producing a design in sufficient detail that it can be implemented directly using

"traditional techniques". They make several assumptions up front that are worth repeating, as

they seem appropriate for any MAS design procedure (Wooldrige, Jennings & Kinny 1999).

• Agents require a significant amount of computational resources, roughly equivalent to a

process in UNIX

• The goal of the MAS is to maximize some global quality measure that may be sub-

optimal from the point of view of the individual system components

13

• Agents are heterogeneous, meaning that they can be implemented using any number of

different languages and programming techniques

• The entire MAS contains a relatively small number of agents (less than 100)

This methodology (MAAD, for short) works in two familiar stages: Analysis, followed

by Design. The whole process is based around the idea of building agent based systems as a

process of organizational design, with each system as a collection of agent roles. The roles are

analogous to a typical company structure. The company has roles such as "president", "vice-

president", and "mail clerk" arranged in a hierarchy. The instantiation of these roles is not

necessarily static. The mail clerk may one day become the president.

A role is defined in MAAD similarly to how it was done earlier in this thesis, by

responsibilities, and permissions. Additionally, roles here have protocols, which define the

different ways an agent class can interact with other agent classes.

The objective of the analysis phase is to develop an understanding of the system without

concern for any implementation detail. This understanding is captured in the organization of the

system, which is considered the highest level abstract analysis concept (shown in Figure 3).

System

1 f ■

Roles

1 T

Permissions Responsibilities
-

Protocols

f "■> f •>
Safety Liveness

Properties Properties
^ . \. .

Figure 3: Abstract Analysis Hierarchy

14

The organization is comprised of two models, the Roles Model and the Interaction

Model. They capture essentially the same information as the Agent and Interaction models in the

BDI method, except there is a much more detailed description of the responsibilities associated

with a particular role.

A responsibility can be divided into one of two categories: liveness and safety

responsibilities. Liveness responsibilities are those that state "something good happens". An

example liveness responsibility is given for a CoffeeFiller role: "fill up the coffee when it is

empty". By contrast, a safety responsibility is an invariant constraint such as "coffeeStock > 0",

which makes sense because a CoffeeFiller can't add more coffee to the pot than that available in

stock.

2.2.3 Transitioning from Analysis to Design

The two MAS analysis models described above are essentially based respectively on

goals and roles. The first model by Kendall and Zhao ends system analysis with a structured

hierarchy of goals, but goes no further into the software lifecycle. The MAAD analysis model

begins with constructing roles that are mapped to agent types in the design phase, but offers no

guidance as to their construction.

In order to proceed to agent design, goals must be transformed into agents. In general,

each goal maps to an agent role. Duplicate goals may be combined into single roles, though use

of the fourth pattern described by Kendall and Zhao to remove redundancy from the hierarchy

should alleviate that. Goals that are completely defined by sub-goals are not mapped to roles.

The sub-goals can simply be mapped to roles in their place.

15

Agents may then be defined through roles. Multiple roles may be combined into a single

agent. This process of role-mapping can be very complex, and will be covered more in the next

section of this paper. So far, we have mapped system requirements to goals, mapped goals to

roles, and mapped roles to agents. There has not been much research into this analysis process,

and certainly no actual engineered solutions. The conceptual framework is slowly being laid,

however.

One final (and perhaps separate) phase in MAS analysis is determining conversations

between agents. It is through conversations that the power of the distributed system is realized.

Conversations are as important to defining a MAS as the agents themselves. To be effective,

multiple agents must coordinate and communicate their actions. At the analysis level,

conversations should be defined as the minimum messages that must be passed. Additional

messages may be added for robustness and completeness. Any communication between agents

requires at least one conversation type. Conversations are defined as between either agent classes

or roles, depending on the method used. The following section on the design phase of MAS

development elaborates beyond the simple need for having conversations.

2.3 Abstract Methodologies - Design phase

The design phase of the software lifecycle has been the focus of much of the non-

applications research on MASs and agents to this point. This section will cover several different

methods of classifying and patterning agents, including three design methodologies that are, in

some respects, successive refinements of each other. Each is based on previously existing object

oriented design processes. Object oriented design has achieved some maturity and therefore

provides a stable foundation to build upon. However, object oriented methodologies are not

16

directly applicable to agent systems - typical agents are significantly more complex in both

design and behavior than objects.

The idea of using roles to define an agent has already been introduced. In a bit more

detail, a role is an abstraction that encompasses a particular goal or set of goals. An agent plays a

role in a system much like an actor in a play. Someone gets to play the "Hamlet" agent and

receive the applause, someone else is the "Horatio" agent and gets to live, but every role has to be

filled so someone has to play the "Rosencrantz" agent and get neither applause nor life. "Alas,

poor yorickAgentl7,1 new()'d him."

2.3.1 Roles and Role Models

Kendall suggests a new way of organizing agents into reusable patterns. She proposes

that agent roles be collected into patterns called role models (Kendall 1998). A role model is a

new abstraction for modeling and designing agent systems. The basic idea is that patterns of

agent roles are constructed, labeled, and archived. When a new system is designed, the patterns

of the systems are analyzed. If patterns are recognized that are supported by existing role models,

then the role model can be added to the system, resulting in a slew of agent roles that satisfy the

subset of the system goals involved in the pattern that was recognized.

Kendall also expands on the definition of roles, describing how a role in a role model can

be played not only by an agent, but also by objects, processes, organizations, and even people.

The underlying idea is that as long as every role in a role model is covered, the role model will

function as intended.

17

Figure 4 depicts a sample role model named the "mediator" pattern that represents a

typical organization. The mediator is a central role, like a plant manager, that is responsible for

interacting with clients.

Client Mediator "►« Colleague

Figure 4: The Mediator Pattern Role Model

The set of colleagues (note the "•" in Figure 4 represents "one to many") could represent

other factory sections like manufacturing, QA, and a repair shop. All interactions with the client

are done through the mediator who then delegates responsibilities to the appropriate colleagues.

In terms of roles, the mediator has the responsibilities of handling all client communications,

delegating tasks to colleagues, and passing results back to the client.

Upon instantiation, each role must be played by some entity. Continuing with the pattern

in Figure 4 as an example, the mediator could be a webserver process that handles requests from

websurfing human (or agent) clients. Depending on its particulars, a request could be forwarded

to one of several colleagues: a search-bot, a database query, or a live connection to a system

administrator.

There are obviously many situations where the mediator pattern or another role model

would effectively map a to particular system or piece of a system. Once a pattern is recognized, a

role model that matches that pattern is retrieved from a library. It can be combined with any

other patterns in a variety of ways. A role model may be an aggregate of others. For example,

one object can play both a colleague role from the mediator pattern and a client role if it must go

collect information from an external source, which is also follows the mediator pattern. A

particular pattern may also be derived from a base model, which is similar to object-oriented

18

inheritance. In that case, the derived role must play all the roles of the base role. Furthermore,

roles can form role sequences where an entity iterates through a sequence of roles. A. producer of

one item may become a consumer of another under an additional common role model pattern

called the "supply chain" pattern.

Role Synergy is what happens when a composite role model, utilizing the combination

methods mentioned above, is more than the sum of its parts. An example of this is the

"bureaucracy" pattern shown in Figure 5. There are many details involved with the construction

of such a pattern that are beyond the scope of this discussion, but looking closely, it is clear that

the mediator pattern roles of mediator and client being played in this pattern by the "Manager"

and "Subordinate." This pattern actually combines four separate patterns together into a powerful

composite (as anyone who has played a role in a bureaucracy can tell you).

Director

Clerk Client W Clerk

L \

Manager
M
 9* Subordinate

■

L \

Figure 5: Bureaucracy Pattern

Role Modeling is appropriate for MAS design for several reasons. First, it emphasizes

interactive behavior by structuring patterns around communications (all of the arrows on the

above diagrams are communication paths). Second, all of the roles in a role model work toward a

common set of goals. Finally, roles and role models provide a new abstraction that can unify

19

diverse system aspects from intelligent agents to people. Role models do not by themselves ever

fully describe a system design, but they provide an excellent tool for any of the following

methodologies, or a new composite one.

2.3.2 A Methodology and Modelling Technique for Systems of BDI Agents

In a relatively early foray into a system-level design methodology for MASs, the authors

proposed adapting and extending current object-oriented design approaches into the agent world,

specifically applying them to Belief-Desire-Intention (BDI) agents (Kinny, Georgeff & Rao

1996).

A general-case BDI agent is defined primarily by its "mental state", which is formed

from three facets appropriately called beliefs, desires, and intentions. Each facet is implemented

by a set of appropriate statements. Beliefs are a set of statements that reflect the agent's

knowledge about the environment. The beliefs could be imbedded into the agent when it is

created, or implied though trial and error. As far as the agent "knows", the statements in its belief

set are true. The set of BDI agent desires are what the agent wants to become or remain true. It is

a representation of the goals of the agent. The intentions set is a collection of actions that the

agent will take in support of its desires. In many BDI agents, intentions are created through some

form of agent planning. In this context, planning would consist of determining which actions or

sequences of actions would take the world from the state described in the belief set to the state in

the desire set. The resulting actions are then placed into the intentions set.

This methodology by Kinny, Georgeff, and Rao is aimed at creating a set of models that

define an agent system based on BDI agents. There are two sets of models, the external

viewpoints and internal. The external models present a system-level view made up of agents

characterized by purpose, and is primarily concerned with the interactions between those agents,

20

including both inheritance relationships and communications. The internal models are related to

a specific agent class, and are concerned with the internal workings of that class, specifically their

beliefs, goals, and plans.

The external viewpoint decomposes a system into agents based upon the key roles of the

application. Agents are instantiations of classes within an agent class hierarchy. The details of

the agent classes are covered by two models: the Agent Model, which describes a number of

actual agents and the hierarchical relationships between agent classes, and the Interaction Model,

which describes communications and control relationships between agent classes.

The methodology for specifying these models consists of four steps. The steps are

performed in sequence, and repeated for refinement. These steps and the external viewpoint are

independent of the architecture of a particular agent.

1. Identify the roles required

2. Identify responsibilities and services for each role.

3. Identify interactions (communications) for each service.

4. Refine the hierarchy by introducing new agent classes, composing classes, and

creating new agent instances.

The abstraction hierarchy is straightforward. Roles are sets of responsibilities, and

responsibilities are sets of services. Revisiting a previous example, if a role of an agent was "to

de-conflict schedules", an associated responsibility could be to "maintain a master schedule" and

a service would be to "provide a master schedule upon request."

The internal viewpoint of this methodology is strongly tied to the BDI paradigm. It

contains three models which are direct extensions of either object oriented models (beliefs and

21

goals) or dynamic models (plans). A Belief Model holds an agent's belief set, which is

information about both the environment and the agent's current state and whether or not they may

change over time. The Goal Model consists of a goal set, which is a set of possible goals that an

agent may adopt and events to which it can respond. These goals are the "desires" piece of BDI.

Finally, the Plan Model holds the creatively named plan set, which is a set of possible plans an

agent may adopt to achieve its goals. The plan set contains possible intentions of a BDI agent.

There are two steps in the methodology for modeling the internals of an agent. Again,

they are designed to be continuously iterated and the models refined as the design process is

performed.

1. Analyze the means of achieving goals. That is, in what order and under what conditions

can a goal be achieved.

2. Build the beliefs of the system.

In summary, The BDI methodology presents a structured framework for designing MASs

at both the system and agent level. Goals are used as the focus of design because, as stated

previously, they are more stable than behaviors or plans in any application domain. Plans are

highly context-sensitive. Many different plans may be created for a particular goal in different

situations. The focus of the BDI methodology is on the end-point that needs to be reached rather

that on the types of behaviors that lead to that end-point. This idea of designing from goals is the

primary difference between the BDI methodology and object oriented methods.

2.3.3 A Methodology for Agent-Oriented Analysis and Design

Returning to the MAAD methodology introduced in Section 2.2.2 (Wooldridge, Jennings

& Kinny 1998), the design phase generates three more models. The agent model identifies agent

types for the system and agent instances that are created from those types. The services model

22

describes the services associated with each agent type. Finally, the acquaintance model describes

acquaintances, which are possible communication pathways, in order to identify bottlenecks.

The methodology connects its analysis and design portions using the roles defined in the

roles model produced in the analysis phase. It offers a small amount of guidance for making the

transition. A designer can choose to package a number of closely related roles in the same agent

type for the purposes of convenience. Efficiency will also be a concern, and is another reason to

combine roles. As with the role models described above, a fair amount of expertise is required to

make these decisions.

MAAD is similar to the BDI agent methodology described earlier. Both methods work at

two levels: system and agent. They both use agent roles as key concepts and associate them with

responsibilities. Furthermore, both communication processes are designed around conversations

between roles. Each process moves from the abstract concepts toward the concrete, with each

move shrinking the space of possible systems that could be implemented. Finally, each process is

designed to be iterative, with successive iterations refining the system at various levels. The

MAAD authors take note of these similarities and even provide a comparison between the two,

highlighting the more detailed definition of role responsibilities in MAAD.

2.3.4 Multiagent Systems Engineering Prototype

The most recent research into MAS design covered in this research is Multiagent Systems

Engineering (MaSE) (DeLoach 1999). MaSE builds upon other research, including the

previously discussed MAAD, but re-focuses upon the actual engineering process. In other words,

it is nice to talk about creating MASs, but how does one actually do it?

MaSE has two primary goals:

23

• To develop a complete methodology and language for designing framework and
architecture independent MASs

• To structure the methodology specifically to support formal automated software
development

Furthermore, MaSE attempts to make its component languages (described below)

graphically-based to hide formalisms as much as possible and to support automatic generation of

agent systems either through code synthesis, or component library reuse.

In a similar fashion to the simultaneous macro and micro approaches of the previous two

methodologies, there are two component languages for describing MASs in MaSE. The Agent

Modeling Language (AgML), and the Agent Definition Language (AgDL). AgML is the system-

level language, distinguished by being primarily graphical in nature while maintaining a formal

syntax. AgDL is used to completely describe the internal workings of an agent. AgML is

reviewed in further detail later, under the first section of the methodology. AgDL and the

corresponding details of agent-level design are currently under development. For more

information see parallel thesis work by Robinson (Robinson 2000).

MaSE is a four-step waterfall process, as depicted in Figure 6. It is not explicitly shown

to be intended as an iterative refinement process, though it could certainly operate that way,

Domain Level
Design RN

Agent Level
Design R\

Component
Design

^
System
Design

Figure 6: MaSE Prototype

24

similar to previous models.

The first step, domain level design, uses AgML to capture the basic types of agents in the

system, and interactions between those types. It does so in three steps:

1. Identify agent types

2. Identify possible interactions between types

3. Define coordination protocols for each type or interaction

Through the use of AgML, the process described above is conducted using a graphical

format, which still enforces the underlying formalisms. AgML uses four diagrams to define the

macro level features of MASs. The Agent Diagram is dissimilar to like-named diagrams from

other methods. In this case, the "connections" between agent types are not hierarchical

relationships, but actual conversation paths. The Communication Hierarchy Diagram defines

exactly what its name suggests. A Communication Class Diagram (Figure 7) is actually a state-

'Vjollect-darafsensor, location)
[invlalid-data] Afailure-transmission

___ ^4 6?
Waiting

collection-failure(reason)

 V-- - _
I Log-Failure 1

I entry:log-failure(reason) I

Return(data) validatedata

-> do:validate-data(data)

Acknowledge

Figure 7: Communication Class Diagram

[valid-data acknowledge

y xi

25

machine representation of a conversation. It is within this diagram that the focus on engineering

proposed by this methodology is evident. While the details are not evident in this example, the

state-machine characteristics of the diagram should be. The diagram consists of a start state (the

single circle) and an end state (double circle). There are several other states (boxes) connected by

transitions (arrows). Each state can optionally have an action associated with it, and each

transition can include guard conditions, sent and received messages, and further actions. The

conversation logically proceeds from the start state to the end state by "taking" the transitions to

the intervening states, as allowed by the conditions on the transitions.

The second step in MaSE is Agent Level Design, where each agent type is described

using AgDL. Again, there are three steps to this phase of design:

1. Map actions in conversations to internal agent components

2. Define data structures identified in conversations as input and output

3. Define additional internal data structures

Next is Component Level Design. This step details the components introduced in

preceding steps. Components can either be created from scratch using AgDL, or hopefully taken

from a re-use library given a common construction method such as JavaBeans. Some possible

reusable components are planners, search algorithms, and learning algorithms.

The final step of MaSE, system design, is the assembly point for all previously designed

agents and other components. It includes picking the type and number of components and

assigning physical parameters such as addresses.

Delaying definition of the complete system until the final stage of development may

seem backward compared to other methodologies. The only process really delayed though is the

actual construction of "physical" entities (it seems strange describing software objects that way),

26

from abstract types. This delayed system design appears to better support reuse, since any

predefined components may impose constraints such as other required resources. These kinds of

constraints may then be folded into the design without having to rearrange an existing system

layout.

One final important characteristic of MaSE is the significance of conversation design in

the scope of the entire methodology. Conversations are the first piece of the system to be

"engineered" when they are described in state diagrams in the first stage of the design process.

This reinforces what was mentioned above, that it is the conversations that truly provide the

power to a distributed system.

2.3.5 Design Summary

There is significant progress along the lines of agent role models and similar work that

provide helpful abstractions to MAS design. There have also been several methodologies

proposed that have classified discrete steps in a design process leading to some sort of system

design. These methodologies all include extended iterative OO design procedures, and their

progression follows a few patterns including a governing focus on engineering systems rather

than just describing them.

2.4 Implementation

The final lifecycle step covered in this research is implementation. This is the process of

transforming some sort of agent system specification to actual working code. While progress is

being made toward this area, none is actually being made in it. While there are examples from

general software engineering at AFIT (KIDS, SPECWARE, AFITTOOL), there are no currently

published reports or products that actually implement code generation as a final step in a formal

27

MAS creation process beginning with analysis and design. All of the current methods get up to a

point - some set of formal and/or informal diagrams, tables, and descriptions - and then say "use

traditional methods from here." The use of the methodologies described will certainly assist in

the system creation process and during coding, but there will still be a break where the agent-

oriented approach ends and a "traditional" approach such as 00 takes over.

2.5 Fielded products

Reticular Systems' AgentBuilder is advertised as a toolkit for building intelligent agents.

It provides a GUI where a user can add agents to a system, and define communications between

them. The communications are not described to the level of detail as conversations are in MaSE.

Instead, there is a protocol-editing tool that allows specification of a particular response to a

particular message. There is no concept of a collection of messages forming a conversation.

AgentBuilder was excluded from consideration in the previous section because it does

not apply a formal methodology to the process. Indeed, with a significant learning curve, you can

build an agent from the ground-up. Agents can be placed into a particular system, called projects.

Agents are added to projects as "skeletons" and basic interactions with other agents can be

defined at that point.

The problem is that there is no process that helps a designer to decide why to add or not

add a particular agent or conversation. In short, AgentBuilder does provide a toolkit (as

advertised) to assist in creating agents, but does not combine it with a methodology of the sort

described above to enforce a particular, validated design process. In other words, there is no

associated formalism that will force a developer to NOT do something wrong.

28

The product seems quite solid and the imbedded run-time environment is a nice addition.

However, this is not the industry-quality product needed to push MAS development into the

mainstream and unlock the potential of distributed agents.

2.6 Summary

The idea of agent roles is a common thread throughout agent analysis and design

discussions. Most recent MAS design methodologies begin with identifying roles as the focus.

An often-repeated definition of a role is an abstraction representing a collection of goals. Goals

also seem accepted as an appropriate abstraction for agents. Many systems focus on goals as the

basis for system analysis, in a break from OO techniques that focus on methods or other

"abilities". The goal provides a more stable framework for agent systems as it less unlikely to

change over time.

All MAS design methodologies create a collection of models at different levels of

abstraction. Concepts typically modeled are hierarchies of agents or (more abstractly) agent roles

and conversations/interactions between agent types. The levels of abstraction are typically

limited to two: a system / macro level, and agent / micro level models.

The research of the primary MAS software lifecycle phases from analysis and design

through implementation are focused mostly in the design phase. Abstractions are the key to

complex design, and there are some good ideas out there.

Constructing MASs is difficult. They have all the problems of traditional distributed,

concurrent systems, plus additional difficulties that arise from flexibility requirements and

sophisticated interactions. Sycara (Sycara 1998) states, and this chapter has shown to some

degree, that there are two big technical hurdles to the extensive use of multiagent system

29

development. First, there is a lack of a proven methodology that enables designers to clearly

structure applications as MASs. Second, there are no general case industrial-strength toolkits that

are flexible enough to specify the numerous characteristics of agents. Another remaining hurdle

is a social one. Before we will design systems run by agents, we must first trust those agents to

run the system.

Recent methodologies have begun to focus more on the engineering of agents than on the

science of them. Formalisms existing a few years ago for describing and reasoning about agents

did not provide adequate support for the actual process of agent design (Kinny, Georgeff & Rao

1996).

There are several specific areas in MAS technology still needing more work. One area is

further translation of the "fuzzy" to the "concrete". In other words, abstractions are nice, but a

working application is what it's all about. Finally, agent systems that do exist are mostly created

for specific cases. Future system-development aids must be able to design for the general case

multiagent system.

30

///. Problem Approach

This chapter describes the process used to create a new multiagent system design

methodology called Multiagent Systems Engineering (MaSE). Section 3.1 defines general

characteristics desired of a MAS methodology. Section 3.2 describes how the scope of the

methodology changed during the research cycle. Section 3.3 explains how the expanded scope

caused holes in the methodology and how those holes were filled. Section 3.4 describes the

creation of a Java application which partially implements the methodology. Finally, Section 3.5

briefly overviews the procedures used to test and validate the methodology.

3.1 Requirements

The first step in constructing a methodology must be to define exactly what a

methodology is. When constructing a methodology for the creation of multiagent systems,

additional effort must go toward consideration of the characteristics of such systems and what

that means for the methodology. This section describes the consideration given to the general

characteristics of the MaSE methodology.

3.1.1 Definition of a Methodology

All software engineering processes require the use of a methodology whose main role is

to identify the requisite steps that permit us to proceed from the project requirements to

implementation. In other words, a methodology is a guide through the software lifecycle. A

methodology provides tools and abstract concepts for transforming a subjective vision of a

system (a set of requirements) into an objective formal implementation. It provides software

engineers with a map from the original blueprint to final code.

31

Drogoul and Collinot discuss general traits of methodologies and propose required

characteristics of MAS methodologies in their case study of robotic soccer (Drogoul & Collinot

1998). They state that in general, a methodology contains:

1. A structured set of guidelines, steps, advice for the steps, and how to proceed from one
step to the next

2. A unified documentation procedure

3. Consistent use of terminology which has a meaning at each step in the cycle

4. The use of conceptual abstractions

5. A comprehensive history of the project for backtracking purposes

The creation of MaSE focused on all of the listed items, with an emphasis on the

backtracking mentioned in number five. However, by only considering the listed items, the

particulars of multiagent systems would not be figured into the methodology.

3.1.2 Definition of a Multiagent Methodology

The traits described in the previous section are consistent with many design

methodologies such as the object-oriented methodologies described by Pressman (Pressman

1992). Agents are in many respects extensions of objects, therefore, object-oriented languages

are the languages of choice for agents. However, MASs created using object-oriented

methodologies will not take full advantage of agent characteristics. The additional characteristics

proposed by Drogoul and Collinot as required for any MAS methodological framework are:

1. Integration of the descriptive and operational aspects of the agent organization during the
analysis phase.

2. The possibility of combining a bottom-up approach (designing agents before
organization) with a top-down (organization before agents).

Other sources provide similar ideas about the characteristics of a MAS methodology.

The first point above is echoed by Wooldridge, Jennings, and Kinny who say that current

32

software development methods (such as object-oriented) will be unsuitable for MAS design as

they fail to capture an agent's flexible autonomous behavior, rich interactions, and complex

organizational structure (Wooldridge, Jennings & Kinny 1998). Sycara (Sycara 1998) and

DeLoach (DeLoach 1999) also echo the importance of a system-level or organizational concept.

Drogoul and Collinot's second point, combining top-down with bottom-up, is important

in a methodology to ensure a designer has freedom to iterate through different phases of the

methodology. For example, the details of a particular system could be specified either before or

after a system-level organization exists.

MaSE considers both of the above listed points. The structure of the organization is

reflected in the ways that roles and agent classes interact through paths of communication and

conversations respectively. Furthermore, the phases of MaSE are designed to be iterative in

support of the second point, and the transformations from goals to roles to agent classes can be

followed backward as well as forward. Both of these points are discussed further in Chapter 4.

3.2 Scope of Research

As stated in Chapter 1, the goal of this research was to create a methodology for

developing multiagent systems. Initially, the intended scope of the methodology was much

smaller than the full-lifecycle process that resulted. The original scope was to create a

methodology that covered the design phase of the MAS software lifecycle; specifically, a

collection of agent roles and create agent classes. The following subsections will describe how

the scope of this research changed, and what decisions caused it to do so.

33

3.2.1 Starting Point

The first decision made in the course of this research was to use an existing prototype

MAS design methodology as a starting point. The Multiagent Systems Engineering (MaSE)

paper by DeLoach (DeLoach 1999), described in Section 2.3.4, was selected based on its strong

engineering focus. The methodology created in this thesis actually shares the MaSE name, as

discussed in Section 1.5.

The MaSE prototype provided several design diagrams that assist in designing a MAS

from a collection of agent classes connected by conversations. The conversations, in particular,

were well defined as a state-diagram controlled sequence of messages between agent classes.

Agent classes and conversations are the two design objects utilized in the MaSE methodology

from the MaSE prototype.

The Agent Diagram from the prototype is used in the same manner as described in

Section 2.3.4, with agent classes connected by conversations. It is renamed the Agent Class

Diagram to better reflect its contents. Conversations are still defined by a pair of Communication

Class Diagrams, but now the two diagrams are labeled for the initiator and responder halves of

the conversation. The Communication Hierarchy Diagram is no longer used in the MaSE

methodology, as it does not add anything to the design process.

Figure 8 summarizes the state of the MaSE methodology at this early state in its

development. Currently, it includes only the three abstractions defined in the MaSE prototype.

34

Conversations Agents

* y
Agent

Classes

Figure 8: MaSE Creation - First Step

In this and subsequent figures, the darkened boxes represent abstractions used in system

design. The flow of the process goes from left to right, as indicated by the arrows. The arrows

indicate an influence between design objects. For example, in Figure 8 both Conversations and

Agent Classes have an influence upon the creation of agents.

3.2.2 Roles as a Foundation

The decision to base the methodology on the MaSE prototype was made with the

understanding that the methodology would cover more of the software lifecycle than the

prototype. Specifically, the design portion of the methodology would be based around agent

roles. Roles have been used frequently in recent agent design research, such as that described in

Sections 2.3.1 (Kendall 1998) and 2.3.3 (Wooldrige, Jennings & Kinny 1999). They are an

abstraction that associates a particular "job" with an agent.

Roles were chosen as the foundation of the design process because they are a modular

component of agent classes. As such, they provide for easy reorganization during the design

process. In this model, an agent class is built by selecting the roles it will play. Additionally,

roles can be grouped together to form patterns called role models (Kendall 1998), as described in

Section 2.3.1. Role models provide reuse to the design process, which became a very attractive

characteristic of the methodology. The addition of roles to MaSE is reflected in Figure 9.

35

Roles

Conversations
-►

Agents

t y
Agent

Classes

Figure 9: MaSE with Roles

3.2.3 Expanding the Methodology

The addition of roles to the methodology expanded its coverage of the MAS design

phase. At this point, research into the analysis phase revealed the possibility of going "back"

further into the MAS software lifecycle into the analysis of the system. The research by Kendall

and Zhao covered in Section 2.2.1 (Kendall & Zhao 1998) describes how an initial system

context can be analyzed to create a structured set of system goals. By integrating this capturing

of goals, the methodology would then cover all phases of the MAS software lifecycle from an

initial specification to code, as shown in Figure 10.

> > >

Conversations
>

Agents

t y y
System
Spec

Goal
Hierarchy
Diagram

Roles Agent
Classes

Figure 10: MaSE with Goal Analysis

3.2.4 Creating Phases

A methodology is comprised of a sequence of steps. At this point in development, MaSE

was just a progression of system representations, as shown in Figure 10 above. The addition of

36

"phases" to break up the analysis and design work brought MaSE more in line with what a

complete methodology is expected to be. Figure 11 depicts the addition of phases to MaSE,

indicated by white boxes.

Capture
Goals

System
Spec

Goal
Hierarchy
Diagram

Create
Roles

Roles

Create Agent
Classes and

Conversations

Conversations

t
Agent

Classes y

Deploy
System

Agents

Figure 11: MaSE with Phases

3.3 Bridging Gaps

The version of MaSE shown above in Figure 11 has a scope that spans from an initial

MAS specification to coded implementation. In software engineering terms, it covers the

software lifecycle from analysis through to implementation. At this point though, there are some

missing pieces in the middle. The joining of several existing models left gaps between the joints.

In particular, there needed to be connections that transformed goals into roles and roles into agent

classes. This section describes those connections in the order that they were considered and

added to the MaSE methodology.

37

3.3.1 Transforming Roles to Agent Classes

A methodology must show how to proceed from one analysis or design object to the next,

and give guidelines on how to do so, as discussed in Section 3.1.1. Research by Wooldridge,

Jennings, and Kinny (Wooldridge, Jennings & Kinny 1998) has already addressed this problem,

and provided some suggestions on how to solve it. Their MAAD methodology (introduced in

Sections 2.2.2 and 2.3.3) contains roles as elements of analysis and agent types as elements of

design, and discusses how to map one to the other.

This transitional step from one form of representation to another is important enough to a

system designer that MaSE has an entire phase that describes how to do so. In brief, roles are

combined and mapped to agent classes. An agent class can have one or more agent roles. A one

to one mapping is the simplest case, but many combinations of roles may be performed for

efficiencies sake. The "Creating Agent Classes" phase of MaSE is described later in Section 4.4.

3.3.2 Transforming Goals to Roles

After a MAS specification is analyzed to produce a Goal Hierarchy Diagram, MaSE must

provide some rules for transforming the goals into the roles that will be the foundation of the

system design. This is very similar to the transformation from roles to agent classes that appears

later in the methodology and is discussed in the previous section.

The first attempts to solve this problem in MaSE focused on the role models discussed in

Section 2.3.1 (Kendall 1998). The intent was that role models would be the target of this

transformation from goals. This would actually be an indirect method of mapping, since roles

come out of role models. The pattern described by a role model has an associated purpose, such

as the "mediator pattern" example in Section 2.3.1. The intent was that a goal could map to the

"purpose" associated with a role model and an appropriate model would then be found in a

38

catalog of role models, again, as described in Section 2.3.1. This approach was partially

abandoned when no method of indexing such a catalog was found. Furthermore, the notion of a

role model "purpose", and how to create a catalog index out of one, was not discussed in the role

model paper (Kendall 1998) or the work it referenced.

Therefore, MaSE handles the goals to roles transformation directly, and in a similar

manner as roles are transformed to agent classes. In general each goal maps to a role, and may be

combined for efficiency. The details of this process are again associated with an entire phase of

the methodology. "Transforming Goals to Roles" is the second phase of MaSE, and is covered in

Section 4.2.

The state of MaSE after adding the changes discussed in this and the previous section are

reflected in Figure 12.

Capture
Goals

i
Transform
Goals to

Roles

Create
Agent

Classes
■

Construct
Conversations and

As>ent Classes

Deploy
System

Conversations

^
i

System
Spec >

Goal
Hierarchy
Diagram

>
Roles Agents

^
X

:
Agent

Classes y
Figure 12: MaSE with Transformations

39

3.3.3 Designing Agents

There are many significant details of the internal workings of an agent that are not

covered in MaSE directly. These details are important in MAS creation since without them,

nothing would function. They are avoided in MaSE for two reasons. The first reason is that the

depth of scope required to adequately consider such a topic is too much for this effort. The

second reason is that those details are being considered apart from this system-wide development

methodology in a parallel Agent Research Group thesis by Robinson (Robinson 2000).

MaSE must allow for such details, however, so there is a phase specifically set aside for

filling in the details of agent classes. A broad overview of the methods used and guidelines for

assembling agents from components is covered in Section 4.6. The phase is called "Assembling

Agent Classes" because of the component architecture approach used by Robinson.

Due to the interconnected nature of agent classes and conversations, the MaSE phases

that are concerned with filling in their details occur in parallel. The reasoning behind this

decision is elaborated in Section 4.6.4. Figure 13 shows this parallel operation.

Construct

Capture
Goals

Transform
Goals to

Roles

Create
Agent

Classes

Deploy
System

Assemble
Aoent Classes

Conversations
^

System
Spec >

Goal
Hierarchy
Diagram

>
Roles Agents

\
t
Agent

Classes ^

Figure 13: MaSE with Parallel Construction of Agent Classes and Conversations

40

3.3.4 Constructing Conversations

MaSE conversations are complicated. The representation inherited from the MaSE

prototype (DeLoach 1999) is a pair of possible message sequences represented by a state table, as

shown in Section 2.3.4. As complex objects, conversations proved very difficult to construct at

times. As the purpose of MaSE is to assist a system designer, it was clear that some rules and

guidelines for building conversations needed to be a part of the methodology.

At the point in the methodology that conversations are constructed, there were only three

other constructs available to assist in their creation: goals, roles, and agent classes. The problem

was, that sequence of three abstractions is intended to hold information on what the system is

supposed to accomplish. Conversation creation was the first point in the methodology that dealt

with how something needed to be done. Simply adding guidelines on constructing conversations

would have enhanced MaSE, but it would be more helpful to the designer if some other type of

abstraction supported those guidelines.

3.3.5 Use Cases and Sequence Diagrams

Another way of envisioning conversations are as actions that a MAS takes in support of

its goals. Any addition to MaSE for the purpose of creating conversations must also be

concerned with actions.

Use cases are descriptions of a sequence of actions within a system. They are an

example of one way the system is supposed to behave. A typical system would contain several

use cases. Collection of use cases during system analysis is included in the research by Kendall

and Zhao discussed in Section 2.2.1 (Kendall & Zhao 1998). Use cases are also described in

more detail in Section 4.1. The inclusion of use cases during MaSE system analysis captured the

notion of how a system would work.

41

Since they are a description of a sequence of events, use cases can also be represented in

a manner more appropriate for system design: a Sequence Diagram (shown in Figure 14). A

sequence diagram is a step toward the eventual construction of a conversation. It depicts events

(arrows) being passed in a particular order between several participants (boxes across the top).

Commander 1 Task Controller Status Reoorter

status reaues ^

^ status report

w

eta request ^

^ eta reolv
■^

^

Figure 14: Sequence Diagram

Since the goals captured during analysis are being transformed into agent roles, it was

appropriate to have the use cases that were also created during analysis transformed into sequence

diagrams that passed messages between those same roles. If a use case is represented as a

Sequence Diagram, it is clear that all communication passed between roles in the diagram should

eventually become messages in conversations between agent classes in the Agent Diagram.

3.3.6 Tasks as a Design Aid

The final addition to MaSE in support of conversation construction is the concept of a

task. A task is not a fully defined concept, but it is clear that it has worth in MaSE. A task is a

detailed depiction of how a role goes about fulfilling a goal. It consists of a state machine as

shown in Figure 15. A task includes communication with other roles, and allows for local state

variables. A task also is clearly similar to a conversation.

42

Start Register(r) k- Determine [fiilRegister] ^ Delete
W validity old

[!fullR< gister]

[canDeleteö-OldJJMeletf (rOld)

Valid
w register

^failedCr)

Aregistered(r)

Figure 15: A Task

Agent classes are connected via conversations, agent classes play roles, and roles are

connected via paths of communication. Therefore, if a task can be constructed in support of a

particular role, agent classes that play that role must pass any messages passed by that task. Also,

the messages passed by the agent classes must be contained in a conversation. From a different

point of view, any communication with another role in a task means that a path of communication

must exist between those two roles. If those roles are parts of different agent classes then a

conversation must exist between those classes. On the other hand, if roles sharing a path of

communication are parts of the same agent class, then the agent class must handle the event

sequences that pass between the roles. The component-based agent design by Robinson

(Robinson 2000) includes state-table representations of event sequences that are similar to MaSE

conversations.

While a task may not be completely defined, if it has the characteristics described above

then it will fit nicely into MaSE in support of conversation construction. Tasks are listed in

Section 6.2.1 as an area of future research that would increase the depth of the MaSE

methodology.

43

The addition of use cases and tasks completed the definition of the MaSE methodology as

described in Chapter 4. The entire MaSE methodology is represented in Figure 16. Phases are

now connected by arrows to show the methodology progression, and are renamed from previous

versions to indicate what action is taking place during the phase.

[

\ Constructing
Conversations

j :

Capturing
Goals

Transforming
Goals to

Roles
-►

Applying
Use Cases

Creating
-^ Agent

Classes

System
Deployment

*

•
Assembling

Agent Classes
i i

I Use
Cases

^ Sequence
Diagrams

:

*g W ;

/ Conversations i

System
Spec

/ ' ■VJ

Roles Tasks ; i

1

i ^A Agents !
!
:

X
Goal

Hierarchy r ^r ,

\
/\ ! h

Agent ! 1

, I Jiagi ■air i ■w
1

Figure 16: The MaSE Methodology

3.4 Creating a Prototype

A secondary objective of this thesis is to show how an automated tool can follow the

MaSE methodology, and help a user create MASs. The agentTool project, as discussed in

Chapter 1, is a collaborative effort by AFIT's Agent Research Group. The agentTool system is

based on the MaSE methodology, and incorporates elements of the related thesis efforts described

in Section 1.5.

An early milestone of this thesis was to create the basic Java code packages of agentTool.

It was done early in the thesis process to stress that the MaSE methodology would be designed

44

from the ground up to support such an implementation. A further advantage was that completing

this initial work gave the related thesis efforts something to hook their implementations into.

This required that some work on MaSE be completed so that the basic operations of the system

would follow the MaSE process. In particular, the use of "tabbed panes" described in Section 5.2

supports the notion in MaSE that all phases of the methodology are accessible, and work can

easily switch between different phases.

The latest version of agentTool implements only three of the seven phases of MaSE. It is

modular and expandable for future work, including full coverage of the methodology. Creating

this application early in the thesis process - just after the decision to include roles as a design

object and before any analysis phase work - enforced the consideration of "eventual

implementation" on the rest of the creation of MaSE. In practical terms, each decision, after

prototype creation, was made based on its ability to be integrated into agentTool.

3.5 Validating the methodology

The validation of MaSE as a legitimate methodology was done at two levels. Pieces were

evaluated individually, and the methodology was evaluated as a whole. First, the individual

pieces that became the seven phases of MaSE were created, clarified, and appraised using many

small examples over the course of development. Since much of MaSE was drawn from existing

work, many examples already existed.

For a validation of the entire methodology, test designs were run through the lifecycle

from a specification to a collection of agents. The test group included existing system

specifications as well as a contrived case for example purposes used in Chapter 4. A set of

representative examples used as tests is covered in Chapter 5.

45

3.6 Summary

The process used to create the MaSE methodology consisted of two steps. The first step

was expansion. Starting from the prototype, the scope of MaSE was incrementally expanded to

cover the entire lifecycle. The second step was to fill in details, which were transformations

between steps in the methodology. The result was a step-by-step methodology that assists a

designer in creating a system of multiple agents, based on an initial set of requirements.

A majority of the constructs used in MaSE come from previous work in agent and

multiagent analysis and design, described in Chapter 2, providing a strong foundation in

established MAS design abstractions. MaSE provides a structure around these constructs, as

illustrated above in Figure 16. The order of the constructs and transformations between them,

allow each successive system representation to build upon those that came earlier. This eases the

burden on the designer when developing complex structures, particularly conversations, that form

a multiagent system.

46

IV. Multiagent Systems Engineering Methodology

The Multiagent System Engineering (MaSE) methodology, takes an initial system

specification, and produces a set of formal design documents in a graphically based style. The

primary focus of MaSE is to help a designer take an initial specification of an agent system and

actually produce agents in code. This methodology forms the basis of AFIT's agentTool

development system, which also serves as a validation platform and a proof of concept. The

agentTool system also incorporates concurrent and future thesis research that specifies individual

agents (Robinson 2000), verifies agent communications (Lacey 2000), and produces a Java

implementation of a MAS. Currently, agentTool implements three of the seven MaSE phases.

Section 5.1 describes agentTool in more detail.

The MaSE methodology is independent of a particular system architecture, programming

language, or message-passing system. A MAS designed in MaSE could be implemented in

several different ways from the same design. The future of agentTool should demonstrate this

independence by enabling a MAS design to produce code in several different languages including

C++ and Java.

The methodology is similar to traditional software engineering methodologies, and

specialized for use in creating multiagent systems. The general operation of MaSE follows the

progression of steps shown in Figure 17, with outputs from one section becoming inputs for the

next. In practice though, the methodology is iterative across all phases with the intent that

successive "passes" will add detail to the models described later. These phases form the next

seven sections of this paper and will be detailed in order. Figure 17 is a simplification of Figure

16 from the previous chapter that also included all of the data structures involved in MaSE.

47

Capturing
Goals

Transforming
Goals to Roles

Applying
Use Cases

Creating
Agent Classes

Constructing
Conversations

I
Assembling

Agent Classes
System

Deployment

Figure 17: Phases ofMaSE

A strength of MaSE is the ability to track changes throughout the process. Every design

object can be traced forward or backward through the different phases of the methodology and

their corresponding constructs. In this manner, backtracking can be performed to find the initial

requirements that a particular agent supports. Furthermore the opposite is true; an early-phase

object like a goal can be mapped to a set of later-phase objects. The purpose is to eventually be

able to select a design object in agentTool and receive visual feedback on all other objects it

affects.

A single example system called the Electronic Intelligence Gathering and Decision

System (EGADS) will be tracked across all phases of the methodology to both illustrate details

and show how the full process fits together. The requirements of this example form the initial

context of the system, and are the inputs to the MaSE methodology. These requirements are

attached in appendix A.

4.1 Capturing Goals

The first phase in the MaSE methodology is Capturing Goals, which takes the initial

system specification and transforms it into a structured set of system goals. In the context of the

classic software lifecycle, such as that described by Pressman (Pressman 1992), this phase is

concerned with system and software analysis. This section will explain the terms and structures

48

used in this phase of MaSE, explain the rationale behind the use of goals, and describe the three-

step process of capturing and structuring goals with an example using the EGADS system.

There are three steps in Capturing Goals that are described in the following subsections.

First, the goals must be identified from the initial system specification. Next, use cases are drawn

from the system requirements. Finally, the goals are analyzed and structured into a form that can

be passed on and used in the design phases of the MaSE methodology.

4.1.1 Capturing Goals - Definitions

In the MaSE methodology, a goal is always defined as a system-level objective. Lower-

level constructs may inherit or be responsible for goals, but goals always have a system-level

context. In consequence, every action within a system must support a particular goal. A goal is a

statement that is always phrased as a declaration of system intent, as if it began with the words:

"The system shall..."

The initial system context is the collection of anything that is given to the designer as a

starting point for the creation of the system. It can be of many different forms from a formal

requirements document to a collection of user stories, and come from a variety of sources. It is

the conceptualization of the system from the user's point of view. The initial system context is

the input to this phase, and to the MaSE methodology. Pieces of the initial context may

alternately be referred to in a more descriptive manner such as "the system requirements" or "the

user specification".

Use cases are descriptions of a sequence of events that is a desired occurrence in the

system. They are examples of how the user (or the requirements document editor) thinks the

system should behave in a given case. Some system specifications consist largely of use cases.

49

A standard "if then" statement is a use case. If event A happens, the system must do action B.

In fact, a system could be completely defined by "if then" statements, and hence by use cases

(though it would be an exhausting process to do so).

The product of this phase of the methodology is a structured hierarchy of goals called a

Goal Hierarchy Diagram (Figure 18), which was introduced in Section 2.2.1.

1. Allow commander to issue intelligence
taskings and receive intelligence reports

1.2. Allow commander to
request/receive status reports

1.3. Deliver intelligence
reports to commander

1.2.1. Accept
status reports

1.2.2. Deliver
Status reports

1.2.2.1 Create
Status reports

Figure 18: Goal Hierarchy Diagram

The Goal Hierarchy Diagram is modular to allow for modifications, additions, and

deletions. The arrows denote sub-goals of a higher-level goal. Each level in the diagram is

intended to contain goal "peers" that are at approximately the same level of detail. Though it may

appear to be one, the Goal Hierarchy Diagram is not an actual tree structure. This is because

identical goals are combined to avoid redundancy in the final step of the Capturing Goals phase,

which would "cross" branches of a tree. A Goal Hierarchy Diagram can also be depicted in a list

format. Figure 19 is an alternate method of representing the goals in Figure 18.

50

1. Allow Commander to issue intelligence taskings and receive intelligence reports

1.1 Accept taskings

1.1.1 One-time and time-window tasks

1.1.2 Areas, resources, and combo tasks

1.2 Allow Commander to request / receive status reports

1.2.1 Accept status reports

1.2.2 Deliver status reports

1.2.2.1 Create status reports

1.3 Deliver intelligence reports to commander

Figure 19: Goals in list form

4.1.2 Capturing Goals - Rationale

The first phase of the MaSE methodology is based on goals because they are a highly

stable structure upon which to build a design. The general procedure of the Capturing Goals

phase is to capture what is important from the requirements in a structured and modular form.

MaSE uses goals as the requirements encapsulation because goals embody what the system is

trying to achieve and will generally remain constant throughout the rest of the analysis and design

process. This is in contrast to other possible analysis objects that are organized around

requirement details that specify how something is done, such as use cases. In those cases the

details can be overwhelming and often change (Kendall & Zhao 1998).

4.1.3 Capturing Goals - Substeps

There are several sub-steps to the Capturing Goals phase of MaSE. These are listed in

the following subsections.

51

4.1.3.1 Capturing Goals - Identify Goals

The first step in capturing goals is to distill the essence of a set of requirements. These

requirements may include detailed technical documents, user stories, or formalized government

specifications. This begins by extracting scenarios from the initial specification and describing

the goal of that scenario. The EGADS system requirements (see Appendix A) list an overall goal

and several general requirements and prohibitions. Determining the purpose for each scenario

listed in the requirements identifies goals. The EGADS system designer has extracted the goals

shown in Figure 20.

Once these goals have been captured and explicitly stated, they are less likely to change

than the detailed steps and activities involved in accomplishing them. They provide a foundation

for the analysis model. Note that it is acceptable to remove detailed information when specifying

goals. A placeholder in the goal should reference details, for example: "Meet the timing

constraints as described in technical report #1."

• Allow commander to issue intelligence taskings and receive intelligence reports

• Link to non-homogeneous intelligence assets

• Accept tasking for areas, resources, and combinations

• Accept one-time and time-window taskings

• Allow commander to request and receive status reports

• Allow commander to set presentation preferences

• Ensure that intelligence reports go to intelligence section before commander

• Allow addition and deletion of data sources

Figure 20: EGADS Goals

52

4.1.3.2 Capturing Goals - Create Use Cases

The next step in the Capturing Goals phase is to distill use cases from existing

requirements or other available resources. Since use cases are used later in the methodology to

create ordered event sequences called Sequence Diagrams (Section 4.3), they must be identified

early in MaSE. The Capturing Goal phase is the logical spot to create use cases since their

creation may help to gather more information or clarify existing information about system goals.

Use cases may already exist as part of the initial system context, or they may have to be extracted

by the designer. They can be extracted from the requirements specification, user stories, or

another available source. If the user is available this is the time to ask, "What should the system

do if this happens?"

It is important not to let the analysis of scenarios and creation of use cases get out of hand

and never end. A MaSE designer need only create enough use cases to cover potential paths of

communication, not all possible combinations of messages and data. This is due to how the use

cases will be used in the third phase of MaSE (Applying Use Cases). A good guideline is that

every sequence of system events that differs significantly from others should be formed into a use

case. A significant difference could be a different participant involved in a message sequence, a

data stream that goes in a reverse direction, or any objects that are involved in a different order

than in a previous message sequence.

EGADS includes an example that will translate nicely into a use case. Since the example

suggests a sequence of events, but doesn't specify them, the EGADS designer asks a user what

the intended sequence should be. Here is the complete use case the user creates:

53

A commander desires to know what sort of air defenses will exist in a target area
of an air strike that must be executed within 72 hours. At stake is when will the
strike be launched, and what SEAD (Suppression of Enemy Air Defense) assets
must be included in the sortie package.

The commander prepares and executes an intelligence tasking specifying air
defense units, the target zone, and a 72-hour time window with a due date of 6
hours. The tasking is distributed to mission controllers who have the ability to
detect such units. In this case the tasking is sent to a satellite controller and a
JWICS data controller.

Both controllers have data on the position available. The JWICS data is
immediately available, and the Sat info takes a few hours to receive. A status
request by the commander during this time frame would indicate this. The data
indicates a medium AAA presence and a light infantry-based SAM presence.

The data, once obtained, is then collated and sent to the intelligence processing
section. An intelligence analyst works the request and knows from past
experience that historical data may be useful in such situations. She expands
the search to backtrack several days and widens the search area to cover more
of the opposition's forces, but focuses the search to only check the faster-
retrieving JWICS data in order to make the 6-hour due date. The new data
indicates that two units of mobile SAMs are heading toward the target area from
rear positions, and are expected to be operational in 48 hours.

The entire report is sent to the commander, who realizes an attack within the
next 36 hours would not require usage of extensive Wild-Weasel (anti-SAM)
assets. He orders the attack.

Even with an incomplete grasp of military-specific language and acronyms that the user

employed, this use case provides many bits of information. First, it illustrates a path of action

throughout the system. Second, it introduces some new concepts to the goals including mission

controllers, and a human intelligence analyst who has the ability to resubmit search parameters.

The designer decides that the mission controllers are distributed controllers for different types of

data-gathering assets (the satellite and JWICS controllers being two examples) since they accept

taskings from the system and distribute them to different types of data-gatherers. There is not a

system-level goal that can be gleaned from this information, so the designer files it away until a

later phase in the methodology. The human intelligence analysts do have a system-level goal

associated with them, since they are system-external entities that have a specific need: re-

submitting searches. Therefore, the designer adds one further goal to the list of system goals:

54

• Allow intelligence analysts to refine and resubmit searches

In addition to the use case above, the user describes one other sequence of events to the

designer of the EGADS system. It does not elicit any additional goals, but will be used later

when applying the use cases.

A new system comes on line that interfaces in real-time with JSTARS data. It is
input into the system, advertising its capabilities. A new mission controller is
setup to handle the interface to JSTARS.

This is a sequence that is not initiated by the commander, so it is worthy of note to the

designer as a use case that applies to some other area of the system. The problem is that it is not

obvious how this use case is started. The EGADS designer decides that a system administrator is

needed for this since it describes an addition to an existing system. Since there is an existing

goal that requires the EGADS system to "Allow addition and deletion of data sources", the

administrator could also perform the complementary role of removing old data sources. This use

case will also be stored for use in a later phase of MaSE.

The EGADS designer is aware of the entire MaSE methodology. In both cases where the

designer stored information for "later" he was intending to create a role in the system for that

particular object (mission controller and system administrator interface). The notion of roles will

be discussed more in the following section. What is noteworthy is that MaSE does not preclude

the designer from momentarily skipping forward to the creation of roles and then returning to

capturing goals. It is intended to work in this manner. Specifically, at the point in the example

where the EGADS designer stored the information for later, a MaSE designer should begin a list

of system roles as described in the second phase of MaSE. This characteristic of MaSE is

intended to be taken full advantage of in an automated tool such as agentTool (described in

Section 5.1) where the diagrams and objects of all design phases are available simultaneously.

55

Use cases are most valuable in MaSE for helping lay down paths of communication that

will later become conversations between agents. With this in mind, the designer should attempt

to gather enough use cases to cover as many possible sequences of events as possible. On the

other hand, a particular sequence need not be repeated many times with different data or types of

messages since these sequences will be used only to determine the minimum required

communication paths.

The most common form of a use case is the positive use case illustrated so far. That is,

something that is desired to happen in the system. Other types of use cases may provide needed

information though, depending on the system being developed. A second form of use case is a

failure use case, which is a sequence that is still desired to occur within the system, but is

illustrative of a breakdown or error. Failure use cases are similar to exception handling in some

programming languages. At the end of a block of program code the exception statement says, "If

something goes wrong in that block of code do this." In our example, a failure use case is an

intelligence request not being handled by its due date. If this happens, a message will be sent to

the commander and the intelligence section describing the failure.

The third type of use case, called a negative use case, is a sequence that is not desired to

occur within a system. In EGADS, an example of a negative use case occurs when the

commander receives an intelligence report that has not been processed by the intelligence section.

Neither failure use cases nor negative use cases are currently utilized in MaSE (see Section 6.2 -

future research areas).

4.1.3.3 Capturing Goals - Structure Goals

The final step in this phase is to structure the goals by analyzing them for importance,

and construct a Goal Hierarchy Diagram. It is important to remember that, while it is good to

56

keep related goals together, modularity is also beneficial. So far scenarios and goals have been

captured, but they are of various importance, size, and level of detail. Some scenarios always

occur while some conditions seldom occur. The goal hierarchy diagram preserves such

relationships, and divides goals into levels of detail and importance that are easier to manage and

understand.

The most important goals must be recognized by the designer and placed at the top of the

Goal Hierarchy Diagram. In EGADS, the most important goal is the first one, "Allow commander

to issue intelligence taskings and receive intelligence reports". The EGADS designer determines

this by finding the primary purpose of the system at the top of the system requirements: "EGADS

links a Commander to intelligence gathering assets in the field".

The goals should be structured so that the main sequences of interaction and subordinate

details can be distinguished from one another. All of the sub-goals must pertain to their parent

goal in the hierarchy. The important characteristic of the hierarchy to maintain is that all sub-

goals relate functionally to their parent. In other words, they relate to the same functions or mode

of operation as their parent, but at a lower level. In some cases, sub-goals may logically

(completely) sub-divide their parent as well, in which case the parent goal need not be mapped to

a role in the next phase of MaSE (Section 4.2). At all levels in the hierarchy, goals supporting the

primary mode of system operation should be separate from those that indicate an alternative

mode.

The EGADS designer notices that many of the other system goals are in support of the

primary goal listed above. For example, the ability of a commander to request and receive status

reports about intelligence taskings is subordinate to the goal of initiating intelligence taskings and

receiving intelligence reports. Furthermore, there are many goals in EGADS that are easily

57

broken up into sub-goals. The "request and receive status reports" goal identified above breaks

readily into the "request" and "receive" pieces. This goal partitioning is done because goals that

are very closely related to each other, such as the two sub-goals just mentioned, are not

necessarily best handled by the same agent role. As will be discussed in Section 4.2, roles are

drawn directly from the Goal Hierarchy Diagram.

Finally, some goals are clearly not in direct support of the primary system goal, but are an

important part of the system. In that case, another "branch" of the Goal Hierarchy Diagram is

created for these goals. In EGADS, the ability to connect with a changing set of many different

data sources is an important system goal, but not an appropriate sub-goal of the primary goal of

issuing intelligence taskings and receiving intelligence reports. Accordingly, the EGADS

designer assigns it to a peer goal of the primary goal. In the EGADS example, the process of

structuring goals described above continues and the EGADS system designer comes up with the

structured goals shown in Figure 21.

The goals in Figure 21 can be easily re-written as a tree diagram since they are based on a

numerical hierarchy. The primary goal, goal 1, has sub-goals 1.1, 1.2, etc. The designer need

only remove duplicate goals from the tree to form a Goal Hierarchy Diagram. The Goal

Hierarchy Diagram for EGADS is shown in Figure 22.

58

There are potential problems at this point that MaSE does not attempt to consider.

Kendall and Zhao (Kendall & Zhao 1998) describe a few remaining problems including having a

large number of goals that should be differentiated, and having difficulty determining a system's

goals. A large number of goals can be overwhelming to an observer, which eliminates the Goal

Hierarchy Diagram advantage of being a simplified representation of the relationships between

goals. It may be useful in this case to differentiate between commonly occurring types of goals

such as strategic goals, summary goals, user goals, and sub-functions; perhaps by having a

different representative shape on the Goal Hierarchy Diagram. The potential difficulty in

determining a system's goals, and possibly reaching a consensus regarding them, is a significant

problem in larger and more complex systems.

1. Accept intelligence taskings from commander and issue intelligence reports
1.1. Accept taskings

1.1.1 .Accept one-time and time-window taskings
1.1.2.Accept tasking for areas, resources, and combinations

1.2. Allow commander to request and receive status reports
1.2.1 .Accept status reports requests
1.2.2.Deliver status reports

1.2.2.1. Create status reports
1.3. Deliver intelligence reports to commander

1.3.1.Create intelligence reports
1.3.2.Allow intelligence analysts to refine and resubmit searches

1.3.2.1. Notify analysts of intelligence tasking
1.3.2.2. Ensure that intelligence reports go to intel section before commander

1.3.3.Ensure that intelligence reports go to intel section before commander
1.3.4.Allow commander to set presentation preferences

2. Link to non-homogeneous intelligence assets
2.1. Allow addition and deletion of data sources

2.1.1. Allow addition of data sources
2.1.2. Allow deletion of data sources

Figure 21: Structured EGADS Goals

59

At the conclusion of the Capturing Goals phase, the system goals have been analyzed,

captured, and structured in a Goal Hierarchy Diagram. Additionally, the designer has a collection

of use cases to apply later in the methodology. Now, MaSE proceeds to the second phase of

design where the foundation of the actual design process is introduced: agent roles.

1. Allow commander to issue intelligence
(askings and receive intelligence reports

1.1. Accept
taskings

1.1.1 one-time &
time-window tasks

2. Link non-homogenous
intellegence assets

1.2. Allow commander to
request/receive status reports

1.3. Deliver intelligence
reports to commander

1.1.2. areas, resources.
and combo tasks

1.2.1. Accept
status reports

1.2.2. Deliver
Status reports

1.2.2.1 Create
Status reports

2.1. Allow addition and
deletion of data sources

2.1.1. Allow addition
of data sources

1.3.1. Create
intelligence reports

1.3.2. Allow analysts to
refine and resubmit searches

1.3.3. Ensure that reports go to
Intel section before commander

1.3.2.1 Notify analysts
of intelligence tasking

(duplicate / removed)

1.3.2.2. Ensure that reports go to
Intel section before commander

2.1.2. Allow deletion
of data sources

1.3.4. Allow commander
to set presentation prefs

Figure 22: EGADS Goal Hierarchy Diagram

4.2 Transforming Goals to Roles

The second step of MaSE is to transform the structured goals into a form more useful for

constructing multiagent systems: roles. Roles are the building blocks of agents in MaSE. As

described in Section 3.2.2, roles represent system goals during the design phase. By using roles

in this manner, the system goals are carried forward into the system design. The system goals

60

are satisfied because every goal is associated with a role, and every role is played by an agent

class.

This section, and those dealing with subsequent phases, follows the same pattern as

Section 4.1. First, new concepts appropriate to the given phase will be defined in subsection 1.

Second, rationale related to the phase will be presented in subsection 2. Finally, details of the

phase actions and considerations will be described in the remaining subsections.

4.2.1 Transforming Goals to Roles - Definitions

A role has been discussed several times previously in this thesis. The role definition used

in MaSE was first presented in Section 2.1. It is an abstract description of an entity's expected

function containing system goals that it has the responsibility of fulfilling. Roles are created to do

something. They are more or less identical to the notion of an actor in a play or an office within

an organization.

In addition, a role may contain a collection of tasks for which it has responsibilities.

MaSE tasks were described in Section 3.3.6 as a detailed depiction of how a role fulfils a goal,

depicted as a state diagram.

A collection of roles, called a role model as described in Section 2.3.1 (Kendall 1998), is

very useful for reusing roles from previous systems designs, or from a role model catalog. A role

model is an abstraction for modeling and designing agent systems. The basic idea is that patterns

of agent roles are constructed, labeled, and archived. When a new system is designed, the

patterns are recognized and a role model can be re-applied from an archive, resulting in a

collection of agent roles that satisfy a subset of the system goals. As shown in Figure 23, the

arrows on role models are paths of communication connecting roles, and the dots indicate

multiplicity.

61

Client Mediator
■w Colleague

Figure 23: A Role Model

4.2.2 Transforming Goals to Roles - Rationale

Roles are the foundation of MaSE design, as discussed in Section 3.2.2. Specifically,

they are used to build agent classes. Furthermore, roles contain the set of system goals defined in

the analysis phase. In other words, roles form a bridge from what the system is trying to achieve

(the analysis phase and goals) to how it goes about achieving it (design phase agent classes). The

organization and allocation of roles among agent classes in a MAS can be easily changed by the

designer, since roles can be manipulated modularly. This allows consideration of load issues.

For example, a high communication volume between two roles could imply that those roles

should be part of the same agent class. Also, two roles with high processing power requirements

should perhaps be played by two different agent classes so they can be distributed to separate

CPUs.

4.2.3 Transforming Goals to Roles - Details

The general case transformation of goals to role is one-to-one; each goal maps to a role.

However, there are many exceptional situations where it is useful to combine goals. Similar or

related goals may be combined into single roles for the sake of convenience or efficiency.

If possible, goals are mapped to pre-defined role models. This is done when a goal

suggests a particular role model pattern. For example, the goal to "Employ centralized

distribution of tasks" brings to mind the mediator pattern role model shown above in Figure 23.

The mediator pattern shows that three roles would be required: the central mediator, a client that

introduces the tasks, and a colleague that is played by all the agents that can be tasked. In support

62

of this, a library of role models can be created from patterns constructed during design. These

patterns can then be applied to future designs. There is an existing catalog of role models

described in related work (Kendall 1998); though, as described in Section 3.3.2, there is not yet a

method of indexing the models that supports reuse. In other words, there is no easy way to

explain how a designer "recognizes" a particular pattern. This problem is described in Section

6.2.3.

There are many considerations in transforming goals to roles. Some common goals

imply particular roles, and may be reused. For example, many agent systems (though not the

EGADS example) employ a type of agent registration system. A registrar role should be used in

these cases.

Some system goals may be unstated in the requirements, but implied by other goals.

They should be incorporated into roles as well. For example, interfacing with a user is likely a

requirement. In the EGADS example it is implied that an intelligence analyst be able to access

raw intelligence data for processing, and then enter results into the system. If an implied goal is

discovered at this point in system analysis, it should be added to existing goals as if it were part of

the stated system requirements. The subsequent methodology steps are then performed, such as

adding the new goal to the Goal Hierarchy Diagram and incorporating it into a role.

Similar goals can be combined into a single role. For example, a set of goals that enforce

constraints upon a schedule could be combined as follows. The goals of "No student or instructor

may have a class during both the first and last meeting hours of the day" and "No course may

have less than 3 students" and "All students must carry at least eight credit hours" could all be

combined under the role of "Constraint Enforcer".

Some goals imply distributed roles. Any mention of separate machines or other

distribution requires one role for each "side" of the distributed relationship. Interfacing with an

63

external source is the same. One role must interface with the source and another may be required

to bridge the gap back to the system. This is also true for any database or file interface inside of

the system. In addition, any data persistence implies some sort of information server for that

data, and an appropriate server role as well.

A user interface implies a role by itself and should be separate from other roles as if it

were a separate data source. The roles may be combined in the future into a single agent, but for

now they are separate.

Broadcasting a single message to multiple recipients implies having a broadcast manager

of some sort to register the members of the broadcast group. Again, this role could end up being

that of the same agent as the agent registrar.

Any participants in the use cases created during the "Creating Goals" phase of MaSE

should imply a role in support of the goal involved in that use case. A participant in a use case is

any entity that sends or receives information as part of the sequence of events.

Optionally, annotating the Goal Hierarchy Diagram with roles also helps decide how to

divide goals, since the diagram has related goals as neighbors. The designer draws boxes around

goals that are to be combined, indicating the division of roles.

4.2.4 Transforming Goals to Roles - Example

Roles can be stored as a simple list. The EGADS designer takes the Goal Hierarchy

Diagram and creates the roles shown in Figure 24 (parenthesis indicate goals associated with the

roles). The Commander Interface and Analyst Interface are created because separate roles are

needed for a user interface. The Mission Controller and Data Source Interface roles form two

sides of a distributed relationship, since it is clear that the data sources must reside across a

network. The Status Reporter and Registrar Roles support particular goals, and were also

participants in use cases identified earlier. Finally, the Task Controller role is created as a

64

representative of a particular task. It is the "system" that the other roles talk to. Each task

controller ensures that its intelligence task is formatted, handled, and routed correctly.

• Commander Interface
• Analyst Interface
• Mission Controller
• Data Source Interface
• Status Reporter
• Registrar
• Task Controller

(1, 1.2, 1.3, 1.3.4)

(1.3.1, 1.3.2, 1.3.2.1)

(2)

(2)

(1.2.1, 1.2.2, 1.2.2.1)

(2.1,2.1.1,2.1.2)

(1.1, 1.1.1, 1.1.2, 1.3.3)

Figure 24: EGADS Roles

4.2.5 Transforming Goals to Roles - Tasks

After roles are created, tasks may be associated with each role. Every goal associated

with a role can have a task that details how the goal is accomplished. This must be done after

role creation since tasks communicate with tasks in other roles. The creation of interacting state

diagrams can be a very complicated procedure, which MaSE tackles to some degree when

discussing construction of conversations in a later phase.

Figure 25 shows a sample task created for EGADS. It is the registration task for the

Registrar role. The task begins in the start state and then receives a "register" message from role

r on behalf of r's agent. The task checks to see if the register is full - indicated by the boolean

value "fullRegister". Depending on the value of fullRegister, the task splits into two paths. The

"Delete Old" path checks to see if any old roles (rOld) and their corresponding agents can be

deleted to make space in the register - if so, it sends them a delete message. Finally, a "failed" or

"registered" message is sent back to the role r. Role r in this case would have a corresponding

task that sends the initial message and waits for a response.

65

Start register(r) k. Determine [fullRegister] w Delete
W validity W old

[IfuUR. gister]

[canDelete(r01d)]Adelet((rOld)

^ Valid
W register

[!3x:canDelete(x)]Afailed(r)

Aregistered(r)

Figure 25: EGADS Registration Task

4.3 Applying Use Cases

After creating the roles that will be used to build the agent system, the next step in the

MaSE design process is to construct agent classes from the roles. When the agent classes inherit

communication paths between roles, they form conversations with other classes. It is these

conversations that are the real backbone of a MAS, as they bridge the distribution that is the

strength of agent technology. As described in the Constructing Conversations MaSE phase in

Section 4.5, they can also be very difficult to construct. The third phase of MaSE looks down the

road toward constructing these conversations and attempts to ease this difficulty.

4.3.1 Applying Use Cases - Definitions

Applying use cases requires taking the use cases identified in the capturing goals phase

and restructuring them as a Sequence Diagram (Figure 26). A sequence diagram depicts a

sequence of events between multiple processes. In MaSE, the different processes are different

agent roles. The events being passed are messages between the roles. Sequence Diagrams were

introduced in Section 3.3.5.

66

Commander Task Controller Status Reoorter

status reauest ^
W

^ Status report

eta reauest ^
w

^ eta reolv
^

^

Figure 26: Sequence Diagram

4.3.2 Applying Use Cases - Rationale

The purpose behind the application of use cases in MaSE is to support the construction of

conversations later in the methodology. The transformation of use cases into Sequence Diagrams

preserves desirable event sequences, based on system goals. These event sequences are captured

for eventual inclusion in conversations, ensuring that they will exist in the MAS.

A Sequence Diagram is used to determine the minimum set of messages that must be

passed between roles. If a message is passed between two roles, then there must be a

corresponding communication path between them. A high communication volume between two

roles may suggest combining the roles into a single agent class, since agents that play these roles

inherit the communications between them. Also, a communication path between roles played by

separate agent classes means that a conversation must exist between the two agent classes to pass

the message. The agent class playing the role that initiated the communication becomes the

initiator of that conversation, and the receiving agent class becomes the responder.

4.3.3 Applying Use Cases - Details and Example

Transforming a use case into a Sequence Diagram is straightforward. First, the system

roles that partake in the events are identified. Every participant in a MaSE Sequence Diagram is

67

a role. If there is a participant in the use case that is not a role in the system, a new role must be

created.

In general, one Sequence Diagram is created for each use case. Typically it is only

possible to create one sequence from a use case. However, if there are several possibilities, then

make multiple Sequence Diagrams. An example of the need to create multiple Sequence

Diagrams is when a use case has several alternate resolutions, such as "The diagnosis is sent from

the doctor to the medical desk, and from the medical desk to the patient unless the patient is a

minor, in which case it is sent to the patient's legal guardian from the medical desk." This results

in two similar but distinct Sequence Diagrams that both need to be supported by conversations.

The Sequence Diagram created by the EGADS designer from the large use case in

Section 4.1.3.2 is shown in Figure 27. The use case has clearly identified participants, with the

exception of the Task Controller role. This role was created earlier by the designer for the

express purpose of accepting tasks from the commander and parceling out requests to appropriate

Mission Controllers though, so it is a logical choice for this Sequence Diagram.

Commander
Interface

Task
Controller

Mission
Controller

new_task

data_request

data_reply

raw_intel

intel_report

Analyst
Interface

analyst_request

analyst_response»

Figure 27: EGADS Sequence Diagram

68

After identifying the participating roles, creating the Sequence Diagram consists of

reading through the use case and finding all instances of an event that occurs between two of the

roles. Each event in the use case is drawn as an arrow on the Sequence Diagram in the order that

they occur. The EGADS designer does this easily until the part of the use case that concerns the

intelligence analyst. The analyst has an alternative of whether to resubmit a search for more data.

However, the two-event resubmission sequence would not break the order of the other events, so

it does not require a new Sequence Diagram to describe it under the "alternate resolution" rule

described above. In other words, the addition or deletion of the "resubmission" events does not

affect the sequence of the other events. Therefore the sequence that does not include a

resubmission is covered by the one that does and the same conversations result.

The Sequence Diagram is also consistent with the system goal that the Commander can

never receive raw intelligence data. An intelligence report can only be sent to the Commander by

the intelligence section.

By applying the use cases to create Sequence Diagrams, all potential sequences of events

will be accounted for in the conversations that will be designed from these use cases.

Furthermore, since Sequence Diagrams operate between the system roles, creating them also

creates communication paths between the roles. If desired for future reuse or clarity, role models

can then be built from the roles, such as that created by the EGADS designer in Figure 28. A role

model need not be created when the role relationships are clear (such as simple cases), or if the

pattern already exists in an available catalog of role models.

69

*
Status

Reporter
i

lt
Commander

Interface
 M Task

r- , it mM
-M Mission

Controller r^

J A i 1
iL

> <?
/

V ,—11—
Analyst Registrar M Data source

Interface inten ace - ■^

Figure 28: EGADS Role Model

4.4 Creating Agent Classes

In the Creating Agent Classes phase of the MaSE methodology, the agent classes are

identified from component roles. The product of this phase is an Agent Class Diagram, which

depicts agent classes and the conversations between them.

4.4.1 Creating Agent Classes - Definitions

An agent class is a template for a particular type of agent that will be in the system, just

as an object class is a template for objects. During this phase of MaSE, agent classes have two

component sets: roles and conversations. In a later phase, described in Section 4.6, internal

details are added to agent classes. Each role is played by an agent class. Agent classes can play

many roles, and can change roles dynamically. Furthermore, agents of the same class may play

different roles at the same time. The conversations of an agent class are all those that it is a

participant in, either as an initiator or responder.

The agent classes within a system are described using an Agent Class Diagram, which is

similar to many object diagrams. The primary difference is the semantics of the relationships

between agent classes. In Agent Class Diagrams, these relationships define conversations that are

70

held between agent classes. A sample Agent Class Diagram is shown in Figure 29. The boxes in

the figure are the agent classes, containing the class name. Lines with arrows denote

conversations and point from the initiator of the conversation to the responder, with the name of

the conversation written either over or next to the arrow.

Analyst

Qndr

RefineSearch

SendProcesse lintel SendRawMel

InitiateTasking

ReqStatusReport

TaskQrl

GetCapa >ilities

Registrar

ReqRawData MissionCtrl

GeData

Register

DSMerface

Figure 29: EGADS Agent Class Diagram

4.4.2 Creating Agent Classes - Rationale

The Agent Class Diagram is the first design object in MaSE that depicts the entire

multiagent system. Having proceeded through the methodology to reach this point, the system

represented by the diagram supports the goals and use cases identified in the first phase of MaSE.

Of particular importance is the "shape" of the system - the way that the agent classes are

connected with conversations. In fact, the primary purpose of this phase is to identify the agent

classes that participate in each side of a conversation.

71

Earlier it was stated that roles are the "foundation" of MaSE. In that case, agent classes

are the "bricks" that actually build the system. The reason that there are two different

abstractions is that they provide the ability to manipulate two different system dimensions

separately. The roles supply a modular way to arrange the goals of the system apart from higher-

level considerations. On the other hand, the agent classes can be manipulated with consideration

to communications and to system resources such as databases and external interfaces, without

worrying about the system goals.

4.4.3 Creating Agent Classes - Details and Example

Just as before, when mapping goals to roles, there is generally a one-to-one mapping

between roles and agent classes. However, the designer may combine multiple roles to make a

single agent. Since agents inherit the communication paths between roles, any paths between two

roles become a conversation between their respective classes. As such, it is desirable, where

possible, to combine two roles that share a high volume of message traffic. When determining

which roles to combine, size and frequency of communications are important, not just the number

of communication paths. On the other hand, distributed resources must be handled by separate

agents; so many roles must map to their own agent class. It is also important to identify which

agent classes are required to interface with external resources such as humans, other software

tools, and data stores.

If a role communicates only with one other role, it indicates that the two roles may be

combined. This is what the EGADS designer decided to do with the "Status Reporter" role in

Figure 28. It is combined with "Task Controller" to create the "TaskCtrl" agent class in the

EGADS Agent Class Diagram shown in Figure 29. Other than this combination, the EGADS

designer performs a one-to-one transformation from roles to agent classes. Next, the designer

72

maps the paths of communication between roles from Figure 28 into conversations. Some of the

communications between roles in Figure 28 were two-way arrows that were turned into a single

conversation, since information can flow both ways in a conversation. For example, the two

communications between the "Task Controller" role and the "Registrar" role become the

"GetCapabilities" conversation in Figure 29. Additionally, a single path of communication may

become multiple conversations, such as the "InitiateTasking" and "ReqStatusReport"

conversations. In that example, the path of communication between the component roles was

drawn from multiple Sequence Diagrams: the "New Task" diagram shown in Figure 27, and the

"Status Report" diagram shown in Figure 26.

4.5 Constructing Conversations

Constructing Conversations is the next phase of MaSE. It can happen before, after, or in

parallel with the succeeding phase of Assembling Agents. The two phases are closely linked and,

as will be discussed in Section 4.6.4, it is often beneficial to go back and forth between the

phases. Up to this point, communications between agents have not been detailed beyond stating

that they exist. At this point, the fact that a conversation must happen between two agents is

known; now the particulars of the conversation are fleshed out.

4.5.1 Constructing Conversations - Definitions

A MaSE conversation defines a coordination protocol between two agents. Specifically,

a conversation consists of two Communication Class Diagrams, one each for the initiator and

responder. A Communication Class Diagram is a finite state automata that defines the

conversation states of the two participant agent classes, as shown in Figure 30. The initiator

always begins the conversation by sending the first message.

73

When an agent receives a message, it compares it to its active conversations. Upon a

match, the agent transitions the appropriate conversation to a new state and performs any required

'yiollect-daiafsensor, location)
[invlalid-data] Afailure-transmission

^ & _,
Waiting

collection-failüre(reason)

, V
Log-Failure

entry:log-failure(reason)

Return (data)

Acknowledge

validatedata

~2>j do:validate-data(data)

[valid-data acknowledge

-xi
Y

Figure 30: A Communication Class Diagram

actions from either the transition or the new state. Otherwise, the agent compares the message to

all possible conversations that it may participate in with the agent that sent the message, and

begins a new conversation if the message matches a transition from the start state. The syntax of

a transition follows conventional UML notation as shown below and described by DeLoach

(DeLoach 1999).

rec-mess(argsl)[cond]/action*trans-mess(args2)

The above syntax means that if the message rec-mess is received with the arguments

argsl and the condition cond holds, then the method action is called and the message trans-mess

is sent with arguments args2. Any missing element of the transition syntax shown above is

replaced with a true identifier, meaning any combination of one or more of the elements consists

74

of a valid transition. For example, a transition with just a guard condition, [cond], is allowed, or

one with a received message and action, rec-mess/action. Figure 30 is recognizable as the

initiator half of a conversation, since the transition from its start state is triggered by a sent

message.

Any actions in a conversation must be mapped to methods in the agent classes. Actions

can be attached to either transitions or states. On the other hand, some agent class methods may

be already defined before a conversation is created that use them (see Section 4.6.4). Not all

agent class methods need to be actions in a conversation, but having pre-defined methods gives

the designer actions to choose from when constructing conversations. Work by Robinson

(Robinson 2000) contains further details on agent class methods.

4.5.2 Constructing Conversations - Rationale

This phase of MaSE is where earlier work building Sequence Diagrams and tasks pays

off for the designer. The main problem is in knowing what states and transitions to add to the

Communication Class Diagrams. Sequence Diagrams and tasks were created to ensure that every

message or event captured by them translates into conversation as a send transition and a receive

transition on the two Communication Class Diagrams. The more Sequence Diagrams and tasks

that the designer has available at this point, the more pre-defined parts of conversations are

available.

4.5.3 Constructing Conversations - Utilizing Sequence Diagrams and Tasks

While the operation of a conversation is relatively simple, its design can be quite

complicated. Conversations are defined at a high level. Specifically, the initiator and responder

agent classes are specified for each conversation in the system. The problems encountered in this

75

phase deal with building the finite state automata (FSA) that define the operation and protocol of

conversations.

The incorporation of Sequence Diagrams and tasks assists in the building of the

conversation FSAs for the reasons listed above. Conversations must support and be consistent

with all sequence diagrams derived earlier. They may also incorporate states from tasks. Some

tasks, in fact, operate entirely over single conversations and can be designed directly. In general

though, conversations are built by first adding all possible states and transitions that can be

derived from the Sequence Diagrams and tasks. At this point much of the conversation often

exists. For the rest of the conversation design, it is a matter of adding states and transitions as

necessary to convey the required messages. This subject is addressed further in Section 6.2.4.

4.5.4 Constructing Conversations - Avoiding Deadlock

While constricting conversations, it is very helpful to verify them during design to avoid

deadlocks. In general, a conversation is deadlocked when both sides are awaiting a message from

the other side. There are also many other ways to improperly design a conversation. For

example, every 'send' from one half of the conversation must have a corresponding 'receive' on

the other half in order to avoid deadlock. Additionally, the conversation must be able to exit

every state, meaning that every state must have a valid transition from it that eventually leads to

the end state. The topic of deadlock and methods to avoid and detect it are covered in detail by

Lacey (Lacey 2000).

4.5.5 Constructing Conversations - Balancing

Finally, the designer must balance between having many simple conversations or a few

complex ones. If the system has a large number of simple communications, these should be

passed by a series of smaller conversations. Larger and more complex conversations are only

76

appropriate if an elaborate protocol is required. In general, a conversation should support a single

goal, and be as small as possible to support that goal.

4.5.6 Constructing Conversations -Example

One of the conversations created by the EGADS designer is shown in Figure 31 and

Figure 32. It is the InitiateTasking conversation that occurs between the "Cmdr" and "TaskCtrl"

agent classes, as shown in Figure 29. The conversation construction begins when the designer

picks the first event out of the Sequence Diagram in Figure 27: "new_task". This event is passed

between the "Commander Interface" and "Task Controller" roles, which are played by the agent

classes mentioned above. Therefore, the "new_task" event must be a message in a conversation

with the "Cmdr" agent class as the initiator and "TaskCtrl" as the responder. The EGADS

designer decides that the commander would want some feedback that the tasking was accepted,

and given an opportunity to resend a new tasking if it was not. This results in a fairly common

conversation pattern, in which each half has two loops: one for a valid transmission (or data,

action, trigger, etc..) and the other for an invalid one. The EGADS designer creates the two

Communication Class Diagrams shown in Figure 31 and Figure 32.

77

[X]ANewTask(t)

Accepted(TasklD)/Store(TasklD)

Invalid

Resend

X = TryAgain?

[NOT ^"Cancel
-*«

Figure 31: EGADS Initiate!^asking Initiator

[X]

NewTask(t)

NewTask

CreateNewTask

[NOT Xflnvalid
AAccepted(TasklD)

Resend Cancel
->«

Figure 32: EGADS InitiateTasking Responder

78

4.6 Assembling Agents

In this phase of MaSE, the internals of agent classes are created. A parallel thesis by

Robinson (Robinson 2000) describes the details of assembling agents from a component-based

architecture. Therefore, this section only provides an overview of the process, and identifies links

to the rest of the MaSE methodology. As such, there is no "Rationale" sub-section as there are in

the other phases.

4.6.1 Assembling Agents - Definitions

The tools for describing individual agent classes are presented by Robinson (Robinson

2000). He provides five different architecture templates and describes the object oriented

approach he used to create them. The architectures include Belief-Desire-Intention (BDI),

reactive, planning, knowledge base, and user-defined agents. Each architecture template has a

specific set of components. For example, a reactive architecture includes a Controller,

Messageinterface, RuleContainer, and Effectors.

A designer can either define components from scratch or use pre-existing components.

Furthermore, components may have sub-components that may in turn be architectures containing

components. In theory the sub-components could continue indefinitely, though in practice they

rarely are sub-defined past the top level of the architecture. Components are instantiated to

produce actual code objects. Instantiation depends on the component, but requires either

selection of pre-coded objects or the actual generation of code.

Components are joined with either inner- or outer-agent connectors. The inner-agent

connectors connect with other components, and outer-agent connectors connect with external

resources such as other agents, sensors and effectors, databases, and data stores. Furthermore,

79

components have associated state-diagrams that represent sequences of events passed from one

component to another. An example is shown in Figure 33.

10 Interface*

send(msg:Message)
getPercept(penOclAny)
executeOp(name:String,

params:String)
execute(name:String,

loc:String,
command:String)

Controller

msgCheckRules(msg: Message)
perceptCheckRules(per: OclAny)

RuleContainer
rules: Set(Rule)

-msgT rigger: Message
-perceptTrigger:OclAny

executeRulefrule: Rule)

Figure 33: Generic Reactive Agent Class Architecture

4.6.2 Assembling Agents - Details

There are three methods of assembling components to define an agent class. The first is

to retrieve one of the four pre-defined architectures (BDI, reactive, planning, knowledge base).

The components are then either instantiated as is, or modified by addition, deletion, or

modification of attributes and methods. Additionally, whole components and sub-components

can be added or deleted. Finally, any new components must be connected to existing ones The

second method is to retrieve pre-defined components, and assemble them into a user-defined

architecture. This method also allows for modification of components, attributes, and methods as

described above.

The third method is to define both the components and architecture from scratch. When

defining architectures from scratch, it is difficult to decide what components to utilize or avoid.

By this point the designer has much information available to assist in this determination, such as

the goals, roles, tasks, and conversations associated with the agent class. The only absolute

requirement is that all actions in a conversation be associated with methods in an agent. How, for

80

example, does a designer decide when to include a planner component? A planner is responsible

for delivering a sequence of steps to achieve a goal, so the agent class must have a goal it is trying

to achieve. Second, the agent class must have access to the state of the environment. Third, the

agent class must have a means of affecting the environment through a set of operators. This set

of operators already exists in most MaSE agent classes. Such operators include starting a

conversation with another agent, running an agent method, passing control to another component

within the agent architecture, or interfacing with an external component along an outer-agent

connection. Therefore, any agent that is required to perform a sequence of steps in pursuit of a

goal and has a means of detecting and affecting the environment in pursuit of that goal is a

candidate for utilizing a planner component.

4.6.3 Assembling Agents - Example

One of the agent classes assembled by the EGADS designer is the Registrar class. Using

the reasoning described by Robinson (Robinson 2000), the designer specializes the reactive

architecture from Figure 33 to build the components of the Registrar Class shown in Figure 34.

The components shown are a way to build the Registrar agent class so that it can partake in MaSE

conversations with other classes. This Registrar class does not need any further components

because all of its actions can be modeled by the reactive architecture. In other words, all of the

actions taken by the Registrar are in reaction to events sent to it by other agent classes.

81

Messageinterface

send(msg:Message)
#receiveMsg(msg:Message)

Controller

msgCheckRules(msg:Message)

RuIeContainer
rule: Set(Rule)
msgTrigger: Message
repIvMsa: Message
executeMsgValid(msg: Message)

Figure 34: EGADS Registrar Class Components

4.6.4 Constructing Conversations versus Agent Assembly

This is not a phase of MaSE, but a comparison between two phases. As depicted back in

Figure 17 and alluded to in the appropriate sections, constructing conversations and agent

assembly are closely related activities. In practice, it is useful to go back and forth between these

while staying within one functional area of the design. For example, the EGADS designer

chooses to fully detail the "registration" conversation, and assemble the registrar agent before

moving on to other conversations.

The question of which to do first is answered best by determining the style of

conversations that the system uses. In particular, is the system communication-heavy? Are the

communications relatively complex? The designer should build conversations first if the system

consists of many simple conversations, or if the initial context of the system includes many use

cases. Agents are better built first if there are a small number of complex conversations, or if

many agents are already identified or reused.

82

4.7 System Deployment

The final phase of the MaSE methodology takes the agent classes and instantiates them as

actual agents. It uses a deployment diagram to show the numbers, types, and locations of agents

within a system. System deployment is actually the simplest phase of MaSE, as most of the work

was done in previous steps. The idea of instantiating agents from agent classes is the same as

instantiating objects from object classes in object-oriented programming.

4.7.1 System Deployment - Definitions

Deployment Diagrams are used to define a system based on agent classes defined in the

previous phases of MaSE. Deployment Diagrams define system parameters such as the actual

number, types, and locations of the agents within the system. Figure 35 shows an example

Deployment Diagram for the EGADS system. The three dimensional boxes are agents and the

connecting lines represent conversations between agents. The agents are named either after their

agent class or in the form of designator:class if there are multiple instances of a class. Any

conversation between agent classes appears between agents of those classes. Furthermore, a

dashed-line box indicates that agents are housed on the same physical platform.

4.7.2 System Deployment - Rationale

A system must be arranged in a Deployment Diagram before it can be implemented in

code. This is due to the differences between agents and agent classes. An agent requires such

information as a hostname and address in order to participate in any communications external to

the system that it resides on.

83

A Deployment Diagram also offers another opportunity for the designer to tune the

system. Agents can be arranged among various machine configurations in order to better use

available processing power or network bandwidth.

4.7.3 System Deployment - Details

In some cases the system requirements may have specified a particular number of

components, or particular machines that they reside on. Otherwise the designer should consider

message traffic when putting agents on particular machines. Obviously, inter-agent

communication speed will depend on the network they communicate over. In many cases, agents

can be deployed on the same machine. However, putting too many agents on a single machine

destroys the advantages of distribution gained by using the agent paradigm.

Another consideration is the processing power available on particular machines and

required by particular agents. If an agent has a high CPU requirement, it can be placed on a

machine by itself. On the other hand, a machine that has low CPU availability due to other

processes or older technology should not be required to handle a large number of agents. A

strength of MaSE is that these modifications can be made after designing and generating a variety

of system configurations, along with the gathering of performance data.

A final element to consider is automatic code generation. The MaSE methodology, and

agentTool system are primarily concerned with actually engineering agent systems. As such, all

of the steps of the methodology work toward that end. Code generation will be a largely

automatic process from Deployment Diagrams. Code generation is not a piece of MaSE at this

time, but is assumed to happen just after this phase.

84

4.7.4 System Deployment - Example

Completing the EGADS example, the designer creates the deployment diagram in Figure

35. It shows a system containing two different types of intelligence sources, unmanned aerial

vehicles (UAVs) and satellites (SATs), with multiple sources for each type. Each type of source

has a Mission Controller from the agent class "MissionCtrl". All of the agent classes of the data

sources, mission controllers, and the task controller participate in conversations with the registrar

agent, hence the numerous conversation lines connecting them. Finally, the single instances of

the Registrar and Task Controller agents are placed on a single machine, as indicated by the

dashed-line box, in order to conserve network bandwidth. Alternately, the EGADS designer

could have also put the mission controllers on that same machine as well, but the network

between the command center and the remote sites that handle the data sources is very low-

bandwidth, so the expected high volume of conversations between mission controllers and data

sources would be over that network. In the configuration shown, the messages passed over that

lower-quality network are the low-volume requests from the task controller and mission

controllers, plus the one-time registration conversations as new data sources are added.

85

UAV1:
DSInterface

UAV2:
DSInterface

SAT1:
DSInterface

JTFCC:
Cmdr

SAT2:
DSInterface

V/L
SAT3:
DSI nterface

JTFJ2:
Analyst

Figure 35: EGADS Deployment Diagram

4.8 Summary

The Multiagent Systems Engineering methodology is a seven-phase process that is

designed around transformations from one abstraction to the next in a series, as shown in Figure

36. It begins by capturing the essence of an initial system context in a structured set of goals and

use cases. Next, the goals are combined to form roles, which include tasks that describe how

their associated goals are satisfied. The use cases are then transformed into Sequence Diagrams

so desired event sequences will be designed into the system. After that, the roles are integrated

into agent classes connected with conversations. The details of the conversations and agent

classes are then worked out, which can happen in either order depending on the system. Finally,

86

the agent classes are deployed as agents in a Deployment Diagram from which the system can be

directly implemented.

Capturing
Goals

Transforming
Goals to

Roles

Applying
Use Cases

Creating
Agent

Classes

System
Spec
s

Use
Cases

Sequence
Diagrams

. Roles ^ Tasks

\T~Goa \r : yC
Hierarchy ■ / \

Constructing
Conversations

I
Assembling

Agent Classes

System
Deployment

Conversations

Agent
Classes

Agents

Figure 36: MaSE Methodology

87

V. Results

This chapter describes the creation of the agentTool system based on the MaSE

methodology. It shows how the elements of the MaSE methodology are implemented in the

application.

The implementation of agentTool was done in JAVA 1.2. It was a joint project between

all current students and research assistants in AFIT's Agent Research Group: Tim Lacey, Marc

Raphael, Mark Wood, David Robinson, and Jennifer Mifflin. Each was responsible for the

portion of the implementation dealing with their thesis work.

The agentTool system is based on the MaSE methodology presented in Chapter 4.

Currently agentTool implements three of the seven phases of MaSE, as indicated by the outlined

region in Figure 37. The planned future of agentTool includes expanding it to cover more of the

MaSE methodology. The goal of agentTool is to allow multiagent system designers to formally

specify the required structure and behavior of a multiagent system and semi-automatically

synthesize multiagent systems that meet those requirements.

Capturing
Goals

■Transforming
Goals to Roles

Applying
Use Cases

Creating
Agent Classes

Phases implemented in agentTool

Constructing
Conversations

A
Assembling

Agent Classes w Deployment
System

Figure 37: MaSE in agentTool

88

5.1 Objectives of agentTool

The long-term objective of agentTool research is to be a platform for the investigation

and development of automated multiagent technology. Among other areas, this research will

show that by using automated software synthesis techniques, systems of multiple intelligent

agents can be developed that implement security and communication protocols in a provably

correct manner. This research will also provide a mechanism to abstract the precise security and

communication protocols so that the agent developer will not have to worry about them when

specifying agent behavior. Also, assuming multiple security and communication protocols exist,

an agent whose behavior is specified in such a system would be able to be generated using

various combinations of security and communication requirements.

5.2 Operation of agentTool

The user interface to agentTool is shown in Figure 38. The menus across the top access

several system store and retrieval functions, including access to a persistent knowledge-base

developed by Marc Raphael (Raphael 2000). The buttons down the left side are for adding

components to the different design panels, and the text window below them displays system

messages.

The main window of agentTool is where all of the design "documents" are created. They

are accessed through a series of tabbed panels across the top of the main area. The different

panels have individual sets of rules for the objects that can be placed on them and for the syntax

of text that can be placed on the objects. Objects are added to the panel and can be moved around

the viewing space for clarity. Selecting an object enables access to the appropriate sub-panels.

Figure 39 shows an example where two agents have been added, with a conversation between

them.

89

m agentTool

File Knowledge Base Command

Currentty Selected F

Add Agent

Add Conv

»gttlToolvO.7
Retdy

Agent Diagram

M*I

Figure 38: agentTool User Interface

The agentTool system enables a designer to depict high-level system behavior

graphically using the MaSE methodology. The Agent Diagram Panel defines the types of agents

in the system as well as the communications that take place between them. This system-level

specification is then refined in sub-panels for each type of agent in the system. To refine an

agent, the designer either selects or creates an agent architecture and then provides a detailed

behavioral specification for each component in the agent architecture, as described in Section 4.6.

The conversations between agents are similarly refined on sub-panels that depict their two state

machine components, the initiator and responder, by enforcing MaSE syntax and using rules

described in Section 4.5.

90

agenti oof

File Knowledge Base Command

Currently Selected ;Conv:Advertise

rm

Add Agent

Add Com

agentTool vO.7
Retdy
Agent &ddtd
Agent «dded
Adding Convenilicn

Select INITIATOR
Select RESPOHDER

Convention Added

Agent Diagram t ConwAdvertise Initiator ! CorwAdvertise Responder

User
Advertise

Preferences

Reverse

Delete

Server

Figure 39: agentTool Popup Menu

The aspect of agentTool that is perhaps the most appealing is the ability to work in

various pieces of the system and at various levels of abstraction interchangeably. This mirrors the

ability MaSE provides to incrementally add detail during design. The "tabbed pane" operation of

agentTool is what brings out this ability of MaSE, since it is always clear what level of the design

hierarchy is currently being accessed, and what has to be done (clicked on) to access a different

level.

It is easier to envision the potential of this ability by considering an implementation of

the entire MaSE methodology into agentTool. During all phases of system development, all of

the various analysis and design abstractions are available through the tabbed panes atop the main

viewing area. The ordering of the tabs mimics the ordering of the methodology phases in MaSE,

so selecting a tab to the left of the current pane would move "back" in the methodology and a tab

to the right would move "forward". With an understanding of MaSE, clicking on a particular tab

91

will display a pane containing the expected diagram or model pertaining to that phase.

Additionally, selecting a graphical object on any pane will (at the user's option) highlight

"influenced" objects on all other panes. The influence includes any objects that can be reached

through transformations in both directions through the methodology.

5.3 Building a Multiagent System using agentTool

Constructing a multiagent system using agentTool begins at the main system panel,

called the Agent Diagram Panel, shown above in both Figure 38 and Figure 39. This panel is

identical in form and function to the Agent Class Diagram of MaSE (see Section 4.4). The agent

classes and conversations that are added to this screen are identical to the agent classes and

conversations in MaSE.

It is assumed that before using agentTool, the system designer has proceeded through the

first three phases of MaSE and created the agent roles, tasks, and Sequence Diagrams from which

the Agent Class Diagram is constructed. At this point, work is transferred onto agentTool. This

transference may also happen a piece at a time, as the designer decides what roles should

combine to make what agents. In any case, agentTool work begins at the Agent Diagram Panel.

The following subsections illustrate the use of agentTool by tracking a system through

the design process. The MaSE diagrams for this system can be found in Appendix B.

5.3.1 Adding Agent Classes and Conversations

In agentTool, a conversation cannot be added without agent classes to serve as its

"anchors." A conversation can be between two agents of the same class, however. Therefore, it

is possible to add all agent classes to the Agent Diagram Panel before any conversations are

added. It is also possible to add "sections" of the system at a time, connecting appropriate agent

92

classes with conversations, then moving on to the next section. Either method is fully supported,

and truly a matter of personal choice by the designer. Figure 40 shows the completed Agent

Diagram Panel for a course-scheduling application that is used as an example system in this

chapter. The other MaSE diagrams leading up to this point in the development lifecycle are

included in Appendix B.

m Menu ool
File Knowledge Base Command

Currently Selected ;Conv:Advertise

Add Agent

Adding Conversation
Select INITIATOR
Select RESPONDED

Conversation Added
Adding Convention

Select INITIATOR
Stlect RESPONDER

Conversation Added
Adding Conversation

Select INITIATOR
Select RESPONDER

Conversation Added

Add Conv

Agent Diagram ! ComcAdvertise Initiator : ConvAdvertise Responder

Request

User Advertise Server

! Update

1 AdvertiseNeed

Suppliers--""

QHl

Figure 40: Agent Diagram Panel

5.3.2 Constructing Conversations in agentTool

The initiator and responder sub-panels of a conversation are identical to Communication

Class Diagrams in MaSE (Section 4.5). States and transitions are added in the same manner that

agent classes and conversations were in the Agent Diagram Panel. Selection of the "Add State"

button adds a state to the panel, and the "Add Conversation" button adds a conversation between

the two selected states. The attributes of states and transitions can be changed by right-clicking

on the appropriate object, as shown in Figure 41, and selecting Properties. This displays a dialog

box, such as the one in Figure 42.

93

agentTool

File Knowledge Base Command

Currently Selected [conv:Advertise

MEJ

Add State

Add Trans

Select INITIATOR
Seltet RESPONDER

Corrversstitm Added
Stile Added
Adding Transition

s*l*ct CURRENT Sttte
select NEXT Stil*

Trans iion Added
Adding Transition

select CURRENT Sun*
select NEXT State

Transition Added

Agent Diagram " Conv:Advertise Initiator {ConviAdvertise Responder ,

AAdverti3e(info) Wait

Reverse

DeleteError

Change Initiator

Change Responder

Delete

Ack

Figure 41: agentTool Conversation Panel

11*3Transition Properties '^."M 131

Received MBRS<I;;O |

Cu?iT')Ommi&i |

Tf<j[jsmiltetiP.'i(:ss3f.if> Advertise (info)

M-^ori I

Appry |

Figure 42: agentTool Conversation Properties Dialog

Any values assigned to states or transitions show up in text on the panel. These values

can be changed at any time by again pulling up the Properties dialog box. The start and stop

states cannot have any actions attached to them.

A conversation can be verified at any point in its creation by using the Verify

Conversations command from the Command menu. This activates the verification application

94

created by Lacey (Lacey 2000). If any errors exist, the verification results in a highlighted piece

or pieces of a conversation, as shown in Figure 43 on the "Ack" transition (highlights are yellow

in the application). Each of the highlights is a piece of the conversation that is a potential source

of an error that was detected by the verification routine.

agentTool

File Knowledge Base Command

CurrenttySelecIed Conv:AdvertiSe

Add »ate

Add Trans

»bet HEXT StÄj

M4tac Tniutty«
ilka CURRENT Sun
««led NEXT Stjt*

Bras h&il&ted

Bra! hl^iM^td

Agent Diagram j ConwAduertise MUator ConvAduertise Respond«

Advertiselnfo(mfo) Validate

xVvalidinfo(info)
M Store

Storelnfotfnfo)

"?T
|NOTXHnv.a1idlnfo

A:k

Advertiselnfotfnfo)

-£_
Resend Cancel

EU*]

Figure 43: agentTool Conversation Error

5.3.3 Assembling Agent Class Components in agentTool

Robinson provides an excellent description of the ability of agentTool to define the

internal components of an agent class (Robinson 2000). This subsection overviews the process.

Agent classes in agentTool have the same internal components described in Section 4.6.

They can be added, removed, and manipulated in a manner similar to the other panels of

agentTool. Agent classes do have an added layer of complexity, however, since all of their

95

components can have state diagrams associated with them and additional sub-components

beneath them.

The agent class components shown in Figure 44 are the details of the "User" agent class

from Figure 40. The pattern depicted is an instantiation of the reactive agent architecture shown

earlier in Figure 33, specialized to participate in conversations.

IE3«genlTool -|D|x|

File Knowledge Bö

C

se Co

iirrentlySe

mmand

ected [Agent: User j

Agent Diag am ' Agent: User | component Stat Diag] Messageinterface Architecture!

Add Component

A

ConversationController

Add Connection
msgCheckRules(msg:Message)

,.-=7

"""•-.,
'^

V ConversationRules
tgentToolv0.7
Ready
Adding Connection

Select C0MP0NENT1
Select COMPONENTS

Conversation Added
Connection deleted
Adding Connection

Select C0MP0NENT1
Select COMPONENTS

Conversation Added

Messageinterface

StoreData(data)
LogRequest(request)

Figure 44: agentTool Agent Class Components

Details can also be added to lower levels of abstraction. In Figure 44 the "component

Stat Diag" and "Messageinterface Architecture" tabs lead respectively to a component state

diagram and sub-component panel of the Messageinterface component. The state diagram panel

details how the component progresses through operational states, in much the same fashion as a

conversation. The sub-component panel contains additional components and connections, exactly

like the main agent class panel.

96

5.4 Underlying Formalisms of agentTool

The formal semantics of MaSE are reflected in the transformations from one abstraction

to the next. For example, agents contain a set of roles that in turn contain a set of goals, and a

conversation must have exactly two participants, though they can both be the same class. These

semantics are both incorporated and supported by agentTool. For example, an agent class

"object" in agentTool contains a set of conversations. In a future version of agentTool that

incorporates the entire MaSE methodology, a role "object" could be mapped "backward" to the

set of goals from which it was created, or "forward" to the agent class that plays it.

The agentTool system is based on an object hierarchy that mimics the objects in MaSE.

The highest-level object is a "system", called an ATsystem in agentTool. Currently, an

ATsystem contains sets (Vectors) of ATagent and ATconversation objects, just as a system in

MaSE consists of agent classes and conversations. These objects contain further subcomponents

reflecting the models in MaSE, such as ATagentComponents (sub-components of agent classes)

and ATstatetables (half of a conversation).

5.5 Summary

The agentTool system demonstrates the ability of an automated tool to assist in

multiagent system design. It also validates the MaSE methodology as a method suitable for

automation, which is one of the goals of this thesis. Work on agentTool will continue in the

future, including automated code synthesis and possible incorporation of the rest of MaSE into

the application.

97

VI. Conclusions and Recommendations

6.1 Conclusions

This section describes conclusions reached from this thesis. Some things worked as

planned and some did not. In general, the MaSE methodology turned out to have a larger scope

and correspondingly less depth than anticipated.

6.1.1 Contributions

The main contribution of this thesis is the ability of MaSE to assist a multiagent system

designer through the entire software development lifecycle, beginning from a textual system

representation and proceeding in a structured manner toward working code. This full lifecycle

coverage of MaSE turned out better than initially expected. At the commencement of research,

there was no intention to address analysis issues such as capturing system requirements and use

cases.

MaSE combines several preexisting models into a single structured methodology. Most

of the models used within the methodology have therefore been already justified and validated

within the realm of agents and multiagent systems. A sequence of guided transformations

connects the elements of this strong foundation together into a clear high-level picture of how a

designer should go about creating a multiagent system.

Since the connections between models are transformations, they can also be tracked in

reverse order. In this manner, potential changes to the system design can be tested for effects on

earlier models. For example, if it becomes clear during system deployment that a particular CPU

cannot handle the load imposed by several agents that must reside upon it, the roles that make up

98

those agents could be identified for possible reassignment. In an automated tool, this ability

would be even more powerful. A future vision of agentTool includes the ability to select an

object at any level of the design, and receive visual feedback (highlighting, for example)

indicating which objects it influences either "upstream" or "downstream" in the methodology.

Finally, the construction of the abstractions in MaSE from modular components (agent

classes from roles in particular) supports reuse nicely. Different parts of a system, such as

collection of roles used in registration, can be collected and stored for later use. This process also

works in reverse. If a new system requires the ability to register new pieces such as data sources,

the knowledge-base of existing components can be referenced and reused. Raphael is addressing

this and related issues in his thesis on knowledge-bases to support multiagent system design

(Raphael 2000).

6.1.2 Deficiencies

Several phases of MaSE describe transitions from one abstract construct to another. In

each case, the transformation is accompanied by rules and guidelines for the designer to consider

when performing the transformation. Nearly every transformation can be enhanced by the

addition of a step-by-step procedure - a methodology - that details how the transformation must

take place.

In particular, the construction of conversations was intended to be a process that

produced the finite state machine for each half of the conversation. The addition of Sequence

Diagrams and tasks to the methodology was specifically intended to facilitate that process, which

was not fully produced in the end. This concern is repeated in Section 6.2.4 as an area of future

research. Additionally, the transformations of goals to roles and roles to agent classes would

benefit from a similar process that was focused more on a series of rules than on guidelines.

99

6.2 Future Research Areas

This section lists several topics that are partially addressed in this thesis. Each topic

would clearly benefit from further investigation and, hopefully, the MaSE methodology will be

stronger for it. Successive sub-sections describe future work on tasks, use cases, role models,

conversations, and automatic code generation.

6.2.1 Tasks

The use of tasks in MaSE, as introduced in Section 3.3.6, is an effective aid to

constructing conversations. Tasks incorporate information into the design process about actions

taken in support of specific goals. The state-machine representation maps well into conversations

since it shares a similar form. Tasks have not been significantly researched yet, however. For

example, further investigation of the inter-role communications in tasks certainly seems called

for. It seems reasonable that tasks could potentially communicate among several roles. Does

each role involved in a task need a complementary version of that task, similar to the two halves

of a conversation? What are the ramifications of having state variables that span a task? What

information can safely be passed by tasks?

There are many possible questions relating to the syntax and semantics of the graphical

language that describes tasks. How could it be made clearer? In a collection of related tasks, can

inter-task communications be depicted in a similar manner to an Agent Class Diagram? These

and other questions are certainly relevant, and will not negatively affect the MaSE methodology

as long as the task characteristics described in preceding sections are maintained.

100

6.2.2 Use Cases

Failure and negative use cases are briefly described in Section 4.1.3.2. The concept of a

use case utilized in this thesis is that of a positive use case. A failure use case is a description of

an error in the system, and a negative use case is a sequence that is desired not to occur within the

system. It is not clear how the inclusion of these concepts would affect MaSE, or even if they

would fit in at all. Could they be translated into a Sequence Diagram? Would such a translation

be useful?

6.2.3 Role Model Indexing

Role models are first introduced in Section 2.3.1. Kendall has done much research into

role models and related ideas (Kendall 1998). From the perspective of MaSE, the most useful

property of role models is that they are reusable patterns that can be stored in a catalog and

retrieved for application on a particular system design. As discussed in Section 3.3.2, the reason

they were not featured in MaSE is that it is clear neither how to index such a catalog nor how to

"recognize" a particular pattern in a system design.

6.2.4 Conversations - State table construction

MaSE describes several ways to assist in the construction of conversation. Sequence

Diagrams and tasks provide a set of messages that must be passed by a conversation, but it is far

from a complete set. The most difficult part of conversation construction is not covered; that is

actually constructing the state machines. A basic set of rules or guidelines dealing with

assembling the pieces of a conversation, given the existing pieces of MaSE, would fit well into

the methodology.

101

6.2.5 Automatic Code Generation

MaSE was created expressly for generating agent systems automatically in code. The

methodology assists in creating all the necessary design objects and guides the system designer

right up to the point where automatic code generation would occur. Code generation is beyond

the scope of this thesis, but not outside the scope of this methodology. There are other theses at

AFIT outside of the Agent Research Group that are addressing this issue (Ashby 2000). They are

not dealing directly with agent systems, however.

6.2.6 Bridging Agent Classes and Conversations to Components

MaSE describes how to create the connections between agent classes and the roles that

they play in a multiagent system. Also, a phase of the methodology is devoted to designing the

internal components of an agent by using the agent component architecture created by Robinson

(Robinson 2000). However, Robinson's work was not devised to work within MaSE. It is a

general-case model that is intended to cover all types of agents. The specific problem is to map

agent classes and conversations created using MaSE to the components of Robinson's model.

For example, a MaSE conversation would require specialization of several inter-agent

components. An IO_Interface could be instantiated as a Message_Interface, and the two finite

state automata transformed into a transition table encoded inside a Controller component. In any

case, more research is appropriate to bridge the gap between MaSE and the component-based

architecture.

102

VII. BIBLIOGRAPHY

Ashby, Michael R. Tool-Based Integration and Code Generation of Object Models. MS thesis,
AFIT/GE/ENG/00M-02, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, March 2000

Brazier, F., Jonker C. and Treur, J. "Principles of Compositional Multi-Agent System
Development" Proceedings of the MP'98 Conference IT&KNOWS'98, Chapman and
Hall 1998

DeLoach, Scott A. "Multiagent Systems Engineering: a Methodology and Language for
Designing Agent Systems" Proceedings of Agent Oriented Information Systems '99
(AOIS'99), pp. 45-57. Seattle WA, 1 May 1999.

Drogoul, A. and Collinot A. "Applying an Agent Oriented Methodology to the Design of
Artificial Organizations: A Case Study in Robotic Soccer" Autonomous Agents and
Multi-Agent Systems, 1(1), 113-129, 1998

Iglesias, C, Garijo, M. and Gonzalez, J. "A Survey of Agent-Oriented Methodologies"
Intelligent Agents V - Proceedings of the 5th Intl. Workshop on Agent Theories,
Architectures, and Languages (ATAT-98)

Jennings, N. R., Sycara, K. and Wooldridge, M. "A Roadmap of Agent Research and
Development" Autonomous Agents and Multi-Agent Systems, 1(1), 7-38, 1998

Kelley, Jay W. Air Force 2025. 2025 Support Office, Air University, Air Education and Training
Command. Air University Press, August 1996.

Kendall, Elizabeth A. "Agent Roles and Role Models: New Abstractions for Intelligent Agent
System Analysis and Design", (1998)

Kendall, Elizabeth A. and Zhao, L. "Capturing and Structuring Goals: Analysis Patterns", 1998

Kinny, D., Georgeff, M. and Rao, A. "A Methodology and Modelling Technique for Systems of
BDI Agents" Agents Breaking Away: Proceedings of the Seventh European Workshop
on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW'96 (LNAI
Volume 1038) p.56-71 (1996)

Lacey, Timothy H. A Formal Methodology and Technique for Verifying Conversations in a
Closed Multi-agent System. MS thesis, AFIT/GCS/ENG/00M-12. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2000

Nwana, H. S. "Software Agents: An Overview", Knowledge Engineering Review. 11(3): 205-
244.(1996)

Pressman, Roger S. Software Engineering: A Practitioners Approach, 3rd ed. McGraw-Hill Inc.,
New York, 1992

103

Raphael, Marc J. Knowledge Base Support For Design and Synthesis of Multi-agent Systems.
MS thesis, AFIT/GCS/ENG/00M-21. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, March 2000

Reticular Systems, Inc. 1999. AgentBuilder - An integrated Toolkit for Constructing Intelligent
Software Agents. Version 1.3, Copyright 1999 Reticular Systems, Inc.

Robinson, David J. A Component-based Approach to Agent Specification. MS thesis,
AFIT/GCS/ENG/00M-22. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 2000

Rumbaugh, J. Object-Oriented Modeling and Design, Prentice-Hall Inc., Englewood Cliffs, New
Jersey, 1991

Shalikashvili, John M. Joint Vision 2010. Joint Staff: Pentagon, 1999.

Sycara, K. P. "Multiagent Systems". Ai Magazine 19(2): 79-92 (1998)

Wooldridge, M., and Jennings, N. "Intelligent Agents: Theory and Practice". Knowledge
Engineering Review, 10(2): 115-152(1995)

Wooldridge, M., Jennings, N., and Kinny, D. "A Methodology for Agent-Oriented Analysis and
Design" (1999)

104

Appendix A - ELINT Gathering and Decision System (EGADS)

EGADS links a Commander to their intelligence gathering assets in the field. A group of

dissimilar data collectors must communicate classified intelligence data to the commander,

through an intelligence processing section. The commander can issue specific tasking for desired

data, request status reports, and receive processed intelligence reports from the processing

section.

Particulars:

• The system must link to many different kinds of intelligence assets including UAVs,

JSTARS, land and sea-based radar, satellites, and preprocessed GCCS and JWICS data.

• The commander's taskings may include requests about a particular area, resource (air,

land, and sea units), or combination. They may be one-time requests, or define a time

window within which all movements must be reported. If the window ends after the

request is made, then updates are sent until the window closes.

• A commander may request a status report of any open intelligence tasking. The report

will return completed portions of the tasking, and status of uncompleted portions

including an estimated completion time (or unknown).

• A commander may set preferences to determine how all reports (status and intelligence)

will be presented.

• Before presentation to the commander, all intelligence reports must be sent through the

intelligence processing section.

• Data sources must be able to be added or removed from the system as they become

available or obsolete.

105

Example:

A commander desires to know what sort of air defenses will exist in a target area of an air strike

that must be executed within 72 hours. At stake is when will the strike be launched, and what

SEAD (Suppression of Enemy Air Defense) assets must be included in the sortie package.

106

Appendix B - Example ofMaSE System Construction

This Appendix contains information and figures that depict a course-scheduling system

run completely through the MaSE methodology for verification and validation purposes. It is

also used in Section 5.3 for demonstrating the agentTool system.

Agent-Based Collaboration - User Requirements

Basically, we want to demonstrate that a distributed agent-based system can be used to help users

share information in a collaborative environment. For our demo, we will assume that

1. Each user has various types of information that it owns or generates.

2. Each user needs to use other types of information that they do not own or generate, but

that are owned or generated by other collaborators.

To facilitate this collaboration, the underlying agent system should

1. Allow the users to advertise the types of information they own or generate.

2. Allow the users to advertise their need for other types of information.

3. Allow users to advertise that their information has been updated.

4. Match suppliers of an information type to users either in a one-time fashion or on a

continuing basis.

5. Allow users to request the actual information directly from suppliers of the information.

A user can have more than one piece of information of a certain type. If this is the case, then all

the information of that type should be sent when requested.

Therefore, the agent-based system should support the following scenarios:

1. If a user requires information a certain type, the user should be able to advertise their

need and receive a list of possible suppliers of that information. The user can then

choose one (or all) of the suppliers to ask for the information. When the user asks, the

supplier returns all of its current information on that type.

107

2. When a user acquires or creates new information types, the user should be able to

advertise its ability to provide the information. Once a user has advertised its

capabilities, it must provide its current information to anyone who requests it until is un-

advertises its capabilities.

3. If a user has a long-term requirement for a piece of information (either because no one

currently can provide the information or it wants to be kept up to date), it can advertise its

need for this information. Then, if anyone subsequently advertises the capability to

provide such information, the name of the supplier should automatically be sent to the

user until the user un-advertises its need for the information.

4. If a user already has advertised its ability to provide a certain type of information, and it

generates a new piece of that information, it should be able to re-advertise its capability.

This re-advertisement should be sent to anyone with a long-term requirement for the

information and interpreted as an information update.

These users may be distributed but need not know who or where the other users/suppliers are.

Agent-Based Collaboration - Goals

1.0 Help users share info collaboratively

1.1 Allow users to advertise information

1.1.1 Allow users to advertise

1.2 Allow users to advertise their need for information

1.2.1 Allow users to advertise

1.3 Allow users to advertise that their info has been updated

1.3.1 Allow users to advertise

1.3.2 Allow users to update their info

1.4 Match suppliers of an information type to users either in a one-time fashion or on a
continuing basis

1.4.1 Match suppliers to users on a one-time basis

1.4.1.1 Match suppliers to users

1.4.2 Match suppliers to users on a continuing basis

1.4.2.1 Match suppliers to users

1.5 Allow users to request the actual information directly from the suppliers of the
information

1.5.1 Allow users to request

108

Agent-Based Collaboration - Goal Hierarchy Diagram

1. Help users share
info collaboratively

1.1. Allow users to
advertise information

1.3. Allow users to
advertise updates

1.4. Match suppliers of an
info type to users on a one-
time or continuous basis

1.5. Allow user to request
actual info directly from
suppliers ofthat info

1.1.1/1.2.1/1.3.1
Allow users to advertise

1.5.1. Allow
users to request

1.4.1. match suppliers to
users on a one-time basis

1.4.2 match suppliers to
users on a continuous basis

1.4.1.1/1.4.2.1 Match
suppliers to users

Figure 45: Agent-based collaboration - Goal Hierarchy Diagram

Agent-Based Collaboration - Roles

Roles

Consumer
Register
Supplier

(goals)

(1.2, 1.5)
(l.x.l, 1.4.*)
(1.1, 1.3, 1.5.1)

Figure 46: Agent-based collaboration - roles

109

Agent-Based Collaboration - Sequence Diagram(s)

Consumer Register Supplier

Need

Suppliers

Request

Information

Advertise

Advertise

Request

Information

Need

Advertise

Suppliers

Request

Information

Advertise

Request

Continuous Information

Figure 47: Agent-based collaboration - Sequence Diagrams

110

Agent-Based Collaboration - Roles and Agent Class Diagram

Consumer
>

Register { Supplier

User
Advertise

AHvertiseNeeHi

TTnHatf

4 Suppliers

Server

Figure 48: Agent-based collaboration - Roles and Agent Class Diagram

111

Agent-Based Collaboration - Conversation Creation Steps

lagentTool

File Knowledge Base Command

Currently Selected [conv:Advertise

Add State

Add Trans

select CURRENT Sttte
select NEXT Stile

Trensition Added
Verifying...

T^Tfire highlighted

Complete
Verifying...

Errors highlighted
Confute
Verifying...

Ecrors highlighted
Complete

Agent Diagram ! ConvAdvertise Initiator: ConvAdvertise Responder

Advertiselnfo(info) Validate

X=Validlnfo(info)
 _ ^_

Store

Storelnfo(info)

[NOTX]Alnva1idlnfo

'A:k

Advertiselnfofjnfo)

-A-
Resend (Cancel

QnS

Figure 49: Conversation Initiator

tCjagenlTool

File Knowledge Base Command

Add State

Add Trans

Complete
Verifying...

Etrars highlighted
Complete
firor Deleted
Verifying...

Ecrors highlighted
Complete
Adding Transition

select CURRENT Sttte
select NEXT State

Transition Added

Currently Selected [conv:Advertise

Agent Diagram ComxAdwertise Initiator ! ConwAdvertise Responder

Advertiselnfo(info)
■Sv-

Validate

I X = Validlnfo(info)

lNOTX]AlnYalidlnfo

 .V
Resend

IX! Store

Storelnfo(into)

' I

Cancel

A:k

ME1

Figure 50: Invalid Conversation Responder - Step 1

112

m agent! ool

File Knowledge Base Command

Currently Selected [conv:Advertise J

Add State

Add Trans

select NEXT Sin*
Transition Added
Adding Trtnsition

select CURRENT Stele
select NEXT State

Transition Added
Verifying...

Entere highlighted
Complete
Verifying...

Qrars highlighted
Complete

Agent Diagram [ConvAdvertlse Initiator [CorwAdwertise Responder

Advertiselnfo(info) Validate

X=Validlnfo(info)

' 7 T:~~

M Store

I Store Info (info)

[NOTX]Alnvalidlnfo

Al:k

Advertiselnfofjnfo)

J^_
Resend Cancel ->.;l

ME

Figure 51: Invalid Conversation Responder - Step 2

lagentTool

File Knowledge Base Command

Add State

Add Trans

select CURRENT Sttft
select NEXT State

Transition Added
Verifying...

Erors highlighted
Cong? let*
Verifying...

Eirors highlighted
Complete
Verifying...

Etrors highlighted
Complete

Currently Selected Conv:Advertise

Agent Diagram ConvrAOVertise Initiator j ConwAdwertise Responder !

Advertiselnfo(info) Validate

X=Valldlnfo(info)

IX] Store

Store Info (info)

~^r
[NOTX]«lnya1idlnfo

Advertiselnferjnfo)

J^_
Resend] Cancel

-*(•}

IE

Figure 52: Valid Conversation Responder

113

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188

Public reporting burden for this collection ot information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other as pact of the coMec ion,of
information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports 1 215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188), Washington, DC 20S03

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

7 March 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

Mulagent Systems Engineering: A Methodology for Analysis and Design of

Multiagent Systems

6. AUTHOR(S)

Mark F. Wood, Captain, USAF

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM
Attn: Captain Freeman Alex Kilpatrick
801 North Randolph Street
Room 732 9-65
Arlington VA 22203-1977
(703) 696-6565

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/00M-26

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Maj Scott A DeLoach, ENG, Phone: (937)255-3636, Ext. 4622

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

This thesis defines a methodology for the creation of multiagent systems, the Multiagent Systems Engineering (MaSE) methodology. The
methodology is a key issue in the development of any complex system and there is currently no standard or widely used methodology in the realm of
multiagent systems. MaSE to covers the entire software lifecycle, starting from an initial prose specification, and creating a set of formal design
documents in a graphical style based on a formal syntax. The final product of MaSE is a diagram describing the deployment of a system of
intelligent agents that communicate through structured conversations. MaSE was created with the intention of being supported an automated design
tool. The tool built to support MaSE, agentTool, is a multiagent system development tool for designing and synthesizing complex multiagent

systems.

14. SUBJECT TERMS

Agents, Multiagent, Methodology, Agent Design, Agent Analysis

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
126

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

	Multiagent Systems Engineering: A Methodology for Analysis and Design of Multiagent Systems
	Recommended Citation

	/tardir/tiffs/a380807.tiff

