
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

9-2000

Validation and Verification of Formal Specifications in Object-Validation and Verification of Formal Specifications in Object-

Oriented Software Engineering Oriented Software Engineering

Steven A. Thomson

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Thomson, Steven A., "Validation and Verification of Formal Specifications in Object-Oriented Software
Engineering" (2000). Theses and Dissertations. 4869.
https://scholar.afit.edu/etd/4869

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholar.afit.edu%2Fetd%2F4869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4869?utm_source=scholar.afit.edu%2Fetd%2F4869&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

Validation and Verification of Formal
Specifications in Object-Oriented Software

Engineering

THESIS

Steven A. Thomson, FLTLT, RAAF

AFIT/GE/ENG/00S-01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

Approved for public release; distribution unlimited

DUG QUALITY nssmiSSBD *

AFIT/GE/ENG/OOS-01

Validation and Verification of Formal Specifications in Object-Oriented Software

Engineering

THESIS
Steven A. Thomson

FLTLT, RAAF

AFIT/GE/ENG/OOS-01

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

AFIT/GE/ENG/OOS-01

Validation and Verification of Formal Specifications in

Object-Oriented Software Engineering

THESIS

Presented to the Faculty of the Graduate School of Engineering and Management

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Steven A. Thomson, B.Eng, Grad.Dip.Bus Admin

FLTLT, RAAF

September 2000

Approved for public release; distribution unlimited

AFIT/GE/ENG/OOS-OI

Validation and Verification of Formal Specification» in Object

Oriented Software Engineering

Steven A. Thomson, B.Eng, Gf*U)ip.Bu* Admin

FLTLT, RAAF

.. Approved:

■A ~x V |/?

jtoi£fiAda*~a — %'&*? ^om-
Maj« Robert P. GraÜMüJr. Date.
Committee1 Chair

Dr. Thomas C. .Hartnun Date

Commit tee Member
jS^^-n g , K-fe^^r^, /s ^^ _30va°

^- Dr. Henry B,':Potoeasy P^*1'
Committee Member

"U

IV

Table of Contents

Page

List of Figures x

List of Tables xii

Abstract xiii

I. Introduction 1

1.1 Problem 2

1.1.1 Problem Statement 4

1.2 Scope 4

1.3 Approach 4

1.4 Topics Addressed 5

1.5 Products of This Research 5

1.6 Document Outline 5

II. Background 7

2.1 Formal Specifications 7

2.2 Validation and Verification 8

2.3 Current Practices in Verification 9

2.3.1 Definition and Goals of V&V for this Research 12

2.3.2 Validation Testing 13

2.3.3 Early Approaches to Verification 16

2.4 Transformation Systems 16

2.5 AWSOME 17

2.5.1 Research Conducted by AFIT's KBSE 21

2.6 Rumbaugh's Object Modeling Technique : 22

v

Page

2.6.1 Structural Model 22

2.6.2 Dynamic Model 26

2.6.3 Functional Model 27

2.7 Z 28

2.8 00A and Verification 31

2.9 Software Process Model 32

2.10 Relation Between Background and This Research ... 33

III. Methodology 35

3.1 Introduction 35

3.2 Definition of the 00 Analysis Domain Model 36

3.3 Class-Level Constraints 38

3.3.1 Structural Model 38

3.3.2 Functional Model 43

3.3.3 Dynamic Model 45

3.4 Domain Level Verification 50

3.4.1 Structural Model 50

3.4.2 Functional Model 51

3.4.3 Dynamic Model 51

3.5 Summary 53

IV. Implementation 57

4.1 Introduction 57

4.2 Limitations Placed Upon AWSOME Models in This Re-

search 58

4.3 Creating AWSOME Analysis Models 58

4.3.1 Problem Domain Specification 60

4.3.2 Parsing AWL 60

VI

Page

4.3.3 AWSOME AST Scoping 60

4.3.4 AWSOME AST Linking 61

4.3.5 Semantic Analysis 61

4.4 SPIN and Z/Eves 61

4.5 Z and Promela Generation 63

4.6 Modeling a Domain in Z 64

4.6.1 Structural Model in Z 64

4.6.2 Functional Model in Z 66

4.6.3 Dynamic Model in Z 67

4.7 Verifying Components and Domain Checking With Z/Eves 69

4.7.1 Abstract and Enumerated Types 70

4.7.2 Declarations 70

4.7.3 Schemas 71

4.7.4 Axiomatic Definitions 72

4.7.5 Schema Expressions 72

4.7.6 Schema Texts 73

4.7.7 Schema References 73

4.7.8 Z/Eves Prove By Reduce 74

4.8 Modeling a Domain in Promela 74

4.8.1 Send and Receive Events 76

4.8.2 Event Maps 77

4.8.3 Class Dynamic Models 77

4.8.4 Verifying Components With Spin 79

4.9 The Semantic Analyzer 80

4.10 Class-Level Structural Verification 80

4.11 Class-Level Functional Verification 84

4.12 Class-Level Dynamic Verification 85

vn

Page

4.13 Domain Level Structural Verification 89

4.14 Domain Level Functional Verification 91

4.15 Domain Level Dynamic Verification 91

4.16 Verifying the Dynamic Model With Spin 93

4.17 Summary 98

V. Results 99

5.1 Introduction 99

5.2 Implementation Coverage 99

5.3 Evaluation of the Constraints 100

5.3.1 Is the List of Constraints Exhaustive? 100

5.3.2 Is the List of Constraints Fully Implemented? 100

5.3.3 Is Each Constraint Complete? 102

5.4 Research Findings 102

5.5 Conclusion 102

5.6 Future Directions 103

5.6.1 Further Formalism of Inheritance Towards Strict

Inheritance 103

5.6.2 Further Verification of Aggregate Dynamic Mod-

els 104

5.6.3 Event Mapping in Promela 104

5.6.4 Representation of Reals and Literal Strings in Z 105

VI. Bibliography 107

Appendix A. AFIT Wide Spectrum Object Modeling Environment and

Language Ill

A.l Introduction Ill

A.2 The AWSOME Metamodel 112

vm

Page

A.2.1 AWSOME AST Class Naming 112

A.2.2 The Inheritance Model 113

A.2.3 The Aggregation Model 114

A.3 AWL Syntax 115

Appendix B. The Cruise Missile Problem Domain 123

B.l Introduction 123

B.2 The UML Analysis Model 123

B.3 The AWL Analysis Model 123

Appendix C. Z/Eves Specification of Cruise Missile 134

Appendix D. Promela Specification of Cruise Missile Model 179

Vita 191

IX

List of Figures
Figure Page

1. Automated Transformation Paradigm 17

2. AFITtool Transformation System 19

3. AFIT Wide Spectrum Modeling Environment 20

4. Cruise Missile Structural Model 24

5. Partial AWSOME Language Representation of Cruise Missile

Structural Model 25

5. Partial AWSOME Language Representation of Cruise Missile

Structural Model cont 26

6. Airframe Dynamic Model 27

7. Airframe Dynamic Model in AWSOME syntax 28

8. Airframe Functional Model 29

9. Missile Fuel Tank Method—changeFlow() 29

10. PropulsionSystem Object Model 30

11. PropulsionSystem Schema 30

12. Analysis Model Perspectives 36

13. Elements of the Cruise Missile Structural Model 39

14. Declaration of the Type FlightDirectorStates and the Class Flight-

Director 54

15. AWSOME Syntax Transition Table 54

16. State Invariant for the Class Airframe 55

17. Aggregation Represented Via Association 55

18. Aggregation Represented Via Class Attribute 55

19. The AWSOME Class Model 59

20. From AWSOME Analysis model to Z schemas 64

21. Aggregation Represented Via Aggregate Class Schema 66

Figure Page

22. Aggregation Represented Via Association Schema 66

23. From Class Method to Dynamic Schema 67

24. AWSOME Syntax For the Method ChangeFlow 67

25. Dynamic Schema For the Method ChangeFlow 68

26. WsTransition and its Aggregate Components 68

27. Example Z/Eves Output 75

27. Example Z/Eves Output Cont 76

28. From WsTransition to Promela 76

29. Example Promela Proctype. 78

30. Theorem to Check Operation Expression Consistency With Class

Invariant 82

31. Theorem to Instantiate a Class 82

32. Z/Eves Error Message For Type Incompatibility 84

33. AWL and Z Representation of the Association Flies 90

34. SPIN Test Run Using: spin399 -s -c -a cruiseMissile.prm ... 94

35. Results of Exhaustive State Space Reachability Test 95

35. Results of Exhaustive State Space Reachability Test Cont. . . 96

35. Results of Exhaustive State Space Reachability Test Cont. . . 97

36. Declaration of a Literal String Type 105

37. WsClass 114

38. WsDynamicModel 115

39. WsTransition 116

XI

List of Tables
Table Page

1. Constraint Verification Responsibility 62

2. Domain Check Notation 70

Xll

AFIT/GE/ENG/OOS-01

Abstract

The use of formal specifications allows for a software system to be defined

with stringent mathematical semantics and syntax via such tools as propositional

calculus and set theory. There are many perceived benefits garnered from formal

specifications, such as a thorough and in-depth understanding of the domain and

system being specified and a reduction in user requirement ambiguity. Probably the

greatest benefit of formal specifications, and that which is least capitalized upon, is

that mathematical proof procedures can be used to test and prove internal consis-

tency and syntactic correctness in an effort to ensure comprehensive validation and

verification (V&V). The automation of the proof process will make formal methods

far more attractive by reducing the time required and the effort involved in the V&V

of software systems.

It is commonly perceived that since a formal specification is written using

strict mathematical notation, it is a minor task to ensure that the product does in

fact meet the original specification and that the specification meets the end user's

requirements. This is not the case. The majority of research in formal methods has

delved into the development of formal notation and inference rules.

The emphasis of this research is the validation and verification of formal object-

oriented (00) specifications. This research identifies elements and properties of

formally specified 00 systems that should be proved and why, and implements such

proofs using the theorem prover Z/Eves and process modeling tool SPIN. Proofs

relating to the functional, dynamic and structural object models are addressed. The

00 paradigm used during this research is that of Rumbaugh's Object Modeling

Technique (OMT).

xm

XIV

Validation and Verification of Formal Specifications in

Object-Oriented Software Engineering

/. Introduction

A key element to force multiplication is technology. A technological edge over an

opponent in conflict can be the difference between success and failure. As software

intensive systems employed by the military continue to become more complex, it

is apparent that the ability to formally specify future systems and comprehensively

validate and verify them is of growing import to the defense community.

Formal methods are used infrequently today, but their wider application is

envisioned "to lead to increased software quality and reliability. Moreover [it is ex-

pected that] early verification of specifications [will] increase specification quality,

thereby reducing life cycle costs" [Fräser]. Rectification of errors during code main-

tenance is typically 60 to 100 times more costly than modification of the errant

specification [Pressman].

Engineering can be thought of as the application of scientific approaches in

order to solve technical problems. In more established engineering disciplines, the use

of scientific approaches and formal processes is well established. Not so with software

engineering, which is still in its relatively early stages of development. The use of

formal methods in software engineering will help transform software engineering from

its current state into that of a more structured and scientific approach to problem

solution.

The use of formal specifications allows for a system to be defined with stringent

mathematical semantics and syntax via such tools as propositional calculus and set

theory. There are many perceived benefits garnered from formal specifications, such

as a thorough and in-depth understanding of the domain and system being specified

and a reduction in user requirement ambiguity. Formal specifications may be applied

to systems in any domain, and are not necessarily limited to software specification.

Validation is intended to ensure that a system meets the user's requirements

while verification refers to ensuring that a system meets its specification. V&V has

in common with other facets of software engineering the fact that it should be carried

out over the duration of a project and not just simply upon implemented systems.

This is in contrast to most developed validation approaches for Knowledge Based

Software Engineering (KBSE) [Meseguer] that perform validation almost entirely

post completion.

Probably the greatest benefit of formal specifications, and that which is least

capitalized upon, is that mathematical proof procedures can be used to "test (and

prove) internal consistency and syntactic correctness" [Fräser] to ensure comprehen-

sive V&V. The automation of the proof process will make formal methods far more

attractive by reducing the time required and the effort involved in V&V of software

systems.

1.1 Problem

The benefits of formal specifications are well understood in software engineer-

ing. How all of these benefits are realized is not as well understood. It is true

that simply by attempting to formally specify a system and its domain we gain a

more in-depth understanding by having to ensure that what could otherwise be an

ambiguously written specification is a properly formed collection of definitions and

axioms, but this argument provides only the tip of the iceberg of what benefits formal

specifications offer us.

It is commonly perceived that since a formal specification is written using

strict mathematical notation, it is a minor task to ensure that the product does in

fact meet the original specification and that the specification meets the end user's

requirements. This is not the case. The majority of research in formal methods has

delved into the "development of formal notation and inference rules" [Fräser].

It is the intent of this research to investigate what elements and properties of a

formal specification should be proved and why, and contrast this with what is typi-

cally proved in practice. This research will also deal with methods of implementation

of such proofs.

The emphasis of this research is the validation and verification of formal object-

oriented specifications. Proofs relating to the functional, dynamic and structural ob-

ject models are addressed. One approach to be followed is the integration of existing

tools into the AFIT Wide Spectrum Object Modeling Environment (AWSOME).

The Air Force Institute of Technology (AFIT) has developed AWSOME in order

to build software based upon formal specifications via semi-automated, correctness

preserving transforms. Examples of tools that could be integrated with AWSOME

include an object editor [Ashby], theorem prover or, for the dynamic model, a finite

state machine analysis tool.

As examples of what could be proved, consider an object-oriented class with

its requisite structural, dynamic and functional models as defined by the Object

Modeling Technique (OMT) [Rumbaugh]. In the dynamic model we can ensure that

states referenced are actually defined, and that there are no states for which the

class is incapable of satisfying the guard conditions required for transition.

The functional model defines methods in terms of preconditions and postcon-

ditions. Functional model processes describe changes in the state of an object. They

can be tested to ensure that invariant conditions are maintained after state transi-

tion, and that specified preconditions are satisfied whenever methods are called.

Verification of the structural model could include testing to ensure the concepts

of inheritance and aggregation are implemented correctly, for example, ensuring that

a subclass does not overload any attribute names used by its superclass(es).

1.1.1 Problem Statement. Propose a set of constraints via which formally

specified object-oriented systems may be verified. Provide demonstrative examples

of the applicability of the constraints to a formally specified 00 system.

1.2 Scope

Research focus is upon formal specifications of object-oriented software em-

phasizing the investigation of existing techniques and addressing their shortcomings

in order to propose new techniques. Illustrative implementation is achieved through

verification of an object-oriented system modeled in AWSOME via the addition of

a verification methodology to the AWSOME environment.

1.3 Approach

The approach is designed so as to address existing theories and practices in the

proof of formal specifications, identify the key concepts of object-oriented analysis

that require verification, and provide illustrative examples, preferably via integration

of a commercially available, off-the-shelf (COTS) dynamic model verifier and COTS

theorem prover.

The 00 specification that this research uses was formalized using practices

followed by AFIT's Knowledge Based Software Engineering (KBSE) group for the

generation of formal specifications of object-oriented models [Hartrum].

Examples of proposed theories are implemented upon AWSOME analysis mod-

els as AWSOME caters to the creation of domain models from formal specifications

via the use of the AWSOME Wide Spectrum Language (AWL). An AWSOME anal-

ysis model is represented and manipulated internally as an abstract syntax tree

(AST).

The primary illustrative example used throughout this document is a modified

version of a cruise missile system specified by a group of AFIT students. This model

is contained at Appendix B.

A

1.4 Topics Addressed

The fields addressed in this document include object-oriented analysis, for-

mal specifications, validation and verification, Z and an associated theorem prover

Z/Eves, and the process modeling language Promela and an associated dynamic

model checker Spin.

1.5 Products of This Research

The products of this research include:

• a list of formal constraints to which an object-oriented analysis model must

conform in order to satisfy the definitions of correctness, completeness, and

consistency defined in Chapter Two,

• an AWSOME analysis model visitor that generates Z specifications from the

analysis model with integrated theorem prover commands (for the Z based

theorem prover Z/Eves) to simplify the process of verification,

• an AWSOME analysis model visitor that generates Promela syntax process

models from the dynamic characteristics specified. The visitor also integrates

dynamic model checking commands for the Promela based process model ver-

ifier, SPIN,

• assistance in the creation of the AWL parser, and

• creation of a symbol table visitor for AWSOME ASTs that reduces ambiguity in

specification component identification and forms the basis for further checking

of AWSOME ASTs.

1.6 Document Outline

The organization of this document is as follows:

Chapter Two introduces theory and practices relating to formal specification and

object-oriented analysis, Chapter Three proposes a methodology and constraints by

which an analysis model may be verified, Chapter Four details the implementation

of the proposed methodology, and Chapter Five evaluates the methodology and

implementation, and proposes opportunities for further research.

77. Background

This chapter introduces some fundamental concepts required in order to understand

the motivation for, and how to formally specify, object-oriented systems and their

subsequent validation and verification (V&V). The first section of this chapter pro-

vides an introduction to formal specifications and V&V prior to a discussion of

common practices in industrial V&V today.

The second part of this chapter provides background required for an under-

standing of this research in particular and introduces the Z specification language,

Promela modeling language, AFIT's wide spectrum language AWL, Rumbaugh's

Object Modeling Technique (OMT) and representation of the OMT models using Z,

Promela and AWL.

2.1 Formal Specifications

The purpose of a specification is to define all the characteristics that a system is

to embody. Specifications should be defined in such a manner as to make each state-

ment provable. A statement is deemed provable if its fulfillment by the generated

product may be proven via formal logic or mathematical argument [Berztiss].

The more comprehensive and thorough that V&V testing is needed to be, the

more detailed and precise the specifications are required to be. As such, without

formally specifying a system, it is not possible to ensure that ambiguities do not

exist, that the requirements are complete and free of errors, or that the test cases

created are valuable.

Often a mixture of formal and semi-formal methods is used in the analysis and

design of software systems with the amount of effort devoted to specification and

verification being dependent upon the criticality of the particular software compo-

nent. This practice highlights the tradeoff between component criticality and the

cost of formal specification and verification.

Potter describes formal specifications of software engineering systems as in-

cluding: (i) some specification of the input-output behaviour of the system (the

relationship between preconditions and postconditions), and (ii) a description of

how this behaviour can be effected [Potter]. This perspective is likened by Ghezzi to

a "black box" and "glass box view" of the system respectively [Ghezzi]. The black

box view of the system deals solely with the external requirements of the system's

input/output behaviour whilst the glass box view dictates the internal machinations

of the system.

The predominant areas of mathematics that create the formal foundation to

00A are logic, type theory, category theory, and process algebra [Goldsack]. The

virtues of formal specifications come at a price. Increased specification complexity

leads to increased difficulty and time required to create the specification. It is this

balance that sees formal methods typically applied only to components of critical

importance or the application of semi-formal methods that are not as robust or

extensive [Gulch].

2.2 Validation and Verification

Validation and verification are the terms given to describe the process by which

a product is evaluated to ensure that it meets the user's requirements (validation)

and the specifications that it was based upon (verification). Verification is often

thought of as "building the system right" [O'Keefe] and validation as "building the

right system" [Meseguer]. The later that testing occurs in the software process,

the greater the risk that errors will result in dramatic increases in cost and time

to correct. Progressive V&V throughout the design process ensures that errors are

detected as quickly as is practical, hence reducing the risk they offer to project

budget and deadline [Brooks].

Formal specifications lend themselves well to V&V techniques. The precise and

explicit nature of formal method descriptions may be used to generate comprehensive

specifications. The characteristics that formal methods embody are not, however, all

beneficial. Formal specifications are quite often cumbersome, time consuming and

complex to create [Gulch].

V&V implementations should provide the software engineer with sufficient con-

fidence in a system's correctness, completeness, robustness, precision, safety, and

other quality attributes. Presently we find that many of these concerns in 00 anal-

ysis and design are addressed only partially or by indirect evidence only [Goldsack].

In order to rectify this situation, V&V methods require precise information about

the task the system is required to perform [Pressman]. Formal specifications can

provide a pivotal advantage in satisfying this need.

2.3 Current Practices in Verification

The most prevalent techniques for V&V in use today can be categorized into

one of the following four groups:

1. Inspection,

2. Static Verification,

3. Empirical Testing, and

4. Empirical Evaluation.

Inspection techniques are employed to identify semantic errors and are typically

performed by someone who is knowledgeable with respect to the problem domain—

such as a domain engineer. A common problem with inspection techniques is that

they are usually carried out by the person(s) responsible for the generation of the

domain specification in the first place and they may therefore fail to detect errors.

This failure to detect errors can usually be attributed to the fact that the possibility

of a specific error has remained unconsidered, or that the domain engineers see what

they think the specification says rather than what is actually being specified. Hence,

it is wise for an independent expert, that is, one who is not involved directly in

9

the code generation, to inspect the system. It must be noted that as the problem

becomes more complex, the difficulty that a human expert experiences increases

[Pressman].

Static verification searches the domain for anomalies [Meseguer 1992]. An

anomaly in the domain relates to an axiom that suggests the possibility of an error

within the specification. It is usual for an anomaly to be a contradiction of a general

property of the domain such as an inconsistency. Static verification is quite often

carried out by automated tools due to the complexity of the errors being checked

for. The tools available for static verification vary in the comprehensiveness of their

search for anomalies [Verdaguer]. Static verification tools are very much dependent

upon the semantics of the specification language used and are therefore infrequently

reused in other applications not specified with the same representation.

Opportunities for the application of static verification are frequent within AW-

SOME analysis models—each class has an invariant proposition that cannot be con-

tradicted by any other proposition of the class. For example, the postcondition of

a class method cannot result in a class attribute value being inconsistent with the

class invariant, nor may a state invariant be inconsistent with respect to the class

invariant.

Empirical testing attempts to check the system via the execution of test sets

of data. That is, by injecting known preconditions (the test data) into the system,

one is able to predict the correct postconditions and compare these with the actual

results witnessed. In order for the testing to be comprehensive, every input that

could potentially occur must be tested. This requirement results in an exhaustive

set of input conditions to execute—an undertaking of immense proportions for almost

any real world system. The lack in practicality of such a test set leads to creation

of a finite test set that must carefully be determined—the most common methods

of forming such tests sets are with functional and structural testing in mind.

10

Structural testing has been developed to test as many of the components of a

system as possible—examples include the instantiation of as many objects as pos-

sible, or the proof of as many axioms as possible. Functional testing takes a more

validatory approach by checking specified pre- and postcondition relations with what

is observed at execution. The problem of deciding upon what constitutes a compre-

hensive test case is not the only one to be encountered; in some systems the "correct"

behaviour is ill-defined and must be defined prior to test case formulation.

Empirical evaluation is testing that occurs in order to ensure that the sys-

tem meets the user's requirements regarding specified qualities such as performance,

maintainability, documentation, and acceptance. Such acceptance testing is con-

ducted upon an operational system by the users and/or the designers and occurs

either on site or under controlled conditions.

The least likely candidate techniques for adoption in this research are inspec-

tion testing and empirical evaluation testing. Inspection testing has a high depen-

dence upon the specific domain and application. It is true, however, that although

the actual implementation makes for a poor candidate, the underlying methodologies

are to a great degree independent of the specification language and as such, are to-

tally relevant to this thesis. Empirical evaluation, however, requires an implemented

system to be performed upon, and as such is not as relevant to this thesis, which

focuses upon verification of formal specifications.

It is important to note that simply because a proposition (axiom) is logically

correct that the specification is still not guaranteed to specify the intended system.

It is true that there exists a necessity for all axioms within a specification to be

logically correct but this alone is not enough to ensure that the system is in fact

verified.

The majority of verification tools can only be applied to systems that have been

implemented in direct comparison to systems that have only been formally specified.

11

Tools that require an implemented system in order to function leave the verification

until far too late in the process model, thus leading to increased rectification costs.

2.3.1 Definition and Goals of V&V for this Research.

2.3.1.1 Correctness. Today, much controversy still abounds within

the verification community as to what the definition of "correctness" is with respect

to formally specified systems and the credibility of such proofs [Berg]. It is difficult

to define specification correctness without a specification to provide a context. For

the purposes of this research, correctness is defined as preservation of the analysis

model's semantics, and that the analysis model is internally consistent and complete.

A useful definition for the correctness of an implementation of a specification

is that the implementation be consistent with the specification.

2.3.1.2 Consistent. For the purposes of this research, in order to

maintain internal consistency, it must be ensured that contradictory conditions are

not capable of being true at the same time. That is, there should be no opportunity

for contradictions to exist simultaneously. Consistency also requires postconditions

of the analysis model and the specification to be equivalent for a given precondition.

It is worth noting that the internal consistency of an analysis model is not related

to the specification's consistency with user needs. It is outside the scope of this

research to validate informal user needs.

For the purposes of this research, in order to maintain consistency, it must be

ensured that conditions of the domain are not contradictory. That is, at no time

may two conflicting expressions be satisfiable.

2.3.1.3 Complete. Completeness requires that the analysis model be

free from ambiguity and conform to certain semantic properties specified in Chapter

Three.

12

2.3.14 Satisfaction of Correctness Requirements. Note that these

three objectives also form a subset of those proposed by Collofello : correctness,

consistency, necessity, performance, and sufficiency (completeness) [Collofello]. Per-

formance and necessity are both outside the scope of this research.

As a result of the above definitions, for an 00 analysis model to satisfy the

requirements for correctness, one must show the following:

1. That the constituent structural, dynamic and functional models are consistent

and complete—that the specification is provably correct.

2. Execution of the specification (if the specification is executable) is correct if it

is conformant (i.e. same output for a given input) with the expected output.

This requirement is applicable solely to the dynamic model and is tantamount

to an exhaustive state space search by a dynamic model checker coupled with

selected use case test sets.

Not all specifications require formal semantics. Nor does a specification need to

be entirely formal in order for verification to be applicable. Semi-formal specifications

still have associated semantics that may be used as a basis for verification. Quite

often, the complexity of the specification and verification of a system component are

directly proportional to its perceived criticality. By the same token, the strength of

the verification capable of being carried out is proportional to the formality of the

specification.

2.3.2 Validation Testing. During post integration testing, the software sys-

tem is verified to ensure that integration errors are detected and resolved so that a

truly integrated system exists. At this point the final phases of testing may proceed.

These final phases of testing culminate in the validation of the users' requirements.

Pressman defines validation as ensuring the system functions as "reasonably" ex-

pected by the customer [Pressman].

13

This reasonable set of acceptance criteria should be stipulated within the origi-

nal specification for the system and the validation testing conducted should be based

upon the aforementioned criteria. Validation and verification should not necessarily

be viewed as two entirely separate entities as the pair are rather interdependent.

Some believe that the various levels of verification testing that occur throughout

development, together with other testing methods are the only tools a validator

requires to obtain maximum evidence as to correctness of the system [Meseguer].

Software validation endeavors to show through a series of tests that the system

conforms with the users' needs. The tests conducted are typically black box in

nature, that is, they are unconcerned with how the solution is attained, just that it

meets the requirements specified [Pressman]. Soon after the specification generation

occurs in the software process lifecycle, the types of tests to be conducted and the

manner in which they are to be executed should be planned. Specific test cases should

be defined that provide for thorough investigation of conformity with requirements.

The aim of the test plan produced is to ensure all functional and quality requirements

are satisfied.

Two possible results stem from each validation test conducted—either the test

results are as expected from the specification, or a discrepancy is determined between

the system's behaviour and that specified. Both the user and developers should

address the importance of the deficiency and what needs to be done to rectify the

situation.

One method by which to ensure our analysis model is conformant with re-

quirements and that it is free from faults, is to execute either the specification or

the product of the transformation (in this case an analysis model) [Collofello]. The

theorem prover and dynamic model checker used in this thesis are both capable of

simulating attribute values and thus meet Collofello's requirements for execution.

One should remain mindful of the fact that in order to mathematically ensure

the validation of a system's qualities, those qualities must be formalized. It may be

14

argued that it is the qualities (not just the functionality) of the system that drives its

software architecture and that these quality attributes are satisfied via the selection

of an adequate software architecture [Williams,Shock]. Assuming the architecture

selection/transformation is verifiable, the quality attributes required for validation

testing are thus outside the scope of this research.

Other methods of testing that complement verification and lead to system

validation but are outside the scope of this research include [Meseguer]:

1. Functional testing—development of black-box input test cases to be compared

to expected behavior,

2. Structural testing—path coverage—applicable in module, integration, and re-

gression phases of testing,

3. Error oriented analysis—statistical analysis of erroneous system behaviour fo-

cused upon explaining error occurrence,

4. Hybrid testing—an amalgam of other testing techniques suited to the specific

problem at hand,

5. Integration testing—type range, top down, bottom up, big bang and threaded,

6. Transaction flow analysis—a structured software design technique that ana-

lyzes a system based upon the transactions the system must process,

7. Failure analysis—determination of the exact nature and location of an error

in order to correct the error, identify and rectify similar errors, and to initiate

action to prevent occurrences of this type of error in the future,

8. Concurrency analysis—testing aimed at evaluating the performance of concur-

rent systems, and

9. Performance Analysis—dependent upon those qualities that are specified and

provided with metrics to assess compliance.

15

2.3.3 Early Approaches to Verification. Early verification methods in-

cluded:

1. Hoare Logic—a simple language consisting of assignment, statement sequences,

whiles and if-then-elses. Each of these rules is interpreted by a proof rule. The

assignment rule is an axiom, the other three are inference rules.

2. Dijkstra's Approach—he extended Hoare's logic by stressing the importance of

the postcondition and expressed predicates in terms of the set{P}S{R} where

R is the result of applying S to the precondition P. "Note that the [weakest

precondition] WP method ensures total correctness. The significant difference

between the two approaches is in the way they deal with looping, because the

weakest-precondition approach has to ensure loops terminate" [Berztiss].

3. Mill's Functional Correctness—depends upon functions and relations, in con-

trast with the pre- and post-condition focus of the former methods.

Such approaches remain commonly accepted as being valuable [Meseguer]. Two

avenues of verification exist for an algebraic specification—to verify the programs

against the specification as it stands using Guttag's method [Guttag], or to transform

the specification into a form that can be used with the inductive assertion method

[Floyd].

2.4 Transformation Systems

The impetus for transformation systems is the maintenance of system speci-

fications instead of source code. That is, the use of verified correctness-preserving

transforms to generate source code from formal specifications results in the software

engineer directing the majority of his efforts toward analysis, design and validation

without the requirement for code generation as this facet of the software process

becomes automatic, or at least semi-automated as depicted in Figure 1 [Balzer].

16

Decisions
and

Rationale

Informal
Requirements

Requirements
Analysis

A A

Formal
Specification
(prototype)

Mechanical
Optimization

1— Validation

Maintenance

Formal
~^" Development

Concrete
Source

Program

Tuning

Figure 1. Automated Transformation Paradigm.

It is envisaged that the input elements to a transformation system originate

from a repository of domain knowledge that is harvested for pertinent specifications

as well as the generation of problem specific analysis that can be added to the

repository for later reuse.

2.5 AWSOME

Until recently, proofs of concept relating to transformation system research at

AFIT were demonstrated via the proof of concept tool—AFITtool. AFITtool con-

sisted of a domain AST, specification AST and design AST as illustrated in

Figure 2 [Hartrum]. The intent of the domain AST was to encapsulate domain

knowledge relevant to a specific domain. The problem specification (analysis) AST

was generated from the parsing of Z Schemas (using Z-MkXsyntax) extended with

state transition data [Hartrum, Bailor] that formalized the problem into the spec-

ification AST along with any harvested domain knowledge from the domain AST

[Anderson]. Transformation of the specification AST resulted in the design AST

that could then be transformed into executable code [Kissack, Tankersley].

The Z representation of OMT used as input to AFITtool differs only slightly

from that introduced in the implementation of this research described in Chapter

Four. Differences occur in the representation of structural model associations and

17

dynamic model transitions. Although kept to a minimum, extensions to Z were

required to model the entire OMT analysis model as Z's ability to represent the

dynamic model is insufficient [Hartrum,Bailor].

AFITtool was implemented in the high level language REFINE [Reasoning].

Noe integrated a commercial GUI object editor, Rational Rose, to the front end

of AFITtool that somewhat simplified the formalization effort required to specify a

system [Noe]. Rational Rose provides only a semi-formal ability to specify an object-

oriented system and thus required augmentation via the addition of the ability to

integrate axioms. These axioms conform with Z syntax to allow for straight forward

parsing into the analysis AST.

The year 2000 has seen the rebirth of AFITtool as the AFIT Wide-Spectrum

Object Modeling Environment (AWSOME). Essentially AWSOME is a redesign of

AFITtool, a second generation prototype of a transformation system. The AWSOME

tool consists of an analysis AST that contains a representation of the problem being

modeled; this model may be semi-automatically transformed via verified transfor-

mations into a design model that addresses some details of the problem to a greater

level of depth. This design AST forms the foundation of the code to be generated

via the use of another set of verified transformations (see Figure 3 [Cornn]). Con-

ceptually, this code may then be validated and any incongruities may be addressed

at the specification level.

AWSOME makes use of a language developed within AFIT's KBSE group

called the AFIT Wide-spectrum Language (AWL). This language evolved from the

work done by Graham that resulted in the wide-spectrum language COIL [Graham].

AWSOME is based upon formal language theory, and as such is capable of the formal

specification of object-oriented systems. AWL has been designed as a strict language

hence it performs some of the verification effort and reduces specification ambiguity.

Being a wide-spectrum language, AWL is capable of representation of systems

at the specification, analysis, design and implementation levels. The lower levels of

18

Formal
Design
Histories

(Ada-95)

Design

Transform

Design

Decisions

& Rationale

?
Software

Engineer

Design

Specification

Code

Generation

Language

Choice

Design
Reuse
Library

Formal Approach to Generation of Correct Domain-Specific Software.

Figure 2. AFITtool Transformation System.

19

problem
statement

r _-
i
i
i
i

Problem

Setting

1
1
1
1

\ V problem domain
model problem

specification

problem
specification

design
specification

s ' AFITtool Repository ,

"--r--J
i

i

i

problem domain model
i
i

±

code
A

Code
Generation

/' design
specification

domain
knowledge

Key

_^
 *- Unidirectional data flow connector

 »- Bidirectional data flow connector

i) Computational component

' Passive data component

Figure 3. AFIT Wide Spectrum Modeling Environment.

20

AWL are not dealt with in this research as they are outside the scope of system anal-

ysis. AWL is capable of modeling both structural and object-oriented programming

styles and has intentionally been kept independent of any other particular software

language.

An example of the difference between AWSOME analysis and design ASTs

is: at the analysis level, AWSOME represents class methods in terms of pre- and

postconditions, therefore free of design decisions relating to any choice of algorithm

while at the design level, these pre- and postcondition expressions are transformed

into statements that form the body of the method.

The fact that any form of input specification, other than an AWL specification,

must be transformed into an analysis AST means that a specification must conform

to AWL semantic requirements. That is to say, there are certain productions by

which an analysis AST is created using the AWSOME language and these production

rules must be enforced by any other input media. This shall be elaborated upon in

Chapter Three but suffice it to say here that it meets Berg's requirements for a

specification language in that it:

1. is intuitively understandable to specifiers and validators and uses syntax that

adheres closely to elements of the OMT,

2. has rigorous mathematical semantics, defined in set theory and propositional

calculus,

3. is compatible with the structuring theory and formal methods to be used in

this research,

4. engenders wide spectrum applicability and comprehensive expressive power.

2.5.1 Research Conducted by AFIT's KBSE. Research conducted at AFIT

and implemented in AWSOME has included:

21

1. Tool integration, that is, the ability to integrate a number of object oriented do-

main models based upon their structural attributes into the one AST [Ashby],

2. Generation of relational Schemas in the form of Data Description Language

(DDL) from an AWSOME specification—affording the capability of persistent

relational storage of object-oriented domain models and the transformation of

class associations and postconditions to Data Manipulation Language [Buck-

waiter],

3. Information management in the form of a repository founded in object oriented

database technology, giving AWSOME the capability to integrate numerous

stand alone software synthesis tools into an integrated environment [Cornn],

4. Generation of executable code via the transformation of dynamic models into

structural and functional components and its applicability to agent based sys-

tems [Marsh],

5. Semi-automated transformation of relational Schemas to AWSOME ASTs [Pear-

son],

6. The proposition of a taxonomy of software architectures and a methodology

for representing software architectures and styles in AWSOME [Williams], and

7. the work conducted as part of this thesis.

2.6 Rumbaugh's Object Modeling Technique

Rumbaugh's Object Modeling Technique (OMT) is the paradigm used to model

domains in AWSOME. Using classes as the key foundation, OMT describes their

attributes and characteristics via structural, functional, and dynamic models. For a

description of AWL and how it represents OMT, refer to Appendix A.

2.6.1 Structural Model. The structural, or object, model represents the

static structure of a system via the constituent objects of the system, the associations

22

between those objects and the methods and attributes of each. Of the three models,

Rumbaugh considers the structural to be the most important—this is due to the

fact that in 00A, object identification is more important than early analysis of

functionality [Rumbaugh]. It helps if object classes form intuitive components of the

system being modeled, thus object selection is domain dependent. An object class

consists of the attributes (data values) and methods (functions and transformations)

inherent to the class.

Figure 4 represents the structural model of a cruise missile system while Figure

5 provides sample AWSOME code describing a portion of this model. The cruise

missile is an aggregate class consisting of a propulsion system, airframe, warhead,

and avionics software. The airframe, propulsion system and avionics software classes

are themselves aggregates. The three vectors position, velocity and acceleration are

examples of subclasses as they inherit the characteristics of the superclass vector.

The cruise missile model is presented in its entirety in Appendix B.

Aggregation is a specific category of association. An aggregate class is one that

is comprised of other classes and the aggregation association relates objects of the

specific classes.

Inheritance allows one to model the similarities of certain classes whilst main-

taining their differences. Take for example, the inheritance relationship between

acceleration and vector. Vector is a class with three attributes of type real, namely

x, y, and z. Acceleration is a type of vector and inherits the attributes and opera-

tions defined for vector but also extends upon those operations by inclusion of other

operations specific to the acceleration class.

Conjecture abounds with respect to the semantics of inheritance [Rumbaugh,

Booch, Booch et. al., Wegner, TaivalSaari, Alexander]. Zdonick proposes four dif-

ferent categories of inheritance [Zdonick]:

23

77

"ZS-

propulsionSystem

<y

missileFuelTank throttle

TT

avionicsSoftware

jetEngine

acceleration position

guidanceSystem navigationSystem flightPirector

velocity
|

flightProfile timer

XT
_xz

(t

Figure 4. Cruise Missile Structural Model.

1. cancellation—allows for redefinition of class methods or even removal of meth-

ods from the subclass,

2. name compatibility—the subclass must preserve the set of names inherited

from the superclass but is free to redefine them,

3. signature compatibility—the subclass must embody the syntactic interface of

the superclass, and

4. behavior compatibility—the subclass may not modify the characteristics of the

superclass. This form of inheritance is termed strict inheritance and ensures

that the child class is substitutable for the parent class.

Strict inheritance is the sole form of inheritance referred to within this research.

24

package cruiseMissile is

class fuelTank is
private fuelLevel : bigReal;
private outputFlowRate : bigReal;

end class;

class missileFuelTank is fuelTank with

private fixedWeight : realWeight;
invariant fixedWeight = tankWeight + (fuelDensity * capacity / 2)

and inputFlowRate = 0

end class;

class navigationSystem is
private navState : navStates;

end class;

class flightProfile is
private timeOnTarget : time;
private flightPath : route;

end class;

class warhead is
private weight : mass;
private munitionType : string;
private explosiveForce : yield;

private armed : boolean;
invariant weight > 0.0 and explosiveForce >= 0.0

end class;

class airframe is
private pos : position;
private accl : acceleration;

private vel : velocity;
private afState : afStates;

private heading : real;
private elevation : real;
invariant heading <= 2*pi and heading >= 0.0 and elevation <= pi/2

and elevation >= -pi/2

end class;

Figure 5. Partial AWSOME Language Representation of Cruise Missile Structural

Model

25

class propulsionSystem is
private fuelFeed : throttle;
private engine : jetEngine;
private tank : missileFuelTank;
invariant (tank.fuelLevel = 0.0 => fuelFeed.maximumFlowRate =0.0)

and (tank.fuelLevel > 0.0 =>(fuelFeed.maximumFlowRate =
engine.maximumFuelFlowRate)) and (engine.currentFuelFlowRate =

fuelFeed.actualFlowRate)
end class;

class cruiseMissile is
private propulsion : propulsionSystem;
private frame : airframe;
private payload : warhead;
private avionics : avionicsSoftware;
private cmState : cmStates;

end class;
end package;

Figure 5. Partial AWSOME Language Representation of Cruise Missile Structural

Model cont.

2.6.2 Dynamic Model. The dynamic model represents the temporal rela-

tionships between functional components of the domain model. The dynamic model

illustrates what will happen when certain conditions (guards and received events)

hold irrespective of how it will happen. The dynamic model also describes the be-

haviour states by which a class is defined. Figure 6 illustrates the Mealy model

representation of the class Airframe while Figure 7 gives the corresponding AWL

syntax.

A state may contain an invariant condition but all actions and events occur

upon transitions. Transition syntax in AWL is:

<IN> currentState <0N> receiveEvent [<IF> guard] [<D0>action]

[<send> (sendEvent)*]} to nextState

With reference to Figure 6, if the airframe is in the state "powered flight"

and it receives the event "change course" and the guard condition "true" is satis-

26

fied, then the airframe will transition to the state "maneuvering" until it receives a

"doManeverComplete" event.

initAirframe [true] / iru'tializeAirrrameO

inertialFlight preLanuch

tankEmpty [true]

doManeuverComplete [true]

changeCourse [true]

poweredFlight

estimatePosition[true] / setPosinonO

Figure 6. Airframe Dynamic Model.

2.6.3 Functional Model. The computations or transformations of data

that occur within classes are represented by OMT's functional model in the form of

data flow diagrams. The functional model is hierarchical in structure; that is, each

process may be further refined by intermediate levels of detail. At the lowest level

of abstraction, the processes of the functional model are termed leaf operations.

The functional model does not describe how transformations occur or when they

take place, it simply identifies the inputs and outputs of those processes. Figure

8 represents the calculateAcceleration leaf operation of the airframe functional

model while Figure 9 gives the AWSOME syntax for the missileFuelTank method

changeFlow.

27

dynamic model is
event initAirframe () ;
event doLaunchO;
event tankEmptyO;
event estimatePositionO ;
event changeCourseO;
event maneuverCompleteO;
event outOfFuelO;

state start invariant afState= startairframe;
state preLaunch invariant afState = preLaunchairframe;
state poweredFlight invariant afState = poweredFlightairframe;
state maneuvering invariant afState = maneuveringairframe;
state inertialFlight invariant afState = inertialFlightairframe;

transition table is
in initial on initAirframe if true to airframelnit;
in airf ramelnit on AUTOMATIC if true send initDoneO;

to poweredFlight;
in poweredFlight on tankEmpty if true to inertialFlight;
in poweredFlight on getPosition if true send positionCurrentO;

to poweredFlight;
in poweredFlight on changeCourse if true to maneuvering;
in maneuvering on doManeuverComplete if true to poweredFlight;

end transition table;
end dynamic model;

Figure 7. Airframe Dynamic Model in AWSOME syntax

2.7 Z

Traditionally, the formal specifications entered into AFITtool took the shape

of Z Schemas [Hartrum, Bailor]. In 1997, Noe created a set of automated transforms

that generated Z specifications from augmented UML diagrams created with the

CASE tool Rational Rose. The formal language Z is founded in mathematics such

as prepositional calculus and set theory. The language is far more extensive than

the subset that is capable of being parsed into the AFITtool domain model.

28

airframe

elevation

engineWeight

propulsionSystem acceleration

Figure 8. Airframe Functional Model.

private procedure changeFlow(actualFlowRate : in bigReal)
guarantees outputFlowRate' = actualFlowRate? and

fuelLevel' = fuelLevel and capacity' = capacity and
tankWeight' = tankWeight and fuelDensity' = fuelDensity

Figure 9. Missile Fuel Tank Method—changeFlowQ

29

propulsionSystem

fuelFeed: throttle

engine: jetEngine

tank: missileFuelTank

Figure 10. PropulsionSystem Object Model.

.propulsionSystem
fuelFeed: throttle
engine : jetEngine
tank : missileFuelTank

tank, fuel Lev el = 0.0 =>• fuelFeed.maximumFlowRate = 0.0
tank.fuelLevel 0.0 => fuelFeed.maximumFlowRate =
engine.maximumFuelFlowRate
engine.cur rent Fuel Flow Rate = fuelFeed.actualFlowRate

Figure 11. PropulsionSystem Schema.

The building block of Z is the schema. This is comprised of a signature and

predicate. The signature essentially introduces the attributes or variables of the

schema whilst the predicate stipulates the axioms that define those attributes.

Schemas may be used to represent classes, operations, events, and states. Type

definitions are detailed via axiomatic definitions, operations by dynamic schemas,

and structural components via static schemas. An example structural model for the

class cruise missile is located at Figure 10. Note the inability of the OMT model to

convey invariant constraints that are represented in the same class when expressed

as a Z schema—Figure 11. This is an example of how a semi-formal specification

system must be augmented with prose in order to provide the requisite formalization.

30

Z has been used in a number of object-oriented analysis models but it is noted

that Z is not ideal as an 00 specification language due to its semantic complexity.

In order to achieve a sufficient level of formalism, Z++, ZSPECK, Schuman+Pitt,

OOZE, MooZ, and Object-Z have extended Z substantially [Goldsack, Stepney].

None of these versions of Z were adopted for this research due to the fact that by

their very nature, their use is not supported by existing Z-based theorem provers

and does not conform with Spivey or ISO standard Z[Stepney].

It is the author's opinion that it is better to use multiple analysis representa-

tions and verifications tools that are best suited to certain portions of the analysis

model than to use an unsupported tool that extends a specification language. If

proper integration can be achieved then the user is none the wiser.

2.8 00A and Verification

During the course of this research, it was discovered that literature dealing

with the formal specification of 00 systems and their validation and verification (as

opposed to either their V&V or formal specification) is rather rare and difficult to

come by. By far the majority of 00 specification literature is not formally developed

to the extent that stringent verification methods could be used against analysis

models specified in accordance with such methods.

Extrapolating from Bertziss' research dealing with the verification of abstract

data types [Bertziss], it can be proposed that three tasks must be performed in order

to verify the correctness of a class:

1. Determination of whether an implementation is going to have certain properties

prior to implementation. This comes from knowledge of the method by which

the specification is generated and the transformation process. This task is

predominantly conducted via inspection by experts but the structure of an

analysis AST described by AWSOME's metamodel ensures certain semantic

31

constraints conforming to this rule such as what may form components of the

structural, functional and dynamic models,

2. Demonstration of completeness and consistency of the specification,

3. Implementation should be provably consistent with its specification—or more

readily for the AWSOME transformation system—transforms should provably

maintain the correctness of the modeled system.

2.9 Software Process Model

Many software engineering process models exist, and until recently, many of

those have had little or no avenue for redressing faults until code has been generated

as it is the code that is tested to ensure compliance with the specification. Therefore,

many of these models attempt to output code quickly and incrementally.

As already pointed out the cost and time required to rectify an error during

code maintenance is far greater than modification of a specification. The process

model proposed below is a modification of that described by Berg [Berg] such that

it facilitates an iterative design, thus allowing for faster detection and rectification

of errors and does not make the tenuous assumption that an entire system can

successfully be formally specified within a single iteration. It is worth noting that a

transformation system such as AWSOME readily facilitates iterative processes due

to the fact that as soon as the specification is modified, the product that is to be

verified and validated is instantly available.

The modified software process model is as follows:

1. Establishment of user requirements,

2. User requirements are specified in accordance with a formal language resulting

in a formal specification that is provably correct as discussed in Chapters Three

and Four,

32

3. The specification is then validated to show that it satisfies the goals of devel-

opment. This is typically performed by inspection but may also be augmented

by automation (specification interpreters). Tools such as these permit input

values to be injected into functions in a specification and then return the asso-

ciated output values that the specification defines, thus allowing for validation

via inspection. Note that validation can also include quality attributes that

are difficult to formalize and as such are outside the scope of this research.

4. After satisfying the requirements for the properties of being well formed and

validated, the specification is used to guide the implementation of the sys-

tem. In AWSOME, this correlates to driving the requisite transformations to

generate code.

5. Berg states that the code is then verified by proofs of correctness that ensure

adherence to the validated formal specification. These proofs are typically

heavily automated but our previous step that implemented verified transforms

makes this a redundant phase of the software development process.

6. Berg then suggests a final testing phase to double-check the proofs. The test

strategies are developed to (work well from) the specifications.

7. If any deficiencies are highlighted by validation then repeat the process.

2.10 Relation Between Background and This Research

Many of the concepts introduced in this chapter are used in the methodology

proposed as part of this research. Essentially, the methodology put forward is best

described as a hybrid—the dynamic, structural and functional models of OMT are

better suited to different forms of verification testing than a single technique.

All three OMT models embody characteristics that are suited to static verificätion-

these form the backbone of tests that ensure consistency of the analysis model, such

33

as invariant constraint consistency, and functional pre- and postcondition analysis

similar to the work done by Dijkstra.

The dynamic model is well suited to both forms of empirical testing. An

exhaustive search of the state space corresponds to structural empirical testing and

is relevant to state reachability analysis. The injection of a use case test set into

a dynamic model corresponds to empirical functional testing and may be used to

validate the dynamic behavior modeled by the specification.

The completeness of an analysis model relies heavily upon the semantics of

AWL. The productions rules, type checking and name analysis that occur as part of

parsing specifications into an AWSOME analysis AST enforce a great deal of struc-

ture that will result in notification of an error to the software engineer if neglected.

For example, if a user attempted to define a dynamic model transition without a

current state or a next state, the parser would not accept the declaration as it is not

complete with respect to the production rule for an AWSOME transition—refer to

Appendix A for a list of AWSOME productions.

The next chapter details proposed constraints upon the analysis model that

must be enforced as part of the V&V of an object oriented formal specification

generated in AWSOME.

34

III. Methodology

3.1 Introduction

The research conducted focuses upon the aspects of a formal specification that

can be checked within the analysis AST itself. Any verification that occurs internal

to the analysis AST is independent of the method by which the problem is formally

specified. Therefore, if a new method of specification is implemented, the verification

methods proposed in this research will continue to be applicable. To put it another

way, no matter the specification method—be it Z Schemas, a GUI object editor or the

AWL—these methods will remain applicable without modification as they function

upon the analysis AST itself.

The verification issues addressed by this research apply predominantly to spec-

ification consistency, correctness, and completeness as defined in Chapter Two. The

problem of verifying correctness, consistency, and completeness has been approached

from six different but interrelated avenues. These perspectives spawn from a com-

bination of the granularity of the analysis performed, that is whether the analysis

is at the inter or intra-class level, and the focus of the analysis—whether it be the

structural, dynamic or functional model of the system. Figure 12 illustrates this

breakup as a table, it can be seen that one axis corresponds to the three OMT class

models [structural, functional, dynamic] and the other corresponds to the level of

abstraction [class, domain]. These delineations were made so as to break the problem

into a more manageable size.

By automating some or all of the verification process, the amount of effort

required by the specifier for V&V is reduced. This reduction in the effort required

to formally verify a system increases the value of formal specifications with respect

to other methods of V&V such as inspection. It must be noted, however, that in

many cases other than the rules proposed subsequently in this chapter, a test plan is

35

Class Level Domain Level

Structural Model

Dynamic Model

Functional Model

Figure 12. Analysis Model Perspectives.

required that has certain proof goals that provide direction to the verification effort.

Verification without a clear plan and direction is far from an optimal solution.

It is the aim of this chapter to identify and explicitly define well-formed con-

straints to which an object-oriented analysis model must conform. These constraints

are introduced according to the six categories detailed above and are first given a

textual description and then a formal definition in propositional calculus. These

constraints are described without regard for their testability at this stage of the

document as it is the constraints themselves that direct object-oriented analysis and

thus form the focus of this research and not their automated testability.

3.2 Definition of the 00 Analysis Domain Model

To assist in formalization of the analysis model constraints, definition of the

domain and its components must be made. Below is a conceptual model of the

domain for which AWL provides a concrete surface syntax.

A domain consists of the tuple: Classes, Types, Assocs, AssocObjs, Consts

where Classes is the set of classes present in the domain, Types is the set of data

types of the domain, Assocs is the set of associations within the domain, AssocObjs

is the set of associative objects, and Consts is the set of global constants.

For the purposes of this document, a type is defined as type = name, inv

where inv is the type invariant. This is an extremely simplistic representation of the

36

capabilities of the AWSOME language to model types, but is sufficient for the rules

to be defined.

A class is defined as the tuple: name, inv, Attrs, Ops, Trans, States, Events

where name is the class identifier, inv is the class invariant expression, Attrs is a set

of attributes, Ops is a set of operations defining the functional model, Trans is a set

of transitions describing the dynamic behavior of the class, and States is a set of

states that define the class behavior.

An expression is a well-formed boolean or arithmetic expression capable of

being proved correct.

Class attributes consist of a name and a type, i.e., attribute = name, type,

value where name is the attribute identifier and type is the data type of the attribute.

Constants and parameters are also represented by the tuple name, type, value. Note

that AWSOME provides greater depth to the modeling of attributes and parameters

such as whether a class attribute is public or private and whether the mode of a

parameter is in, out or in and out.

Data objects are also defined by the tuple name, type, value. The function

dataSet(expression) returns the set of data objects referred to in an expression. For

the sake of dataSet(), there is no difference between a variable's ticked and unticked

references. It is worth noting that data object is a generalization of both attribute

and class, and as such both inherit the tuple name, type.

Operations are defined by the tuple name, pre, post, Params where pre and

post are the pre- and postcondition expressions of an operation respectively, Params

is the sequence of parameters of the operation. Operation calls are invocations of

operations and consist of a reference to the operation to be invoked and a sequence of

arguments that represent the input parameters of the operation, i.e., operationCall

= name, Args. For the purposes of this research, at the analysis level, all operations

are representative of procedures as opposed to functions.

37

Transitions are defined by the tuple transition current, receive, guard, action,

Sends, next. Current and next refer to the current and next states of the transition

respectively. The guard condition of a transition is an expression, the action is a call

to a class method, receive is the event that triggers the transition, and Sends is the

set of events sent as a product of the transition. States are comprised of an identifier

and an invariant expression, i.e., state = name, invariant. Events consist of a name,

a set of arguments (data objects), and an invariant expression, i.e., event = name,

Args, inv.

An association!?, represented by the tuple: association = endi, end2 where end\

and end2 refer to the identifiers of the two classes that constitute the association.

Although AWSOME is capable of representing associations of a higher order than

binary, this research is limited to binary associations due to the greatly increased

complexity associated with verifying ternary and higher associations. Associations

modeled in AWSOME are more complex than presented here—each end of an asso-

ciation has a role name and a cardinality but these are irrelevant to the constraints

proposed in this chapter.

Associative objects are comprised of an association, and operations and at-

tributes particular to the associative object and are defined by the tuple:

assocObj = name, Attrs, Ops, assoc where name is the associative object identifier,

Attrs is the set of attributes, Ops the set of operations, and assoc is the binary

association.

3.3 Class-Level Constraints

The propositions of the following class-level constraints are assumed to relate

to an instance of a class this of a domain dorn, i.e., this € dom.Classes.

3.3.1 Structural Model. Structurally speaking, classes consist of attributes

and their invariant predicates that dictate certain characteristics of their behavior.

38

class airframe is
invariant heading <= (2*pi) and heading >= 0.0 and elevation <=

(pi/2) and elevation >= (-pi/2)
private pos : position;
private accl : acceleration;
private vel : velocity;
private afState : afStates;
private heading : real;
private elevation : real;

end class;

Figure 13. Elements of the Cruise Missile Structural Model

It is these components that are of concern at the class level of verification as well as

ensuring the consistency of any subclasses with their respective superclasses.

Constraint 1 Attributes Must be Declared Over Defined Types

The definition of a data type declares the range of meaningful values of that type.

Hence it is important to know that each data object is an instance of a data type

in order to ensure that the context of any reference to the data object is consistent

with its range of values. It is therefore imperative to ensure that each data object is

in fact defined over an existing data type.

Va : attribute • a E this.Attrs =^> a.type 6 dom.Types U dom.Classes

As an example, Figure 13 contains the structural portion of the specification

for the class airframe. This class has the private attributes pos : position, accl :

acceleration, vel : velocity, afState : afStates, heading : real, and elevation : real.

The first three attributes refer to other classes, and as such, are aggregate

components of an airframe while the remaining attributes are all of types declared

within the domain. If any of the attribute types are undefined within the domain,

then the model fails to be complete.

Constraint 2 Any Variables Referenced Within an Object's Invariant Proposition

Must be Constants or Attributes of the Object

39

In accordance with the object-oriented principle of data-abstraction, data modifica-

tion or interrogation may only be performed by the class that is responsible for that

data's abstraction, or via methods provided by the class. Therefore, a class is only

able to reference its own variables and static values of the domain directly.

Vra : dataObject • (n <E dataSet(this.inv) ^ (n G dom.Consts) V (n e

this.Attrs)

The invariant of the class airframe, represented in Figure 5, refers to heading,

elevation, and pi. Heading and elevation are both of type real and attributes of the

class while pi is a real constant of the domain.

Constraint 3 Pre- and Postconditions Must be Consistent With the Class Invariant

Traditionally, AFITtool has used schema inclusion to imply method pre- and post-

condition consistency with the class invariant. This research proposes explicitly

ensuring pre- and postconditions do not contradict the class invariant. While logi-

cally equivalent to the former method, the latter ensures that the constraint holds

rather than simply implying it holds.

Wop : operation • op £ this.Ops => (this.inv A op.pre A op.post) ^ false

Constraint 4 Invariant Propositions Must be Consistent With Respect to the Types

Over Which They Refer

Data types embody constraints upon the values that a variable of a given data

type may have. Consequently, any expression that refers to a class attribute or

global constant of such a data type must remain consistent with its constraint. That

is, values must remain within the attribute's range and operators must have some

associated semantic for the type(s) they are applied to.

This constraint may be separated into two lesser constraints:

1. the invariant of a class must not contradict its attribute type invariants, and

40

2. invariants must be made np of type eompatible operators and operands (elab-

orated upon as Constraint 9).

The first constraint requires that the class invariant hold over all attributes of
the class and is expressed as:

Vn : iataOh3ect . a e Ms.AUrs A „ 6 iotaSettthis.inv) A n.typeanv A tUs,„v /
false

For example, Fignre 14 contains specifications for the enumerated type flight-

D.rectorStates and the class flightDirector. The state invariants of flightDirector

d,ctate «he value of the variable flightDirectorState. This constraint states that

the state invariants must be consistent with respect to the attribute types to which

they refer, and as such, the invariant must not contradict the invariants of the ag-

gregate components. Inspection suggests that there is no conflict between the type

and the state invariants as only those values enumerated in the type declaration are

ever referenced, that is, the state invariants „ever conflict with flightDirectorStates'
range of allowable values.

This constraint does, however, raise the complex issue of aggregate component

v.s.bfiity within the analysis model. Conceptually, the principles of data abstrac-

ts and .„formation hiding mean that classes only have direct access to their own

attnbutes-therefore a„ aggregate class does „ot have direct access to its subclass

attributes. It is worth noting that all class attribntes have been defined private in

the cr„ise missile example specificatio„ i„ order to strictly adhere with the object-

onented software engineering concept of data hiding.

Constraint 5 Cass Invariants Should he Consistent unth Other Expressions of the
Class

Both the functional and dyn^ic models contain expressions that must be consistent

w.th the invariant specified for the class. Obviously, this rule is relevant to all

41

perspectives of the domain analysis model and may seem somewhat repetitive when

mentioned elsewhere in the document in slightly different situations.

Let I be the set of expressions of the class—these expressions come from the

class state invariants, transition guard conditions and pre- and postconditions of

methods and actions.

Vt'i : expression • (h G this.I A this.inv ^ H) =4> {{i\ A this.inv) ^ false)

Appendix B contains the entire cruise missile model. The class missileFuelTank

has the invariant:

invariant fixedWeight = tankWeight + (fuelDensity * capacity / 2)

and inputFlowRate = 0

while the class method changeFuelFlowQ is defined by the postcondition:

guarantees outputFlowRate' = actualFlowRate and fuelLevel' = fuelLevel

and capacity' = capacity and tankWeight' = tankWeight

and fuelDensity' = fuelDensity

According to the constraint, the missileFuelTank invariant must be consistent

with respect to the postcondition of the class method changeFuelFlowQ which ap-

pears from inspection to hold true.

Constraint 6 Propositions of a Subclass Must be Consistent With Those of the

Superclass

Subclasses inherit the methods and attributes of their parent (super) classes. The

subclass cannot alter the characteristics of any of its inherited attributes—to do such

would mean that the superclass is not in fact a generalization of the subclass. Class

methods may be overridden but for the purpose of this research, they must retain

the logical equivalence of the inherited propositions.

Let superclass(cl5 c2) be a function that returns true if ca is the superclass of

c2-

42

Vci : class Vc2 : class • (ci,c2 £ dom.Classes A superclass{c\, c2)) =£•

(c2if!D A ci.mu 7^ false)

As an example, take the class fuelTank and its subclass missileFuelTank in

Appendix B. FuelTank has the invariant fuelLevel > 0.0. Being a sub class of fu-

elTank and adhering to the constraint of strict inheritance, missileFuelTank therefore

inherits fuelTank's invariant as well as it own invariant of:

invariant fixedWeight = tankWeight + (fuelDensity * capacity / 2)

and inputFlowRate = 0

Constraint 7 Propositions of a Subclass Must be Substitutable For Those of the

Superclass

Strict inheritance requires that a subclass be substitutable for its parent class. There-

fore, not only do the invariants need to be consistent, the subclass invariant must

also be weaker or equal to the parent class invariant, therefore the subclass invari-

ant must not constrain that of the superclass. Chapter Six discusses the further

formalization of strict inheritance.

Vci : class Vc2 : class • (ci,c2 € dom.Classes A superclass(ci,c2)) =$■

(c2-inv =$> Ci.inv)

Returning to the example of Constraint 6, strict inheritance dictates that the

invariant of missileFuelTank must imply the superclass invariant which it most cer-

tainly does.

3.3.2 Functional Model. The functional model represents the operations a

class embodies. This model describes the functionality of class operations irrespective

of temporal considerations. At the analysis level, these operations are described

via pre- and postconditions that define the output expected for a certain input

condition. Thus the output (postcondition) is defined as the result of a certain input

(precondition) and not as an explicit algorithm.

43

Constraint 8 Operation Postconditions Must Maintain The Class Invariant

The postconditions of class operations must remain internally consistent with respect

to the class invariant.

Vop : operation • op 6 this.Ops => (op.post A this.inv) ^ false

Constraint 9 Mathematical Operators Are for Mathematical Types or Explicitly

Defined for the Type

Operators have certain associated semantics dependent upon the type to which they

apply. For example, 2+3 is commonly accepted as equaling 5 in the domain of

integers but what does F-16 + F-16 equal? Two F-16s, one F-32?

In general, both operands of a binary operation must have the same type,

and the operator is said to have the type of the return value. AWSOME offers a

great deal of flexibility in type definitions and the operations they embody. This is

elaborated upon in Appendix A.

Let MO be the set of mathematical operators, MATH be the set of prede-

fined mathematical types for Z {integer, natural}, DEFS be the set of user defined

types with mathematical operators—DEFS contains any mathematical subtype, set,

sequence, or bag declared in the domain.

The following syntax is defined : ex o e2 represents that application of binary

operator o to the operands ex and e2 while o(e) represents the application of a unary

operator to the operand e.

For binary operations, this constraint is defined as: Vei,e2 : expression Vo :

MO • ex o e2 =4> {{ei.type - e2.type A ei.type = o.type) A (ei.type € MATH U

DEF))

For unary operations, the constraint is: Ve : expression Vo : MO • o(e) =>

{{e.type = o.type) A {e.type € MATH U DEF))

44

Constraint 10 Pre- and Postconditions Must Refer Solely to Global Constants,

Class Attributes and Parameters

At the analysis level AWSOME represents class methods by set of formals (parame-

ters), and pre- and postcondition expressions. Class methods must only refer to the

parameters passed to them (formals) and the attributes of the class. AWSOME has

the capability to model global variables as well as global constants but this research

does not address global variables at the analysis level.

Va : expression Wb : expression Vo : operation • o G this.Ops A a = o.pre A

b — o.post A (n G dataSet(a) ^(n£ dom.Consts)

V (n G this.Attrs)

V (n G o.Params)

V n G dataSet(b) =>■ (n G dom.Consts)

V (n E this.Attrs)

V (np G o.Params))

Constraint 11 Operation Parameters Must be Defined Over Existing Types

Every parameter referenced via an operation must belong to a data type defined for

the problem domain specified.

Vp : parameter Wo : operation • o € this.Ops ApG o.Params =$> p.dataType G

dorn.Types

3.3.3 Dynamic Model. The dynamic model describes the behavior of a

class with respect to how events interact without concern for what functionality the

events actually engender. This functionality is described in the functional model.

Constraint 12 Transitions Must Occur Over States Defined For the Class

This and the next constraint ensure that references within a dynamic model transi-

tion refer to defined elements of the class dynamic model.

45

Vs : state V* : transition • ((t G this.Trans) A (s = t.current V s =

t.next)) =>• s G this.States

Constraint 13 Transitions May Only Refer to Send and Receive Events Defined

For the Class

Vt : transition Ve : event • (t G this.Trans A (e = t.receive V e G

t.Send)) =j>e£ this.Events

Constraint 14 Transitions Must be Deterministic

If multiple transitions exist from a state then they must be mutually exclusive and

an automatic transition (with a guard condition of true) is allowed only if it is the

sole transition from the state.

Vii : transition Vi2 : transition • U £ this.Trans A t2 G this.Trans A

^.current = t2.current A ^.receive = t2.receive A <i ^ f2 =>■ (h.guard A

t2.guard) — false

Vti,t2 : transition • tx.guard = true A tr.receive.name = automatic A

ti.current = t2.current A ti.next = t2.next => ti = t2

Figure 15 describes in AWL syntax the transition table for the class airframe.

An example of a deterministic set of transitions is the two transitions from the

current state poweredFlight. Although both transitions share the same guard

condition (true) determinism is ensured by each responding to a different receive

event (tankEmpty and getPosition).

Constraint 15 States Must be Mutually Exclusive

The requirement for this rule in a Mealey-based dynamic model is more than ques-

tionable as the set of transitions leading to a state fully defines the class behaviour

within the state. However, if a Moore-based dynamic model or a hybrid representa-

tion is used, then this constraint is an important one. In order that the states of a

46

dynamic model be uniquely identified, the conjunction of the invariant expression of

any state with any other state must be false.

Vsi : state,Vs2; state • si,s2 G this.States A sx ^ s2 => (si.invariant A

s2.invariant) = false

Although a trivial example, Figure 16 defines the state invariants for the class

airframe. As can be obviously deducted, the conjunction of any two invariants is false

as the enumerated variable afState cannot have two different values simultaneously.

Constraint 16 State Invariants Must Be Defined Over Attributes of the Class and

Global Constants

This contention is a linking issue that is discussed in Chapter Four. Note also that

in a similar fashion to other components of the domain, state invariants should also

be type checked and not contradict the class invariant.

Vs : State Vn : dataObject • s G this.States A n G dataSet(s.inv) =» (n G

Attrs) V (n € dom.Consts)

Constraint 17 The Transition Guard Must be Defined Over Attributes of the Class,

Event Parameters and Global Constants

\/t : transition Vn : dataObject • t € this.Trans A n E dataSet(t) =*• (n €

dom.Consts) V (n £ this.Attrs)

Constraint 18 The Preconditions of a Transition Must Be Satisfiable For a Tran-

sition To Ever Take Place

This constraint ensures that the guard condition and current state invariant are

consistent with the class in order to prove that the conditions leading to a transition

are capable of being satisfied.

\/t : transition • t G this.Trans =$> (t.cur rent.invariant A this.inv A

t.guard) ^ false

47

Each of the following two dynamic model constraints is based upon an impli-

cation that relies upon the preconditions of a transition holding. If the left hand

side of an implication is false, the right hand side can be true or false. The aim of

this constraint is to ensure that the left hand side of the following two constraints is

not false.

Constraint 19 The Invariant of the Next State Must be Implied by the Transition's

Guard and the Postcondition of the Action

Whereas the previous constraint dictates that the precondition of a transition hold,

essentially this constraint states that the next state invariant be a weaker expression

than the conjunction of expressions leading to the transition. The aim of this check

is to ensure that a cause and effect relationship exists between the current state, the

next state and the transition between them.

Vt : transition • (t € this.Trans A t.current.inv A t.action.post A t.guard A

this.inv) =>- t.next.inv

The structural constraint introduced at Constraint 5 states that all expressions

of the class must not contradict the class invariant and as such, the class invariant

is not explicitly included in the above proposition.

What must be kept in mind when verifying this constraint is that whichever

attributes appear in the postcondition of the action are modified values, and as such,

attributes referred to in the invariant of the next state must also be decorated with

ticks to ensure that names correctly match and the sequential nature of the transition

is maintained.

Constraint 20 The Invariant of the Send Events of a Transition Must Be Implied

By the Transition's Guard and the Postcondition of the Action

Send events generated by a transition must be consistent with the conjunction of

the expressions of the transition that lead to their generation. The aim of this check

48

is to ensure that a cause-and-effect relationship exists between a transition and its

send events.

\ft : transition Ve : event • t 6 this.Trans A e 6 t.Send A t.current.inv A

t.action.post A t.guard A this.inv =4» e.inv

Constraint 21 The Precondition of an Action Must be Implied by the Conditions

of the Transition.

The precondition of an action must be satisfied by the current state invariant, the

class invariant, the guard condition and the receive event invariant for the action to

take place.

V* : transition • (t € this.Trans A this.inv A t.current.inv A t.guard A

t.receive.inv) =>• t.action.pre

Constraint 22 Receive Event Parameters Must Match Action Input Parameters

For a given transition, the signature of the action it invokes must contain the param-

eters of the transition receive event. Within a class dynamic model, an action refers

to a method of the class. The variables a method operates upon stem from attributes

of the class, locally defined variables and input parameters that originate from the

arguments of the receive event that resulted in the transition being triggered.

For a given action, let inParams be the set of input parameters of an action,

i.e., inParams = {p € action.Params • p.in = true}.

Vt : transition Vrx : event Vact : method • t G this.Trans A rx =

t.receive A act = t.action =>■ rx.Params C act.inParams

Constraint 23 Send Event Parameters Must Match Action Output Parameters

Similar to the above constraint, for a given transition, action output parameters

must form the set parameters of the set of send events of the transition.

49

For a given action, let outParams be the set of output parameters of an action,

i.e., outParams = {p € action.Params • p.out = true}.

Vt : transition Mtx : event Vact: method • t £ this.Trans A tx E t.receive A

act = t.action =>■ tx.Params C act.outParams

3.4 Domain Level Verification

The focus of concern at the domain level is the interaction between classes and

their associations. An example of domain level interaction is the relationship between

send and receive events of different classes, while an example of an association would

be an aggregation.

34.I Structural Model.

Constraint 24 Associations Must Refer to Classes Defined Within the Domain

For an association to exist and have meaning in a domain, there must also exist the

constituent classes that make up its ends. Below, assocEnd is used to identify an

end of an association.

\/assoc : association Vclassi,class2 : class • assoc £ dom.Assocs A classi G

dom.Classes A class2 G dom.Classes =4> assoc.endi = classi.name A assoc.end2 —

class2.name

This and the following structural model constraints are enforced during the

linking phase of the analysis model creation—refer to Chapter Four for a description

of the linking process.

Constraint 25 Associative Objects Must Refer to Classes Within the Domain

This constraint is merely a specialization of Constraint 24.

Constraint 26 Aggregation Must Refer to Classes Within the Domain

50

Another special case of association, aggregation, is worth discussing in a little more

depth due to the fact that aggregation may represented in more than one fashion

and hence requires special consideration.

In AWSOME, aggregation may be represented as a special form of association,

Figure 17, or somewhat more implicitly, as a class attribute, Figure 18.

In its first form, this constraint of aggregation is formalized by Constraint 1

while in its second form Constraint 24 expresses the required constraint.

3.4.2 Functional Model. Domain level rules dealing with the functional

model are predominantly concerned with the invocation of methods—that is, who is

capable invoking a method and the consistency of the call made.

Constraint 27 Operation Calls Must Match Signatures

The signature of an operation describes the set of formal parameters that declare

its input and output characteristics. Each parameter is represented by an identifier,

data type, and in/out qualifier. For the purposes of this research, no parameter

is allowed to be used for both input and output as this greatly complicates the

verification process. AWSOME however, is capable of modeling in/out parameters.

W : transition Vop : operationCall Vact : action • t £ this.Trans A act £

this.Ops A act.name = op.name A #1 op.Args = #act => (Vi : J\f • i 6 domA A

A(i).type = P(i).type

3.4.3 Dynamic Model. The majority of verifiable rules related to the

dynamic model are applied at the class-level. As long as there exists a correlation

between events of classes within the domain model, domain-level dynamic modeling

is verified.

Constraint 28 Objects May Only Communicate Via Send and Receive Events

51

The interaction of objects within a domain—that is, how they communicate, how

aware they are of each others' existence and their ability to invoke each others' op-

erations is a point of contention in the field of object oriented software engineering

and as such, this research has adopted the strict constraint that class-level commu-

nication is to occur through the sending and receiving of events only.

Constraint 29 All States Should be Reachable

In this research, it is assumed each class has an initial state named "start". Start is a

magical state in which each class begins and therefore, no transition is needed to it.

However, every other state requires not only a transition to it but a transition whose

receive event and guard condition are capable of being satisfied. That is, there exists

a corresponding send event in another object and the guard must not contradict the

class invariant.

This rule does not constrain the analysis model such that all states must be

reachable—the intent is to generate a warning to the software engineer that there

exist certain states within the domain that are not capable of being reached. Spec-

ification reuse may mean that certain class properties are irrelevant to a specific

domain; alternatively the warning may bring to light an actual oversight of the

model.

The following rule states that for each receive event in the domain, there must

be a corresponding send event.

VCl : class Vi : transition • t G cx.trans => (3c2 : class 3t2 : transition •

t2 G c2.Trans A t^.receive e t2.Send

An example of an unreachable state is maneuvering in the AWSOME syntax

transition table of Figure 15. The absence of any transition to the state is the culprit

in this case and as such, a warning to the software engineer should be generated.

52

3.5 Summary

This chapter introduced a set of formal constraints that an object oriented

analysis model must satisfy in order to ensure consistency and completeness. Each

constraint is formalized according to the semantics of a domain model introduced

early in the chapter. The constraints are grouped depending upon which model of

the Object Modeling Technique [Rumbaugh] they are appropriate and whether they

are a class- or domain-level issue. The next chapter discusses the implementation of

the testing of the constraints proposed within this chapter.

53

type flightDirectorStates is (startflightDirector, idleflightDirector,

maneuveringflightDirector);

class flightDirector is
private flightDirectorState : flightDirectorStates;

private procedure initializeO
guarantees flightDirectorState' = idleflightDirector

dynamic model is
event errorSignalsO;
event initFlightDirectorO ;

event maneuverComplete();

state start invariant flightDirectorState = startflightDirector;
state idle invariant flightDirectorState = idleflightDirector;
state maneuvering invariant flightDirectorState = maneuveringflightDirector;

transition table is
in start on initFlightDirector if true do

initializeFlightDirectorO; to idle;
in idle on errorSignals if true send changeCourseO; setElevationO;

setThrottle(); to maneuvering;
in maneuvering on maneuverComplete if true to idle;

end transition table;
end dynamic model;

end class;

Figure 14. Declaration of the Type FlightDirectorStates and the Class FlightDi-

rector

transition table is
in initial on initAirframe if true to airframelnit;
in airframelnit on AUTOMATIC if true send initDone() ;

to poweredFlight;
in poweredFlight on tankEmpty if true to inertialFlight;
in poweredFlight on getPosition if true send positionCurrentO;

to poweredFlight;
in maneuvering on doManeuverComplete if true to poweredFlight;

end transition table;

Figure 15. AWSOME Syntax Transition Table

54

State start invariant afState = start;

state aiframelnit invariant afState = aflnit;

state poweredFlight invariant afState = poweredFlight;

state maneuvering invariant afState = maneuvering;

state inertialFlight invariant afState = inertial;

Figure 16. State Invariant for the Class Airframe

aggregation propels is

parent missile : cruiseMissile multiplicity One;

child propulsion : propulsionSystem multiplicity One;
end aggregation;

Figure 17. Aggregation Represented Via Association.

class cruiseMissile is

private propulsion : propulsionSystem;

private frame : airframe;

private payload : warhead;

private avionics : avionicsSoftware;

private cmState : cmStates;

end class;

Figure 18. Aggregation Represented Via Class Attribute.

55

56

IV. Implementation

4-1 Introduction

The aim of this chapter is to expand upon each of the constraints introduced

in Chapter Three by detailing their implementations. Descriptions of the process

by which an AWSOME analysis model is specified and its representations for the

theorem prover Z/Eves and dynamic model verifier Spin are also given.

The constraints of Chapter Three are best suited to several forms of verification:

1. Some of the simpler, static, constraints are checked directly on the AST, such

as those addressed by name analysis and type checking.

2. Some constraints require logical inference (such as 19, 20 and 21), thus a the-

orem prover is required. The theorem prover Z/Eves is used to automate

verification of these constraints.

3. The dynamic model supports specialized analysis for which tools exist. The

dynamic model checker Spin is used to verify constraints such as 14 and 29.

In order to keep the methods independent of the manner in which a system

is specified, the majority of verification techniques used focus upon the AWSOME

analysis AST. That is, no matter if a system is specified in Z, AWL or via the object

editor, so long as it may be stored in the analysis AST these tests can be performed

upon it. If the tests had been made input dependent then a new series would be

required for each method of input to the analysis AST. However, this has occurred

on occasion, where the parser's syntax has defined certain rules that a specification

must follow. Other developers must be aware of these factors when designing new

methods of analysis AST creation. These grammar-enforced rules will be discussed

throughout the chapter.

57

This chapter is structured in a similar fashion to that of Chapter 3—addressing

each constraint presented in the methodology and how its verification was imple-

mented.

4.2 Limitations Placed Upon AWSOME Models in This Research

In order to ensure compatibility with Z/Eves and Spin, the following con-

straints are placed upon AWL:

1. no underscores are permissible,

2. string values must be introduced as a constant of type string with the value

0,
3. no parameters may be of both in and out modes, and

4. dynamic models that use automatic transitions must declare an AUTOMATIC

event.

It should be noted that the majority of these limitations are rather easy but

time consuming to rectify.

4.3 Creating AWSOME Analysis Models

This section of the chapter details the manner in which a domain model is

created and verified in AWSOME:

1. specification generation in AWSOME syntax,

2. parsing the specification into an AWSOME analysis AST,

3. generation of symbol tables that manage name spaces,

4. linking of identifiers with their respective identifier references throughout the

analysis AST, and

5. semantic analysis.

58

WsMethod

^y

WsClass

~ty

Invariant WsDynamicModel

-Q

WsEventMap

^7

WsState WsTransition WsEvent i

t, 1 i

WsParameter WsDataObject Precondition
"L

Postcondition

Figure 19. The AWSOME Class Model.

The structure of an AWSOME AST is described by AWSOME's metamodel.

The AWSOME metamodel takes the form of an 00 inheritance hierarchy—it has ap-

proximately 100 classes (termed WsClasses) that are used to model a wide spectrum

of object-oriented programming components. Portions of the AWSOME analysis

AST especially pertinent to this research include the WsClass and its aggregate

components illustrated in Figure 37.

A system may be specified in AWL and, via parsing, be transformed into an

AWSOME AST. However, parsing AWL files is not the only method by which spec-

ifications may be transformed into AWSOME ASTs and as such there is a need to

explicitly define the AWSOME syntax so that tools made subsequently comply with

the rules that the parser enforces. If these productions are not enforced, the cor-

rect and complete operation of the verification techniques proposed in this research

cannot be guaranteed. AWL production rules are included at Appendix A.

The following subsections detail the process followed to generate an AWL spec-

ification and the specification's subsequent verification and validation.

59

4-3.1 Problem Domain Specification. Presently, a user may specify a prob-

lem domain via creation of an AWL file or the use of a GUI object editor. It is

envisaged that, via an elictor harvester, the software engineer will harvest applicable

classes from the existing knowledge base and then specify any deficiencies in AWL

syntax. This specification is saved as an AWL file and may then be read by the

parser.

4.3.2 Parsing AWL. The AWSOME parser produced in conjunction with

AFIT faculty is responsible for verifying the syntactic rules of a specification gener-

ated in AWL. The product of the syntactically correct specification is an AST based

upon WsClasses. It must noted, however, that the parser requires identifiers to be

placed in AWL syntactically correct positions, but at no point does it ensure that

the AST is semantically correct.

4.3.3 AWSOME AST Scoping. The first stage in ensuring the correctness

of an AWSOME specification is the generation of a symbol table that maintains a

list of the declarations visible at any point in the AST.

Certain WsClasses within an AST make declarations that should be only visible

to certain other components of the AST. That is, references should be made solely

to those components declared within the list of open scopes. Take for example class

attributes —the object-oriented concept of data hiding requires that a class keep its

data objects hidden from the outside environment, and as such requires the creation

of a scope within which these attributes are declared and visible.

The symbol table affords the capability to ensure that declarations of the same

name and category are not allowed within the list of open scopes and as such, re-

duces the possibility for name ambiguity in the specification and errors in object

referencing.

60

4-34 AWSOME AST Linking. Once it has been ensured that no com-

ponents of the same category exist within a mutually open scope, it is possible to

link references to declarations with the declared object and raise critical errors or

warnings to notify the formalist of incompatible types.

4.3.5 Semantic Analysis. From the analysis AST is generated both a

Z/BT£JXfile and a Promela file. The Z/#T£Xfile may then be inspected with Z/Eves

in order to prove properties of the specification, and the Promela file may be executed

in Spin to highlight any further dynamic model concerns.

These two tools do not address other semantic concerns of the analysis model

such as standard compiler-like checking of method signatures and return type con-

sistency. It is envisaged that such checks will be applied to the analysis AST directly

by another visitor and do not provide any value to the research interests of this work.

The checks implemented as part of this research are more complex. They require

deeper levels of analysis such as theorem proving, exhaustive enumeration of state

spaces and simulation.

Table 1 summarizes the responsibility, implementation status and automata-

bility of each of the proposed constraints with respect to the components discussed

in this section.

44 SPIN and Z/Eves

While numerous extensions to Z exist to cater for object-oriented analysis,

methods of this research do not modify Z in any fashion—elements of the dynamic

model that are difficult to express in Z syntax are specified in the process modeling

language Promela. This ensures that the theorem prover behaves as expected and

does not result in a less applicable, more esoteric strain of the Z virus. The use of

an interactive theorem prover such as Z/Eves allows for modification of the Z model

61

Constraint Linker Z/Eves SPIN Semantic Implemented Automated
1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X

7 X

8 X X X

9 X X X

10 X X X

11 X X X

12 X X X

13 X X X

14 X X

15 NA NA
16 X X X

17 X X X

18 X X X

19 X X

20 X X

21 X X

22 X

23 X

24 X X X

25 X X X

26 X X X

27 X

28 X X X X

29 X X

Table 1. Constraint Verification Responsibility.

62

prior to modification of the specification to test various hypotheses without having

to modify the specification repeatedly to catch a single inconsistency.

SPIN's applicability to this research was essentially limited to state reachability

analysis performed via the use of an exhaustive state space search. It became evident,

however, that its use is inappropriate for the verification of OMT dynamic models.

SPIN's inability to completely represent OMT dynamic models stems from its limited

range of data types (numerical types of different sizes) and lack of expressive power

in representation of propositions such as invariants and pre- and postconditions.

This does not mean that SPIN is a poor tool—its use is extensive around the

world in dynamic model verification.

4-5 Z and Promela Generation

Both the Z and Promela specifications are generated from the analysis AST via

the use of the design pattern termed the visitor [Gamma]. A visitor allows for the

addition of functionality to certain object-oriented systems without the requirement

to modify the classes of the structure, therefore maintaining AWSOME's conceptual

integrity.

Neither the Z nor Promela transformations provide a complete representation

of the entire 00A model. Only a sufficient amount of the model is transformed

to allow for the generation of theorems that express the constraints established in

Chapter Three.

The Z specification visitor outputs a specification in the formal language Z,

complete with theorems and proof commands aimed at verifying the constraints

proposed. The Promela specification visitor outputs a Promela file for execution in

Spin.

63

Domain

 &

Operations

[jwÜ

pre- & post-conditions

Fvffll

Invariant Invariant

Figure 20. From AWSOME Analysis model to Z Schemas.

4-6 Modeling a Domain in Z

The representation of object-oriented systems with the formal language Z is

not by any means a new concept. Familiarity with Z while studying at AFIT and the

availability of a free theorem prover with satisfactory support were key determinants

in the decision to make use of Z as an analysis model representation for the purposes

of verification in this research.

4-6.1 Structural Model in Z. The following subsections detail how certain

OOA concepts are represented by the Z specification generator produced as part of

this research. Figure 20 illustrates the mapping from an OMT structural model to

its representation in Z.

4.6.I.I Types. Abstract types are represented as identified sets. An

example in the cruise missile model is the type character. This will be represented

by [char] in the Z analysis model. Note that enumerated types are fully defined, e.g.,

AWSOME syntax for the states of the class airframe is:

type afStates is (start, aflnit, onCourse, maneuvering, inertial);

which is transformed into the Z syntax below:

64

afStates ::= start | aflnit | onCourse | maneuvering | inertial

The only types inherent to Z are the integers Z and the set of naturals M'.

Therefore, a fixed point approximation was required for real numbers. The chosen

approximation is to multiply by an order of magnitude equal to the decimal resolution

required, e.g., for a real with a range from 1.0 to 10.0 with a delta of 0.001, the type

was represented by an integer of range 1 x 103 to 10 x 103. Obviously, this raises

inaccuracies in scale when dealing with operations such as division and multiplication

and therefore, checking of real types must take this into account. Floating point types

are represented by integers in a similar fashion to that of fixed point real numbers.

For most purposes, knowing that the type is a form of number is enough to allow

model verification to continue.

Integer types—subtypes of Z—are represented by axiomatic definitions that

declare the type's identifier and its range restrictions.

Z has no intrinsic representation character or string types or literals. Without

defining character in Z as an enumerated type that contains the entire character set,

literal strings (sequences of characters) must all be defined as global constants equal

to the empty sequence. To provide a literal string with any value would not make

sense as character is defined as an abstract type.

4.6.1.2 Classes. The structural model of a class is represented by a

static schema. The name of the schema corresponds to that of the class, the signature

of the schema describes the attributes of the class whilst the predicate describes the

class invariant. An example class is illustrated in Figure 21.

4.6.1.3 Associations. Associations are generally handled as static

Schemas. The name of the schema is that of the association, the signature of the

schema defines the end roles of the association and the predicate describes multi-

plicities of the end roles. It must be noted that the special form of association,

65

, cruiseMissile
propulsion : propulsionSystem
frame : air frame
payload : warhead
avionics : avionicsSoftware
cmState : cmStates

Figure 21. Aggregation Represented Via Aggregate Class Schema.

.propels _
a : propulsionSystem <-» cruiseMissile

Va; 6 domfl#(a; < a) < 1
Vy e rana#(y> a) > 0

Figure 22. Aggregation Represented Via Association Schema.

aggregation, may also be represented via the addition of the aggregate component

as an attribute of the aggregate class.

AWSOME facilitates both methods of describing an aggregation as does the Z-

schema generator created as part of this research. The two alternate representations

of the cruiseMissile/propulsionSystem aggregation are illustrated in Figure 21 and

Figure 22.

4.6.2 Functional Model in Z. The methods constituting a class' functional

model are represented by dynamic schemas. Dynamic Schemas reference the class by

delta inclusion (represented by A className in the schema signature), thus identify-

ing the schema as a method that may result in a change in class attributes. Figure

23 illustrates the mapping of an AWL class operation to its representation in Z.

An example of a method specified in AWL and expressed as a Z schema is given in

Figures 24 and 25, respectively.

66

Class

—o—

Method

1 O

Subprogram

 ^

Formal
Parameter

Local
Variable

Precondition Postcondition

 SubProgramName-

A. className

parameter?: type

parameter!: type

local: type

precondition

postcondition

Figure 23. From Class Method to Dynamic Schema.

private procedure changeFlow(actualFlowRate : in bigReal)
guarantees outputFlowRate' = actualFlowRate? and

fuelLevel' = fuelLevel and capacity' = capacity and
tankWeight' = tankWeight and fuelDensity' = fuelDensity

Figure 24. AWSOME Syntax For the Method ChangeFlow.

At the analysis level, AWSOME defines class methods via pre- and postcon-

dition expressions (identified by the keywords "assumes" and "guarantees" respec-

tively). It is these expressions that form the predicate of the method's dynamic

schema.

Note, it is considered that if a variable is not explicitly changed with a tick (')

then it remains unchanged as opposed to being considered neglected and therefore

an error in the specification.

4.6.3 Dynamic Model in Z. Dynamic models in AWSOME are comprised

of a set of states, a set of events, and a set of transitions. The set of transitions

define the relation between elements of the two former sets.

67

. changeFlow
AmissileFuelTank
actual Flow Rate? : bigReal

out put Flow Rate' = actual Flow Rate? A fuelLevel' — fuelLevel
A capacity' — capacity A tankWeight' = tankW'eight A
fuelDensity' = fuelDensity

Figure 25. Dynamic Schema For the Method ChangeFlow.

WsTransition

^y

currentState receiveEvent guard sendEvents nextState

Figure 26. WsTransition and its Aggregate Components.

4-6.3.1 States. A static schema is created for each state of the anal-

ysis model and the state invariant, if any, is added to the schema's predicate.

4.6.3.2 Transitions. Transitions in AWSOME consist of a cur-

rentState, receiveEvent, guard, action, sendEvent(s), and a nextState (see Figure

26). Transitions are capable of containing a great deal of propositional calculus—

both the current and next states contain invariants, as does each send event and

the receive event, the guard condition is a Boolean expression, and the action has

pre- and postconditions. From this information it can be established that the guards

are consistent and complete, transitions are deterministic, and that all states are

uniquely identifiable.

No Z construct is capable of representing an entire OOA transition. A number

of Z/Eves theorems are generated for each transition in order to test its consistency

68

and completeness with respect to the constraints proposed in Chapter Three (refer

to Constraints 18, 19, and 20 for elaboration).

4-7 Verifying Components and Domain Checking With Z/Eves

Relevant analysis model information is harvested from the analysis AST in

accordance with the methodology of Section 4.5 and used in the creation of a Z/Eves

compatible representation. This representation, in the form of a .zed file, may then

be loaded into the Z/Eves environment and the verification goals of this research

tested.

This section of the chapter introduces the concept of domain checking as per-

formed by Z/Eves. A more thorough explanation is given in the Z/Eves Reference

Manual [reference manual 1.5]. Domain checking automatically occurs when a para-

graph1 is entered in the Z/Eves interactive mode or if the command check is executed

upon a batch input styled Z-section.

Z syntax allows for the specification of expressions whose semantics are nonsen-

sical [reference manual 1.5]. Two ways that semantic correctness can be compromised

are:

1. application of a function outside its domain such as max J\f or 1 div 0,

2. a proposition is not meaningful if there does not exist a single value for a term

such that the predicate holds. For example, Vn:A/'»n>5An<5.

Z/Eves may be used to check each paragraph of a Z section specification to

ensure that function applications are meaningful and that all propositions are se-

mantically correct.

Domain checking provides the backbone of all structural, functional, and the

majority of dynamic model semantic analysis performed as part of this research. The

1Z paragraphs include abstract types, Schemas, axiomatic definitions and theorems.

69

Symbol Grammatical type

e expression

P,Q predicate
ST schema-text
SE schema-exp
D decl-part
n name

Table 2. Domain Check Notation.

constraints whose implementation are mentioned in this chapter are predominantly

performed during domain checking of the analysis specification.

The remainder of this section details the domain checking applied to each

form of Z paragraph. A brief description is given prior to the specification of each

domain check as described in the Z/Eves Reference Manual. In order to simplify the

expressions that follow, the symbols in Table 2 are introduced.

4-7.1 Abstract and Enumerated Types. Abstract and enumerated types are

the easiest elements of a specification to verify as they are simply names and are

always considered to be true for the purposes of domain checking, i.e., DC([n,...]) =

true, where DC represents a domain check and n is the name of the abstract type or

the range of enumerated values.

Abstract types have no constraints or operations defined for them other than

equality 2 while enumerated types have no constraints or operations defined for them

other than equality and test of set membership i.e., membership in the type.

4-7.2 Declarations. Named variables are introduced via declarations. The

visibility of declarations is dependent upon where the declaration is made. The vis-

ibility of a variable in Z/Eves is either global or local. Declarations made within

an axiomatic definition have global visibility beginning from the end of the decla-

2AWSOME provides other operators for enumerated types such as < and > but these operators
are not defined for enumerated types in either of the verification tools used in this research

70

ration and spanning the remainder of the specification (i.e., variables may not be

referenced prior to their declaration) while declarations made within the signature

of a schema remain local to the schema signature and predicate. However, schema

inclusion-used in this research to represent methods, states, events, aggregation

and inheritance-may be used to introduce variables defined within other Schemas

into the one currently being declared.

A Z/Eves declaration is structured as follows:

declaration :: basic-decl;...;basic-decl

basic-decl :: decl-name-list : expression j schema-ref

decl-name-list :: decl-name,...,decl-name

Domain checking (DC) of a declaration is dependent upon the form of the

declaration-the DC of a name with an expression is simply the domain check applied

to the expression, the DC of a set of expressions of a schema is the conjunction of

the DC of each schema-expression and so on.

DC(n,...:e)

DC(S[e,...])

DC(D;D')

= DC(e)

= DC(e)A...

= DC(D)ADC(D')

4-7.3 Schemas. Schemas are used to represent classes, states, events, and

methods of an AWSOME analysis model. A schema consists of a set of declarations

(D) located in the schema signature and a set of propositions (P) located in the

schema predicate. Domain checking of a schema entails domain checking the set of

declarations and checking propositions over the relevant declaration domains.

DC(Schema) = DC(D) A (VZ) . DC(P)), where D is the set of declarations in the

schema signature and P is the set of propositions of the schema predicate.

71

4.7.4 Axiomatic Definitions. Axiomatic definitions may be used to rep-

resent types with constraints, for example, an integer with constrained upper and

lower bounds. The type's name and the fact that it is an integer are declared in the

axiomatic definition's signature while the bounds form the predicate.

Domain checking of an axiomatic definition checks the declaration and the

propositions of the predicate over the domain of the relevant declarations.

DC(Axiom) = DC(D) A (V£> • DC{P) A DC(Q A ...), where P and Q are

propositions of the axiom predicate.

4-7.5 Schema Expressions.

Z/Eves is as follows:

The composition of schema expressions in

schema-exp :: V schema-text • schema-exp

3 schema-text • schema-exp |

31 schema-text • schema-exp |

schema-exp-1

schema-exp-1 :: schema-ref |

-1 schema-exp-1 |

pre schema-exp-1 |

schema-exp-1 A schema-exp-1 |

schema-exp-1 V schema-exp-1 |

schema-exp-1 => schema-exp-1

schema-exp-1 <$ schema-exp-1

(schema-exp-1)

The domain checking of schema expressions is:

DC(VD I P • SE) = DC(D) A(VD • DC(P))ADC(SE)

DC(3D I P • SE) = as above

72

DCßjD I P • SE) = as above

4.7.6 Schema Texts. Schema expressions are comprised of sets of schema

text where each schema text consists of a declaration and an optional set of predi-

cates, i.e.,

schema-exp-1 :: [schema-text]

schema-text :: declaration [|predicate]

Domain checking schema texts is very similar to domain checking a schema—

the declarations are domain checked and predicates are checked over the domain of

the declaration, i.e., DC([D|P]) = DC(D)A(VD •DC(P))

4.7.7 Schema References. Schema references are optionally prefix-decorated

schema names. Schema references are used in this research to represent class meth-

ods, inheritance and aggregation (methods are either functions or procedures and

are distinguished by the prefixes S and A respectively). The schema name refers to

the name of the class schema that the method belongs to.

Aggregation and inheritance schema references are not decorated as they are

used to declare schema inclusion within the scope of the class being declared.

schema-ref

schema-text

prefix

[prefix] word

declaration [|predicate]

A IS

Domain checking of schema references entails domain checking of the schema

referred to (if not already done) and any expression that forms part of the declaration

and is defined as: DC(S[X,Y][x/y,z:=e])=DC(X) A DC(Y) A DC(e).

73

4-7.8 ZI Eves Prove By Reduce. The most frequent Z/Eves command

issued in this research is prove by reduce. The command prove by reduce instructs

Z/Eves to apply simplification, rewriting, and replacement until the theorem can be

no further reduced. Typically, the aim of prove by simplification is to establish a

theorem as true, false or not equal to false.

Simplification results in Z/Eves performing equality and integer reasoning,

propositional reasoning and tautology checking. Rewriting applies simplification

and attempts to simplify the theorem by matching propositions to known patterns.

Replacement entails replacing any schema references with their respective definitions.

Figure 27 contains a sample of the output generated by Z/Eves. The first por-

tion is the output generated from domain checking of the schema missileFuelTank.

The second portion, beginning at "theorem inheritance", is the proof of a theorem

that attempts to verify that missileFuelTank's invariant does not conflict with that

of fuelTank. Unfortunately, this proof did not work as anticipated, the superclass

schema was reduced to true prior to any further analysis—the proposed solution is to

include only the superclass invariant instead of the entire schema—refer to Constraint

6 for further details. The final section of the output, identified by "theorem initialize-

MissileFuelTankisok" attempts to verify that the operation initializeFuelTank does

not conflict with the class invariant. For the purposes of this example, the postcon-

dition was modified such that it was inconsistent with missileFuelTank's invariant

and Z/Eves returned the proof result "false".

4-8 Modeling a Domain in Promela

In addition to Z/Eves, Spin is used for part of the dynamic model's verifica-

tion process. The selection of Promela and Spin was made due to the ease of use

of the language Promela and the concurrent research conducted by Lacey that re-

sulted in the presence of an active knowledge base of the tool's use at AFIT [Lacey].

The Promela code is generated from the analysis model and focuses solely on class

74

schema missileFuelTank

... theorem missileFuelTank\$domainCheck

... axiom missileFuelTank\$declarationPart
Beginning proof of missileFuelTank\$domainCheck ...

fuelTank \\
\land fixedWeight \in realWeight \\
\land tankWeight \in realWeight \\
\land capacity \in bigReal \\
\land inputFlowRate \in bigReal \\

\implies (fuelDensity * capacity, 2) \in \dom (_ \div _)
theorem inheritance
... theorem inheritance

Beginning proof of inheritance ...
\exists missileFuelTank @ fuelTank
Which simplifies

forward chaining using KnownMember\$declarationPart, knownMember,
fuelTank\$declarationPart, missileFuelTank\$declarationPart, '[internal items]'
with the assumptions '[internal items]'to ...
\exists missileFuelTank @ true
Proving gives ...
\exists missileFuelTank 0 true
schema initializeMissileFuelTank
... schema \Delta missileFuelTank
... axiom Delta\$missileFuelTank\$declarationPart
... axiom initializeMissileFuelTank\$declarationPart
theorem initializeMissileFuelTankisok
... theorem initializeMissileFuelTankisok
Beginning proof of initializeMissileFuelTankisok ...
\exists missileFuelTank @ initializeMissileFuelTank
Which simplifies

with invocation of fuelTank, missileFuelTank, \Delta missileFuelTank,
initializeMissileFuelTank
when rewriting with notEqRule

forward chaining using Delta\$missileFuelTank\$declarationPart,
initializeMissileFuelTank\$declarationPart, KnownMember\$declarationPart,

Figure 27. Example Z/Eves Output

75

knownMember, fuelTank\$declarationPart, missileFuelTank\$declarationPart,

'[internal items]'
with the assumptions '&neq$declaration', select_2_l, select_2_2,

realWeight\$declaration, bigReal\$declaration, '[internal items] ' to ...

false
Proving gives ...
false

Figure 27. Example Z/Eves Output Cont.

TT

currentState receiveEvent guard

:: receiveEvent; guard -> action; sendEvent; gotoState
:: receiveEvent; guard -> action; sendEvent; gotoState

od;

Figure 28. From WsTransition to Promela.

dynamic models within the domain. Figure 28 illustrates the mapping of an AWL

dynamic model to its representation in Promela.

4.8.1 Send and Receive Events. Classes communicate via events and these

events are defined as messages in Promela. The first step in the generation of a

Promela file is to harvest these events from the analysis model and add their identi-

fiers to the enumerated set "mtype". As an example, the class airframe would result

in the events initAirframe, tankEmpty, getPosition, changeCourse, and doManeu-

verComplete being added to the mtype resulting in a declaration of the form:

mtype = {initAirframe, tankEmpty, getPosition, changeCourse, doManeuverComplete};

76

4-8.2 Event Maps. The send and receive event names of different classes

may well not be the same even though they correspond to the same event. This

is due to the fact that possibly not all classes in the domain model were created

according to the same standard, either because they were developed by different

parties or never actually considered for integration into the same domain model.

The possibility of incompatible dynamic models is what drives the requirement

for domain event maps. An event map declares an association between a pair of

events in differing classes so as to make integration into the same analysis model

a simpler task than requiring the re-specification of the offending dynamic models.

AWSOME facilitates domain mapping. However, at this point in time, neither the

AWSOME parser nor language provides support for event maps.

It is assumed for the purposes of this research that event names match and

as such, there is no need for event maps. If there were, however, a need for event

maps, they would be defined as "channels" in Promela. Only a single global channel

is required upon which all events are broadcast. Its syntax is:

chan global = [0] of {mtype}

The above declares a channel "global" of buffer size 0 that carries messages

of type mtype. Spin's ability to model temporal systems has resulted in channel

definitions stipulating a buffer size. For a non-temporal, object-oriented analysis

this buffer size is set to 0—that is, a broadcast event ceases to exist as soon as the

next event is broadcast.

4-8.3 Class Dynamic Models. Classes are modeled in Promela as process

types (proctypes). Within the proctype are defined the states and their respective

transitions as illustrated in Figure 29. It can be seen that the airframe dynamic

model is declared as proctypecruiseMissile, the states by their name catenated with

State, and the transitions within the current state's do..od loop.

77

I

proctypeairframe()

{
startState:

do
:: (map31?initAirframe; true) -> initializeAirframe; goto preLaunch

od;

preLaunchState:

do
:: (mapl2?doLaunch; true) -> goto poweredFlight

od;

poweredFlightState:

do
(mapl4?out0fFuel; true) -> goto inertialFlight
(mapl3?estimatePosition; true) -> setPosition; goto poweredFlight

(map6?changeCourse; true) -> goto maneuvering

od;

maneuveringState:

do
:: (map7?doManeuverComplete; true) -> goto poweredFlight

:: (mapl4?out0fFuel; true) -> goto inertialFlight

od;

inertialFlightState:

do
od;

}

Figure 29. Example Promela Proctype.

78

Each transition is of the form

(receiveEvent;guardCondition) -> action; sendEvents; goto nextState

The parentheses around the receive event and guard condition are required be-

cause of the fact that Spin will not ensure that both are satisfied prior to beginning

a transition. That is, if the receive event holds, Spin will select a corresponding tran-

sition without considering whether the guard condition also holds and will then wait

until that guard condition is satisfied. Therefore without the parentheses, if multiple

transitions are triggered by the same receive event but different guard conditions,

Spin will arbitrarily pick a transition and lock. The addition of the parentheses

ensures the set of transitions is deterministic (if they are indeed deterministic) and

that only the transition that satisfies both the receive event and the guard condition

is selected for execution.

For situations where transitions are automatic or where transitions have no

guard conditions, two constants have been added to the model. AH analysis models

created for this research use the receive event "automatic" to denote an automatic

transition and the guard "true" for transitions with no guard. Both automatic and

true are set to the Boolean value true and are therefore always executable to Spin.

4.8.4 Verifying Components With Spin. Spin facilitates verification of the

reachability of states. Whereas Z/Eves is used to ensure that sets of transitions are

deterministic and that states are uniquely identifiable, Spin is used to simulate the

dynamic model and ensure that transitions may be satisfied and all states visited.

Evaluation of state reachability is instigated via prepending the keyword

"progress" to the state name. Spin then ensures that the states so annotated are

visited during execution or it returns an error message acknowledging the failure to

reach such states.

79

4-9 The Semantic Analyzer

The verification performed using Z/Eves and Spin is a form of semantic analysis

but it is by no means exhaustive. Many facets of an AWSOME AST that require

analysis are outside the scope of this research and as such, should be dealt with by a

separate semantic analysis visitor that is capable of traversing the analysis AST in a

similar fashion to other visitors implemented in this research. The semantic analyzer

would be responsible for semantic analysis not addressed by either Z/Eves or Spin.

Some of the areas not analyzed by Z/Eves and Spin that are pertinent to an

analysis model include:

• method signature and method call signature consistency (required for verifica-

tion of Constraint 27),

• type compatibility and type equivalence (required for complete verification of

Constraint 9),

• resolution of return types (required for complete verification of Constraint 9),

• other semantic analysis considerations include facets that are outside the scope

of an analysis model-occurring in the AWSOME design AST such as: records,

arrays, and method body statements.

4-10 Class-Level Structural Verification

Constraint 1 Attributes Must be Declared Over Defined Types

Two methods are immediately available to ensure that each data object belongs to a

defined type. The first is via the use of the linking visitor-identifierRefs are matched

by name and category to identifier symbols present in the symbol table generated

by the symbol table visitor. If no defined type exists within the set of open scopes

then the linking visitor returns a warning informing the software engineer of the

specification's incompleteness.

80

The other option is to use Z/Eves to perform a type checking run over the

Z section. The command check type checks the entire Z section and is far more

economical and expedient than checking the model declaration by declaration. Both

options were used to successfully check that attribute references conformed with this

constraint.

Constraint 2 Any Variable Referenced Within an Object's Invariant Proposition

Must be Constants or Attributes of the Object

The linking process will highlight if an identifierRef refers to a declaration that is

not within the set of open scopes but it is not presently capable of fully enforcing

such a rule as this. There are three other methods of verifying that the specification

adheres to this rule. The first is via domain checking in the Z/Eves environment, the

second is via use of manual inspection and is most easily performed upon the class

Z-schema. The third option would be the use of a static semantic analysis visitor

such as the one that is still in the conceptual phase of development at this time.

Both the linker and Z/Eves domain check were used successfully to check for

conformity with this constraint.

Constraint 3 Pre- and Postconditions Must be Consistent With the Class Invariant

This constraint is checked via the use of a Z/Eves theorem. The intent of the

theorem is to prove that an instance of the class may exist for which the pre- and

postconditions of the operation are consistent with the class invariant. The theorem

to check the consistency of the operation initializeMissileFuelTank with its class

missileFuelTank is given in Figure 30.

Constraint 4 Invariant Propositions Must be Consistent With Respect to the At-

tributes Types Over Which They Refer

81

\begin{theorem}{iiiitializeMissileFuelTankIsOk}
\exists missileFuelTank \spot initializeMissileFuelTank

\end{theorem}

prove by reduce;

Figure 30. Theorem to Check Operation Expression Consistency With Class In-

variant

\begin{theorem}{initializeMissileFuelTankIsOk}

\exists missileFuelTank \spot true

\end{theorem}

prove by reduce;

Figure 31. Theorem to Instantiate a Class

Verification of the consistency of a class invariant with respect to the attribute types

it refers to is achievable with the Z/Eves theorem prover. A class invariant is rep-

resented in the predicate of the corresponding class schema and any proposition

associated with a type is present in the type's schema.

By proving that an instance of the class may exist, it follows that the class

invariant is consistent with the attribute types to which it refers. The required

theorem to verify this constraint is illustrated in Figure 31.

Constraint 5 Class Invariants Should be Consistent With Other Expressions of the

Class

Expressions capable of occurring within a class:

1. method pre- and postconditions,

2. transition guards,

3. state invariants,

4. event preconditions, and

5. the data types referenced.

82

It must be ensured that these expressions are consistent with the class invariant.

The relation between invariant and data type expressions and verification of this

rule was discussed in Constraint 4.

Constraint 3 details the consistency check applied to operation pre- and post-

conditions while the consistency of transition guards with respect to the class invari-

ant is addressed in Section 4.12.

State and event invariant consistency is checked in the same fashion as opera-

tions are checked in Constraint 3, that is, a theorem is used in an attempt to invoke

an instance of the class for which the state or event invariant holds does not cause

an inconsistency.

Constraint 6 Propositions of a Subclass Must be Consistent With Those of the

Superclass

A theorem that instantiates an object of the subclass will return an error if the

subclass invariant is inconsistent with respect to superclass invariant. The output of

the Z/Eves visitor attempts to instantiate an object of every class as illustrated in

Figure 31. This instantiation fails for a subclass invariant that is inconsistent with

that of its superclass as the superclass invariant is implicitly included via schema

inclusion.

Note that the functional and dynamic models are not further verified with

respect to inheritance. These issues are addressed in the Future Work section of

Chapter Six.

Constraint 7 Propositions of a Sublass Must be Substitutable For Those of the Su-

perclass

This constraint is not checked in the current visitor.

83

Checking schema initializeMissileFuelTank
Error FunctionArgType (line 186) [Type checker]: in application of

\Global (_ \cup _), argument 1 has the wrong type.
Error FunctionArgType (line 186) [Type checker]: in application of

\Global (_ \cup _), argument 2 has the wrong type.
Error TypesNotSame (line 186) [Type checker]: types of \Local

outputFlowRate'
and \Local capacity \cup \Local fuelLevel are not the same.

Error NoType (line 186) [Type checker]: can't infer type of rel-chain

operand
\Local capacity \cup \Local fuelLevel.

Figure 32. Z/Eves Error Message For Type Incompatibility

4-11 Class-Level Functional Verification

Constraint 8 Operation Postconditions Must Maintain The Class Invariant

Verification of model conformity with this constraint is handled by the same theorem

as presented in Figure 31.

Constraint 9 Mathematical Operators Are for Mathematical Types or Explicitly

Defined for the Type

It is envisaged that the semantic analysis visitor will be capable of determining the

correctness of mathematical expressions with respect to type compatibility, return

type determination, and operator semantics. Z/Eves will return an error message

during domain checking if an operator is applied to an incompatible type.

Figure 32 illustrates what happens when an operator is applied over incom-

patible operands—in this case a pair of integers is being conjuncted.

Constraint 10 Pre- and Postconditions Must Refer Solely to Global Constants,

Class Attributes and Parameters

This constraint is enforced by both the linker and Z/Eves domain checking. That

is, the list of open scopes available to the method is comprised of the method scope,

84

class scope, and package scope. This means that the only declarations available to

the method are local variables and formals, class attributes, and global constants.

Constraint 11 Operation Parameters Must be Defined Over Existing Types

Similar to some of the other rules, two solutions exist to this problem. Linking

will ensure that the parameter is of a declared type while Z/Eves ensures that the

method pre- and postconditions are consistent with respect to parameter types by

domain checking that is automatically done when the schema is declared for the

current proof.

This constraint is verified using the same theorem as appears in Figure 30.

4-IS Class-Level Dynamic Verification

Constraint 12 Transitions Must Occur Over States Defined For the Class

Linking ensures that referenced states exist within the scope of the dynamic model

and notifies the software engineer of any deficiency. This constraint is also addressed

by Spin where an error message will be generated for any state that is attempted to

be transitioned that does not exist.

The error message below was generated when missileFuelTank referred to the

state noSuchState. The error message is even kind enough to inform one of the line

number where the errant reference may be located.

spin: line 46 "cruiseMissile.prm", Error: undefined label noSuchState

Constraint 13 Transitions May Only Refer to Send and Receive Events Defined

For the Class

As discussed in constraint 12, both the linker and Spin provide error messages when

this constraint fails to hold.

Spin generated the following error message when the undeclared receive event

noSuchReceiveEvent was encountered in the dynamic model of missileFuelTank.

85

spin: line 46 "cruiseMissile.prm", Error: undeclared variable:

noSuchReceiveEvent

Constraint 14 Transitions Must be Deterministic

In order for the set of transitions to be deterministic, no two transitions may share the

same combination of guard condition and receive event. Spin is incapable of detecting

non-deterministic transitions, its execution simply selects the first combination of

guard and receive event that is satisfied and progresses with that transition.

Spin is capable of identifying non-deterministic transitions. When Spin exe-

cutes an exhaustive state space simulation, invariably for the same set of precondi-

tions, Spin will select the same transition. Spin returns an error message identifying

any transition that is not taken during this simulation. It is then up to the engineer,

however, to determine if the cause of this is a non-deterministic set of transitions.

A sample Spin simulation output is illustrated in Figure 35.

Constraint 15 States Must be Mutually Exclusive

In order to verify this rule, the schema corresponding to the states of the class must

be declared for the current proof in all possible permutations. The state invariant

that forms the predicate of each state schema must not be capable of being true if

any other invariant is already true for the current proof.

This constraint was removed from the final version of the verification suite as

its utility is questionable when compared to the reduction in flexibility it causes to

modeling the dynamic behavior of a system—this is elaborated upon in Chapter

Five.

Constraint 16 State Invariants Must Be Defined Over Attributes of the Class and

Global Constants

This is another linking issue—the set of open scopes for a state is the class scope,

the dynamic model scope, and the global declarations. It is the responsibility of the

86

linker to warn the software engineer of failure to comply with this rule via an error

message.

Constraint 17 The Transition Guard Must be Defined Over Attributes of the Class,

Event Parameters and Global Constants

This constraint is verified by linking the analysis AST.

Constraint 18 The Preconditions of a Transition Must Be Satisfiable For a Tran-

sition To Ever Take Place

This constraint is checked by generation of a theorem that instantiates a class and

tests to see that the conjunction of the current state invariant, guard condition and

operation precondition do not result in an inconsistency.

\begin{theorem}{transitionPreconditionsok}

\exists className \spot t.current.invariant \land t.guard

\land t.actionPrecondition

\end{theorem}

prove by reduce;

Constraint 19 The Invariant of the Next State Must be Implied by the Transition's

Guard and the Postcondition of the Action

This rule is implemented by declaration of a theorem that conjuncts the transition

guard and action postcondition and implies the next state invariant. The syntax for

a Z/Eves theorem to ensure this constraint is given below.

\begin{theorem}{transitionImpliesNextStateIsOk}

\exists className \spot t.guard \land t.action.post

\implies t.next.inv

87

\end{theorem}

prove by reduce;

Constraint 20 The Invariant of the Send Events of a Transition Must Be Implied

By the Transition's Guard and the Postcondition of the Action

The following theorem is generated to test the constraint that send event invariants

of a transition are implied by the guard condition and action postcondition.

\begin{theorem}{transitionImpliesSendEventsIsOk}

\exists className \spot t.guard \land t.action.post

\implies send_l.inv \land send_2.inv \land ...

\end{theorem}

prove by reduce;

Constraint 21 The Precondition of an Action Must be Implied by the Conditions

of the Transition.

\begin{theorem}{transitionImpliesSendEventsIsOk}

\exists className \spot (t.guard \land t.current.inv

\land t.receive.inv) \implies t.action.pre

\end{theorem}

prove by reduce;

Constraint 22 Receive Event Parameters Must Match Action Input Parameters

This rule would be best enforced by a semantic analysis visitor and is not verified

by the products of this research.

88

Constraint 23 Send Event Parameters Must Match Action OutputParameters

As with Constraint 22, this constraint is best enforced by a semantic analysis visitor

and is therefore not verified by the products of this research.

4.IS Domain Level Structural Verification

Constraint 24 Associations Must Refer to Classes Defined Within the Domain

The only verification relating to associations, associative objects and explicitly de-

fined aggregations (as opposed to those declared as variables of the aggregate class)

is provided by the linking visitor.

This research has, however, led to the generation of association Schemas for

the Z specification model even though they are not further referenced in any proofs

of this research. The multiplicity of each end role is a declared integer type. The

multiplicities proposed by Buckwalter for the generation of the associative schema

are:

1. Optional—representing the cardinality zero or one,

2. ZeroOrMore—self explanatory, and

3. OneOrMore.

For example, there exists an association named flies between an instance of type

pilot and an instance of type aircraft. The AWL specification and its corresponding

Z representation are depicted in Figure 33.

Note that this method of transformation of associations is unsuitable for spec-

ifying associations that are of a higher degree than binary.

Constraint 25 Associative Objects Must Refer to Classes Within the Domain

As with Constraint 24, this check is performed by both Z/Eves and the linker.

Constraint 26 Aggregation Must Refer to Classes Within the Domain

89

association flies is
role aviator : pilot multiplicity Optional;
role ride : aircraft multiplicity ZeroOrMore;

end association;

[pilot]

[aircraft]

Pilots = P pilot

AIRCRAFT = P aircraft

.flies
a : pilot <-*■ aircraft

Va; G doma#(x < a) < 1
Vy e rana#(?/> a) > 0

Figure 33. AWL and Z Representation of the Association Flies

90

A specific form of association, aggregation is verified via the linker and by Z/Eves.

4-14 Domain Level Functional Verification

Both Z/Eves and the semantic analysis visitor are used to determine errors in

the functional portion of the analysis model. Dynamic Schemas identify the class

they modify in the schema signature. The Z specification visitor adds the class

identifier to the schema based upon which class the method is declared over and as

such, the method is identified as being an operation of that particular class and is

only capable of modifying the class' constituent attributes.

Constraint 27 Operation Calls Must Match Signatures

Operation signature verification is outside the scope of the current Z specification vis-

itor. The compatibility of operation signatures and operation calls could be verified

by the semantic analysis visitor.

4-15 Domain Level Dynamic Verification

Constraint 28 Objects May Only Communicate Via Send and Receive Events

The linker enforces this rule. The linker does not allow for classes to directly invoke

operations of other classes nor does it allow transitions to be dependent upon events

not declared within the class.

Constraint 29 All States Should be Reachable

By prepending the keyword progress to the name of a state in the Promela file, Spin

will monitor the state during execution and provide notice of failure to transition

to it if the state is never visited. Spin has two modes of operation—in the first it

performs random simulations while the second is an exhaustive verification of the

entire state space. It is this second mode that must be used to verify this rule.

Spin's exhaustive search method is effective for approximately 100,000 states [Spin]

and should therefore remain applicable for the majority of systems being modeled.

91

Figure 34 provides an example of the output generated from running a random

simulation of the system. The command line for such an execution is: spinSSP -c

-a cruiseMissik.prm. The arguments -c and -« tell Spin how to configure its output

and to create an analysis model in the programming language C. The first portion

of the output in Figure 34 identifies the process number of each class in the dynamic

model. The second portion shows the sending and receiving of events between the

classes. The final portion of the output identifies the final state of each class at the

end of execution.

It should be noted that simulation of the entire state space requires the compi-

lation and execution of the generated C analysis model. Output of Spin's evaluation

of the entire state space is shown in Figure 35.

92

Figure 35 contains the output of an exhaustive analysis of an erroneous version

of the cruise missile model. The output identifies the unreachable states of the model

and messages not sent or received. The command line instruction to compile the

analysis model is cc -DBITSTATE -o run pan.c where -DBITSTATE is a directive

for the compiler to compiler the code such that it maximizes memory efficiency

during execution. The command line instruction to execute the exhaustive state

space analysis is run -c > out.txt where -c is the output format and out.txt is the

file for the resultant output to be piped to.

4.16 Verifying the Dynamic Model With Spin

After generation of the Promela model, the only thing to be added to the file

is a statement that enables Spin to run the specification. The statement instructs

Spin to run each of the defined dynamic models and has the following syntax:

init

{ atomic

{

run missileFuelTankO ;

run navigationSystemO ;

run guidanceSystemO;

run flightDirectorO;

run airframeO ;

run cruiseMissileQ

}

}

Execution of the Promela model will then verify constraints regarding state

reachability and identify states and events not executed during the simulation.

93

proc 0 = :init:
proc 1 = missileFuelTank
proc 2 = navigationSystem

proc 3 = flightProfile

proc 4 = guidanceSystem
proc 5 = flightDirector
proc 6 = avionicsSoftware

proc 7 = warhead

proc 8 = airframe
proc 9 = throttle

proc 10 = jetEngine
proc 11 = propulsionSystem
proc 12 = cruiseMissile
q\p 0 1 2 3 4 5 6 7 8 9 10 11 12

7 map25!initPropulsionSystem

7 map25?initPropulsionSystem

8 map23!initThrottle

8 map23?initThrottle
4 map24!initEngine
4 map24?initEngine
2 map21!initAirframe

2 map21?initAirframe

timeout

final state:

#processes: 13
24: proc 12 (cruiseMissile) line 260 "cruiseMissile.prm" (state 6)
24: proc 11 (propulsionSystem) line 245 "cruiseMissile.prm" (state 6)
24: proc 10 (jetEngine) line 235 "cruiseMissile.prm" (state 10)
24: proc 9 (throttle) line 221 "cruiseMissile.prm" (state 11)
24: proc 8 (airframe) line 189 "cruiseMissile.prm" (state 11)
24: proc 7 (warhead) line 165 "cruiseMissile.prm" (state 6)
24: proc 6 (avionicsSoftware) line 150 "cruiseMissile.prm" (state 9)
24: proc 5 (flightDirector) line 130 "cruiseMissile.prm" (state 6)
24: proc 4 (guidanceSystem) line 103 "cruiseMissile.prm" (state 6)
24: proc 3 (flightProfile) line 88 "cruiseMissile.prm" (state 6)
24: proc 2 (navigationSystem) line 69 "cruiseMissile.prm" (state 6)

24: proc 1 (missileFuelTank) line 44 "cruiseMissile.prm" (state 6)

24: proc 0 (:init:) line 289 "cruiseMissile.prm" (state 14) <valid endstate>

13 processes created

Figure 34. SPIN Test Run Using: spin399 -s -c -a cruiseMissile.prm

94

pan: invalid endstate (at depth 25)

(Spin Version 3.3.9 ~ 31 January 2000)

+ Partial Order Reduction

Full statespace search for:
never-claim - (none specified)

assertion violations +
acceptance cycles - (not selected)

invalid endstates +

State-vector 208 byte, depth reached 26, errors: 1

17 states, stored

2 states, matched
19 transitions (= stored+matched)

11 atomic steps

hash conflicts: 0 (resolved)

(max size 2~18 states)

1.493 memory usage (Mbyte)

unreached in proctype missileFuelTank

line 46, state 3, "(1)"

line 50, state 11, "(1)"
line 56, state 15, "(1)"
line 55, state 18, "mapl?changeTankFlow"

line 61, state 22, "(1)"
line 62, state 26, "(1)"
line 62, state 28, "map3!outOfFuel"
line 60, state 30, "mapl?changeTankFlow"

line 60, state 30, "map2?tankEmpty"

(8 of 33 states)
unreached in proctype navigationSystem

line 71, state 3, "(1)"

line 76, state 10, "(1)"
line 75, state 13, "map5?updatePosition"

line 81, state 17, "(1)"
line 81, state 19, "map6lestimatePosition"
line 80, state 21, "(1)"
(6 of 24 states)

Figure 35. Results of Exhaustive State Space Reachability Test

95

unreached in proctype flightProfile
line 90, state 3, "(1)"

line 95, state 10, "(1)"
line 96, state 14, "(1)"
line 94, state 17, umap9?addWayPoint"
line 94, state 17, "maplO?removeFirstWayPoint"

(4 of 20 states)
unreached in proctype guidanceSystem

line 105, state 3, "(1)"
line 110, state 10, "(1)"
line 110, state 12, "map5!updatePosition"

line 111, state 15, "(1)"
line 112, state 19, "(1)"
line 112, state 21, "map5lupdatePosition"
line 109, state 23, "mapl2?doLaunch"
line 109, state 23, "map6?estimatePosition"

line 109, state 23, "map4?out0fFuel"
line 117, state 28, "maplOIremoveFirstWayPoint"

line 117, state 29, "mapl3!armMissile"

line 116, state 34, "(1)"

line 116, state 34, "(1)"
line 122, state 38, "goto :bl2"
line 125, state 41, "-end-"

(12 of 41 states)
unreached in proctype flightDirector

line 132, state 3, "(1)"
line 137, state 10, "(1)"
line 137, state 12, "mapl7!changeCourse"

line 137, state 13, "mapl8!setElevation"
line 137, state 14, "mapl9!setThrottle"

line 136, state 16, "mapl5?errorSignals"

line 143, state 20, "(1)"
line 142, state 23, "mapl6?maneuverComplete"

(8 of 26 states)
unreached in proctype avionicsSoftware

line 152, state 3, "(l)"
line 152, state 5, "map4!initNavigationSystem"
line 152, state 6, "mapll!initGuidanceSystem"
line 153, state 7, "mapl5!initFlightDirector"
line 157, state 13, "goto :bl7"
line 160, state 16, "-end-"
(6 of 16 states)

Figure 35. Results of Exhaustive State Space Reachability Test Cont.

96

unreached in proctype warhead
line 167, state 3, "(1)"
line 172, state 10, "(1)"
line 171, state 13, "mapl3?arinMissile"
line 176, state 17, "goto :b20"
line 179, state 20, "-end-"
(5 of 20 states)

unreached in proctype airframe
line 191, state 9, "(1)"
line 196, state 15, "(1)"
line 197, state 18, "(1)"
line 198, state 21, "(1)"
line 195, state 23, "map3?out0fFuel"
line 195, state 23, "map6?estimatePosition"
line 195, state 23, "mapl7?changeCourse"
line 203, state 27, "(1)"
line 204, state 30, "(1)"
line 202, state 32, "map22?doManeuverComplete"
line 202, state 32, "map3?out0fFuel"
line 208, state 36, "goto :b25"
line 211, state 39, "-end-"
(10 of 39 states)

unreached in proctype throttle
line 223, state 9, "map28!changeTankFlow"
(1 of 14 states)

unreached in proctype jetEngine
(0 of 13 states)

unreached in proctype propulsionSystem
line 251, state 12, "goto :b31"

line 254, state 15, "-end-"
(2 of 15 states)

unreached in proctype cruiseMissile
line 262, state 7, "map28!initAvionicsSoftware"
line 267, state 13, "(1)"
line 267, state 14, "mapl2IdoLaunch"
line 266, state 16, "map27?launch"
line 271, state 20, "goto :b34"
line 274, state 23, "-end-"
(6 of 23 states)

unreached in proctype :init:
(0 of 14 states)

Figure 35. Results of Exhaustive State Space Reachability Test Cont.

97

It should be noted that Promela's lack of expressive power in discrete arith-

metic made the transformation of some expressions impossible and thus resulted in a

lack of representation of many propositions in the simulation model. This effectively

means that the reachability analysis performed, although insightful, is inadequate

for testing the state reachability of OMT dynamic models.

4-17 Summary

This chapter details the implementation of the constraints proposed in Chapter

Three—how they are specified and how they are verified. The analysis model visitors

designed to produce Z/Eves and Promela models of the specification are described as

is how these theorem proving/dynamic model verifying tools ensure the consistency,

completeness, and correctness of a domain model.

The final chapter of this document evaluates the constraints and implementa-

tion of this research before drawing conclusions and proposing directions for future,

related work.

98

V. Results

5.1 Introduction

This chapter details the results of testing and execution of the methodology

proposed and implemented in Chapters Three and Four. Testing of the practicality,

testability, and effectiveness of the constraints proposed was evaluated by their ap-

plication to an object-oriented formal specification and analysis of the outcomes of

the verification process.

The initial analysis model to which these constraints were applied was devel-

oped as part of this research effort and is presented at Appendix B. The majority

of faults in the analysis model were introduced with the intent purpose of ensuring

the implementation of the system while others were simply accidental errors of the

specification.

5.2 Implementation Coverage

Table 2 summarizes the state of each constraint, i.e., whether or not verification

of the constraint is implemented and whether that implementation is automated.

The verification of the majority of the constraints implemented is automatic (once

the tools are in execution).

Feedback provided to the user takes the form of the output provided by the

tools Z/Eves and Spin and as such, the value of the feedback is limited by the user's

experience with the tools.

Automation of the remaining constraints and the provision of feedback in a

manner that is specific to 00 but not the tools in particular would provide the ability

to apply these tools without the requisite knowledge of their internal execution.

99

5.3 Evaluation of the Constraints

Chapter Three introduced constraints for the three models of OMT. These

constraints help to provide and verify formal semantics to the semi-formal foundation

of OMT. The list of constraints is by no means complete—Section 5.6 proposes future

work in the formalization of aggregation and inheritance alone. They do, however,

provide a solid foundation to the concepts required to formalize and verify OOA

models and prove that verification is in fact suited to semi-automation.

Other than the identified weaknesses in formalism of the inheritance and ag-

gregation constraints, the question that begs to be answered is "Are the constraints

proposed complete?". Unfortunately, the answer is not as simple as the question and

should be subdivided into the following sections:

1. Is the list of constraints exhaustive?

2. Is the list of constraints fully implemented?

3. Is each constraint complete?

5.3.1 Is the List of Constraints Exhaustive 9 The constraints were identified

via analysis of the six perspectives of an OMT analysis model as described in Chapter

Three. For each perspective, it was attempted to identify the key constituents of the

model and ensure that they were formally constrained to assist in verification of the

correctness of the entire model.

It has already been acknowledged that this list of constraints is incomplete.

Just how to go about proving that a list of constraints is complete is an extremely

complex if not fruitless task.

5.3.2 Is the List of Constraints Fully Implemented? Not all of the con-

straints proposed are checked. The constraints not implemented are identified as

such in Table 2. The failure to implement and/or automate those constraints is due

to:

100

1. Z/Eves representing schema invariants as ticked variables only (instead of both

ticked and unticked). This leads to the inability of proofs to identify all in-

stances of non-conformity with Constraints 3, 5, 18, 19, 20, and 21. The

simplest rectification appears to be the explicit inclusion of the unticked state

invariant into each proposition as required.

2. Promela's inadequate variety of data types and subsequent lack of expressive

power when dealing with discrete arithmetic. Promela's list of data types is

limited to bit, byte, short and int. These data types represent signed and

unsigned integer values of differing ranges. The lack of support for sets, se-

quences and propositions is sorely felt. This meant that verification using Spin

was little more than verification of state reachability based solely upon class

communication with no regard for guard conditions or class attribute manip-

ulation.

3. Deferral of implementation to a semantic analyzer. Constraints 22 and 23

deal with operation parameter matching—something more suited to a semantic

analyzer than a theorem prover.

4. Difficulty in expressing the required theorems. Constraints 6 and 7 deal with

the relationship between a subclass class' invariant and its parent's invariant.

The theorem proposed simply substituted true for the parent's invariant be-

cause Z/Eves believed that as a schema declaration, the schema predicate must

be true and thus simplified it as such. A better theorem would extract the su-

perclass invariant and conduct the proof based solely upon it rather than the

superclass schema.

Although the aforementioned constraints are not fully functional, these prob-

lems could possibly be addressed by other verification tools as they are not all that

more complex than any of the other constraints proposed. In fact, all but one of

these constraints (Constraint 29) could possibly be addressed by the theorem prover

(requiring more complex transforms) and a semantic analyzer. It should also be

101

mentioned that the most surprising error detection was that what was thought to

be a robust dynamic model did, in fact, have numerous unreachable states.

5.3.3 Is Each Constraint Complete? The theorems implemented in Z/Eves

are based closely upon the formalisms provided in Chapter Three and are therefore

likely to be complete with respect to the proposed constraints. Verification of the

dynamic model is trivialized somewhat and as such, is obviously incomplete.

5.4 Research Findings

The majority of constraints proposed as part of this research were capable

of being expressed and tested without the requirement for user interaction. The

automation of much of the formal specification process and subsequent verification

simplifies the somewhat overwhelming task and increases the value of formal methods

in software engineering.

The results of this research are promising. The constraints determined in

Chapter Three identify model attributes that must be verified in order to determine

system correctness. The constraints also assist in the definition of OOA semantics for

the purposes of automated verification. The implementation proves that the model

may be transformed so as to provide the input to commercially available verification

tools.

5.5 Conclusion

Automated validation and verification of object-oriented analysis models pro-

vides the software engineer with an effective and efficient manner in which to remove

a great deal of the effort involved in the use of formal methods. The importance of

V&V to correctness-preserving transformations systems cannot be stressed enough.

This research provides a framework of constraints that when applied to an OOA

102

system, help verify model correctness at the dynamic, functional, and structural

levels.

This research suggests that the initial cost to construct an automated verifica-

tion suite is worth the effort required due to the increased effectiveness and efficiency

it offers to V&V of 00A models. Keeping in mind that the majority of automated

tools are only effective for the system they are designed to be used in conjunction

with, this research also indicates that implementation and use of such a verification

suite is practical and valuable. For the test cases of this research, the theorems gen-

erated were relatively easy to prove with a currently available theorem prover—thus

providing evidence of the applicability of the proposed verification techniques.

However, it must be stated that the decision as to whether a purpose built

V&V suite should be used or a COTS system employed is of critical importance.

Therefore, a needs analysis that identifies the constraints to be verified should be

conducted prior to the selection of any verification tool.

5.6 Future Directions

A number of avenues for future work based upon this research exist

5.6.1 Further Formalism of Inheritance Towards Strict Inheritance. Con-

straints 6 and 7 deal with subclass consistency and substitutability for the superclass

invariant. Strict inheritance requires a subclass to maintain the structural, functional

and dynamic properties of the superclass so that the child class is substitutable for

the parent. This notion is also termed extension—the "two systems are indistin-

guishable if we cannot tell them apart without pulling them apart" [Milner].

The requirements of substitutability exceed the constraints implemented in this

research. Constraints 6 and 7 only ensure correctness of the subclass invariant. The

expressions of a subclass, be they pre- or postconditions, event or state invariants,

or guard conditions must not further constrain the attributes inherited from the

103

superclass. The functionality of operations must not be changed. Newly introduced

operators are free to form any expression that does not violate any of the Constraints

proposed in Chapter Three.

5.6.2 Further Verification of Aggregate Dynamic Models. System level

dynamic model verification should include checking the domain dynamic model for

the possibilities of starvation, deadlock, unreachable states, and correct termination.

Constraint 29, all states must be reachable, is the only complex formal constraint of

domain level dynamic models in this research.

Deadlock occurs when two (or more) classes are waiting for each other to send

an event. Although complex to detect, the comprehensive output generated by Spin

identifies which classes are waiting upon what events when simulation execution

halts—thus identifying where the breakdown in model correctness occurs. Starva-

tion, where a class cannot change state due to a lack of a certain resource, may also

be determined in this fashion.

Specific behavior of a domain may be simulated by the injection of messages

into the init portion of the Promela specification to ascertain if certain initial con-

ditions lead to unreachable states, deadlock, or starvation. The creation of use case

test sets to ensure desired behavior of the specified system would assist in validation

of system behavior. It is possible in SPIN to introduce a set of events into and

execute a dynamic model—the result of such could be compared to the expected

behavior of the system.

5.6.3 Event Mapping in Promela. Work was started in the modeling of

event maps. The prototype Promela generation visitor maps events according to

their name via channel declarations. These mappings are therefore solely based upon

event name matching. A more robust form of event mapping could be implemented

by declaring a channel for each event map. This would allow for the passing of events

104

to specific classes rather than their broadcast to all classes that have the matching

receive event in their dynamic models.

5.6.4 Representation of Reals and Literal Strings in Z. The representation

of string values was less than adequate in this research. One possible solution would

be the use of an enumerated type (such as char) that declared the permissible values

that an element of a string could take and the subsequent declaration of the type

string such that it was a power set of sequences of char. This concept is illustrated

in figure 36

char::=a\b\c\d..A\B\C.. 1 | 2 .. | 0 ...

I string : P(seqchar)

Figure 36. Declaration of a Literal String Type

The modeling of real numbers in Z is far more difficult to achieve than the

modeling of literal strings. The constraints proposed in Chapter Three do not re-

quire differentiation between real types and integer types. Thus, the Z specification

represents fixed and floating point real numbers as integers.

One limitation of the approach taken in this research is that the literal value is

simply cast as an integer and therefore loses a great deal of its value. Multiplication

of the value by its decimal place resolution (as done with the bounds of the type)

would result in a more accurate representation.

More work is required in the specification of what it is that should be enforced

when dealing with real types and these rules would become part of the semantic

analyzer toolkit.

105

106

VI. Bibliography

R.T. Alexander, J.M. Bieman, J. Viega "Coping with Java Programming Stress,"

IEEE Computer, pp 30-38, April 2000

S.J. Andriole (Ed) "Software Validation Verification Testing and Documenta-

tion," Petrocelli Books, 1986

R. Balzer, T.E. Cheatham, C.C. Green, "Software Technology in the 1990's:

Using a New Paradigm," IEEE Computer, vol 16, pp 39-45, November 1983

H.K. Berg, W.E. Boebert, W.R. Franta, T.G. Moher, "Formal Methods of

Program Verification and Specification," Prentice Hall, 1982

F.P. Brooks, "The Mythical Man Month" 10th ed, Addison Wesley, 1998

C.N. Fischer, R.J. LeBlanc, Jr "Crafting a Compiler," Benjamin Cummings,

1988

R.W. Floyd "Assigning Meanings to Programs," Proc. Symposium on Applied

Mathematics, American Mathematical Society, Vol. 19, 1967

M.D. Fräser, K. Kumar, and V.K. Vaishnavi, "Strategies for incorporating

formal specifications in software development," Communications ACM, vol 37, pp

74-86, October 1994

E. Gamma, R. Helm, R. Johnson, J. Vlissides, "Design Patterns. Elements of

Reusable Object-Oriented Software," Addison-Wesley, 1995

Gates, Gisselquist, Landry, "CSCE 594 Term Project,"Graduate School of En-

gineering, Air Force Institute of Technology (AU), Aug 1993

C. Ghezzi, M, Jazayeri, D. Mandrioli "Fundamentals of Software Engineering,"

Prentice Hall, 1991

107

A. Ginsberg, "Knowledge-Base Reduction: A New Approach to Checking

Knowledge Bases for Inconsistency k Redundancy", Proc. 7th National Conference

on Artificial Intelligence (AAAI 88), volume 2, pp 585-589.

S.J. Goldsack, S.J.H. Kent (Eds), "Formal Methods and Object Technology,"

Springer 1996.

R.P. Graham, JR, T.C. Hartrum, "The AFIT Wide Spectrum Object Modeling

Environment : An AWSOME Beginning," to be presented at NAECON, Oct 2000

D.P. Gulch, C.B. Weinstock, "Model-Based Verification: A Technology for

Dependable System Upgrade," Carnegie-Mellon University, Pittsburgh, Pa, 1998.

J.V. Guttag, E. Horrowitz, D.R. Musser "Abstract Data types and Software

Validation," Comm. Of the ACM, Vol 21, No 12, 1978.

T.C. Hartrum, "An Object Oriented Formal Transformation System for Prim-

itive Object Classes," Class Notes, Air Force Institute of Technology, Wright Pat-

terson AFB, OH, Mar 1999

T.C. Hartrum, P.D, Bailor, "A Formal Extension to Object Oriented Analy-

sis Using Z," Tech Report AFIT/EN/TR-94007, Air Force Institute of Technology,

Wright Patterson AFB, OH, Oct 1994

T.C. Hartrum, P.D. Bailor, "Teaching Formal Extensions of Informal-Based

Object Oriented Analysis Methodologies," in Proceedings Soßware Engineering Ed-

ucation (7th SEI CSEE Conference), (San Antonio, TX), pp 389-409, Jan 1994

C. Heitmeyer, J. Kirby, B. Labaw "Tools for Formal Specification, Verification

and Validation Requirements" IEEE COMPASS, June 1997

R.S. Pressman, "Software Engineering,"fourth Ed, McGraw Hill, 1997

P. Meseguer, A.D. Preece, "Verification and Validation of Knowledge-Based

Systems with Formal Specifications," http://www.csd.abdn.ac.Uk/~ apreece/Pubs/

KER95.htm

108

A. Mili, "An Introduction to Formal Program Verification," Van Norstrand

Reinhold Company, 1985

R. Milner, "A Calculus of Communicating Systems," Springer-Verlag, 1980

I. Meisels, Software Manual for Windows Z/Eves Version 2.0. Technical Report

TR-97-5505-04f, ORA Canada, October 1999

I. Meisels, and Marak Saaltink. The Z/Eves Reference Manual (for Version

1.5). technical Report TR-97-5493-03d, ORA Canada, Septemver 1997

I. Meisels, Software Manual for Unix Z/Eves Version 1.5. Technical Report

TR-97-6028-01c, ORA Canada, September 1997

P.A. Noe, "A Structured Approach to Software Tool Integration," Ms Thesis,

AFIT/GCS/ENG/99M-14, Graduate School of Engineering, Air Force Institute of

Technology (AU), Mar 1999. DTIC No. ADA361674

R.M. O'Keefe, 0. Balci, E.P. Smith, "Validating Expert System Performance,"

IEEE Expert, 2(4):81-90, 1987

W. Polack "Compiler Specification and Verification," Springer-Verlag, 1981

B. Potter, J. Sinclair, D. Till "An Introduction to Formal Specification and Z"

Prentice Hall, 1991

A.D. Preece, C. Grossner, T. Radhakrishnan, "Validating Dynamic Properties

of Rule-Based Systems" http://www.csd.abdn.ac.uk/~ apreece/Pubs

T.W. Pratt, "Programming Languages Design and Implementation," second

Ed, Prentice Hall, 1984

"Refine User's Guide," Reasoning Systems, Palo Alto, California

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, "Object Ori-

ented Modeling and Design", Prentice Hall, 1991

M. Saaltink, The Z/Eves User's Guide. Technical Report TR-97-5493-06. ORA

Canada, October 1999

109

P.N. Scharbach (Ed) "Formal Methods: Theory and Practice,"CRC Press,

1989

M. Shaw, D. Garlan, "Software Architecture," Prentice Hall, 1996

R.C. Shock "Software Architecture Course Notes," Department of Computer

Science and Engineering, Wright State University, 1999

S. Stepney, R.Barden, D. Cooper, "Object Orientation in Z", Springer-Verlag,

1992

M. Suwa, A.C. Scott, E.H. Shortliffe, "An Approach to Verifying Completeness

and Consistency in a Rule-Based Expert System", AI Magazine 3(4):16-21, 1982

A. Verdaguer, P. Meseguer "Verification of Multi-Level Rule-Based Expert

Systems: Theory and Practice", International Journal of Expert Systems: Research

and Applications, 6(2):163-192, 1993

J.B. Wordsworth "Software Development with Z", Addison Wesley, 1992

Z/Eves Irwin Meisels and Mark Saaltink. The Z/Eves Reference Manual. Tech-

nical Report TR-99-5493-03d, ORA Canada, September 1997

110

Appendix A. A FIT Wide Spectrum Object Modeling Environment

and Language

The aim of this appendix is to provide a brief introduction to the history and de-

velopment of the AFIT Wide Spectrum Object Modeling Environment (AWSOME),

a description of the AWSOME metamodel, and finally, to provide the production

rules upon which the language is developed. The productions are provided in order

to explicitly define the required structure of any AWSOME analysis model created

without making use of the language and parser but wishing to use the verification

tools provided as part of this research.

A. I Introduction

AWSOME is the culmination of the extension and redesign of AFITtool, a

correctness-preserving formal software synthesis system developed by students and

faculty at the United States Air Force Institute of Technology (AFIT). The aim of

AFITtool was to provide for proof of concept of much of the software engineering

related research being conducted at AFIT. This tool was implemented in Reasoning's

high level language Refine over a period of six years.

Being a wide-spectrum environment, AWSOME is capable of modeling object-

oriented systems at various stages of the software development cycle. AWSOME

is capable of specification level modeling where much of the system is specified in

terms of formal expressions, for example, methods are specified in terms of pre-

and postconditions, while classes, their states and events are defined over invariant

expressions.

Elements specified in AWSOME may be reused extensively via the facilitation

of an object-oriented repository that allows for the harvesting of pre-defined classes

to be added to the problem domain currently being specified/analyzed.

Ill

Via the use of correctness-preserving semi-autonomous transforms, the analysis-

level model may be transformed into a design-level representation. Transformations

exist to take the analysis model to the design level as follows:

1. associations are replaced with single and bi-directional access types,

2. associative objects are transformed into to classes,

3. dynamic models are replaced class methods,

4. class invariants become statements of class methods, and

5. method pre- and postconditions are expressed as statements within the method

body.

Another series of transformations leads from the design model to executable

code. AFITtool is capable of generating Ada code, however, in order to make AW-

SOME more widely applicable, not only was it implemented in Java, but the output

language of choice was also selected to be Java. Some work has been accomplished

dealing with the generation of C++ from AWSOME models as well, however, this

capability is not as extensive as its Java counterpart.

A. 2 The AWSOME Metamodel

This section describes the metamodel that forms the template for analysis

models represented by AWSOME ASTs. Following the lines of object-oriented anal-

ysis, the AWSOME metamodel structure will be described from the perspective

of inheritance and aggregation. Approximately 100 classes exist in the AWSOME

metamodel.

A.2.1 AWSOME AST Class Naming. Wsldentifier facilitates the naming

of Ws classes. WsIdentifierRef provides the capability to refer to instances of Wsl-

dentifier. The linking phase of AWSOME AST generation provides each instance of

WsIdentifierRef with a pointer to its corresponding Wsldentifier.

112

A.2.2 The Inheritance Model. The root of AWSOME's inheritance hierar-

chy is the abstract class WsObject. The immediate children of WsObject that are of

importance to analysis models and interesting to address further are WsDeclaration,

WsExpression, WsDynamicModel, WsAttribute, and WsMethod.

A.2.2.1 WsDeclaration. From WsDeclaration spawn the subclasses

for representing data types, variables, constants, states, events, sets, sequences, bags,

functions, procedures, and associations. Essentially, from WsDeclaration is inherited

attributes and methods related to AST node identification.

A.2.2.2 WsExpression. It is the subclasses of WsExpression that

define the structure of expressions contained within an analysis model abstract syn-

tax tree (AST). The WsExpression family of objects deals with the representation

of identification references (via WsName and its subclasses), proposition quantifica-

tion, and binary and unary expressions. It is expected that the binary and unary

expression portion of the tree will be extended in order to provide a greater degree

of expression functionality to sets and encompass sequence and bag operators.

A.2.2.3 WsAttribute. WsAttribute defines the AWSOME model for

representation of class attributes. It is a direct subclass of WsObject and extends

it by the addition of attributes describing certain characteristics of a class attribute

such as whether it is private or public and by providing database query information

[Buckwalter]. A WsAttribute has a WsDataObject as an aggregate component—it

this data object that the characteristics of WsAttribute define.

A.2.2.4 WsMethod. Similar to WsAttribute, WsMethod provides

attributes to another Ws class. WsMethod defines the visibility of a class method—

a private method is only visible within the scope of the class while a public method

may be invoked by other classes of the domain. The method pre- and postconditions

are described by an aggregate component of WsMethod— WsSubprogram. It should

113

i

♦wsClassSuperclass

■HNsEventMaps

+wsClassOperations \ +wsDynamicModel
{Set} \

♦wsClassDataComponents / +wslnvariant \ ,<*_.,
{Set} I \ \ {S8,) ^

°-' V X0..1
WsMethod WsExpresslon WsDynamicModel WsEvantMap

Figure 37. WsClass.

be noted that although public methods may be invoked by other classes, object

communication within this research is conducted solely by event passing.

A.2.3 The Aggregation Model. The root node of any AWSOME analysis

model is the artifact (don't ask me why—I don't really know). An artifact com-

prises of one or more packages that form containers for related domain elements.

Each package consists of a set of declarations that may be used to declare classes,

associations, associative objects, type definitions, constant declarations, and other

packages. Figure 37 illustrates the aggregation diagram of the WsClass. At this

point it is worth noting that every class of the AWESOME metamodel is prepended

with Ws which identifies the class as an AWSOME metamodel component.

A.2.3.1 WsClass. It can be seen in Figure 37 that a WsClass consists

of a set of attributes, a set of methods (WsMethod), a dynamic model (WsDynamic-

Model), an invariant expression (WsExpression), an event map set (WsEvent), and

a pointer (WsIdentifierRef) to the class' parent class (if, in fact, there is one).

A.2.3.2 WsDynamicModel AWSOME dynamic models are con-

structed from the aggregation of a set each of events (WsEvent), transitions (WsTran-

sition) and states (WsState). The set of states exhaustively defines the state space

114

+wsClassStatea
{Set)

0..",

WsState

VtaDynamicMoctel

7^\'
+wsTransitions \

{Set} +wsClassEvents
{Set}

WsTransitions

State ^
Transition

\ o-
WsEvent

Figure 38. WsDynamicModel.

of a class, the set of events exhaustively defines the send and receive events by which

the class communicates with other classes of the domain. Events may contain pa-

rameters that allow classes to pass arguments for use in transition actions. Figure

38 illustrates the WsDynamicModel structural diagram.

A.2.3.S WsTransition. Each transition of a dynamic model is de-

scribed by an instance of the aggregate class WsTransition. This class defines the

event and guard condition precipitating the transition (WsExpression), the action

(method invocation) that takes place and any events sent as a product of the tran-

sition between states. It should be noted for a given transition that parameters of

the receive event must map to the in parameters of the action and that parameters

of the send events must map to the out parameters of the action. Figure 39 depicts

the WsTransition structural model.

A.3 AWL Syntax

This section provides production rules of the grammar that dictate the AW-

SOME language (AWL) syntax. The AWL parser is implemented with the parser

design tool JavaCC that provides the ability to define a grammar and generate a

115

+wsCurrentSta»

0.,/'

,/ /
WsldenUfieifMf

References ft
Stete

, 0 10.1 0.1 "

/ / -twsGuard \ ♦■

\ctfort *"v ♦!

\ \
\0.1 \ o..*

,/,°10.'.1 oil °-^\

w
■wsSendEvants \

■mreReceiveEvent ' —*-"~ / ♦wsActfon

a^ ! References fcs
an Event

wsNextSlate

\
WaldenttfierRef i waExpresnon wsidentiterRer WstoerWifterRer WaldentifefRef

±.
References a method of the class. The in ^
parameters of the action must have names
matching the parameters of the received
event, and out parameters matching the
send event(s)\ TMs avoids the need for local
variables to hold the arguments of the send
events that the action computes.

invoking a cäiib
to one or more
events

References
State 3

Figure 39. WsTransition.

compilable Java implementation of the parser. To provide the level of functionality

required within the AWL parser, augmentation of the JavaCC file with Java code

was required. Except for <ID>, which represents an identification string, terms

embedded within <> are keywords.

compilation unit Package <E0F>

package :: <PACKAGE> Identifier <IS> (Declaration I Package)*
<END> <PACKAGE> ";"

Declaration :: TypeDeclaration I Subprogram I DataObject I Association

Identifier :: t = <ID>

TypeDeclaration :: <TYPE> Identifier <IS> TypeDefinition I Class

TypeDefinition :: AbstractTypeDefinition
I ArrayTypeDefinition
I AccessTypeDefinition
I BagTypeDefinition
I DerivedTypeDefinition
I EnumerationTypeDefinition
I IntegerTypeDefinition
I RealTypeDefinition
I RecordTypeDefinition
I SequenceTypeDefinition
I SetTypeDefinition
I UnionTypeDefinition

AbstractTypeDefinition :: <ABSTRACT> ";"

116

AccessTypeDefinition :: <ACCESS> TypeName ";"

ArrayTypeDefinition :: <ARRAY> "[" TypeName "]" <0F> TypeName ";"

BagTypeDefinition :: <BAG> <0F> TypeName ";"

DerivedTypeDefinition :: IdentifierRef <WHERE> Expression ";"

EnumerationTypeDefinition :: "(" EnumerationValue("," EnumerationValue)*
II \ II II . II

EnumerationValue :: Identifier

IntegerTypeDefinition :: <RANGE> ("*" I Expression) ".."
("*" | Expression) ";"

RealTypeDefinition :: (<DELTA> Expression I <DIGITS> Expression
[<BASE> Expression]) <RANGE> ("*" I Expression) ".."
("*" | Expression) ";"

RecordTypeDefinition :: <REC0RD> (UninitializedVariable)+ <END> <REC0RD> ";"

SequenceTypeDefinition :: <SEQUENCE> <0F> TypeName ";"

SetTypeDefinition :: <SET> <0F> TypeName ";"

UnionTypeDefinition :: <UNI0N> (UninitializedVariable)* <END> <UNI0N> ";"

Class :: <CLASS> Identifier <IS>
[<ABSTRACT>]
[TypeName <WITH>]
(visibilityPrefix (Attribute I Method))*

[<INVARIANT> Expression]
[DynamicModel]
<END> <CLASS> ";"

visibilityPrefix :: <PRIVATE> I <PUBLIC>

Attribute :: DataObject

Method :: [<ABSTRACT>][<CLASS>]

DynamicModel :: <DYNAMIC> <M0DEL> <IS>
(Event)*

(State)*
<TRANSITION> <TABLE> <IS>
(Transition)*

<END> <TRANSITION> <TABLE> ";"
<END> <DYNAMIC> <M0DEL> ";"

117

Transition :: <IN> IdentifierRef
<0N> IdentifierRef
[<IF> Expression]
[<D0> SubprogramName]

[<SEND> IdentifierRef ("," IdentifierRef)*]
<T0> IdentifierRef";"

State :: <STATE> Identifier [<INVARIANT> Expression 3 ";"

Event :: <EVENT> Identifier "("[Parameter (",*' Parameter)*] ")"
[<ASSUMES> Expression]";"

Subprogram :: Procedure I Function

Procedure :: <PROCEDURE> Identifier "("[Parameter ("," Parameter) *] ")"
[<ASSUMES> Expression]
[<GUARANTEES> Expression]
[<IS> (DataObject)* <BEGIN> (Statement)* <END> ";"]

Function :: <FUNCTI0N> Identifier "("[Parameter ("," Parameter) *] ")"
":" TypeName
[<ASSUMES> Expression]
[<GUARANTEES> Expression]
[<IS> (DataObject)* <BEGIN> (Statement)* <END> ";"]

Association :: RegularAssociation I Aggregation I AssociativeObject

RegularAssociation : : <ASS0CIATI0N> Identifier <IS>AssociationEnd
(AssociationEnd)+
[<INVARIANT> Expression]

<END> <ASS0CIATI0N> ";"

AssociationEnd :: <R0LE> Identifier ":" TypeName <MULTIPLICITY> TypeName
("," TypeName)* ";"

Aggregation : : <AGGREGATION> Identifier <IS>
ParentEnd
ChildEnd
[<INVARIANT> Expression] <END> <AGGREGATION> ";"

ParentEnd :: <PARENT> Identifier ":" TypeName <MULTIPLICITY> TypeName
("," TypeName)* ";"

ChildEnd :: <CHILD> Identifier ":" TypeName <MULTIPLICITY> TypeName
("," TypeName)* ";"

AssociativeObject :: <ASSOCIATIVEOBJECT> Identifier <IS>
AssociationObjEnd (AssociationObjEnd)+
(visibilityPrefix (Attribute I Method))*
[<INVARIANT> Expression]
<END> <ASSOCIATIVEOBJECT> ";"

118

AssociationObjEnd :: <R0LE> Identifier ":" TypeName <MULTIPLICITY> TypeName
("," TypeName)* [<QUALIFIED> <BY> IdentifierRef]";"

Expression :: OrExpression ("=>" DrExpression)*

ExpList :: [Expression ("," Expression)*]

OrExpression :: AndExpression (<0R> AndExpression)*

AndExpression :: RelationalExpression (<AND> RelationalExpression)*

RelationalExpression :: AddExpression ["=" AddExpression
"/=" AddExpression
"<" AddExpression
"<=" AddExpression
">" AddExpression
">=" AddExpression
<IN> AddExpression
<SUBSET> AddExpression
<SUBSETEQ> AddExpression]

AddExpression :: MultiplyExpression ("+" MultiplyExpression
I "-" MultiplyExpression)*

MultiplyExpression :: ExponentExpression
("*" ExponentExpression
I "/" ExponentExpression

I <M0D> ExponentExpression
I <INTERSECT> ExponentExpression
j <UNI0N> ExponentExpression)*

ExponentExpression :: UnaryExpression ("**" ExponentExpression)*

UnaryExpression :: PrimaryExpression
I <N0T> UnaryExpression
| "-" UnaryExpression
| "+" UnaryExpression

PrimaryExpression :: AccessExpression
I Allocator
I LOOKAHEAD (("{*" I "[" I "{") Expression "I") ContainerFormer
I LOOKAHEAD (SubprogramName "(") FunctionCall
I LiteralConstant
I LOOKAHEAD (TypeName "'" "(") TypeConversion
I Name
I QuantifiedExpression
I "(" Expression ")"

AccessExpression :: "&" Name

119

Allocator :: <NEW> TypeName

ContainerFormer :: BagFormer
I SequenceFormer
I SetFormer

BagFormer :: "{*" Expression "I" LogicalVarList Expression "*}"

SequenceFormer :: "[" Expression "I" LogicalVarList Expression "]"

SetFormer :: "{" Expression "I" LogicalVarList Expression "}"

LogicalVariable :: Identifier ":" TypeName

LogicalVarList :: "(" [LogicalVariable ("," LogicalVariable)*] ")'

FunctionCall :: SubprogramName "(" ExpList ")"

SubprogramName :: SimpleName
(("[" Expression "]"
I """ #Dereference
I "'" #Tick)*
"." IdentifierRef)*

LiteralConstant ::
L it eralCharact er

I LiteralContainer
I Literallnteger
I LiteralNull
I LiteralReal
I LiteralString

LiteralCharacter :: t = <CHARACTER_LITERAL>

LiteralContainer :: LiteralBag
I LiteralSequence
I LiteralSet

LiteralBag :: "{*" ExpList(listLen) "*}"

LiteralSequence :: "[" ExpList "]"

LiteralSet :: "{" ExpList(listLen) "}"

Literallnteger :: t = <INTEGER_LITERAL>

LiteralNull :: <NULL>

LiteralReal :: t = <REAL_LITERAL>

LiteralString :: t = <STRING_LITERAL>

120

Name :: SimpleName (NameSuffix)*

SimpleName :: IdentifierRef I This

IdentifierRGf :: t = <ID>

This :: <THIS>

NameSuffix :: "." IdentifierRef
I "[" Expression "]"
I ii -ii

| „,,.

SelectedComponent :: SimpleName (("[" Expression "]"
I II-II

| »>»)*

"." IdentifierRef)+

TypeName :: IdentifierRef ("." IdentifierRef)*

QuantifiedExpression :
ExistentialExpression

I UniqueExpression
I UniversalExpression

ExistentialExpression :: <EXISTS> LogicalVarList "(" Expression ")'

UniqueExpression :: <UNIQUE> LogicalVarList "(" Expression ")"

UniversalExpression :: <F0RALL> LogicalVarList "(" Expression ")"

TypeConversion :: TypeName '"" "(" Expression ")"

Statement :: LabeledStatement
I BasicStatement

LabeledStatement :: (Label)+ BasicStatement

BasicStatement :: Name ":=" Assignment
I Iteration
I Jump
I ProcedureCall
I Selection

Label :: "«" Identifier "»"

Assignment :: Name ":=" Expression ";"

Jump :: <G0T0> IdentifierRef ";"

121

Iteration :: <WHILE> Expression <D0> (Statement)* <END> <D0> ";"

ProcedureCall :: SubprogramName "(" ExpList(listLen) ")" ";"

Selection :: <IF> Expression <THEN> (Statement)*
[<ELSE> (Statement)*]
<END> <IF> ";"

DataObject :: Identifier ":" DataObjectTail

DataObjectTail :: <C0NSTANT> TypeName [":=" Expression] ";"
I TypeName [":=" Expression] ";"

UninitializedVariable :: Identifier ":" TypeName ";"

Constant :: Identifier ":" TypeName [":=" Expression] ";"

Parameter :: Identifier ":" ((<IN> [<0UT>]) | <0UT> {out = true;})
TypeName

122

Appendix B. The Cruise Missile Problem Domain

B.l Introduction

This appendix contains the test case used throughout this research. Contained

within this appendix is the AWL file that forms the object-oriented analysis model,

UML and Z representations of the analysis model, and samples of the generated

Z/Eves and Promela output files.

B.2 The UML Analysis Model

Although the specification is implemented in AWL, initial analysis made use

of UML, and as an aide to clarity, the UML version of the specification has been

reproduced here. It will become apparent that without augmentation with prose,

the UML model is not capable of fully specifying the analysis model as specified with

AWL.

B.3 The AWL Analysis Model

It will be noted that enumerated type values seem somewhat unwieldly—this
is due tothe fact that Z does not allow different enumerated types to have elements
with equal values, thus the class name has been appended to each state name.

package cruiseMissile is

/*
* This is a modified version of the cruise missile system modelled by
* Gates, Giselquist, and Landry in August of 1993. This code forms
* the test case used as part of the research conducted for the Masters
* thesis "Validation and Verification of Formal Specifications in
* Object-Oriented Software Engineering.
*
* References to the simulation system and substates of the airframe
* have been removed
*
* - Thomson
*

*/

type char is abstract;
type time is abstract;

123

type timer is abstract;
type string is sequence of char;
type heading is delta 0.01 range 0.0 .. 360.0;
// type position is delta 0.001 range 0.0 .. 1000.0;
type speed is delta 0.1 range 0.0 .. 2000.0;
type mass is delta 0.1 range 0.0 .. 9000.0;
type yield is delta 0.1 range 0.0 .. 20000.0;
type real is delta 0.0001 range 0.0 .. 13000.0;
type bigReal is delta 0.0001 range 0.0 .. 27000.0;
type coordinate is delta 0.001 range - 4000 .. 4000;
type cmStates is (startcruiseMissile, preLaunchcruiseMissile,

flyingcruiseMissile);
type afStates is (startairframe, preLaunchairframe,

poweredFlightairframe, maneuveringairframe, inertialFlightairframe);
type navStates is (startnav, waitnav, readSensorsnav);
type flightDirectorStates is (startflightDirector, idleflightDirector,

maneuveringflightDirector);
type guidanceStates is (startguidanceSystem.idleguidanceSystem,

processingguidanceSystem.terminalguidanceSystem);
type throttleStates is (startthrottle.idlethrottle);
type warheadArmed is (t,f);
type engineStates is (startengine, idleengine);
type realWeight is delta 0.01 range 0.0 .. 100.0;
pi : constant bigReal := 3.1414159;

class vector is
private x : coordinate;
private y : coordinate;
private z : coordinate;
private magnitude : bigReal;

end class;

class point is vector with
end class;

type flightPath is sequence of point;

class position is vector with
end class;

type route is sequence of position;

class velocity is vector with
end class;

class acceleration is vector with
end class;

class fuelTank is
private fuelLevel : bigReal;
private outputFlowRate : bigReal;

124

private fuelDensity : bigReal;
end class;

class missileFuelTank is fuelTank with
private fixedWeight : realWeight;
private tankWeight : realWeight;
private capacity : bigReal;
private inputFlowRate : bigReal;

invariant fixedWeight = tankWeight + (fuelDensity * capacity / 2)
and inputFlowRate = 0

private procedure initializeMissileFuelTankO
guarantees fuelLevel' = capacity and outputFlowRate' = 0

private procedure changeFlow(actualFlowRate : in bigReal)
guarantees outputFlowRate' = actualFlowRate? and

fuelLevel' = fuelLevel and capacity' = capacity and
tankWeight' = tankWeight and fuelDensity' = fuelDensity

dynamic model is
event initMissileTankO;
event changeTankFlow();
event tankEmptyO;

state start;
state empty; //error - never invoked
state full invariant fuelLevel = capacity and outputFlowRate = 0;
state using invariant fuelLevel >= 0 and fuelLevel

<= capacity and outputFlowRate > 0;

transition table is
in start on initMissileTank if true do initializeMissileFuelTankO;

to full;
in full on changeTankFlow if true do changeFlowO; to using;
in using on changeTankFlow if true do changeflowO; to using;
in using on tankEmpty if true do changeFlowO; send outOfFuelO;

to empty;
end transition table;
end dynamic model;

end class;

class navigationSystem is
private navState : navStates;

dynamic model is
event initAirframe ();
event tankEmptyO ;
event getPositionO;
event changeCourseO;
event doManeuverCompleteO ;

125

State start;
state wait;
state readSensors;
transition table is

in start on initNavigationSystem if true to wait;
in wait on updatePosition if true to readSensors;
in readSensors on AUTOMATIC if true send estimatePositionO ;

to wait;
end transition table;
end dynamic model;

end class;

class flightProfile is
private timeOnTarget : time;
private wayPoints : flightPath;

/* private procedure addPointToRoute(p : in point)
guarantees wayPoints' = cat(wayPoints,p)

private procedure removePointFromRouteO
guarantees wayPoints' = rest(wayPoints)

dynamic model is
event initFlightProfile();
event addWayPointO ;
event removeFirstWayPointO;

state start;
state idle;
transition table is

in start on initFlightProfile if true to idle;
in idle on addWayPoint if true do addPointToRouteO; to idle;
in idle on removeFirstWayPoint if true do

removePointFromRouteO; to idle;
end transition table;
end dynamic model;

end class;

class guidanceSystem is
private profile : flightProfile;
private wayPoints : flightPath;
private guidanceState : guidanceStates;
private chronometer : timer;

private procedure initializeGuidanceSystemO

private procedure output(relTime : in time, message : out string)
guarantees true /* message = "the cruise missile should reach the

target at " + char(relTime) */

126

private procedure RemoveFirstRoutePointO
guarantees wayPoints' = rest(wayPoints)

dynamic model is
event initGuidanceSystemO;
event doLaunchO;
event estimatePositionO;
event outOfFuelO;
event armMissileO;
event updatePositionO ;

state start;
state idle;
state processing;
state terminal;

transition table is
in start on initGuidanceSystem if true to initializeGuidanceSystem;
in idle on doLaunch if true send updatePositionO; to idle;
in idle on estimatePosition if true to processing;
in idle on outOfFuel if true send updatePositionO; to terminal;
in processing on AUTOMATIC if profile.route'head =

profile.route'tail do removeFirstRoutePointO ; send armMissileO;
to terminal;

in processing on AUTOMATIC if not(profile.route'head =
profile.route'tail) to terminal;

end transition table;
end dynamic model;

end class;

class flightDirector is
private flightDirectorState : flightDirectorStates;

private procedure initializeO
guarantees flightDirectorState' = idleflightDirector

dynamic model is
event errorSignalsO;
event initFlightDirectorO;
event maneuverCompleteO;

state start invariant flightDirectorState = startflightDirector;
state idle invariant flightDirectorState = idleflightDirector;
state maneuvering invariant flightDirectorState =

maneuveringflightDirector;

transition table is
in start on initFlightDirector if true do

initializeFlightDirectorO; to idle;
in idle on errorSignals if true send changeCourseO ; setElevationO ;

setThrottleO; to maneuvering;

127

in maneuvering on maneuverComplete if true to idle;
end transition table;
end dynamic model;

end class;

class avionicsSoftware is
private navSys : navigationSystem;
private guidSys : guidanceSystem;
private director : flightDirector;

private procedure initializeAvionicsSoftwareO

dynamic model is
event initNavigationSystemO;
event initGuidanceSystemO;
event initFlightDirectorO;
event initAvionicsSoftwareO;

state start;
state avionicsSoftwarelnitialized;

transition table is
in start on initAvionicsSoftware if true do initializeAvionicsSoftwareO;

send initNavigationSystemO; to avionicsSoftwarelnitialized; //send
initGuidanceSystem send initFlightdirector

end transition table;
end dynamic model;

end class;

class warhead is
private weight : mass;
private munitionType : string;
private explosiveForce : yield;
private armed : warheadArmed;

invariant weight > 0.0 and explosiveForce >= 0.0

private procedure initializeWarheadO
guarantees armed' = f

private procedure armWarheadO
guarantees armed' = t

dynamic model is
event initWarhead();
event armMissileO;

state start;
state unarmed invariant armed = f;
state armed invariant armed = t;

128

transition table is
in start on AUTOMATIC if true do initializeWarheadO; to unarmed;
in unarmed on armMissile if true do armWarheadO; to armed;

end transition table;
end dynamic model;

end class;

class airframe is
private pos : position;
private accl : acceleration;
private vel : velocity;
private afState : afStates;
private heading : real;
private elevation : real;

invariant heading <= (2*pi) and heading >= 0.0 and elevation <= (pi/2)
and elevation >= (-pi/2)

private procedure initializeAirframeO
guarantees elevation' = (pi/2) and heading' = 0.0 and pos'.x = 0.0

and pos'.y =0.0 and pos'.z =0.0 and vel'.x =0.0
and vel'.y =0.0 and vel'.z =0.0 and accl'.x =0.0
and accl'.y = 0.0 and accl'.z =0.0

private procedure setPositionO is

dynamic model is
event initAirframe ();
event doLaunchO;
event tankEmptyO;
event estimatePositionQ ;
event changeCourseO ;
event maneuverComplete();
event outOfFuelO;

state start invariant afState= startairframe;
state preLaunch invariant afState = preLaunchairframe;
state poweredFlight invariant afState = poweredFlightairframe;
state maneuvering invariant afState = maneuveringairframe;
state inertialFlight invariant afState = inertialFlightairframe;

transition table is
in initial on initAirframe if true to airframelnit;
in airframelnit on AUTOMATIC if true send initDoneO;

to poweredFlight;
in poweredFlight on tankEmpty if true to inertialFlight;
in poweredFlight on getPosition if true send positionCurrentO;

to poweredFlight;
in poweredFlight on changeCourse if true to maneuvering;
in maneuvering on doManeuverComplete if true to poweredFlight;

end transition table;

129

end dynamic model;
end class;

class throttle is
private fuelFlow : real;
private throttleState : throttleStates;
private maximumFlowRate : real;
private actualFlowRate : real;

private procedure changeFuelFlowO

dynamic model is
event initThrottle();
event changeTankFlowO;

state start invariant throttleState = startthrottle;
state idle invariant throttleState = idlethrottle;
transition table is

in start on initThrottle if true to idle;
in idle on setThrottle do changeFuelFlowO ; send changeTankFlowO-

to idle; '
end transition table;
end dynamic model;

end class;

class jetEngine is
private thrust : real;
private maximumFuelFlowRate : real;
private currentFuelFlowRate : real;
private engineState : engineStates;

dynamic model is
event initEngineO;
event changeTankFlowO;

state start invariant engineState = startengine;
state idle invariant engineState = idleengine;
transition table is

in start on initEngine if true to idle;
in idle on changeTankFlow to idle;

end transition table;
end dynamic model;

end class;

class propulsionSystem is
private fuelFeed : throttle;
private engine : jetEngine;
private tank : missileFuelTank;

invariant (tank.fuelLevel = 0.0 => fuelFeed.maximumFlowRate =0.0)
and (tank.fuelLevel > 0.0 =>(fuelFeed.maximumFlowRate =

130

engine.maximumFuelFlowRate)) and
(engine.currentFuelFlowRate = fuelFeed.actualFlowRate)

dynamic model is
event initPropulsionSystemO;
event initThrottleO;
event initEngineO ;
event initMissileFuelTankO ;

state start;
state idle;

transition table is
in start on initPropulsionSystem if true send initThrottleO;

to idle; //send initEngineO send missileFuelTankO;
in preLaunch on launch if true send doLaunchO; to flight;

end transition table;
end dynamic model;

end class;

class cruiseMissile is
private propulsion : propulsionSystem;
private frame : airframe;
private payload : warhead;
private avionics : avionicsSoftware;
private cmState : cmStates;

/* functional model */
private procedure initializeCruiseMissileO
guarantees cmState' = preLaunchcruiseMissile

dynamic model is
event launch ();
event outOfFuelO;
event courseUpdateO;
event maneuverCompleteO ;
event doInitO;
event initDoneO;
event intiAirframeO ;

state start invariant cmState = startcruiseMissile;
state preLaunch invariant cmState = preLaunchcruiseMissile;
state flying invariant cmState = flyingcruiseMissile;

transition table is
in start on AUTOMATIC if true do initializeCruiseMissileO; send

initPropulsionSystemO; to preLaunch; //send initAirframeO
send initWarheadO send initAvionicsSoftwareO;

in preLaunch on launch if true send doLaunchO; to flight;
end transition table;
end dynamic model;

131

end class;
end package;

132

133

Appendix C. Z/Eves Specification of Cruise Missile

[char]

[t ime\

[ti mer\

string : P(seqchar)

heading : P Z

Vx : heading • x > 0

Vx : heading • x < 360

speed : P Z

V x : speed • x > 0

Vz : speed »x < 2000

mass : PZ

Vx : mass • x > 0

Vx : mass • x < 9000

134

yield: P Z

Vx : yield» x > 0

\/x -.yield» x < 20000

real: PZ

Vx : real • x > 0

Vx : real • x < 13000

big Real: P Z

Vx : big Real • x > 0

Va; : big Real • x < 27000

coordinate : P Z

Vx : coordinate • x > —4000

Vx : coordinate • x < 4000

cmStates ::= startcruiseMissile \ preLaunchcruiseMissile \ flyingcruiseMissile

afStates ::= startairframe \ preLaunchairframe \ poweredFlightairframe

maneuveringairframe \ inertialFlightairframe

navStates ::= startnav I waitnav I readSensorsnav

135

fhghtDirectorStates ::= start flight Director | idleflightDirectar

maneuvering flightDirector

guidanceStates ::= startguidanceSystem \ idleguidanceSyst

processingguidanceSystem | terminalguidanceSyst

em

tern

throttleStates ::= startthrottle \ idlethrottle

warheadArmed ::= t \ f

engineStates ::= startengine | idleeng me

realWeight: P Z

Vz : realW eight • x > 0

Vx : realW eight • x < 100

136

, vector

x : coordinate

y : coordinate

z : coordinate

magnitude : bigReal

true

.point.

vector

true

flight Path : P(seq point)

.position.

vector

true

route : P(seqposition)

.velocity

vector

true

137

.acceleration,

vector

true

t fuelTank

fuelLevel: bigReal

outputFlowRate : bigReal

fuelDensity : bigReal

true

.missileFuelT ank

fuelTank

fixedWeight : realWeight

tankW'eight: realW eight

capacity : bigReal

inputFlowRate : bigReal

((fixedWeight = (tankWeight + ((fuelDensity * capacity) div 2))) A

(inputFlowRate = 0))

.initializeMissileFuelT ank.

AmissileFuelTank

((fuelLevel' = capacity)

A (outputFlowRate' = 0))

138

Theorem 1 initializeMissileFuelTankisok
3 missileFuelTank • initializeMissileFuelTank

prove by reduce; undo;

.changeFlow.

AmissileFuelTank

actual Flow Rate? : bigReal

(((((outputFlowRate' = actual Flow Rate?) A (fuelLevel' = fuelLevel))

A (capacity' = capacity)) A (tankWeighf = tankWeight)) A

(fuel Density' = fuelDensity))

Theorem 2 changeFlowisok
3 missileFuelTank • changeFlow

prove by reduce; undo;

.missileFuelTankinitMissileTank.

EmissileFuelTank

(fuelLevel > 0)

Theorem 3 missileFuelTankinitMissileTankisok
3 missileFuelTank • missileFuelTankinitMissileTank

prove by reduce; undo;

.missileFuelTankchangeTankFlow.

"EmissileFuelTank

true

Theorem 4 missileFuelTankchange TankFlowisok
3 missileFuelTank • missileFuelTankchangeTankFlow

prove by reduce; undo;

139

.missileFuelT anktankEmpty.

"EmissileFuelTank

true

Theorem 5 missileFuelTanktankEmptyisok
3 missileFuelT ank • missileFuelT anktankEmpty

prove by reduce; undo;

.missileFuelT ankoutO fFuel.

'EmissileFuelTank

(fuelLevel — 0)

Theorem 6 missileFuelTankoutOfFuelisok
3 missileFuelT ank • missileFuelT ankoutOf Fuel

prove by reduce; undo;

.missileFuelT ankstart.

missileFuelT ank

true

Theorem 7 missileFuelTankstartisok
3 missileFuelT ank • missileFuelT ankstart

prove by reduce; undo;

.missileFuelT ankempty.

missileFuelT ank

true

Theorem 8 missileFuelTankernptyisok
3 missileFuelT ank • missileFuelT ankempty

140

prove by reduce; undo;

, missileFuelTank full.

missileFuelTank

((fuelLevel = capacity) A {outputFlowRate — 0))

Theorem 9 missileFuelTankfullisok
3 missileFuelTank • missileFuelTank full

prove by reduce; undo;

.missileFuelT ankusing.

missileFuelT ank

{{{fuelLevel > 0) A {fuelLevel < capacity)) A {outputFlowRate > 0))

Theorem 10 missileFuelTankusingisok
3 missileFuelTank • missileFuelT ankusing

prove by reduce; undo;

Theorem 11 missileFuelTankstartTofullPreconditionHolds
3 missileFuelTank • true A true A initializeMissileFuelTank

prove by reduce; undo;

Theorem 12 missileFuelTankstartTofullImpliesNextlnvariant
3 missileFuelTank • true A true A initializeMissileFuelTank
=> {{fuelLevel' = capacity') A {outputFlowRate' = 0))

Theorem 13 missileFuelTankfullTousingPreconditionHolds
3 missileFuelTank • {{fuelLevel = capacity) A {outputFlowRate = 0)) A
true A changeFlow

prove by reduce; undo;

Theorem 14 missileFuelTankfullTousinglmpliesNextlnvariant
3 missileFuelTank • {{fuelLevel = capacity) A {outputFlowRate = 0)) A
true A changeFlow =» {{{fuelLevel' > 0) A {fuelLevel' < capacity')) A {output Flow Rat

0))

141

e'>

Theorem 15 missileFuelTankusingTousingPreconditionHolds
BmissileFuelTank • (((fuelLevel > 0) A (fuelLevel < capacity)) A (outputFlowRate >

0))
A true A changeFlow

prove by reduce; undo;

Theorem 16 missileFuelTankusingTousinglmpliesNextlnvariant
BmissileFuelTank • (((fuelLevel > 0) A (fuelLevel < capacity)) A (outputFlowRate >
0))
A true A changeFlow =» (((fuelLevel' > 0) A (fuelLevel' < capacity')) A
(outputFlowRate' > 0))

prove by reduce; undo;

Theorem 17 missileFuelTankusingToemptyPreconditionHolds
BmissileFuelTank • (((fuelLevel > 0) A (fuelLevel < capacity)) A
(outputFlowRate > 0)) A true A changeFlow

prove by reduce; undo;

Theorem 18 missileFuelTankusingToemptylmpliesNextlnvariant
BmissileFuelTank • (((fuelLevel > 0) A (fuelLevel < capacity)) A
(outputFlowRate > 0)) A £rue A changeFlow => true

prove by reduce; undo;

Theorem 19 missileFuelTankusingToemptylmpliesSendlnvariants
BmissileFuelTank • (((fuelLevel > 0) A (fuelLevel < capacity)) A
(outputFlowRate > 0)) A true A changeFlow => (fuelLevel = 0)

prove by reduce; undo;

.navigationSystem.

navState : navStates

true

. navigationSy steminit NavigationSy stem.

"EnavigationSy stem

true

142

Theorem 20 navigationSysteminitNavigationSystemisok
3 navigationSystem • navigationSysteminitNavigationSystem

prove by reduce; undo;

. navigationSy stemupdateP'osition.

EnavigationSy stem

true

Theorem 21 navigationSystemupdatePositionisok
3 navigationSystem • navigationSy stemupdateP osition

prove by reduce; undo;

 navigationSy stemestimateP osition.

"EnavigationSy stem

true

Theorem 22 navigationSystemestimatePositionisok
3 navigationSystem • navigationSy stemestimateP osition

prove by reduce; undo;

.navigationSystemAUTOMATIC.

EnavigationSy stem

true

Theorem 23 navigationSystemAUTOMATICisok
3 navigationSystem • navigationSystemAUTOMATIC

prove by reduce; undo;

.navigationSy stemstart.

navigationSystem

true

143

Theorem 24 navigationSystemstartisok
3 navigationSystem • navigationSystemstart

prove by reduce; undo;

.navigationSystemwait.

navigationSystem

true

Theorem 25 navigationSystemwaitisok
3 navigationSystem • navigationSystemwait

prove by reduce; undo;

! navigationSystemreadSensors.

navigationSystem

true

Theorem 26 navigationSystemreadSensorsisok
3 navigationSystem • navigationSystemreadSensors

prove by reduce; undo;

Theorem 27 navigationSystemstartTowaitPreconditionHolds
3 navigationSystem • true A true

prove by reduce; undo;

Theorem 28 navigationSystemstartTowaitlmpliesNextlnvariant
3 navigationSystem • true A true =>• true

prove by reduce; undo;

Theorem 29 navigationSystemwaitToreadSensorsPreconditionHolds
3 navigationSystem • true A true

prove by reduce; undo;

Theorem 30 navigationSystemwaitToreadSensorsImpliesNextlnvariant
3 navigationSystem • true A true =*> true

prove by reduce; undo;

144

Theorem 31 navigationSystemreadSensorsTowaitPreconditionHolds
3 navigationSystem • true A true

prove by reduce; undo;

Theorem 32 navigationSystemreadSensors TowaitlmpliesNextlnvariant
3 navigationSystem • true A true =>- 2rue

prove by reduce; undo;

Theorem 33 navigationSystemreadSensorsTowaitlmpliesSendlnvariants
3 navigationSystem • true A true =$■ true

prove by reduce; undo;

flightProfile.

timeOnTarget: time

wayPoints : flightPath

true

.addP ointT oRoute.

AflightProfile

pi : point

[wayPoints' = wayPoints"'pi)

Theorem 34 addPointToRouteisok
3 flightProfile • addPointToRoute

prove by reduce; undo;

, remove Point From Route.

AflightProfile

(wayPoints' — wayPoints)

Theorem 35 removePointFromRouteisok
3 flightProfile • remove Point From Route

145

prove by reduce; undo;

.flightProfileinitFlightProfile.

E flightPro file

true

Theorem 36 flightProfileinitFlightProfileisok
3 flightProfile • flightProfileinitFlightProfile

prove by reduce; undo;

. flight Pro fileaddW ay Point.

'EflightProfile

true

Theorem 37 flightProfileaddWayPointisok
3 flightProfile • flightPro fileaddW ay Point

prove by reduce; undo;

. flightPro filer emoveFirstW ay Point.

"EflightProfile

true

Theorem 38 flightProfileremoveFirstWayPointisok
3 flightProfile • flightProfileremoveFirstWayPoint

prove by reduce; undo;

! flightPro filestart.

flightProfile

true

Theorem 39 flightProfilestartisok
3 flightProfile • flightPro filestart

146

prove by reduce; undo;

. f light Profileidle.

flightProfile

true

Theorem 40 flightProfileidleisok
3 flightProfile • flightProfileidle

prove by reduce; undo;

Theorem 41 flightProfilestartToidlePreconditionHolds
3 flightProfile • true A true A addPointToRoute

prove by reduce; undo;

Theorem 42 flightProfilestartToidlelmpliesNextlnvariant
3 flightProfile • true A true A addP ointT oRoute =$► true

prove by reduce; undo;

Theorem 43 flightProfileidleToidlePreconditionHolds
3 flightProfile • true A true A addP ointT oRoute

prove by reduce; undo;

Theorem 44 flightProfileidleToidlelmpliesNextlnvariant
3 flightProfile • true A true A addP ointT oRoute ^ true

prove by reduce; undo;

Theorem 45 flightProfileidleToidlePreconditionHolds
3 flightProfile • true A true A remove Point From Route

prove by reduce; undo;

Theorem 46 flightProfileidleToidlelmpliesNextlnvariant
3 flightProfile • true A true A removePointFromRoute =>• true

prove by reduce; undo;

147

! guidanceSystem __

profile : flightProfile

wayPoints : flightPath

guidanceState : guidanceStates

chronometer : timer

true

t initializeGuidanceSystem.

AguidanceSystem

((chronometer' = 0) A (guidanceState' = startGuidanceSystem))

Theorem 47 initializeGuidanceSystemisok
3 guidanceSystem • initializeGuidanceSystem

prove by reduce; undo;

. guidances'ysteminitGuidanceSystem.

EguidanceSystem

true

Theorem 48 guidanceSysteminitGuidanceSystemisok
3 guidanceSystem • guidances ysteminitGuidanceSy stem

prove by reduce; undo;

. guidances ystemdoLaunch.

EguidanceSystem

true

Theorem 49 guidanceSystemdoLaunchisok
3 guidanceSystem • guidances ystemdoLaunch

148

prove by reduce; undo;

.guidanceSystemestimatePosition.

"EiguidanceSystem

true

Theorem 50 guidanceSystemestimatePositionisok
3 guidancesystem • guidanceSystemestimatePosition

prove by reduce; undo;

.guidanceSystemoutOfFuel.

"BguidanceSystem

true

Theorem 51 guidanceSystemoutOfFuelisok
3 guidances'ystem • guidanceSystemoutOfFuel

prove by reduce; undo;

.guidanceSystemarmMissile.

"E^guidanceS y stem

true

Theorem 52 guidanceSystemarmMissileisok
3 guidanceSystem • guidanceSystemarmMissile

prove by reduce; undo;

I_guidanceSystemupdatePosition.

'EguidanceSystem

true

Theorem 53 guidanceSystemupdatePositionisok
3 guidanceSystem • guidanceSystemupdatePosition

149

prove by reduce; undo;

.guidanceSystemremoveFirstWay Point,

^guidance System

true

Theorem 54 guidanceSystemremoveFirstWayPointisok
3 guidances y stem • guidanceSystemremoveFirstWay Point

prove by reduce; undo;

.guidanceSystemAUTOMATIC.

'EguidanceSystem

true

Theorem 55 guidanceSystemAUTOMATICisok
3 guidancesystem • guidanceSystemAUTOMATIC

prove by reduce; undo;

.guidanceSystemstart.

guidances y stem

true

Theorem 56 guidanceSystemstartisok
3 guidance System • guidanceSystemstart

prove by reduce; undo;

.guidanceSystemidle.

guidances y stem

true

Theorem 57 guidanceSystemidleisok
3 guidanceSystem • guidanceSystemidle

150

prove by reduce; undo;

.guidanceSystemprocessing.

guidanceSystem

true

Theorem 58 guidanceSystemprocessingisok
3 guidanceSystem • guidanceSystemprocessing

prove by reduce; undo;

. guidances y stemterminal.

guidanceSystem

true

Theorem 59 guidanceSystemterminalisok
3 guidanceSystem • guidanceSystemterminal

prove by reduce; undo;

Theorem 60 guidanceSystemstartToidlePreconditionHolds
3 guidanceSystem • true A true A initializeGuidanceSystem

prove by reduce; undo;

Theorem 61 guidanceSystemstartToidlelmpliesNextlnvariant
3 guidanceSystem • true A true A initializeGuidanceSystem =>- true

prove by reduce; undo;

Theorem 62 guidanceSystemidleToidlePreconditionHolds
3 guidanceSystem • true A true

prove by reduce; undo;

Theorem 63 guidanceSystemidleToidlelmpliesNextlnvariant
3 guidanceSystem • true A true => true

prove by reduce; undo;

Theorem 64 guidanceSystemidleToidlelrnpliesSendlnvariants
3 guidanceSystem • true A true => true

151

prove by reduce; undo;

Theorem 65 guidanceSystemidleToprocessingPreconditionHolds
3 guidances'ystem • true A true

prove by reduce; undo;

Theorem 66 guidanceSystemidle ToprocessinglmpliesNextlnvariant
3 guidance System • true A true =>• true

prove by reduce; undo;

Theorem 67 guidanceSystemidleToterminalPreconditionHolds
3 guidanceSystem • true A true

prove by reduce; undo;

Theorem 68 guidanceSystemidle ToterminallmpliesNextlnvariant
3 guidanceSystem • true A true =>• true

prove by reduce; undo;

Theorem 69 guidanceSystemidle ToterminallmpliesSendlnvariants
3 guidanceSystem • true A true =>• true

prove by reduce; undo;

Theorem 70 guidanceSystemprocessingToterminalPreconditionHolds
3 guidanceSystem • true A {projilt.route head = profile.route tail)

prove by reduce; undo;

Theorem 71 guidanceSystemprocessingToterminallmpliesNextlnvariant
3 guidanceSystem • true A (profile.route head = profile.route tail)
=$■ true

prove by reduce; undo;

Theorem 72 guidanceSystemprocessingToterminallmpliesSendlnvariants
3 guidanceSystem • true A (profile.route head = profile.route tail)
=4> true A true

prove by reduce; undo;

Theorem 73 guidanceSystemprocessingToidlePreconditionHolds
3 guidanceSystem • true A (profile.route head - profile.route tail)

prove by reduce; undo;

152

Theorem 74 guidanceSystemprocessingToidlelmpliesNextlnvariant
3 guidanceSystem • true A (profile.route head = profile.route tail)
=£• true

prove by reduce; undo;

 flight Director —

flight Director'State : flightDirector States

true

.initializeFlightDirector.

A flight Director

(flightDirector State' = idle flightDirector)

Theorem 75 initializeFlightDirectorisok
3 flightDirector • initializeFlightDirector

prove by reduce; undo;

.flightDirector err or Signals.

E flightDirector

true

Theorem 76 flightDirectorerrorSignalsisok
3 flightDirector • flightDirector errorSignals

prove by reduce; undo;

.flightDirectorinitFlightDirector.

E flightDirector

true

Theorem 77 flightDirectorinitFlightDirectorisok
3 flightDirector • flightDirectorinitFlightDirector

153

prove by reduce; undo;

.flightDirectormaneuverComplete.

EflightDirector

true

Theorem 78 flightDirectormaneuverCompleteisok
3 flightDirector • flightDirectormaneuverComplete

prove by reduce; undo;

.flightDirectorchangeCourse.

EflightDirector

true

Theorem 79 flightDirectorchangeCourseisok
3 flightDirector • flightDirectorchangeCourse

prove by reduce; undo;

. flightDirectorsetElevation.

EflightDirector

true

Theorem 80 flightDirectorsetElevationisok
3 flightDirector • flightDirector setElevation

prove by reduce; undo;

. flightDirectorsetThrottle.

EflightDirector

true

Theorem 81 flightDirectorsetThrottleisok
3 flightDirector • flightDirector setThrottle

154

prove by reduce; undo;

 flight Director start.

flight Director

(flightDirector State = start flightDirector)

Theorem 82 flightDirectorstartisok
3 flightDirector • flightDirector start

prove by reduce; undo;

 flightDirectoridle.

flightDirector

{flightDirector State = idleflightDirector)

Theorem 83 flightDirectoridleisok
3 flightDirector • flightDirectoridle

prove by reduce; undo;

. flightDirectormaneuvering.

flightDirector

(flightDirectorState = maneuvering flightDirector)

Theorem 84 flightDirectormaneuveringisok
3 flightDirector • flightDirectormaneuvering

prove by reduce; undo;

Theorem 85 flightDirectorstartToidlePreconditionHolds
3 flightDirector • (flightDirectorState = start flightDirector) A true
A initializeFlightDirector

prove by reduce; undo;

Theorem 86 flightDirectorstartToidlelmpliesNextlnvariant
3 flightDirector • (flightDirectorState = start flightDirector) A true A
initializeFlightDirector =^ (flightDirectorState' = idleflightDirector)

155

prove by reduce; undo;

Theorem 87 flightDirectoridle TomaneuveringPreconditionHolds
3 flightDirector • [flight Director State - idleflightDirector) A true

prove by reduce; undo;

Theorem 88 flightDirectoridle TomaneuveringlmpliesNextlnvariant
3 flightDirector • {flightDirectorState = idleflightDirector) A true
=> (flightDirector State' = maneuvering flightDirector)

prove by reduce; undo;

Theorem 89 flightDirectoridle TomaneuveringlmpliesSendlnvariants
3 flightDirector • (flightDirectorState = idleflightDirector) A true
=> true A true A true

prove by reduce; undo;

Theorem 90 flightDirectormaneuveringToidlePreconditionHolds
3 flightDirector • (flightDirectorState = maneuvering flightDirector) A true

prove by reduce; undo;

Theorem 91 flightDirectormaneuveringToidlelmpliesNextlnvariant
3 flightDirector • (flightDirectorState = maneuvering flightDirector) A true
=£> (flightDirectorState' = idleflightDirector)

prove by reduce; undo;

 avionicsSoftware.

navSys : navigationSystem

guidSys : guidanceSystem

director : flightDirector

true

.initializeAvionicsSoftware.

AavionicsSoftware

true

156

Theorem 92 initializeAvionicsSoftwareisok
3 avionicsSoftware • initializeAvionicsSoftware

prove by reduce; undo;

.avionicsSoftwareinitNavigationSystem.

EavionicsSoftware

true

Theorem 93 avionicsSoftwareinitNavigationSystemisok
3 avionicsSoftware • avionicsSoftwareinitNavigationSystem

prove by reduce; undo;

.avionicsSoftwareinitGuidanceSystem.

'EavionicsSoftware

true

Theorem 94 avionicsSoftwareinitGuidanceSystemisok
3 avionicsSoftware • avionicsSoftwareinitGuidanceSystem

prove by reduce; undo;

.avionicsSoftwareinitFlight Director.

EavionicsSoftware

true

Theorem 95 avionicsSoftwareinitFlighWirectorisok
3 avionicsSoftware • avionicsSoftwareinitFlightDirector

prove by reduce; undo;

.avionicsSoftwarestart.

avionicsSoftware

true

157

Theorem 96 avionicsSoftwarestartisok
3 avionicsSoftware • avionicsSoftwarestart

prove by reduce; undo;

.avionicsSoftwar eavionicsSoftwarelnitialized.

avionicsSoftware

true

Theorem 97 avionicsSoflwareavionicsSoftwarelnitializedisok
3 avionicsSoftware • avionicsSoftwareavionicsSoftwarelnitialized

prove by reduce; undo;

Theorem 98 avionicsSoftwarestartToavionicsSoftwarelnitializedPreconditionHolds
3 avionicsSoftware • true A true A initialize AvionicsSoftware

prove by reduce; undo;

Theorem 99 avionicsSoftwarestart ToavionicsSoftwarelnitializedlmpliesNextlnvariant
3 avionicsSoftware • true A irue A initializeAvionicsSoftware =$■ true

prove by reduce; undo;

Theorem 100 avionicsSofiwarestartToavionicsSoftwarelnitializedlmpliesSendlnvariants
3 avionicsSoftware • true A true A initializeAvionicsSoftware => irue A true A

prove by reduce; undo;

inarh.pn.d

weight : mass

munitionType : string

ex plosive Force : yield

armed : warhea dArmed

{explosiv eForce > {{weight > 0) A 0))

158

.initializeWarhead.

Awarhead

{warhead Armed' = /)

Theorem 101 initializeWarheadisok
3 warhead • initializeW arhead

prove by reduce; undo;

.armWarhead.

Awarhead

(war head Armed' = t)

Theorem 102 armWarheadisok
3 warhead • armWarhead

prove by reduce; undo;

.warheadinitWarhead.

E.warhead

true

Theorem 103 warheadinitWarheadisok
3 warhead • warheadinitW arhead

prove by reduce; undo;

-warheadarmMissile.

Ewarhead

true

Theorem 104 warheadarmMissileisok
3 warhead • warheadarmMissile

159

prove by reduce; undo;

.warheadstart.

warhead

true

Theorem 105 warheadstartisok
3 warhead • warheadstart

prove by reduce; undo;

.warheadunarmed.

warhead

(warheadArmed — f)

Theorem 106 warheadunarmedisok
3 warhead • warheadunarmed

prove by reduce; undo;

.warheadarmed.

warhead

{warheadArmed = i)

Theorem 107 warheadarmedisok
3 warhead • warheadarmed

prove by reduce; undo;

Theorem 108 warheadstartTounarmedPreconditionHolds
3 warhead • true A true A initializeWarhead

prove by reduce; undo;

Theorem 109 warheadstartTounarmedlmpliesNextlnvariant
3 warhead • true A true A initializeWarhead => (warheadArmed' = f)

prove by reduce; undo;

160

Theorem 110 warheadunarmedToarmedPreconditionHolds
3 warhead • (warheadArmed = /) A true A armWarhead

prove by reduce; undo;

Theorem 111 warheadunarmedToarmedlmpliesNextlnvariant
3 warhead • (warheadArmed = /) A true A armWarhead => (warheadArmed'
= t)

prove by reduce; undo;

 air frame.

pos : position

accl : acceleration

vel : velocity

af State : af States

heading : real

elevation : real

((((heading < (2 * pi)) A (heading > 0)) A (elevation < (pi div 2))) A

(elevation > (pi div 2)))

, setPosition

Aairframe

setPosXl : coordinate

setPosYI : coordinate

setPosZI : coordinate

(((pos.x = setPosXI) A (pos.y = setPosYI)) A (pos.z = setPosZl))

Theorem 112 setPositionisok
3 air frame • setPosition

prove by reduce; undo;

161

.set Heading

Aairframe

setHeadl : real

(heading = setHeadl)

Theorem 113 setHeadingisok
3 air frame • setHeading

prove by reduce; undo;

.setElevation.

Aairframe

setElel : real

(elevation = setElel)

Theorem 114 setElevationisok
3 air frame • setElevation

prove by reduce; undo;

.calculateDistances.

Aairframe

posll : position

pos21 : position

true

Theorem 115 calculateDistancesisok
3 air frame • calculateDistances

prove by reduce; undo;

162

.initialize Air frame.

Aairframe

(((((((((((elevation' = (pi div 2)) A (heading' = 0)) A (pos.x = 0)) A

(pos.y = 0)) A (pos.z = 0)) A (vel.x = 0)) A (vel.y = 0)) A

(vel.z = 0)) A (accl.x = 0)) A (accly = 0)) A (accl.z = 0))

Theorem 116 initializeAirframeisok
3 air frame • initialize Air frame

prove by reduce; undo;

.setPosition.

Aairframe

true

Theorem 117 setPositionisok
3 air frame • setPosition

prove by reduce; undo;

. air frameinit Air frame.

'Bair frame

true

Theorem 118 airframeinitAirframeisok
3 air frame • air frameinit Air frame

prove by reduce; undo;

. air framedoLaunch.

Hair frame

true

Theorem 119 airframedoLaunchisok
3 air frame • air framedoLaunch

163

prove by reduce; undo;

! air frametank Empty.

Eairframe

true

Theorem 120 airframetankEmptyisok
3 air frame • air frametankEmpty

prove by reduce; undo;

. air frameestimatePosition.

"Eairframe

true

Theorem 121 airframeestimatePositionisok
3 air frame • air frameestimatePosition

prove by reduce; undo;

.airframechangeCourse.

"Eairframe

true

Theorem 122 airframechangeCourseisok
3 air frame • airframechangeCourse

prove by reduce; undo;

! air framedoM aneuverC omplete.

Eairframe

true

Theorem 123 airframedoManeuverCompleteisok
3 air frame • air f ramedoM aneuverC omplete

164

prove by reduce; undo;

. air frameoutO fFuel.

Hair frame

true

Theorem 124 airframeoutOfFuelisok
3 air frame • air frameoutO f Fuel

prove by reduce; undo;

.air f ramestart.

air frame

(af'State — startair frame)

Theorem 125 airframestartisok
3 air frame • air f ramestart

prove by reduce; undo;

, airframepreLaunch.

airframe

{a f State = preLaunchair frame)

Theorem 126 airframepreLaunchisok
3 airframe • airframepreLaunch

prove by reduce; undo;

! air framepoweredFlight.

airframe

(af State = poweredFlightair frame)

Theorem 127 airframepoweredFlightisok
3 airframe • airframepoweredFlight

165

prove by reduce; undo;

.airframemaneuvering.

airframe

(a f State = maneuveringair frame)

Theorem 128 airframemaneuveringisok
3 airframe • airframemaneuvering

prove by reduce; undo;

, air frameinertial Flight.

airframe

(a f'State = inertialFlightair frame)

Theorem 129 airframeinertialFlightisok
3 airframe • airframeinertialFlight

prove by reduce; undo;

Theorem 130 airframestartTopreLaunchPreconditionHolds
3 airframe • (a f State = startair frame) A true A initialize Air frame

prove by reduce; undo;

Theorem 131 airframestartTopreLaunchlmpliesNextlnvariant
3 airframe • (a f State = startair frame) A true A initialize Air frame -
(a f State' = preLaunchair frame)

prove by reduce; undo;

Theorem 132 airframepreLaunch TopoweredFlightPreconditionHolds
3 airframe • (a fState = preLaunchair frame) A true

prove by reduce; undo;

Theorem 133 airframepreLaunch TopoweredFlightlmpliesNextlnvariant
3 airframe • (a f State = preLaunchair frame) A true =>
(af State' = poweredFlightairframe)

prove by reduce; undo;

166

Theorem 134 airframepoweredFlight ToinertialFlightPreconditionHolds
3 air frame • (a f State = power edF light air frame) A true

prove by reduce; undo;

Theorem 135 airframepoweredFlightToinertialFlightlmpliesNextlnvariant
3 air frame • (a f State = poweredFlightair frame) A true =>
(a f State' = inertia! Flightair frame)

prove by reduce; undo;

Theorem 136 airframepoweredFlightTopoweredFlightPreconditionHolds
3 air frame • (a f State = poweredFlightair frame) A true A setPosition

prove by reduce; undo;

Theorem 137 airframepoweredFlight TopoweredFlightlmpliesNextlnvariant
3 air frame • (a f State - poweredFlightair frame) A true A setPosition =>
(af State' = poweredFlightair frame)

prove by reduce; undo;

Theorem 138 airframepoweredFUghtTomaneuveringPreconditionHolds
3 air frame • (a f State = poweredFlightair frame) A true

prove by reduce; undo;

Theorem 139 airframepoweredFlightTomaneuveringlmpliesNextlnvariant
3 air frame • (a f State - poweredFlightair frame) A true =$■
(af State' = maneuveringair frame)

prove by reduce; undo;

Theorem 140 airframemaneuveringTopoweredFlightPreconditionHolds
3 air frame • (a f State = maneuveringair frame) A true

prove by reduce; undo;

Theorem 141 airframemaneuveringTopoweredFlightlmpliesNextlnvariant
3 air frame • (a f State = maneuveringair frame) A true =>>
(a f State' = poweredFlightair frame)

prove by reduce; undo;

Theorem 142 airframemaneuveringToinertialFlightPreconditionHolds
3 air frame • (a f State = maneuveringair frame) A true

prove by reduce; undo;

167

Theorem 143 airframemaneuveringToinertialFlightlmpliesNextlnvariant
3 air frame • (a f State = maneuvering air frame) A true =>•
(a f State' = inertialFlightair frame)

prove by reduce; undo;

, throttle.

fuelFlow : real

throttleState : throttleStates

maximumFlowRate : real

actual Flow Rate : real

true

. changeFuelFlow.

Athrottle

inFlowl : real

(fuelFlow = inFlowl)

Theorem 144 changeFuelFlowisok
3 throttle • changeFuelFlow

prove by reduce; undo;

.throttleinitT hrottle.

'Ethrottle

true

Theorem 145 throttleinitThrottleisok
3 throttle • throttleinitT hrottle

prove by reduce; undo;

168

.throttlechangeT ankFlow.

Ethrottle

true

Theorem 146 throttlechangeTankFlowisok
3 throttle • throttlechangeT ankFlow

prove by reduce; undo;

.throttlesetThrottle.

Ethrottle

true

Theorem 147 throttlesetThrottleisok
3 throttle • throttlesetThrottle

prove by reduce; undo;

.throttlestart.

throttle

(throttleState = startthrottle)

Theorem 148 throttlestartisok
3 throttle • throttlestart

prove by reduce; undo;

, throttleidle.

throttle

(throttleState = idlethrottle)

Theorem 149 throttleidleisok
3 throttle • throttleidle

prove by reduce; undo;

169

Theorem 150 throttlestartToidlePreconditionHolds
3 throttle • (throttleState = startthrottle) A true

prove by reduce; undo;

Theorem 151 throttlestartToidlelmpliesNextlnvariant
3 throttle • (throttleState = startthrottle) A true => (throttleState' =
idlethrottle)

prove by reduce; undo;

Theorem 152 throttleidleToidlePreconditionHolds
3throttle • (throttleState = idlethrottle) A changeFuelFlow

prove by reduce; undo;

Theorem 153 throttleidleToidlelmpliesNextlnvariant
3throttle • (throttleState = idlethrottle) A changeFuelFlow =» (throttleState'
= idlethrottle)

prove by reduce; undo;

 jetEngine.

thrust : real

maximum Fuel Flow Rate : real

current Fuel Flow Rate : real

engineState : engineStates

true

_j etEngineinitEngine.

3jetEngine

true

Theorem 154 jetEngineinitEngineisok
3 jetEngine • jetEngineinitEngine

prove by reduce; undo;

170

.jetEnginechangeTankFlow.

H jet Engine

true

Theorem 155 jetEnginechangeTankFlowisok
BjetEngine • jetEnginechangeTankFlow

prove by reduce; undo;

t jetEnginestart.

jet Engine

(engineState = startengine)

Theorem 156 jetEnginestartisok
BjetEngine • jetEnginestart

prove by reduce; undo;

! jetEngineidle.

jet Engine

(engineState = idleengine)

Theorem 157 jetEngineidleisok
BjetEngine • jetEngineidle

prove by reduce; undo;

Theorem 158 jetEnginestartToidlePreconditionHolds
BjetEngine • (engineState — startengine) A true

prove by reduce; undo;

Theorem 159 jetEnginestartToidlelmpliesNextlnvariant
BjetEngine • (engineState = startengine) A true => (engineState' = idleengine)

prove by reduce; undo;

Theorem 160 jetEngineidleToidlePreconditionHolds
BjetEngine • (engineState = idleengine)

171

prove by reduce; undo;

Theorem 161 jetEngineidleToidlelmpliesNextlnvariant
BjetEngine • (engineState - idleengine) =>■ (engineState' - idleengine)

prove by reduce; undo;

 propulsion System.

fuelFeed: throttle

engine : jetEngine

tank : missileFuelTank

((((tank, fuel Lev el = 0) =*> (fuelFeed.maximumFlowRate = 0)) A

((tank, fuel Lev el > 0) => (fuelFeed.maximumFlowRate =

engine.maximumFuelFlowRate))) A

(engine.currentFuelFlowRate = fuelFeed.actualFlowRate))

.propulsionSysteminitPropulsionSystem.

'E.propulsionSystem

true

Theorem 162 propulsionSysteminitPropulsionSystemisok
3propulsionSystem • propulsionSysteminitPropulsionSystem

prove by reduce; undo;

.propulsionSysteminitThrottle.

'EpropulsionSystem

true

Theorem 163 propulsionSysteminitThrottleisok
3 propulsionSystem • propulsionSysteminitThrottle

prove by reduce; undo;

172

.propulsionSysteminitEngine.

'EpropulsionSy stem

true

Theorem 164 propulsionSysteminitEngineisok
3 propulsionSystem • propulsionSysteminitEngine

prove by reduce; undo;

.propulsionSy steminitMissileFuelTank.

^propulsionSystem

true

Theorem 165 propulsionSysteminitMissileFuelTankisok
3 propulsionSystem • propulsionSysteminitMissileFuelTank

prove by reduce; undo;

 propulsionSy stemstart.

propulsionSystem

true

Theorem 166 propulsionSystemstartisok
3 propulsionSystem • propulsionSy stemstart

prove by reduce; undo;

.propulsionSy stemidle.

propulsionSystem

true

Theorem 167 propulsionSystemidleisok
3 propulsionSystem • propulsionSy stemidle

prove by reduce; undo;

173

Theorem 168 propulsionSystemstartToidlePreconditionHolds
3 propulsionSystem • true A true

prove by reduce; undo;

Theorem 169 propulsionSystemstartToidlelmpliesNextlnvariant
3 propulsionSystem • true A true =4> true

prove by reduce; undo;

Theorem 170 propulsionSystemstartToidlelmpliesSendlnvariants
3 propulsionSystem • true A true =>■ true A true A true

prove by reduce; undo;

.cruiseMissile.

propulsion : propulsionSystem

frame : air frame

payload : warhead

avionics : avionicsSoftware

cmState : cmStates

true

.initializeCruiseMissile.

AcruiseMissile

(cmState' = preLaunchcruiseMissile)

Theorem 171 initializeCruiseMissileisok
3 cruiseMissile • initializeCruiseMissile

prove by reduce; undo;

.cruiseMissiledoLaunch.

'EcruiseMissile

true

174

Theorem 172 cruiseMissikdoLaunchisok
d cruiseMissile • cruiseMissiledoLaunch

prove by reduce; undo;

. cruiseMissilelaunch.

EcruiseMissile

true

Theorem 173 cruiseMissiklaunchisok
d cruiseMissile • cruiseMissilelaunch

prove by reduce; undo;

-cruiseMissileinitPropulsionSystem.

'EcruiseMissile

true

Theorem 174 cruiseMissileinitPropulsionSystemisok
d cruiseMissile • cruiseMissileinitPropulsionSystem

prove by reduce; undo;

-cruiseMissileinit Air frame.

IcruiseMissile

true

Theorem 175 cruiseMissileinitAirframeisok
d cruiseMissile • cruiseMissileinit Air frame

prove by reduce; undo;

-cruiseMissileinitWarhead.

"EcruiseMissile

true

175

Theorem 176 cruiseMissileinitWarheadisok
3 cruiseMissile • cruiseMissileinitWarhead

prove by reduce; undo;

.cruiseMissileinitAvionicsSoftware.

EcruiseMissile

true

Theorem 177 cruiseMissileinitAvionicsSoftwareisok
3 cruiseMissile • cruiseMissileinitAvionicsSoftware

prove by reduce; undo;

.cruiseMissileAUTOMATIC.

'EcruiseMissile

true

Theorem 178 cruiseMissileAUTOMATICisok
3 cruiseMissile • cruiseMissileAUTOMATIC

prove by reduce; undo;

.cruiseMissilestart.

cruiseMissile

(cmState = startcruiseMissile)

Theorem 179 cruiseMissilestartisok
3 cruiseMissile • cruiseMissilestart

prove by reduce; undo;

.cruiseMissilepreLaunch.

cruiseMissile

(cmState = preLaunchcruiseMissile)

176

Theorem 180 cruiseMissilepreLaunchisok
3 cruiseMissile • cruiseMissilepreLaunch

prove by reduce; undo;

.cruiseMissile flying.

cruiseMissile

(cmState — flyingcruiseMissile)

Theorem 181 cruiseMissileflyingisok
3 cruiseMissile • cruiseMissile flying

prove by reduce; undo;

Theorem 182 cruiseMissilestartTopreLaunchPreconditionHolds
3 cruiseMissile • (cmState = startcruiseMissile) A true A initializeCruiseMissile

prove by reduce; undo;

Theorem 183 cruiseMissilestartTopreLaunchlmpliesNextlnvariant
3 cruiseMissile • (cmState = startcruiseMissile) A true A initializeCruiseMissile
=>■ (cmState' = preLaunchcruiseMissile)

prove by reduce; undo;

Theorem 184 cruiseMissilestartTopreLaunchlmpliesSendlnvariants
3 cruiseMissile • (cmState = startcruiseMissile) A true A initializeCruiseMissile
=>• true A true A true A true

prove by reduce; undo;

Theorem 185 cruiseMissilepreLaunch ToflyingPreconditionHolds
3 cruiseMissile • (cmState = preLaunchcruiseMissile) A true

prove by reduce; undo;

Theorem 186 cruiseMissilepreLaunch ToflyinglmpliesNextlnvariant
3 cruiseMissile • (cmState = preLaunchcruiseMissile) A true => (cmState' =
flyingcruiseMissile)

prove by reduce; undo;

Theorem 187 cruiseMissilepreLaunch ToflyinglmpliesSendlnvariants
3 cruiseMissile • (cmState = preLaunchcruiseMissile) A true =>■ true

prove by reduce; undo;

177

178

Appendix D. Promela Specification of Cruise Missile Model

»define true 1

«define false 0

»define AUTOMATIC true

mtype = { initMissileTank, changeTankFlow, tankEmpty, outOfFuel,

initNavigationSystem, updatePosition, estimatePosition,

initFlightProfile, addWayPoint, removeFirstWayPoint,

initGuidanceSystem, doLaunch, armMissile, errorSignals,

initFlightDirector, maneuverComplete, changeCourse, setElevation,

setThrottle, initWarhead, initAirframe, doManeuverComplete,

initThrottle, initEngine, initPropulsionSystem, initMissileFuelTank,

launch, initAvionicsSoftware };

chan mapO = [0] of {mtype};

chan mapl = [0] of {mtype};

chan map2 = [0] of {mtype};

chan map3 = [0] of {mtype};

chan map4 = [0] of {mtype};

chan map5 = [0] of {mtype};

chan map6 = [0] of {mtype};

chan map7 = [0] of {mtype};

chan map8 = [0] of {mtype};

chan map9 = [0] of {mtype};

chan maplO = [0] of {mtype};

chan mapll = [0] of {mtype};

chan mapl2 = [0] of {mtype};

chan mapi3 = [0] of {mtype};

chan map!4 = [0] of {mtype};

179

chan mapl5 = [0] of {mtype};

chan map16 = [0] of {mtype};

chan mapl7 = [0] of {mtype};

chan mapl8 = [0] of {mtype};

chan mapl9 = [0] of {mtype};

chan map20 = [0] of {mtype};

chan map21 = [0] of {mtype};

chan map22 = [0] of {mtype};

chan map23 = [0] of {mtype};

chan map24 = [0] of {mtype};

chan map25 = [0] of {mtype};

chan map26 = [0] of {mtype};

chan map27 = [0] of {mtype};

chan map28 = [0] of {mtype};

proctype missileFuelTankO

{

goto startState;

startState:

do

:: atomic{map26?initMissileTank; true ->} /* initializeMissileFuelTank;*/

goto fullState

od;

emptyState:

do

:: true -> break

od;

fullState:

180

do

:: atomic{mapi?changeTankFlow; true ->} /* changeFlow; */ goto usingState

od;

usingState:

do

:: atomic{mapl?changeTankFlow; true ->} /* changeFlow; */ goto usingState

:: atomic{map2?tankEmpty; true ->} map3!out0fFuel; /* changeFlow; */

goto emptyState

od;

}

proctype navigationSystemO

{

goto startState;

startState:

do

:: atomic{map4?initNavigationSystem; true ->} goto waitState

od;

waitState:

do

:: atomic{map5?updatePosition; true ->} goto readSensorsState

od;

readSensorsState:

do

:: atomic{AUTOMATIC; true ->} map6!estimatePosition; goto waitState

od;

}

181

proctype flightProfile()

{

goto startState;

startState:

do

:: atomic{mapl5?initFlightProfile; true ->} /* addPointToRoute; */

goto idleState

od;

idleState:

do

:: atomic{map9?addWayPoint; true ->} /* addPointToRoute; */

goto idleState

:: atomic{maplO?removeFirstWayPoint; true ->} /* removePointFromRoute; */

goto idleState

od;

}

proctype guidanceSystemO

■C

goto startState;

startState:

do

:: atomic{mapll?initGuidanceSystem; true ->} /* initializeGuidanceSystem;

*/ goto idleState

od;

idleState:

do

182

:: atomic{mapl2?doLaunch; true ->} map5!updatePosition;

goto idleState

:: atomic{map6?estimatePosition; true ->} goto processingState

:: atomic{map4?out0fFuel; true ->} map5!updatePosition;

goto terminalState

od;

processingState:

do

:: atomic{AUTOMATIC; /* profile.route'head = profile.route'tail -> */}

maplOlremoveFirstWayPoint; mapl3!armMissile; goto terminalState

:: atomic{AUTOMATIC; /* \lnot profile.route'head =

profile.route'tail -> */} goto idleState

od;

terminalState:

do

:: break

od;

}

proctype flightDirectorO

{

goto startState;

startState:

do

:: atomic{mapi5?initFlightDirector; true ->} /*

initializeFlightDirector; */ goto idleState

od;

183

idleState:

do

:: atomic{mapl5?errorSignals; true ->> mapi7!changeCourse;

mapl8!setElevation; mapl9!setThrottle; goto maneuveringState

od;

maneuveringState:

do

:: atomic{mapl6?maneuverComplete; true ->} goto idleState

od;

}

proctype avionicsSoftwareO

{

goto startState;

startState:

do

:: atomic{map28?initAvionicsSoftware; true ->} map4!initNavigationSystem;

mapil!initGuidanceSystem; mapl5!initFlightDirector;

/* initializeAvionicsSoftware; */ goto avionicsSoftwarelnitializedState

od;

avionicsSoftwarelnitializedState:

do

:: break

od;

}

proctype warhead()

184

goto startState;

startState:

do

:: atomic{map21?initWarhead; true ->} /* initializeWarhead; */

goto unarmedState

od;

unarmedState:

do

:: atomic{mapl3?armMissile; true ->} /* armWarhead; */ goto armedState

od;

armedState:

do

:: break

od;

}

proctype airframeO

■C

goto startState;

startState:

do

:: map21?initAirframe; true -> /* initializeAirframe; */

goto preLaunchState

od;

preLaunchState:

do

:: mapl2?doLaunch; true -> goto poweredFlightState

185

od;

poweredFlightState:

do

:: map3?out0fFuel; true -> goto inertialFlightState

:: map6?estimatePosition; true -> /* setPosition; */

goto poweredFlightState

:: mapl7?changeCourse; true -> goto maneuveringState

od;

maneuveringState:

do

:: map22?doManeuverComplete; true -> goto poweredFlightState

:: map3?out0fFuel; true -> goto inertialFlightState

od;

inertialFlightState:

do

: : break

od;

}

proctype throttle()

{

goto startState;

startState:

do

:: map23?initThrottle; true -> goto idleState

od;

186

idlestate:

do

:: map20?setThrottle -> map28!changeTankFlow; /* changeFuelFlow; */

goto idleState

od;

}

proctype jetEngineO

{

goto startState;

startState:

do

:: map24?initEngine; true -> goto idleState

od;

idleState:

do

:: map1?changeTankFlow -> goto idleState

od;

}

proctype propulsionSystemO

{

goto startState;

startState:

do

:: map25?initPropulsionSystem; true -> map23!initThrottle;

map24!initEngine; map26!initMissileFuelTank; goto idleState

od;

187

idleState:

do

:: break

od;

}

proctype cruiseMissileO

{

goto startState;

startState:

do

:: AUTOMATIC; true -> map25!initPropulsionSystem; map21!initAirframe;

map20!initWarhead; map28!initAvionicsSoftware;

/* initializeCruiseMissile; */ goto preLaunchState

od;

preLaunchState:

do

:: map27?launch; true -> mapl2!doLaunch; goto flyingState

od;

flyingState:

do

:: break;

od;

}

init

{

atomic{ run missileFuelTankO ;

188

run navigationSystemO ;

run flightProfileO;

run guidanceSystemO;

run flightDirectorO;

run avionicsSoftwareO;

run warhead();

run airframeO;

run throttle();

run jetEngineO ;

run propulsionSystemO ;

run cruiseMissileO };

}

189

190

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

subject to any penalty for failing to comply with a collection of Information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

SEP 2000
2. REPORT TYPE

Master's Thesis

4. TITLE AND SUBTITLE

Validation and Verification of Formal Specifications in Object-Oriented
Software Engineering

6. AUTHOR(S)

Thomson, Steven, A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2750 P Street
WPAFB OH 45433-7765

DATES COVERED (From - To)
SEP 1998 - AUG 2000

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Roy F. Stratton
AFRL/IFTD
525 Brooks Rd.
Rome, NY 13441-4505
(303) 315-3004

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFTC7GE/ENG/00S-01

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

The use of formal specifications allows for a software system to be defined with stringent mathematical semantics and syntax via
such tools as propositional calculus and set theory. There are many perceived benefits garnered from formal specifications, such
as a thorough and in-depth understanding of the domain and system being specified and a reduction in user requirement ambiguity.
Probably the greatest benefit of formal specifications, and that which is least capitalized upon, is that mathematical proor
procedures can be used to test and prove internal consistency and syntactic correctness in an effort to ensure comprehensive
validation and verification (V\&V). The automation of the proof process will make formal methods far more attractive by reducmg
the time required and the effort involved in the V\&V of software systems.
It is commonly perceived that since a formal specification is written using strict mathematical notation, it is a minor task to ensure
that the product does in fact meet the original specification and that the specification meets the end user s requirements. This is
not the case The majority of research in formal methods has delved into the development of formal notation and inference rules.
The emphasis of this research is the validation and verification of formal object-oriented (OO) specifications.
15. SUBJECT TERMS

Formal Methods, Software Engineering, Validation, Verification, Object-oriented

16. SECURITY CLASSIFICATION OF:
REPORT

u
b. ABSTRACT

u
c. THIS PAGE

u

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER
OF
PAGES
206

19a. NAME OF RESPONSIBLE PERSON
Dr. Thomas Hartrum
19b. TELEPHONE NUMBER (Include area code)

(937) 255-3636
Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

	Validation and Verification of Formal Specifications in Object-Oriented Software Engineering
	Recommended Citation

	/tardir/tiffs/a385658.tiff

