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Abstract 

Formal software transformation systems are software development environments typi- 

fied by the semi-automated application of a series of correctness-preserving transformations 

to formal data models. The range of software architectures such systems are capable of 

producing is often restricted by the limited ability to accept high-level design inputs as 

constraints on the transformation process. When architectural inputs are acceptable, often 

the modeling language excludes the explicit representation of architectural constructs and 

provides, at best, an extremely limited architectural analysis capability. This research de- 

fines a high-level taxonomy of software architectures and proposes a way to explicitly model 

a broad class of architectures by adapting the native object-oriented modeling language 

to the task. Using the AFIT Wide-Spectrum Object-Modeling Environment (AWSOME) 

as a proving ground, it demonstrates the ability to fully automate the transformation of 

an object-oriented analysis model to a non-hierarchically homogeneous, object-oriented 

architecture. Additionally, it demonstrates the ability to explicitly model the richer class 

of hierarchically heterogeneous software architectures in an object-oriented transforma- 

tion system and to gain insight into the behavioral characteristics of such architectures by 

exporting them to an architectural interchange language for external analysis. 

XI 



Explicitly Modeling Hierarchically Heterogeneous Software Architectures in an 

Object-Oriented Formal Transformation System 

/.   Introduction 

A fundamental characteristic of modern software systems is complexity, and engineer- 

ing such systems is a difficult business. Automatic programming—building a program 

to solve a problem from a statement of the problem—is one of many approaches touted 

by researchers as a potential solution to the inherent complexity of software develop- 

ment. In 1986, Frederick P. Brooks published a classic paper that cast doubt on automatic 

programming—along with several other promising technologies—as a potential silver bul- 

let. He claimed that after 40 years of hype, he could scarcely conceive of the eventual 

realization of automatic programming [10:193-4]. Now, almost 15 years after their sen- 

tencing, advocates of automatic programming are alive and well, tooling away at its equally 

revolutionary cousin—formal transformation systems. The Knowledge-Based Software En- 

gineering (KBSE) research group at the Air Force Institute of Technology (AFIT) is ag- 

gressively pursuing this approach through its development of the AFIT Wide-Spectrum 

Object Modeling Environment (AWSOME)1—an object-oriented, formal transformation 

system. 

This work enriches that pursuit by integrating explicit architectural modeling into 

the formal, object-oriented, transformational process model. In briefly describing each of 

these process model descriptors (i.e., formal, object-oriented, and transformational), the 

following background section raises the hood of the transformational paradigm and lays 

bare the specific issues targeted by this research. 

AWSOME was originally called AFJTtool and was renamed during this research cycle at AFIT to 
reflect the expansion its underlying metamodel from a design language to a wide-spectrum (analysis and 
design) language. 



1.1    Background 

1.1.1 Formal Environments. In general, this research targets formal software en- 

gineering environments. Like any engineering discipline, software engineering is a problem- 

solving activity. The formality with which it is undertaken varies from organization to or- 

ganization. Most software development organizations engage in the less formal approach, 

where specifications take on a prose format, designs and implementations are derived by 

hand, and systems are informally verified and validated against informal requirements and 

customer expectations. The benefits and detriments associated with an informal approach 

are discussed further in Chapter 2. 

Formal methods, on the other hand, are mathematically based tools and techniques 

that greatly minimize the problems associated with less formal methods. Formal methods 

are characterized by mathematically rich languages, like Z, the precision of which facilitates 

unambiguous problem specification and increases the likelihood of correct solutions. 

1.1.2 Object-Oriented Environments. More specifically, this research targets 

those formal environments that engage in object-oriented software development. Histor- 

ically, software methodologies have over-emphasized either the data used in a problem 

environment or the functions performed on that data. By modeling real world entities, 

object-orientation attempts to resolve this bipolar arrangement by coupling the functions 

of interest with the data upon which they operate. 

Rumbaugh's Object Modeling Technique (OMT) is the AFIT KBSE research group's 

object-oriented methodology of choice. They have applied various formalisms in specifying 

and representing the OMT's structural, dynamic, and functional models resulting in a 

formal object-oriented software development environment. While interesting in its own 

right, this description is yet incomplete. The semi-automated approach taken by the 

KBSE group leads to the third major descriptor—transformational software development. 

1.1.3 Transformational Environments. Transformational environments, or trans- 

formation systems, are typified by the presence of formal data models that undergo a 

series of semi-automated, correctness-preserving transformations.  These transformations 
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Figure 1.      The automation-based (transformation) paradigm. 

progressively transform data from a high-level to a low-level of abstraction, i.e., from 

requirements specifications through design specifications to executable code [16]. Such 

systems were first described in detail by Balzer, Cheatham, and Green as providing for 

formal specification where the specification becomes the prototype, the prototype becomes 

the implementation, testing is eliminated, and maintenance is accomplished at the abstract 

specification level [4] (see Figure 1). 

AWSOME is one implementation of just such a formal, object-oriented, transfor- 

mation system. Although this research targets the general model, AWSOME provided a 

real environment to test its propositions. The propositions to be tested arose from var- 

ious issues associated with yet another angle on object-oriented, formal transformation 

systems—their ability to explicitly model and manipulate a variety of software architec- 

tures. Before getting into those propositions and the issues they address, the next section 

offers a brief introduction to current issues in software architecture research. 

1.1.4 Software Architecture. Software architecture—the art and science of cre- 

ating the architectural model, or high level design, of software systems—is one software 

development activity that, historically, has received a great deal of lip service, but very 

little real attention. That is beginning to change. As software development continues its 

evolution into an engineering discipline, it relies more and more on the rigorous application 

of its supporting technologies, one of which is software architecture. The argument for the 
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Figure 2.      An object-oriented software architecture. 

importance of explicitly modeling the architectures of software systems during system de- 

sign is covered in more detail in Chapter 2. For the moment, however, the most important 

issue is the nature of a software architecture. 

Definitions for software architecture abound. Chapter 2 provides a definition suitable 

for the purposes of this thesis. In this introduction, however, suffice it to say that a software 

architecture is a recognizable collection of system components and the connectors between 

those components. There are many styles of software architecture, each offering its own 

connector and component types and its own topological and semantic constraints. One 

such style is the object-oriented style (see Figure 2). In an object-oriented architecture, the 

objects in the model are the architectural components and the messages passed between 

the objects, in the form of method calls, are the architectural connectors. 

Often, however, software systems do not conform to one particular style. In fact, 

they exhibit what Bass, Clements, and Kazman call hierarchically heterogeneous software 

architectures [5:102]. This simply means that the architecture is often a hierarchical mix- 

ture of styles. For instance, in a distributed client-server architecture, the client(s) and 

server(s) are themselves components. They communicate via socket or remote procedure 

call (RPC) connectors. These components may, however, be further described as having 

object-oriented sub-architectures, whereby they are each comprised of one or more object 

components that communicate via method call connectors (see Figure 3). It is this ten- 

dency to build hierarchically heterogeneous architectures to solve even moderately complex 
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Figure 3.     A hierarchically heterogeneous software architecture. 

problems, and the need to explicity and formally model these architectures , that leads to 

the problem addressed by this research. 

1.2    Problem 

Problem Statement: Many object-oriented, formal transformation systems are un- 

able to explicitly model software architectures more complex than a network of objects that 

communicate via method calls. This research proposes a new and innovative approach to 

the high-level design or architecture of object-oriented systems that facilitates the explicit 

representation and extraction of hierarchically heterogeneous software architectures. 

Specifically, this research addresses three problems in light of the previous discus- 

sion of hierarchically heterogeneous software architectures. First, object-oriented transfor- 

mation methodologies only implicitly describe the architectures of the software systems 

they produce. In other words, there is no specific stage at which the engineer employs 

transformations that generate the architecture itself, nor are there explicit elements in 

the generated design model that equate to the semantic entities of software architectures 

(e.g., components, connectors, ports, roles, attachments, etc.).  To be sure, any software 



system produced by a transformation system—or any other methodology—has an architec- 

ture [5:24]. The issue is the level of architectural emphasis applied during its derivation and 

the degree to which the architecture is explicitly reflected in the design and used for prelim- 

inary evaluation of candidate solutions. Because an implicit architecture is only a shadow 

of the object-oriented design, any attempt to extract its composition can only do so by 

inferentially examining the elements of the low-level design and deciphering their architec- 

tural significance. Chapter 2 extends the argument for the importance of explicit software 

architecture modeling. Assuming the validity of that argument, a formal, object-oriented, 

transformation system must provide the means to explicitly represent architectural entities. 

Second, a provision for explicitly modeling object-oriented architectures in an object- 

oriented transformation system is often not enough. As previously stated, most systems 

imposing any degree of complexity call for hierarchically heterogeneous architectures. In 

other words, it is not enough to explicitly model object components and method call 

connectors. A general purpose development environment must provide for a variety of 

architectural styles and the means to compose these styles hierarchically. Existing formal, 

object-oriented, transformation systems fall short of this capability by relying solely on 

the analyst's ability to capture the high-level design in the analysis model. This approach 

not only depends on the analyst's ability to recreate the essence of a particular style of 

architecture, but to do so in a way that changes the design-independent nature of the 

analysis model. 

Finally, there is a tendency with systems that settle for implicit architectural model- 

ing to extract software architectures from the analysis model rather than from the design 

model where the architectures actually reside. While analysis models provide an early re- 

flection of the architecture in an object-oriented environment, it is not until the first high- 

level design decisions are made, e.g., objects are composed into components and events 

transformed into method call connectors, that the abstract requirements specification be- 

comes a high-level design (i.e., an architecture). In fact, in an environment that recognizes 

the existence of a variety of architectural styles and the types of entities employed by those 

styles, inferring the architecture from the analysis model before it has been elaborated into 

a high-level design is tantamount to putting the proverbial "cart before the horse." 



1.3    Initial Assessment of Past Effort 

There has always been an interest in the architectures of software systems. But, 

not until the publication of A Pattern Language in 1977 by Christopher Alexander [1], 

the recognition of the applicability of patterns to software systems by the Pattern Lan- 

guages of Program (PLoP) design community, and the work of others in the early 1990s 

did research in the area appreciably intensify. Most of the research has centered around 

frameworks, design patterns, or architectural styles. Very little has been done to integrate 

the accomplishments of these research groups with the work being done in automated 

software engineering. 

Closer to home, in 1999, Penelope Noe provided a limited level of architectural sup- 

port in the AFJTtool environment [22]. In her master's thesis, Noe recognized a useful 

relationship between the dynamic model of a formal, object-oriented software specification 

and the architecture of the target software system. Specifically, she provided a way to out- 

put the architecture of a system once the structural and dynamic models of that system 

had been specified. Unfortunately, architectures were only a peripheral concern within 

the context of her thesis; therefore, she afforded little attention to the issues of explicit 

architectural modeling and style-based software architectures. In addition, her approach 

is one example of looking for the right abstraction (the architecture) in the wrong place 

(the analysis model) and could only have been accomplished correctly in an environment 

devoid of richer architectural styles and compositional capabilities2. 

David Robinson broached the subject of software architectures from an agent-based 

software engineering perspective. As a member of AFIT's Agent Research Group (ARG), 

Robinson developed a formal language called AgDL (Agent Definition Language) that can 

be used to formally specify the agents in an agent-based software system. He validated 

the language by demonstrating its use with a variety of agent-based architectural styles 

(reactive, knowledge-based, planning, and Belief Desire Intention(BDI)). While providing 

an important capability within the agent research community, Robinson's coverage of ar- 

2Note that in the AFJTtool environment to which she was accustomed, one could be sure that all classes 
and objects in the analysis model would become class and object components in the design, and all events 
in the analysis model would become method call connectors in the design. 



chitecture modeling in his development of an agent specification language was too limited 

in scope to be used effectively in this research [26]. 

Finally, in his Master's thesis David Marsh demonstrated the ability to transform 

dynamic models in an object-oriented transformation system [20]. A secondary objective 

was to show that a system tooled to produce object-oriented software systems could be 

used to produce agent-based systems as well. Marsh's approach, however, was not a direct 

attempt to incorporate explicit architectural modeling into formal transformation systems. 

Rather, it adopted the design-enriched analysis model paradigm that results in an analysis 

model with, perhaps, more design information than would be desired by the software engi- 

neering purist. The result was that his approach—while providing significant contributions 

in terms of dynamic model transformation—was largely, if not completely, silent on the 

importance of explicitly modeling hierarchically heterogeneous software architectures as 

high-level design abstractions. 

1.4    Scope 

This research is primarily concerned with four architectural issues: 

1. Explicitly modeling object-oriented software architectures in a formal object-oriented 

transformation system, 

2. Representing hierarchically heterogeneous architectures in a formal, object-oriented 

transformation system, 

3. Extending the transformational process model to include explicit architectural mod- 

eling, and 

4. Exporting software architectures from formal, object-oriented design specifications 

to architectural interchange languages. 

At the outset of this effort, the scope included various related issues such as eliciting 

and formally representing software quality attributes, creating a utility to facilitate semi- 

automated derivation of software architectures, and verifying conformance of software ar- 

chitectures to the architectural styles they implement.   During the course of this effort, 



they were eventually excluded from extensive consideration here and left for future re- 

search. They are, however, discussed throughout the thesis as they relate to the specific 

areas addressed. 

Finally, this research targets only general purpose development environments. The 

author defines a general purpose environment as one that is geared toward the production 

of solutions to a variety of problems with no predisposition for a particular design or imple- 

mentation and fully capable of producing solutions that exhibit a variety of architectural 

classes and styles. Many development environments specialize in the reproduction of spe- 

cific architectural or design solutions to resolve problems. Such an approach appropriately 

leverages the knowledge about a particular genre of software designs in the resolution of 

problems meeting certain criteria. DeLoach's agentTool is one example of an environment 

that is tooled for the production of a specific class and style of architectures (i.e., agent- 

based systems). Such environments are not the target of this research. Rather, it provides 

a way, in a general purpose environment, to select and explicitly model one of many styles 

of archtitecture to solve a given problem. 

To demonstrate the feasibility of the proposed methods for addressing the issues 

above, Chapter V incorporates them into AWSOME and exercises the new environment 

against a simple client-server software problem. 

1.5    Document Overview 

Chapter II reviews various research activities related to software architectures, formal 

methods, object orientation, and transformational software development. It also defines 

software architecture, establishes its importance as a key software engineering activity, and 

describes the AWSOME environment. Chapters III and IV present the author's approach 

to solving the problems described above. Chapter V implements the approach described 

in Chapters III and IV. The sixth and final chapter presents the results of the imple- 

mentation, the author's conclusions based on those results, and specific recommendations 

for future research in areas related to the topic. The appendices provide additional in- 

formation pertaining to the demonstration of much of the ideas in this thesis. Appendix 

A provides a formal Z specification for the example problem (Bä' bal ) used throughout 

9 



this document. Appendix B provides an analysis model for Bä' bal in the AWSOME 

surface syntax (AWSOME is described in more detail in Chapter II). Appendix C and Ap- 

pendix D provide an architectural model in AWSOME surface syntax and the equivalent 

Acme surface syntax for an object-oriented Bä' bal architecture, respectively. Finally, 

Appendix E and Appendix F provide equivalent AWSOME and Acme representations for 

an object-oriented client-server version of Bä' bal . 

10 



IT.   Background 

2.1 Introduction 

In the community of applied sciences, software engineering is the new kid in town. 

In fact, use of the engineering label is rather premature and less than justifiable according 

to many in the field. It is clear, however, that software development is on the evolution- 

ary path from craft to professional engineering discipline. The refinement and inculcation 

of software architecture as a fundamental activity within software development greatly 

facilitates that evolutionary process [28:5-14]. This chapter summarizes several key con- 

tributions to software architecture, reviews the latest trends in software development, and 

introduces an example transformational programming environment. 

2.2 Soflware Architecture 

A syntopical analysis of the subject reveals a great variety of recent contributions to 

the understanding and practice of software architecture—far too many for a comprehensive 

overview. Instead, those contributions related to 

• the definition of software architecture as a software engineering activity, 

• the justification of software architecture as an explicit process, and 

• the codification of software architecture domain knowledge 

are deemed especially valuable and presented below. 

2.2.1 Soßware Architecture Defined. With increased research emphasis on soft- 

ware architecture, the question often arises: "what is a software architecture?" Is it simply 

"what the architect specifies in an architecture description" [17:83]? In their seminal work 

on the subject, Software Architecture: Perspectives on an Emerging Discipline, Mary Shaw 

and David Garlan define software architecture as 

...the description of elements from which systems are built, interactions among 
those elements, patterns that guide their composition, and constraints on these 
patterns....a particular system is defined in terms of a collection of components 
and interactions among those components [28:1]. 

11 



Roger Pressman, in the third edition of his text on software engineering, suggests a soft- 

ware architecture represents the transition between the requirements and design phases 

of the software lifecycle. It is accomplished by mapping each part of a software problem 

to one or more elements of the specified solution. He emphasizes the structuring of data 

and components as the primary architectural activity and states that the elements of a 

solution can be structured in a variety of ways [23:325-6]. Later, in his fourth edition, 

Pressman adopts the framework suggested by Shaw and Garlan, agreeing that software 

architecture is "the overall structure of the software and the ways in which that structure 

provides conceptual integrity for a system" [24:351] [28]. Sommerville, while recognizing 

the absence of a "generally accepted process model for architectural design," identifies 

three activities commonly present in such models: system structuring, control modeling, 

and modular decomposition [30:226-7]. In their Unißed Software Development Process, 

Jacobson, Booch, and Rumbaugh conclude that an architecture provides a suite of views 

of a software system—indeed, a abstract view of the "whole design"—that serves to com- 

municate the "most significant and dynamic aspects of the system" [17:6]. 

The common thread running through these ideas on the nature of software archi- 

tecture seems best summarized by Bass, Clements, and Kazman in Software Architecture 

in Practice. In this text, the authors build on the foundation laid by Shaw and Garlan 

and define software architecture as "...the structure or structures of the system, which 

comprise software components, the externally visible properties of those components, and 

the relationships among them" [5:23]. Figure 4 graphically depicts the essence of this 

definition. 

Included in most definitions of architecture were the terms: component, connector, 

port, role, attachment, configuration, representation, and binding. The definitions for 

these terms given by Shaw and Garlan [28] are provided here and used throughout this 

report. 

Component. The loci of computation, components represent the primary building 

blocks of an architecture. 

Connector. Defines a path of interaction between components. 

12 



Figure 4.      Architectural structures. 

Port. Represents a component's points of interaction with its environment. 

Role. Represents a participant in an interaction; a set of roles makes up the interface 

for a connector. 

Attachment. Represents a link between a component's port and a connector's role. 

Configuration. Defines a topology of components and connectors. 

Representation. A way to represent the "contents" of a component or connector. 

Representations enable the hierarchical composition of architectures. 

Binding. In a hierarchical architecture, bindings provide the links between sub-component 

ports in a representation with the ports of the parent component (i.e., the component 

being defined by the representation). 

2.2.1.1 The Rational Unified Process. Despite the growing consensus on 

how to define software architecture, there is by no means a well understood process model 

for formally deriving an architecture for a new system or examining a preexisting one. 

Jacobson, et al., present a relatively complete software development process model that 
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Figure 5.      Models of the Unified Process. 

includes semi-formal software architecture modeling [17]. Their Unified Process1 is charac- 

terized, in fact, as being architecture-centric and use-case driven. As depicted in Figure 5, 

the Unified Process is based on a series of interdependent system models beginning with 

the use-case model and ending with the test model. While communicating the notion of 

interdependent models, this diagram is an oversimplification. There are, in fact, many 

other dependencies between the models of the system [17:10]. 

One interesting aspect of the Unified Process is the idea that use cases—used primar- 

ily to capture the functional requirements for a software system—are the primary drivers 

of the software architecture. While this may seem plausible, it constitutes a significant de- 

viation from the assertion by Bass, et al., that software architectures are primarily driven 

by software quality attributes, not functional requirements. To be sure, the authors of 

the Unified Process certainly include non-functional requirements (i.e., quality attributes) 

as architectural drivers, but they are relegated to a position of minimal influence in that 

process model. Bass, et al., took a different approach in Software Architecture in Practice 

by describing software architectural modeling in the context of the architectural business 

cycle (ABC). 

xThe Rational Unified Process is the latest version of a model that has been evolving since 1987.  As 
recently as 1997, it was known as the Rational Objectory Process. 
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Figure 6.      The Architectural Business Cycle. 

2.2.1.2 The Architectural Business Cycle. According to Bass, Clements, 

and Kazman, software architectures are not derived from functional requirements. They 

make the point by suggesting that two different architects working in isolation from the 

same requirements specification will likely produce two completely different architectures. 

Accordingly, there must be something other than functional requirements driving software 

architectures. This something, according to the authors, is the technical, business, and 

social influences emanating from the surrounding environment. The primary factors in- 

fluencing the architecture are system stakeholders (external and internal), the technical 

environment in which the system is engineered (current tools, methods, and methodolo- 

gies), and the architect's personal experience. Figure 6 illustrates this influential relation- 

ship between the architect and his or her environment. It is equally important to note 

the existence of a feedback loop from the architecture and the system itself back to the 

environment. This reinforces the notion of a complete cycle where the environment influ- 

ences the creation of a new architecture, and the new architecture, in turn, influences the 

environment [5:11]. 
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Quality Architectural 
Attribute Issues 

Performance Intercomponent communication 
Security Specialized components 
Availability Redundant components 
Usability Achieving proper information flow 
Modifiability Modularization; encapsulation 
Portability Layers 
Reusability Decoupling 
Integrability Component interfaces 
Testability- Modularization; encapsulation 

Table 1.      Quality attributes and architectural issues. 

Arguably the most important point made by the authors is that software quality 

attributes (i.e., non-functional requirements or "-ilities") drive a specific architectural so- 

lution to a problem. At the same time, quality attributes often conflict, so decisions must 

be made regarding the relative importance of those attributes and the architectural styles 

or patterns that are likely to support them. What are these attributes? Table 1 lists the 

quality attributes discussed by the authors and the issues that must be addressed by the 

architecture [5:86]. 

Their discussion of software architectures quickly moves from one of environmental 

influences and quality attributes to architectural styles. The significance of a catalog of 

architectural styles, their important relationship to design patterns, and the movement 

towards codification of this domain knowledge warrants separate treatment of the subject. 

But, first, a justification for architecting software systems is presented. 

2.2.2 Software Architecture Justified. So, why trouble oneself with all this over- 

head? After all, software developers have managed to avoid the issue of architectures by 

ignoring its importance (at worst) or implicitly modeling them (at best). This challenge 

to justify the apparent overhead of software architectural modeling is a fair one, the re- 

sponse to which has been clearly addressed. The benefits of explicit software architecture 

modeling during the early stages of design fall into six general categories: improved or- 

ganization, communication, and understanding; early analysis; controlled evolution; and 

standardization. 
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1. Software architectures facilitate improved organization of major software develop- 

ment efforts. Modern software systems, especially the ones for which there is an 

architectural interest, are typically very large systems requiring the combined ef- 

forts of many software specialists. In fact, it is entirely possible to have hundreds, 

even thousands, of people involved in a major software intensive development pro- 

gram [10:31]. The architectural breakdown of a large system enables clean assignment 

of work to the often geographically distributed teams and individuals assigned to the 

project. With the interfaces to these subsystems clearly defined and controlled by 

system architects, small groups are free to focus on their specific components, with 

relatively little regard for the parallel efforts of others [17:63]. Large systems must 

inevitably be partitioned for development—without an overarching architecture to 

guide this process, an ad hoc partitioning scheme can generate more problems that 

it seeks to resolve. 

2. Software architectures aid communication among stakeholders. There are many 

different perspectives that come to bear on a software system development effort, 

both internal and external to the developing organization. The customer is concerned 

with schedule and budget issues, while the users are more interested in system func- 

tionality. Managers worry about controlling large project team interaction, while 

implementers concern themselves with data structures, algorithms, and program- 

ming languages. Everyone has a stake in the operation and, therefore, an interest in 

the key decisions made early in the construction phase that will affect the software 

system long-term. With increased involvement, communication overhead is intro- 

duced [17:63]. The software architecture created early in the design process aids the 

communication process by providing an abstract solution that is easily communicated 

to all stakeholders [5:28]. Without an architectural abstraction, the key players are 

left to examine the problem specification or the solution design. The specification 

is understandable by customers and users, but addresses the problem space, not the 

solution space. The design targets the solution, but is typically too far down the 

abstraction chain (i.e., too low-level) to be meaningful to all but the developers. 
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3. Software architectures promote greater understanding of complex software sys- 

tems. As previously stated, modern software systems are typically very complex and 

difficult to grasp in their entirety by most individuals. In fact, Brooks suggests that 

software systems are the most complex structures engineered by human beings— 

orders of magnitude more complex than even the digital computers on which they 

operate [10:182-3]. Architectures provide a high level partitioning of a solution, us- 

ing a language or presentation mechanism that all can understand, to address this 

complexity. A comparable level of understanding is much more difficult to achieve 

once developers engage the solution at a lower level of abstraction using tools and 

languages best suited to the task. 

4. Software architectures enable early analysis of the efficacy of a proposed software 

solution. The software system architecture is the earliest opportunity for stakeholders 

in a software development effort to evaluate the ability of a proposed solution to 

adequately solve a specified problem [5:28]. Two related principles help illustrate 

this benefit. The cost-error principle states that the earlier errors are detected in 

a process, the less expensive it will be to correct the errors. The Albert Einstein 

principle states that the proper formulation of the problem is even more essential than 

its solution. Analysis of a good software architecture gives us the ability to detect 

errors in the target solution to a problem earlier than would be possible without an 

available architectural abstraction. Additionally, it is the software architecture that 

allows us to provide a proper formulation of the problem before engaging the finer 

details of algorithm and data structure design [29]. 

5. Software architectures help maintain the conceptual integrity of evolving software 

systems. Software systems are in a constant state of change, both during develop- 

ment and later during operation and maintenance [17:64]. These systems must be 

designed in such a way that they can be easily adapted to changing requirements and 

environments. Systems constructed around good architectures have this resilience— 

the architecture serving as the conscience of the system [21]. As early as 1975, 

Frederick P. Brooks, Jr. addressed the necessity of software system architectures in 

his classical book, The Mythical Man-Month. In this masterful treatise on managing 
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complex programs, Brooks opines that the single most important consideration when 

designing a software system is the conceptual integrity of the system. A system with 

conceptual integrity is one whose parts—whether developed as part of the original 

system or appended later—all seamlessly integrate with, and contribute to, the orig- 

inal system design. Brooks offers the Reims Cathedral as a wonderful example of 

conceptual integrity in action. Despite the involvement of eight generations of de- 

signers and builders, the cathedral exhibits a magnificently singular architecture—a 

testimony to the selfless adherence of subsequent designers to the overarching con- 

cept espoused by Jean d'Orbais [10:41-2]. So it should be with software that, in 

some cases, has been in operation and maintenance for over 40 years. 

6. Software architectures simplify the reuse of proven software design patterns. Stan- 

dardization and componentization (component-based construction) are hallmarks of 

a mature engineering discipline. Architectures foster the development and repeated 

use of well-known domain patterns and components, greatly decreasing the time and 

cost normally associated with the "creative" alternative and increasing predictabil- 

ity of the results. Low-level design patterns have been, in fact, a hot topic for some 

time. Selecting a compatible group of patterns, however, and composing them in 

reasonable ways to solve complex computing problems is not well established. Archi- 

tectural modeling can provide the higher level packaging of reusable design patterns 

into components that can be arranged in proven ways. 

Clearly, there is great value in architecting a software system, and many have taken 

advantage of the benefits provided. However, to move closer to an engineering paradigm, 

where practitioners reuse proven solutions rather than create new ones, the reusable arti- 

facts and, in formal environments, the knowledge necessary to effectively implement the 

artifacts must be codified. 

2.2.3 Süßware Architecture Codified. As suggested in the introduction, codifica- 

tion of software architectural knowledge is an important step in the evolution of software 

development from a craft to an engineering discipline. For codification to occur, a formal, 

descriptive language capable of describing the software architecture domain and specific 
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software architectures must be selected. The software architecture domain can be viewed 

from three distinct, yet related perspectives: architectural styles, architectural [design] 

patterns, and architectural frameworks. The obvious question is, what is the difference be- 

tween a style, a pattern, and a framework? Essentially, a style is a language for describing 

a family of architectural patterns, and a pattern is a generalization of a framework. The 

three constructs are discussed in more detail in the following paragraphs. 

2.2.3.1 Architectural Styles. For as long as designers have been construct- 

ing software systems, architectural styles have been around. For the most part, these styles 

were no more than idiomatic descriptions of a particular method of construction. For ex- 

ample, the often occurring configuration of client programs subscribing to the services of 

server programs via procedure calls (or some other interaction mechanism) became com- 

monly referred to as a client-server architecture. When used by experienced designers, 

this simple description says much about the general structure of the components and con- 

nections in the system while avoiding unnecessary detail. Furthermore, systems are rarely 

pure instantiations of a particular style—rather, they usually reflect a useful composition 

of various styles. These are referred to as heterogeneous architectures [28:19-32]. 

Several attempts have been made to categorize the most common styles. Shaw and 

Garlan defined the categorized list shown in Table 2. In addition to a descriptive name 

and a graphical representation, the authors recommended—and in some cases provided- 

informal definitions of architectural styles in terms of their 

• design vocabularies (types of components and connectors), 

• structural patterns, 

• underlying computational models, 

• essential invariants, 

• common uses (examples), 

• advantages and disadvantages, and 

• specializations. 

Bass, Clements, and Kazman built on the styles offered by Shaw and Garlan. With 

the exception of minor name changes, they focused on characterizing the styles in greater 
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Architectural Styles 

Dataflow systems 
Batch sequential 
Pipes and filters 

Call-and-retum systems 
Main program and subroutine 
Object-oriented systems 
Hierarchical layers   

Independent components 
Communicating processes 
Event systems 

Data-centered systems (repositories) 
Databases 
Hypertext systems 
Blackboards 

Virtual machines 
Interpreters 
Rule-based systems 

Table 2.     A catalog of architectural styles. 

detail. In particular, they defined the constituent parts, control issues, data issues, and 

control and data interactions associated with each style. Fig 7 shows the definition of 

several styles as recorded by Bass, et al. Their complete list can be found at [5:108-11]. 

Two of the call-and-retum styles were of particular interest during this research—the 

objects (or object-oriented) style and the call-based client-server (or simply client-server) 

style [5] [28]. These two styles are highlighted here and used in later chapters to illustrate 

the ideas presented. 

• Object-oriented style. 

- Components: Managers (objects) 

- Connectors: Dynamic calls (method calls) 

- Semantic Constraints: An object must preserve the integrity of its representa- 

tion and the representation is hidden from other objects. 

- Topological Constraints:  Data topology is arbitrary; control flow topology is 

arbitrary; data and control flows in same direction. 
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Figure 7.     Defining and classifying architectural styles. 
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• Client-server style. 

- Components: Clients, Servers 

- Connectors: Calls or Remote Procedure Calls (RPC) 

- Semantic Constraints: Servers provide black-box services; Clients request ser- 

vices provided by Servers. 

- Topological Constraints: Data topology is star; control topology is star; data 

and control flows in opposite directions. 

While architectural styles are useful in the sense that they provide easily recognizable 

schemes for arranging the components in a software system, some suggest they lack the 

level of practical reuse necessary to realize the benefits described in Section 2.2.2. Styles 

specify building block types and establish constraints on how a system can be defined, but 

essentially require the designer to construct the system in its entirety [21]. Architectural 

patterns may bridge the gap between abstract architectural styles and complete software 

system architectures. 

2.2.3.2 Architectural Patterns. Reusable design patterns in general have 

captured the imaginations of software professionals for several years. The Pattern Lan- 

guages of Programs (PLoP) community sparked serious dialog on the subject in the early 

1990's by calling for the launch of a new literature dedicated to patterns in software. The 

renewed interest in reusable software design patterns came about primarily as a result 

of the work of the building architect Christopher Alexander [11:2]. In defining design 

patterns, Alexander contends 

Each pattern describes a problem which occurs over and over again in our 
environment, and then describes the core of the solution to that problem, in 
such a way that you can use this solution a million times over, without ever 
doing it the same way twice [1:X]. 

PLoP cohorts recognized a growing problem with existing software engineering literature: 

a penchant for the discovery and development of new and exciting solutions—regardless of 

their utility—while ignoring the host of existing design patterns. Their efforts have resulted 

in the ongoing PLoP conferences and volumes of useful pattern-related literature [8]. 
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In Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm, 

Johnson, and Vlissides constructed a catalog of reusable software design patterns. Based 

on the purpose for each pattern, they assign meaningful names to facilitate learning and 

communication by practitioners (e.g., Abstract Factory, Facade, Interpreter, Visitor, etc.). 

The text contains a complete definition of each of the twenty or so patterns deemed most 

useful by the authors. In defining the patterns, they suggest that a complete design pattern 

definition includes a pattern name, a description of the problem solved by the pattern, a 

description of the pattern solution, and the consequences one can expect when applying 

the pattern (e.g., space and time trade-offs) [11:3]. 

2.2.3.3 Architectural Frameworks. Indeed, software design patterns are 

useful and offer much in the way of design reusability, but the most common patterns 

don't always apply when dealing with broader architectural issues. In fact, in their intro- 

duction to Part 1 of Pattern Languages of Program Design, Coplien and Schmidt describe 

a specialization of design patterns, called frameworks, that addresses these higher level is- 

sues. Frameworks attempt to capture the behavior of commonly occurring abstractions in 

an application domain—they are essentially "semicomplete" applications. The framework 

is instantiated much like an object-oriented class provided by a class library, but there is 

a significant difference in run-time flow control between the services offered by reusable 

frameworks and class libraries. When reusing classes from class libraries, the application 

code maintains control by determining what methods to invoke and when to invoke them. 

Frameworks, on the other hand, offer the ability to reuse the flow control modeled by the 

framework. Instead of writing application code to call reusable objects, one writes code 

that gets called by reusable frameworks. Frameworks are a careful balance of variability 

and stability. In other words, framework designers carefully weigh the variability required 

to enable "millions" of different instantiations of the framework against the stability re- 

quired for confident reliance upon the reusable behavior offered by the pattern [8:1-5]. 

Codification of architectural knowledge in the form of styles, patterns, and frame- 

works is a necessary step in the path to effective and efficient generation of software system 
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architectures. Formalization of these structures will pave the way for incorporating explicit 

software architectural modeling in a formal transformation paradigm. 

2.2.4 Architecture Description Languages. Software architectures, and the styles, 

patterns, and frameworks used to generate them in a transformational environment must 

be described using a formal modeling language. Many such languages have been devel- 

oped specifically for the task—they are generally called architecture description languages 

(ADLs). 

Wright, an ADL developed by Robert Allen [2] as part of his Ph.D. dissertation, was 

built around the notions of components, connectors, and conßgurations. The language 

was heavily influenced by the Communicating Sequential Processes (CSP) language and is 

geared toward providing not only the capability to describe an architecture, but also the 

ability to analyze it. Aesop, developed by the ABLE Project at Carnegie Mellon University, 

is a system for generating style-oriented architectural design environments [12]. ACME is 

more an architecture description interchange language than an ADL [13]. It attempts to 

facilitate the interchange of architectural descriptions written in different languages using 

a common interfacing language. Other, more general purpose languages have also been 

used to formally specify software architectures. Shaw and Garlan demonstrate the use of Z 

to specify architectures [28] [130-142]. Table 3 compares the use of general purpose formal 

languages to the use of ADLs for architectural specification. 

2.3    Software Development Trends 

The face of software development has evolved significantly since the late 1960s. Two 

specific trends are worth reviewing prior to broaching the subject of architectural modeling 

in a formal software transformation environment. The shift from a structured to an object- 

oriented paradigm across the industry and the gradual adoption of formal methods by many 

software development organizations are of particular interest. 

2.3.1 Object-Orientation. Regardless of the methodology used (e.g., structured, 

object-oriented, etc.), developing a software system typically involves specifying a series of 
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Technique 

Formal 
methods 

Structure- 
based ADLs 

Advantages 
provides for system property 
analysis 
provides for verification of 
implementation 
improves communication of system 
design 

- permit exposure/definition of 
systems 

- well suited to real system 
description 

- explicit modeling facilitates 
traceability 

- can efficiently generate reliable 
systems   

Disadvantages 
a non-trivial undertaking 
requires definition from 
first principles for each 
new description 
for each new description 
reuse based on previous 
experience; lacks common 
framework for patterns and 
abstractions 
each developer must invent 
own models and tools 

- lack direct element property 
specification; limits 
analytical leverage 

- do little to highlight properties 
of target systems for analysis 

- limited range of systems 
that can be modeled in any 
particular language  

Table 3.      The status quo in modeling software architectures. 

abstract models2 of the system based on the customer's needs (see Figure 8). Each model 

is a slightly less abstract view of the target system than its predecessor. The requirements 

model is the highest level abstraction, telling only what the system must do in order 

to be successful. Using the requirements model, systems analysts and designers create 

a lower-level abstraction called the design model. This model details how the system 

will implement the requirements. Programmers (i.e., implementers, coders) create the 

implementation model by coding the design using one or more programming languages 

suited to the task (e.g., Ada, C++, Java). Programmers provide this implementation 

model as input to compilers that translate the language-specific code into machine readable 

instructions—the execution model. 

Traditionally, to derive the set of models for a system, developers focused on the 

functional and behavioral aspects of the problem domain and structured software systems 

2The term model is preferred over specißcation in this instance, because the interest is in every abstrac- 
tion of the target system up to, and including, the executable code itself. "Model" seems more appropriate 
since the source and object code are rarely considered specifications. 
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Figure 8.      Software modeling. 

accordingly. Following this approach, the system is viewed as a hierarchy or network of 

interrelated processes. From the late 1960s to the mid 1980s, this structured paradigm 

drew much attention and evolved into what Pressman calls an "amalgam" of methods and 

techniques. By the mid 1980s, however, the new object-oriented approach had gained a 

foothold, and by the early 1990s, the structured approach had relinquished its hold on the 

majority of developers building new software systems [24:207,396-397]. 

Using object orientation, developers focus on the objects inherent to the problem 

domain, rather than the processes. In other words, they key on the nouns in a problem 

statement rather than the verbs. Now the system is viewed as a set of objects that commu- 

nicate via message passing. Each object is associated with a class. A class is essentially a 

template, and an object is an instantiation of some template. The class definition identifies 

the operations accessible to the class (via methods3) and the data items (i.e., attributes) 

encapsulated by the class; this structure is depicted in Figure 9. Every object of a particu- 

lar class has its own set of instance variables and methods. Many texts offer a much more 

comprehensive discussion of object-oriented technology; the interested reader is referred to 

Rumbaugh's text on object-oriented modeling for more information [27]. 

3A subtle difference between an operation and a method is that an operation defines, in general terms, 
the purpose of an action while a method implements the operation for a particular class. More will be said 
about this in the discussion of polymorphism. 
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aircraft 

idjmmber: string 

speed: integer 

heading : integer 

altitude : integer 

get_number(): string 

get_speed(): integer 

set_speed(integer) 

Figure 9.      A typical dass definition. 

2.3.2 Formal Methods. Formal methods are mathematically based techniques 

for specifying, verifying, and/or synthesizing a software system [6]. Traditionally, the em- 

phasis has been on using natural language (e.g., English prose) or semi-formal modeling 

tools4 and techniques to specify systems. Disproportionate use of natural language and 

semi-formal tools often results in specifications that are ambiguous, inconsistent, and in- 

complete. Formal methods, whether used sparingly or exclusively, serve to diminish these 

problems. In fact, Wordsworth defines formalization as "the process of making a vague no- 

tion precise" [34:5]. The formal methods designed to resolve these problems have held the 

attention of academia since the late 1960s, but have failed to gain widespread application 

in industry. Albert Einstein seemingly addressed the problem when he stated, "Why does 

this magnificent applied science which saves work and makes life easier bring us so little 

happiness? The simple answer runs: because we have not yet learned to make sensible 

use of it" [6]. He was right—not only is the shift to formal methods a significant change 

in the way we think about software, it requires a high degree of training and experience 

to be done effectively; a degree to which most organizations have been unable to commit. 

4Many "semi-formal" tools have been developed to aid in system specification, verification, and synthe- 
sis (e.g., Rumbaugh's Object Modeling Technique (OMT), ERWin, Model Mart, Visual Studio Modeler, 
etc.); however, these tools typically do not provide a level of mathematical precision—and the associated 
benefits—characteristic of their formal cousins. 
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Nevertheless, the many advances made by researchers and practitioners alike promise to 

facilitate greater understanding and use of formal methods. 

2.3.2.1 Formal Specification. A system specification identifies the proper- 

ties of a target system at a particular level of abstraction. Formal specifications capture the 

desired what, when, and how of the system using specification languages with well-defined 

syntax and semantics. Specification languages can be model-based, property-based, se- 

quential, concurrent, or a combination of these attributes. Model-based languages are 

used to build systems using mathematical constructs such as sets, relations, and functions. 

Pre- and post-conditions are used to specify the operations within the system. Property- 

based languages use axiomatic or algebraic notations to define the minimal properties of 

a system. Sequential languages are applied when the system is characterized by a sin- 

gle thread of operation while concurrent languages are used when dealing with multiple 

concurrent processes [14]. 

Zh is a widely used (relatively speaking), model-based, sequential, specification lan- 

guage. Z is of particular interest to this thesis, because it is the formal specification lan- 

guage of choice within the Knowledge Based Software Engineering (KBSE) Group at the 

Air Force Institute of Technology (AFIT). Z specifications consist of type declarations and 

Schemas. Type declarations come in three varieties: built in, basic, and free [15:449]. The 

built in type consists of the set of integers denoted Z. Basic types are defined by the speci- 

fication and are usually unique to the application being specified. For example, to specify a 

FILTER type, the following notation is used: [ FILTER ]. This type represents the set of all 

filters. Free types are essentially enumerated types and are recorded in the following way: 

Component_Type ::= filter | repository | process | procedure. Attributes of type 

Component-Type, therefore, can only accept the values filter, repository, process, or 

procedure6. 

SZ is correctly pronounced "zed," indicative of its origination by J.M. Spivey of the United Kingdom. 
6This enumerated Component-Type is included here only for illustrative purposes and is not meant 

enumerate all known types of architectural components 
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2.3.2.2 Formal Verification. Formal software verification is the method 

(or methods) used to ensure that a software system satisfies its specification. In order to 

perform formal verification, there must exist a formal specification and a formal semantics 

for the programming language used to develop the system. It is the comparison of these 

two formal artifacts that makes formal verification possible [14]. 

There are various methods of formal verification. Two of the more prevalent methods 

are model checking and theorem proving. Model checking is primarily used in hardware 

and protocol verification. This approach attempts to model the system and specifica- 

tion as finite state machines (FSMs) and perform automated comparisons of these FSMs. 

There are some difficulties related to this approach and it is not widely used in software 

verification. 

Theorem proving, on the other hand, is more prevalent in the software community. 

Using this method, systems and specifications are modeled as logical formulae. Assertions 

are made about a program at certain points in the program. The objective is to verify 

(prove) that the assertion (or state) at a particular point in the program, coupled with 

the effects of the code at that point, imply the next assertion. Usually, this approach 

is applied to program fragments rather than an overall program—an approach derived 

from Floyd's Method of Inductive Assertions. Theorem proving can be accomplished both 

manually and automatically by theorem provers. The manual approach is error prone, but 

automated theorem provers are difficult to implement. In fact, the verification process can 

often become more complicated than development itself [14]. 

2.3.2.3 Formal Synthesis. Synthesis is the term used to describe the pro- 

cess of actually building the code for a system (i.e., development). By using formal (i.e., 

mathematically based) methods that have been proven correct to synthesize software sys- 

tems, it is possible to build correct software without having to apply separate verification 

techniques [14]. In fact, having the methods in a formal format facilitates automation (to 

a large degree) of the synthesis process. In this way, programs are developed by applying 

a series of automated transformations to formal specifications. This approach to software 

development is commonly called the transformational approach. Figure 10 shows a model 
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Figure 10.     The automation-based (transformation) paradigm. 

for the transformational approach espoused by Balzer, Cheatham, and Green [4]. As shown 

in the diagram, software maintenance in a semi-automated transformation environment is 

shifted from the implementation model (i.e., the source code) to the more abstract formal 

specification. With the exception of key decisions and their rationale provided by software 

engineers, the automated transforms take control of the optimization and code generation 

functions. 

There is a great deal more to say about formal methods in general and Z specifications 

in particular in regards to software engineering. To gain a deeper appreciation of formal 

methods, see the related articles by Bowen, Hinchey, and Jones [6,7,18,19,33]. While 

Grassman and Tremblay introduce the topic of Z specification in the context of discrete 

mathematics [15], Spivey, Woodcock, Loomes, and Davies present the latest techniques in 

Z specification based software engineering [31,32,34]. 

2.4    A Model Environment: AWSOME 

The KBSE Group in the Department of Electrical and Computer Engineering at 

AFIT has been researching formal transformational software development for several years. 

To support and demonstrate the capabilities explored through their research, the group 

has evolved a formal, object-oriented, semi-automated, transformation system called AW- 

SOME. 
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Domain Engineer 

Figure 11.      The AWSOME batch sequential architecture. 

2.4.I An Architectural Perspective. Although AWSOME is still the focus of re- 

search, it sufficiently demonstrates the real possibilities imagined by Balzer et al. Figure 11 

depicts the batch sequential architecture of AWSOME. Each major process in the system 

manipulates its own data structure(s). For example, the problem setting process takes as 

input a model of the problem domain and produces a formal problem specification. The 

design transform process, in turn, manipulates the formal specification creating a design 

model. 

A more recent variation on the AWSOME architecture recognizes the overlap in these 

data structures and integrates them into a centralized repository [9]; thus, AWSOME is 

currently represented as a data-centered repository architecture (see Figure 12). Gener- 

ally, AWSOME can be viewed as a series of semi-automated processes that act on formal 

software system models. The specific processes are described by Hartrum [16:1-2] and 

summarized below: 

Domain modeling: the application of object modeling techniques to the entire 

problem domain, perhaps independent of any particular application development 

effort, in order to capture and represent domain knowledge in a formal domain model. 
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Problem setting: the process of modeling a specific domain application by extract- 

ing relevant artifacts from the formal domain model and supplementing these with 

problem-specific entities, resulting in a formal object-oriented requirements specifi- 

cation7. 

Design transform: the semi-automated application of correctness-preserving trans- 

forms to the formal requirements specification, resulting in a formal object-oriented 

design specification. This specification represents the first tangible model of the 

solution (i.e., the target system). 

Code generation: the interactive process of programming language selection and 

semi-automated transformation of the formal design specification into executable 

code. 

Without data to process, the system would be incomplete. This is the role of the 

system models discussed in the following section. 

2.4.2 The System Models. The system models (i.e., formal domain model, formal 

specification, and design specification) are stored and manipulated as abstract syntax trees 

(AST), that constitute the principal output of the transformation system. The domain 

model and formal specification share a common metamodel; that is, the models contain 

the same type of information with an identical abstract syntax. The primary difference 

between the two is one of scope. While the domain model contains knowledge about the 

entire problem domain, the formal specification contains only those classes relevant to the 

specific problem being studied. The specification encompasses three different views of the 

problem: the structural, functional, and dynamic views8. 

The design specification, on the other hand, models the solution. It contains lower- 

level detail sufficient for deriving specific data structures and algorithms required to support 

7Since the formal domain model may not provide all the knowledge necessary to completely specify an 
application, the domain model harvesting process typically provides a mechanism for eliciting the missing 

information from the user [3:9]. 
8These "views" are also called models. The former is preferred here to avoid confusion with the system 

models already mentioned. 
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the target system.   Correctness-preserving formal transforms are the mechanism used to 

derive the design specification from the formal (requirements) specification. 

In the previous AFITtool version of AWSOME, the models were represented and 

manipulated using Reasoning Systems' Refine language and AST manipulation functions. 

Recognizing an opportunity to improve the way AFiTtool represented object-oriented and 

imperative designs in the design model, Graham designed the wide-spectrum Common 

Object-oriented Imperative Language (COIL) [25]. Cornn followed by recognizing several 

commonalities between the analysis and design models and extended the language in a way 

that it could be used to model both. The KBSE research group then rebuilt AFITtool 

around AWSOME using the Java™ programming language. The result is a formal, object- 

oriented transformation environment built around a wide-spectrum modeling language and 

the latest Java™ technology. 

Figure 13 shows a subset of the model resulting from the revision of AFITtool. Every 

entity inherits from WsObj ect. Since this methodology primarily uses WsPackage, WsClass, 

and WsAssociation, those entities are highlighted. 

The surface syntax of AWSOME was still under revision at the time of this writing. 

The tentative surface syntax for the four primary constructs used in this research (i.e., the 

package, class, aggregation, and association constructs) is shown below. 

• Type examples: 

Type ZeroOrOnce is range 0..1 

Type ExactlyOnce is range 1..1 

Type ZeroOrMany is range 0..* 

Type OnceOrMany is range 1..* 

Type MyColor is (Red, Green, Blue); 

• Package example: 

Package MyArchitecture is 

... <package declarations> 

end Package; 
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• Class example: 

Class Mylnterface is 

var attributel : classX; 

var attribute2  : typeA; 

procedure Initlnterface() 

guarantees (size(attribute2') = 0); 

invariant (attribute2.editable = True); 

dynamic model{ 

state Start; 

state Ready; 

event Dolt; 

transition^ 

initState     Start; 

receiveEvent   Dolt; 

nextState     Ready; 

} 

} 

end Class; 

• Aggregation example: 

Aggregation Mylnterface_has_port_RcvPort_DoIt is 

parent theComponent  : Mylnterface    occurs ExactlyOnce; 

child thePort       : RcvPort_DoIt   occurs ZeroOrOnce; 

end Aggregation; 

• Association example: 

Association SndPort_attaches_to_InRole is 

role thePort        : SndPort       occurs ExactlyOnce; 

role theRole        : InRole        occurs ExactlyOnce; 

end Association; 
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2.5   Summary and Conclusion 

Software system architectures are extremely valuable abstractions in the software 

development process. The foundation has been laid for implementing such architectures 

in a formal, semi-automated fashion; but there is still much to be done. Shaw and Garlan 

established a conceptual framework for thinking about different styles of architecture. 

Gamma, et al, paved the way for cataloging reusable design patterns, but focused primarily 

on a level below that of software system architectures. Coplien and the PLoP community 

continue to address software design pattern reuse at all levels, although their approach 

is relatively informal and targets the expert architect performing manual system design 

rather than the semiautomated transformation system. 
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HI.   Modeling Non-hierarchically Homogeneous Architectures 

3.1 Introduction 

Every software system has an architecture, whether or not the architecture was inten- 

tionally designed during the development process. Moreover, most object-oriented, formal, 

transformational development environments will produce software systems that conform 

to the object-oriented architectural style. However, attempts to explicitly model an ar- 

chitecture during the transformation process—for the purpose of leveraging style-specific 

characteristics during design analysis, facilitating the low-level design transformation itself, 

or ensuring the conceptual integrity of the system during maintenance—are rare, indeed. 

To facilitate this modeling, a transformational environment must provide a sufficient rep- 

resentation mechanism—a modeling language capable of capturing the essential aspects of 

an architectural design. 

This chapter introduces a broad classification of software architectures, discusses the 

different languages available for architectural specification, and presents a modified process 

model for explicitly modeling a simple class of architectures in an object-oriented, formal 

transformation system. The purpose of the NM-class transformation process is simply 

to lay the groundwork for a more robust set of transforms that will handle both NM- 

class and HH-class architectures. Without this follow-through, the NM-class architecture 

transformation process buys little more than design model overhead. Chapter IV defines 

the transforms required to model the broader class of architectures, and Chapter V provides 

a walk-through demonstration of both transformation processes. 

3.2 Classes of Architecture 

Classification of software architectures is an active area of research in the architec- 

tural community. Typically, the approach is to classify architectures based on the style 

they exhibit and to group these styles into families (see Table 7). Often, however, software 

architectures do not conform to singular styles. Bass, et al., label such architectures as 

heterogeneous, meaning they exhibit more than one style of architecture by incorporating— 

into a single system—properties from different styles [5:102]. Their hierarchically hetero- 
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geneous class of architectures refers to the way components of one style can consist of an 

arrangement of components and connectors (i.e., a sub-architecture) of yet another style. 

Their recognition of hierarchically heterogeneous architectures suggests a new and useful 

taxonomy based on two orthogonal dimensions—hierarchy and heterogeneity. 

The hierarchy dimension addresses the degree to which components in the archi- 

tecture are hierarchical or non-hierarchical. Hierarchical components, by definition, are 

composed of other components. Primitive components are those components that contain 

no others in their definition. Architectures that contain at least one hierarchical component 

are considered hierarchical architectures; those that do not are considered non-hierarchical 

architectures. This property of a class of architectures should not be confused with the lay- 

ered style of architecture. A layered architecture (one that conforms to the layered style) 

is one that assigns components "to layers to control intercomponent interaction." This has 

little to do with nesting a configuration of one style inside a component of another style. 

A more detailed explanation of the layered style is provided by Bass, et al., and should 

clarify the difference [5:100-101]. 

The heterogeneity dimension focuses on the variety of styles used to architect the sys- 

tem. The styles manifest themselves as style properties such as component and connector 
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types, topological constraints, and semantic interpretation. Those architectures exhibiting 

properties defined by a single style are called homogeneous architectures, meaning they are 

a pure style; those that adopt properties defined by multiple styles are called heterogeneous 

architectures. 

At the same time an architecture is non-hierarchical or hierarchical, it is also homoge- 

neous or heterogeneous (see Figure 14). Therefore, a high-level taxonomy of architectures 

can be described. This taxonomy contains four classes of architecture defined in the fol- 

lowing way1: 

Non-hierarchically Homogeneous (NM): these architectures are üat—they con- 

tain no nested components. In addition, an NM-class architecture exhibits the prop- 

erties a single architectural style. A good example is a pure and simple object- 

oriented system design without aggregate classes as shown in Figure 15. The compo- 

nents of the system are objects and the connectors are method calls between objects. 

There are no nested components defined by the system. 

Non-hierarchically Heterogeneous (NH): these architectures are also flat, with 

no nested components. An NH-class architecture, however, displays properties de- 

fined by two or more architectural styles. There is a constraint, however, that only 

components sharing a common connector type can be connected. In other words, 

the only way to connect non-hierarchical components typed by two different styles 

of architecture is through a commonly defined connector. Theoretically, two differ- 

ent styles could share connector and component types and be differentiable only by 

their semantic and/or topological constraints. In such a case, the two styles could 

be interleaved to form an NH architecture. 

Hierarchically Homogeneous (HM): these architectures are hierarchical, contain- 

ing nested components. Like the NM-class of architectures, an architecture in this 

class is constrained to the properties of a single style. A good example is an object- 

JThe figures depicting these classes of architecture utilize a notation invented by the author for the 
purpose of explaining the classification scheme. The component and connector shapes are style-neutral and 
are only meant to convey the existence or non-existence of heterogeneity and hierarchy. 
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oriented system design with aggregate objects modeled as architectural components 

(see Figure 17). 

Hierarchically Heterogeneous (HH): these architectures are hierarchical, contain- 

ing nested components. In other words, a component at one level in the hierarchy is 

represented internally as a configuration of components (i.e., the lower level). Addi- 

tionally, an architecture in this class exhibits properties of two or more styles usually, 

but not necessarily, at different levels in the hierarchy. An example of an HH-class 

architecture is an object-oriented client-server system (see Figure 18). In this archi- 

tecture, the system level components are clients and servers, and the system level 

connectors are remote procedure calls (RPC). Each client and server component is 

an aggregate component, i.e., is composed of a configuration of one or more sub- 

components.  Connectors between the sub-components in this example are method 
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Figure 18.      A hierarchically heterogeneous architecture. 

calls, while connectors between the client and server components themselves are 

RPCs. 

AWSOME, and similar object-oriented transformation systems, are generally de- 

signed to model only homogeneous architectures—both non-hierarchical (NM) and hierar- 

chical (HM)—based on the object-oriented architectural style. This is because all compo- 

nents and connectors are assumed to be objects and method calls, respectively. Getting a 

transformation system to accurately manipulate homogeneous configurations as has been 

done in the AWSOME environment is progress, but even more can be done to enable 

semi-automated production of complex real-world software systems by integrating a rich 

architectural modeling capability. This capability begins with a modeling language. 
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3.3    Choosing an Architectural Description Language 

There are many languages available for the description of software architectures— 

some designed for the purpose and others adapted to it. The languages designed explicitly 

for the representation of software architectures are the class of languages called architec- 

tural description languages (ADL). Several ADLs have attracted attention in the research 

community—Aesop, Wright, and Rapide are commonly referenced in the literature. These 

languages were designed for use in specific environments targeting goals germane to those 

environments. They each have strengths, but are largely tied to the environments for which 

they were designed. 

Alternatively, one could develop a new, tailor-made ADL that meets the needs of 

a specific development environment. Using the Acme interchange language as a guide, 

one could create an ADL rich enough to allow site-unique modeling and analysis while, 

at the same time, ensuring the ability to export the model for analysis using third-party 

tools. While such an approach might directly address the unique needs of the developing 

organization, it would require a great deal of cost and effort, both in developing and 

maintaining the language and in training personnel to use it, and would likely increase the 

complexity of the environment by adding yet another dialect to the mix. 

The final approach, one that is especially viable in a formal, object-oriented, transfor- 

mational environment, is to model the architecture in an object-oriented fashion, using the 

language already being used to represent analysis and design specifications. The languages 

with which most are familiar (e.g., Java, C++, Ada95) are geared toward representation 

of implementation level entities like classes, types, variables, procedures, and functions. 

Languages that are used to model various levels of abstraction (i.e., analysis, design, and 

implementation) are called wide-spectrum languages. Wide-spectrum languages must ac- 

count for the more abstract notions found at the analysis and design levels like inheritance, 

aggregation, associations, and the dynamic behavior of the system being developed. The 

architecture, falling between analysis and design in both the abstract modeling sense and 

in the development process itself, introduces new entities such as architectural compo- 

nents, connectors between components, and the attachments between component ports 

and connector roles (see Section 2.2.1 for a description of these entities). 
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Initially, the objective was to propose an expansion of the wide-spectrum language 

to include these entities as first-class constructs in the language. Such an approach would 

appropriately emphasize the importance of the architectural abstraction and provide a ro- 

bust model for the task. However, it quickly became evident that the architectural entities 

can be modeled using the object-oriented wide-spectrum language as-is, thereby avoiding 

the need to increase the complexity of the language and the modeling environment with 

new constructs and operations to manipulate them. After all, a component or connector 

is simply another class of objects in the real world (from the perspective of the software 

architect). In an environment already geared toward transforming object-oriented analysis 

models to object-oriented design models using a wide-spectrum language, adopting the 

existing language as-is to represent architectures seemed the best approach. 

3.4    Essential Elements of Architecture Models 

Knowing what surface and abstract syntax to use for architectural modeling is only 

half the battle; modeling the right architectural elements with appropriate language con- 

structs is key to the success of any such endeavor. It is important to recall the primary 

reasons for modeling the architecture of a software system. 

First, the architectural transformation from the analysis model provides a mechanism 

for asserting high-level design decisions that will enrich the low-level design transformation. 

One way it does this is by eliminating from the solution space all solutions that do not 

conform to the specified architectural style. For instance, transforming an object-oriented 

analysis model directly to an object-oriented design with no entry point for decisions 

about how to organize the classes in the system nets a pure object-oriented architecture. 

Architectural decisions do not replace low-level design transforms; rather, they enrich the 

process by allowing the software engineer to constrain the subsequent low-level design 

transforms and produce, perhaps, a more robust solution to the customer's problem. 

Second, the architectural design represents the earliest point at which the develop- 

ing organization can evaluate the efficacy of a particular solution. Requirements analysis 

focuses, for the most part, on modeling the problem specification with as little thought 

as possible given to specific solutions or implementations. Once the problem specification 
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is complete, however, the developers transition to solution-oriented thinking. The archi- 

tecture represents the most abstract model of a solution to the customer's problem. It 

can be evaluated, before any further work is performed, for its ability to satisfy critical 

requirements and quality attributes demanded by the customer. This analysis can be ac- 

complished either by using native analysis tools or by piping the architecture through an 

interchange language to a more analytically disposed development environment. If found 

inadequate, the model can be modified or discarded altogether as a feasible alternative. 

By explicitly modeling the architecture and introducing an analysis capability built over 

that model, one can improve the likelihood of customer satisfaction before generating the 

low-level design and implementation. 

Finally, the architectural model stands as a guard-post against changes to the sys- 

tem that may result in a deterioration of its conceptual integrity. It is well understood 

that software systems deteriorate and grow increasingly complex over time as new cus- 

tomers demand a variety of enhancements, and developers, many quite unfamiliar with 

the original intent of the software systems they maintain, attempt to incorporate fixes and 

enhancements. An architectural abstraction shouts the "big picture" to all who would at- 

tempt to insert an innocent modification and, thereby, reduces the likelihood of conceptual 

deterioration. 

To do these things, the architecture should reflect an abstraction of the target system 

that excludes the internal design of components. It must focus on the assignment of 

responsibilities to components and connections between those components, abstracting 

all else. The remainder of this chapter explores a method for explicitly modeling the 

non-hierarchically homogeneous (NM) class of architectures and paves the way for the 

more interesting class of hierarchically heterogeneous systems. A prescription for the right 

architectural elements and the language constructs used to model them is presented in the 

following subsection. 

3.5    Essential Elements of Non-hierarchically Homogeneous Architectures 

For the purposes of this thesis, when referring to an NM-class architecture, it is 

assumed that the homogeneous style in use is the object-oriented style. This assumption 
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arises from the fact that this thesis targets formal object-oriented environments and the 

object-oriented systems they produce2. Also, note that little is gained in an object-oriented 

environment by explicitly modeling the object-oriented architecture than an increase in 

the size of the model. In an environment capable of producing only non-hierarchical and 

hierarchical object-oriented architectures, the architecture can be inferred from the design 

model or, for that matter, from the analysis model and this explicit modeling of the 

architecture is unnecessary overhead. This discussion of the requirements for modeling an 

NM-class of architectures, however, lays the foundation for an environment that can also 

model heterogeneous architectures where the architectural styles employed can no longer 

be easily inferred. Such an environment is discussed in the next chapter. 

To effectively capture the essence of an NM-class architecture, the modeling language 

must be able to represent the following elements: the system itself (i.e., the encapsulat- 

ing entity), primitive components3, ports, connectors, roles, and attachments. Figure 19 

graphically depicts a simple object-oriented NM architecture and is included for reference. 

The architectural model must be uniquely identifiable in the abstract representation of 

a complete system model (i.e., one that includes analysis and design models). The root 

node of the architecture model must be represented using a named entity that can contain 

other entities. This parallels the use of packages by some vendors in the object-oriented 

arena, where a package can contain other entities such as classes. Others provide a similar 

notion, while giving it a different name. The term "package" will be used for the purposes 

of illustrating the requirement to represent the root node of an architectural model. 

Components, ports, connectors, and roles are all modeled using the class construct. 

A class is a named entity that contains a reference to its superclass, a set of attributes, 

a set of operations, and a dynamic model. Using a class to model the components and 

connectors in the system adds greatly to the model. The architect can type the components 

in the architecture by using class inheritance, allowing subsequent type-checking of the 

2To be sure, an object-oriented transformation system can produce architectures exhibiting different 
styles, but they are inherently hierarchically heterogeneous since the lowest level components and connectors 
are assumed to always be objects and method calls, respectively. 

3The term "primitive component" is used to distinguish components of non-hierarchical architectures 
from the aggregate components found in hierarchical architectures. 
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Figure 19.      NM Object-Oriented Architecture. 

Architectural Element Language Construct 

system architecture package 
component class 
port class 
connector class 
role class 
attachment association 

Table 4.      NM architectural element to language construct mappings. 

architecture during analysis.   In addition, the architect can assign ports to components 

and roles to connectors by using the aggregation mechanism provided by the language. 

The attachments between ports and roles are modeled using the association construct. 

An association is normally used in object-oriented analysis modeling to associate classes 

in the specification. Since the association is used to associate classes, and the ports and 

connectors are modeled using classes, the association can be used to represent architectural 

attachments. A graphical representation of an attachment is shown in Figure 20. 

This approach to capturing the essence of NM architectures capitalizes on the avail- 

ability of a wide-spectrum object-oriented language by using the preexisting constructs in 

a way that simplifies the insertion of an architectural abstraction level and precludes the 

need to add new constructs to the language (see summary in Table 4). Figure 21 depicts 
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Figure 20.      An example architectural attachment. 
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package OO.Architecture is 

Class Comp_l is Component with 

end Class; 

Class SndPort_A is Port with 

end Class; 

Aggregation Comp_l_has_port_SndPort_A is 

parent theComponent     : Comp.l    occurs ExactlyOnce; 

child thePort : SndPort_A  occurs ZeroOrOnce; 

end Aggregation; 

Class InRole is Role with 

end Class; 

Class Conn_A is Connector with 

end Class; 

Aggregation Conn_A_has_role_InRole is 
parent theConnector      : Conn.A     occurs ExactlyOnce; 

child theRole : InRole     occurs ZeroOrOnce; 

end Association; 

Association Comp_l.SndPort_A_attaches_to_Conn_A.Inrole is 

role thePort      : Comp_l.SndPort_A occurs ExactlyOnce; 

role theRole       : Conn_A.InRole    occurs ExactlyOnce; 

end Association; 

end Package; 

Figure 21.     Simple object-oriented architecture, 

simple architecture shown in Figure 19 using the AWSOME language. 

3.6    Modeling Non-hierarchically Homogeneous Architectures 

The discussion in Section 3.5 established the elements necessary to model a non- 

hierarchically homogeneous architecture. From that foundation, the specific modeling 

technique can be established. In other words, the specific transformations necessary to 

derive an architectural model from the analysis model are presented. Note that these 

transformations are automatic. Each style of architecture will have different rules applied 

during the transformation process. With the exception of the object-oriented architectural 

style, the definition of these rules is outside the scope of this thesis. 
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For an object-oriented style, there are few rules to be applied. First, there is a 

one-to-one correspondence between a class in the analysis model and a component in the 

architecture, multiplicities notwithstanding. Since objects are often generated dynamically 

during runtime as a result of many non-deterministic input sequences and cannot, therefore, 

be anticipated during the development of the system, this methodology simply models a 

single component for a single class. Second—based on the author's assumption that an 

event in an object-oriented analysis model translates to a method call in the design—there 

is a one-to-one correspondence between events in the analysis model and connectors in the 

architecture. Third, since an object-oriented event is a communication mechanism between 

two classes, there are two roles created for each connector—one for the caiier, the other for 

the callee4. Fourth, for each class in the analysis model and for each event sent or received 

by the class, a port is created for the corresponding component in the architecture. So, if 

a class responds to three events and sends two events, its corresponding component will 

have a total of five ports. The following subsections present the transformations necessary 

to handle each element category. 

3.6.1 Transform NM0: The Architectural Model. The first transformation5 is the 

simplest one; it establishes the root node of the AST that will eventually house the archi- 

tectural model as a child of the existing system level AST and creates nodes to represent 

the abstract classes in the architecture (e.g., Component, Connector, etc.). These classes 

are used to type the architectural entities. In this way, a class representing a component 

can be distinguished from a class representing a connector not only by the prefix given 

to the name, but also by its defined superclass. The root of the existing system model 

is accepted as input to the transformation. For the purposes of this illustration, the root 

node of the AST containing the entire system model will be referred to as SysModel. The 

NMQ transform is defined in the following way: 

4 Note that this assumption—two roles per connector—may not hold for non-object-oriented 
architectures. 

5Note that the transformation numbering is zero-based. This method was chosen because the initial 
transformation is not really so much a transformation as it is a preparatory function. 
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Figure 22.     Architecture model after Transform NM0. 

Transform NM0: 

1. Instantiate one package node in the model as a child of SysModel. Name 

the new package node ArchModel. 

2. Instantiate one abstract class node in the model, as a child of ArchModel, 

for each of the following elements: Component, Connector, Port, and 

Role. 

3. Return SysModel. 

The results of this transform are graphically portrayed by Figure 22. 

3.6.2    Transform NMX:  The Components.       This transform accepts SysModel as 

input and is defined in the following way: 

Transform NMi: 

1. For each original class in the analysis model, instantiate one class node 

as a child of ArchModel, naming each new node Comp^classname, where 
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Figure 23.     Architecture model after Transform NMi. 

classname is the name of the originating class.  Set the Component class 

as superclass for Comp-classname. 

2. Return SysModel. 

The results of this transform are graphically portrayed by Figure 23. 

3.6.3    Transform NM2: The Component Ports.      This transform accepts SysModel 

as input and is defined in the following way: 

Transform NM2: 

1. For each original class in the analysis model and for each event received 

or sent by the class, instantiate one class node as a child of ArchModel 

to represent the port. Also, make the new port class an element of 

the aggregate class that models the associated architectural component, 

using the aggregation language construct. Name each new port node 

directionPort^eventname, where eventname is the name of the origi- 

nating event, and direction is "Snd" or "Rev," depending on whether 
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the event is a send or receive event. Set the Port class as superclass for 

direct i on Port_eventname. 

2. Return SysModel. 

The results of this transform are graphically portrayed by Figure 24. 

3.64    Transform NM3:  The Connectors.       This transform accepts SysModel as 

input and is defined in the following way: 

Transform NM3: 

1. For each original event in the analysis model, instantiate one class as a con- 

nector node in ArchModel. Name each new connector node Conn^eventname, 

where eventname is the name of the originating event. Set the Connector 

class as superclass for Conn—eventname. 

2. Return SysModel. 

The results of this transform are graphically portrayed by Figure 25. 

3.6.5    Transform NM4: The Connector Roles.      This transform accepts SysModel 

as input and is defined in the following way: 

Transform NM4: 

1. For each original event in the analysis model, instantiate two class nodes 

as children of ArchModel. Also, make the new role nodes elements of the 

aggregate class that models the associated architectural connector. Name 

one role node InRole_eventname and one role node OutRole_eventname, 

where eventname is the name of the originating event. Set the Role class 

as superclass for InRole_eventname and OutRole_eventname. 

2. Return SysModel. 

The results of this transform are graphically portrayed by Figure 26. 
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Figure 24.     Architecture model after Transform NM2. 
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Figure 25.      Architecture model after Transform NM3. 

3.6.6 Transform NM5: The Port-to-Role Attachments. This final transform is 

responsible for creating the nodes in the AST that represent attachments in the architec- 

ture. Architectural attachments associate component ports to their respective connector 

roles. These attachments constitute the thread that binds the nodes in the architectural 

AST into a meaningful architectural model. The transform accepts SysModel as input and 

is defined in the following way: 

Transform NM5: 

1. For each original class in the analysis model and for each event sent 

or received by the class, instantiate one association as a child node of 

ArchModel to represent the attachment. The association node will asso- 

ciate the port node—deßned for the event sent or received by the orig- 

inal class—with the appropriate role node in the following way: if the 

event was received by the original class in the analysis model, the as- 

sociation links the port to the _Out role of the connector; if the event 

was sent by the original class in the analysis model, the association links 
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Figure 26.     Architecture model after Transform NM4. 
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the port to the _In role of the connector.  Name each attachment node 

dirPort_attaches_to_dirßole where dirPort and dirRole are the names 

of the port and role involved in the attachment. 

2. Return SysModel. 

The results of this transform are graphically portrayed by Figure 27. 

3.7   Summary 

Software architectures can be broadly classified as: non-hierarchically homogeneous, 

non-hierarchically heterogeneous, hierarchically homogeneous, or hierarchically heteroge- 

neous. Most object-oriented, formal transformation systems operate by transforming an 

analysis model directly to a design model and conduct architectural modeling and rea- 

soning functions only through implicit transformation and inference, respectively. In an 

environment supporting the production of only object-oriented architectures (hierarchical 

or non-hierarchical), the architectures can be explicitly modeled following the requirements 

specification phase and prior to low-level design transformation. However, in this limited 

environment, such an operation adds little more than modeling overhead. Having demon- 

strated the ability to explicitly model the architectures, however, one can construct an 

environment capable of modeling a wide variety of heterogeneous architectures. In this 

case, the architecture serves as an abstract constraint on the solution space and improves 

the ability of a transformation system to generate complex software systems. 
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IV.   Modeling Hierarchically Heterogeneous Architectures 

4-1    Introduction 

The previous chapter presented a method for explicitly modeling non-hierarchically 

homogeneous (NM) architectures. The methodology proposed here builds on that foun- 

dation and provides a way to capture the class of architectures known as hierarchically 

heterogeneous (HH) architectures. 

4.2    A Modified Transformational Process Model 

Inferring object-oriented architectures from object-oriented analysis models and in- 

serting the results into a design tree can be accomplished without changing the way a 

transformational system operates, as shown in the previous chapter. The notion of hier- 

archically heterogeneous architectural models, however, requires a change in the process 

model to allow for the introduction of new information during the transformation process. 

An architecture modeling tool, inserted between the problem setting phase and design 

phase, provides this capability. 

It is important to note that the production of HH architectures requires additional 

human intervention during the transformation process. This intervention is required be- 

cause the assumption that each class in the object-oriented analysis model transforms 

directly to a component in the architecural model is no longer valid. This methodology 

assumes several styles of architecture, and the component and connector types they of- 

fer, are available to the system architect. Figure 28 graphically portrays an environment 

supporting this approach (compare to Figure 12 in Chapter II). 

Using such an environment, the architect first proßles the problem based on the soft- 

ware quality attributes required by the customer and then selects an appropriate compo- 

sition of styles based on that profile1. The engineer graphically composes the architecture, 

using a graphical architecture modeling tool designed for the purpose, by assigning archi- 

tectural constructs provided by the tool to entities in the analysis model, using whatever 

lrrhe actual profiling and style selection processes are outside the scope of this thesis and left for future 
research. 
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Figure 29.      An example architecture assistant GUI. 

degree of hierarchy and heterogeneity is desired2. A screen-shot of a mock-up version of 

such a tool is shown in Figure 29. While the development of a tool to facilitate graphical 

architectural modeling is outside the scope of this research, such a tool is precisely what 

should be used to perform the transformations described. It would essentially take an 

analysis model as input, provide a way to overlay an architecture onto the model, and 

output the resulting high level design for use in further design transformations. Within 

this context, the necessary transformations from the analysis to an architectural model are 

presented. 

2The tool would be designed to enforce semantic and topological constraints during the composition 
process, thereby ensuring the conformance of the architecture to published architectural styles. 
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Figure 30.     An object-oriented, hierarchically heterogeneous architecture. 

4.3    Essential Elements of Hierarchically Heterogeneous Architectures 

Like the NM-class of architectures presented in Chapter III, HH-class architectures 

necessitate modeling components, connectors, ports, roles, and attachments. In addition, 

HH-class architectures require representation of architectural styles, style-specific com- 

ponent and connector types, aggregate components, and port-to-port bindings. Figure 

30 graphically depicts an object-oriented HH architecture and is included for reference 

throughout the following discussion. 

To facilitate the use of various styles of architecture, the model must be able to 

represent a style. This can be done as before with the class construct, where the class 

is given a name identifying the style. Specific architectures can then be associated with 

the style. Likewise, the component and connector types are modeled as classes and are 

associated with their parent architectural styles. This modeling of the architectural style 

and component types is handled separately from the architecture of a specific system. 

The system architecture simply has an association with the style and the architecture's 

components and connectors inherit their properties from the types defined for the style. 

The second change introduced by this class of architectures is the notion of nesting 

components, creating the hierarchy suggested by the class. In the simplest terms, just as an 

architecture contains components, connectors, ports, roles, and attachments, a component 

can be defined as consisting of a lower-level architecture of the same or of a different style. 
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Architectural Element Language Construct 

architectural style class 
component type class 
connector type class 
aggregate component package 

binding association 

Table 5.     HH architectural element-to-language construct mappings. 

In other words, a component may encapsulate a sub-architecture. Therefore, this new 

aggregate component, like the system-level architecture itself, is modeled using the package 

construct. Primitive components are still modeled as classes. To capture the aggregate 

component's type, a reference (i.e., a class with the same name as the package representing 

the aggregate component) is created that refers back to the component type class. For 

example, to model an aggregate component called A that is an X_Type component, a 

package is created and named Comp_A. In addition, a class is created, named Comp_A, 

and is made a sub-class of X_Type. This overhead is one result of the decision to overload 

the existing wide-spectrum language for architectural specification. 

The addition of an aggregate component introduces another issue that must be ad- 

dressed in the model for HH-class architectures. In a flat architecture, components are 

linked together with connectors and the components and connectors are linked via port- 

to-role attachments. In such a case, everything is clearly connected. However, there must 

be a way to show how the sub-architecture modeled in an aggregate component communi- 

cates with the parent component. The construct commonly used to effect this connectivity 

is the binding. A binding links a port of a component in the sub-architecture to a port of 

the parent component. Figure 31 provides a graphical representation of a binding. 

Therefore, the model must account for these port-to-port bindings. The most obvious 

solution to the problem is to use the association construct for the task. Since ports are 

classes and associations are used to link classes, using associations to model port bindings is 

a straightforward approach. In this way, the architecture will use the association language 

construct to model two architectural entities: port-to-role attachments and port-to-port 

bindings. Table 5 summarizes the use of object-oriented language constructs to model the 

architectural entities in HH-class architectures. 
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Figure 31.      An example binding in an HH-class architecture. 
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44    Modeling Hierarchically Heterogeneous Architectures 

The previous discussion in Section 4.3 identified the elements necessary to model a hi- 

erarchically heterogeneous architecture. Prom that foundation, the specific AST modeling 

technique can be established. The transformations necessary to generate the architectural 

model are presented in the following subsections. The following subsections present the 

transformations necessary to handle each element category. 

Recall that the transformations for NM-class architectures assumed an object-oriented 

environment producing systems that conform to the object-oriented architectural style. In 

such an environment, many assumptions can be made during the transformation about 

the architectural style and component and connector types (e.g., each component in the 

target architecture is generated from an object in the analysis model). In an environment 

designed to produce HH-class architectures, all bets are off—these assumptions can no 

longer be made. In addition, even though the elements of an NM-class architecture are 

present in an HH-class architecture, the transformations required to produce the latter will 

change due to structural changes in the target model. 

There are a total of eight transforms used during the transformation process for HH- 

class architectures. The HH0 transform sets up the model much like the NM0 transform. 

Transforms HHi through HH6 establish the style, components, ports, connectors, roles, and 

attachments at each level in the architectural hierarchy. For each level below the system 

level, transform HH7 establishes the bindings necessary to link the sub-architecture with 

its parent architecture. Each transform is explained in greater detail in the following 

paragraphs. 

4.4.I Transform HHQ: The Architectural Model. The first transformation estab- 

lishes the root node in the AST, called the ArchModel, that encompasses all architectural 

information pertaining to the system. This transform also creates nodes to represent the 

basic types (component, connector, port, and role) as children of ArchModel. These classes 

are abstract classes in the sense that their sole purpose is to type the components, con- 

nectors, ports, and roles that will be defined by the architecture. Finally, it establishes a 

Configuration node (using the package construct) as a child of ArchModel to serve as the 
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root for the system level architecture itself. As such, Configuration has as children all 

the architectural elements of the system (e.g., the specific components, connectors, ports, 

roles, attachments, etc., that make up the system level architecture) and a style node 

that defines the style implemented by the configuration. The components at the system 

level configuration can be aggregate or primitive components. Each aggregate component, 

modeled with the package construct, represents the root node of a new level in the archi- 

tecture hierarchy. In addition to the standard fare of components, connectors, ports, roles, 

and attachments, all aggregate component nodes have as a child a style node and all the 

bindings that map a component's internal representation to its external representation. 

The HH0 transform is defined in the following way: 

Transform HHQ: 

1. Instantiate one package node in the model as a child of SysModel. Name 

the new package node ArchModel. 

2. Instantiate one package node in the model as a child of ArchModel. Name 

the new package Configuration. 

3. Instantiate one class node in the model as a child of ArchModel for each of 

the following elements: style, component, connector, port, and role. Name 

the nodes Style, Component, Connector, Port, and Role, respectively. 

4. Return SysModel. 

The results of this transform are graphically portrayed by Figure 32. 

44.2 Transform HEX: The Style. This transform is responsible for creating 

the node in the AST that represents the architectural style implemented by the input 

configuration3. The transform accepts the Configuration or Conf_cname node as input 

(where Conf_cname is the name of an aggregate component)4 and is defined in the following 

way: 

3Note that the configuration can either be the system level Configuration or a lower level configuration 
defined by an aggregate component Conf_cname. 

4To simplify the transform definitions, the input node in each transform will be referred to as Inode. 
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Figure 32.     Architecture model after Transform HH0. 
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Figure 33.      Architecture model after Transform HHX. 

Transform HH\: 

1. Instantiate one class node in the AST as a child of Inode to represent the 

architectural style implemented. Name the node Style. Set the appro- 

priate StyleType^typenamen class, created as a node under ArchModel, 

as the superclass of Style. 

2. Return Inode. 

The results of this transform are graphically portrayed by Figure 33. 

44.3 Transform HH2: The Components. This transform is responsible for cre- 

ating the elements in the model that represent components in the input configuration (i.e., 

Inode). The transform accepts Inode as input and is defined in the following way: 

Transform HH2: 

1. For each component deßned during architectural design, instantiate one 

class node as a child of Inode, naming each new node Comp-cname, where 
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Figure 34.      Architecture model after Transform HH2. 

cname is the name given to the component by the architect during archi- 

tectural design. Set the Component class as superclass of Comp_cname. 

2. In addition, for each aggregate component (i.e., a component consisting 

of lower-level components) defined during architectural design, instantiate 

one package node as a child oflnode, naming each new node Conf-cname, 

where cname is the name given to the component by the architect during 

architectural design5. 

3. Return Inode. 

The results of this transform are graphically portrayed by Figure 34. 

444 Transform HH3: The Component Ports. This transform is responsible for 

creating the nodes in the AST that represent component ports in the input configuration. 

The transform accepts Inode as input and is denned in the following way: 

5Note that for each aggregate component, there exists a package node and a class node representing 

that component. This is necessary to allow both typing the component by making it a subclass of Component 

and adding children to the component to reflect its container nature. 
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Transform HH3: 

1. For each port defined during architectural design, instantiate one class 

node as a child of Inode to represent the port. Make the new port class 

an element of the aggregate class that models the associated architectural 

component, using whatever mechanism the modeling language provides 

for aggregation. Name each new port node Port-pname, where pname is 

the name given to the port by the architect during architectural design. 

Set the Port class as superclass of the Port^pname class. 

2. Return Inode. 

The results of this transform are graphically portrayed by Figure 35. 

44.5 Transform HH4: The Connectors. This transform is responsible for cre- 

ating the nodes in the AST that represent connectors in the input configuration. The 

transform accepts Inode as input and is defined in the following way: 

Transform HH4: 

1. For each connector defined by the architect during architectural design, in- 

stantiate one class node as a child of Inode, naming each node Conn_cname, 

where cname is the name given by the architect during architectural de- 

sign. Set the Connector class as superclass of the Conn-cname class. 

2. Return Inode. 

The results of this transform are graphically portrayed by Figure 36. 

4.4.6    Transform HH5:   The Connector Roles. This transform is responsible 

for creating the nodes in the AST that represent roles for each connector in the input 

configuration. The transform accepts Inode as input and is defined in the following way: 

Transform HH5: 

1. For each role defined by the architect during architectural design, instan- 

tiate one class node as a child of Inode, naming the node Role^rname, 
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Figure 36.     Architecture model after Transform HH4. 

where rname is the name given the role by the architect during architec- 

tural design. Set class Role as superclass of the Role_rname class. 

2. Return Inode. 

The results of this transform are graphically portrayed by Figure 37. 

44.7 Transform HH6: The Port-to-Role Attachments. This transform is respon- 

sible for creating the nodes in the AST that represent attachments in the input configura- 

tion. The transform accepts Inode as input and is defined in the following way: 

Transform HHQ: 

1. For each attachment defined by the architect during architectural design, 

instantiate one association node as a child of Inode, naming the node 

Port_pname_attaches_to_JJole_rname where Port_pname is the name 

of the port involved in the attachment and fiole_rname is the name of the 

role involved in the attachment. 
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2. For each attachment created in the previous step, link one end of the at- 

tachment to the port named Port^pname and the other end to the role 

named fiole_rname as specified by the architect during architectural de- 

sign. 

3. Return Inode. 

The results of this transform are graphically portrayed by Figure 38. 

44.8 Transform HH7: The Port-to-Port Bindings. This transform is only run 

for level-n configurations where n > 1. It is responsible for creating the nodes in the 

AST that represent bindings from the ports in the configuration to the ports of its parent 

component Conf _cname (see paragraph 4.3 and Figure 30 for a review of the role bindings 

play in the architecture). The transform accepts Inode as input and is defined in the 

following way: 

Transform HH7: 

1. For each binding specified by the architect during architectural design, 

instantiate one association node as a child of Inode to represent the 

attachment, naming the association Port_pnamei_binds_Port_pname2, 

where Port_pnamei is the name given to a port in the configuration and 

Port_pname2 is the name of a port in the parent component to which 

Port_pnamei is bound as defined by the architect during architectural 

design. 

2. Return Inode. 

The results of this transform are graphically portrayed by Figure 39. 

4.5   Exporting Architectures to Architectural Interchange Languages 

The bulk of this research focused on producing a methodology for broadly classifying 

software architectures and then formally modeling two of the four architectural classes 

in a formal, object-oriented transformation system.   In this final section, an approach 
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Figure 38.      Architecture model after Transform HH6. 
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Figure 39.     Architecture model after Transform HHL7. 

is presented for extracting the architecture, once in a design AST, to a language fit for 

architectural interchange between a variety of formal software design environments. 

4.5.1 Scope of the Architecture Export Method. Recalling from the background 

section, architectural interchange languages attempt to provide a fixed vocabulary for ex- 

pressing software architectures. Such a language defines a canonical syntax sufficient to 

transfer the essence of an architectural design from one environment to another. Such a 

language is often called an intersection language. The developers of the Acme interchange 

language went further by incorporating hooks into the language whereby the canonical 

form representing the essential aspects of the architecture is supplemented (optionally) 

with property blocks containing non-canonical constructs. These properties are then car- 

ried along as baggage through the Acme interchange to a foreign environment that may 

disassemble and make proper use of them. A language that attempts this is termed a union 

language. Acme is both a union and an intersection language [13]. 
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This research limited its scope to the union-oriented aspects of the Acme language. 

In other words, the foundation it provides is limited to exporting those abstract design 

elements (e.g., packages, classes, and associations) in a design AST that map directly to the 

Acme constructs common across ADLs (e.g., systems, components, and bindings). The 

method for exporting these design elements to Acme surface syntax is described in the 

following section. 

4.5.2 Mapping Architectural Design Elements to Acme Language Constructs. In 

her master's thesis, Noe demonstrated the ability to infer an architecture from an object- 

oriented analysis model and produce Acme surface syntax. With the methodology already 

presented for creating an architecture using an architecture assistant and populating a 

formal, object-oriented design AST, one can now export the architectural design, at any 

time in the life of the software system, to an Acme surface syntax. 

The goal of an algorithm designed to perform such an exportation is to generate 

correct Acme surface syntax for the architecture. A simple system described in Acme 

surface syntax is shown in Figure 40. 
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System sample-system = ■[ 
Component A = { 

Port Out; 

Port In; 
Properties •£ Aesop-style : style-id = pipe-filter; 

Unicon-style : style-id = pf; 
source-code : external = ''LIB/a.Java' 

}; 

>; 
Component B = {. 

port Send; 

port Receive; 

}; 
Connector C = { 

role Acoming; 

role Agoing; 

role Booming; 

role Bgoing; 

>; 
Attachments { 

A.Out to C.Agoing; 

A.In to C.Acoming; 

B.Out to C.Bgoing; 

B.In to C.Bcoming; 

>; 
>; 

Figure 40.     A sample system in Acme syntax. 
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To effect the exportation, the algorithm must adhere to the following mappings 

between object-oriented design AST elements and Acme program constructs. 

Design AST Node=>Acme Construct: 

1. Configuration(package) =^System Map: 

For every Configuration package node encountered in the AST, produce 

an equivalent System declaration in Acme. 

2. Component(class)=»Component: 

For every Component class node encountered in the AST, produce an 

equivalent Component declaration in Acme. 

3. Connector(class)=^Connector: 

For every Connector class node encountered in the AST, produce an 

equivalent Connector declaration in Acme. 

4. Port (class) =»Port: 

For every Port class node encountered in the AST, produce an equivalent 

Port declaration in Acme. 

5. Role(class)=^Role: 

For every Role class node encountered in the AST, produce an equivalent 

Role declaration in Acme. 

6. Attachment (association) => Attachment: 

For every Attachment association node encountered in the AST, produce 

an equivalent Attachment instance in an Acme Attachment block. 
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7. Component (package) ^Representation: 

For every Component package node encountered in the AST, produce 

an equivalent Representation declaration in Acme. 

8. Binding(association)=^Binding: 

For every Binding association node encountered in the AST, produce an 

equivalent Binding instance in an Acme Binding block. 

9. Style(class)=^Style: 

For every Style class node encountered in the AST, produce an equivalent 

Style declaration in Acme. 

10. ComponentType(class)=>Template: 

For every ComponentType class node encountered in the AST, produce 

an equivalent Template declaration in Acme. 

11. ConnectorType (class) =>Template: 

For every ConnectorType class node encountered in the AST, produce 

an equivalent Template declaration in Acme. 

4-6    Summary 

Creating hierarchically heterogeneous architectures and inserting them into an AST 

requires more than simply inferring the architecture from an analysis model. An architec- 

tural modeling tool that facilitates the application of one or more architectural styles to 

an analysis model is required. Once an architecture is composed, the results can be trans- 

formed to an object-oriented design AST by applying a set of style-specific transforms. 

With architectural models explicitly reflected in a design AST, systems engineers are able 

to extract and reason over the architecture by using analysis tools native to the environ- 

ment or by exporting the architecture to other analysis tools via architectural interchange 

languages. 
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V.   Demonstration 

5.1 Overview 

This chapter summarizes the results of a trial run of the methodology. The trial run, 

or demonstration, was conducted in the AWSOME transformational environment. AW- 

SOME is a representative example of the target environment and provided fertile ground 

for this demonstration. 

For the purposes of demonstrating the methodology, a sample problem was needed. 

The problem had to be simple enough to be solved in a limited amount of time, but flexible 

enough to be able to apply both an NM and HH architecture during the demonstration. 

The problem profile became a simple, object-oriented, client-server application. 

5.2 An Architecture Waiting to Happen 

Bä' bal is an online multilingual dictionary developed by the author and an asso- 

ciate to satisfy a distributed operating systems course requirement at the Air Force In- 

stitute of Technology. The intent of the development project was to expose students to dis- 

tributed client-server application development techniques. The purpose of the Bä' bal sys- 

tem itself is to provide a way to quickly get a foreign language translation of an English 

word or phrase using distributed, and perhaps web-based, technology. The system requires 

the facilities necessary for a user to enter an English word or phrase, the name of a target 

language, and a command to proceed with translation (see Figure 41). Upon receiving 

valid input, the system returns the translation of the word or phrase written in the West- 

ern alphabet, the translation as it is represented in the target language (i.e., the native 

alphabet), and a sound file that demonstrates the correct pronunciation of translation in 

the native dialect. 

Bä' bal was eventually implemented as a distributed client-server system written 

in Java™ using Java™ remote message invocation (RMI). The server component was im- 

plemented using Oracle®. Because the Bä'bal project presented a simple distributed 

client-server architecture and was implemented using object-oriented development tech- 
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Babe! 
A Distributed Snglisk-MiMm^al Dictionary 

Target Language-    Japanese  - 

English word or phrase:   S]<enterworci;;ör phrase:here= 

Translation 

Western Aiphabet Spelling: 

Target Language Spelling: 

Let's hear it: 

III1II 

«1! 
Re»*/. 

Figure 41.      Ba' bsl graphical user interface. 

niques, it was particularly well-suited to demonstrating the methodology presented in this 

research. 

This thesis includes as Appendix A the formal Bä' bal specification expressed in 

Z syntax. In a completely operational transformation system, this formal Z specification 

would have been parsed and loaded into an AWSOME AST as an analysis model. However, 

at the time of this writing there was no such Z-to-AWSOME parser1. Therefore, as a 

preliminary step in the demonstration, a program was developed in Java to directly create 

the Bä' bal analysis model as an AWSOME AST in a manner that is consistent with the Z 

specification. In addition, a simple Java applet was created to facilitate the demonstration 

itself. The applet provides a menu of choices, as shown in Figure 42, for building and 

manipulating an AWSOME AST. Menu items 1 and 2 instantiate the AST and populate 

the analysis model. 

With an AWSOME AST—including a SysModel and an AnalysisModel—as a start- 

ing point, the two architectural variations were produced. 

Hn an earlier version of AWSOME, there was a Z-to-DOM (domain object model) parser 

85 



fO'l Applet Viewer: BabelSystem.Archlnterface Era 
Applet 

Menu 

1 - Create newAwsome model 

2 - Generate analysis model 

3 - Generate Object-Oriented architectural model 

4 - Generate 00 Client-Server architectural model 

5-PrinttheAST(stdout) 

6 - Export the architectural model to Acme 

7 - Initialize the AST (i.e., empty it) 

Enter choice: 

Applet started. 

Figure 42.      Architecture demonstration applet interface. 
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5.3 Modeling an Object-Oriented Ba' bal Architecture 

For the first part of the demonstration, the target architecture for Bä' bal was 

the non-hierarchical object-oriented style. This is the class and style of architecture that 

AWSOME implicitly builds by default. The purpose of the demonstration was to show the 

feasibility of explicit modeling via automatic transformation. 

A program was written to walk the analysis model and automatically apply the 

transforms discussed in 3.6. The tree-walking exercise itself offered no new or surprising 

results—it had, in fact, been performed before in a similar environment by Noe. The 

transformation of the analysis model to an explicit architectural model, however, is new 

and was accomplished successfully using transforms NM0 through NM5, also with unsur- 

prising results. Appendix C shows the AWSOME surface syntax for the object-oriented 

model created by the transformation process. Appendix D shows the Acme surface syntax 

generated by the Acme export process. 

5.4 Modeling a Client-Server Bä' bal Architecture 

The second target architecture for Bä' bal was a client-server style with object- 

oriented clients and servers. As previously described, the production of such an architecture 

from an object-oriented analysis model requires additional information, perhaps best pro- 

vided through an architectural modeling utility. In the absence of such a utility, a program 

was written in Java that simulated the design decisions imposed by an architect and built 

the target architecture as an AWSOME AST. For example, for the Bä' bal system, the 

program assumed that the architect decided to group Comp^LookupPButton, Comp-Add- 

EntryPButton, and Comp^Babellnterface together to form the client component Comp^- 

BabelClient. Knowing this, it creates a Comp-BabelClient aggregate class with three sub- 

components (i.e., Comp^LookupPButton, Comp^AddEntryPButton, and Comp^Babelln- 

terface). 

This transformation required the introduction of two new package nodes in the AW- 

SOME AST as children of ArchModel. The first of the two nodes, called Style was 

reserved for the inclusion of architectural style information pertinent to the architecture 
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being modeled—it was unused during this implementation. The second of the two nodes 

was the Configuration node. The configuration node provided a root for the architectural 

configuration of the system apart from the nodes used to represent the architectural styles 

and element types used in the configuration. 

Transformation HH0 initiated the transformation process by correctly appending 

to the AST root SysModel, a node called ArchModeLBabeLCS that would serve as 

the root of the new architectural AST. In addition, it created all architectural style 

and port/role type nodes that would be used to type the elements of the architecture. 

For example, not only did the transformation create a component node, it also created 

three subclasses of component called ComponentType_Object, ComponentType_Client, 

and ComponentType_Server. As subclasses of the Connector node, the transformation 

created ConnectorType_MethodCall and ConnectorType_RPC. These nodes reflect the 

heterogeneous (i.e., object-oriented client-server) nature of the architecture being modeled 

for Bä' bal . 

Transforms HHi through HH6 created the top level in the system architecture. 

Based on the decisions of the architect, the transformations created a Style node as a 

subclass of StyleType_ClientServer (HHi), component nodes for each client and server 

identified at the system level and their respective ports (HH2and HH3), connector nodes 

to represent directional RPC between the clients and servers and their respective roles 

(HH4and HH5), and attachments linking the client and server component ports to the 

RPC connector roles (HH6). The rules for creating these architectural entities for a client- 

server configuration were quite different, so the transformations for this exercise borrowed 

little from the first transformation of an object-oriented architecture. For instance, in 

the object-oriented transformation, a port is created for each and every event received 

or sent by each and every object component. In the client-server transformation, the 

only ports required were Port_ClientOut and Port_ClientIn (and a similar pair for the 

server component) to represent the bidirectional nature of the RPC connection. The single 

Conn_RPC connector had four roles with which to attach itself to incoming and outgoing 

RPC communication. 



The second iteration of transforms HHi through HH6 created the second level in 

the configuration for the Comp_BabelClient aggregate component. This sub-architecture 

instantiated the object-oriented architectural style, as opposed to the system level client- 

server style. The most noteworthy difference at this level was the inclusion of bindings, 

created by transform HH7, that tied the dynamics of the sub-architecture with that of the 

system level architecture. 

Like the transformations for the NM-class Bä' bal architecture, these transforma- 

tions executed as expected and produced explicit software architecture models as AW- 

SOME ASTs. The results of the transformation process are included as Appendix E. The 

final objective in the demonstration was to show how the architecture can be extracted 

from the design AST into a language that allows interchanging the architecture to and 

from dissimilar modeling environments. 

5.5    Exporting the Bä' bal Architecture to Acme 

Explicitly modeling a software architecture in a transformational environment pro- 

vides a way to constrain the lower-level design transforms and opens the door to more 

complex system architectures. An alternative benefit of explicit architectural modeling 

is the ability to extract the architecture from the system and analyze it using tools and 

techniques that do not readily support the local modeling language. 

In this part of the implementation, the hierarchically heterogeneous architecture was 

exported to the Acme interchange language. The demonstration involved developing a 

small Java applet to support the operations. As previously noted, the applet supported 

the creation of object-oriented as well as object-oriented client-server architecture models 

as AWSOME ASTs. The applet also provided a mechanism for generating Acme code from 

the AST. The transforms themselves were written as the WsAcmeHHVisitor class in the 

WsVisitors package. The visitor class extends the WsCodeVisitor class and implements 

WsVisitor. The visitor class includes a visit method for each of the three AWSOME 

constructs used by the architectural model—WsPackage, WsClass, and WsAssociation. 
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The visit method for WsPackage had to account the four variations of a package that 

can exist in an architecture model—the SysModel package, the ArchModel package, the 

Configuration package, and all aggregate component (i.e., Comp_BabelClient). When 

the method is called, it is passed a node that is one of these four types. The method 

determines the type based on the value of the Wsldentifier of the package and generates 

the appropriate Acme code. 

Similarly, the visit method for WsClass had to account for the four kinds of classes 

that can occur in the architecture—components, ports, connectors, and roles. To determine 

the appropriate Acme code generation scheme, the visit method keys on the value of the 

Wsldentifier of the node passed in as a parameter. 

The visit method for WsAssociation was concerned with two types of associations— 

architectural attachments and bindings. As before, the method looks at the value of the 

Wsldentifier and, based on that value, produces appropriate Acme surface syntax. 

The Acme code generator, once developed, achieved the desired results—correct 

Acme surface syntax sufficient for interchange with other modeling environments. The 

output from the code generator for the HH-class (client-server) architecture is included as 

Appendix F. 

5.6    Summary 

The architectural modeling methodology presented was demonstrated using a sim- 

ple object-oriented client-server application called BE' bal . The demonstration involved 

three key objectives. The first objective was to successfully parse the analysis AST and gen- 

erate the appropriate abstract syntax for an NM-class object-oriented architecture for the 

Bä' bal system. This objective was fully met. The second objective was to successfully 

represent an object-oriented client-server (i.e., HH-class) architecture for Bä'bal based 

on the same analysis model. An AST-generation program was written in lieu of an architec- 

tural modeling tool. This objective was fully met. The final objective was to successfully 

export the HH-class architecture from the design AST to an Acme surface syntax. This 

objective was fully met. 
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VI.   Conclusions and Recommendations 

6.1 Conclusions 

Several conclusions were made following this research. First, object-oriented analy- 

sis models are not a source of high-level design information. In fact, the objective is to 

limit, as much as possible, the amount of design that goes into the requirements speci- 

fication process. Although total elimination of design information may not be practical, 

or desired, in a transformational environment, keeping the specification relatively free of 

lower-level design and implementation constraints helps prevent the unwitting elimination 

of viable alternative solutions. The appropriate place to assert and examine design infor- 

mation, including high-level system architectures, is in post-specification formal models 

(e.g., designs). 

A second observation is the sheer breadth of architectural design alternatives in the 

field. There is a community focused on architecture and design patterns and pattern lan- 

guages, a group dedicated to the use of architectural frameworks in software development, 

and those like the Software Engineering Institute who key on architectural styles, software 

qualities, and process models. It is not altogether clear that a single approach to software 

architectures is sufficient for all development paradigms. It does seem important, however, 

that in a given environment there should be a way to assert high-level design decisions, 

produce meaningful software system architectures, and analyze these abstract solutions for 

their efficacy prior to continuing the development process. 

Finally, semi-automated software transformation systems cannot produce software 

solutions without the involvement of highly trained and educated software professionals. 

There must be a mechanism for introducing the decisions made by these facilitators into 

the transformational process. Software architectural modeling is an appropriate mechanism 

whereby design constraints can be placed on a software solution. 

6.2 Contributions 

The significant contributions of this research to the field of software engineering and 

the area of formal transformation systems are: 
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• it presents a modified version of the transformational process model with an increased 

emphasis on explicit software architecture modeling and representation, 

• it defines a taxonomy of architectural classes for use in those environments capable 

of producing hierarchically heterogeneous architectures, 

• it demonstrates the feasibility of explicitly modeling the architectures of software 

systems in object-oriented formal transformation systems, 

• it expands the notion of architectures in object-oriented environments to include 

style-based hierarchically heterogeneous configurations, 

• it redirects the focus of architecture extraction methods from analysis models to 

design models, and 

• it discusses the utility, feasibility, and desirability of verifying the conformance of 

software architectures to well-delineated classes and styles of architecture. 

6.3    Recommendations for Future Work 

The cost of explicitly composing and formally modeling software architectures is 

only justified if the architectural models can then be used to improve the designs of the 

systems for which they were created. Therefore, there must be a way to extract the 

architectures and analyze them to determine their ability to effectively solve formally 

specified problems. Examples of such analyses are port-component consistency, port-role 

compatibility, connector deadlock freedom (Wright), and satisfaction of ordering relations 

by run-time trace sets (Rapide). There is much talk in the research community about third- 

party analysis tools and interchange languages available for this purpose, but very little 

has been done to show, convincingly, that this is feasible. One future research possibility 

is the exploration of such analyses for the purpose of defining a base set, along with the 

tools that support them, that can be easily applied to an architectural model. 

Second, the modified process model suggested in this research depends on the ability 

to appropriately profile a system based on its quality attributes and to select an appropriate 

combination of architectural styles based on this profile. However, capturing, quantifying, 

and formalizing the quality attributes is an area that has not been adequately explored. 
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It has always been difficult to quantify the "-ilities" required by a system—now we are 

recognizing the dependence of good architectural modeling on this quantification. There- 

fore, quantifying and formally modeling the non-functional quality attributes introduced 

by stakeholders in the development of software systems and leveraging their availability 

to produce software systems that meet the often-overlooked demands place on them is an 

area ripe for future research. 

A third area of possible future research is the notion of a graphical architecture com- 

position utility. Such an application would provide a way to graphically compose complex 

architectures over previously specified analysis models, thereby hiding the formalisms that 

make such modeling difficult. The tool would be supported by an architectural domain 

model that would provide the knowledge necessary to correctly apply architectural styles 

to the problem. Also, the tool would provide a way to export a formal representation of 

the architecture once the architect is content with the design. 

Finally, the architecture of a software system earns its place in the process model by 

providing a way to constrain the down-stream transformation to code. Therefore, an area 

that requires significantly more research is that of composing the newly modeled architec- 

ture with the analysis model to produce a robust low-level design. The analysis model by 

itself carries very little, if any, design information, but provides essential information for 

the creation of low-level design entities; the architecture provides the design inputs required 

to produce an appropriate low-level design for the target system. This process is alluded 

to, and vaguely described, in this research, but is essential to the complete inclusion of 

software architecture in the formal transformation process. 

6.4    Summary 

The primary contribution of this research is that it provides a way to explicitly, and 

formally, model software architecures using an object-oriented modeling language native 

to a transformation system. In addition, it proposes a modified process model, based on 

explicit architectural modeling, to generate a large class of hierarchically heterogeneous 

software architectures in a formal, object-oriented, transformational development environ- 

ment. These high-level designs can be analyzed—using analysis tools from a variety of de- 
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velopment environments—for their ability to satisfy the critical software quality attributes 

espoused by key stakeholders. Additionally, the process model provides a convenient way 

to introduce design decisions into the transformation process, thereby constraining lower- 

level transforms and facilitating the production of more complex object-oriented software 

systems. The research targeted object-oriented environments that typically lack an archi- 

tectural emphasis and provided a new system-level perspective on the transformational 

development process model. It laid a solid foundation for developing and analyzing hier- 

archically heterogeneous architectures in transformational environments and established a 

launch pad for future work on the topic. 
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Appendix A.    Z Analysis Model for Ba' bal 

Bä< bal is an interactive multilingual translation dictionary. It accepts a target language 

and an English word or phrase as input (e.g., < "Japanese", "dog" >)and returns the foreign 

language translation of the English word or phrase (e.g., "inu"). 

[Note: In the original system, the translation is returned in three different forms: a US- 

English textual representation of the translation, a foreign textual representation of the 

translation, and an audio clip that demonstrates the proper pronunciation of the trans- 

lation. For example, on receiving a request to provide a Japanese translation for the 

English phrase "good morning," the system would respond with "ohayou gozaimasu" (the 

US-English textual representation), the Japanese textual representation for "ohayou goza- 

imasu" (using a Unicode font), and a sound clip of the proper pronunciation of "ohayou 

gozaimasu" in the modern Japanese vernacular. However, for the purposes of this thesis, 

the system will be simplified to simply return only the US-English textual representation 

of the translation.] 
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Word Structure Definition 

Object Name: Word 

Object Number: 1 

Object Description: This object models the notion of a dictionary word. 

Date: 2/5/00 

History: 2/5/00: Original 

Author: Williams 

Superclass: None 

Components: None 

Context: None 

Attributes: 
spelling    seq  CHAR       English spelling of Word 
origin       LANGUAGE    Origin of Word 

Constraints: 

None 

Z Static Schema: 

LANGUAGE ::= English | Japanese | German 

. Word  
spelling : seq CHAR 
origin : LANGUAGE 
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EngWord Structure Definition 

Object Name: EngWord 

Object Number: 2 

Object Description: This object models an English word in the dictionary. 

Date: 2/5/00 

History: 2/5/00: Original 

Author: Williams 

Superclass: Word 

Components: None 

Context: None 

Attributes: 
spelling    seq CHAR inherited from Word 
origin       LANGUAGE    inherited from Word 

Constraints: 

origin = English 

Z Static Schema: 

.EngWord. 
Word 

origin = English 
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NihWord Structure Definition 

Object Name: NihWord 

Object Number: 3 

Object Description: This object models a Japanese word in the dictionary. 

Date: 2/5/00 

History: 2/5/00: Original 

Author: Williams 

Superclass: Word 

Components: None 

Context: None 

Attributes: 
spelling    seq CHAR inherited from Word 
origin       LANGUAGE    inherited from Word 

Constraints: 

origin = Japanese 

Z Static Schema: 

__ NihWord. 
Word 

origin = Japanese 
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GerWord Structure Definition 

Object Name: GerWord 

Object Number: 4 

Object Description: This object models a German word in the dictionary. 

Date: 2/5/00 

History: 2/5/00: Original 

Author: Williams 

Superclass: Word 

Components: None 

Context: None 

Attributes: 
spelling    seq CHAR inherited from Word 
origin       LANGUAGE    inherited from Word 

Constraints: 

origin = German 

Z Static Schema: 

.GerWord. 
Word 

origin = German 
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Entry Structure Definition 

Object Name: Entry 

Object Number: 5 

Object Description: This object models an entry in the multilingual dictionary. 

Date: 2/5/00 

History: 2/5/00: Original 

Author: Williams 

Superclass: None 

Components: 

EngWord 
NihWord 
GerWord 

Context: None 

Attributes: 
eng_word    EngWord an English word 
nih_word     NihWord the Japanese translation of eng_word 
ger_word     GerWord the German translation of eng_word 

Constraints: 

eng_word cannot be null 

Z Static Schema: 

. Entry  
eng^word : EngWord 
nih-word : NihWord 
ger^word : GerWord 

#eng-.word.spelling > 0 
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BabelDictionary Structure Definition 

Object Name: BabelDictionary 

Object Number: 6 

Object Description: This object encapsulates the multilingual translation data. 

Date: 2/5/00 

History: 2/5/00: Original 

Author: Williams 

Superclass: None 

Components: None 

Context: None 

Attributes: 

table    seq Entry    sequence of Entry objects 

Constraints: 

Entries in table are alphabetized on eng_word 

Z Static Schema: 

. BabelDictionary. 
table : seqEntry 

V el, e2 : Entry; i,j : Nat • i < #table Aj< #table A i < j A 
el = table'(i) A e2 = table'{j) =$■ reduce(concat,el) < reduce(concat,e2) 

. InitDictionary  
ABabel Dictionary 

#table = 0 
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BabelDictionary Functional Model 

Object: BabelDictionary 

Process Name: AddEntry 

Process Description: Adds the specified entry to the table of entries. 

Z Dynamic Schema: 

. AddEntry  
AB abel Dictionary 
entry? : Entry 

entry? € table' 

Process Name: FindTranslation 

Process Description: Returns a foreign translation of the input English word in 
the input target language. 

Z Dynamic Schema: 

_ FindTranslation  
HfJabel Dictionary 
translation^. : seqCHAR 
word? : seqCHAR 
tgtLang? : LANGUAGE 

Ve : Entry • e G table A e.eng-word.spelling = word? =$■ 
(tgtLang? = Japanese A translation^. = e.nih^word.spelling) V 
(tgtLang? = German A translation^. = e.ger_word.spelling) 
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BabelDictionary Dynamic Model 

State Name: START 

State Description: Initial startup state. 

Z Static Schema: 

.START  
BabelDictionary 

True 

State Name: Ready 

State Description: Ready and waiting for a lookup request. 

Z Static Schema: 

, Ready  
BabelDictionary 

True 

State Name: Busy 

State Description: Looking up a request. 

Z Static Schema: 

. Busy  
BabelDictionary 

True 

Event Name: DoLookup 

Event Description: DoLookup received from user. 

Z Static Schema: 
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. DoLookup  
aWord : seqCHAR 

True 

Event Name: DoAddEntry 

Event Description: DoAddEntry received from user. 

Z Static Schema: 

. DoAddEntry  
anEntry : Entry 

True 

Event Name: NotFound 

Event Description: Word not found in table. 

Z Static Schema: 

.NotFound. 

True 

Event Name: Found 

Event Description: Word found in table. 

Z Static Schema: 

, Found. 

True 

Event Name: TransFound 

Event Description: Successful find message sent to user. 
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Z Static Schema: 

. TransFound  
result: seqCHAR 

True 

Event Name: TransNotFound 

Event Description: Unsuccessful find message sent to user. 

Z Static Schema: 

. TransNotFound _ 

True 

State Transition Table: 

Current Event Guard Next Action Send 

START Ready InitDictionary 

Ready 
Ready 
Busy 
Busy 

DoLookup 
DoAddEntry 
NotFound 
Found 

Busy 
Ready 
Ready 
Ready 

FindTranslation 
AddEntry 

TransNotFound 
TransFound 
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PushButton Structure Definition 

Object Name: PushButton 

Object Number: 7 

Object Description: This object models a gui push button. 

Date: 2/5/00 

History: 2/5/00: Original 

Author: Williams 

Superclass: None 

Components: None 

Context: None 

Attributes: 
name     seq CHAR    names PushButton 
status    PBSTATE    models status of push button 

Constraints: 

None 

Z Static Schema: 

PBSTATE ::= Activated I Deactivated 

. PushButton  
name : seqCHAR 
status : PBSTATE 
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TextBox Structure Definition 

Object Name: TextBox 

Object Number: 10 

Object Description: This object models a gui text box. 

Date: 2/5/00 

History: 2/5/00: Original 

Author: Williams 

Superclass: None 

Components: None 

Context: None 

Attributes: 
name        seq CHAR names TextBox 
value        seq CHAR stores value of TextBox 
editable    BOOLEAN differentiates between editable and non-editable text boxes 

Constraints: 

None 

Z Static Schema: 

, TextBox. 
name : seqCHAR 
value : seqCHAR 
editable : BOOLEAN 
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StatusBar Structure Definition 

Object Name: StatusBar 

Object Number: 11 

Object Description: This object models a gui status bar used to display messages 

to the user. 

Date: 2/5/00 

History: 2/5/00: Original 

Author: Williams 

Superclass: None 

Components: None 

Context: None 

Attributes: 
name    seq CHAR    names StatusBar 
value    seq CHAR    stores value of StatusBar 

Constraints: 

None 

Z Static Schema: 

, StatusBar. 
name : seqCHAR 
value : seqCHAR 
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Babelinterface Structure Definition 

Object Name: Babelinterface 

Object Number: 12 

Object Description: This object models the Babel system gui. 

Date: 2/5/00 

History: 2/5/00: Original 

Author: Williams 

Superclass : None 

Components: None 

Context: None 

Attributes 
tgtLang LANGTYPE 
e_word TextBox 
f_word TextBox 
translate LookupPButton 
addEntry AddEntryPButton 
sBar StatusBar 

determines target language for translation 
captures word to be translated 
displays translation of e_word 
generates lookup event when pushed 
generates AddEntry event when pushed 
displays messages to user during session 

Constraints: 
e_word.editable must be True 
f_word.editable must be False 

Z Static Schema: 

. Babelinterface  
tgtLang : LANGTYPE 
e-word : TextBox 
f-word : TextBox 
translate : LookupPButton 
addword : AddEntryPButton 
sBar : StatusBar 

e-W or d.editable = True 
f _w or d. editable = False 
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. Initlnterface  
ABabel Inter face 

#e-word.value = 0 
#f_word.value — 0 
sBar.value — "Ready." 
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Babelinterface Functional Model 

Object: Babelinterface 

Process Name: DisplayResult 

Process Description: Displays the translation. 

Z Dynamic Schema: 

. DisplayResult  
ABabellnterface 
result? : seqCHAR 

f_word.value' = result? 

Process Name: DisplayError 

Process Description: Displays an error message. 

Z Dynamic Schema: 

, DisplayError  
ABabellnterface 

sBar.value = e-word.value + "notfoundindictionary." 
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Babelinterface Dynamic Model 

State Name: START 

State Description: Initial startup state. 

Z Static Schema: 

_ ST'ART. 
Babelinterface 

True 

State Name: Ready 

State Description: Ready for an input from an external source. 

Z Static Schema: 

, Ready  
Babel Inter face 

True 

State Name: Waiting 

State Description: Waiting for a response from dictionary. 

Z Static Schema: 

. Waiting  
Babel Inter face 

True 

Event Name: Lookup 

Event Description: Lookup request received from user. 

Z Static Schema: 
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.Lookup. 

True 

Event Name: AddEntry 

Event Description: AddEntry request received from user. 

Z Static Schema: 

. AddEntry. 

True 

Event Name: DoLookup 

Event Description: DoLookup sent to dictionary. 

Z Static Schema: 

.DoLookup  
aWord : seqCHAR 

True 

Event Name: DoAddEntry 

Event Description: DoAddEntry sent to dictionary. 

Z Static Schema: 

. DoAddEntry  
anEntry : Entry 

True 

Event Name: TransFound 

Event Description: Successful find message received from dictionary. 
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Z Static Schema: 

. TransFound  
result : seqCHAR 

True 

Event Name: TransNotFound 

Event Description: Unsuccessful find message received from dictionary. 

Z Static Schema: 

. TransNotFound. 

True 

State Transition Table: 

Current Event Guard Next Action Send 

START Ready Initlnterface 

Ready 
Ready 
Waiting 
Waiting 

Lookup 
AddEntry 
TransFound 
TransNotFound 

Waiting 
Waiting 
Ready 
Ready 

DisplayResult 
DisplayError 

DoLookup 
DoAddEntry 
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Appendix B.   AWSOME Analysis Model for Ba> bal 

The following AWSOME code formally captures the Bä' bal analysis model. 

Package AnalysisModel  is 

type String is Seq of Char; 

type EntrySeq is Seq of Entry; 
type Language is (English, Japanese, German); 

type PBState is (activated, deactivated); 

Class Word is 
var spelling       : String; 
var origin        : Language; 

end Class; 

Class EngWord is Word with 
invariant (origin = English); 

end Class; 

Class NihWord is Word with 
invariant (origin = Japanese); 

end Class; 

Class GerWord is Word with 
invariant (origin = German); 

end Class; 

Class Entry is 
vax eng_word : EngWord; 

var nih_word : NihWord; 

vax ger_word : GerWord; 

invariant 
(size(eng_word.spelling) > 0); 

end Class; 

Class BabelDictionary is 
var table : EntrySeq; 

procedure InitDictionaryO 

guarantees 
size(table') = 0; 

procedure AddEntry(entry? : in Entry) 

guarantees 
entry? in table'; 

procedure FindTranslation(word? : in String, 
tgtLang? : in Language 
translation! : out String) 
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guarantees 
(forall e : Entry spot 

(e in table and e.eng_word.spelling = word?) implies 
(tgtLang? = Japanese and translation! = e.nih_word.spelling) or 

(tgtLang? = German and translation! = e.ger_word.spelling))); 

invariant 
(forall el, e2 : Entry; i, j : Nat spot 

(i leq size(table) and i leq j and el = table(i) and e2 

implies reduce(concat, el) < reduce(concat, e2)); 

table(j)) 

dynamic model{ 

state Start; 

state Ready; 

state Busy; 

event DoLookup(aWord : String); 
event DoAddEntry(anEntry : Entry); 

event NotFound; 

event Found; 
event TransFound(result : String); 

event TransNotFound; 

transition^ 
initState 
receiveEvent 

nextState 

} 
transition{ 

initState 
receiveEvent 

action 
nextState 

Start; 
InitDictionary; 

Ready; 

Ready; 
DoLookup; 
FindTranslation; 

Busy; 

transition{ 
initState 
receiveEvent 

action 
nextState 

Ready; 
DoAddEntry; 

AddEntry; 

Ready; 

transition^ 
initState 
receiveEvent 

sendEvent 

nextState 

Busy; 
NotFound; 

TransNotFound; 

Ready; 

transition^ 
initState 
receiveEvent 

sendEvent 

Busy; 
Found; 
TransFound; 
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nextState Ready; 

end Class; 

Class PushButton is 

vax name 

var status 

end Class; 

: String; 

: PBState; 

Class AddEntryPButton is PushButton with 

procedure InitAddEntryPButtonO 

guarantees 
(status' = deactivated); 

procedure ToggleStatusO 

guarantees 
((status = deactivated implies status' = activated) and 

(status = activated implies status' = deactivated)); 

dynamic model-C 

state Start; 

state Deactivated; 

state Activated; 

event ButtonPressed; 

event AddEntry; 

transition-C 
initState 
receiveEvent 

nextState 

■C 
transition^ 

initState 

receiveEvent 

action 
sendEvent 

nextState 

} 
transition{ 

initState 

action 

nextState 

} 

Start; 
InitAddEntryPButton; 

Deactivated; 

Deactivated; 

ButtonPressed; 

ToggleStatus; 

AddEntry; 
Activated; 

Activated; 
ToggleStatus; 

Deactivated; 

end Class; 

Class LookupButton is PushButton with 
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procedure InitLookupPButtonO 

guarantees 
(status' = deactivated); 

procedure ToggleStatusO 

guarantees 
((status = deactivated implies status' = activated) and 

(status = activated implies status' = deactivated)); 

dynamic model! 

state Start; 
state Deactivated; 

state Activated; 

event ButtonPress ed; 
event Lookup; 

transition! 
initState Start; 

receiveEvent InitLookupPButton 

nextState Deactivated; 

! 
transition! 

initState Deactivated; 

receiveEvent ButtonPressed; 

action ToggleStatus; 

sendEvent Lookup; 

nextState Activated; 

} 
transition! 

initState Activated; 

action ToggleStatus; 

nextState Deactivated; 

} 
} 

end Class; 

Class TextBox is 
var name       : String; 

var value      : String; 

var editable   : Boolean; 

end Class; 

Class StatusBar is 

var name       : String; 

var value      : String; 

end Class; 

Class Babelinterface is 
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var tgtLang 

var e_word 

var f_word 

var translate 

var addEntry 

var sBar 

Language; 

TextBox; 

TextBox; 

LookupPButton; 
AddEntryPButton; 

StatusBar; 

procedure InitlnterfaceO 

guarantees 
(size(e_word') = 0 and size(f_word') = 0 and sBar.value' = "Ready."); 

procedure DisplayResult(result? : in String) 

guarantees 
(f_word.value' = result?); 

procedure DisplayErrorO 

guarantees 
(sBar.value' = e_word.value + " not found in dictionary."); 

invariant 
(e_word.editable = True and f_word.editable = False); 

dynamic model{ 

state Start; 

state Ready; 

state Waiting; 

event Lookup; 

event AddEntry; 

event TransNotFound; 
event TransFound(result : String); 

event DoLookkup(aWord : String); 
event DoAddEntry(anEntry : Entry); 

> 
end Class; 

end Package; 
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Appendix C.   AWSOME Object-oriented Architecture for Ba' bal 

The following AWSOME code formally captures the Bä' bal architecture model for a 

simple object-oriented (i.e., non-hierarchically homogeneous) architectural style. 

Package DOArchModel_Babel is 

Class Component is 

end Class; 

Class Connector is 

end Class; 

Class Port is 

end Class; 

Class Role is 

end Class; 

Class Comp_BabelDictionary is Component with 

end Class; 

Association Comp_BabelDictionary_relates_to_BabelDictionary is 

role theComponent : Comp_BabelDictionary; 

role theClass : BabelDictionary; 

end Association; 

Class RcvPort_DoLookup is Port with 

end Class; 

Class RcvPort_DoAddEntry is Port with 

end Class; 

Class RcvPort.NotFound is Port with 

end Class; 

Class RcvPort_Found is Port with 

end Class; 

Class SndPort.TransNotFound is Port with 

end Class; 

Class SndPort.TransFound is Port with 

end Class; 

Aggregation Comp_BabelDictionary_has_ports is 
parent theComponent : Comp_BabelDictionary; 

child aPort : RcvPort_DoLookup; 

end Aggregation; 
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Aggregation Comp_BabelDictionary_has_ports is 
parent theComponent : Comp_BabelDictionary; 

child aPort : RcvPort_DoAddEntry; 

end Aggregation; 

Aggregation Comp_BabelDictionary_has_ports is 
parent theComponent : Comp_BabelDictionary; 

child aPort : RcvPort_NotFound; 

end Aggregation; 

Aggregation Comp_BabelDictionary_has_ports is 
parent theComponent : Comp_BabelDictionary; 

child aPort : RevPort.Found; 

end Aggregation; 

Aggregation Comp_BabelDictionary_has_ports is 
parent theComponent : Comp_BabelDictionary; 
child aPort : SndPort_TransNotFound; 

end Aggregation; 

Aggregation Comp_BabelDictionary_has_ports is 

parent theComponent : Comp_BabelDictionary; 

child aPort : SndPort_TransFound; 

end Aggregation; 

Class Comp_AddEntryPButton is Component with 

end Class; 

Association Comp_AddEntryPButton_relates_to_AddEntryPButton is 

role theComponent : Comp_AddEntryPButton; 

role theClass : AddEntryPButton; 

end Association; 

Class RcvPort_ButtonPressed is Port with 

end Class; 

Class SndPort_AddEntry is Port with 

end Class; 

Aggregation Comp_AddEntryPButton_has_ports is 
parent theComponent : Comp_AddEntryPButton; 

child aPort : RcvPort_ButtonPressed; 

end Aggregation; 

Aggregation Comp_AddEntryPButton_has_ports is 

parent theComponent : Comp_AddEntryPButton; 

child aPort : SndPort_AddEntry; 

end Aggregation; 

Class Comp_LookupPButton is Component with 

end Class; 
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Association Comp_LookupPButton_relates_to_LookupPButton is 

role theComponent : Comp_LookupPButton; 

role theClass : LookupPButton; 

end Association; 

Class SndPort_Lookup is Port with 

end Class; 

Aggregation Comp_LookupPButton_has_ports is 

parent theComponent : Comp_LookupPButton; 

child aPort : RcvPort_ButtonPressed; 

end Aggregation; 

Aggregation Comp_LookupPButton_has_ports is 
parent theComponent : Comp.LookupPButton; 

child aPort : SndPort„Lookup; 

end Aggregation; 

Class Comp_BabelInterface is Component with 

end Class; 

Association Comp_BabelInterface_relates_to_BabelInterface is 

role theComponent : Comp_BabelInterface; 

role theClass : Babelinterface; 

end Association; 

Class RcvPort_Lookup is Port with 

end Class; 

Class RcvPort_AddEntry is Port with 

end Class; 

Class RcvPort_TransFound is Port with 

end Class; 

Class RcvPort_TransNotFound is Port with 

end Class; 

Class SndPort_DoLookup is Port with 

end Class; 

Class SndPort.DoAddEntry is Port with 

end Class; 

Class SndPort_DisplayError is Port with 

end Class; 

Aggregation Comp_BabelInterface_has_ports is 
parent theComponent : Comp_BabelInterface; 

child aPort : RcvPort.Lookup; 
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end Aggregation; 

Aggregation Comp_BabelInterface_has_ports is 
parent theComponent : Comp_BabelInterface; 

child aPort : RcvPort_AddEntry; 

end Aggregation; 

Aggregation Comp_BabelInterface_has_ports is 
parent theComponent : Comp_BabelInterface; 

child aPort : RcvPort_TransFound; 

end Aggregation; 

Aggregation Comp_BabelInterface_has_ports is 

parent theComponent : Comp_BabelInterface; 

child aPort : RcvPort_TransNotFound; 

end Aggregation; 

Aggregation Comp_BabelInterface_has_ports is 
parent theComponent : Comp_BabelInterface; 
child aPort : SndPort_DoLookup; 

end Aggregation; 

Aggregation Comp_BabelInterface_has_ports is 
parent theComponent : Comp.Babellnterface; 

child aPort : SndPort_DoAddEntry; 

end Aggregation; 

Aggregation Comp_BabelInterface_has_ports is 
parent theComponent : Comp.Babellnterface; 
child aPort : SndPort_DisplayError; 

end Aggregation; 

Class Conn_TransNotFound is Connector with 

end Class; 

Class Conn_TransFound is Connector with 

end Class; 

Class Conn_AddEntry is Connector with 

end Class; 

Class Conn_Lookup is Connector with 

end Class; 

Class Conn_DoLookup is Connector with 

end Class; 

Class Conn_DoAddEntry is Connector with 

end Class; 

Class InRole is Role with 
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end Class; 

Class OutRole is Role with 

end Class; 

Aggregation Conn_TransNotFound_has_roles is 

parent theConnector : Conn_TransNotFound; 

child aRole : InRole; 

end Aggregation; 

Aggregation Conn_TransNotFound_has_roles is 
parent theConnector : Conn_TransNotFound; 

child aRole : OutRole; 

end Aggregation; 

Aggregation Conn_TransFound_has_roles is 

parent theConnector : Conn_TransFound; 

child aRole : InRole; 

end Aggregation; 

Aggregation Conn_TransFound_has_roles is 

parent theConnector : Conn_TransFound; 

child aRole : OutRole; 

end Aggregation; 

Aggregation Conn_AddEntry_has_roles is 

parent theConnector : Conn_AddEntry; 

child aRole : InRole; 

end Aggregation; 

Aggregation Conn_AddEntry_has_roles is 
parent theConnector : Conn_AddEntry; 

child aRole : OutRole; 

end Aggregation; 

Aggregation Conn_Lookup_has_roles is 
parent theConnector : Conn_Lookup; 

child aRole : InRole; 

end Aggregation; 

Aggregation Conn_Lookup_has_roles is 
parent theConnector : Conn_Lookup; 

child aRole : OutRole; 

end Aggregation; 

Aggregation Conn_DoLookup_has_roles is 
parent theConnector : Conn_DoLookup; 

child aRole : InRole; 

end Aggregation; 

Aggregation Conn_DoLookup_has_roles is 
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parent theConnector 

child aRole 

: Conn_DoLookup; 

: OutRole; 

end Aggregation; 

Aggregation Conn_DoAddEntry_has 

parent theConnector 

child aRole 

_roles is 
: Conn_DoAddEntry; 

: InRole; 

end Aggregation; 

Aggregation Conn_DoAddEntry_has 

parent theConnector 

child aRole 

_roles is 
: Conn_DoAddEntry; 

: OutRole; 

end Aggregation; 

Association RcvPort. 

role thePort 

role theRole 

_DoLookup_attaches_to_OutRole is 

: RcvPort_DoLookup; 

: OutRole; 

end Association; 

Association RcvPort. 

role thePort 

role theRole 

_DoAddEntry_ attaches_to_OutRole is 

: RcvPort_DoAddEntry; 

: OutRole; 

end Association; 

Ass sciation SndPort. 
role thePort 

role theRole 

_TransNotFound_attaches_to_InRole is 

: SndPortJTransNotFound; 

: InRole; 

end Association; 

Ass sciation SndPort. 
role thePort 

role theRole 

_TransFound_ attaches_to_InRole is 

: SndPort_TransFound; 

: InRole; 

end Association; 

Association SndPort_AddEntry_attaches_to_InRole is 

role thePort : SndPort_AddEntry; 

role theRole : InRole; 

end Association; 

Association SndPort_Lookup_attaches_to_InRole is 

role thePort : SndPort„Lookup; 

role theRole : InRole; 

end Association; 

Association RcvPort_Lookup_attaches_to_OutRole is 

role thePort : RcvPort_Lookup; 

role theRole : OutRole; 

end Association; 

Association RcvPort_AddEntry_attaches_to_OutRole is 

role thePort : RcvPort_AddEntry; 
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role theRole : OutRole; 

end Association; 

Association RcvPort. _TransFound_attaches_to_OutRole is 

role thePort : RcvPort_TransFound; 

role theRole : OutRole; 

end Association; 

Association RcvPort. _TransNotFound_attaches_to_OutRole is 

role thePort : RcvPort_TransNotFound; 

role theRole : OutRole; 

end Association; 

Association SndPort. _DoLookup_attaches_to_InRole is 

role thePort : SndPort_DoLookup; 

role theRole : InRole; 

end Association; 

Association SndPort_DoAddEntry_attaches_to_InRole is 
role thePort : SndPort_DoAddEntry; 

role theRole : InRole; 

end Association; 

end Package; 
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Appendix D. Acme Output for Ba' bal Object-oriented Architecture 

The following Acme code was automatically generated using the WsAcmeVisitor class. The 

WsAcmeVisitor class contains a visit() method for each node type contained in an AWSOME 

architecture model (i.e., WsPackage, WsClass, and WsAssociation). When called, each visit 

method examines its node to determine the purpose served by the node and outputs the 

appropriate Acme surface syntax. For example, a WsAssociation node can serve the purpose 

of an architectural attachment or an architectural binding. The visit() method keys on the 

name of the WsAssociation node, determines whether it is an attachment (i.e., Wsldentifier 

= "attaches_to") or a binding (i.e., Wsldentifier = "binds"), and responds accordingly. 

Acme translation for AWSOME architecture model:   OOArchModel_Babel Automatically 
generated by WsAcmeVisitor on Feb 27,   2000 at 3:29 PM 

System ODArchModel_Babel = { 

Component Comp_BabelDictionary = { 

Port RcvPort_DoLookup; 

Port RcvPort_DoAddEntry; 

Port RcvPort_NotFound; 

Port RcvPort.Found; 

Port  SndPort_TransNotFound; 

Port SndPort_TransFound; 

}; 

Component Comp_AddEntryPButton = { 

Port RcvPort_ButtonPressed; 

Port SndPort_AddEntry; 

}; 

Component Comp_LookupPButton = { 

Port RcvPort_ButtonPressed; 

Port SndPort_Lookup; 
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}; 

Component Comp_BabelInterface = { 

Port RcvPort.Lookup; 

Port RcvPort_AddEntry; 

Port RcvPort_TransFound; 

Port RcvPort_TransNotFoiuid; 

Port SndPort_DoLookup; 

Port SndPort_DoAddEntry; 

Port SndPort_DisplayError; 

}; 

Connector Conn_TransNotFound = { 

Role InRole; 

Role OutRole; 

}; 

Connector Conn_TransFound = { 

Role InRole; 

Role OutRole; 

}; 

Connector Conn_AddEntry = { 

Role InRole; 

Role OutRole; 

}; 

Connector Conn_Lookup = { 

Role InRole; 
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Role OutRole; 

}; 

Connector Conn_DoLookup = { 

Role InRole; 

Role OutRole; 

}; 

Connector Conn_DoAddEntry = { 

Role InRole; 

Role OutRole; 

}; 

Attachments { 

Comp_BabelDictionary.RcvPort_DoLookup to Conn_DoLookup.OutRole 

Comp_BabelDictionary.RcvPort_DoAddEntry to Conn.DoAddEntry.OutRole 

Comp_BabelDictionary.SndPort_TransNotFound to ConnJTransNotFound.InRole 

Comp_BabelDictionary.SndPort_TransFound to ConnJTransFound.InRole 

Comp_AddEntryPButton.SndPort_AddEntry to Conn.AddEntry.InRole 

Comp_LookupPButton.SndPort_Lookup to Conn.Lookup.InRole 

Comp_BabelInterface.RcvPort_Lookup to Conn_Lookup.OutRole 

Comp_BabelInterface.RcvPort_AddEntry to Conn_AddEntry.OutRole 

Comp_BabelInterface.RcvPort_TransFound to Conn.TransFound.OutRole 

Comp_BabelInterface.RcvPort_TransNotFound to Conn_TransNotFound.OutRole 

Comp_BabelInterface.SndPort.DoLookup to Conn_DoLookup.InRole 

Comp_BabelInterface.SndPort_DoAddEntry to Conn_DoAddEntry.InRole 

>; 

129 



Appendix E.   AWSOME Client-Server Architecture for Ba' bal 

The following AWSOME code formally captures the Bä' bal architecture model for a 

client-server, object-oriented (i.e., hierarchically heterogeneous) architectural style. 

Package ArchModel_Babel_CS is 

Class Component is 

end Class; 

Class ComponentType_Object is Component with 

end Class; 

Class ComponentType_Client is Component with 

end Class; 

Class ComponentType_Server is Component with 

end Class; 

Class Connector is 

end Class; 

Class ConnectorType_MethodCall is Connector with 

end Class; 

Class ConnectorType_RPC is Connector with 

end Class; 

Class Port is 

end Class; 

Class PortType_MethodCall is Port with 

end Class; 

Class PortType_RPC is Port with 

end Class; 

Class Role is 

end Class; 

Class RoleType_MethodCall is Role with 

end Class; 

Class RoleType_RPC is Role with 

end Class; 

Class Style is 

end Class; 

Class StyleType_ClientServer is Style with 
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end Class; 

Class StyleType_ObjectOriented is Style with 

end Class; 

Package Configuration is 

Class Style is StyleType_ClientServer with 

end Class; 

Class SndPort_RPC is PortType_RPC with 

end Class; 

Class RcvPort_RPC is PortType_RPC with 

end Class; 

Class Comp_BabelClient is ComponentType_Client with 

end Class; 

Aggregation Comp_BabelClient_has_ports is 
parent theComponent : Comp_BabelClient; 

child aPort : SndPort_RPC; 

end Aggregation; 

Aggregation Comp_BabelClient_has_ports is 
parent theComponent : Comp_BabelClient; 

child aPort : RcvPort_RPC; 

end Aggregation; 

Class Comp_BabelServer is ComponentType_Server with 

end Class; 

Aggregation Comp_BabelServer_has_ports is 
parent theComponent : Comp_BabelServer; 

child aPort : SndPort_RPC; 

end Aggregation; 

Aggregation Comp_BabelServer_has_ports is 

parent theComponent : Comp_BabelServer; 

child aPort : RcvPort_RPC; 

end Aggregation; 

Class Conn.RPC is ConnectorType_RPC with 

end Class; 

Class InRole_Client is RoleType_RPC with 

end Class; 

Class OutRole_Client is RoleType_RPC with 

end Class; 
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Class InRole_Server is RoleType_RPC with 

end Class; 

Class OutRole_Server is RoleType_RPC with 

end Class; 

Aggregation Conn_RPC_has_role is 

parent theConnector 

child aRole 

end Association; 

Aggregation Conn_RPC_has_role is 

parent theConnector 

child aRole 
end Association; 

Aggregation Conn_RPC_has_role is 

parent theConnector 

child aRole 

end Association; 

Aggregation Conn_RPC_has_role is 

parent theConnector 

child aRole 

end Association; 

Conn.RPC; 
InRole_Client; 

Conn_RPC; 
OutRole_Client; 

Conn.RPC; 
InRole_Server; 

Conn_RPC; 
OutRole_Server; 

Association SndPort_RPC_attaches_to_InRole_Client is 

role thePort : SndPort_RPC; 

role theRole : InRole_Client; 

end Association; 

Association RcvPort_RPC_attaches_to_OutRole_Client is 

role thePort : RcvPort.RPC; 
role theRole : OutRole.Client; 

end Association; 

Association SndPort_RPC_attaches_to_InRole_Server is 

role thePort : SndPort_RPC; 

role theRole : InRole_Server; 

end Association; 

Association RcvPort_RPC_attaches_to_OutRole_Server is 

role thePort : RcvPort_RPC; 

role theRole : OutRole_Server; 

end Association; 

Package Comp_BabelClient is 

Class Style is StyleType_ObjectOriented with 

end Class; 
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Class Comp_AddEntryPButton is ComponentType_Object with 

end Class; 

Class RcvPort.AddEntryPressed is PortType_MethodCall with 

end Class; 

Class SndPort.AddEntry is PortType.MethodCall with 

end Class; 

Aggregation Comp_AddEntryPButton_has_ports is 

parent theComponent     : Comp_AddEntryPButton; 

child aPort : RcvPort_AddEntryPressed; 

end Aggregation; 

Aggregation Comp_AddEntryPButton_has_ports is 
parent theComponent      : Comp_AddEntryPButton; 

child aPort : SndPort_AddEntry; 

end Aggregation; 

Class Comp_LookupPButton is ComponentType_Object with 

end Class; 

Class RcvPort_LookupPressed is PortType_MethodCall with 

end Class; 

Class SndPort_Lookup is PortType_MethodCall with 

end Class; 

Aggregation Comp_LookupPButton_has_ports is 

parent theComponent      : Comp_LookupPButton; 

child aPort : RcvPort_LookupPressed; 

end Aggregation; 

Aggregation Comp_LookupPButton_has_ports is 

parent theComponent      : Comp_LookupPButton; 

child aPort : SndPort.Lookup; 

end Aggregation; 

Class Babelinterface is ComponentType_Dbject with 

end Class; 

Class RcvPort.Lookup is PortType.MethodCall with 

end Class; 

Class RcvPort.AddEntry is PortType.MethodCall with 

end Class; 

Class RcvPort_TransFound is PortType.MethodCall with 

end Class; 

Class RcvPortJTransNotFound is PortType_MethodCall with 
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end Class; 

Class SndPort_DoLookup is PortType.MethodCall with 

end Class; 

Class SndPort_DoAddEntry is PortType_MethodCall with 

end Class; 

Class SndPort.DisplayError is PortType_MethodCall with 

end Class; 

Aggregation has_port is 

parent theComponent 

child aPort 

end Aggregation; 

Comp_BabelInterface; 

RcvPort_Lookup; 

Aggregation has_port is 
parent theComponent 

child aPort 

end Aggregation; 

Comp_BabelInterface; 

RcvPort_AddEntry; 

Aggregation has_port is 
parent theComponent 

child aPort 

end Aggregation; 

Aggregation has_port is 
parent theComponent 

child aPort 
end Aggregation; 

Aggregation has_port is 
parent theComponent 

child aPort 

end Aggregation; 

Comp_BabelInterface; 

RcvPort_TransFound; 

Comp_BabelInterface; 
RcvPort_TransNotFound; 

Comp_BabelInterface; 

RcvPort_DoLookup; 

Aggregation has_port is 
parent theComponent 

child aPort 

end Aggregation; 

Comp_BabelInterface; 

RcvPort_DoAddEntry; 

Aggregation has_port is 
parent theComponent 

child aPort 
end Aggregation; 

Comp_BabelInterface; 

RcvPort_DisplayError; 

Class InRole is RoleType_MethodCall with 

end Class; 

Class OutRole is RoleType_MethodCall with 

end Class; 
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Class Conn_AddEntry is ConnectorType_MethodCall with 

end Class; 

Aggregation Conn_AddEntry_has_roles is 

parent theConnector      : Conn_AddEntry; 

child aRole : InRole; 

end Aggregation; 

Aggregation Conn_AddEntry_has_roles is 
parent theConnector      : Conn_AddEntry; 

child aRole : OutRole; 

end Aggregation; 

Class Conn_Lookup is ConnectorType_MethodCall with 

end Class; 

Aggregation Conn_Lookup_has_roles is 
parent theConnector      : Conn_Lookup; 

child aRole : InRole; 

end Aggregation; 

Aggregation Conn_Lookup_has_roles is 

parent theConnector      : Conn_Lookup; 

child aRole : OutRole; 

end Aggregation; 

Association SndPort_AddEntry_attaches_to_InRole is 

role thePort : SndPort.AddEntry; 

role theRole : InRole; 

end Association; 

Association RcvPort_AddEntry_attaches_to_OutRole is 

role thePort : RcvPort.AddEntry; 

role theRole : OutRole; 

end Association; 

Association SndPort_Lookup_attaches_to_InRole is 

role thePort : SndPort_Lookup; 

role theRole : InRole; 

end Association; 

Association RcvPort_Lookup_attaches_to_OutRole is 

role thePort : RcvPort_Lookup; 

role theRole : OutRole; 

end Association; 

Association SndPort_RPC_binds_to_SndPort_DoLookup is 

role theOuterPort      : SndPort_RPC; 

role thelnnerPort      : SndPort_DoLookup; 

end Association; 
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Association SndPort_RPC_binds_to_SndPort_DoAddEntry is 

role theOuterPort      : SndPort_RPC; 

role thelnnerPort     : SndPort_DoAddEntry; 

end Association; 

Association RcvPort_RPC_binds_to_RcvPort_TransFound is 

role theOuterPort      : RcvPort.RPC; 
role thelnnerPort      : RcvPort_TransFound; 

end Association; 

Association RcvPort_RPC_binds_to_RcvPort_TransNotFound is 

role theOuterPort      : RcvPort_RPC; 
role thelnnerPort      : RcvPort_TransNotFound; 

end Association; 

end Package; 

Package Comp_BabelServer is 

Class Style is StyleType_ObjectOriented with 

end Class; 

Class Comp_BabelDictionary is ComponentType_Object with 

end Class; 

Class RcvPort_DoLookup is PortType_MethodCall with 

end Class; 

Class RcvPort_DoAddEntry is PortType_MethodCall with 

end Class; 

Class SndPort_TransFound is PortType_MethodCall with 

end Class; 

Class SndPortJTransNotFound is PortType_MethodCall with 

end Class; 

Aggregation Comp_BabelDictionary_has_ports is 
parent theComponent      : Comp_BabelDictionary; 

child aPort : RcvPort_DoLookup; 

end Aggregation; 

Aggregation Comp_BabelDictionary_has_ports is 
parent theComponent      : Comp_BabelDictionary; 

child aPort : RcvPort_DoAddEntry; 

end Aggregation; 

Aggregation Comp_BabelDictionary_has_ports is 

parent theComponent      : Comp_BabelDictionary; 

child aPort : RcvPort_TransFound; 
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end Aggregation; 

Aggregation Comp_BabelDictionary_has_ports is 

parent theComponent : Comp_BabelDictionary; 

child aPort : RcvPort_TransNotFound; 

end Aggregation; 

Association RcvPort.RPC. .binds _to_RcvPort_DoLookup is 

role theOuterPort : RcvPort_RPC; 

role thelnnerPort RcvPort_DoLookup; 

end Association; 

Association RcvPort_RPC. .binds _to_RcvPort_DoAddEntry is 

role theOuterPort : RcvPort_RPC; 
role thelnnerPort : RcvPort_DoAddEntry; 

end Association; 

Association SndPort.RPC. .binds _to_SndPort_TransFound is 

role theOuterPort : SndPort_RPC; 
role thelnnerPort : SndPort_TransFound; 

end Association; 

Association SndPort.RPC. .binds _to_SndPort_TransNotFound is 

role theOuterPort SndPort.RPC; 

role thelnnerPort : SndPort_TransNotFound; 

end Association; 

end Package; 

end Package i 

end Package > 
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Appendix F.   Acme Output for Ba' bal Client-Server Architecture 

The following Acme code was automatically generated using the WsAcmeVisitor class. The 

WsAcmeVisitor class contains a visit() method for each node type contained in an AWSOME 

architecture model (i.e., WsPackage, WsClass, and WsAssociation). When called, each visit 

method examines its node to determine the purpose served by the node and outputs the 

appropriate Acme surface syntax. For example, a WsClass node can serve the purpose 

of an architectural component or an architectural connector. The visit() method keys on 

the name of the WsClass node, determines whether it is a component (i.e., Wsldentifier 

begins with "Comp_") or a connector (i.e., Wsldentifier begins with "Conn_"), and responds 

accordingly. 

Acme translation for AWSOME architecture model:  ArchModel_Babel_CS 
Automatically generated by WsAcmeVisitor on Feb 27,   2000 at 3:30 PM 

System ArchModel_Babel_CS = { 

Component Comp_BabelClient = { 

Representation = { 

System Comp_BabelClient_details = { 

Component Comp_AddEntryPButton = { 

Port RcvPort_AddEntryPressed; 

Port SndPort.AddEntry; 

}; 

Component Comp_LookupPButton = { 

Port RcvPort_LookupPressed; 

Port SndPort.Lookup; 

}; 

Component Comp_BabelInterface = { 

Port RcvPort.Lookup; 

Port RcvPort_AddEntry; 
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Port RcvPort_TransFound; 

Port RcvPort_TransNotFound; 

Port SndPort_DoLookup; 

Port SndPort_DoAddEntry; 

Port SndPort_DisplayError; 

}; 

Connector Conn_AddEntry = { 

Role InRole; 

Role OutRole; 

}; 

Connector Conn_Lookup = { 

Role InRole; 

Role OutRole; 

}; 

Attachments { 

Comp_AddEntryPButton.SndPort_AddEntry to Conn_AddEntry.InRole 

Comp_BabelInterface.RcvPort_AddEntry to Conn_AddEntry.OutRole 

Comp_LookupPButton.SndPort_Lookup to Conn_Lookup.InRole 

Comp_BabelInterface.RcvPort.Lookup to Conn_Lookup.OutRole 

}; 

}; 

Bindings { 

SndPort_RPC to Comp_BabelInterface.SndPort_DoLookup; 
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SndPort_RPC to Comp_BabelInterface.SndPort_DoAddEntry; 

RcvPort_RPC to Comp_BabelInterface.RcvPort_TransFound; 

RcvPort.RPC to Comp_BabelInterface.RcvPort_TransNotFound; 

}; 

}; 

}; 

Component Comp_BabelServer = { 

Representation = { 

System Comp_BabelServer_details = { 

Component Comp_BabelDictionary = { 

Port RcvPort_DoLookup; 

Port RcvPort_DoAddEntry; 

Port SndPort_TransFound; 

Port SndPort_TransNotFound; 

>; 

>; 

Bindings { 

RcvPort_RPC to Comp_BabelDictionary.RcvPort_DoLookup; 

RcvPort_RPC to Comp_BabelDictionary.RcvPort_DoAddEntry; 

SndPort_RPC to Comp_BabelDictionary.SndPort_TransFound; 

SndPort.RPC to Comp_BabelDictionary.SndPort_TransNotFound; 

}; 

}; 
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}; 

Connector Conn_RPC = { 

Role InRole_Client; 

Role OutRole_Server; 

Role OutRole_Client; 

Role InRole_Server; 

}; 

Attachments { 

Comp.BabelClient.SndPort.RPC to Conn_RPCInRole_Client 

Comp_BabelClient.RcvPort_RPC to Conn_RPCOutRole_Client 

Comp_BabelServer.SndPort_RPC to Conn_RPC.InRole_Server 

Comp_BabelServer.RcvPort_RPC to Conn_RPC.OutRole_Server 

}; 

}; 
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