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Abstract 

This research investigates the application of genetic algorithms (GAs) to help 

interpret data from partitioning interwell tracer tests (PITTs) to characterize groundwater 

contamination source areas. The data used in this research were obtained from PITTs 

conducted in hydraulically isolated test cells at Hill AFB, Utah by researchers from the 

University of Florida. The tests were carried out to evaluate the effectiveness of 

cosolvent and surfactant flushing for remediating non-aqueous phase liquid (NAPL) 

sources of groundwater contamination. PITTs use tracers that flow from an injection to 

an extraction well in the test cells. The quantity and distribution of NAPL in the cell can 

be inferred by the tracer concentration versus time responses (known as the breakthrough 

curves) at the extraction well. 

In this work, GAs were used to help interpret tracer breakthrough curves from 

PITTs. Two transport models were developed to simulate tracer transport in the test 

cells. One model assumed the cell consisted of multiple layers, and that transport in each 

layer could be described by the one-dimensional advective/dispersive equation. The 

second model also assumed multiple layers, and modeled transport in the individual 

layers as advective transport through 100 tubes. Transport times through the tubes were 

represented by a stochastic (lognormal) distribution.   The model solutions were coded 

into Microsoft Excel. Model parameters were optimized using Evolutionary Solver, a 

GA developed by Frontline Systems. The optimized parameters were used to estimate 

pre- and post-flushing NAPL saturation, as well as cleanup efficiency. Results were 

compared to estimates obtained through moment analysis of the PITT data. Results 

demonstrated that GAs are a tool that may be useful in interpreting PITT data for the 

ix 
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characterization of NAPL source areas. In particular, using the GAs to interpret the PITT 

data provided more information on NAPL distribution than could be obtained from 

moment analysis. 



USE OF GENETIC ALGORITHMS TO CHARACTERIZE 

GROUNDWATER CONTAMINATION SOURCE AREAS 

Chapter 1: Introduction 

1.1 Background 

Non-aqueous phase liquids (NAPLs) encompass a broad range of contaminants, 

including petroleum products and solvents, with the shared characteristic of a low 

solubility in water. NAPLs are further divided into dense NAPLs (DNAPLs) that have a 

higher density than water, and light NAPLs (LNAPLs) that have a lower density than 

water. NAPL contaminants migrate downward through the vadose zone because of 

gravity and capillary forces. Once the contaminants reach the water table, DNAPLs tend 

to migrate downward through the saturated aquifer and may pool on low permeability 

soil layers while LNAPLs tend to pool on top of the water table. In both cases, NAPL 

contamination of groundwater may involve a separate phase NAPL source that slowly 

dissolves into the groundwater to form an aqueous-phase plume. Such sources can 

remain for long time periods, ranging from several decades to centuries, and no 

remediation method has been demonstrated to effectively restore sites contaminated by 

NAPLs (Trowbridge et ah, 1999). Because of widespread applications of solvents at 

military facilities and past disposal practices that resulted in contamination by these 

solvents, the problem of NAPL remediation is a significant concern for the Department of 

Defense (DOD) and the Air Force (Armstrong Laboratory, 1997). 



Tests involving several innovative remediation methods have shown encouraging 

results for dealing with the NAPL problem. Recent tests involving cosolvent and 

surfactant flushing (Löwe et al, 1999; Rao et al, 1997; Jawitz et al, 1998, Falta et al, 

1999) demonstrate that this emerging technology may offer a potential remedy for 

dealing with NAPL source areas. Cosolvent (surfactant) flushing involves the injection 

of a cosolvent (surfactant) / water mixture near the source area of a contaminated site to 

solubilize or mobilize the contaminant. This allows subsequent extraction of the 

contaminant from the subsurface for aboveground treatment.   Field applications of 

cosolvent (surfactant) floods have demonstrated the ability of the technology to remove 

significant amounts of NAPL contaminant. In 1996, field trials involving the cosolvent 

flushing of a NAPL-contaminated site at Hill AFB, Utah, recovered between 70 - 90% of 

petroleum hydrocarbons and spent solvents (Lowe et al, 1999). 

Proper characterization of the NAPL contaminant source area is necessary to 

develop an effective remediation method and includes determining the location, 

composition, and quantity of NAPL at the site. Current methods for characterizing the 

NAPL contamination at a site include core sampling, cone penetrometer testing, 

geophysical logging, and partitioning inter-well tracer tests (PITT) (Jin et al, 1995). 

Sections 2.1.4 and 2.3.1 discuss the benefits and limitations of each of these methods. 

The PITT method, as outlined by Jin et al (1995), involves the simultaneous injection of 

a conservative (or non-partitioning) tracer and tracers that partition into the NAPL 

contaminant. The conservative and partitioning tracers are subsequently recovered at an 

extraction well. Partitioning of the non-conservative tracers into the separate phase 

NAPL retards the tracers' respective velocities. Several partitioning tracers are used so 



that data can be obtained in a reasonable amount of time with adequate separation of the 

breakthrough curves for the conservative and partitioning tracers. In general, the 

appropriate tracer will have a retardation factor between 1.2 and 4, where the retardation 

factor represents the ratio of the groundwater velocity to the velocity of the partitioning 

tracer (Jin et al, 1997). Since the retardation factor of the partitioning tracer is a function 

of the average NAPL saturation (i.e., a higher retardation factor results from a higher 

NAPL saturation), the breakthrough curves can be used to estimate the mass of separate 

phase NAPL (Young et al, 1999). Soil composition, particularly the fraction of organic 

carbon, can affect the retardation of the partitioning tracer. Therefore, soil composition 

must be considered in the PITT analysis, and the PITT method may not be appropriate for 

soils with a high fraction of organic carbon. 

Since the PITT method samples a much larger volume of the aquifer, it may 

provide a better overall characterization of the NAPL than the other methods (Jin et al, 

1995). Field evaluations performed at Operable Unit 1 (OU1), Hill AFB, Utah in 1995 

(Falta et al., 1999) utilized the PITT method, performing pre-flood and post-flood tracer 

tests, to estimate the efficiency of cosolvent flooding on an LNAPL contaminant. Results 

from these tests indicated removal of approximately 78% of the bulk NAPL from the test 

cell. 

Natural aquifers typically have a high degree of variability in soil characteristics, 

such as hydraulic conductivity, and even aquifers characterized as homogenous may be 

considerably heterogeneous. The degree of soil heterogeneity at a site may be the most 

important factor affecting NAPL distribution and the amount of cosolvent (surfactant) / 

water mixture that is able to contact the contaminant (Lowe et al, 1999). As the NAPL 



phase is typically non-wetting, the mass of NAPL able to penetrate a pore space 

decreases at a disproportionate rate with a decrease in pore size. Consequently, the 

NAPL tends to accumulate in the larger pore spaces and a lower surface area to volume 

ratio is available for interaction with the cosolvent flood. In addition, the cosolvent 

(surfactant) / water mixture will preferentially flow through regions of high permeability. 

Since permeability is directly related to pore size, the preferential flow of the cosolvent 

(surfactant) / water mixture through the high permeability regions will tend to bring more 

of the mixture into contact with the bulk of the NAPL mass. However, it is also less 

likely that the mixture will contact the NAPL mass occupying smaller pore spaces. These 

behaviors of the NAPL and cosolvent (surfactant) / water mixtures imply that hydraulic 

conductivity distributions within the porous media are important factors to consider when 

designing the remediation method and calculating the quantity of cosolvent mixture 

required. The ability to develop a useful model of these distributions is a critical step in 

designing an effective cosolvent flushing system. 

1.2 Scope of Research 

The goal of this research is to develop a modeling approach to better predict 

residual NAPL saturations and distribution at a contaminated site (using data from pre- 

flood PITT tests) in an attempt to improve remediation design and better predict cleanup 

efficiency. This research will address the following questions: 

1. In developing the model, and in deciding which modeling approach 
best accomplishes the purposes of this thesis, what objective function(s) 
should be optimized? Should the model minimize sum of squares 
difference between modeled and actual breakthrough data, minimize the 
number of fitting parameters, or some combination of the two objectives? 
What optimization method should be used to determine the best-fit model 
parameters? 



2. Should only data from the non-partitioning tracer be used to determine 
the hydraulic conductivity and other groundwater flow parameters, or 
should the partitioning tracer data also be used? How should the 
partitioning tracer data be used to determine NAPL distribution? Do the 
models demonstrate a relationship between the hydraulic conductivity and 
NAPL distributions at the site? 

3. How can the models be used to predict cleanup efficiency? How do 
model predictions compare to field data? 

Several models reported in the literature have been developed to model 

groundwater transport. This research will use two modeling approaches to investigate the 

applicability of Genetic Algorithms (GAs) as an optimization method to estimate 

parameter values for interpretation of PITT results. One approach uses a model based on 

the analytic solution to the one-dimensional advective / dispersive equation (van 

Genuchten and Alves, 1982). The other approach uses a model based on a representation 

of the breakthrough curve using a stochastic function (Enfield, 2000). The models will 

be applied to data obtained from PITTs performed at OU1. 



Chapter 2. Literature Review 

2.1 Non-Aqueous Phase Liquids (NAPLs) 

NAPLs are characterized by their low solubility in water. This property gives 

them the potential to exist as a separate phase both above and below the water table. 

NAPLs may be placed in three broad categories based on the specific gravity of the 

contaminant. Light NAPLs (LNAPLs) are less dense than water and tend to spread out 

on top of the capillary fringe at the transition from the vadose to saturated zones. Dense 

NAPLs (DNAPLs) are more dense than water and able to migrate downward through the 

saturated zone. Neutrally Buoyant NAPLs (NNAPLs), usually a mixture of LNAPLs and 

DNAPLs, have a specific gravity near that of water and vertical migration through the 

groundwater occurs slowly. 

2.1.1 NAPL Properties 

Commonly, a variety of components comprise the NAPL at a given site, and the 

characteristics of the NAPL contaminant are a composite of the individual properties of 

the components. These properties include density, viscosity, wettability, interfacial 

tension, and capillary pressure. Density, defined as mass per unit volume, and the 

specific gravity (density relative to the density of water) of the NAPL significantly 

impact its behavior within the saturated zone. Viscosity is a measure of a fluid's 

resistance to flow, and the viscosity of the NAPL defines its ability to flow as a separate 

phase. In general, a NAPL with a viscosity less than water will be highly mobile in the 

subsurface while a NAPL that is significantly more viscous than water will be practically 

immobile as a separate phase. Wettability refers to the affinity of a liquid for a solid 

surface in the presence of another immiscible liquid(s), and is determined by the angle of 



the interface between the solid and the liquids. The wetting phase is the fluid through 

which the angle is less than 90 degrees, while the non-wetting phase has an angle greater 

than 90 degrees. Because they are non-polar molecules, NAPLs are non-wetting in the 

presence of water (although high dissolved organic content in the water can affect 

wettability) and wetting in the presence of air. Interfacial tension describes the tensile 

forces acting on the interface between fluids, and a high interfacial tension indicates a 

low affinity between the two liquids. 

In the case of an immiscible liquid contaminant in groundwater, high interfacial 

tension results in the immiscible liquid molecules grouping in a way that minimizes the 

interfacial area. An interfacial tension of zero indicates miscibility, such that the liquid 

has entered the aqueous, or dissolved, phase. The interfacial tension at the interface of 

two immiscible liquids results in a pressure differential across that interface. This 

pressure differential, directly proportional to the interfacial tension, is referred to as 

capillary pressure. The pressure required for the non-wetting phase to enter a region 

saturated by the wetting phase (i.e., water), referred to as the displacement pressure, must 

be greater than the capillary pressure. The drying curve in Figure 1 illustrates that as the 

non-wetting phase occupies more of the pore space, the capillary pressure increases until 

the non-wetting phase reaches maximum saturation. As the wetting phase re-enters the 

pore space (wetting curve, Figure 1), the non-wetting phase saturation decreases until it 

reaches the point at which flow of the non-wetting phase is no longer possible. This 

residual saturation represents a non-flowing separate phase NAPL source that causes 

long-term contamination as it dissolves into the flowing groundwater. 
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Figure 1: Wetting and Drying Curves (Domenico and Schwartz, 1998) 

2.1.2 NAPL Phases 

NAPLs are generally present at a contaminated site in four phases: as vapor 

phase, dissolved (or aqueous) phase, separate phase, and sorbed phase. NAPLs in the 

vapor phase may be removed by a variety of techniques including soil-vapor extraction 

(SVE) from the vadose zone. Air sparging, the injection and recovery of air into the 

saturated zone, can be used to recover dissolved components of volatile NAPLs. Active 

remediation methods such as pump-and-treat or passive methods such as funnel and gate 

can remove dissolved phase contaminant. Separate phase contaminant may be present as 

a residual or pooled NAPL. Depending on the viscosity of the pooled, or free-phase 

NAPL, the contaminant may be mobile in the subsurface and may be capable of being 

removed by direct pumping. LNAPLs can typically be found as free-phase contaminant 



in the vadose zone and near the capillary fringe, where fluctuations in the depth of the 

water table result in NAPL at residual saturation in a smear zone both above and below 

the water table. DNAPLs, on the other hand, migrate downward through the saturated 

zone until they encounter a low permeability barrier. The discovery of free-phase 

DNAPL pools containing significant mass is rare, and the presence of DNAPLs is 

typically inferred from site history or groundwater monitoring data (Sellers, 1999). 

2.1.3 NAPL Migration in the Subsurface 

The properties of DNAPLs and LNAPLs cause differences in their distribution 

and residual saturation at a contaminated site. The LNAPL smear zone generally 

contains uniform distribution of LNAPL at residual saturation. DNAPLs tend to migrate 

downward through the saturated zone by way of preferential flow paths. When low 

permeability layers are encountered, the DNAPL spreads horizontally until it encounters 

higher permeability soil and vertical migration resumes. Vertical migration may also 

resume when the depth of pooled NAPL becomes such that it can no longer be supported 

by hydrostatic pressure (entry pressure) of the low permeability region. The resulting 

"lenses" of pooled NAPL and "fingers" of residual NAPL can be difficult to locate, and 

DNAPL saturation levels can have a high degree of variability in the saturated zone. 

Figure 2 shows a conceptual diagram of LNAPL and DNAPL contamination of the 

saturated zone. 



Figure 2: NAPL Distribution at a Contaminated Site 

Experiments by Broholm et al. (1999) investigated the ability to estimate DNAPL 

source distribution through down-gradient monitoring of the aqueous phase plume. In 

their experiments, results obtained from detailed groundwater monitoring were compared 

to the DNAPL source distribution found by collecting core samples from the source area. 

The results demonstrated a general correlation between the spatial delineation of the 

down-gradient plume to the vertical and lateral distribution of the source. However, 

detailed groundwater monitoring is typically insufficient to determine small-scale 

distribution of the DNAPL source.   Detailed core sampling was able to account for only 

67% - 87% of the known mass injected into the test cell. These tests demonstrated the 

difficulty in obtaining an accurate estimate of NAPL mass and distribution, even in a 

controlled experiment. 

10 



The presence of two or more fluids within a pore space results in reduction in 

permeability to any one of those fluids. As the saturation of one fluid increases, the 

permeability of the pore space to another fluid decreases (Lowe et al., 1999). Because of 

this, the distribution of NAPL in the saturated zone impacts the hydraulic characteristics 

of an aquifer, and the presence of residual NAPL in the pore spaces can significantly 

reduce hydraulic conductivity. This effect can impede the ability of mobility enhancing 

agents, such as cosolvents and surfactants, to interact with the separate phase 

contaminant. Therefore, proper characterization of contaminant distribution is critical 

prior to developing a remediation strategy. However, technological and financial 

constraints limit the ability to develop a clear picture of NAPL distribution in the source 

area. Obviously, some characterization of the source area must be obtained, but the level 

of detail required remains a subject of discussion. 

2.1.4 Characterizing a NAPL Source Area 

There are four commonly used methods to characterize a NAPL source area: core 

sampling, cone penetrometry, geophysical logging, and partitioning inter-well tracer tests 

(PITTs). The first three methods involve direct examination of the source area. Core 

samples allow visual examination of the NAPL distribution in the saturated zone, can be 

used to estimate the boundaries of the source area, and can be extrapolated using Kriging 

analysis to estimate total NAPL mass. Core samples provide a valuable tool for source 

area characterization, but are generally inadequate for estimating total NAPL mass 

because of the wide variability in NAPL (especially DNAPL) distribution discussed in 

Section 2.1.2 (Broholm et al, 1999). Cone penetrometry provides similar data to that 

obtained from core samples, although data are obtained without the need to extract a core. 
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Typically, cone penetrometry utilizes laser-induced fluorescence (LIF) to identify NAPL 

in the subsurface. LIF is based on the principle that aromatic hydrocarbons fluoresce 

when contacted by a laser. Intrusive characterization methods such as core sampling and 

cone penetrometry have the drawback that disturbance of the subsurface could cause 

vertical mobilization of pooled DNAPL. Geophysical logging can be used to deduct the 

distribution of NAPL from subterranean characteristics, but is inadequate for locating 

NAPL mass. Unlike the first three methods that examine the source area directly, PITTs 

characterizes the source zone indirectly using partitioning and conservative tracers. 

Downgradient monitoring of aqueous phase contaminant concentrations can also be used 

to characterize the vertical distribution of the NAPL (Broholm et ah, 1999). 

2.1.5 NAPL Remediation 

There are four general objectives for groundwater remediation (Sellers, 1999): 

prevent exposure to contaminated groundwater, contain the contaminant plume, control 

or reduce the source mass, and finally restore the aquifer to the greatest extent 

practicable. The desirability of the remediation objective increases from preventing 

exposure to restoration, but attainability of objectives is limited by economic and 

technological constraints. Preventing exposure may involve providing an alternative 

water source to property owners affected by the contaminated groundwater. In the case 

of NAPL-contaminated groundwater, containment involves controlling the flow of the 

aqueous phase plume and in-situ or above ground removal of the aqueous phase 

contaminant. The hydrophobic properties of NAPLs, along with the variability in 

separate phase distribution, typically limit our ability to reduce the source mass and 

restore the contaminated aquifer. 
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Since traditional remediation methods such as pump and treat have proven to be 

ineffective at reducing the NAPL source mass, the strategy typically taken at sites with a 

NAPL source area has been to contain the aqueous phase plume, often using "pump and 

treat" extraction wells. Other source area and plume containment methods such as sheet 

piling, slurry walls, and funnel and gate systems have been used with some success, but 

all of these methods have high long-term costs and do nothing to reduce the source mass. 

Because of the inadequacy of pump and treat remediation of NAPL- 

contaminated groundwater, the EPA has suggested a "Triple Train Response" (Mercer, 

1991) as a possible remediation approach. In this three-step process, the first step would 

be to install extraction wells screened at an appropriate depth to remove mobile separate 

phase contaminant. The second step would use techniques to remove contaminant at 

residual saturation. In the final step, pump and treat would be used to remediate the 

aqueous phase plume. A field test of the Triple Train approach at a Superfund site in 

Laramie, Wyoming, removed 99.8% of the contaminant mass (Mercer, 1991). Emerging 

technologies such as cosolvent and surfactant that act directly on the separate phase 

contaminant would be applied at the second step of the triple train approach to reduce 

source mass. Other approaches for reducing source mass include steam injection and air 

sparging. Steam injection mobilizes the separate phase NAPL by lowering its viscosity, 

increasing its volatility, and inducing a hydraulic gradient that can mobilize the 

contaminant (Sellers, 1999). Air sparging, which involves the injection of air into the 

saturated zone, can be an effective source reduction method for volatile contaminants. 
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2.2 Cosolvent / Surfactant Flushing 

Laboratory and field tests involving cosolvents and surfactants have demonstrated 

the potential of the technologies as cost effective alternatives for remediation of 

contaminated sites (Anason, 1999). Cosolvent or surfactant flushing involves the 

injection of a cosolvent (surfactant) / water mixture, commonly called the cosolvent 

(surfactant) flood, near the NAPL source area. Through the processes of solubilization 

and mobilization, detailed in Section 2.2.1, a significant portion of the NAPL source 

mass is removed for subsequent above ground treatment in a relatively short period of 

time. 

2.2.1 Solubilization and Mobilization 

Surfactants, or surface active agents, affect the interface between the separate 

phase NAPL and the water. Surfactants are typically organic compounds with long 

hydrophobic non-polar carbon chains with a strongly polar hydrophilic end. Surfactant 

floods are often applied as a mixture of surfactants and co-surfactants (typically 

intermediate chain alcohols that act as surfactants in the presence of other surfactants) to 

enhance effectiveness. The imbedding of the hydrophobic end into the NAPL reduces 

the NAPL / water interfacial tension and may mobilize the contaminant. The formation 

of micelles, conglomerations of surfactant that form a separate hydrophophic phase into 

which the NAPL molecules can partition, increases the solubility of the NAPL in the 

water. This process is referred to as micellar solubilization, and occurs at a threshold 

surfactant concentration called the critical micelle concentration. Surfactants also form 

micro-emulsions, suspensions of microscopic droplets of one immiscible liquid in 

another immiscible liquid, in water. Surfactants include common detergents, and, 
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although only recently applied to groundwater remediation, have long been used by the 

oil industry for enhanced oil recovery (Lowe et al, 1999). 

Surfactant mixtures are classified according to the type of micro-emulsion that 

forms. In Winsor Type I systems, NAPL droplets form in a continuous water phase. In a 

Winsor Type II system, water droplets form in a continuous oil phase and are used when 

the goal is mobilization of the contaminant. Winsor Type III systems, or middle-phase 

systems, fall somewhere between the Type I and Type II systems, and result in lower 

interfacial tensions than can be achieved in either of the other two systems. Because of 

this, Type III systems result in solubilization of the contaminant. However, since Type 

HI systems require the optimization of a large number of parameters, they are difficult to 

apply in the field (Jawitz et al, 1998). 

Cosolvents are organic compounds, typically an alcohol, that are miscible in both 

water and NAPL. Cosolvents may be used with surfactants to enhance surfactant 

performance or on their own to increase dissolution or induce mobilization of the NAPL. 

When used at low concentrations, cosolvents increase the aqueous solubility of many 

organic contaminants. At higher concentrations, cosolvents may partition into both the 

water and NAPL phases, reducing the interfacial tension and viscosity of the NAPL to 

the point that mobilization may occur. If sufficient quantity of cosolvent / water mixture 

is present, the NAPL may solubilize solely into the cosolvent / water mixture (Lowe et 

al, 1999). Because organic compounds readily dissolve into organic compounds, 

NAPLs may enter the cosolvent flood in the aqueous phase and are able to be recovered 

for subsequent treatment. 
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As noted above, cosolvents and surfactants can enhance migration of separate 

phase NAPL in the saturated zone by two methods: solubilization or mobilization. 

Cosolvents or surfactants acting on the surface of the separate phase contaminant reduce 

the interfacial tension. In the case of surfactants, if a critical number of surfactant 

molecules are present, micelles form. NAPL is then able to partition into the micelle 

phase. Since displacement pressure is proportional to interfacial tension, the interfacial 

tension may be lowered to a point that mobilizes the NAPL. In this case, separate phase 

flow of the NAPL may occur. In some cases, mobilization may be the desired result, but 

in the case of DNAPLs, mobilization may result in loss of hydraulic control in which the 

separate phase NAPL does not flow with the flood. 

2.2.2 Concerns 

Because the solvents and surfactants used in a cosolvent flood may themselves be 

contaminants with regulatory maximum contaminant levels (MCLs), their use may be 

restricted and total recovery of the solvents after injection may be a critical concern. 

Another concern is the high cost resulting from the large quantity of solvent required to 

solubilize the separate phase NAPL. Field experiments have been conducted on 

recycling the solvent following aboveground treatment, but dissolved contaminants must 

be removed before re-injection. A variety of systems exist to purify and reuse the 

cosolvent / surfactant flood. Such systems are expensive to operate and have variable 

results (Anason, 1999). Additional problems can result from unstable flow conditions 

caused by density and viscosity differences between the cosolvent flood and groundwater 

(Armstrong Laboratory, 1999). Because of the potential for separate phase mobilization 

of DNAPLs, hydraulic control must be maintained. Another concern is uniform delivery 
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of the cosolvent to the source area to prevent partial removal or concentration of the 

contaminant. The NAPL source area and the hydraulic properties of the aquifer must be 

properly characterized to ensure interaction of the cosolvent or surfactant with the 

contaminant. 

2.3 Partitionine Inter-well Tracer Tests (PITTs) 

Partitioning tracer tests, first used by the petroleum industry in the early 1970s, 

take advantage of the chemical interaction between the separate phase organic 

compounds and tracers with an affinity towards those compounds. Four mechanisms 

result in retardation, or a reduced transport velocity, of the partitioning tracers: fluid 

partitioning, adsorption, ion exchange, and size exclusion. Fluid partitioning represents 

the most significant mechanism for tracer retardation when NAPL is present (Tang, 

1995). When a partitioning and non-partitioning (conservative) tracer are injected 

simultaneously into NAPL-contaminated groundwater and subsequently recovered, the 

difference in their transport velocity (as evidenced by the separation of their breakthrough 

curves) can be used to estimate the mass of organic present in the aquifer. 

Jin et al. (1995) first demonstrated PITTs in the field to characterize the NAPL 

saturation at sites with groundwater contamination and to assess remediation 

performance. Prior to conducting the test, the general location and dimensions of the 

source area must be determined, typically by using core sampling, cone penetrometry, or 

geologic mapping. The PITT involves the simultaneous injection of partitioning and 

conservative tracers at an injection well located up-gradient from the separate phase 

NAPL source area (Figure 3). The tracers are subsequently recovered at an extraction 

well located down-gradient from the separate phase NAPL. The NAPL saturation at the 
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site can be estimated from the separation of the breakthrough curves of the partitioning 

and conservative tracers (Figures 4). 

Injection Weil Extraction Well 

^   Water Table 

NAPL        *8%' A 
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Figure 3: General PITT Test Configuration 
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time 

Figure 4: Idealized Breakthrough Curves 

2.3.1 Limitations of PITTs 

As with any method of NAPL site characterization effort, there are limitations on 

the ability of PITTs to provide an accurate estimate of NAPL mass and cleanup 

efficiency. Research has shown that partitioning tracers tend to underestimate the 

saturation of NAPL in an aquifer (Nelson et al, 1999). The presence of NAPL at 
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Saturation in the pore spaces results in the reduction of the effective permeability of the 

region occupied by the NAPL. The preferential flow of the tracer around these regions of 

reduced hydraulic conductivity provides a likely explanation for the underestimation of 

NAPL mass. Rate limited mass transfer and mass loss in the tracer also contribute to the 

underestimation of NAPL mass (Nelson and Brusseau, 1996) Preferential tracer flow 

may result in the tracers following a similar flow path as the cosolvent / surfactant flood. 

Consequently, PITTs also tend to overestimate the cleanup efficiency of the flood. 

Because of the limitations associated with any characterization method, two independent 

methods (e.g., PITTs and core samples) are generally used to estimate NAPL mass and 

cleanup efficiency (Lowe et ah, 1999). 

2.3.2 Estimating NAPL Mass and Cleanup Efficiency from PITT Data 

This research utilizes two methods for estimating NAPL saturation and cleanup 

efficiency from PITT data: the method of moments and inverse modeling. 

2.3.2.1 Method of Moments 

Retardation (/?) can be defined as the ratio of the transport velocity of the 

partitioning tracer (yp) over the conservative tracer (vc) and can be calculated by (Sheely 

and Baldwin, 1982), 

R = l+    nw  " =-£- = -£- (1) 
l~Sn Vp tc 

where Knw is the partition coefficient of the tracer between the NAPL and water, 

Sn is the NAPL saturation, 

tp is the travel time of the partitioning tracer, 

and     tc is the travel time of the conservative tracer. 

Rewriting (1) in terms of NAPL saturation yields, 
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t  -t 
Sn= £—= . (2) 

tp+tn(Knw-l) 

The mean tracer travel times and the standard deviation for the travel time 

distribution can be estimated directly from the experimental data using the method of 

moments. For a continuous random variable, the expected (E) or mean (\i) value of a 

random variable X with a probability distribution function f(x) is defined as, 

Hx=E{X)=]xf{x)dx (3) 

The variance (a2) of X is defined as, 

O2 =E(X2)-[E{X)f (4) 

The first moment (|i'i,t) of the experimental data can be calculated using (3) 

normalized to the data. 

\°°tC(x,t)dt 
^,=7-  (5) 

C{x,t)dt 
JO 

Adjusting (5) for tracer injection time yields the equation for mean travel time for the 

tracers. 

\cßt 
*,-=-  (6) 

jCtdt 

where Q is the tracer concentration at time t, 

U is the mean tracer travel time, 

and     to is the tracer injection time. 
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The absolute second moment (|Li'2,t), equivalent to E(X2) in (4), is calculated 

using, 

\~t2C(x,t)dt 
»*=*p  C7) 

C(x,t)dt 
JO 

The variance for the mean travel time can be calculated by substituting (5) and (7) 

into (4) to obtain, 

<r2=A4,(-G"u)2 (») 

2.3.2.2 Inverse Modeling 

Inverse modeling involves determining a function of decision variables that 

provides a reasonable representation of experimental data. There are a variety of 

approaches to optimize variable values and determine the best model fit to the 

experimental data by minimizing an objective function that represents the difference 

between the model and experimental data. Most optimization approaches utilize a 

variation of linear programming in which restraints are placed on decision variables to 

represent them as linear functions. Another approach, combinatorial optimization, 

represents the decision variables as discrete values and determines the optimum 

combination of those discrete values (Reeves, 1993). The two general classes of 

approaches to optimization problems described above can be classified as derivative 

based methods and search methods respectively (Lybanon and Messa, 1999). 

One characteristic of combinatorial optimization is the existence of many locally 

optimum solutions. In other words, solution sets exist that may be more optimum than 

adjacent solution sets. Consequently, convergence may occur at a solution set that does 

not represent the optimum of all solution sets. Combinatorial optimization methods 
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based on linear programming use exact methods to guarantee convergence at a global 

optimum for the objective function (Reeves, 1993). However, because decision variables 

are constrained by linear or non-linear functions, convergence at the global optimum for 

the objective function does not necessarily guarantee that the results represent the best 

possible solution set for the model. A heuristic approach, on the other hand, utilizes a 

"seeking" method (Reeves, 1993) that does not guarantee convergence at a global 

optimum. It is possible, however, that iterative optimization using a heuristic approach 

can provide a good solution quicker than an approach that guarantees finding a global 

optimum for the objective function. Genetic algorithms (GAs), discussed in detail in 

Section 2.4, are an example of a heuristic approach to a combinatorial optimization 

problem. This research evaluates the applicability of GAs to groundwater transport 

modeling. 

A variety of mathematical models have been developed for groundwater flow and 

remediation problems. Although these models may provide a reasonable simulation of 

groundwater flow and contaminant transport, site complexity often prevents their 

application due to the difficulty and expense associated with data collection and 

parameter quantification (Wang, 1997). 

2.3.2.2.1 Analytic Modeling Approach 

Analytic solutions to the differential equations that describe groundwater 

transport provide one modeling approach. The simplifying assumption of steady one- 

dimensional flow will be used in this research to develop the chemical transport model. 

The assumption of one-dimensional flow is generally inadequate for a three-dimensional 

flow problem and would be expected to provide reasonable results only for homogenous 
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conditions that would typically not exist in the field. Therefore, a close correlation of the 

model results to the field data is not expected. Nevertheless, the analysis should be 

sufficient to demonstrate whether GAs may be an appropriate method for solving this 

type of problem. 

The partial differential equation that describes one-dimensional chemical 

transport in groundwater is (van Genuchten and Alves, 1982). 

— (6D—-evc)- — (9c + pbS) = pw6c + iispbs-ywd-yspb (9) 
ox       ox ot 

where c is the solute concentration [ML"3], 

s is the sorbed solute concentration [MM"1], 

0is the volumetric moisture content [L3L3], 

D is the dispersion coefficient [L2!"1], 

v is the groundwater pore velocity [LT1], 

Pb is the porous medium bulk density [ML"3], 

x is the distance [L], 

t is the time [T], 

ßw is the liquid phase first-order decay constant [T1], 

ßs is the solid phase first-order decay constant [T1], 

yw is the liquid phase zeroth order production constant [ML"3T"1], 

and     ys is the solid phase zeroth order production constant [T1]. 
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The assumption of a linear sorption isotherm will be used in this research. 

Therefore, 

s = kc (10) 

where k is the partitioning coefficient. 

The retardation (R) of the transported chemical is given by: 

R = l + ^- (11) 
0 

The rate coefficients \i and y are defined as: 

H = Vw+^f- (12) 

r=y„+1f- (13) 

Substituting (10) - (13) into (9) yields: 

„32c      dc    ndc .... 
D—j -v-—R— = flc-r (14) 

dJC ox        d/ 

Disregarding first-order decay and production of the transported chemical and 

rearranging (14) yields the governing equation for the one-dimensional advective / 

dispersive transport model used in this research. 

.dc „32c dc 
— = D—--v— 
dt        dx        dx 

R— = D—-v— (15) 

van Genuchten and Alves (1982) provide the analytic solution to (15) assuming 

the following initial and boundary conditions. 
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The initial and boundary conditions are: 

c(x,0) = C,. 

c(0,0 = C0 

c(0,r) = 0 

0 < t < t0 

t>t0 

dx 
KO = o 

Note that the boundary condition at x = 0 specifies a pulse of chemical at 

concentration Co from time t = 0 to time t = to. The solution to (15) with the above initial 

and boundary conditions is, 

c(x,t) = Ci+(C0-Ci)A(x,t) 0<t<t0 (16a) 

c(x,t) = C,. + (C0 - C()A(x,t)-CQA(x,t-t0) t>t0 (16b) 

where, 

1 
A(x,t) = -erfc 

Rx-vt 
vl/2 

1 
+—exp 

2    y 

fvx^   A  Rx + vt   ^ 

v£>, 
erfc 

[2(DRty'z ) 2(DRty 

2.3.2.2.2 Stochastic Modeling Approach 

Field experiments have demonstrated that the heterogeneity in an aquifer can 

generally be represented stochastically by a lognormal distribution (Domenico and 

Schwartz, 1998). Enfield (2000) describes a modeling approach in which the flow field 

can be conceptualized as a bundle of flow tubes, each with different travel times. The 

tracer transport times in the flow field can be described as having a lognormal 

distribution with a mean travel time (mtt) and standard deviation (o). The breakthrough 

curve can be modeled by defining the transport time of individual flow tubes as, 
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r/ = fl*exp(normsinv(//JV)*<7) (17) 

where 7> is the travel time (normalized as pore volumes Qi/n) for flow tube /, 

/ = 1, 2, 3 ... (iV-1), 

Qi is the Volumetric flow rate in tube I, 

n is the porosity, 

R is the retardation, 

N is the number of flow tubes, 

normsinv is the inverse of the standard normal cumulative distribution, 

and      (7 is a unitless fitting parameter that describes the actual model standard 

deviation. 

If the concentration is normalized as relative concentration (Cr = C/Co, where Co 

equals the tracer concentration in the injected slug), the normalized travel times for 

individual flow tubes from (17) can be used to model the relative concentration at the 

extraction well. For time (t) less than the length of tracer injection time (t0), the relative 

concentration at the extraction well can be modeled as a step function by summing the 

relative concentrations of the individual flow tubes. The relative concentration for an 

individual flow tube is 1/iV if the tracer within that flow tube has reached the extraction 

well, i.e., the travel time (7» is less than the normalized time (t/mtt). If the tracer within 

the flow tube has not yet reached the extraction well, the relative concentration is zero. 

For t greater than t0, the relative concentration at the extraction well can be modeled by 

including a negative step function beginning at to. The relative concentrations for the 

negative step function are determined in a similar manner to the step function except that 

travel times for individual flow tubes are compared to (t - to) I mtt. By the principle of 

26 



superposition, the relative concentration at the extraction well can be modeled by 

subtracting the negative step function from the step function (Figure 5). 

Posftft/e Step 
Function (tit)) 

Model Breakthrough 
Curve {((+)-'(-)) 

lime 

Figure 5: Step Functions and the Principle of Superposition 

2.4 Genetic Algorithms 

John Holland and his associates at the University of Michigan developed genetic 

algorithms (GAs), a mathematical optimization technique based on the principles of 

natural selection, in the 1960s. Early applications of GAs were in the realm of artificial 

intelligence and pattern recognition programs, but the flexibility of the GA makes it 

appropriate for a variety of optimization problems including a wide range of 

environmental and remediation modeling applications (Reeves, 1993). 

2.4.1 GA Terminology and Methodology 

Because GAs are based on the principles of natural selection, genetic terms are 

used. The process by which GAs determine an optimum solution set can most easily be 

described using analogies to genetics and reproduction. The user defines a population of 

decision variable sets, or chromosomes (also referred to as strings or individuals). The 
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decision variables that form the chromosomes are analogous to genes, or alleles. Alleles 

are typically represented in binary code, although encoding can also use real or integer 

values (Figure 6). 

Chromosome or String 
■ f.  .   .   - -n, 

p 0 1 10 1  0 1 0 
ö.- 

U: 1 0 110  10 1 i 
i 1 1 0 10 110 
IT 0 1 0 110 0 1 

^Hallele 

Figure 6: GA Terms 

The user can define a value range and provide initial guesses for the variables to 

be optimized. The GA encodes the initial values, along with additional randomly 

selected values, into binary strings that form the initial population, the size of which is 

defined by the user. The GA then applies the processes of selection, crossover, and 

mutation to form subsequent populations. Selection occurs when the GA evaluates the 

fitness of individuals within the population, and the fittest reproduce to form offspring. 

The GA determines fitness through comparison to optimization criteria defined by the 

user. For example, if minimizing an objective function in a model defines the 

optimization criteria, the individuals within a population that return the lowest value for 

that objective function are selected for reproduction. Reproduction occurs through 

crossovers between randomly selected pairs that swap a portion of their gene string (the 

crossover point is also randomly selected). The GA selects a percentage (determined by 
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the user) of the new population (composed of parents and offspring) for mutation, in 

which the binary value of an allele changes.  The processes of crossover and mutation 

produce a new population comprised of the fittest individuals from the initial population 

and their offspring. The GA evaluates the fitness of individuals within this new 

population, and the process repeats until stop criteria are met (Figure 7). 
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Figure 7: GA Process 

2.4.2 Schema Theorem 

The schema theorem provides the theoretical basis for the GA to evaluate fitness 

of individuals within a population. A schema (plural schemata) defines a subset of the 

population composed of similar individuals. For example, the chromosomes {110 0 11 

0 } and 
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{0111011} are both members of the schema { * 1 * * * 1 * }. Both chromosomes 

will be members of several schemata that may contain one or both of the chromosomes. 

The categorization of individuals into schemata allows determination of an average 

fitness for each schema. This intrinsic parallelism allows the GA to evaluate the fitness 

of individuals within a population with fewer trials. Through crossover and mutation, the 

representation of a schema within a population will increase or decrease with relative 

fitness (Reeves, 1993). 

2.4.3 Effects of GA Parameters on Performance 

Knowledge of the decision variables that the GA will optimize can be used to 

provide initial guesses or ranges for parameter values that may enhance the performance 

of the GA. However, the possibility of early convergence to a solution that does not 

represent the global optimum exists. The required population size is related to the length 

of the binary code strings that comprise the population, but experience has indicated that 

populations of 30 individuals are adequate for most situations. Increasing the mutation 

rate decreases the probability of early convergence at a solution that does not represent 

the global optimum, but can significantly increase the time required for the GA to 

optimize the decision variables (Reeves, 1993). 

2.4.4 Applications of GAs to Groundwater Remediation Problems 

Several papers have been written about the application of GAs to groundwater 

remediation problems. Ritzel et al. (1994) developed a GA to handle multiple objective 

groundwater pollution containment problems and reported favorable results in designing 

a dual objective pumping system that maximized reliability and minimized cost. Garrett 

et al. (1999) applied a GA to a bioremediation problem for a TCE contaminated aquifer. 
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The GA was used to optimize a number of engineered parameters that affected the flow 

imposed by groundwater circulation wells, as well as biodegradation kinetics. Harrouni 

et al. (1996) combined GAs with the boundary element method for optimization of 

pumping well placement and groundwater parameter estimation. This research 

investigates the applicability of GAs to inverse modeling of PITT data. 

2.5 Source of Data 

The data used in this research was collected during field tests of the cleanup 

effectiveness of a variety of cosolvent / surfactant mixtures. The tests were conducted at 

Operable Unit 1 (OU1), Hill AFB, Utah (Rao et al, 1997; Falta et al, 1999, Jawitz et al, 

1998). OU1 is the site of several former disposal sites, including chemical disposal pits 

in which a variety of liquids including petroleum hydrocarbons such as jet fuel and 

chlorinated solvents were disposed (Falta et al, 1999). The aquifer at the site is a 

shallow, unconfined aquifer approximately 6.1 m thick underlain by a thick clay unit that 

extends to depths greater than 90 m (Rao et al, 1997). The tests involving cosolvent / 

surfactants floods were conducted within hydraulically isolated test cells constructed by 

driving interlocking sheet piling 2-3 m into the underlying clay layer (Figures 8 & 9). 

Pre-flood and post-flood PITT tests were used (in conjunction with other characterization 

methods) to estimate the spatial distribution of the NAPL and cleanup efficiency. Tests 

conducted at Cells 8 and F provide the data for this research. 
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Figure 8: Plan View of Test Cell Configuration 
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Figure 9: Elevation View of Test Cell Configuration 

2.5.1 Cell 8 

Tests conducted by researchers from the University of Florida, in conjunction 

with the 
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US EPA and USAF (Jawitz et al, 1998), examined the effectiveness of a Windsor Type I 

surfactant/alcohol (surfactant/co-surfactant) mixture as a single-phase micro-emulsion 

(SPME) in a hydraulically isolated test cell measuring 2.8m x 4.6 m. The composition of 

the NAPL present at this site is shown in Table 1. Pre- and post-flood NAPL saturation 

was determined using soil samples and the PITT technique. Results indicated removal of 

90-95% of the most prevalent NAPL components. 

Target Analyte Mass Fraction, 
(g/100g NAPL) 

/?-Xylene .144 
1,2,4-Trimethylbenzene .4388 
n-Decane ,477 
n-Undecane 1.573 
n-dodecane .698 
n-tridecane .285. 

Table 1: Target Analyte Mass Fractions in the NAPL (Jawitz et al, 1998) 

2.5.2 CellF 

Tests conducted by researchers from the University of Florida, in conjunction 

with the US EPA and USAF (Rao et al, 1997), examined the efficiency of a cosolvent 

solubilization flood, consisting of water and two water-miscible alcohols, as a 

remediation technique for a NAPL-contaminated aquifer. The tests were conducted 

within a hydraulically isolated test cell measuring approximately 4.3 m x 3.5 m. Pre- 

flood characterization of the test cell was conducted using soil cores and groundwater 

samples, and the volume and distribution of the NAPL was estimated with the PITT 

technique. The composition of the NAPL contaminant present at the site is shown in 

Table 2. Following the cosolvent flood, soil cores and groundwater samples were 
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collected to determine the concentrations of NAPL constituents remaining. Results 

indicated nearly a 90 - 99% removal in the upper 1 m zone, and removal efficiencies 

dropped to 70 - 80% in the bottom 0.5 m above the confining clay layer. Data from the 

pre-flood PITTs were reported by Annable et al. (1997). 

Target Analyte Mass Fraction, 
xlO3 

1,1,1 -Trichloroethane 0.016 
p-,m-Xylene 0.17 
1,2-Dichlorobenzene 6.1 
Toluene 0.074 
1,3,5-Trimethylbenzene 0.83 
n-Decane 5.2 
n-Undecane 16 
Napthalene 0.11 

Table 2: Target Analyte Concentrations in the NAPL (Rao et al, 1997) 
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Chapter 3. Experimental Method 

3.1 Introduction 

The application of GAs as a "best fit" parameter determination method to help 

interpret PITT results was evaluated using two modeling approaches. The first approach 

applied a GA to estimate flow parameters (v, D, and R) for the analytic solution to the 

one-dimensional advective / dispersive equation (16). The second approach used a GA to 

estimate fitting parameters for a stochastic model based on the assumption of a lognormal 

distribution of travel times for the breakthrough curve (17). Parameters were optimized to 

fit model simulations to breakthrough curve data for partitioning and conservative tracers 

obtained from PITTs at two test cells at Hill AFB, Utah. The results obtained from the 
» 

GA model were used to estimate the NAPL saturation and cleanup efficiency of 

cosolvent / surfactant floods at those test cells. The NAPL saturation and cleanup 

efficiency estimates from the GA models were compared to estimates obtained directly 

from the experimental data using the method of moments. 

3.2 GA Models 

3.2.1 Evolutionary Solver 

The GA used in this model is an optimization tool included with Premium Solver 

from Frontline Systems (Incline Village, NV), an add-in for Microsoft Excel. For this 

research, the educational version of Premium Solver was used. The educational version 

differs from the full version in that it limits the number of variables to be optimized to 

250 (compared to 5000 for the full version), but the capabilities of the educational 

version are sufficient for this research. Figure 10 shows the Premium Solver Parameters 

window. Note that the Standard Evolutionary optimization method is selected. At this 
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interface, the user defines the objective function, optimization constraint, variables, and 

variable constraints. The sample optimization problem in Figure 10 shows that the 

objective function is defined in cell $N$9. The GA is directed to find the minimum value 

for the objective function by changing the decision variables (v, D, n) located in cells 

$D$21 :$D$31. Upper and lower bounds are defined for the decision variables, and an 

integer constraint is placed on "n". 

Solver Parameters mm 

li 
Set «dett: 1   j| m ÄKS i Solved 1 

; Si&ject to the Constraints: 

^th^^gVariabletetfö':^\'••'.':'•';, ^^^-^J^*!^^®^:^.^ VyiMagMfr 
"' "   '""'—^-j ■;;;"IgjMsff';|v^vV';••• <&^£?j$\f 

':^v&>H:'   -. {Standard Evolutionary j£j& 

jffff    -Add :,;\   " Standard"    |- 

Ä|ij   Change    j Reset All    | 

>vj:;: ; PeieteWi-j^--:'•   .- Hip^r]^ 

$D$21 :$D$31 :<= $H$21 :|H$31 
$D§2i#i;31 >= is|21 :|G$3i: 
n = integer 

Figure 10: Premium Solver for Excel User Interface 

The Solver Options window (Figure 11) allows the user to define how the GA 

will function. The Max Time and Iterations limits become a factor if the GA does not 

converge on an optimum solution. The limits stop the program in a reasonable amount of 

time and allow the user to determine whether to continue or adjust other options to 

improve performance. Precision helps define the length of the encoded strings and can 

affect the time required for the GA to perform its search and optimization routine. 

Because of this, the precision required should be carefully evaluated and minimized. 
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Convergence defines the relative improvement in fitness that must be achieved for the 

GA to continue. The effects of population size and mutation rate on GA performance 

were discussed in Section 2.4.3. A larger population and higher mutation rate increase 

the chances of finding a global rather than a local minimum for the objective function, 

but can significantly impact the length of time required for the GA to converge on a 

solution. 
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Figure 11: Solver Options Window 
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3.2.2 Objective Function 

The objective function that was minimized in the model was the sum of the Chi 

Square function for each data point. 

z2=^(exp,-mod,.)2 (18) 

tf        exp,. 

where expj is the experimental (measured) tracer concentration at time tj, 

mod, is the model tracer concentration at time ti, 

and     n is the number of data points. 

The Chi Square function was chosen because it accounts for the scaled difference 

between the model and PITT data. 

3.2.3 Analytic Model 

The analytic model used discrete values for hydraulic and chemical parameters 

for the analytic solution to the one-dimensional advective / dispersive equation described 

in Section 2.3.2.2.1. Several simplifying assumptions, discussed in Section 2.3.2.2.1, 

were made in this analysis to minimize the complexity of the analytic model and the . 

number of parameter values that the GA would be required to optimize. The 

concentration of the injected tracer solution (Co), the tracer injection time (to), and the 

distance between the injection and extraction wells (x) were constants in the analytic 

model. It should be noted that assuming that Co is constant would affect the accuracy of 

the model since mass loss to other extraction wells or through degradation is not taken 

into consideration. As a result, the model may tend to overestimate, retardation and 

NAPL saturation. Heterogeneity in the aquifer, and the corresponding variation in flow 

parameters, were accounted for by applying the deterministic parameter values to a 

discrete number of layers of equal thickness. 
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3.2.3.1 Conservative Tracer Model 

The breakthrough curves for the conservative tracer (both pre- and post- 

remediation) were used to estimate the hydraulic parameters (groundwater pore velocity 

and dispersion coefficient) and optimize the number of layers using Evolutionary Solver 

(Figure 12). 
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Figure 12: Conservative Tracer (Analytic Model) 

3.2.3.1.1 Optimizing the Number of Layers 

Because Genetic Algorithms utilize a random search to assign values to alleles, 

linking constraints are necessary to drive the GA towards optimizing both parameter 

values and number of layers. Such constraints are necessary because the GA assigns 

values for the flow parameters (vj and DO in all five layers even though the GA may not 
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have selected all five layers (i.e. n < 5). For example, if n = 4, the GA has assigned 

values to v5 and D5 even though those layers are not included in the analytic calculations. 

As a result, the values for v5 and D5 may not provide a_good fit of the model to the PITT 

data, but they do not affect the fitness of the individual because 

they are not included in the analytic calculations. However, if layer five is selected in a 

subsequent generation, the values that have already been assigned to the layer parameters 

hurt the fitness of the individual, preventing it from being selected for crossover. Over 

multiple generations, this creates a bias towards optimizing the objective function with 

one layer. To drive the GA to investigate potential solutions with more than one layer, a 

penalty is added to the objective function for each layer that has not been selected but has 

parameter values assigned. To allow this linking constraint to be incorporated into the 

model, layer variables (Yl, Y2,..., Y5) were created, and logic constraints in the form of 

penalties to the objective function were added to ensure layers were selected sequentially 

(Figure 13). 
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Figure 13: Logic and Linking Constraints 

Increasing the number of layers improves the fit of the model breakthrough curves 

to the experimental data, but there is a corresponding increase in model complexity. To 

achieve the goal of optimizing the fit of the model breakthrough curve while minimizing 

model complexity, a penalty was added to the objective function as the number of layers 

increased. Several model runs using this approach indicated a bias in the model for the 

GA to optimize the parameters using five layers. This bias stemmed from contradictory 

requirements for penalty values assigned to linking constraints and is discussed in detail 

in Section 4.2.1.  As a result, individual model runs were performed for one to five 

layers. The results obtained from these runs were analyzed to determine the optimum 

number of layers that balanced goodness of fit with model complexity. The resulting 

number of layers was used in subsequent runs. 
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3.2.3.2 Partitioning Tracer Model 

To estimate the retardation of the partitioning tracer in pre- and post-flood PITTs, 

the linear pore velocity and dispersion coefficient values estimated from the conservative 

tracer model were held constant and the GA was applied to optimize the model by 

varying the retardation value in each of the layers. Figure 14 shows the layout for the 

partitioning tracer model. 
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Figure 14: Partitioning Tracer Model (Analytic Model) 
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The NAPL saturation in each layer may be calculated using a modified form of 

equation (2) that gives NAPL saturation as a function of retardation. 

(S„),=——— (19) 
"'     K^+R-l 

The assumption that the model layers have equal thickness is implicit in the 

model, so the average NAPL saturation was calculated by; 

Ecu 
(Sn)aVe=-  (20) 

n 

where n is equal to the number of layers. 

3.2.4 Stochastic Model 

The ability of the GA to optimize parameter values for the stochastic modeling 

approach described by Enfield (2000) was evaluated using an Excel model and 

Evolutionary Solver. Co and to were input to the model as constants; the problems 

associated with the assumption of a constant Co are discussed in Section 3.2.3. The value 

of stochastic function was determined for 100 flow tubes in each layer. Arrays were 

constructed that assigned a value of zero or one to each flow tube as a function of time 

based on the following criteria: 

If the stochastic function is defined as: 

f(I) = R * EXP (NORMSINV (IZN) * a) 
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where EXP is the exponential function in Excel, 

NORMSINV is the function in Excel that returns the inverse of the 

standard normal cumulative distribution, 

I is the number identifying the individual flow tube, 

N is the number of flow tubes, 

R is the retardation of the tracer, 

and     a is the standard deviation of the stochastic function that describes the 

breakthrough curve. 

At a given time, t, the cell values within the array for the positive step function are 

determined by: 

for I = 1 ... 99 

if(f(I)<t/mtt) 

cell value = 1 

else 

cell value = 0 

At a given time, t, the cell values within the array for the negative step function 

are determined by: 

for I = 1 .. 99 

if(f(I)<(t-to)/mtt) 

cell value = 1 

else 

cell value = 0 
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where mtt is the mean travel time for the tracer 

and      t0 is the injection time for the tracer. 

The normalized model concentrations at a given time are determined by summing 

the cell values associated with each flow tube and dividing by the number of flow tubes. 

3.2.4.1 Conservative Tracer Model 

The breakthrough curves for the conservative tracer (both pre- and post- 

remediation) were used to estimate the standard deviation of the stochastic function and 

the mean travel time for the tracer. Parameter values were estimated for each layer. 

Figure 15 shows the layout for the conservative tracer model with three layers. 
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Figure 15: Conservative Tracer Model (Stochastic Model) 
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3.2.4.2 Partitioning Tracer Model 

As in the analytic model, the parameter estimates from the pre- and post-flood 

stochastic conservative tracer models were held constant in the partitioning tracer model 

and the GA was applied to optimize the model by varying the retardation values in each 

of the layers. NAPL saturation was estimated using the method described in Section 

3.2.2.2. Figure 16 shows the layout of the stochastic partitioning tracer model. 
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Figure 16: Partitioning Tracer Model (Stochastic Model) 

3.3 Inverse Modeling of Experimental Data 

The method of moments, described in Section 2.3.2.1, was used to estimate the 

mean travel time from the experimental data and calculate NAPL saturation and cleanup 

efficiency. The data were extrapolated to account for retardation in the tail. The inverse 

modeling results were compared to the results obtained from the analytic and stochastic 

models. 
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Chapter 4. Analysis 

4.1 Overview 

The use of GAs as a parameter optimization method for PITT interpretation was 

evaluated by determining the goodness of fit of model breakthrough curves to PITT 

experimental data. The utility of the models as a design and decision making tool was 

evaluated by comparing the estimates for NAPL saturation and Cleanup efficiency 

obtained from the models to those calculated using the method of moments. 

4.2 Analytic Model 

4.2.1 Optimizing the Number of Layers 

As discussed in Chapter 3, initial results using the analytic model indicated that 

conflicting constraints prevented the GA from returning an optimum number of layers for 

the model that met the desired criteria. Large linking constraint penalties to the objective 

function associated with assigning parameter values to non-selected layers were 

necessary to drive the GA towards examining solutions with multiple layers. On the 

other hand, it was also necessary to incorporate penalties for extra layers, in order to 

minimize the number of fitting parameters. However, these penalties would be 

necessarily small when compared to the linking constraint penalties. As a result, they had 

no impact on the model, and the GA continued to demonstrate a bias towards maximizing 

the number of layers. 

Individual model runs were conducted using the pre-flood conservative tracer data 

from Cell 8 to empirically determine the number of layers that would be used in 

subsequent evaluations. Results indicated significant improvement when the number of 

layers was increased to three, with only minor improvement in model fit with further 
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increases in the number of layers (Figure 17). Because the geometry of the breakthrough 

curves was similar for all data sets, subsequent model runs were based on the assumption 

that three layers would allow a reasonable fit of the models to the experimental data. 

This decision was based on the premise that increasing the number of layers significantly 

impacted the amount of time required to optimize the model parameters and, in principle, 

less fitting parameters are preferable. 

2 3 4 

# of Layers (n) 

Figure 17: Value of Minimized Objective Function with Increasing "n" 

4.2.2 Cell 8 

The breakthrough curves representing the analytic solution to steady state one- 

dimensional advective dispersive equation (hereafter referred to as model breakthrough 

curves) are represented as a solid line along with the experimental data points in Figure 

18. The results demonstrated that the analytic model breakthrough curve provided a good 

fit to the experimental data. The extraction well data indicated a bimodal peak in 

concentration for the pre-flood conservative tracer breakthrough curve and the pre- and 

post-flood partitioning tracer breakthrough curves. Modeling the breakthrough curves 
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using superposition of multiple layers with discrete parameter values accounted for this 

characteristic of the extraction well data. 
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Figure 18: Analytic Model Breakthrough Curves and Experimental Data (Cell 8) 

Estimates for flow parameters developed by the model (Table 3) were within the 

expected range for a sand and gravel aquifer. Jawitz et al. (1998) reported an average 

hydraulic conductivity of 0.36 m/hr across the test cell, and an effective porosity of 0.14. 

Jawitz et al. did not report the hydraulic gradient for Cell 8. However, the average linear 

pore velocity estimated by the model (0.23 m/hr) would be consistent with the results 
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reported by Jawitz et al. for a hydraulic gradient of approximately 0.1 m/m, a reasonable 

value. 

Because removal of NAPL mass would be expected to increase the relative 

permeability of the aquifer, an increase in velocity estimates was expected for the post- 

flood models. As seen in Table 3, this was not found. However, the model results did 

show a general correlation between layer velocity and NAPL saturation. Lower 

velocities were associated with higher R values as would be expected if the presence of 

NAPL decreases relative permeability. 

A longitudinal dispersivity of approximately 0.1 m would be expected based on 

the scale of the test cell experiment (Domenico and Schwartz, 1998). The dispersion 

values for Layer 1 and Layer 2 in the pre-flood model and for Layer 1 and Layer 3 in the 

post-flood model are consistent with this expectation. The GA returned a value for the 

dispersion coefficient for Layer 2 in the post-flood model, but this value was not included 

in the calculations (since V2 = 0) and did not affect the model fit to the data. 

Cell ID: 8 
EW 1 

Model Type Analytic 
Opt Method GA 

Test Type 

Pre Flood 

Pre Flood 

Post Flood 

Post Flood 

Tracer Type 

Conservative 

Partitioning 

Conservative 

Partitioning 

Layer ID 
1 

Parameter Estimates 

v (m/hr) 
0.425 
0.189 

D (rrf/hr) 

1.000 

Table 3: Analytic Model Parameter Estimates (Cell 8) 
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Parameters fitted to the partitioning tracer data returned retardation (R) values 

indicative of NAPL mass removal (Table 3). The model pre- and post flood 

breakthrough curves are shown in Figure 19. Note that the partitioning tracer breaks 

through before the conservative tracer in the post-flood breakthrough curves, but due to 

tailing has a retardation factor greater than one. These characteristic of the breakthrough 

curve for the partitioning tracer (early breakthrough and tailing) may be indicative of rate 

limited sorption (Brusseau and Rao, 1989). 
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Figure 19: Analytic Model Pre- and Post-Flood Breakthrough Curves (Cell 8) 

Table 4 shows the pre- and post-flood NAPL saturation, as well as the cleanup 

efficiency, estimated by the model. Because v for layer 2 was optimized at zero, the flow 

field has essentially been modeled with two layers in the post-flood model. As a result, 

layer 2 was not included when calculating the average post-flood saturation. 

Because Jawitz et al. (1998) reported only pre- and post-flood concentrations for 

the target NAPL constituents in their study, their results do not provide a basis for 

comparing the NAPL saturation estimated by the model. Additionally, the model 
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estimates for NAPL saturation and cleanup efficiency used data from only one extraction 

well. Since the estimates from one extraction well should not be considered 

representative of the entire test cell, a direct comparison to the results reported by Jawitz 

et al. (1998) is not possible. However, a comparison can indicate whether the model is 

providing a reasonable representation of the experimental data. Jawitz et al. (1998) 

reported a cleanup efficiency of 72 %. It is likely that their results more accurately reflect 

actual cleanup efficiency since, beyond the reasons discussed above, the estimates were 

obtained using data from both the PITTs and core samples. 

Cell ID: 8 
EW 1 

Model Type Analytic 
Opt Method GA 

Partitioning Tracer 2,2-dimethyl-3-pentanol 

Km» 7.42 

Test Type Layer ID Sn Average Sn 

Pre Flood 
1 0.0618 

0.0785 2 0.0859 
3 0.0877 

Post Flood 
1 0.0163 
2         ■WBffiOtiolP 0.0129 

3 0.0095 
Cleanup Efficiency 83.57% 

Table 4: Analytic Model Estimate of NAPL Saturation and 

Cleanup Efficiency (Cell 8) 
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4.2.3 CellF 

Model breakthrough curves for Cell F demonstrated a reasonable fit to the 

experimental data (Figure 20). The bimodal peak of the breakthrough curves observed in 

the models of the Cell 8 data was also observed in the post-flood models for Cell F, and 

was represented by the model. 
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Figure 20: Analytic Model Breakthrough Curves and Experimental Data (Cell F) 

Estimates for flow parameters developed by the model (Table 5) were within the 

expected range for ä sand and gravel aquifer. The average linear pore velocity estimated 

by the model was 0.22 m/hr. The hydraulic conductivity reported by Rao et al. (1997) 

was 0.72 m/hr, and the effective porosity was reported as 0.20. The linear pore velocity 
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estimates from the model would be consistent with those reported by Rao et al. (1997) if 

the hydraulic gradient is 0.06, a reasonable value (though not reported). 

The model estimates for the post-flood velocities reflected the expectation that 

increased velocities may result from the increase in effective permeability of the aquifer 

following NAPL mass removal. The model results also showed the general inverse 

relationship between velocity and NAPL saturation that was seen in the results from 

Cell 8. 

Cell ID: f 
EW 3 

Model Type Analytic 
Opt Method GA 

Parameter Estimates                   | 

Test Type Tracer Type Layer ID v (m/hr) D (m2/hr)    I R          | 

Pre Flood Conservative 
1 0.317 0.093       ■ 
2 0.088 0.197       ■ 
3 0.249 0.345       ^ 

Pre Flood Partitioning 
1 1.636 
2 2.970 
3 2.613 

Post Flood Conservative 
1 0.417 0.052       H 
2 0.169 0.117       ■ 
3 0.239 0.038        ^ 

Post Flood Partitioning 
1 1.136 
2 1.477 
3 1.215 

Table 5: Analytic Model Parameter Estimates (Cell F) 

Optimization of the pre- and post-flood analytic model returned retardation (i?) 

values indicative of NAPL mass removal (Table 5). Figure 21 shows the model pre- and 

post-flood breakthrough curves for the conservative and partitioning tracers. 
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Figure 21: Analytic Model Pre- and Post-Flood Breakthrough Curves (Cell F) 

Table 6 shows the pre- and post-flood NAPL saturation, as well as the cleanup 

efficiency, estimated by the model. The cleanup efficiency of 77.19 % estimated by the 

model is comparable to the cleanup efficiency of 82.61 % estimated from PITT results 

and reported by Rao et al. (1997). Reasons for the differences between the model and 

reported data were discussed in Section 4.2.2. 

Cell ID: f 
EW 3 

Model Type Analytic 
Opt Method GA 

Partitioning Tracer 2,2-dimethyl-3-pentanol 

■Viw 7.42 

Test Type Layer ID s„ Average S„ 

Pre Flood 
1 0.0789 

0.1558 2 0.2098 
3 0.1786 

Post Flood 
1 0.0180 

0.0355 2 0.0604 
3 0.0282 

Cleanup Efficiency 77.19% 

Table 6: Analytic Model Estimate of NAPL Saturation and 

Cleanup Efficiency (Cell F) 
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4.3 Stochastic Model 

4.3.1 Cell 8 

Figure 22 shows the stochastic model simulations compared to experimental 

breakthrough data from Cell 8. The models of the pre-flood breakthrough curves 

provided a reasonable fit to the experimental data, although the model tended to 

underestimate the peak concentrations. Model runs performed by Enfield (2000) in 

which the number of flow tubes were varied indicated that increasing the number of flow 

tubes enables the model to account for peak concentrations by "smoothing" the curve. 

The model in this research was limited to using a total of 300 flow tubes (three layers, 

each with N=100 flow tubes) because, due to the size of the arrays in Excel, the GA was 

unable to optimize the model fitting parameters for N>100. 
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Figure 22: Stochastic Model Breakthrough Curves and Experimental Data (Cell 8) 
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Table 7 shows the stochastic parameter estimates for Cell 8. The model 

demonstrated the same inverse relationship between layer velocity (reflected in the layer 

mean travel time (mtt)) and NAPL saturation (indicated by R) as was seen when the 

analytic model was applied to Cell 8. 

Cell ID: 8 
EW 1 

Model Type Stochastic 
Opt Method GA 

Parameter Estimates                   | 
Test Type Tracer Type Layer ID o mtt (hrs)     I R_l 

Pre Flood Conservative 
1 0.539 19.997      ■ 
2 0.523 18.845      H 
3 0.704 28.822       ^ 

Pre Flood Partitioning 
1 2.090 
2 1.177 
3 2.286 

Post Flood Conservative 
1 0.673 28.224      H 
2 0.413 35.699      H 
3 0.688 24.617       ^ 

Post Flood Partitioning 
1 1.310 
2 1.000 
3 1.441 

Table 7: Stochastic Model Parameter Estimates (Cell 8) 

Figure 23 shows the separation of the conservative and partitioning breakthrough 

curve from the pre- and post-flood stochastic models for Cell 8. 
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Figure 23: Stochastic Model Pre- and Post- Flood Breakthrough Curves (Cell 8) 

Using moments calculated from the stochastic model for Cell 8, a cleanup 

efficiency of approximately 68 % was determined (Table 8). The results obtained in this 

model are compared with the stochastic model and the results from Jawitz et al. (1998) in 

Section 4.4. 

Cell ID: 8 
EW 1 

Model Type Stochastic 
Opt Method GA 

Partitioning Tracer 2,2-dimethyl-3-pentanol 

Knw 
7.42 

Test Type Layer ID s„ Average Sn 

Pre Flood 
1 0.1280 

0.0997 2 0.0233 
3 0.1477 

Post Flood 
1 0.0401 

0.0321 2 0.0000 
3 0.0561 

Cleanup Efficiency 67.79% 

Table 8: Stochastic Model Estimate of NAPL Saturation and 

Cleanup Efficiency (Cell 8) 
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4.3.2 CellF 

The stochastic model provided a better fit to the experimental data for Cell F 

(Figure 24) than for Cell 8. However, for the reasons discussed in Section 4.3.1, the 

model tends to underestimate the peak tracer concentrations. 
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Figure 24: Stochastic Model Breakthrough Curves and Experimental Data (Cell F) 

Table 9 shows the stochastic parameter estimates for Cell F. The correlation 

between mean travel time and NAPL saturation that was seen in the results for Cell 8 are 

not evident in the results from Cell F. The pre- and post-flood mean travel times for the 

conservative tracer demonstrate an interesting discrepancy from the expected 

performance of the model, with a sharp increase for the post-flood mean travel time in 

layer 1. This discrepancy may represent an artifact of the three layer model. Because the 
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model is not a true representation of field conditions, but an artificial representation to fit 

experimental extraction well data, the best fit parameters may contradict expected 

performance. 

Cell ID: f 
EW 3 

Model Type Stochastic 
Opt Method GA 

Table 9: Stochastic Model Parameter Estimates (Cell F) 

Figure 25 shows the separation of the model breakthrough curves for the 

conservative and partitioning tracers for Cell F (pre- and post-flood). 
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Figure 25: Stochastic Model Pre- and Post-Flood Breakthrough Curves (Cell F) 
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Using moments calculated from these model simulations, the Cell F stochastic 

model estimated a cleanup efficiency of approximately 75 % (Table 10). The results 

obtained in this model are compared with the moment analysis results in Section 4.4. 

Cell ID: f 
EW 3 

Model Type Stochastic 
Opt Method GA 

Partitioning Tracer 2,2-dimethyl-3-pentanol 

"nw 7.42 

Test Type Layer ID s„ Average S„ 

Pre Flood 
1 0.1115 

0.1605 2 0.1019 
3 0.2681 

Post Flood 
1 0.0544 

0.0408 2 0.0069 
3 0.0612 

Cleanup Efficiency 74.57% 

Table 10: Stochastic Model Estimate of NAPL Saturation 

and Cleanup Efficiency (Cell F) 

4.4 Method of Moments and Model Comparisons 

The results obtained from the moment analysis of the extraction well tracer data 

(extrapolated) are shown in Table 11. The estimates for NAPL saturation and cleanup 

efficiency were calculated from the extraction well data extrapolated to account for 

concentrations in the tail. Extrapolation was done by performing linear regression 

analysis on the plot of the natural log of concentration vs time of the data in the negative 

slope portion of the experimental breakthrough curve. The equation for the line (returned 

by Excel) was used to estimate concentration for times greater than the time of the final 

reported concentration. 
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Test Cell Test Type Tracer Type 
Mean Travel 
Time (hrs) 

Est. NAPL 
Saturation 

Est. Cleanup 
Efficiency 

8 
Pre Flood Conservativ 30.14 0.0889 

62.10% Partitioninq 51.94 

Post Flood Conservativ 28.97 0.0337 
Partitioninq 36.46 

f 
Pre Flood 

Conservativ 24.86 0.0861 
62.79% Partitioninq 42.24 

Post Flood Conservativ 19.95 0.0320 
Partitioninq 24.84 

Table 11: Method of Moments Results 

The comparison of the moment analysis results and the model results for Cell 8 is 

shown in Table 12, and the comparison for Cell F is shown in Table 13.   Differences in 

estimated saturation levels and cleanup efficiency from inverse modeling and moment 

analysis can have several sources, including the simplifying assumptions made in the 

model and fitting errors between the model and experimental data. 

Table 12 shows that, despite adjusting the post flood calculations to reflect two 

layers instead of three, the Cell 8 analytic model overestimated the cleanup efficiency 

compared to the stochastic model and moment analysis. By observing the scale of the 

pre-flood and post-flood saturation for all three layers, it is evident that the problem lies 

in the post-flood analytic model. Analysis of the breakthrough curves for the 

conservative tracer showed that the model fit the data poorly, as indicated by an 

increasing Chi Square function in the tail. This error in the tail caused the model to 

underestimate R and NAPL saturation and explains the high estimate for cleanup 

efficiency. 
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Model Type Test Type 
Est. NAPL 
Saturation 

Est. Cleanup 
Efficiency 

Analytic 
Pre Flood 0.0785 

83.57% 
Post Flood 0.0129 

Stochastic 
Pre Flood 0.0997 

67.79% 
Post Flood 0.0321 

Moment 
Analysis 

Pre Flood 0.0889 
62.10% 

Post Flood 0.0337 

Table 12: Cell 8 Comparison of Results 

Table 13 shows the comparison of the Cell F analyses. The stochastic and 

analytic models provided similar estimates for pre- and post-flood NAPL saturation, but 

both provided significantly higher estimates for the pre-flood saturation than the moment 

analysis of the experimental data. This may result from the problems with using a 

constant Co discussed in Section 3.2.3. Failing to account for possible tracer losses could 

result in an overestimation of NAPL saturation. Other simplifying assumptions used in 

the models might also contribute to the difference. 

Model Type Test Type 
Est. NAPL 
Saturation 

Est. Cleanup 
Efficiency 

Analytic 
Pre Flood 0.1558 

77.19% 
Post Flood 0.0355 

Stochastic 
Pre Flood 0.1605 

74.57% 
Post Flood 0.0408 

Moment 
Analysis 

Pre Flood 0.0861 
62.79% 

Post Flood 0.0320 

Table 13: Cell F Comparison of Results 

63 



Chapter 5. Conclusions and Recommendations for Future Study 

5.1 Introduction 

This research demonstrated the ability of GAs to perform parameter optimization 

to model PITT results and estimate NAPL mass and cleanup efficiency. Inverse 

modeling of PITT results poses a special problem since there are currently no non-linear 

optimization methods that guarantee convergence to a global optimum for the objective 

function (Reeves, 1993). This problem is usually addressed through characterization of 

the aquifer so that the modeler has a good idea of what the optimization parameters may 

be. This knowledge, combined with multiple model runs using different initial parameter 

values, can be used to converge on a locally optimum solution that approximates the 

global optimum.   However, if adequate data concerning the hydraulic characteristics of 

an aquifer are not available, the problems associated with non-linear optimization are 

compounded. One of the inherent advantages of genetic algorithms are thei ability to 

"accidentally" discover a more optimum solution. Consequently, iterative application of 

the GA to inverse modeling of groundwater transport is more likely to converge at a 

global optimum even if little is known about likely initial values for the decision 

variables. 

5.2 Conclusions 

5.2.1 Objective Function 

Minimizing the sum of the Chi Square function resulted in a reasonable fit of the 

model to the experimental data. Attempts to incorporate the number of layers (n) into the 

model as a decision variable failed due to requirements for conflicting constraints 

(Section 4.2.1). However, an empirical approach was used to determine a value for n that 
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met the dual objectives of minimizing model complexity while still obtaining a good fit 

of the model to the experimental data. 

5.2.2 Model Parameters 

Use of the conservative tracer data to estimate groundwater flow parameters, and 

the subsequent use of those parameters to estimate retardation from the partitioning tracer 

data provided a reasonable fit of the models to the PITT data. The results obtained in this 

research demonstrated an inverse relationship between the transport velocity of the 

conservative tracer (as represented by "v" in the analytic model and "mtt" in the 

stochastic model) and the estimated NAPL saturation for each layer. 

5.2.3 Model Results 

The NAPL saturation and cleanup efficiencies estimated by the analytic and 

stochastic models were comparable to results reported by Jawitz et al. (1998) and Rao et 

al. (1997) as well as to estimates obtained through moment analysis of the PITT data. 

The advantages of GAs, as applied in this research, lie in their ability to find a solution 

that approximates the global optimum for the objective function when little is known 

about probable values for the decision variables. Iterative application of the GA 

converges on a good model solution even when the initial parameter values are not close 

to the values that provide a good model fit.. However, knowledge about probable 

parameter values greatly reduces the time required for the GA to fit the model to the 

PITT data. 

The results from the post-flood analytic model demonstrated sensitivity to fitting 

the tail of the breakthrough curve. This problem may be alleviated by fitting the model to 

extrapolated PITT data, or by increasing the number of model layers. 
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5.3 Recommendations for Future Research 

• Heterogeneity in an aquifer, and the corresponding variation in tracer transport times, 

can result in PITT breakthrough curves that have several peaks and valleys. Inverse 

modeling can address this, as was done in this research, by optimizing discrete 

parameter values for multiple layers. Because the extraction well breakthrough 

curves used in this research fit a simple or bimodal curve, determining the number of 

layers to obtain a reasonable fit of the model to the experimental data was relatively 

simple using an empirical approach. However, the PITT data used in this research 

were obtained from tests conducted in hydraulically isolated test cells, so the 

complexity of the breakthrough curves was minimized. GAs may provide an 

appropriate optimization method to balance model complexity (i.e. the number of 

layers) with the goodness of fit to the PITT data, but this research demonstrated the 

limitations of Evolutionary Solver at optimizing the number of layers. Including the 

number of layers as a decision variable for model optimization would require the use 

of a GA designed to address conflicting constraint requirements. 

• The ability of a model to provide a reasonable estimate of NAPL distribution would 

be enhanced by varying the thickness of the layers. Layer thickness could be 

incorporated as a decision variable into future models, and the ability of GAs to 

estimate NAPL saturation could be evaluated. 

• Anason (1999) developed a software package in Visual Basic to perform cost-benefit 

analysis for cosolvent flushing. This cost-benefit tool could be combined with 

groundwater transport models developed in Excel to provide a comprehensive 
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decision-making tool for site characterization and remediation design, and may 

provide an avenue for future research efforts. 

• The stochastic model developed by Enfield (2000) represents a new way to represent 

the breakthrough curves obtained from PITTs. This research demonstrated the ability 

of the stochastic model to represent PITT results obtained under relatively controlled 

conditions. The applicability of the stochastic model to PITTs conducted on a larger 

scale should be evaluated in future research. 

• Data available from PITTs conducted at Hill AFB include information that was not 

used in developing the models for this research. This data (e.g., from multilevel 

samplers, core samples, etc.) could be used, along with GAs, to determine if "real" 

layers exist that could be modeled or, in other words, to obtain a more reasonable 

representation of the aquifer heterogeneity and NAPL distribution. 
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