
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2000

Explicitly Modeling Hierarchically Heterogeneous Software Explicitly Modeling Hierarchically Heterogeneous Software

Architectures in an Object-Oriented Formal Transformation Architectures in an Object-Oriented Formal Transformation

System System

Darin L. Williams

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Williams, Darin L., "Explicitly Modeling Hierarchically Heterogeneous Software Architectures in an Object-
Oriented Formal Transformation System" (2000). Theses and Dissertations. 4877.
https://scholar.afit.edu/etd/4877

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4877&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F4877&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4877?utm_source=scholar.afit.edu%2Fetd%2F4877&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

EXPLICITLY MODELING HIERARCHICALLY HETEROGENEOUS

SOFTWARE ARCHITECTURES IN AN OBJECT-ORIENTED FORMAL

TRANSFORMATION SYSTEM

THESIS
Darin L. Williams, Capt, USAF

AFIT/GCS/ENG/OOM-25

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20000815 176

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the

U. S. Government.

AFIT/GCS/ENG/OOM-25

Explicitly Modeling Hierarchically Heterogeneous Software Architectures in an

Object-Oriented Formal Transformation System

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University-

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Systems

Darin L. Williams, B.S.

Capt, USAF

March 2000

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/OOM-25

Explicitly Modeling Hierarchically Heterogeneous Software Architectures in an

Object-Oriented Formal Transformation System

Darin L. Williams, B.S.

Capt, USAF

Approved:

Maj. Robert P. Graham jC Date
Committee Chair

Dr. Thomas C. Hartrum ^ Date
Committee Member sf\ / J/)
<^^TT2J£^Z^ f M»~ ^°°
Maj. Scott A. DeLoach Date
Committee Member

Acknowledgements

Consider it pure joy, my brothers, whenever you face trials of many kinds,
because you know that the testing of your faith develops perseverance. Per-
severance must finish its work so that you may be mature and complete, not
lacking anything.

James 1:2-3, NIV

As a child I often marveled at the beauty and luster of my father's high school class ring.

I'm convinced that his inconspicuous display of personal academic accomplishment instilled

in me at a very young age the value (and cost) of a good education. Therefore, I would like

to take this opportunity to express to both of my parents my sincere gratitude for their

diligence in raising me up with an appreciation for academic achievement. In addition, I

wish to express my love and appreciation to Mariko, Zachary, and Ariel for catering to

my every need and willingly relinquishing their right of access to their husband and father

during these eighteen months so that I might complete this personal goal. I'd like to thank

my academic advisor, Maj Robert Graham, for giving me the freedom to find my niche

in the software engineering research community and for insisting on nothing short of my

maximum effort in pursuing my research goals. I thank my fellow KBSE researchers—

Thommo, Buck, Gary, Mike and Dave—for making this process more fun than it was

probably ever intended to be. Above all else, I give full credit for this accomplishment to

my ever present Lord and Savior, Jesus Christ.

Darin L. Williams

in

Table of Contents

Page

Acknowledgements m

List of Figures vm

List of Tables x

Abstract xl

I. Introduction *

1.1 Background 2

1.1.1 Formal Environments 2

1.1.2 Object-Oriented Environments 2

1.1.3 Transformational Environments 2

1.1.4 Software Architecture 3

1.2 Problem 5

1.3 Initial Assessment of Past Effort 7

1.4 Scope 8

1.5 Document Overview 9

II. Background H

2.1 Introduction H

2.2 Software Architecture H

2.2.1 Software Architecture Denned 11

2.2.2 Software Architecture Justified 16

2.2.3 Software Architecture Codified 19

2.2.4 Architecture Description Languages 25

2.3 Software Development Trends 25

IV

Page

2.3.1 Object-Orientation 25

2.3.2 Formal Methods 28

2.4 A Model Environment: AWSOME 31

2.4.1 An Architectural Perspective 32

2.4.2 The System Models 34

2.5 Summary and Conclusion 38

III. Modeling Non-hierarchically Homogeneous Architectures 39

3.1 Introduction 39

3.2 Classes of Architecture 39

3.3 Choosing an Architectural Description Language 46

3.4 Essential Elements of Architecture Models 47

3.5 Essential Elements of Non-hierarchically Homogeneous Archi-

tectures 4°

3.6 Modeling Non-hierarchically Homogeneous Architectures . . 52

3.6.1 Transform NM0: The Architectural Model 53

3.6.2 Transform NMi: The Components 54

3.6.3 Transform NM2: The Component Ports 55

3.6.4 Transform NM3: The Connectors 56

3.6.5 Transform NM4: The Connector Roles 56

3.6.6 Transform NM5: The Port-to-Role Attachments . . 58

3.7 Summary

4.4 Modeling Hierarchically Heterogeneous Architectures . .

60

IV. Modeling Hierarchically Heterogeneous Architectures 62

4.1 Introduction "2

4.2 A Modified Transformational Process Model 62

4.3 Essential Elements of Hierarchically Heterogeneous Architec-

tures "°

68

v

Page

4.4.1 Transform HH0: The Architectural Model 68

4.4.2 Transform HHX: The Style 69

4.4.3 Transform HH2: The Components 71

4.4.4 Transform HH3: The Component Ports 72

4.4.5 Transform HH4: The Connectors 73

4.4.6 Transform HH5: The Connector Roles 73

4.4.7 Transform HH6: The Port-to-Role Attachments ... 75

4.4.8 Transform HH7: The Port-to-Port Bindings 77

4.5 Exporting Architectures to Architectural Interchange Languages 77

4.5.1 Scope of the Architecture Export Method 79

4.5.2 Mapping Architectural Design Elements to Acme Lan-

guage Constructs

4.6 Summary

Appendix A. Z Analysis Model for Ba' bal

80

83

V. Demonstration °4

5.1 Overview °4

5.2 An Architecture Waiting to Happen 84

5.3 Modeling an Object-Oriented Bä' bal Architecture 87

5.4 Modeling a Client-Server Bä' bal Architecture 87

5.5 Exporting the Bä' bal Architecture to Acme

5.6 Summary

89

90

VI. Conclusions and Recommendations 91

6.1 Conclusions 91

6.2 Contributions 91

6.3 Recommendations for Future Work 92

6.4 Summary 93

95

vi

Appendix B. AWSOME Analysis Model for Ba' bal

Bibliography

Vita

Appendix C. AWSOME Object-oriented Architecture for Bä' bal .

Appendix D. Acme Output for Bä' bal Object-oriented Architecture

Appendix E. AWSOME Client-Server Architecture for Bä' bal . .

Appendix F. Acme Output for Ba' bal Client-Server Architecture

Page

115

120

127

130

138

142

144

Vll

List of Figures

Figure PaSe

1. The automation-based (transformation) paradigm 3

2. An object-oriented software architecture 4

3. A hierarchically heterogeneous software architecture 5

4. Architectural structures 13

5. Models of the Unified Process 14

6. The Architectural Business Cycle 15

7. Defining and classifying architectural styles 22

8. Software modeling 27

9. A typical dass definition 28

10. The automation-based (transformation) paradigm 31

11. The AWSOME batch sequential architecture 32

12. The AWSOME data-centered repository architecture 33

13. Key elements of the AWSOME model 36

14. Architectural dimensions 40

15. A non-hierarchically homogeneous (NM) architecture 42

16. A non-hierarchically heterogeneous (NH) architecture 43

17. A hierarchically homogeneous (HM) architecture 44

18. A hierarchically heterogeneous architecture 45

19. NM Object-Oriented Architecture 50

20. An example architectural attachment 51

21. Simple object-oriented architecture 52

22. Architecture model after Transform NMo 54

23. Architecture model after Transform NMi 55

24. Architecture model after Transform NM2 57

25. Architecture model after Transform NM3 58

Vlll

Figure PaSe

26. Architecture model after Transform NM4 59

27. Architecture model after Transform NM5 61

28. An architecture-friendly process model 63

29. An example architecture assistant GUI 64

30. An object-oriented, hierarchically heterogeneous architecture. ... 65

31. An example binding in an HH-class architecture 67

32. Architecture model after Transform HH0 70

33. Architecture model after Transform HHi 71

34. Architecture model after Transform HH2 72

35. Architecture model after Transform HH3 74

36. Architecture model after Transform HH4 75

37. Architecture model after Transform HH5 76

38. Architecture model after Transform HH6 78

39. Architecture model after Transform HHL7 79

40. A sample system in Acme syntax. ' 81

41. JBä'baJ graphical user interface 85

42. Architecture demonstration applet interface 86

IX

List of Tables

Table Pa§e

1. Quality attributes and architectural issues 16

2. A catalog of architectural styles 21

3. The status quo in modeling software architectures 26

4. NM architectural element to language construct mappings 50

5. HH architectural element-to-language construct mappings 66

AFIT/GCS/ENG/OOM-25

Abstract

Formal software transformation systems are software development environments typi-

fied by the semi-automated application of a series of correctness-preserving transformations

to formal data models. The range of software architectures such systems are capable of

producing is often restricted by the limited ability to accept high-level design inputs as

constraints on the transformation process. When architectural inputs are acceptable, often

the modeling language excludes the explicit representation of architectural constructs and

provides, at best, an extremely limited architectural analysis capability. This research de-

fines a high-level taxonomy of software architectures and proposes a way to explicitly model

a broad class of architectures by adapting the native object-oriented modeling language

to the task. Using the AFIT Wide-Spectrum Object-Modeling Environment (AWSOME)

as a proving ground, it demonstrates the ability to fully automate the transformation of

an object-oriented analysis model to a non-hierarchically homogeneous, object-oriented

architecture. Additionally, it demonstrates the ability to explicitly model the richer class

of hierarchically heterogeneous software architectures in an object-oriented transforma-

tion system and to gain insight into the behavioral characteristics of such architectures by

exporting them to an architectural interchange language for external analysis.

XI

Explicitly Modeling Hierarchically Heterogeneous Software Architectures in an

Object-Oriented Formal Transformation System

/. Introduction

A fundamental characteristic of modern software systems is complexity, and engineer-

ing such systems is a difficult business. Automatic programming—building a program

to solve a problem from a statement of the problem—is one of many approaches touted

by researchers as a potential solution to the inherent complexity of software develop-

ment. In 1986, Frederick P. Brooks published a classic paper that cast doubt on automatic

programming—along with several other promising technologies—as a potential silver bul-

let. He claimed that after 40 years of hype, he could scarcely conceive of the eventual

realization of automatic programming [10:193-4]. Now, almost 15 years after their sen-

tencing, advocates of automatic programming are alive and well, tooling away at its equally

revolutionary cousin—formal transformation systems. The Knowledge-Based Software En-

gineering (KBSE) research group at the Air Force Institute of Technology (AFIT) is ag-

gressively pursuing this approach through its development of the AFIT Wide-Spectrum

Object Modeling Environment (AWSOME)1—an object-oriented, formal transformation

system.

This work enriches that pursuit by integrating explicit architectural modeling into

the formal, object-oriented, transformational process model. In briefly describing each of

these process model descriptors (i.e., formal, object-oriented, and transformational), the

following background section raises the hood of the transformational paradigm and lays

bare the specific issues targeted by this research.

AWSOME was originally called AFJTtool and was renamed during this research cycle at AFIT to
reflect the expansion its underlying metamodel from a design language to a wide-spectrum (analysis and
design) language.

1.1 Background

1.1.1 Formal Environments. In general, this research targets formal software en-

gineering environments. Like any engineering discipline, software engineering is a problem-

solving activity. The formality with which it is undertaken varies from organization to or-

ganization. Most software development organizations engage in the less formal approach,

where specifications take on a prose format, designs and implementations are derived by

hand, and systems are informally verified and validated against informal requirements and

customer expectations. The benefits and detriments associated with an informal approach

are discussed further in Chapter 2.

Formal methods, on the other hand, are mathematically based tools and techniques

that greatly minimize the problems associated with less formal methods. Formal methods

are characterized by mathematically rich languages, like Z, the precision of which facilitates

unambiguous problem specification and increases the likelihood of correct solutions.

1.1.2 Object-Oriented Environments. More specifically, this research targets

those formal environments that engage in object-oriented software development. Histor-

ically, software methodologies have over-emphasized either the data used in a problem

environment or the functions performed on that data. By modeling real world entities,

object-orientation attempts to resolve this bipolar arrangement by coupling the functions

of interest with the data upon which they operate.

Rumbaugh's Object Modeling Technique (OMT) is the AFIT KBSE research group's

object-oriented methodology of choice. They have applied various formalisms in specifying

and representing the OMT's structural, dynamic, and functional models resulting in a

formal object-oriented software development environment. While interesting in its own

right, this description is yet incomplete. The semi-automated approach taken by the

KBSE group leads to the third major descriptor—transformational software development.

1.1.3 Transformational Environments. Transformational environments, or trans-

formation systems, are typified by the presence of formal data models that undergo a

series of semi-automated, correctness-preserving transformations. These transformations

Decisions

and
Rationale

Requirements
Analysis

Formal
Specifica
(prototyr.

Requirements
 ^

i \ J \

Validation **-

•^t—

1
Mechanical

Optimization

Forma!
-^ Development

_w Concrete
Source

Program

Tuning

Figure 1. The automation-based (transformation) paradigm.

progressively transform data from a high-level to a low-level of abstraction, i.e., from

requirements specifications through design specifications to executable code [16]. Such

systems were first described in detail by Balzer, Cheatham, and Green as providing for

formal specification where the specification becomes the prototype, the prototype becomes

the implementation, testing is eliminated, and maintenance is accomplished at the abstract

specification level [4] (see Figure 1).

AWSOME is one implementation of just such a formal, object-oriented, transfor-

mation system. Although this research targets the general model, AWSOME provided a

real environment to test its propositions. The propositions to be tested arose from var-

ious issues associated with yet another angle on object-oriented, formal transformation

systems—their ability to explicitly model and manipulate a variety of software architec-

tures. Before getting into those propositions and the issues they address, the next section

offers a brief introduction to current issues in software architecture research.

1.1.4 Software Architecture. Software architecture—the art and science of cre-

ating the architectural model, or high level design, of software systems—is one software

development activity that, historically, has received a great deal of lip service, but very

little real attention. That is beginning to change. As software development continues its

evolution into an engineering discipline, it relies more and more on the rigorous application

of its supporting technologies, one of which is software architecture. The argument for the

r.— — — —

System Style: Object-Oriented

Figure 2. An object-oriented software architecture.

importance of explicitly modeling the architectures of software systems during system de-

sign is covered in more detail in Chapter 2. For the moment, however, the most important

issue is the nature of a software architecture.

Definitions for software architecture abound. Chapter 2 provides a definition suitable

for the purposes of this thesis. In this introduction, however, suffice it to say that a software

architecture is a recognizable collection of system components and the connectors between

those components. There are many styles of software architecture, each offering its own

connector and component types and its own topological and semantic constraints. One

such style is the object-oriented style (see Figure 2). In an object-oriented architecture, the

objects in the model are the architectural components and the messages passed between

the objects, in the form of method calls, are the architectural connectors.

Often, however, software systems do not conform to one particular style. In fact,

they exhibit what Bass, Clements, and Kazman call hierarchically heterogeneous software

architectures [5:102]. This simply means that the architecture is often a hierarchical mix-

ture of styles. For instance, in a distributed client-server architecture, the client(s) and

server(s) are themselves components. They communicate via socket or remote procedure

call (RPC) connectors. These components may, however, be further described as having

object-oriented sub-architectures, whereby they are each comprised of one or more object

components that communicate via method call connectors (see Figure 3). It is this ten-

dency to build hierarchically heterogeneous architectures to solve even moderately complex

I System Style: Client-Server

1 Client Component Server Component
rv ,

1 1
1>- Jj

\ \
\ \

X \ ""■ .___

"T 1-

'-7—
Component Style: Object-Oriented 1

^r_-jo*-L_Jk ;

j--\r / r-^-*--^ ! ! r i obJW L _ >—Hl _ _1objre' i i

\ i
- - ^<^_ ^Z^ ~ '

Figure 3. A hierarchically heterogeneous software architecture.

problems, and the need to explicity and formally model these architectures , that leads to

the problem addressed by this research.

1.2 Problem

Problem Statement: Many object-oriented, formal transformation systems are un-

able to explicitly model software architectures more complex than a network of objects that

communicate via method calls. This research proposes a new and innovative approach to

the high-level design or architecture of object-oriented systems that facilitates the explicit

representation and extraction of hierarchically heterogeneous software architectures.

Specifically, this research addresses three problems in light of the previous discus-

sion of hierarchically heterogeneous software architectures. First, object-oriented transfor-

mation methodologies only implicitly describe the architectures of the software systems

they produce. In other words, there is no specific stage at which the engineer employs

transformations that generate the architecture itself, nor are there explicit elements in

the generated design model that equate to the semantic entities of software architectures

(e.g., components, connectors, ports, roles, attachments, etc.). To be sure, any software

system produced by a transformation system—or any other methodology—has an architec-

ture [5:24]. The issue is the level of architectural emphasis applied during its derivation and

the degree to which the architecture is explicitly reflected in the design and used for prelim-

inary evaluation of candidate solutions. Because an implicit architecture is only a shadow

of the object-oriented design, any attempt to extract its composition can only do so by

inferentially examining the elements of the low-level design and deciphering their architec-

tural significance. Chapter 2 extends the argument for the importance of explicit software

architecture modeling. Assuming the validity of that argument, a formal, object-oriented,

transformation system must provide the means to explicitly represent architectural entities.

Second, a provision for explicitly modeling object-oriented architectures in an object-

oriented transformation system is often not enough. As previously stated, most systems

imposing any degree of complexity call for hierarchically heterogeneous architectures. In

other words, it is not enough to explicitly model object components and method call

connectors. A general purpose development environment must provide for a variety of

architectural styles and the means to compose these styles hierarchically. Existing formal,

object-oriented, transformation systems fall short of this capability by relying solely on

the analyst's ability to capture the high-level design in the analysis model. This approach

not only depends on the analyst's ability to recreate the essence of a particular style of

architecture, but to do so in a way that changes the design-independent nature of the

analysis model.

Finally, there is a tendency with systems that settle for implicit architectural model-

ing to extract software architectures from the analysis model rather than from the design

model where the architectures actually reside. While analysis models provide an early re-

flection of the architecture in an object-oriented environment, it is not until the first high-

level design decisions are made, e.g., objects are composed into components and events

transformed into method call connectors, that the abstract requirements specification be-

comes a high-level design (i.e., an architecture). In fact, in an environment that recognizes

the existence of a variety of architectural styles and the types of entities employed by those

styles, inferring the architecture from the analysis model before it has been elaborated into

a high-level design is tantamount to putting the proverbial "cart before the horse."

1.3 Initial Assessment of Past Effort

There has always been an interest in the architectures of software systems. But,

not until the publication of A Pattern Language in 1977 by Christopher Alexander [1],

the recognition of the applicability of patterns to software systems by the Pattern Lan-

guages of Program (PLoP) design community, and the work of others in the early 1990s

did research in the area appreciably intensify. Most of the research has centered around

frameworks, design patterns, or architectural styles. Very little has been done to integrate

the accomplishments of these research groups with the work being done in automated

software engineering.

Closer to home, in 1999, Penelope Noe provided a limited level of architectural sup-

port in the AFJTtool environment [22]. In her master's thesis, Noe recognized a useful

relationship between the dynamic model of a formal, object-oriented software specification

and the architecture of the target software system. Specifically, she provided a way to out-

put the architecture of a system once the structural and dynamic models of that system

had been specified. Unfortunately, architectures were only a peripheral concern within

the context of her thesis; therefore, she afforded little attention to the issues of explicit

architectural modeling and style-based software architectures. In addition, her approach

is one example of looking for the right abstraction (the architecture) in the wrong place

(the analysis model) and could only have been accomplished correctly in an environment

devoid of richer architectural styles and compositional capabilities2.

David Robinson broached the subject of software architectures from an agent-based

software engineering perspective. As a member of AFIT's Agent Research Group (ARG),

Robinson developed a formal language called AgDL (Agent Definition Language) that can

be used to formally specify the agents in an agent-based software system. He validated

the language by demonstrating its use with a variety of agent-based architectural styles

(reactive, knowledge-based, planning, and Belief Desire Intention(BDI)). While providing

an important capability within the agent research community, Robinson's coverage of ar-

2Note that in the AFJTtool environment to which she was accustomed, one could be sure that all classes
and objects in the analysis model would become class and object components in the design, and all events
in the analysis model would become method call connectors in the design.

chitecture modeling in his development of an agent specification language was too limited

in scope to be used effectively in this research [26].

Finally, in his Master's thesis David Marsh demonstrated the ability to transform

dynamic models in an object-oriented transformation system [20]. A secondary objective

was to show that a system tooled to produce object-oriented software systems could be

used to produce agent-based systems as well. Marsh's approach, however, was not a direct

attempt to incorporate explicit architectural modeling into formal transformation systems.

Rather, it adopted the design-enriched analysis model paradigm that results in an analysis

model with, perhaps, more design information than would be desired by the software engi-

neering purist. The result was that his approach—while providing significant contributions

in terms of dynamic model transformation—was largely, if not completely, silent on the

importance of explicitly modeling hierarchically heterogeneous software architectures as

high-level design abstractions.

1.4 Scope

This research is primarily concerned with four architectural issues:

1. Explicitly modeling object-oriented software architectures in a formal object-oriented

transformation system,

2. Representing hierarchically heterogeneous architectures in a formal, object-oriented

transformation system,

3. Extending the transformational process model to include explicit architectural mod-

eling, and

4. Exporting software architectures from formal, object-oriented design specifications

to architectural interchange languages.

At the outset of this effort, the scope included various related issues such as eliciting

and formally representing software quality attributes, creating a utility to facilitate semi-

automated derivation of software architectures, and verifying conformance of software ar-

chitectures to the architectural styles they implement. During the course of this effort,

they were eventually excluded from extensive consideration here and left for future re-

search. They are, however, discussed throughout the thesis as they relate to the specific

areas addressed.

Finally, this research targets only general purpose development environments. The

author defines a general purpose environment as one that is geared toward the production

of solutions to a variety of problems with no predisposition for a particular design or imple-

mentation and fully capable of producing solutions that exhibit a variety of architectural

classes and styles. Many development environments specialize in the reproduction of spe-

cific architectural or design solutions to resolve problems. Such an approach appropriately

leverages the knowledge about a particular genre of software designs in the resolution of

problems meeting certain criteria. DeLoach's agentTool is one example of an environment

that is tooled for the production of a specific class and style of architectures (i.e., agent-

based systems). Such environments are not the target of this research. Rather, it provides

a way, in a general purpose environment, to select and explicitly model one of many styles

of archtitecture to solve a given problem.

To demonstrate the feasibility of the proposed methods for addressing the issues

above, Chapter V incorporates them into AWSOME and exercises the new environment

against a simple client-server software problem.

1.5 Document Overview

Chapter II reviews various research activities related to software architectures, formal

methods, object orientation, and transformational software development. It also defines

software architecture, establishes its importance as a key software engineering activity, and

describes the AWSOME environment. Chapters III and IV present the author's approach

to solving the problems described above. Chapter V implements the approach described

in Chapters III and IV. The sixth and final chapter presents the results of the imple-

mentation, the author's conclusions based on those results, and specific recommendations

for future research in areas related to the topic. The appendices provide additional in-

formation pertaining to the demonstration of much of the ideas in this thesis. Appendix

A provides a formal Z specification for the example problem (Bä' bal) used throughout

9

this document. Appendix B provides an analysis model for Bä' bal in the AWSOME

surface syntax (AWSOME is described in more detail in Chapter II). Appendix C and Ap-

pendix D provide an architectural model in AWSOME surface syntax and the equivalent

Acme surface syntax for an object-oriented Bä' bal architecture, respectively. Finally,

Appendix E and Appendix F provide equivalent AWSOME and Acme representations for

an object-oriented client-server version of Bä' bal .

10

IT. Background

2.1 Introduction

In the community of applied sciences, software engineering is the new kid in town.

In fact, use of the engineering label is rather premature and less than justifiable according

to many in the field. It is clear, however, that software development is on the evolution-

ary path from craft to professional engineering discipline. The refinement and inculcation

of software architecture as a fundamental activity within software development greatly

facilitates that evolutionary process [28:5-14]. This chapter summarizes several key con-

tributions to software architecture, reviews the latest trends in software development, and

introduces an example transformational programming environment.

2.2 Soflware Architecture

A syntopical analysis of the subject reveals a great variety of recent contributions to

the understanding and practice of software architecture—far too many for a comprehensive

overview. Instead, those contributions related to

• the definition of software architecture as a software engineering activity,

• the justification of software architecture as an explicit process, and

• the codification of software architecture domain knowledge

are deemed especially valuable and presented below.

2.2.1 Soßware Architecture Defined. With increased research emphasis on soft-

ware architecture, the question often arises: "what is a software architecture?" Is it simply

"what the architect specifies in an architecture description" [17:83]? In their seminal work

on the subject, Software Architecture: Perspectives on an Emerging Discipline, Mary Shaw

and David Garlan define software architecture as

...the description of elements from which systems are built, interactions among
those elements, patterns that guide their composition, and constraints on these
patterns....a particular system is defined in terms of a collection of components
and interactions among those components [28:1].

11

Roger Pressman, in the third edition of his text on software engineering, suggests a soft-

ware architecture represents the transition between the requirements and design phases

of the software lifecycle. It is accomplished by mapping each part of a software problem

to one or more elements of the specified solution. He emphasizes the structuring of data

and components as the primary architectural activity and states that the elements of a

solution can be structured in a variety of ways [23:325-6]. Later, in his fourth edition,

Pressman adopts the framework suggested by Shaw and Garlan, agreeing that software

architecture is "the overall structure of the software and the ways in which that structure

provides conceptual integrity for a system" [24:351] [28]. Sommerville, while recognizing

the absence of a "generally accepted process model for architectural design," identifies

three activities commonly present in such models: system structuring, control modeling,

and modular decomposition [30:226-7]. In their Unißed Software Development Process,

Jacobson, Booch, and Rumbaugh conclude that an architecture provides a suite of views

of a software system—indeed, a abstract view of the "whole design"—that serves to com-

municate the "most significant and dynamic aspects of the system" [17:6].

The common thread running through these ideas on the nature of software archi-

tecture seems best summarized by Bass, Clements, and Kazman in Software Architecture

in Practice. In this text, the authors build on the foundation laid by Shaw and Garlan

and define software architecture as "...the structure or structures of the system, which

comprise software components, the externally visible properties of those components, and

the relationships among them" [5:23]. Figure 4 graphically depicts the essence of this

definition.

Included in most definitions of architecture were the terms: component, connector,

port, role, attachment, configuration, representation, and binding. The definitions for

these terms given by Shaw and Garlan [28] are provided here and used throughout this

report.

Component. The loci of computation, components represent the primary building

blocks of an architecture.

Connector. Defines a path of interaction between components.

12

Figure 4. Architectural structures.

Port. Represents a component's points of interaction with its environment.

Role. Represents a participant in an interaction; a set of roles makes up the interface

for a connector.

Attachment. Represents a link between a component's port and a connector's role.

Configuration. Defines a topology of components and connectors.

Representation. A way to represent the "contents" of a component or connector.

Representations enable the hierarchical composition of architectures.

Binding. In a hierarchical architecture, bindings provide the links between sub-component

ports in a representation with the ports of the parent component (i.e., the component

being defined by the representation).

2.2.1.1 The Rational Unified Process. Despite the growing consensus on

how to define software architecture, there is by no means a well understood process model

for formally deriving an architecture for a new system or examining a preexisting one.

Jacobson, et al., present a relatively complete software development process model that

13

o Use Case } ~ — ~ ~ -■ ^. "~ -^ ~~ --
Model / — ~~ -~ ^ ^ \ ^" ^

' specified by ^ x \
" x ^ s ^ ^ r \ \ x ^

Analysis \ K&asAh), s s
N s

Model) \ \

Desi«n 1 distributed by
Model I s

\ \
/Deployment . \ \ 1 implemented by

Model / \ ^
1 \

/implements \
ation J verified by

Model / \

(Test \
I Model J

Figure 5. Models of the Unified Process.

includes semi-formal software architecture modeling [17]. Their Unified Process1 is charac-

terized, in fact, as being architecture-centric and use-case driven. As depicted in Figure 5,

the Unified Process is based on a series of interdependent system models beginning with

the use-case model and ending with the test model. While communicating the notion of

interdependent models, this diagram is an oversimplification. There are, in fact, many

other dependencies between the models of the system [17:10].

One interesting aspect of the Unified Process is the idea that use cases—used primar-

ily to capture the functional requirements for a software system—are the primary drivers

of the software architecture. While this may seem plausible, it constitutes a significant de-

viation from the assertion by Bass, et al., that software architectures are primarily driven

by software quality attributes, not functional requirements. To be sure, the authors of

the Unified Process certainly include non-functional requirements (i.e., quality attributes)

as architectural drivers, but they are relegated to a position of minimal influence in that

process model. Bass, et al., took a different approach in Software Architecture in Practice

by describing software architectural modeling in the context of the architectural business

cycle (ABC).

xThe Rational Unified Process is the latest version of a model that has been evolving since 1987. As
recently as 1997, it was known as the Rational Objectory Process.

14

Figure 6. The Architectural Business Cycle.

2.2.1.2 The Architectural Business Cycle. According to Bass, Clements,

and Kazman, software architectures are not derived from functional requirements. They

make the point by suggesting that two different architects working in isolation from the

same requirements specification will likely produce two completely different architectures.

Accordingly, there must be something other than functional requirements driving software

architectures. This something, according to the authors, is the technical, business, and

social influences emanating from the surrounding environment. The primary factors in-

fluencing the architecture are system stakeholders (external and internal), the technical

environment in which the system is engineered (current tools, methods, and methodolo-

gies), and the architect's personal experience. Figure 6 illustrates this influential relation-

ship between the architect and his or her environment. It is equally important to note

the existence of a feedback loop from the architecture and the system itself back to the

environment. This reinforces the notion of a complete cycle where the environment influ-

ences the creation of a new architecture, and the new architecture, in turn, influences the

environment [5:11].

15

Quality Architectural
Attribute Issues

Performance Intercomponent communication
Security Specialized components
Availability Redundant components
Usability Achieving proper information flow
Modifiability Modularization; encapsulation
Portability Layers
Reusability Decoupling
Integrability Component interfaces
Testability- Modularization; encapsulation

Table 1. Quality attributes and architectural issues.

Arguably the most important point made by the authors is that software quality

attributes (i.e., non-functional requirements or "-ilities") drive a specific architectural so-

lution to a problem. At the same time, quality attributes often conflict, so decisions must

be made regarding the relative importance of those attributes and the architectural styles

or patterns that are likely to support them. What are these attributes? Table 1 lists the

quality attributes discussed by the authors and the issues that must be addressed by the

architecture [5:86].

Their discussion of software architectures quickly moves from one of environmental

influences and quality attributes to architectural styles. The significance of a catalog of

architectural styles, their important relationship to design patterns, and the movement

towards codification of this domain knowledge warrants separate treatment of the subject.

But, first, a justification for architecting software systems is presented.

2.2.2 Software Architecture Justified. So, why trouble oneself with all this over-

head? After all, software developers have managed to avoid the issue of architectures by

ignoring its importance (at worst) or implicitly modeling them (at best). This challenge

to justify the apparent overhead of software architectural modeling is a fair one, the re-

sponse to which has been clearly addressed. The benefits of explicit software architecture

modeling during the early stages of design fall into six general categories: improved or-

ganization, communication, and understanding; early analysis; controlled evolution; and

standardization.

16

1. Software architectures facilitate improved organization of major software develop-

ment efforts. Modern software systems, especially the ones for which there is an

architectural interest, are typically very large systems requiring the combined ef-

forts of many software specialists. In fact, it is entirely possible to have hundreds,

even thousands, of people involved in a major software intensive development pro-

gram [10:31]. The architectural breakdown of a large system enables clean assignment

of work to the often geographically distributed teams and individuals assigned to the

project. With the interfaces to these subsystems clearly defined and controlled by

system architects, small groups are free to focus on their specific components, with

relatively little regard for the parallel efforts of others [17:63]. Large systems must

inevitably be partitioned for development—without an overarching architecture to

guide this process, an ad hoc partitioning scheme can generate more problems that

it seeks to resolve.

2. Software architectures aid communication among stakeholders. There are many

different perspectives that come to bear on a software system development effort,

both internal and external to the developing organization. The customer is concerned

with schedule and budget issues, while the users are more interested in system func-

tionality. Managers worry about controlling large project team interaction, while

implementers concern themselves with data structures, algorithms, and program-

ming languages. Everyone has a stake in the operation and, therefore, an interest in

the key decisions made early in the construction phase that will affect the software

system long-term. With increased involvement, communication overhead is intro-

duced [17:63]. The software architecture created early in the design process aids the

communication process by providing an abstract solution that is easily communicated

to all stakeholders [5:28]. Without an architectural abstraction, the key players are

left to examine the problem specification or the solution design. The specification

is understandable by customers and users, but addresses the problem space, not the

solution space. The design targets the solution, but is typically too far down the

abstraction chain (i.e., too low-level) to be meaningful to all but the developers.

17

3. Software architectures promote greater understanding of complex software sys-

tems. As previously stated, modern software systems are typically very complex and

difficult to grasp in their entirety by most individuals. In fact, Brooks suggests that

software systems are the most complex structures engineered by human beings—

orders of magnitude more complex than even the digital computers on which they

operate [10:182-3]. Architectures provide a high level partitioning of a solution, us-

ing a language or presentation mechanism that all can understand, to address this

complexity. A comparable level of understanding is much more difficult to achieve

once developers engage the solution at a lower level of abstraction using tools and

languages best suited to the task.

4. Software architectures enable early analysis of the efficacy of a proposed software

solution. The software system architecture is the earliest opportunity for stakeholders

in a software development effort to evaluate the ability of a proposed solution to

adequately solve a specified problem [5:28]. Two related principles help illustrate

this benefit. The cost-error principle states that the earlier errors are detected in

a process, the less expensive it will be to correct the errors. The Albert Einstein

principle states that the proper formulation of the problem is even more essential than

its solution. Analysis of a good software architecture gives us the ability to detect

errors in the target solution to a problem earlier than would be possible without an

available architectural abstraction. Additionally, it is the software architecture that

allows us to provide a proper formulation of the problem before engaging the finer

details of algorithm and data structure design [29].

5. Software architectures help maintain the conceptual integrity of evolving software

systems. Software systems are in a constant state of change, both during develop-

ment and later during operation and maintenance [17:64]. These systems must be

designed in such a way that they can be easily adapted to changing requirements and

environments. Systems constructed around good architectures have this resilience—

the architecture serving as the conscience of the system [21]. As early as 1975,

Frederick P. Brooks, Jr. addressed the necessity of software system architectures in

his classical book, The Mythical Man-Month. In this masterful treatise on managing

18

complex programs, Brooks opines that the single most important consideration when

designing a software system is the conceptual integrity of the system. A system with

conceptual integrity is one whose parts—whether developed as part of the original

system or appended later—all seamlessly integrate with, and contribute to, the orig-

inal system design. Brooks offers the Reims Cathedral as a wonderful example of

conceptual integrity in action. Despite the involvement of eight generations of de-

signers and builders, the cathedral exhibits a magnificently singular architecture—a

testimony to the selfless adherence of subsequent designers to the overarching con-

cept espoused by Jean d'Orbais [10:41-2]. So it should be with software that, in

some cases, has been in operation and maintenance for over 40 years.

6. Software architectures simplify the reuse of proven software design patterns. Stan-

dardization and componentization (component-based construction) are hallmarks of

a mature engineering discipline. Architectures foster the development and repeated

use of well-known domain patterns and components, greatly decreasing the time and

cost normally associated with the "creative" alternative and increasing predictabil-

ity of the results. Low-level design patterns have been, in fact, a hot topic for some

time. Selecting a compatible group of patterns, however, and composing them in

reasonable ways to solve complex computing problems is not well established. Archi-

tectural modeling can provide the higher level packaging of reusable design patterns

into components that can be arranged in proven ways.

Clearly, there is great value in architecting a software system, and many have taken

advantage of the benefits provided. However, to move closer to an engineering paradigm,

where practitioners reuse proven solutions rather than create new ones, the reusable arti-

facts and, in formal environments, the knowledge necessary to effectively implement the

artifacts must be codified.

2.2.3 Süßware Architecture Codified. As suggested in the introduction, codifica-

tion of software architectural knowledge is an important step in the evolution of software

development from a craft to an engineering discipline. For codification to occur, a formal,

descriptive language capable of describing the software architecture domain and specific

19

software architectures must be selected. The software architecture domain can be viewed

from three distinct, yet related perspectives: architectural styles, architectural [design]

patterns, and architectural frameworks. The obvious question is, what is the difference be-

tween a style, a pattern, and a framework? Essentially, a style is a language for describing

a family of architectural patterns, and a pattern is a generalization of a framework. The

three constructs are discussed in more detail in the following paragraphs.

2.2.3.1 Architectural Styles. For as long as designers have been construct-

ing software systems, architectural styles have been around. For the most part, these styles

were no more than idiomatic descriptions of a particular method of construction. For ex-

ample, the often occurring configuration of client programs subscribing to the services of

server programs via procedure calls (or some other interaction mechanism) became com-

monly referred to as a client-server architecture. When used by experienced designers,

this simple description says much about the general structure of the components and con-

nections in the system while avoiding unnecessary detail. Furthermore, systems are rarely

pure instantiations of a particular style—rather, they usually reflect a useful composition

of various styles. These are referred to as heterogeneous architectures [28:19-32].

Several attempts have been made to categorize the most common styles. Shaw and

Garlan defined the categorized list shown in Table 2. In addition to a descriptive name

and a graphical representation, the authors recommended—and in some cases provided-

informal definitions of architectural styles in terms of their

• design vocabularies (types of components and connectors),

• structural patterns,

• underlying computational models,

• essential invariants,

• common uses (examples),

• advantages and disadvantages, and

• specializations.

Bass, Clements, and Kazman built on the styles offered by Shaw and Garlan. With

the exception of minor name changes, they focused on characterizing the styles in greater

20

Architectural Styles

Dataflow systems
Batch sequential
Pipes and filters

Call-and-retum systems
Main program and subroutine
Object-oriented systems
Hierarchical layers

Independent components
Communicating processes
Event systems

Data-centered systems (repositories)
Databases
Hypertext systems
Blackboards

Virtual machines
Interpreters
Rule-based systems

Table 2. A catalog of architectural styles.

detail. In particular, they defined the constituent parts, control issues, data issues, and

control and data interactions associated with each style. Fig 7 shows the definition of

several styles as recorded by Bass, et al. Their complete list can be found at [5:108-11].

Two of the call-and-retum styles were of particular interest during this research—the

objects (or object-oriented) style and the call-based client-server (or simply client-server)

style [5] [28]. These two styles are highlighted here and used in later chapters to illustrate

the ideas presented.

• Object-oriented style.

- Components: Managers (objects)

- Connectors: Dynamic calls (method calls)

- Semantic Constraints: An object must preserve the integrity of its representa-

tion and the representation is hidden from other objects.

- Topological Constraints: Data topology is arbitrary; control flow topology is

arbitrary; data and control flows in same direction.

21

§

.3 3
03 «

•X5
ea
o

Ü o

.3 3
ea •■=

12

P.
~B

■43
CM a o

U

•a
'5

B- S £2

1 B-

IZ o
QJ

£ <L> £-43

s 8

35 "42 S3

I» a■«

■I I = g S O ö PH

•g-g
«J CO .0 «1

CW .2

E > e >
era -2

-S
f

••g 3

o ä "S D. 5 5

03

S'3

^ •R & R
ea S3

•s
•S. o

£■■§

a

e>s
o- Q

Figure 7. Defining and classifying architectural styles.

22

• Client-server style.

- Components: Clients, Servers

- Connectors: Calls or Remote Procedure Calls (RPC)

- Semantic Constraints: Servers provide black-box services; Clients request ser-

vices provided by Servers.

- Topological Constraints: Data topology is star; control topology is star; data

and control flows in opposite directions.

While architectural styles are useful in the sense that they provide easily recognizable

schemes for arranging the components in a software system, some suggest they lack the

level of practical reuse necessary to realize the benefits described in Section 2.2.2. Styles

specify building block types and establish constraints on how a system can be defined, but

essentially require the designer to construct the system in its entirety [21]. Architectural

patterns may bridge the gap between abstract architectural styles and complete software

system architectures.

2.2.3.2 Architectural Patterns. Reusable design patterns in general have

captured the imaginations of software professionals for several years. The Pattern Lan-

guages of Programs (PLoP) community sparked serious dialog on the subject in the early

1990's by calling for the launch of a new literature dedicated to patterns in software. The

renewed interest in reusable software design patterns came about primarily as a result

of the work of the building architect Christopher Alexander [11:2]. In defining design

patterns, Alexander contends

Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice [1:X].

PLoP cohorts recognized a growing problem with existing software engineering literature:

a penchant for the discovery and development of new and exciting solutions—regardless of

their utility—while ignoring the host of existing design patterns. Their efforts have resulted

in the ongoing PLoP conferences and volumes of useful pattern-related literature [8].

23

In Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm,

Johnson, and Vlissides constructed a catalog of reusable software design patterns. Based

on the purpose for each pattern, they assign meaningful names to facilitate learning and

communication by practitioners (e.g., Abstract Factory, Facade, Interpreter, Visitor, etc.).

The text contains a complete definition of each of the twenty or so patterns deemed most

useful by the authors. In defining the patterns, they suggest that a complete design pattern

definition includes a pattern name, a description of the problem solved by the pattern, a

description of the pattern solution, and the consequences one can expect when applying

the pattern (e.g., space and time trade-offs) [11:3].

2.2.3.3 Architectural Frameworks. Indeed, software design patterns are

useful and offer much in the way of design reusability, but the most common patterns

don't always apply when dealing with broader architectural issues. In fact, in their intro-

duction to Part 1 of Pattern Languages of Program Design, Coplien and Schmidt describe

a specialization of design patterns, called frameworks, that addresses these higher level is-

sues. Frameworks attempt to capture the behavior of commonly occurring abstractions in

an application domain—they are essentially "semicomplete" applications. The framework

is instantiated much like an object-oriented class provided by a class library, but there is

a significant difference in run-time flow control between the services offered by reusable

frameworks and class libraries. When reusing classes from class libraries, the application

code maintains control by determining what methods to invoke and when to invoke them.

Frameworks, on the other hand, offer the ability to reuse the flow control modeled by the

framework. Instead of writing application code to call reusable objects, one writes code

that gets called by reusable frameworks. Frameworks are a careful balance of variability

and stability. In other words, framework designers carefully weigh the variability required

to enable "millions" of different instantiations of the framework against the stability re-

quired for confident reliance upon the reusable behavior offered by the pattern [8:1-5].

Codification of architectural knowledge in the form of styles, patterns, and frame-

works is a necessary step in the path to effective and efficient generation of software system

24

architectures. Formalization of these structures will pave the way for incorporating explicit

software architectural modeling in a formal transformation paradigm.

2.2.4 Architecture Description Languages. Software architectures, and the styles,

patterns, and frameworks used to generate them in a transformational environment must

be described using a formal modeling language. Many such languages have been devel-

oped specifically for the task—they are generally called architecture description languages

(ADLs).

Wright, an ADL developed by Robert Allen [2] as part of his Ph.D. dissertation, was

built around the notions of components, connectors, and conßgurations. The language

was heavily influenced by the Communicating Sequential Processes (CSP) language and is

geared toward providing not only the capability to describe an architecture, but also the

ability to analyze it. Aesop, developed by the ABLE Project at Carnegie Mellon University,

is a system for generating style-oriented architectural design environments [12]. ACME is

more an architecture description interchange language than an ADL [13]. It attempts to

facilitate the interchange of architectural descriptions written in different languages using

a common interfacing language. Other, more general purpose languages have also been

used to formally specify software architectures. Shaw and Garlan demonstrate the use of Z

to specify architectures [28] [130-142]. Table 3 compares the use of general purpose formal

languages to the use of ADLs for architectural specification.

2.3 Software Development Trends

The face of software development has evolved significantly since the late 1960s. Two

specific trends are worth reviewing prior to broaching the subject of architectural modeling

in a formal software transformation environment. The shift from a structured to an object-

oriented paradigm across the industry and the gradual adoption of formal methods by many

software development organizations are of particular interest.

2.3.1 Object-Orientation. Regardless of the methodology used (e.g., structured,

object-oriented, etc.), developing a software system typically involves specifying a series of

25

Technique

Formal
methods

Structure-
based ADLs

Advantages
provides for system property
analysis
provides for verification of
implementation
improves communication of system
design

- permit exposure/definition of
systems

- well suited to real system
description

- explicit modeling facilitates
traceability

- can efficiently generate reliable
systems

Disadvantages
a non-trivial undertaking
requires definition from
first principles for each
new description
for each new description
reuse based on previous
experience; lacks common
framework for patterns and
abstractions
each developer must invent
own models and tools

- lack direct element property
specification; limits
analytical leverage

- do little to highlight properties
of target systems for analysis

- limited range of systems
that can be modeled in any
particular language

Table 3. The status quo in modeling software architectures.

abstract models2 of the system based on the customer's needs (see Figure 8). Each model

is a slightly less abstract view of the target system than its predecessor. The requirements

model is the highest level abstraction, telling only what the system must do in order

to be successful. Using the requirements model, systems analysts and designers create

a lower-level abstraction called the design model. This model details how the system

will implement the requirements. Programmers (i.e., implementers, coders) create the

implementation model by coding the design using one or more programming languages

suited to the task (e.g., Ada, C++, Java). Programmers provide this implementation

model as input to compilers that translate the language-specific code into machine readable

instructions—the execution model.

Traditionally, to derive the set of models for a system, developers focused on the

functional and behavioral aspects of the problem domain and structured software systems

2The term model is preferred over specißcation in this instance, because the interest is in every abstrac-
tion of the target system up to, and including, the executable code itself. "Model" seems more appropriate
since the source and object code are rarely considered specifications.

26

Figure 8. Software modeling.

accordingly. Following this approach, the system is viewed as a hierarchy or network of

interrelated processes. From the late 1960s to the mid 1980s, this structured paradigm

drew much attention and evolved into what Pressman calls an "amalgam" of methods and

techniques. By the mid 1980s, however, the new object-oriented approach had gained a

foothold, and by the early 1990s, the structured approach had relinquished its hold on the

majority of developers building new software systems [24:207,396-397].

Using object orientation, developers focus on the objects inherent to the problem

domain, rather than the processes. In other words, they key on the nouns in a problem

statement rather than the verbs. Now the system is viewed as a set of objects that commu-

nicate via message passing. Each object is associated with a class. A class is essentially a

template, and an object is an instantiation of some template. The class definition identifies

the operations accessible to the class (via methods3) and the data items (i.e., attributes)

encapsulated by the class; this structure is depicted in Figure 9. Every object of a particu-

lar class has its own set of instance variables and methods. Many texts offer a much more

comprehensive discussion of object-oriented technology; the interested reader is referred to

Rumbaugh's text on object-oriented modeling for more information [27].

3A subtle difference between an operation and a method is that an operation defines, in general terms,
the purpose of an action while a method implements the operation for a particular class. More will be said
about this in the discussion of polymorphism.

27

aircraft

idjmmber: string

speed: integer

heading : integer

altitude : integer

get_number(): string

get_speed(): integer

set_speed(integer)

Figure 9. A typical dass definition.

2.3.2 Formal Methods. Formal methods are mathematically based techniques

for specifying, verifying, and/or synthesizing a software system [6]. Traditionally, the em-

phasis has been on using natural language (e.g., English prose) or semi-formal modeling

tools4 and techniques to specify systems. Disproportionate use of natural language and

semi-formal tools often results in specifications that are ambiguous, inconsistent, and in-

complete. Formal methods, whether used sparingly or exclusively, serve to diminish these

problems. In fact, Wordsworth defines formalization as "the process of making a vague no-

tion precise" [34:5]. The formal methods designed to resolve these problems have held the

attention of academia since the late 1960s, but have failed to gain widespread application

in industry. Albert Einstein seemingly addressed the problem when he stated, "Why does

this magnificent applied science which saves work and makes life easier bring us so little

happiness? The simple answer runs: because we have not yet learned to make sensible

use of it" [6]. He was right—not only is the shift to formal methods a significant change

in the way we think about software, it requires a high degree of training and experience

to be done effectively; a degree to which most organizations have been unable to commit.

4Many "semi-formal" tools have been developed to aid in system specification, verification, and synthe-
sis (e.g., Rumbaugh's Object Modeling Technique (OMT), ERWin, Model Mart, Visual Studio Modeler,
etc.); however, these tools typically do not provide a level of mathematical precision—and the associated
benefits—characteristic of their formal cousins.

28

Nevertheless, the many advances made by researchers and practitioners alike promise to

facilitate greater understanding and use of formal methods.

2.3.2.1 Formal Specification. A system specification identifies the proper-

ties of a target system at a particular level of abstraction. Formal specifications capture the

desired what, when, and how of the system using specification languages with well-defined

syntax and semantics. Specification languages can be model-based, property-based, se-

quential, concurrent, or a combination of these attributes. Model-based languages are

used to build systems using mathematical constructs such as sets, relations, and functions.

Pre- and post-conditions are used to specify the operations within the system. Property-

based languages use axiomatic or algebraic notations to define the minimal properties of

a system. Sequential languages are applied when the system is characterized by a sin-

gle thread of operation while concurrent languages are used when dealing with multiple

concurrent processes [14].

Zh is a widely used (relatively speaking), model-based, sequential, specification lan-

guage. Z is of particular interest to this thesis, because it is the formal specification lan-

guage of choice within the Knowledge Based Software Engineering (KBSE) Group at the

Air Force Institute of Technology (AFIT). Z specifications consist of type declarations and

Schemas. Type declarations come in three varieties: built in, basic, and free [15:449]. The

built in type consists of the set of integers denoted Z. Basic types are defined by the speci-

fication and are usually unique to the application being specified. For example, to specify a

FILTER type, the following notation is used: [FILTER]. This type represents the set of all

filters. Free types are essentially enumerated types and are recorded in the following way:

Component_Type ::= filter | repository | process | procedure. Attributes of type

Component-Type, therefore, can only accept the values filter, repository, process, or

procedure6.

SZ is correctly pronounced "zed," indicative of its origination by J.M. Spivey of the United Kingdom.
6This enumerated Component-Type is included here only for illustrative purposes and is not meant

enumerate all known types of architectural components

29

2.3.2.2 Formal Verification. Formal software verification is the method

(or methods) used to ensure that a software system satisfies its specification. In order to

perform formal verification, there must exist a formal specification and a formal semantics

for the programming language used to develop the system. It is the comparison of these

two formal artifacts that makes formal verification possible [14].

There are various methods of formal verification. Two of the more prevalent methods

are model checking and theorem proving. Model checking is primarily used in hardware

and protocol verification. This approach attempts to model the system and specifica-

tion as finite state machines (FSMs) and perform automated comparisons of these FSMs.

There are some difficulties related to this approach and it is not widely used in software

verification.

Theorem proving, on the other hand, is more prevalent in the software community.

Using this method, systems and specifications are modeled as logical formulae. Assertions

are made about a program at certain points in the program. The objective is to verify

(prove) that the assertion (or state) at a particular point in the program, coupled with

the effects of the code at that point, imply the next assertion. Usually, this approach

is applied to program fragments rather than an overall program—an approach derived

from Floyd's Method of Inductive Assertions. Theorem proving can be accomplished both

manually and automatically by theorem provers. The manual approach is error prone, but

automated theorem provers are difficult to implement. In fact, the verification process can

often become more complicated than development itself [14].

2.3.2.3 Formal Synthesis. Synthesis is the term used to describe the pro-

cess of actually building the code for a system (i.e., development). By using formal (i.e.,

mathematically based) methods that have been proven correct to synthesize software sys-

tems, it is possible to build correct software without having to apply separate verification

techniques [14]. In fact, having the methods in a formal format facilitates automation (to

a large degree) of the synthesis process. In this way, programs are developed by applying

a series of automated transformations to formal specifications. This approach to software

development is commonly called the transformational approach. Figure 10 shows a model

30

Decisions
and

Rationale

Requirements
Analysis

Formal
Specificat
(prototyf

Requirements

j \ J i

Validation

•^—

Mechanical
Optimization

Formal
~~^~ Development

_w Concrete
Source

Program

Tuning

Figure 10. The automation-based (transformation) paradigm.

for the transformational approach espoused by Balzer, Cheatham, and Green [4]. As shown

in the diagram, software maintenance in a semi-automated transformation environment is

shifted from the implementation model (i.e., the source code) to the more abstract formal

specification. With the exception of key decisions and their rationale provided by software

engineers, the automated transforms take control of the optimization and code generation

functions.

There is a great deal more to say about formal methods in general and Z specifications

in particular in regards to software engineering. To gain a deeper appreciation of formal

methods, see the related articles by Bowen, Hinchey, and Jones [6,7,18,19,33]. While

Grassman and Tremblay introduce the topic of Z specification in the context of discrete

mathematics [15], Spivey, Woodcock, Loomes, and Davies present the latest techniques in

Z specification based software engineering [31,32,34].

2.4 A Model Environment: AWSOME

The KBSE Group in the Department of Electrical and Computer Engineering at

AFIT has been researching formal transformational software development for several years.

To support and demonstrate the capabilities explored through their research, the group

has evolved a formal, object-oriented, semi-automated, transformation system called AW-

SOME.

31

Domain Engineer

Figure 11. The AWSOME batch sequential architecture.

2.4.I An Architectural Perspective. Although AWSOME is still the focus of re-

search, it sufficiently demonstrates the real possibilities imagined by Balzer et al. Figure 11

depicts the batch sequential architecture of AWSOME. Each major process in the system

manipulates its own data structure(s). For example, the problem setting process takes as

input a model of the problem domain and produces a formal problem specification. The

design transform process, in turn, manipulates the formal specification creating a design

model.

A more recent variation on the AWSOME architecture recognizes the overlap in these

data structures and integrates them into a centralized repository [9]; thus, AWSOME is

currently represented as a data-centered repository architecture (see Figure 12). Gener-

ally, AWSOME can be viewed as a series of semi-automated processes that act on formal

software system models. The specific processes are described by Hartrum [16:1-2] and

summarized below:

Domain modeling: the application of object modeling techniques to the entire

problem domain, perhaps independent of any particular application development

effort, in order to capture and represent domain knowledge in a formal domain model.

32

code

problem domain
\ \ model problem

\ N specification \ \
\ \

\ \
\ \
\ \

\ \
\ \

\ \
\ \

\ \
\ \
\ \

\ \
N \

design
specification

/
/ design

• specification

problem
specification

\ i

\ ' AFITtool Repository i'
l '

problem domain model

Domain
Modeling

domain
knowledge

Key

Unidirectional control flow connector

Unidirectional data flow connector

-^— — — — *- Bidirectional data flow connector

Computational component r.-.v a
I j

Passive data component

Figure 12. The AWSOME data-centered repository architecture.

33

Problem setting: the process of modeling a specific domain application by extract-

ing relevant artifacts from the formal domain model and supplementing these with

problem-specific entities, resulting in a formal object-oriented requirements specifi-

cation7.

Design transform: the semi-automated application of correctness-preserving trans-

forms to the formal requirements specification, resulting in a formal object-oriented

design specification. This specification represents the first tangible model of the

solution (i.e., the target system).

Code generation: the interactive process of programming language selection and

semi-automated transformation of the formal design specification into executable

code.

Without data to process, the system would be incomplete. This is the role of the

system models discussed in the following section.

2.4.2 The System Models. The system models (i.e., formal domain model, formal

specification, and design specification) are stored and manipulated as abstract syntax trees

(AST), that constitute the principal output of the transformation system. The domain

model and formal specification share a common metamodel; that is, the models contain

the same type of information with an identical abstract syntax. The primary difference

between the two is one of scope. While the domain model contains knowledge about the

entire problem domain, the formal specification contains only those classes relevant to the

specific problem being studied. The specification encompasses three different views of the

problem: the structural, functional, and dynamic views8.

The design specification, on the other hand, models the solution. It contains lower-

level detail sufficient for deriving specific data structures and algorithms required to support

7Since the formal domain model may not provide all the knowledge necessary to completely specify an
application, the domain model harvesting process typically provides a mechanism for eliciting the missing

information from the user [3:9].
8These "views" are also called models. The former is preferred here to avoid confusion with the system

models already mentioned.

34

the target system. Correctness-preserving formal transforms are the mechanism used to

derive the design specification from the formal (requirements) specification.

In the previous AFITtool version of AWSOME, the models were represented and

manipulated using Reasoning Systems' Refine language and AST manipulation functions.

Recognizing an opportunity to improve the way AFiTtool represented object-oriented and

imperative designs in the design model, Graham designed the wide-spectrum Common

Object-oriented Imperative Language (COIL) [25]. Cornn followed by recognizing several

commonalities between the analysis and design models and extended the language in a way

that it could be used to model both. The KBSE research group then rebuilt AFITtool

around AWSOME using the Java™ programming language. The result is a formal, object-

oriented transformation environment built around a wide-spectrum modeling language and

the latest Java™ technology.

Figure 13 shows a subset of the model resulting from the revision of AFITtool. Every

entity inherits from WsObj ect. Since this methodology primarily uses WsPackage, WsClass,

and WsAssociation, those entities are highlighted.

The surface syntax of AWSOME was still under revision at the time of this writing.

The tentative surface syntax for the four primary constructs used in this research (i.e., the

package, class, aggregation, and association constructs) is shown below.

• Type examples:

Type ZeroOrOnce is range 0..1

Type ExactlyOnce is range 1..1

Type ZeroOrMany is range 0..*

Type OnceOrMany is range 1..*

Type MyColor is (Red, Green, Blue);

• Package example:

Package MyArchitecture is

... <package declarations>

end Package;

35

<
en

a

H
£

b-

CF-

1 SCh

Cr-

Figure 13. Key elements of the AWSOME model.

36

• Class example:

Class Mylnterface is

var attributel : classX;

var attribute2 : typeA;

procedure Initlnterface()

guarantees (size(attribute2') = 0);

invariant (attribute2.editable = True);

dynamic model{

state Start;

state Ready;

event Dolt;

transition^

initState Start;

receiveEvent Dolt;

nextState Ready;

}

}

end Class;

• Aggregation example:

Aggregation Mylnterface_has_port_RcvPort_DoIt is

parent theComponent : Mylnterface occurs ExactlyOnce;

child thePort : RcvPort_DoIt occurs ZeroOrOnce;

end Aggregation;

• Association example:

Association SndPort_attaches_to_InRole is

role thePort : SndPort occurs ExactlyOnce;

role theRole : InRole occurs ExactlyOnce;

end Association;

37

2.5 Summary and Conclusion

Software system architectures are extremely valuable abstractions in the software

development process. The foundation has been laid for implementing such architectures

in a formal, semi-automated fashion; but there is still much to be done. Shaw and Garlan

established a conceptual framework for thinking about different styles of architecture.

Gamma, et al, paved the way for cataloging reusable design patterns, but focused primarily

on a level below that of software system architectures. Coplien and the PLoP community

continue to address software design pattern reuse at all levels, although their approach

is relatively informal and targets the expert architect performing manual system design

rather than the semiautomated transformation system.

38

HI. Modeling Non-hierarchically Homogeneous Architectures

3.1 Introduction

Every software system has an architecture, whether or not the architecture was inten-

tionally designed during the development process. Moreover, most object-oriented, formal,

transformational development environments will produce software systems that conform

to the object-oriented architectural style. However, attempts to explicitly model an ar-

chitecture during the transformation process—for the purpose of leveraging style-specific

characteristics during design analysis, facilitating the low-level design transformation itself,

or ensuring the conceptual integrity of the system during maintenance—are rare, indeed.

To facilitate this modeling, a transformational environment must provide a sufficient rep-

resentation mechanism—a modeling language capable of capturing the essential aspects of

an architectural design.

This chapter introduces a broad classification of software architectures, discusses the

different languages available for architectural specification, and presents a modified process

model for explicitly modeling a simple class of architectures in an object-oriented, formal

transformation system. The purpose of the NM-class transformation process is simply

to lay the groundwork for a more robust set of transforms that will handle both NM-

class and HH-class architectures. Without this follow-through, the NM-class architecture

transformation process buys little more than design model overhead. Chapter IV defines

the transforms required to model the broader class of architectures, and Chapter V provides

a walk-through demonstration of both transformation processes.

3.2 Classes of Architecture

Classification of software architectures is an active area of research in the architec-

tural community. Typically, the approach is to classify architectures based on the style

they exhibit and to group these styles into families (see Table 7). Often, however, software

architectures do not conform to singular styles. Bass, et al., label such architectures as

heterogeneous, meaning they exhibit more than one style of architecture by incorporating—

into a single system—properties from different styles [5:102]. Their hierarchically hetero-

39

G o

o

K

HM
Hierarchically Homogeneous

HH
Hierarchically Heterogeneous

NM
Non-hierarchically Homogeneous

NH
Non-hierarchically Heterogeneous

Style variation

Figure 14. Architectural dimensions.

geneous class of architectures refers to the way components of one style can consist of an

arrangement of components and connectors (i.e., a sub-architecture) of yet another style.

Their recognition of hierarchically heterogeneous architectures suggests a new and useful

taxonomy based on two orthogonal dimensions—hierarchy and heterogeneity.

The hierarchy dimension addresses the degree to which components in the archi-

tecture are hierarchical or non-hierarchical. Hierarchical components, by definition, are

composed of other components. Primitive components are those components that contain

no others in their definition. Architectures that contain at least one hierarchical component

are considered hierarchical architectures; those that do not are considered non-hierarchical

architectures. This property of a class of architectures should not be confused with the lay-

ered style of architecture. A layered architecture (one that conforms to the layered style)

is one that assigns components "to layers to control intercomponent interaction." This has

little to do with nesting a configuration of one style inside a component of another style.

A more detailed explanation of the layered style is provided by Bass, et al., and should

clarify the difference [5:100-101].

The heterogeneity dimension focuses on the variety of styles used to architect the sys-

tem. The styles manifest themselves as style properties such as component and connector

40

types, topological constraints, and semantic interpretation. Those architectures exhibiting

properties defined by a single style are called homogeneous architectures, meaning they are

a pure style; those that adopt properties defined by multiple styles are called heterogeneous

architectures.

At the same time an architecture is non-hierarchical or hierarchical, it is also homoge-

neous or heterogeneous (see Figure 14). Therefore, a high-level taxonomy of architectures

can be described. This taxonomy contains four classes of architecture defined in the fol-

lowing way1:

Non-hierarchically Homogeneous (NM): these architectures are üat—they con-

tain no nested components. In addition, an NM-class architecture exhibits the prop-

erties a single architectural style. A good example is a pure and simple object-

oriented system design without aggregate classes as shown in Figure 15. The compo-

nents of the system are objects and the connectors are method calls between objects.

There are no nested components defined by the system.

Non-hierarchically Heterogeneous (NH): these architectures are also flat, with

no nested components. An NH-class architecture, however, displays properties de-

fined by two or more architectural styles. There is a constraint, however, that only

components sharing a common connector type can be connected. In other words,

the only way to connect non-hierarchical components typed by two different styles

of architecture is through a commonly defined connector. Theoretically, two differ-

ent styles could share connector and component types and be differentiable only by

their semantic and/or topological constraints. In such a case, the two styles could

be interleaved to form an NH architecture.

Hierarchically Homogeneous (HM): these architectures are hierarchical, contain-

ing nested components. Like the NM-class of architectures, an architecture in this

class is constrained to the properties of a single style. A good example is an object-

JThe figures depicting these classes of architecture utilize a notation invented by the author for the
purpose of explaining the classification scheme. The component and connector shapes are style-neutral and
are only meant to convey the existence or non-existence of heterogeneity and hierarchy.

41

Component _j

Connector $

Attachment

Figure 15. A non-hierarchically homogeneous (NM) architecture.

42

Style A Style B

Component i_J o
Connector % #

Attachment

Figure 16. A non-hierarchically heterogeneous (NH) architecture.

43

Component

Connector
Attachment
Binding

o

Figure 17. A hierarchically homogeneous (HM) architecture.

oriented system design with aggregate objects modeled as architectural components

(see Figure 17).

Hierarchically Heterogeneous (HH): these architectures are hierarchical, contain-

ing nested components. In other words, a component at one level in the hierarchy is

represented internally as a configuration of components (i.e., the lower level). Addi-

tionally, an architecture in this class exhibits properties of two or more styles usually,

but not necessarily, at different levels in the hierarchy. An example of an HH-class

architecture is an object-oriented client-server system (see Figure 18). In this archi-

tecture, the system level components are clients and servers, and the system level

connectors are remote procedure calls (RPC). Each client and server component is

an aggregate component, i.e., is composed of a configuration of one or more sub-

components. Connectors between the sub-components in this example are method

44

Style A Style B

Component i_J O

Connector # $
Attachment
Binding —

Figure 18. A hierarchically heterogeneous architecture.

calls, while connectors between the client and server components themselves are

RPCs.

AWSOME, and similar object-oriented transformation systems, are generally de-

signed to model only homogeneous architectures—both non-hierarchical (NM) and hierar-

chical (HM)—based on the object-oriented architectural style. This is because all compo-

nents and connectors are assumed to be objects and method calls, respectively. Getting a

transformation system to accurately manipulate homogeneous configurations as has been

done in the AWSOME environment is progress, but even more can be done to enable

semi-automated production of complex real-world software systems by integrating a rich

architectural modeling capability. This capability begins with a modeling language.

45

3.3 Choosing an Architectural Description Language

There are many languages available for the description of software architectures—

some designed for the purpose and others adapted to it. The languages designed explicitly

for the representation of software architectures are the class of languages called architec-

tural description languages (ADL). Several ADLs have attracted attention in the research

community—Aesop, Wright, and Rapide are commonly referenced in the literature. These

languages were designed for use in specific environments targeting goals germane to those

environments. They each have strengths, but are largely tied to the environments for which

they were designed.

Alternatively, one could develop a new, tailor-made ADL that meets the needs of

a specific development environment. Using the Acme interchange language as a guide,

one could create an ADL rich enough to allow site-unique modeling and analysis while,

at the same time, ensuring the ability to export the model for analysis using third-party

tools. While such an approach might directly address the unique needs of the developing

organization, it would require a great deal of cost and effort, both in developing and

maintaining the language and in training personnel to use it, and would likely increase the

complexity of the environment by adding yet another dialect to the mix.

The final approach, one that is especially viable in a formal, object-oriented, transfor-

mational environment, is to model the architecture in an object-oriented fashion, using the

language already being used to represent analysis and design specifications. The languages

with which most are familiar (e.g., Java, C++, Ada95) are geared toward representation

of implementation level entities like classes, types, variables, procedures, and functions.

Languages that are used to model various levels of abstraction (i.e., analysis, design, and

implementation) are called wide-spectrum languages. Wide-spectrum languages must ac-

count for the more abstract notions found at the analysis and design levels like inheritance,

aggregation, associations, and the dynamic behavior of the system being developed. The

architecture, falling between analysis and design in both the abstract modeling sense and

in the development process itself, introduces new entities such as architectural compo-

nents, connectors between components, and the attachments between component ports

and connector roles (see Section 2.2.1 for a description of these entities).

46

Initially, the objective was to propose an expansion of the wide-spectrum language

to include these entities as first-class constructs in the language. Such an approach would

appropriately emphasize the importance of the architectural abstraction and provide a ro-

bust model for the task. However, it quickly became evident that the architectural entities

can be modeled using the object-oriented wide-spectrum language as-is, thereby avoiding

the need to increase the complexity of the language and the modeling environment with

new constructs and operations to manipulate them. After all, a component or connector

is simply another class of objects in the real world (from the perspective of the software

architect). In an environment already geared toward transforming object-oriented analysis

models to object-oriented design models using a wide-spectrum language, adopting the

existing language as-is to represent architectures seemed the best approach.

3.4 Essential Elements of Architecture Models

Knowing what surface and abstract syntax to use for architectural modeling is only

half the battle; modeling the right architectural elements with appropriate language con-

structs is key to the success of any such endeavor. It is important to recall the primary

reasons for modeling the architecture of a software system.

First, the architectural transformation from the analysis model provides a mechanism

for asserting high-level design decisions that will enrich the low-level design transformation.

One way it does this is by eliminating from the solution space all solutions that do not

conform to the specified architectural style. For instance, transforming an object-oriented

analysis model directly to an object-oriented design with no entry point for decisions

about how to organize the classes in the system nets a pure object-oriented architecture.

Architectural decisions do not replace low-level design transforms; rather, they enrich the

process by allowing the software engineer to constrain the subsequent low-level design

transforms and produce, perhaps, a more robust solution to the customer's problem.

Second, the architectural design represents the earliest point at which the develop-

ing organization can evaluate the efficacy of a particular solution. Requirements analysis

focuses, for the most part, on modeling the problem specification with as little thought

as possible given to specific solutions or implementations. Once the problem specification

47

is complete, however, the developers transition to solution-oriented thinking. The archi-

tecture represents the most abstract model of a solution to the customer's problem. It

can be evaluated, before any further work is performed, for its ability to satisfy critical

requirements and quality attributes demanded by the customer. This analysis can be ac-

complished either by using native analysis tools or by piping the architecture through an

interchange language to a more analytically disposed development environment. If found

inadequate, the model can be modified or discarded altogether as a feasible alternative.

By explicitly modeling the architecture and introducing an analysis capability built over

that model, one can improve the likelihood of customer satisfaction before generating the

low-level design and implementation.

Finally, the architectural model stands as a guard-post against changes to the sys-

tem that may result in a deterioration of its conceptual integrity. It is well understood

that software systems deteriorate and grow increasingly complex over time as new cus-

tomers demand a variety of enhancements, and developers, many quite unfamiliar with

the original intent of the software systems they maintain, attempt to incorporate fixes and

enhancements. An architectural abstraction shouts the "big picture" to all who would at-

tempt to insert an innocent modification and, thereby, reduces the likelihood of conceptual

deterioration.

To do these things, the architecture should reflect an abstraction of the target system

that excludes the internal design of components. It must focus on the assignment of

responsibilities to components and connections between those components, abstracting

all else. The remainder of this chapter explores a method for explicitly modeling the

non-hierarchically homogeneous (NM) class of architectures and paves the way for the

more interesting class of hierarchically heterogeneous systems. A prescription for the right

architectural elements and the language constructs used to model them is presented in the

following subsection.

3.5 Essential Elements of Non-hierarchically Homogeneous Architectures

For the purposes of this thesis, when referring to an NM-class architecture, it is

assumed that the homogeneous style in use is the object-oriented style. This assumption

48

arises from the fact that this thesis targets formal object-oriented environments and the

object-oriented systems they produce2. Also, note that little is gained in an object-oriented

environment by explicitly modeling the object-oriented architecture than an increase in

the size of the model. In an environment capable of producing only non-hierarchical and

hierarchical object-oriented architectures, the architecture can be inferred from the design

model or, for that matter, from the analysis model and this explicit modeling of the

architecture is unnecessary overhead. This discussion of the requirements for modeling an

NM-class of architectures, however, lays the foundation for an environment that can also

model heterogeneous architectures where the architectural styles employed can no longer

be easily inferred. Such an environment is discussed in the next chapter.

To effectively capture the essence of an NM-class architecture, the modeling language

must be able to represent the following elements: the system itself (i.e., the encapsulat-

ing entity), primitive components3, ports, connectors, roles, and attachments. Figure 19

graphically depicts a simple object-oriented NM architecture and is included for reference.

The architectural model must be uniquely identifiable in the abstract representation of

a complete system model (i.e., one that includes analysis and design models). The root

node of the architecture model must be represented using a named entity that can contain

other entities. This parallels the use of packages by some vendors in the object-oriented

arena, where a package can contain other entities such as classes. Others provide a similar

notion, while giving it a different name. The term "package" will be used for the purposes

of illustrating the requirement to represent the root node of an architectural model.

Components, ports, connectors, and roles are all modeled using the class construct.

A class is a named entity that contains a reference to its superclass, a set of attributes,

a set of operations, and a dynamic model. Using a class to model the components and

connectors in the system adds greatly to the model. The architect can type the components

in the architecture by using class inheritance, allowing subsequent type-checking of the

2To be sure, an object-oriented transformation system can produce architectures exhibiting different
styles, but they are inherently hierarchically heterogeneous since the lowest level components and connectors
are assumed to always be objects and method calls, respectively.

3The term "primitive component" is used to distinguish components of non-hierarchical architectures
from the aggregate components found in hierarchical architectures.

49

Component 1

Component 2

Component 3 Component 4

Figure 19. NM Object-Oriented Architecture.

Architectural Element Language Construct

system architecture package
component class
port class
connector class
role class
attachment association

Table 4. NM architectural element to language construct mappings.

architecture during analysis. In addition, the architect can assign ports to components

and roles to connectors by using the aggregation mechanism provided by the language.

The attachments between ports and roles are modeled using the association construct.

An association is normally used in object-oriented analysis modeling to associate classes

in the specification. Since the association is used to associate classes, and the ports and

connectors are modeled using classes, the association can be used to represent architectural

attachments. A graphical representation of an attachment is shown in Figure 20.

This approach to capturing the essence of NM architectures capitalizes on the avail-

ability of a wide-spectrum object-oriented language by using the preexisting constructs in

a way that simplifies the insertion of an architectural abstraction level and precludes the

need to add new constructs to the language (see summary in Table 4). Figure 21 depicts

50

Attachment

Figure 20. An example architectural attachment.

51

package OO.Architecture is

Class Comp_l is Component with

end Class;

Class SndPort_A is Port with

end Class;

Aggregation Comp_l_has_port_SndPort_A is

parent theComponent : Comp.l occurs ExactlyOnce;

child thePort : SndPort_A occurs ZeroOrOnce;

end Aggregation;

Class InRole is Role with

end Class;

Class Conn_A is Connector with

end Class;

Aggregation Conn_A_has_role_InRole is
parent theConnector : Conn.A occurs ExactlyOnce;

child theRole : InRole occurs ZeroOrOnce;

end Association;

Association Comp_l.SndPort_A_attaches_to_Conn_A.Inrole is

role thePort : Comp_l.SndPort_A occurs ExactlyOnce;

role theRole : Conn_A.InRole occurs ExactlyOnce;

end Association;

end Package;

Figure 21. Simple object-oriented architecture,

simple architecture shown in Figure 19 using the AWSOME language.

3.6 Modeling Non-hierarchically Homogeneous Architectures

The discussion in Section 3.5 established the elements necessary to model a non-

hierarchically homogeneous architecture. From that foundation, the specific modeling

technique can be established. In other words, the specific transformations necessary to

derive an architectural model from the analysis model are presented. Note that these

transformations are automatic. Each style of architecture will have different rules applied

during the transformation process. With the exception of the object-oriented architectural

style, the definition of these rules is outside the scope of this thesis.

52

For an object-oriented style, there are few rules to be applied. First, there is a

one-to-one correspondence between a class in the analysis model and a component in the

architecture, multiplicities notwithstanding. Since objects are often generated dynamically

during runtime as a result of many non-deterministic input sequences and cannot, therefore,

be anticipated during the development of the system, this methodology simply models a

single component for a single class. Second—based on the author's assumption that an

event in an object-oriented analysis model translates to a method call in the design—there

is a one-to-one correspondence between events in the analysis model and connectors in the

architecture. Third, since an object-oriented event is a communication mechanism between

two classes, there are two roles created for each connector—one for the caiier, the other for

the callee4. Fourth, for each class in the analysis model and for each event sent or received

by the class, a port is created for the corresponding component in the architecture. So, if

a class responds to three events and sends two events, its corresponding component will

have a total of five ports. The following subsections present the transformations necessary

to handle each element category.

3.6.1 Transform NM0: The Architectural Model. The first transformation5 is the

simplest one; it establishes the root node of the AST that will eventually house the archi-

tectural model as a child of the existing system level AST and creates nodes to represent

the abstract classes in the architecture (e.g., Component, Connector, etc.). These classes

are used to type the architectural entities. In this way, a class representing a component

can be distinguished from a class representing a connector not only by the prefix given

to the name, but also by its defined superclass. The root of the existing system model

is accepted as input to the transformation. For the purposes of this illustration, the root

node of the AST containing the entire system model will be referred to as SysModel. The

NMQ transform is defined in the following way:

4 Note that this assumption—two roles per connector—may not hold for non-object-oriented
architectures.

5Note that the transformation numbering is zero-based. This method was chosen because the initial
transformation is not really so much a transformation as it is a preparatory function.

53

SysModel

Component
{abstract}

|
ArchModel '

Port

{abstract}

Connector
{abstract}

Role
{abstract}

Figure 22. Architecture model after Transform NM0.

Transform NM0:

1. Instantiate one package node in the model as a child of SysModel. Name

the new package node ArchModel.

2. Instantiate one abstract class node in the model, as a child of ArchModel,

for each of the following elements: Component, Connector, Port, and

Role.

3. Return SysModel.

The results of this transform are graphically portrayed by Figure 22.

3.6.2 Transform NMX: The Components. This transform accepts SysModel as

input and is defined in the following way:

Transform NMi:

1. For each original class in the analysis model, instantiate one class node

as a child of ArchModel, naming each new node Comp^classname, where

54

SysModel

Component
{abstract}

ArchModel

L \

Comp_cname 1

Comp_cname-2

Comp_cname-n

Figure 23. Architecture model after Transform NMi.

classname is the name of the originating class. Set the Component class

as superclass for Comp-classname.

2. Return SysModel.

The results of this transform are graphically portrayed by Figure 23.

3.6.3 Transform NM2: The Component Ports. This transform accepts SysModel

as input and is defined in the following way:

Transform NM2:

1. For each original class in the analysis model and for each event received

or sent by the class, instantiate one class node as a child of ArchModel

to represent the port. Also, make the new port class an element of

the aggregate class that models the associated architectural component,

using the aggregation language construct. Name each new port node

directionPort^eventname, where eventname is the name of the origi-

nating event, and direction is "Snd" or "Rev," depending on whether

55

the event is a send or receive event. Set the Port class as superclass for

direct i on Port_eventname.

2. Return SysModel.

The results of this transform are graphically portrayed by Figure 24.

3.64 Transform NM3: The Connectors. This transform accepts SysModel as

input and is defined in the following way:

Transform NM3:

1. For each original event in the analysis model, instantiate one class as a con-

nector node in ArchModel. Name each new connector node Conn^eventname,

where eventname is the name of the originating event. Set the Connector

class as superclass for Conn—eventname.

2. Return SysModel.

The results of this transform are graphically portrayed by Figure 25.

3.6.5 Transform NM4: The Connector Roles. This transform accepts SysModel

as input and is defined in the following way:

Transform NM4:

1. For each original event in the analysis model, instantiate two class nodes

as children of ArchModel. Also, make the new role nodes elements of the

aggregate class that models the associated architectural connector. Name

one role node InRole_eventname and one role node OutRole_eventname,

where eventname is the name of the originating event. Set the Role class

as superclass for InRole_eventname and OutRole_eventname.

2. Return SysModel.

The results of this transform are graphically portrayed by Figure 26.

56

-*■»

|

c '
0)
e !
o <h
£ -""-,

•+-> i
o CG

U

»H n e

|
■\

V V 0>

£ £ £
OS A « i

e c • • • c
u. "l • wl
oi oi oi ■

a S | £ 1

o © | © i

U U | U
1

<) < > 0

TH ri c
|

0) <u I « ! ■\

a a i E . CS «s « i ;■■

v a c c I ■

Tt °i °r i • • • °r ,-j |
O J J j \
S o ©

i o 1 '!
a.
s- % i

OH
S- •**

<<
Q Q 1 Q ;.j

1 i

<u
-O ■'!

o
o <h

<M ON
»^ o

CZ5 is
en

1
.:=■:

L....

i,v„

^ ^ :_ ^ ... _

Figure 24. Architecture model after Transform NM2.

57

SysModel

Connector ArchModel

{abstract}
 L \

Conn_cname-l

Conn_cnanie-2

Conn_cname-n

Figure 25. Architecture model after Transform NM3.

3.6.6 Transform NM5: The Port-to-Role Attachments. This final transform is

responsible for creating the nodes in the AST that represent attachments in the architec-

ture. Architectural attachments associate component ports to their respective connector

roles. These attachments constitute the thread that binds the nodes in the architectural

AST into a meaningful architectural model. The transform accepts SysModel as input and

is defined in the following way:

Transform NM5:

1. For each original class in the analysis model and for each event sent

or received by the class, instantiate one association as a child node of

ArchModel to represent the attachment. The association node will asso-

ciate the port node—deßned for the event sent or received by the orig-

inal class—with the appropriate role node in the following way: if the

event was received by the original class in the analysis model, the as-

sociation links the port to the _Out role of the connector; if the event

was sent by the original class in the analysis model, the association links

58

s-
o

-*■> 1

<y
A o
O e5

"^ CO

.£> \
rt

-H <s c

| y

V CU CU 1
a s E
es es es i
C C es !
u. u. I ul i
a1 c1 ! e1 i

e c j a
o o * o i 'j
U U ! U

1

■j < > < > 0

i—(«s a ■ i

0) CU j cu i
s a a ^^ es es es

CU Si a C
T3 u •-, • ' " IM

1 i
O »' J eu1

o O j o i

ha u \

<
e c Q I

- —■

L, """"""
t - ■,- ,

}

i
a» '■.■]

-O i
o CU

1 *. <H !
>> o

CO CO

CO)

 li

Figure 26. Architecture model after Transform NM4.

59

the port to the _In role of the connector. Name each attachment node

dirPort_attaches_to_dirßole where dirPort and dirRole are the names

of the port and role involved in the attachment.

2. Return SysModel.

The results of this transform are graphically portrayed by Figure 27.

3.7 Summary

Software architectures can be broadly classified as: non-hierarchically homogeneous,

non-hierarchically heterogeneous, hierarchically homogeneous, or hierarchically heteroge-

neous. Most object-oriented, formal transformation systems operate by transforming an

analysis model directly to a design model and conduct architectural modeling and rea-

soning functions only through implicit transformation and inference, respectively. In an

environment supporting the production of only object-oriented architectures (hierarchical

or non-hierarchical), the architectures can be explicitly modeled following the requirements

specification phase and prior to low-level design transformation. However, in this limited

environment, such an operation adds little more than modeling overhead. Having demon-

strated the ability to explicitly model the architectures, however, one can construct an

environment capable of modeling a wide variety of heterogeneous architectures. In this

case, the architecture serves as an abstract constraint on the solution space and improves

the ability of a transformation system to generate complex software systems.

60

■M
SM <
o

PH o
at a
W)

JD
cd -

<h
e»

■'i

c
©
Ü

CO !
£ <
K) I

•S S
cd i

a-

o

IK

Figure 27. Architecture model after Transform NM5.

61

IV. Modeling Hierarchically Heterogeneous Architectures

4-1 Introduction

The previous chapter presented a method for explicitly modeling non-hierarchically

homogeneous (NM) architectures. The methodology proposed here builds on that foun-

dation and provides a way to capture the class of architectures known as hierarchically

heterogeneous (HH) architectures.

4.2 A Modified Transformational Process Model

Inferring object-oriented architectures from object-oriented analysis models and in-

serting the results into a design tree can be accomplished without changing the way a

transformational system operates, as shown in the previous chapter. The notion of hier-

archically heterogeneous architectural models, however, requires a change in the process

model to allow for the introduction of new information during the transformation process.

An architecture modeling tool, inserted between the problem setting phase and design

phase, provides this capability.

It is important to note that the production of HH architectures requires additional

human intervention during the transformation process. This intervention is required be-

cause the assumption that each class in the object-oriented analysis model transforms

directly to a component in the architecural model is no longer valid. This methodology

assumes several styles of architecture, and the component and connector types they of-

fer, are available to the system architect. Figure 28 graphically portrays an environment

supporting this approach (compare to Figure 12 in Chapter II).

Using such an environment, the architect first proßles the problem based on the soft-

ware quality attributes required by the customer and then selects an appropriate compo-

sition of styles based on that profile1. The engineer graphically composes the architecture,

using a graphical architecture modeling tool designed for the purpose, by assigning archi-

tectural constructs provided by the tool to entities in the analysis model, using whatever

lrrhe actual profiling and style selection processes are outside the scope of this thesis and left for future
research.

62

problem
statement

I
I
I

T
r~.

V

I Problem
1 Setting

v <r-
s \

problem \ \
domain model ^ ^

\r 1
■ Architectural |
' Modeling |

problem
k i *

code

k

1
1
1.

Design
Transform

1
1

1
1

Code
Generation

i
i
i

^
i i / /

"\ \ \ II'
... architectural III

specification \\^ ^ specification , , , desig]1

s^ \ \ \ /\ I I 'specification
\ architectural tit / \ I I I

N s domain model . . / \ / / / s s * * V \ I I / \ N \ \ / \l I ' ,
\ \ \ III

» » * / / /

. design
f specification

problem
specification

N I AFITtool Repository

♦ r

problem
domain model

architectural
domain model

Domain

Modeling

domain

knowledge

Key

 — Unidirectional control flow connector

 »- Unidirectional data flow connector

-* — — — -»- Bidirectional data flow connector

I Computational component

1 Passive data component

Figure 28. An architecture-friendly process model.

63

fils Edit ¥i«w H8l0

(.imp U;i;v!l liivii

(<>mp :UVH„-[A„'-

Ahclmectutal Style;

CDirponsnlTVij«;

ConnBcior Typsl

Croup Components: _

Unöroup Component

Figure 29. An example architecture assistant GUI.

degree of hierarchy and heterogeneity is desired2. A screen-shot of a mock-up version of

such a tool is shown in Figure 29. While the development of a tool to facilitate graphical

architectural modeling is outside the scope of this research, such a tool is precisely what

should be used to perform the transformations described. It would essentially take an

analysis model as input, provide a way to overlay an architecture onto the model, and

output the resulting high level design for use in further design transformations. Within

this context, the necessary transformations from the analysis to an architectural model are

presented.

2The tool would be designed to enforce semantic and topological constraints during the composition
process, thereby ensuring the conformance of the architecture to published architectural styles.

64

I I Component

ES Port
WA Connector

■ Role

Figure 30. An object-oriented, hierarchically heterogeneous architecture.

4.3 Essential Elements of Hierarchically Heterogeneous Architectures

Like the NM-class of architectures presented in Chapter III, HH-class architectures

necessitate modeling components, connectors, ports, roles, and attachments. In addition,

HH-class architectures require representation of architectural styles, style-specific com-

ponent and connector types, aggregate components, and port-to-port bindings. Figure

30 graphically depicts an object-oriented HH architecture and is included for reference

throughout the following discussion.

To facilitate the use of various styles of architecture, the model must be able to

represent a style. This can be done as before with the class construct, where the class

is given a name identifying the style. Specific architectures can then be associated with

the style. Likewise, the component and connector types are modeled as classes and are

associated with their parent architectural styles. This modeling of the architectural style

and component types is handled separately from the architecture of a specific system.

The system architecture simply has an association with the style and the architecture's

components and connectors inherit their properties from the types defined for the style.

The second change introduced by this class of architectures is the notion of nesting

components, creating the hierarchy suggested by the class. In the simplest terms, just as an

architecture contains components, connectors, ports, roles, and attachments, a component

can be defined as consisting of a lower-level architecture of the same or of a different style.

65

Architectural Element Language Construct

architectural style class
component type class
connector type class
aggregate component package

binding association

Table 5. HH architectural element-to-language construct mappings.

In other words, a component may encapsulate a sub-architecture. Therefore, this new

aggregate component, like the system-level architecture itself, is modeled using the package

construct. Primitive components are still modeled as classes. To capture the aggregate

component's type, a reference (i.e., a class with the same name as the package representing

the aggregate component) is created that refers back to the component type class. For

example, to model an aggregate component called A that is an X_Type component, a

package is created and named Comp_A. In addition, a class is created, named Comp_A,

and is made a sub-class of X_Type. This overhead is one result of the decision to overload

the existing wide-spectrum language for architectural specification.

The addition of an aggregate component introduces another issue that must be ad-

dressed in the model for HH-class architectures. In a flat architecture, components are

linked together with connectors and the components and connectors are linked via port-

to-role attachments. In such a case, everything is clearly connected. However, there must

be a way to show how the sub-architecture modeled in an aggregate component communi-

cates with the parent component. The construct commonly used to effect this connectivity

is the binding. A binding links a port of a component in the sub-architecture to a port of

the parent component. Figure 31 provides a graphical representation of a binding.

Therefore, the model must account for these port-to-port bindings. The most obvious

solution to the problem is to use the association construct for the task. Since ports are

classes and associations are used to link classes, using associations to model port bindings is

a straightforward approach. In this way, the architecture will use the association language

construct to model two architectural entities: port-to-role attachments and port-to-port

bindings. Table 5 summarizes the use of object-oriented language constructs to model the

architectural entities in HH-class architectures.

66

Component 5
Component 6

-bindings

Figure 31. An example binding in an HH-class architecture.

67

44 Modeling Hierarchically Heterogeneous Architectures

The previous discussion in Section 4.3 identified the elements necessary to model a hi-

erarchically heterogeneous architecture. Prom that foundation, the specific AST modeling

technique can be established. The transformations necessary to generate the architectural

model are presented in the following subsections. The following subsections present the

transformations necessary to handle each element category.

Recall that the transformations for NM-class architectures assumed an object-oriented

environment producing systems that conform to the object-oriented architectural style. In

such an environment, many assumptions can be made during the transformation about

the architectural style and component and connector types (e.g., each component in the

target architecture is generated from an object in the analysis model). In an environment

designed to produce HH-class architectures, all bets are off—these assumptions can no

longer be made. In addition, even though the elements of an NM-class architecture are

present in an HH-class architecture, the transformations required to produce the latter will

change due to structural changes in the target model.

There are a total of eight transforms used during the transformation process for HH-

class architectures. The HH0 transform sets up the model much like the NM0 transform.

Transforms HHi through HH6 establish the style, components, ports, connectors, roles, and

attachments at each level in the architectural hierarchy. For each level below the system

level, transform HH7 establishes the bindings necessary to link the sub-architecture with

its parent architecture. Each transform is explained in greater detail in the following

paragraphs.

4.4.I Transform HHQ: The Architectural Model. The first transformation estab-

lishes the root node in the AST, called the ArchModel, that encompasses all architectural

information pertaining to the system. This transform also creates nodes to represent the

basic types (component, connector, port, and role) as children of ArchModel. These classes

are abstract classes in the sense that their sole purpose is to type the components, con-

nectors, ports, and roles that will be defined by the architecture. Finally, it establishes a

Configuration node (using the package construct) as a child of ArchModel to serve as the

68

root for the system level architecture itself. As such, Configuration has as children all

the architectural elements of the system (e.g., the specific components, connectors, ports,

roles, attachments, etc., that make up the system level architecture) and a style node

that defines the style implemented by the configuration. The components at the system

level configuration can be aggregate or primitive components. Each aggregate component,

modeled with the package construct, represents the root node of a new level in the archi-

tecture hierarchy. In addition to the standard fare of components, connectors, ports, roles,

and attachments, all aggregate component nodes have as a child a style node and all the

bindings that map a component's internal representation to its external representation.

The HH0 transform is defined in the following way:

Transform HHQ:

1. Instantiate one package node in the model as a child of SysModel. Name

the new package node ArchModel.

2. Instantiate one package node in the model as a child of ArchModel. Name

the new package Configuration.

3. Instantiate one class node in the model as a child of ArchModel for each of

the following elements: style, component, connector, port, and role. Name

the nodes Style, Component, Connector, Port, and Role, respectively.

4. Return SysModel.

The results of this transform are graphically portrayed by Figure 32.

44.2 Transform HEX: The Style. This transform is responsible for creating

the node in the AST that represents the architectural style implemented by the input

configuration3. The transform accepts the Configuration or Conf_cname node as input

(where Conf_cname is the name of an aggregate component)4 and is defined in the following

way:

3Note that the configuration can either be the system level Configuration or a lower level configuration
defined by an aggregate component Conf_cname.

4To simplify the transform definitions, the input node in each transform will be referred to as Inode.

69

a
ei

IB
B
O
U

o _
W I

J3

o

as

0>

o

a
E o
U

,.' J
a.^- >»T H w

2 g | 5 3
a> u

^S?

C
on

n
ty

p
bs

tr
ac

t}

" It |

,.'
#9 H u
°l

"£« U S I

i.i i t

1 <? 1
<u u

... & E ;
Pf3 i t! B
O P-_ !

JS i
""*" i

J J
fe~ £- t A b i

C
om

po
ne

n
ty

pe
na

m

«t
ra

ct
}

C
om

po
ne

n
ty

pe
na

m

bs
tr

ac
t}

1 HJ

J
Sr
H V
c P

C
om

po
n

ty
pe

na

st
re

et
}

— i

|
i- ^

SI 1

T
yp

e
am

e-

St
yl

ty

pe

tra
ct

} 1 St
yl

ty

pe

tra
ct

}

JS JS i w i ' (

Figure 32. Architecture model after Transform HH0.

70

ArchModel

Style

{abstract}

7T

StyleType_
typename-n

(abstract)

7S~

Configuration

Style

Figure 33. Architecture model after Transform HHX.

Transform HH\:

1. Instantiate one class node in the AST as a child of Inode to represent the

architectural style implemented. Name the node Style. Set the appro-

priate StyleType^typenamen class, created as a node under ArchModel,

as the superclass of Style.

2. Return Inode.

The results of this transform are graphically portrayed by Figure 33.

44.3 Transform HH2: The Components. This transform is responsible for cre-

ating the elements in the model that represent components in the input configuration (i.e.,

Inode). The transform accepts Inode as input and is defined in the following way:

Transform HH2:

1. For each component deßned during architectural design, instantiate one

class node as a child of Inode, naming each new node Comp-cname, where

71

ArchModel

Component

{abstract}

7V

CoraponentType_
typename-n

{abstract}

"Ä

Configuration

Comp_cname-l

1_

Comp_cname-l

Comp_cname-2 Comp_cname-2

/
Comp_cname-n Comp_cname-n

Figure 34. Architecture model after Transform HH2.

cname is the name given to the component by the architect during archi-

tectural design. Set the Component class as superclass of Comp_cname.

2. In addition, for each aggregate component (i.e., a component consisting

of lower-level components) defined during architectural design, instantiate

one package node as a child oflnode, naming each new node Conf-cname,

where cname is the name given to the component by the architect during

architectural design5.

3. Return Inode.

The results of this transform are graphically portrayed by Figure 34.

444 Transform HH3: The Component Ports. This transform is responsible for

creating the nodes in the AST that represent component ports in the input configuration.

The transform accepts Inode as input and is denned in the following way:

5Note that for each aggregate component, there exists a package node and a class node representing

that component. This is necessary to allow both typing the component by making it a subclass of Component

and adding children to the component to reflect its container nature.

72

Transform HH3:

1. For each port defined during architectural design, instantiate one class

node as a child of Inode to represent the port. Make the new port class

an element of the aggregate class that models the associated architectural

component, using whatever mechanism the modeling language provides

for aggregation. Name each new port node Port-pname, where pname is

the name given to the port by the architect during architectural design.

Set the Port class as superclass of the Port^pname class.

2. Return Inode.

The results of this transform are graphically portrayed by Figure 35.

44.5 Transform HH4: The Connectors. This transform is responsible for cre-

ating the nodes in the AST that represent connectors in the input configuration. The

transform accepts Inode as input and is defined in the following way:

Transform HH4:

1. For each connector defined by the architect during architectural design, in-

stantiate one class node as a child of Inode, naming each node Conn_cname,

where cname is the name given by the architect during architectural de-

sign. Set the Connector class as superclass of the Conn-cname class.

2. Return Inode.

The results of this transform are graphically portrayed by Figure 36.

4.4.6 Transform HH5: The Connector Roles. This transform is responsible

for creating the nodes in the AST that represent roles for each connector in the input

configuration. The transform accepts Inode as input and is defined in the following way:

Transform HH5:

1. For each role defined by the architect during architectural design, instan-

tiate one class node as a child of Inode, naming the node Role^rname,

73

©

s-

V i

:

a« '!
T

~ =
Ö o. |

04 s ,—, .i c t-> ;

R :
Xi I

Figure 35. Architecture model after Transform HH3.

74

ArchModel

Connector
{abstract}

7T

ConnectorType_
typenanie-n

TV

Configuration

; J
i

Conn_cname-l

Conn_cname-2

:

Conn_cname-n

Figure 36. Architecture model after Transform HH4.

where rname is the name given the role by the architect during architec-

tural design. Set class Role as superclass of the Role_rname class.

2. Return Inode.

The results of this transform are graphically portrayed by Figure 37.

44.7 Transform HH6: The Port-to-Role Attachments. This transform is respon-

sible for creating the nodes in the AST that represent attachments in the input configura-

tion. The transform accepts Inode as input and is defined in the following way:

Transform HHQ:

1. For each attachment defined by the architect during architectural design,

instantiate one association node as a child of Inode, naming the node

Port_pname_attaches_to_JJole_rname where Port_pname is the name

of the port involved in the attachment and fiole_rname is the name of the

role involved in the attachment.

75

c

ja

<

1 11 - £ a i e « |
*l~!

£ i
X> ',
^-v-' ;

Figure 37. Architecture model after Transform HH5.

76

2. For each attachment created in the previous step, link one end of the at-

tachment to the port named Port^pname and the other end to the role

named fiole_rname as specified by the architect during architectural de-

sign.

3. Return Inode.

The results of this transform are graphically portrayed by Figure 38.

44.8 Transform HH7: The Port-to-Port Bindings. This transform is only run

for level-n configurations where n > 1. It is responsible for creating the nodes in the

AST that represent bindings from the ports in the configuration to the ports of its parent

component Conf _cname (see paragraph 4.3 and Figure 30 for a review of the role bindings

play in the architecture). The transform accepts Inode as input and is defined in the

following way:

Transform HH7:

1. For each binding specified by the architect during architectural design,

instantiate one association node as a child of Inode to represent the

attachment, naming the association Port_pnamei_binds_Port_pname2,

where Port_pnamei is the name given to a port in the configuration and

Port_pname2 is the name of a port in the parent component to which

Port_pnamei is bound as defined by the architect during architectural

design.

2. Return Inode.

The results of this transform are graphically portrayed by Figure 39.

4.5 Exporting Architectures to Architectural Interchange Languages

The bulk of this research focused on producing a methodology for broadly classifying

software architectures and then formally modeling two of the four architectural classes

in a formal, object-oriented transformation system. In this final section, an approach

77

«' r

a
1 £«,
i H J

E
H

ne
nt

na

m

A

'.—
:

H
i o at

o ~. aow;
C

st

ra
ct

om

ty

st
ra

ct

& U 5, 1

«' 1
1M £e, i
O H 2

<]-
a a» <u
© _ ! fi p<~
U 1 ß g*ll

•§ i U 1 !
j i

<h

o

Vi

1 fi, <u
1 O- 2

1 W—
ß | ty
p

tr
ac

t}

•e
CO

1

Figure 38. Architecture model after Transform HH6.

78

Configuration

Conf_cnaroe

Comp_cname-n Comp_cname_m

<.) O

DirPort_pname-n DirPort_pname_m

DirPort_pname-n_binds_DirPort_pname_m

Figure 39. Architecture model after Transform HHL7.

is presented for extracting the architecture, once in a design AST, to a language fit for

architectural interchange between a variety of formal software design environments.

4.5.1 Scope of the Architecture Export Method. Recalling from the background

section, architectural interchange languages attempt to provide a fixed vocabulary for ex-

pressing software architectures. Such a language defines a canonical syntax sufficient to

transfer the essence of an architectural design from one environment to another. Such a

language is often called an intersection language. The developers of the Acme interchange

language went further by incorporating hooks into the language whereby the canonical

form representing the essential aspects of the architecture is supplemented (optionally)

with property blocks containing non-canonical constructs. These properties are then car-

ried along as baggage through the Acme interchange to a foreign environment that may

disassemble and make proper use of them. A language that attempts this is termed a union

language. Acme is both a union and an intersection language [13].

79

This research limited its scope to the union-oriented aspects of the Acme language.

In other words, the foundation it provides is limited to exporting those abstract design

elements (e.g., packages, classes, and associations) in a design AST that map directly to the

Acme constructs common across ADLs (e.g., systems, components, and bindings). The

method for exporting these design elements to Acme surface syntax is described in the

following section.

4.5.2 Mapping Architectural Design Elements to Acme Language Constructs. In

her master's thesis, Noe demonstrated the ability to infer an architecture from an object-

oriented analysis model and produce Acme surface syntax. With the methodology already

presented for creating an architecture using an architecture assistant and populating a

formal, object-oriented design AST, one can now export the architectural design, at any

time in the life of the software system, to an Acme surface syntax.

The goal of an algorithm designed to perform such an exportation is to generate

correct Acme surface syntax for the architecture. A simple system described in Acme

surface syntax is shown in Figure 40.

80

System sample-system = ■[
Component A = {

Port Out;

Port In;
Properties •£ Aesop-style : style-id = pipe-filter;

Unicon-style : style-id = pf;
source-code : external = ''LIB/a.Java'

};

>;
Component B = {.

port Send;

port Receive;

};
Connector C = {

role Acoming;

role Agoing;

role Booming;

role Bgoing;

>;
Attachments {

A.Out to C.Agoing;

A.In to C.Acoming;

B.Out to C.Bgoing;

B.In to C.Bcoming;

>;
>;

Figure 40. A sample system in Acme syntax.

81

To effect the exportation, the algorithm must adhere to the following mappings

between object-oriented design AST elements and Acme program constructs.

Design AST Node=>Acme Construct:

1. Configuration(package) =^System Map:

For every Configuration package node encountered in the AST, produce

an equivalent System declaration in Acme.

2. Component(class)=»Component:

For every Component class node encountered in the AST, produce an

equivalent Component declaration in Acme.

3. Connector(class)=^Connector:

For every Connector class node encountered in the AST, produce an

equivalent Connector declaration in Acme.

4. Port (class) =»Port:

For every Port class node encountered in the AST, produce an equivalent

Port declaration in Acme.

5. Role(class)=^Role:

For every Role class node encountered in the AST, produce an equivalent

Role declaration in Acme.

6. Attachment (association) => Attachment:

For every Attachment association node encountered in the AST, produce

an equivalent Attachment instance in an Acme Attachment block.

82

7. Component (package) ^Representation:

For every Component package node encountered in the AST, produce

an equivalent Representation declaration in Acme.

8. Binding(association)=^Binding:

For every Binding association node encountered in the AST, produce an

equivalent Binding instance in an Acme Binding block.

9. Style(class)=^Style:

For every Style class node encountered in the AST, produce an equivalent

Style declaration in Acme.

10. ComponentType(class)=>Template:

For every ComponentType class node encountered in the AST, produce

an equivalent Template declaration in Acme.

11. ConnectorType (class) =>Template:

For every ConnectorType class node encountered in the AST, produce

an equivalent Template declaration in Acme.

4-6 Summary

Creating hierarchically heterogeneous architectures and inserting them into an AST

requires more than simply inferring the architecture from an analysis model. An architec-

tural modeling tool that facilitates the application of one or more architectural styles to

an analysis model is required. Once an architecture is composed, the results can be trans-

formed to an object-oriented design AST by applying a set of style-specific transforms.

With architectural models explicitly reflected in a design AST, systems engineers are able

to extract and reason over the architecture by using analysis tools native to the environ-

ment or by exporting the architecture to other analysis tools via architectural interchange

languages.

83

V. Demonstration

5.1 Overview

This chapter summarizes the results of a trial run of the methodology. The trial run,

or demonstration, was conducted in the AWSOME transformational environment. AW-

SOME is a representative example of the target environment and provided fertile ground

for this demonstration.

For the purposes of demonstrating the methodology, a sample problem was needed.

The problem had to be simple enough to be solved in a limited amount of time, but flexible

enough to be able to apply both an NM and HH architecture during the demonstration.

The problem profile became a simple, object-oriented, client-server application.

5.2 An Architecture Waiting to Happen

Bä' bal is an online multilingual dictionary developed by the author and an asso-

ciate to satisfy a distributed operating systems course requirement at the Air Force In-

stitute of Technology. The intent of the development project was to expose students to dis-

tributed client-server application development techniques. The purpose of the Bä' bal sys-

tem itself is to provide a way to quickly get a foreign language translation of an English

word or phrase using distributed, and perhaps web-based, technology. The system requires

the facilities necessary for a user to enter an English word or phrase, the name of a target

language, and a command to proceed with translation (see Figure 41). Upon receiving

valid input, the system returns the translation of the word or phrase written in the West-

ern alphabet, the translation as it is represented in the target language (i.e., the native

alphabet), and a sound file that demonstrates the correct pronunciation of translation in

the native dialect.

Bä' bal was eventually implemented as a distributed client-server system written

in Java™ using Java™ remote message invocation (RMI). The server component was im-

plemented using Oracle®. Because the Bä'bal project presented a simple distributed

client-server architecture and was implemented using object-oriented development tech-

84

Babe!
A Distributed Snglisk-MiMm^al Dictionary

Target Language- Japanese -

English word or phrase: S]<enterworci;;ör phrase:here=

Translation

Western Aiphabet Spelling:

Target Language Spelling:

Let's hear it:

III1II

«1!
Re»*/.

Figure 41. Ba' bsl graphical user interface.

niques, it was particularly well-suited to demonstrating the methodology presented in this

research.

This thesis includes as Appendix A the formal Bä' bal specification expressed in

Z syntax. In a completely operational transformation system, this formal Z specification

would have been parsed and loaded into an AWSOME AST as an analysis model. However,

at the time of this writing there was no such Z-to-AWSOME parser1. Therefore, as a

preliminary step in the demonstration, a program was developed in Java to directly create

the Bä' bal analysis model as an AWSOME AST in a manner that is consistent with the Z

specification. In addition, a simple Java applet was created to facilitate the demonstration

itself. The applet provides a menu of choices, as shown in Figure 42, for building and

manipulating an AWSOME AST. Menu items 1 and 2 instantiate the AST and populate

the analysis model.

With an AWSOME AST—including a SysModel and an AnalysisModel—as a start-

ing point, the two architectural variations were produced.

Hn an earlier version of AWSOME, there was a Z-to-DOM (domain object model) parser

85

fO'l Applet Viewer: BabelSystem.Archlnterface Era
Applet

Menu

1 - Create newAwsome model

2 - Generate analysis model

3 - Generate Object-Oriented architectural model

4 - Generate 00 Client-Server architectural model

5-PrinttheAST(stdout)

6 - Export the architectural model to Acme

7 - Initialize the AST (i.e., empty it)

Enter choice:

Applet started.

Figure 42. Architecture demonstration applet interface.

86

5.3 Modeling an Object-Oriented Ba' bal Architecture

For the first part of the demonstration, the target architecture for Bä' bal was

the non-hierarchical object-oriented style. This is the class and style of architecture that

AWSOME implicitly builds by default. The purpose of the demonstration was to show the

feasibility of explicit modeling via automatic transformation.

A program was written to walk the analysis model and automatically apply the

transforms discussed in 3.6. The tree-walking exercise itself offered no new or surprising

results—it had, in fact, been performed before in a similar environment by Noe. The

transformation of the analysis model to an explicit architectural model, however, is new

and was accomplished successfully using transforms NM0 through NM5, also with unsur-

prising results. Appendix C shows the AWSOME surface syntax for the object-oriented

model created by the transformation process. Appendix D shows the Acme surface syntax

generated by the Acme export process.

5.4 Modeling a Client-Server Bä' bal Architecture

The second target architecture for Bä' bal was a client-server style with object-

oriented clients and servers. As previously described, the production of such an architecture

from an object-oriented analysis model requires additional information, perhaps best pro-

vided through an architectural modeling utility. In the absence of such a utility, a program

was written in Java that simulated the design decisions imposed by an architect and built

the target architecture as an AWSOME AST. For example, for the Bä' bal system, the

program assumed that the architect decided to group Comp^LookupPButton, Comp-Add-

EntryPButton, and Comp^Babellnterface together to form the client component Comp^-

BabelClient. Knowing this, it creates a Comp-BabelClient aggregate class with three sub-

components (i.e., Comp^LookupPButton, Comp^AddEntryPButton, and Comp^Babelln-

terface).

This transformation required the introduction of two new package nodes in the AW-

SOME AST as children of ArchModel. The first of the two nodes, called Style was

reserved for the inclusion of architectural style information pertinent to the architecture

87

being modeled—it was unused during this implementation. The second of the two nodes

was the Configuration node. The configuration node provided a root for the architectural

configuration of the system apart from the nodes used to represent the architectural styles

and element types used in the configuration.

Transformation HH0 initiated the transformation process by correctly appending

to the AST root SysModel, a node called ArchModeLBabeLCS that would serve as

the root of the new architectural AST. In addition, it created all architectural style

and port/role type nodes that would be used to type the elements of the architecture.

For example, not only did the transformation create a component node, it also created

three subclasses of component called ComponentType_Object, ComponentType_Client,

and ComponentType_Server. As subclasses of the Connector node, the transformation

created ConnectorType_MethodCall and ConnectorType_RPC. These nodes reflect the

heterogeneous (i.e., object-oriented client-server) nature of the architecture being modeled

for Bä' bal .

Transforms HHi through HH6 created the top level in the system architecture.

Based on the decisions of the architect, the transformations created a Style node as a

subclass of StyleType_ClientServer (HHi), component nodes for each client and server

identified at the system level and their respective ports (HH2and HH3), connector nodes

to represent directional RPC between the clients and servers and their respective roles

(HH4and HH5), and attachments linking the client and server component ports to the

RPC connector roles (HH6). The rules for creating these architectural entities for a client-

server configuration were quite different, so the transformations for this exercise borrowed

little from the first transformation of an object-oriented architecture. For instance, in

the object-oriented transformation, a port is created for each and every event received

or sent by each and every object component. In the client-server transformation, the

only ports required were Port_ClientOut and Port_ClientIn (and a similar pair for the

server component) to represent the bidirectional nature of the RPC connection. The single

Conn_RPC connector had four roles with which to attach itself to incoming and outgoing

RPC communication.

The second iteration of transforms HHi through HH6 created the second level in

the configuration for the Comp_BabelClient aggregate component. This sub-architecture

instantiated the object-oriented architectural style, as opposed to the system level client-

server style. The most noteworthy difference at this level was the inclusion of bindings,

created by transform HH7, that tied the dynamics of the sub-architecture with that of the

system level architecture.

Like the transformations for the NM-class Bä' bal architecture, these transforma-

tions executed as expected and produced explicit software architecture models as AW-

SOME ASTs. The results of the transformation process are included as Appendix E. The

final objective in the demonstration was to show how the architecture can be extracted

from the design AST into a language that allows interchanging the architecture to and

from dissimilar modeling environments.

5.5 Exporting the Bä' bal Architecture to Acme

Explicitly modeling a software architecture in a transformational environment pro-

vides a way to constrain the lower-level design transforms and opens the door to more

complex system architectures. An alternative benefit of explicit architectural modeling

is the ability to extract the architecture from the system and analyze it using tools and

techniques that do not readily support the local modeling language.

In this part of the implementation, the hierarchically heterogeneous architecture was

exported to the Acme interchange language. The demonstration involved developing a

small Java applet to support the operations. As previously noted, the applet supported

the creation of object-oriented as well as object-oriented client-server architecture models

as AWSOME ASTs. The applet also provided a mechanism for generating Acme code from

the AST. The transforms themselves were written as the WsAcmeHHVisitor class in the

WsVisitors package. The visitor class extends the WsCodeVisitor class and implements

WsVisitor. The visitor class includes a visit method for each of the three AWSOME

constructs used by the architectural model—WsPackage, WsClass, and WsAssociation.

89

The visit method for WsPackage had to account the four variations of a package that

can exist in an architecture model—the SysModel package, the ArchModel package, the

Configuration package, and all aggregate component (i.e., Comp_BabelClient). When

the method is called, it is passed a node that is one of these four types. The method

determines the type based on the value of the Wsldentifier of the package and generates

the appropriate Acme code.

Similarly, the visit method for WsClass had to account for the four kinds of classes

that can occur in the architecture—components, ports, connectors, and roles. To determine

the appropriate Acme code generation scheme, the visit method keys on the value of the

Wsldentifier of the node passed in as a parameter.

The visit method for WsAssociation was concerned with two types of associations—

architectural attachments and bindings. As before, the method looks at the value of the

Wsldentifier and, based on that value, produces appropriate Acme surface syntax.

The Acme code generator, once developed, achieved the desired results—correct

Acme surface syntax sufficient for interchange with other modeling environments. The

output from the code generator for the HH-class (client-server) architecture is included as

Appendix F.

5.6 Summary

The architectural modeling methodology presented was demonstrated using a sim-

ple object-oriented client-server application called BE' bal . The demonstration involved

three key objectives. The first objective was to successfully parse the analysis AST and gen-

erate the appropriate abstract syntax for an NM-class object-oriented architecture for the

Bä' bal system. This objective was fully met. The second objective was to successfully

represent an object-oriented client-server (i.e., HH-class) architecture for Bä'bal based

on the same analysis model. An AST-generation program was written in lieu of an architec-

tural modeling tool. This objective was fully met. The final objective was to successfully

export the HH-class architecture from the design AST to an Acme surface syntax. This

objective was fully met.

90

VI. Conclusions and Recommendations

6.1 Conclusions

Several conclusions were made following this research. First, object-oriented analy-

sis models are not a source of high-level design information. In fact, the objective is to

limit, as much as possible, the amount of design that goes into the requirements speci-

fication process. Although total elimination of design information may not be practical,

or desired, in a transformational environment, keeping the specification relatively free of

lower-level design and implementation constraints helps prevent the unwitting elimination

of viable alternative solutions. The appropriate place to assert and examine design infor-

mation, including high-level system architectures, is in post-specification formal models

(e.g., designs).

A second observation is the sheer breadth of architectural design alternatives in the

field. There is a community focused on architecture and design patterns and pattern lan-

guages, a group dedicated to the use of architectural frameworks in software development,

and those like the Software Engineering Institute who key on architectural styles, software

qualities, and process models. It is not altogether clear that a single approach to software

architectures is sufficient for all development paradigms. It does seem important, however,

that in a given environment there should be a way to assert high-level design decisions,

produce meaningful software system architectures, and analyze these abstract solutions for

their efficacy prior to continuing the development process.

Finally, semi-automated software transformation systems cannot produce software

solutions without the involvement of highly trained and educated software professionals.

There must be a mechanism for introducing the decisions made by these facilitators into

the transformational process. Software architectural modeling is an appropriate mechanism

whereby design constraints can be placed on a software solution.

6.2 Contributions

The significant contributions of this research to the field of software engineering and

the area of formal transformation systems are:

91

• it presents a modified version of the transformational process model with an increased

emphasis on explicit software architecture modeling and representation,

• it defines a taxonomy of architectural classes for use in those environments capable

of producing hierarchically heterogeneous architectures,

• it demonstrates the feasibility of explicitly modeling the architectures of software

systems in object-oriented formal transformation systems,

• it expands the notion of architectures in object-oriented environments to include

style-based hierarchically heterogeneous configurations,

• it redirects the focus of architecture extraction methods from analysis models to

design models, and

• it discusses the utility, feasibility, and desirability of verifying the conformance of

software architectures to well-delineated classes and styles of architecture.

6.3 Recommendations for Future Work

The cost of explicitly composing and formally modeling software architectures is

only justified if the architectural models can then be used to improve the designs of the

systems for which they were created. Therefore, there must be a way to extract the

architectures and analyze them to determine their ability to effectively solve formally

specified problems. Examples of such analyses are port-component consistency, port-role

compatibility, connector deadlock freedom (Wright), and satisfaction of ordering relations

by run-time trace sets (Rapide). There is much talk in the research community about third-

party analysis tools and interchange languages available for this purpose, but very little

has been done to show, convincingly, that this is feasible. One future research possibility

is the exploration of such analyses for the purpose of defining a base set, along with the

tools that support them, that can be easily applied to an architectural model.

Second, the modified process model suggested in this research depends on the ability

to appropriately profile a system based on its quality attributes and to select an appropriate

combination of architectural styles based on this profile. However, capturing, quantifying,

and formalizing the quality attributes is an area that has not been adequately explored.

92

It has always been difficult to quantify the "-ilities" required by a system—now we are

recognizing the dependence of good architectural modeling on this quantification. There-

fore, quantifying and formally modeling the non-functional quality attributes introduced

by stakeholders in the development of software systems and leveraging their availability

to produce software systems that meet the often-overlooked demands place on them is an

area ripe for future research.

A third area of possible future research is the notion of a graphical architecture com-

position utility. Such an application would provide a way to graphically compose complex

architectures over previously specified analysis models, thereby hiding the formalisms that

make such modeling difficult. The tool would be supported by an architectural domain

model that would provide the knowledge necessary to correctly apply architectural styles

to the problem. Also, the tool would provide a way to export a formal representation of

the architecture once the architect is content with the design.

Finally, the architecture of a software system earns its place in the process model by

providing a way to constrain the down-stream transformation to code. Therefore, an area

that requires significantly more research is that of composing the newly modeled architec-

ture with the analysis model to produce a robust low-level design. The analysis model by

itself carries very little, if any, design information, but provides essential information for

the creation of low-level design entities; the architecture provides the design inputs required

to produce an appropriate low-level design for the target system. This process is alluded

to, and vaguely described, in this research, but is essential to the complete inclusion of

software architecture in the formal transformation process.

6.4 Summary

The primary contribution of this research is that it provides a way to explicitly, and

formally, model software architecures using an object-oriented modeling language native

to a transformation system. In addition, it proposes a modified process model, based on

explicit architectural modeling, to generate a large class of hierarchically heterogeneous

software architectures in a formal, object-oriented, transformational development environ-

ment. These high-level designs can be analyzed—using analysis tools from a variety of de-

93

velopment environments—for their ability to satisfy the critical software quality attributes

espoused by key stakeholders. Additionally, the process model provides a convenient way

to introduce design decisions into the transformation process, thereby constraining lower-

level transforms and facilitating the production of more complex object-oriented software

systems. The research targeted object-oriented environments that typically lack an archi-

tectural emphasis and provided a new system-level perspective on the transformational

development process model. It laid a solid foundation for developing and analyzing hier-

archically heterogeneous architectures in transformational environments and established a

launch pad for future work on the topic.

94

Appendix A. Z Analysis Model for Ba' bal

Bä< bal is an interactive multilingual translation dictionary. It accepts a target language

and an English word or phrase as input (e.g., < "Japanese", "dog" >)and returns the foreign

language translation of the English word or phrase (e.g., "inu").

[Note: In the original system, the translation is returned in three different forms: a US-

English textual representation of the translation, a foreign textual representation of the

translation, and an audio clip that demonstrates the proper pronunciation of the trans-

lation. For example, on receiving a request to provide a Japanese translation for the

English phrase "good morning," the system would respond with "ohayou gozaimasu" (the

US-English textual representation), the Japanese textual representation for "ohayou goza-

imasu" (using a Unicode font), and a sound clip of the proper pronunciation of "ohayou

gozaimasu" in the modern Japanese vernacular. However, for the purposes of this thesis,

the system will be simplified to simply return only the US-English textual representation

of the translation.]

95

Word Structure Definition

Object Name: Word

Object Number: 1

Object Description: This object models the notion of a dictionary word.

Date: 2/5/00

History: 2/5/00: Original

Author: Williams

Superclass: None

Components: None

Context: None

Attributes:
spelling seq CHAR English spelling of Word
origin LANGUAGE Origin of Word

Constraints:

None

Z Static Schema:

LANGUAGE ::= English | Japanese | German

. Word
spelling : seq CHAR
origin : LANGUAGE

96

EngWord Structure Definition

Object Name: EngWord

Object Number: 2

Object Description: This object models an English word in the dictionary.

Date: 2/5/00

History: 2/5/00: Original

Author: Williams

Superclass: Word

Components: None

Context: None

Attributes:
spelling seq CHAR inherited from Word
origin LANGUAGE inherited from Word

Constraints:

origin = English

Z Static Schema:

.EngWord.
Word

origin = English

97

NihWord Structure Definition

Object Name: NihWord

Object Number: 3

Object Description: This object models a Japanese word in the dictionary.

Date: 2/5/00

History: 2/5/00: Original

Author: Williams

Superclass: Word

Components: None

Context: None

Attributes:
spelling seq CHAR inherited from Word
origin LANGUAGE inherited from Word

Constraints:

origin = Japanese

Z Static Schema:

__ NihWord.
Word

origin = Japanese

98

GerWord Structure Definition

Object Name: GerWord

Object Number: 4

Object Description: This object models a German word in the dictionary.

Date: 2/5/00

History: 2/5/00: Original

Author: Williams

Superclass: Word

Components: None

Context: None

Attributes:
spelling seq CHAR inherited from Word
origin LANGUAGE inherited from Word

Constraints:

origin = German

Z Static Schema:

.GerWord.
Word

origin = German

99

Entry Structure Definition

Object Name: Entry

Object Number: 5

Object Description: This object models an entry in the multilingual dictionary.

Date: 2/5/00

History: 2/5/00: Original

Author: Williams

Superclass: None

Components:

EngWord
NihWord
GerWord

Context: None

Attributes:
eng_word EngWord an English word
nih_word NihWord the Japanese translation of eng_word
ger_word GerWord the German translation of eng_word

Constraints:

eng_word cannot be null

Z Static Schema:

. Entry
eng^word : EngWord
nih-word : NihWord
ger^word : GerWord

#eng-.word.spelling > 0

100

BabelDictionary Structure Definition

Object Name: BabelDictionary

Object Number: 6

Object Description: This object encapsulates the multilingual translation data.

Date: 2/5/00

History: 2/5/00: Original

Author: Williams

Superclass: None

Components: None

Context: None

Attributes:

table seq Entry sequence of Entry objects

Constraints:

Entries in table are alphabetized on eng_word

Z Static Schema:

. BabelDictionary.
table : seqEntry

V el, e2 : Entry; i,j : Nat • i < #table Aj< #table A i < j A
el = table'(i) A e2 = table'{j) =$■ reduce(concat,el) < reduce(concat,e2)

. InitDictionary
ABabel Dictionary

#table = 0

101

BabelDictionary Functional Model

Object: BabelDictionary

Process Name: AddEntry

Process Description: Adds the specified entry to the table of entries.

Z Dynamic Schema:

. AddEntry
AB abel Dictionary
entry? : Entry

entry? € table'

Process Name: FindTranslation

Process Description: Returns a foreign translation of the input English word in
the input target language.

Z Dynamic Schema:

_ FindTranslation
HfJabel Dictionary
translation^. : seqCHAR
word? : seqCHAR
tgtLang? : LANGUAGE

Ve : Entry • e G table A e.eng-word.spelling = word? =$■
(tgtLang? = Japanese A translation^. = e.nih^word.spelling) V
(tgtLang? = German A translation^. = e.ger_word.spelling)

102

BabelDictionary Dynamic Model

State Name: START

State Description: Initial startup state.

Z Static Schema:

.START
BabelDictionary

True

State Name: Ready

State Description: Ready and waiting for a lookup request.

Z Static Schema:

, Ready
BabelDictionary

True

State Name: Busy

State Description: Looking up a request.

Z Static Schema:

. Busy
BabelDictionary

True

Event Name: DoLookup

Event Description: DoLookup received from user.

Z Static Schema:

103

. DoLookup
aWord : seqCHAR

True

Event Name: DoAddEntry

Event Description: DoAddEntry received from user.

Z Static Schema:

. DoAddEntry
anEntry : Entry

True

Event Name: NotFound

Event Description: Word not found in table.

Z Static Schema:

.NotFound.

True

Event Name: Found

Event Description: Word found in table.

Z Static Schema:

, Found.

True

Event Name: TransFound

Event Description: Successful find message sent to user.

104

Z Static Schema:

. TransFound
result: seqCHAR

True

Event Name: TransNotFound

Event Description: Unsuccessful find message sent to user.

Z Static Schema:

. TransNotFound _

True

State Transition Table:

Current Event Guard Next Action Send

START Ready InitDictionary

Ready
Ready
Busy
Busy

DoLookup
DoAddEntry
NotFound
Found

Busy
Ready
Ready
Ready

FindTranslation
AddEntry

TransNotFound
TransFound

105

PushButton Structure Definition

Object Name: PushButton

Object Number: 7

Object Description: This object models a gui push button.

Date: 2/5/00

History: 2/5/00: Original

Author: Williams

Superclass: None

Components: None

Context: None

Attributes:
name seq CHAR names PushButton
status PBSTATE models status of push button

Constraints:

None

Z Static Schema:

PBSTATE ::= Activated I Deactivated

. PushButton
name : seqCHAR
status : PBSTATE

106

TextBox Structure Definition

Object Name: TextBox

Object Number: 10

Object Description: This object models a gui text box.

Date: 2/5/00

History: 2/5/00: Original

Author: Williams

Superclass: None

Components: None

Context: None

Attributes:
name seq CHAR names TextBox
value seq CHAR stores value of TextBox
editable BOOLEAN differentiates between editable and non-editable text boxes

Constraints:

None

Z Static Schema:

, TextBox.
name : seqCHAR
value : seqCHAR
editable : BOOLEAN

107

StatusBar Structure Definition

Object Name: StatusBar

Object Number: 11

Object Description: This object models a gui status bar used to display messages

to the user.

Date: 2/5/00

History: 2/5/00: Original

Author: Williams

Superclass: None

Components: None

Context: None

Attributes:
name seq CHAR names StatusBar
value seq CHAR stores value of StatusBar

Constraints:

None

Z Static Schema:

, StatusBar.
name : seqCHAR
value : seqCHAR

108

Babelinterface Structure Definition

Object Name: Babelinterface

Object Number: 12

Object Description: This object models the Babel system gui.

Date: 2/5/00

History: 2/5/00: Original

Author: Williams

Superclass : None

Components: None

Context: None

Attributes
tgtLang LANGTYPE
e_word TextBox
f_word TextBox
translate LookupPButton
addEntry AddEntryPButton
sBar StatusBar

determines target language for translation
captures word to be translated
displays translation of e_word
generates lookup event when pushed
generates AddEntry event when pushed
displays messages to user during session

Constraints:
e_word.editable must be True
f_word.editable must be False

Z Static Schema:

. Babelinterface
tgtLang : LANGTYPE
e-word : TextBox
f-word : TextBox
translate : LookupPButton
addword : AddEntryPButton
sBar : StatusBar

e-W or d.editable = True
f _w or d. editable = False

109

. Initlnterface
ABabel Inter face

#e-word.value = 0
#f_word.value — 0
sBar.value — "Ready."

110

Babelinterface Functional Model

Object: Babelinterface

Process Name: DisplayResult

Process Description: Displays the translation.

Z Dynamic Schema:

. DisplayResult
ABabellnterface
result? : seqCHAR

f_word.value' = result?

Process Name: DisplayError

Process Description: Displays an error message.

Z Dynamic Schema:

, DisplayError
ABabellnterface

sBar.value = e-word.value + "notfoundindictionary."

Ill

Babelinterface Dynamic Model

State Name: START

State Description: Initial startup state.

Z Static Schema:

_ ST'ART.
Babelinterface

True

State Name: Ready

State Description: Ready for an input from an external source.

Z Static Schema:

, Ready
Babel Inter face

True

State Name: Waiting

State Description: Waiting for a response from dictionary.

Z Static Schema:

. Waiting
Babel Inter face

True

Event Name: Lookup

Event Description: Lookup request received from user.

Z Static Schema:

112

.Lookup.

True

Event Name: AddEntry

Event Description: AddEntry request received from user.

Z Static Schema:

. AddEntry.

True

Event Name: DoLookup

Event Description: DoLookup sent to dictionary.

Z Static Schema:

.DoLookup
aWord : seqCHAR

True

Event Name: DoAddEntry

Event Description: DoAddEntry sent to dictionary.

Z Static Schema:

. DoAddEntry
anEntry : Entry

True

Event Name: TransFound

Event Description: Successful find message received from dictionary.

113

Z Static Schema:

. TransFound
result : seqCHAR

True

Event Name: TransNotFound

Event Description: Unsuccessful find message received from dictionary.

Z Static Schema:

. TransNotFound.

True

State Transition Table:

Current Event Guard Next Action Send

START Ready Initlnterface

Ready
Ready
Waiting
Waiting

Lookup
AddEntry
TransFound
TransNotFound

Waiting
Waiting
Ready
Ready

DisplayResult
DisplayError

DoLookup
DoAddEntry

114

Appendix B. AWSOME Analysis Model for Ba> bal

The following AWSOME code formally captures the Bä' bal analysis model.

Package AnalysisModel is

type String is Seq of Char;

type EntrySeq is Seq of Entry;
type Language is (English, Japanese, German);

type PBState is (activated, deactivated);

Class Word is
var spelling : String;
var origin : Language;

end Class;

Class EngWord is Word with
invariant (origin = English);

end Class;

Class NihWord is Word with
invariant (origin = Japanese);

end Class;

Class GerWord is Word with
invariant (origin = German);

end Class;

Class Entry is
vax eng_word : EngWord;

var nih_word : NihWord;

vax ger_word : GerWord;

invariant
(size(eng_word.spelling) > 0);

end Class;

Class BabelDictionary is
var table : EntrySeq;

procedure InitDictionaryO

guarantees
size(table') = 0;

procedure AddEntry(entry? : in Entry)

guarantees
entry? in table';

procedure FindTranslation(word? : in String,
tgtLang? : in Language
translation! : out String)

115

guarantees
(forall e : Entry spot

(e in table and e.eng_word.spelling = word?) implies
(tgtLang? = Japanese and translation! = e.nih_word.spelling) or

(tgtLang? = German and translation! = e.ger_word.spelling)));

invariant
(forall el, e2 : Entry; i, j : Nat spot

(i leq size(table) and i leq j and el = table(i) and e2

implies reduce(concat, el) < reduce(concat, e2));

table(j))

dynamic model{

state Start;

state Ready;

state Busy;

event DoLookup(aWord : String);
event DoAddEntry(anEntry : Entry);

event NotFound;

event Found;
event TransFound(result : String);

event TransNotFound;

transition^
initState
receiveEvent

nextState

}
transition{

initState
receiveEvent

action
nextState

Start;
InitDictionary;

Ready;

Ready;
DoLookup;
FindTranslation;

Busy;

transition{
initState
receiveEvent

action
nextState

Ready;
DoAddEntry;

AddEntry;

Ready;

transition^
initState
receiveEvent

sendEvent

nextState

Busy;
NotFound;

TransNotFound;

Ready;

transition^
initState
receiveEvent

sendEvent

Busy;
Found;
TransFound;

116

nextState Ready;

end Class;

Class PushButton is

vax name

var status

end Class;

: String;

: PBState;

Class AddEntryPButton is PushButton with

procedure InitAddEntryPButtonO

guarantees
(status' = deactivated);

procedure ToggleStatusO

guarantees
((status = deactivated implies status' = activated) and

(status = activated implies status' = deactivated));

dynamic model-C

state Start;

state Deactivated;

state Activated;

event ButtonPressed;

event AddEntry;

transition-C
initState
receiveEvent

nextState

■C
transition^

initState

receiveEvent

action
sendEvent

nextState

}
transition{

initState

action

nextState

}

Start;
InitAddEntryPButton;

Deactivated;

Deactivated;

ButtonPressed;

ToggleStatus;

AddEntry;
Activated;

Activated;
ToggleStatus;

Deactivated;

end Class;

Class LookupButton is PushButton with

117

procedure InitLookupPButtonO

guarantees
(status' = deactivated);

procedure ToggleStatusO

guarantees
((status = deactivated implies status' = activated) and

(status = activated implies status' = deactivated));

dynamic model!

state Start;
state Deactivated;

state Activated;

event ButtonPress ed;
event Lookup;

transition!
initState Start;

receiveEvent InitLookupPButton

nextState Deactivated;

!
transition!

initState Deactivated;

receiveEvent ButtonPressed;

action ToggleStatus;

sendEvent Lookup;

nextState Activated;

}
transition!

initState Activated;

action ToggleStatus;

nextState Deactivated;

}
}

end Class;

Class TextBox is
var name : String;

var value : String;

var editable : Boolean;

end Class;

Class StatusBar is

var name : String;

var value : String;

end Class;

Class Babelinterface is

118

var tgtLang

var e_word

var f_word

var translate

var addEntry

var sBar

Language;

TextBox;

TextBox;

LookupPButton;
AddEntryPButton;

StatusBar;

procedure InitlnterfaceO

guarantees
(size(e_word') = 0 and size(f_word') = 0 and sBar.value' = "Ready.");

procedure DisplayResult(result? : in String)

guarantees
(f_word.value' = result?);

procedure DisplayErrorO

guarantees
(sBar.value' = e_word.value + " not found in dictionary.");

invariant
(e_word.editable = True and f_word.editable = False);

dynamic model{

state Start;

state Ready;

state Waiting;

event Lookup;

event AddEntry;

event TransNotFound;
event TransFound(result : String);

event DoLookkup(aWord : String);
event DoAddEntry(anEntry : Entry);

>
end Class;

end Package;

119

Appendix C. AWSOME Object-oriented Architecture for Ba' bal

The following AWSOME code formally captures the Bä' bal architecture model for a

simple object-oriented (i.e., non-hierarchically homogeneous) architectural style.

Package DOArchModel_Babel is

Class Component is

end Class;

Class Connector is

end Class;

Class Port is

end Class;

Class Role is

end Class;

Class Comp_BabelDictionary is Component with

end Class;

Association Comp_BabelDictionary_relates_to_BabelDictionary is

role theComponent : Comp_BabelDictionary;

role theClass : BabelDictionary;

end Association;

Class RcvPort_DoLookup is Port with

end Class;

Class RcvPort_DoAddEntry is Port with

end Class;

Class RcvPort.NotFound is Port with

end Class;

Class RcvPort_Found is Port with

end Class;

Class SndPort.TransNotFound is Port with

end Class;

Class SndPort.TransFound is Port with

end Class;

Aggregation Comp_BabelDictionary_has_ports is
parent theComponent : Comp_BabelDictionary;

child aPort : RcvPort_DoLookup;

end Aggregation;

120

Aggregation Comp_BabelDictionary_has_ports is
parent theComponent : Comp_BabelDictionary;

child aPort : RcvPort_DoAddEntry;

end Aggregation;

Aggregation Comp_BabelDictionary_has_ports is
parent theComponent : Comp_BabelDictionary;

child aPort : RcvPort_NotFound;

end Aggregation;

Aggregation Comp_BabelDictionary_has_ports is
parent theComponent : Comp_BabelDictionary;

child aPort : RevPort.Found;

end Aggregation;

Aggregation Comp_BabelDictionary_has_ports is
parent theComponent : Comp_BabelDictionary;
child aPort : SndPort_TransNotFound;

end Aggregation;

Aggregation Comp_BabelDictionary_has_ports is

parent theComponent : Comp_BabelDictionary;

child aPort : SndPort_TransFound;

end Aggregation;

Class Comp_AddEntryPButton is Component with

end Class;

Association Comp_AddEntryPButton_relates_to_AddEntryPButton is

role theComponent : Comp_AddEntryPButton;

role theClass : AddEntryPButton;

end Association;

Class RcvPort_ButtonPressed is Port with

end Class;

Class SndPort_AddEntry is Port with

end Class;

Aggregation Comp_AddEntryPButton_has_ports is
parent theComponent : Comp_AddEntryPButton;

child aPort : RcvPort_ButtonPressed;

end Aggregation;

Aggregation Comp_AddEntryPButton_has_ports is

parent theComponent : Comp_AddEntryPButton;

child aPort : SndPort_AddEntry;

end Aggregation;

Class Comp_LookupPButton is Component with

end Class;

121

Association Comp_LookupPButton_relates_to_LookupPButton is

role theComponent : Comp_LookupPButton;

role theClass : LookupPButton;

end Association;

Class SndPort_Lookup is Port with

end Class;

Aggregation Comp_LookupPButton_has_ports is

parent theComponent : Comp_LookupPButton;

child aPort : RcvPort_ButtonPressed;

end Aggregation;

Aggregation Comp_LookupPButton_has_ports is
parent theComponent : Comp.LookupPButton;

child aPort : SndPort„Lookup;

end Aggregation;

Class Comp_BabelInterface is Component with

end Class;

Association Comp_BabelInterface_relates_to_BabelInterface is

role theComponent : Comp_BabelInterface;

role theClass : Babelinterface;

end Association;

Class RcvPort_Lookup is Port with

end Class;

Class RcvPort_AddEntry is Port with

end Class;

Class RcvPort_TransFound is Port with

end Class;

Class RcvPort_TransNotFound is Port with

end Class;

Class SndPort_DoLookup is Port with

end Class;

Class SndPort.DoAddEntry is Port with

end Class;

Class SndPort_DisplayError is Port with

end Class;

Aggregation Comp_BabelInterface_has_ports is
parent theComponent : Comp_BabelInterface;

child aPort : RcvPort.Lookup;

122

end Aggregation;

Aggregation Comp_BabelInterface_has_ports is
parent theComponent : Comp_BabelInterface;

child aPort : RcvPort_AddEntry;

end Aggregation;

Aggregation Comp_BabelInterface_has_ports is
parent theComponent : Comp_BabelInterface;

child aPort : RcvPort_TransFound;

end Aggregation;

Aggregation Comp_BabelInterface_has_ports is

parent theComponent : Comp_BabelInterface;

child aPort : RcvPort_TransNotFound;

end Aggregation;

Aggregation Comp_BabelInterface_has_ports is
parent theComponent : Comp_BabelInterface;
child aPort : SndPort_DoLookup;

end Aggregation;

Aggregation Comp_BabelInterface_has_ports is
parent theComponent : Comp.Babellnterface;

child aPort : SndPort_DoAddEntry;

end Aggregation;

Aggregation Comp_BabelInterface_has_ports is
parent theComponent : Comp.Babellnterface;
child aPort : SndPort_DisplayError;

end Aggregation;

Class Conn_TransNotFound is Connector with

end Class;

Class Conn_TransFound is Connector with

end Class;

Class Conn_AddEntry is Connector with

end Class;

Class Conn_Lookup is Connector with

end Class;

Class Conn_DoLookup is Connector with

end Class;

Class Conn_DoAddEntry is Connector with

end Class;

Class InRole is Role with

123

end Class;

Class OutRole is Role with

end Class;

Aggregation Conn_TransNotFound_has_roles is

parent theConnector : Conn_TransNotFound;

child aRole : InRole;

end Aggregation;

Aggregation Conn_TransNotFound_has_roles is
parent theConnector : Conn_TransNotFound;

child aRole : OutRole;

end Aggregation;

Aggregation Conn_TransFound_has_roles is

parent theConnector : Conn_TransFound;

child aRole : InRole;

end Aggregation;

Aggregation Conn_TransFound_has_roles is

parent theConnector : Conn_TransFound;

child aRole : OutRole;

end Aggregation;

Aggregation Conn_AddEntry_has_roles is

parent theConnector : Conn_AddEntry;

child aRole : InRole;

end Aggregation;

Aggregation Conn_AddEntry_has_roles is
parent theConnector : Conn_AddEntry;

child aRole : OutRole;

end Aggregation;

Aggregation Conn_Lookup_has_roles is
parent theConnector : Conn_Lookup;

child aRole : InRole;

end Aggregation;

Aggregation Conn_Lookup_has_roles is
parent theConnector : Conn_Lookup;

child aRole : OutRole;

end Aggregation;

Aggregation Conn_DoLookup_has_roles is
parent theConnector : Conn_DoLookup;

child aRole : InRole;

end Aggregation;

Aggregation Conn_DoLookup_has_roles is

124

parent theConnector

child aRole

: Conn_DoLookup;

: OutRole;

end Aggregation;

Aggregation Conn_DoAddEntry_has

parent theConnector

child aRole

_roles is
: Conn_DoAddEntry;

: InRole;

end Aggregation;

Aggregation Conn_DoAddEntry_has

parent theConnector

child aRole

_roles is
: Conn_DoAddEntry;

: OutRole;

end Aggregation;

Association RcvPort.

role thePort

role theRole

_DoLookup_attaches_to_OutRole is

: RcvPort_DoLookup;

: OutRole;

end Association;

Association RcvPort.

role thePort

role theRole

DoAddEntry attaches_to_OutRole is

: RcvPort_DoAddEntry;

: OutRole;

end Association;

Ass sciation SndPort.
role thePort

role theRole

_TransNotFound_attaches_to_InRole is

: SndPortJTransNotFound;

: InRole;

end Association;

Ass sciation SndPort.
role thePort

role theRole

TransFound attaches_to_InRole is

: SndPort_TransFound;

: InRole;

end Association;

Association SndPort_AddEntry_attaches_to_InRole is

role thePort : SndPort_AddEntry;

role theRole : InRole;

end Association;

Association SndPort_Lookup_attaches_to_InRole is

role thePort : SndPort„Lookup;

role theRole : InRole;

end Association;

Association RcvPort_Lookup_attaches_to_OutRole is

role thePort : RcvPort_Lookup;

role theRole : OutRole;

end Association;

Association RcvPort_AddEntry_attaches_to_OutRole is

role thePort : RcvPort_AddEntry;

125

role theRole : OutRole;

end Association;

Association RcvPort. _TransFound_attaches_to_OutRole is

role thePort : RcvPort_TransFound;

role theRole : OutRole;

end Association;

Association RcvPort. _TransNotFound_attaches_to_OutRole is

role thePort : RcvPort_TransNotFound;

role theRole : OutRole;

end Association;

Association SndPort. _DoLookup_attaches_to_InRole is

role thePort : SndPort_DoLookup;

role theRole : InRole;

end Association;

Association SndPort_DoAddEntry_attaches_to_InRole is
role thePort : SndPort_DoAddEntry;

role theRole : InRole;

end Association;

end Package;

126

Appendix D. Acme Output for Ba' bal Object-oriented Architecture

The following Acme code was automatically generated using the WsAcmeVisitor class. The

WsAcmeVisitor class contains a visit() method for each node type contained in an AWSOME

architecture model (i.e., WsPackage, WsClass, and WsAssociation). When called, each visit

method examines its node to determine the purpose served by the node and outputs the

appropriate Acme surface syntax. For example, a WsAssociation node can serve the purpose

of an architectural attachment or an architectural binding. The visit() method keys on the

name of the WsAssociation node, determines whether it is an attachment (i.e., Wsldentifier

= "attaches_to") or a binding (i.e., Wsldentifier = "binds"), and responds accordingly.

Acme translation for AWSOME architecture model: OOArchModel_Babel Automatically
generated by WsAcmeVisitor on Feb 27, 2000 at 3:29 PM

System ODArchModel_Babel = {

Component Comp_BabelDictionary = {

Port RcvPort_DoLookup;

Port RcvPort_DoAddEntry;

Port RcvPort_NotFound;

Port RcvPort.Found;

Port SndPort_TransNotFound;

Port SndPort_TransFound;

};

Component Comp_AddEntryPButton = {

Port RcvPort_ButtonPressed;

Port SndPort_AddEntry;

};

Component Comp_LookupPButton = {

Port RcvPort_ButtonPressed;

Port SndPort_Lookup;

127

};

Component Comp_BabelInterface = {

Port RcvPort.Lookup;

Port RcvPort_AddEntry;

Port RcvPort_TransFound;

Port RcvPort_TransNotFoiuid;

Port SndPort_DoLookup;

Port SndPort_DoAddEntry;

Port SndPort_DisplayError;

};

Connector Conn_TransNotFound = {

Role InRole;

Role OutRole;

};

Connector Conn_TransFound = {

Role InRole;

Role OutRole;

};

Connector Conn_AddEntry = {

Role InRole;

Role OutRole;

};

Connector Conn_Lookup = {

Role InRole;

128

Role OutRole;

};

Connector Conn_DoLookup = {

Role InRole;

Role OutRole;

};

Connector Conn_DoAddEntry = {

Role InRole;

Role OutRole;

};

Attachments {

Comp_BabelDictionary.RcvPort_DoLookup to Conn_DoLookup.OutRole

Comp_BabelDictionary.RcvPort_DoAddEntry to Conn.DoAddEntry.OutRole

Comp_BabelDictionary.SndPort_TransNotFound to ConnJTransNotFound.InRole

Comp_BabelDictionary.SndPort_TransFound to ConnJTransFound.InRole

Comp_AddEntryPButton.SndPort_AddEntry to Conn.AddEntry.InRole

Comp_LookupPButton.SndPort_Lookup to Conn.Lookup.InRole

Comp_BabelInterface.RcvPort_Lookup to Conn_Lookup.OutRole

Comp_BabelInterface.RcvPort_AddEntry to Conn_AddEntry.OutRole

Comp_BabelInterface.RcvPort_TransFound to Conn.TransFound.OutRole

Comp_BabelInterface.RcvPort_TransNotFound to Conn_TransNotFound.OutRole

Comp_BabelInterface.SndPort.DoLookup to Conn_DoLookup.InRole

Comp_BabelInterface.SndPort_DoAddEntry to Conn_DoAddEntry.InRole

>;

129

Appendix E. AWSOME Client-Server Architecture for Ba' bal

The following AWSOME code formally captures the Bä' bal architecture model for a

client-server, object-oriented (i.e., hierarchically heterogeneous) architectural style.

Package ArchModel_Babel_CS is

Class Component is

end Class;

Class ComponentType_Object is Component with

end Class;

Class ComponentType_Client is Component with

end Class;

Class ComponentType_Server is Component with

end Class;

Class Connector is

end Class;

Class ConnectorType_MethodCall is Connector with

end Class;

Class ConnectorType_RPC is Connector with

end Class;

Class Port is

end Class;

Class PortType_MethodCall is Port with

end Class;

Class PortType_RPC is Port with

end Class;

Class Role is

end Class;

Class RoleType_MethodCall is Role with

end Class;

Class RoleType_RPC is Role with

end Class;

Class Style is

end Class;

Class StyleType_ClientServer is Style with

130

end Class;

Class StyleType_ObjectOriented is Style with

end Class;

Package Configuration is

Class Style is StyleType_ClientServer with

end Class;

Class SndPort_RPC is PortType_RPC with

end Class;

Class RcvPort_RPC is PortType_RPC with

end Class;

Class Comp_BabelClient is ComponentType_Client with

end Class;

Aggregation Comp_BabelClient_has_ports is
parent theComponent : Comp_BabelClient;

child aPort : SndPort_RPC;

end Aggregation;

Aggregation Comp_BabelClient_has_ports is
parent theComponent : Comp_BabelClient;

child aPort : RcvPort_RPC;

end Aggregation;

Class Comp_BabelServer is ComponentType_Server with

end Class;

Aggregation Comp_BabelServer_has_ports is
parent theComponent : Comp_BabelServer;

child aPort : SndPort_RPC;

end Aggregation;

Aggregation Comp_BabelServer_has_ports is

parent theComponent : Comp_BabelServer;

child aPort : RcvPort_RPC;

end Aggregation;

Class Conn.RPC is ConnectorType_RPC with

end Class;

Class InRole_Client is RoleType_RPC with

end Class;

Class OutRole_Client is RoleType_RPC with

end Class;

131

Class InRole_Server is RoleType_RPC with

end Class;

Class OutRole_Server is RoleType_RPC with

end Class;

Aggregation Conn_RPC_has_role is

parent theConnector

child aRole

end Association;

Aggregation Conn_RPC_has_role is

parent theConnector

child aRole
end Association;

Aggregation Conn_RPC_has_role is

parent theConnector

child aRole

end Association;

Aggregation Conn_RPC_has_role is

parent theConnector

child aRole

end Association;

Conn.RPC;
InRole_Client;

Conn_RPC;
OutRole_Client;

Conn.RPC;
InRole_Server;

Conn_RPC;
OutRole_Server;

Association SndPort_RPC_attaches_to_InRole_Client is

role thePort : SndPort_RPC;

role theRole : InRole_Client;

end Association;

Association RcvPort_RPC_attaches_to_OutRole_Client is

role thePort : RcvPort.RPC;
role theRole : OutRole.Client;

end Association;

Association SndPort_RPC_attaches_to_InRole_Server is

role thePort : SndPort_RPC;

role theRole : InRole_Server;

end Association;

Association RcvPort_RPC_attaches_to_OutRole_Server is

role thePort : RcvPort_RPC;

role theRole : OutRole_Server;

end Association;

Package Comp_BabelClient is

Class Style is StyleType_ObjectOriented with

end Class;

132

Class Comp_AddEntryPButton is ComponentType_Object with

end Class;

Class RcvPort.AddEntryPressed is PortType_MethodCall with

end Class;

Class SndPort.AddEntry is PortType.MethodCall with

end Class;

Aggregation Comp_AddEntryPButton_has_ports is

parent theComponent : Comp_AddEntryPButton;

child aPort : RcvPort_AddEntryPressed;

end Aggregation;

Aggregation Comp_AddEntryPButton_has_ports is
parent theComponent : Comp_AddEntryPButton;

child aPort : SndPort_AddEntry;

end Aggregation;

Class Comp_LookupPButton is ComponentType_Object with

end Class;

Class RcvPort_LookupPressed is PortType_MethodCall with

end Class;

Class SndPort_Lookup is PortType_MethodCall with

end Class;

Aggregation Comp_LookupPButton_has_ports is

parent theComponent : Comp_LookupPButton;

child aPort : RcvPort_LookupPressed;

end Aggregation;

Aggregation Comp_LookupPButton_has_ports is

parent theComponent : Comp_LookupPButton;

child aPort : SndPort.Lookup;

end Aggregation;

Class Babelinterface is ComponentType_Dbject with

end Class;

Class RcvPort.Lookup is PortType.MethodCall with

end Class;

Class RcvPort.AddEntry is PortType.MethodCall with

end Class;

Class RcvPort_TransFound is PortType.MethodCall with

end Class;

Class RcvPortJTransNotFound is PortType_MethodCall with

133

end Class;

Class SndPort_DoLookup is PortType.MethodCall with

end Class;

Class SndPort_DoAddEntry is PortType_MethodCall with

end Class;

Class SndPort.DisplayError is PortType_MethodCall with

end Class;

Aggregation has_port is

parent theComponent

child aPort

end Aggregation;

Comp_BabelInterface;

RcvPort_Lookup;

Aggregation has_port is
parent theComponent

child aPort

end Aggregation;

Comp_BabelInterface;

RcvPort_AddEntry;

Aggregation has_port is
parent theComponent

child aPort

end Aggregation;

Aggregation has_port is
parent theComponent

child aPort
end Aggregation;

Aggregation has_port is
parent theComponent

child aPort

end Aggregation;

Comp_BabelInterface;

RcvPort_TransFound;

Comp_BabelInterface;
RcvPort_TransNotFound;

Comp_BabelInterface;

RcvPort_DoLookup;

Aggregation has_port is
parent theComponent

child aPort

end Aggregation;

Comp_BabelInterface;

RcvPort_DoAddEntry;

Aggregation has_port is
parent theComponent

child aPort
end Aggregation;

Comp_BabelInterface;

RcvPort_DisplayError;

Class InRole is RoleType_MethodCall with

end Class;

Class OutRole is RoleType_MethodCall with

end Class;

134

Class Conn_AddEntry is ConnectorType_MethodCall with

end Class;

Aggregation Conn_AddEntry_has_roles is

parent theConnector : Conn_AddEntry;

child aRole : InRole;

end Aggregation;

Aggregation Conn_AddEntry_has_roles is
parent theConnector : Conn_AddEntry;

child aRole : OutRole;

end Aggregation;

Class Conn_Lookup is ConnectorType_MethodCall with

end Class;

Aggregation Conn_Lookup_has_roles is
parent theConnector : Conn_Lookup;

child aRole : InRole;

end Aggregation;

Aggregation Conn_Lookup_has_roles is

parent theConnector : Conn_Lookup;

child aRole : OutRole;

end Aggregation;

Association SndPort_AddEntry_attaches_to_InRole is

role thePort : SndPort.AddEntry;

role theRole : InRole;

end Association;

Association RcvPort_AddEntry_attaches_to_OutRole is

role thePort : RcvPort.AddEntry;

role theRole : OutRole;

end Association;

Association SndPort_Lookup_attaches_to_InRole is

role thePort : SndPort_Lookup;

role theRole : InRole;

end Association;

Association RcvPort_Lookup_attaches_to_OutRole is

role thePort : RcvPort_Lookup;

role theRole : OutRole;

end Association;

Association SndPort_RPC_binds_to_SndPort_DoLookup is

role theOuterPort : SndPort_RPC;

role thelnnerPort : SndPort_DoLookup;

end Association;

135

Association SndPort_RPC_binds_to_SndPort_DoAddEntry is

role theOuterPort : SndPort_RPC;

role thelnnerPort : SndPort_DoAddEntry;

end Association;

Association RcvPort_RPC_binds_to_RcvPort_TransFound is

role theOuterPort : RcvPort.RPC;
role thelnnerPort : RcvPort_TransFound;

end Association;

Association RcvPort_RPC_binds_to_RcvPort_TransNotFound is

role theOuterPort : RcvPort_RPC;
role thelnnerPort : RcvPort_TransNotFound;

end Association;

end Package;

Package Comp_BabelServer is

Class Style is StyleType_ObjectOriented with

end Class;

Class Comp_BabelDictionary is ComponentType_Object with

end Class;

Class RcvPort_DoLookup is PortType_MethodCall with

end Class;

Class RcvPort_DoAddEntry is PortType_MethodCall with

end Class;

Class SndPort_TransFound is PortType_MethodCall with

end Class;

Class SndPortJTransNotFound is PortType_MethodCall with

end Class;

Aggregation Comp_BabelDictionary_has_ports is
parent theComponent : Comp_BabelDictionary;

child aPort : RcvPort_DoLookup;

end Aggregation;

Aggregation Comp_BabelDictionary_has_ports is
parent theComponent : Comp_BabelDictionary;

child aPort : RcvPort_DoAddEntry;

end Aggregation;

Aggregation Comp_BabelDictionary_has_ports is

parent theComponent : Comp_BabelDictionary;

child aPort : RcvPort_TransFound;

136

end Aggregation;

Aggregation Comp_BabelDictionary_has_ports is

parent theComponent : Comp_BabelDictionary;

child aPort : RcvPort_TransNotFound;

end Aggregation;

Association RcvPort.RPC. .binds _to_RcvPort_DoLookup is

role theOuterPort : RcvPort_RPC;

role thelnnerPort RcvPort_DoLookup;

end Association;

Association RcvPort_RPC. .binds _to_RcvPort_DoAddEntry is

role theOuterPort : RcvPort_RPC;
role thelnnerPort : RcvPort_DoAddEntry;

end Association;

Association SndPort.RPC. .binds _to_SndPort_TransFound is

role theOuterPort : SndPort_RPC;
role thelnnerPort : SndPort_TransFound;

end Association;

Association SndPort.RPC. .binds _to_SndPort_TransNotFound is

role theOuterPort SndPort.RPC;

role thelnnerPort : SndPort_TransNotFound;

end Association;

end Package;

end Package i

end Package >

137

Appendix F. Acme Output for Ba' bal Client-Server Architecture

The following Acme code was automatically generated using the WsAcmeVisitor class. The

WsAcmeVisitor class contains a visit() method for each node type contained in an AWSOME

architecture model (i.e., WsPackage, WsClass, and WsAssociation). When called, each visit

method examines its node to determine the purpose served by the node and outputs the

appropriate Acme surface syntax. For example, a WsClass node can serve the purpose

of an architectural component or an architectural connector. The visit() method keys on

the name of the WsClass node, determines whether it is a component (i.e., Wsldentifier

begins with "Comp_") or a connector (i.e., Wsldentifier begins with "Conn_"), and responds

accordingly.

Acme translation for AWSOME architecture model: ArchModel_Babel_CS
Automatically generated by WsAcmeVisitor on Feb 27, 2000 at 3:30 PM

System ArchModel_Babel_CS = {

Component Comp_BabelClient = {

Representation = {

System Comp_BabelClient_details = {

Component Comp_AddEntryPButton = {

Port RcvPort_AddEntryPressed;

Port SndPort.AddEntry;

};

Component Comp_LookupPButton = {

Port RcvPort_LookupPressed;

Port SndPort.Lookup;

};

Component Comp_BabelInterface = {

Port RcvPort.Lookup;

Port RcvPort_AddEntry;

138

Port RcvPort_TransFound;

Port RcvPort_TransNotFound;

Port SndPort_DoLookup;

Port SndPort_DoAddEntry;

Port SndPort_DisplayError;

};

Connector Conn_AddEntry = {

Role InRole;

Role OutRole;

};

Connector Conn_Lookup = {

Role InRole;

Role OutRole;

};

Attachments {

Comp_AddEntryPButton.SndPort_AddEntry to Conn_AddEntry.InRole

Comp_BabelInterface.RcvPort_AddEntry to Conn_AddEntry.OutRole

Comp_LookupPButton.SndPort_Lookup to Conn_Lookup.InRole

Comp_BabelInterface.RcvPort.Lookup to Conn_Lookup.OutRole

};

};

Bindings {

SndPort_RPC to Comp_BabelInterface.SndPort_DoLookup;

139

SndPort_RPC to Comp_BabelInterface.SndPort_DoAddEntry;

RcvPort_RPC to Comp_BabelInterface.RcvPort_TransFound;

RcvPort.RPC to Comp_BabelInterface.RcvPort_TransNotFound;

};

};

};

Component Comp_BabelServer = {

Representation = {

System Comp_BabelServer_details = {

Component Comp_BabelDictionary = {

Port RcvPort_DoLookup;

Port RcvPort_DoAddEntry;

Port SndPort_TransFound;

Port SndPort_TransNotFound;

>;

>;

Bindings {

RcvPort_RPC to Comp_BabelDictionary.RcvPort_DoLookup;

RcvPort_RPC to Comp_BabelDictionary.RcvPort_DoAddEntry;

SndPort_RPC to Comp_BabelDictionary.SndPort_TransFound;

SndPort.RPC to Comp_BabelDictionary.SndPort_TransNotFound;

};

};

140

};

Connector Conn_RPC = {

Role InRole_Client;

Role OutRole_Server;

Role OutRole_Client;

Role InRole_Server;

};

Attachments {

Comp.BabelClient.SndPort.RPC to Conn_RPCInRole_Client

Comp_BabelClient.RcvPort_RPC to Conn_RPCOutRole_Client

Comp_BabelServer.SndPort_RPC to Conn_RPC.InRole_Server

Comp_BabelServer.RcvPort_RPC to Conn_RPC.OutRole_Server

};

};

141

Bibliography

1. Alexander, Christopher, et al. A Pattern Language. New York: Oxford University Press, 1977.

2. Allen, Robert. A Formal Approach to Software Architecure. PhD dissertation, Carnegie Mellon
University, Pittsburgh, PA 15213, May 1997. CMU-CS-97-144.

3. Anderson, Gary L. An Interactive Tool for Refining Software Specifications from a Formal
Domain Model. MS thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH,
March 1999. DTIC Number ADA361745.

4. Balzer, Robert, et al. "Software Technology in the 1990's: Using a New Paradigm," Computer,
itf(ll):39-45 (November 1983).

5. Bass, Len, et al. Software Architecture in Practice. Reading, Massachusetts: Addison-Wesley,
1998.

6. Bowen, Jonathan P. and Michael G. Hinchey. "Seven More Myths of Formal Methods," IEEE
Software, 34-41 (July 1995).

7. Bowen, Jonathan P. and Michael G. Hinchey. "Ten Commandments of Formal Methods," IEEE
Computer, ;8S(4):56-62 (April 1995).

8. Coplien, James O. and Douglas C. Schmidt, editors. Pattern Languages of Program Design.
Reading, Massachusetts: Addison-Wesley, 1995.

9. Cornn, Gary L. A Software Synthesis System Based on an Object-Oriented Repository.
MS thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, March 2000.
AFIT/GCS/ENG/00M-05.

10. Frederick P. Brooks, Jr. The Mythical Man-Month (Anniversary Edition). Reading, Mas-
sachusetts: Addison-Wesley, 1995.

11. Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented Software. Read-
ing, Massachusetts: Addison-Wesley, 1995.

12. Garlan, David, et al. "Exploiting Style in Architectural Design Environments." Proceedings
of SIGSOFT'94: The Second ACM SIGSOFT Symposium on the Foundations of Software
Engineering. ACM Press, December 1994.

13. Garlan, David, et al. "Acme: An Architecture Description Interchange Language." Proceedings
of CASCON'97. 169-183. November 1997.

14. Graham, Robert P. Lecture Notes, Part 1: CSCE 793—Formal Methods in Software Engineer-
ing. Air Force Institute of Technology (AFIT), Wright-Patterson AFB, Ohio, March 1999.

15. Grassman, Winfried Karl and Jean-Paul Tremblay. Logic and Discrete Mathematics: A Com-
puter Science Perspective. Upper Saddle River, New Jersey: Prentice Hall, 1996.

16. Hartrum, Thomas C. "An Object Oriented Formal Transformation System for Primitive Object
Classes." Air Force Institute of Technology, June 1999.

17. Jacobson, Ivar, et al. The Unified Software Development Process. Reading, Massachusetts:
Addison-Wesley, 1999.

18. Jones, Cliff B. Recent Books on Formal Methods. Technical Report, Department of Computer
Science: The University of Manchester, 1995.

19. Jones, Cliff B. "A Rigorous Approach to Formal Methods," IEEE Computer, 29(4) (April
1996).

20. Marsh, David W. Formal Object State Model Transformations for Automated Agent System
Synthesis. MS thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, March
2000. AFIT/GCE/ENG/00M-03.

142

21. Monroe, Robert T., et al. "Architectural Styles, Design Patterns, and Objects," IEEE Software,
i^(l):43-52 (January 1997).

22. Noe, Penelope A. A Structured Approach to Software Tool Integration. MS thesis, Air Force
Institute of Technology, Wright-Patterson AFB, OH, March 1999. DTIC Number ADA361674.

23. Pressman, Roger S. Software Engineering: A Practitioner's Approach (Third Edition). New
York, New York: McGraw-Hill, 1992.

24. Pressman, Roger S. Software Engineering: A Practitioner's Approach (Fourth Edition). New
York, New York: McGraw-Hill, 1997.

25. Robert P. Graham, Jr. Common Object-oriented Imperative Language: Language Reference
Manual. Air Force Institute of Technology (AFIT), Wright-Patterson AFB, Ohio, September

1999.

26 Robinson, David J. A Component Based Approach to Agent Specification. MS thesis, Air Force
Institute of Technology, Wright-Patterson AFB, OH, March 2000. AFIT/GCS/ENG/00M-22.

27. Rumbaugh, James, et al. Object-Oriented Modeling and Design. Englewood Cliffs, New Jersey:
Prentice-Hall, 1991.

28. Shaw, Mary and David Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Upper Saddle River, New Jersey: Prentice-Hall, 1996.

29. Shock, Robert C. "Software Architecture Course Notes." Department of Computer Science
and Engineering, Wright State University, 1999.

30. Sommerville, Ian. Software Engineering (Fifth Edition). Harlow, England: Addison-Wesley,
1996.

31. Spivey, J.M. Understanding Z: A Specification Language and its Formal Semantics. Cambridge:
Cambridge University Press, 1988.

32. Woodcock, Jim and Jim Davies. Using Z: Specification, Refinement, and Proof. London:
Printice Hall, 1996.

33. Woodcock, Jim and Martin Loomes. Software Engineering Mathematics. London: Pitman,

1988.

34. Wordsworth, J.B. Software Development with Z. Wokingham, England: Addision-Wesley,

1992.

143

REPORT DOCUMENTATIONPAGE Form Approved
OMBNo. 0704-0188

FüB'ITc'"röport7ng'"'Duraen Tor this collection ot information is" ■est1i'rnaTeä1"fö1' average I nour per response, inciuaing tne time Tor reviewing instructions, searcning existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.
1. AGENCY USE ONLY /leave b)ank)\ 2. REPORT DATE

March 2000
3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

EXPLICITLY MODELING HIERARCHICALLY HETEROGENEOUS SOFTWARE
ARCHITECTURES IN AN OBJECT-ORIENTED FORMAL TRANSFORMATION
SYSTEM
6. AUTHOR(S)

Darin L. Williams, Captain, USAF

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/00M-25

7. PERFORMINGORGANIZATIONNAME(S)AND ADDRESS(ES)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Streen, Building 640
WPAFB OH 45433-7765

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

9. SPONSORING/MONITORINGAGENCYNAME(S)AND ADDRESS(ES)
AFRL/IFTD
Atta: Roy F. Stratton
525 Brooks Rd
Rome, NY 13441-4505
(330)315-3004 DSN:587-3004
11. SUPPLEMENTARYNOTES
Maj Robert P. Graham, Jr., ENG, DSN:785-3636 ext. 4595, robert.graham@afit.af.mil

12b. DISTRIBUTIONCODE 12a. DISTRIBUTIONAVAILABILITYSTATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 words)
Formal software transformation systems are software development environments typified by the semi-automated application of a
series of correctness-preserving transformations to formal data models. The range of software architectures such systems are
capable of producing is often restricted by the limited ability to accept high-level design inputs as constraints on the
transformation process. When architectural inputs are acceptable, often the modeling language excludes the explicit
representation of architectural constructs and provides, at best, an extremely limited architectural analysis capability. This
research defines a high-level taxonomy of software architectures and proposes a way to explicitly model a broad class of
architectures by adapting the native object-oriented modeling language to the task. Using the AFIT Wide-Spectrum
Object-Modeling Environment (AWSOME) as a proving ground, it demonstrates the ability to fully automate the transformation
of an object-oriented analysis model to a non-hierarchically homogeneous, object-oriented architecture. Additionally, it
demonstrates the ability to explicitly model the richer class of hierarchically heterogeneous software architectures in an
object-oriented transformation system and to gain insight into the behavioral characteristics of such architectures by exporting
them to an architectural interchange language for external analysis.

14. SUBJECT TERMS
Software Architecture, Transformation System, Formal Methods, Object-Oriented Design,
Hierarchically Heterogeneous Software Architecture, Architecture Taxonomy, Architecture
Classification, Software Synthesis, Architectural Interchange

15. NUMBER OF PAGES

159

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFED

18. SECURITY CLASSIFICATION 19- SECURITY CLASSIFICATION^
OF THIS PAGE

16. PRICE CODE

. LIMITATION OF
ABSTRACT

UL UNCLASSIFIED
OF ABSTRACT

UNCLASSIFIED
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this
information be consistent with the rest of the report, particularly the cover and title page. Instructions for
filling in each block of the form follow. It is important to stay wftfifn the ffnes to meet optical scanning

requirements. _^____

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date including
day, month, and year, if available
(e.g. 1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered. State
whether report is interim, final, etc. If applicable,
enter inclusive report dates (e.g.
10 Jun 87-30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the
part of the report that provides the most meaningful
and complete information. When a report is
prepared in more than one volume, repeat the
primary title, add volume number, and include
subtitle for the specific volume. On classified
documents enter the title classification in
parentheses.

Block 5. Funding Numbers. To include contract and
grant numbers; may include program element
number(s), project number(s), task number(s), and
work unit number(s). Use the following labels:
C - Contract PR - Project
G - Grant TA - Task
PE - Program WU - Work Unit

Element Accession No.

Block 6. Author(s). Name(s) of person(s) responsible
for writing the report, performing the research, or
credited with the content of the report. If editor or
compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report Number.
Enter the unique alphanumeric report number(s)
assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and
Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency Report
Number. (If known)

Block 11. Supplementary Notes. Enter information
not included elsewhere such as: Prepared in
cooperation with....; Trans, of....;
To be published in.... When a report is revised,
include a statement whether the new report
supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement.

Denotes public availability or limitations. Cite any
availability to the public. Enter additional limitations or

special markings in all capitals (e.g. NOFORN, REL,

ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical Documents."

DOE - See authorities.
NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD
DOE

NASA
NTIS

Leave blank.
Enter DOE distribution categories from
the Standard Distribution for Unclassified

Scientific and Technical
Reports.
Leave blank.
Leave blank.

Block 13. Abstract. Include a brief (Max/mum 200
words) factual summary of the most significant

information contained in the report.

Block 14. Subject Terms. Keywords or phrases

identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number

of pages.

Block 16. Price Code. Enter appropriate price code

(NTIS only).

Blocks 17. - 19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and

bottom of the page.

Block 20. Limitation of Abstract. This block must be
completed to assign a limitation to the abstract. Enter
either UL (unlimited) or SAR (same as report). An
entry in this block is necessary if the abstract is to be

limited. If blank, the abstract is assumed to be

unlimited.

Standard Form 298 Back (Rev. 2-89)

	Explicitly Modeling Hierarchically Heterogeneous Software Architectures in an Object-Oriented Formal Transformation System
	Recommended Citation

	/tardir/tiffs/a380734.tiff

