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Abstract 

The use of formal specifications allows for a software system to be defined 

with stringent mathematical semantics and syntax via such tools as propositional 

calculus and set theory. There are many perceived benefits garnered from formal 

specifications, such as a thorough and in-depth understanding of the domain and 

system being specified and a reduction in user requirement ambiguity. Probably the 

greatest benefit of formal specifications, and that which is least capitalized upon, is 

that mathematical proof procedures can be used to test and prove internal consis- 

tency and syntactic correctness in an effort to ensure comprehensive validation and 

verification (V&V). The automation of the proof process will make formal methods 

far more attractive by reducing the time required and the effort involved in the V&V 

of software systems. 

It is commonly perceived that since a formal specification is written using 

strict mathematical notation, it is a minor task to ensure that the product does in 

fact meet the original specification and that the specification meets the end user's 

requirements. This is not the case. The majority of research in formal methods has 

delved into the development of formal notation and inference rules. 

The emphasis of this research is the validation and verification of formal object- 

oriented (00) specifications. This research identifies elements and properties of 

formally specified 00 systems that should be proved and why, and implements such 

proofs using the theorem prover Z/Eves and process modeling tool SPIN. Proofs 

relating to the functional, dynamic and structural object models are addressed. The 

00 paradigm used during this research is that of Rumbaugh's Object Modeling 

Technique (OMT). 

xm 
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Validation and Verification of Formal Specifications in 

Object-Oriented Software Engineering 

/.   Introduction 

A key element to force multiplication is technology. A technological edge over an 

opponent in conflict can be the difference between success and failure. As software 

intensive systems employed by the military continue to become more complex, it 

is apparent that the ability to formally specify future systems and comprehensively 

validate and verify them is of growing import to the defense community. 

Formal methods are used infrequently today, but their wider application is 

envisioned "to lead to increased software quality and reliability. Moreover [it is ex- 

pected that] early verification of specifications [will] increase specification quality, 

thereby reducing life cycle costs" [Fräser]. Rectification of errors during code main- 

tenance is typically 60 to 100 times more costly than modification of the errant 

specification [Pressman]. 

Engineering can be thought of as the application of scientific approaches in 

order to solve technical problems. In more established engineering disciplines, the use 

of scientific approaches and formal processes is well established. Not so with software 

engineering, which is still in its relatively early stages of development. The use of 

formal methods in software engineering will help transform software engineering from 

its current state into that of a more structured and scientific approach to problem 

solution. 

The use of formal specifications allows for a system to be defined with stringent 

mathematical semantics and syntax via such tools as propositional calculus and set 

theory. There are many perceived benefits garnered from formal specifications, such 



as a thorough and in-depth understanding of the domain and system being specified 

and a reduction in user requirement ambiguity. Formal specifications may be applied 

to systems in any domain, and are not necessarily limited to software specification. 

Validation is intended to ensure that a system meets the user's requirements 

while verification refers to ensuring that a system meets its specification. V&V has 

in common with other facets of software engineering the fact that it should be carried 

out over the duration of a project and not just simply upon implemented systems. 

This is in contrast to most developed validation approaches for Knowledge Based 

Software Engineering (KBSE) [Meseguer] that perform validation almost entirely 

post completion. 

Probably the greatest benefit of formal specifications, and that which is least 

capitalized upon, is that mathematical proof procedures can be used to "test (and 

prove) internal consistency and syntactic correctness" [Fräser] to ensure comprehen- 

sive V&V. The automation of the proof process will make formal methods far more 

attractive by reducing the time required and the effort involved in V&V of software 

systems. 

1.1    Problem 

The benefits of formal specifications are well understood in software engineer- 

ing. How all of these benefits are realized is not as well understood. It is true 

that simply by attempting to formally specify a system and its domain we gain a 

more in-depth understanding by having to ensure that what could otherwise be an 

ambiguously written specification is a properly formed collection of definitions and 

axioms, but this argument provides only the tip of the iceberg of what benefits formal 

specifications offer us. 

It is commonly perceived that since a formal specification is written using 

strict mathematical notation, it is a minor task to ensure that the product does in 

fact meet the original specification and that the specification meets the end user's 



requirements. This is not the case. The majority of research in formal methods has 

delved into the "development of formal notation and inference rules" [Fräser]. 

It is the intent of this research to investigate what elements and properties of a 

formal specification should be proved and why, and contrast this with what is typi- 

cally proved in practice. This research will also deal with methods of implementation 

of such proofs. 

The emphasis of this research is the validation and verification of formal object- 

oriented specifications. Proofs relating to the functional, dynamic and structural ob- 

ject models are addressed. One approach to be followed is the integration of existing 

tools into the AFIT Wide Spectrum Object Modeling Environment (AWSOME). 

The Air Force Institute of Technology (AFIT) has developed AWSOME in order 

to build software based upon formal specifications via semi-automated, correctness 

preserving transforms. Examples of tools that could be integrated with AWSOME 

include an object editor [Ashby], theorem prover or, for the dynamic model, a finite 

state machine analysis tool. 

As examples of what could be proved, consider an object-oriented class with 

its requisite structural, dynamic and functional models as defined by the Object 

Modeling Technique (OMT) [Rumbaugh]. In the dynamic model we can ensure that 

states referenced are actually defined, and that there are no states for which the 

class is incapable of satisfying the guard conditions required for transition. 

The functional model defines methods in terms of preconditions and postcon- 

ditions. Functional model processes describe changes in the state of an object. They 

can be tested to ensure that invariant conditions are maintained after state transi- 

tion, and that specified preconditions are satisfied whenever methods are called. 

Verification of the structural model could include testing to ensure the concepts 

of inheritance and aggregation are implemented correctly, for example, ensuring that 

a subclass does not overload any attribute names used by its superclass(es). 



1.1.1 Problem Statement. Propose a set of constraints via which formally 

specified object-oriented systems may be verified. Provide demonstrative examples 

of the applicability of the constraints to a formally specified 00 system. 

1.2 Scope 

Research focus is upon formal specifications of object-oriented software em- 

phasizing the investigation of existing techniques and addressing their shortcomings 

in order to propose new techniques. Illustrative implementation is achieved through 

verification of an object-oriented system modeled in AWSOME via the addition of 

a verification methodology to the AWSOME environment. 

1.3 Approach 

The approach is designed so as to address existing theories and practices in the 

proof of formal specifications, identify the key concepts of object-oriented analysis 

that require verification, and provide illustrative examples, preferably via integration 

of a commercially available, off-the-shelf (COTS) dynamic model verifier and COTS 

theorem prover. 

The 00 specification that this research uses was formalized using practices 

followed by AFIT's Knowledge Based Software Engineering (KBSE) group for the 

generation of formal specifications of object-oriented models [Hartrum]. 

Examples of proposed theories are implemented upon AWSOME analysis mod- 

els as AWSOME caters to the creation of domain models from formal specifications 

via the use of the AWSOME Wide Spectrum Language (AWL). An AWSOME anal- 

ysis model is represented and manipulated internally as an abstract syntax tree 

(AST). 

The primary illustrative example used throughout this document is a modified 

version of a cruise missile system specified by a group of AFIT students. This model 

is contained at Appendix B. 

A 



1.4 Topics Addressed 

The fields addressed in this document include object-oriented analysis, for- 

mal specifications, validation and verification, Z and an associated theorem prover 

Z/Eves, and the process modeling language Promela and an associated dynamic 

model checker Spin. 

1.5 Products of This Research 

The products of this research include: 

• a list of formal constraints to which an object-oriented analysis model must 

conform in order to satisfy the definitions of correctness, completeness, and 

consistency defined in Chapter Two, 

• an AWSOME analysis model visitor that generates Z specifications from the 

analysis model with integrated theorem prover commands (for the Z based 

theorem prover Z/Eves) to simplify the process of verification, 

• an AWSOME analysis model visitor that generates Promela syntax process 

models from the dynamic characteristics specified. The visitor also integrates 

dynamic model checking commands for the Promela based process model ver- 

ifier, SPIN, 

• assistance in the creation of the AWL parser, and 

• creation of a symbol table visitor for AWSOME ASTs that reduces ambiguity in 

specification component identification and forms the basis for further checking 

of AWSOME ASTs. 

1.6 Document Outline 

The organization of this document is as follows: 

Chapter Two introduces theory and practices relating to formal specification and 

object-oriented analysis, Chapter Three proposes a methodology and constraints by 



which an analysis model may be verified, Chapter Four details the implementation 

of the proposed methodology, and Chapter Five evaluates the methodology and 

implementation, and proposes opportunities for further research. 



77.   Background 

This chapter introduces some fundamental concepts required in order to understand 

the motivation for, and how to formally specify, object-oriented systems and their 

subsequent validation and verification (V&V). The first section of this chapter pro- 

vides an introduction to formal specifications and V&V prior to a discussion of 

common practices in industrial V&V today. 

The second part of this chapter provides background required for an under- 

standing of this research in particular and introduces the Z specification language, 

Promela modeling language, AFIT's wide spectrum language AWL, Rumbaugh's 

Object Modeling Technique (OMT) and representation of the OMT models using Z, 

Promela and AWL. 

2.1    Formal Specifications 

The purpose of a specification is to define all the characteristics that a system is 

to embody. Specifications should be defined in such a manner as to make each state- 

ment provable. A statement is deemed provable if its fulfillment by the generated 

product may be proven via formal logic or mathematical argument [Berztiss]. 

The more comprehensive and thorough that V&V testing is needed to be, the 

more detailed and precise the specifications are required to be. As such, without 

formally specifying a system, it is not possible to ensure that ambiguities do not 

exist, that the requirements are complete and free of errors, or that the test cases 

created are valuable. 

Often a mixture of formal and semi-formal methods is used in the analysis and 

design of software systems with the amount of effort devoted to specification and 

verification being dependent upon the criticality of the particular software compo- 

nent. This practice highlights the tradeoff between component criticality and the 

cost of formal specification and verification. 



Potter describes formal specifications of software engineering systems as in- 

cluding: (i) some specification of the input-output behaviour of the system (the 

relationship between preconditions and postconditions), and (ii) a description of 

how this behaviour can be effected [Potter]. This perspective is likened by Ghezzi to 

a "black box" and "glass box view" of the system respectively [Ghezzi]. The black 

box view of the system deals solely with the external requirements of the system's 

input/output behaviour whilst the glass box view dictates the internal machinations 

of the system. 

The predominant areas of mathematics that create the formal foundation to 

00A are logic, type theory, category theory, and process algebra [Goldsack]. The 

virtues of formal specifications come at a price. Increased specification complexity 

leads to increased difficulty and time required to create the specification. It is this 

balance that sees formal methods typically applied only to components of critical 

importance or the application of semi-formal methods that are not as robust or 

extensive [Gulch]. 

2.2    Validation and Verification 

Validation and verification are the terms given to describe the process by which 

a product is evaluated to ensure that it meets the user's requirements (validation) 

and the specifications that it was based upon (verification). Verification is often 

thought of as "building the system right" [O'Keefe] and validation as "building the 

right system" [Meseguer]. The later that testing occurs in the software process, 

the greater the risk that errors will result in dramatic increases in cost and time 

to correct. Progressive V&V throughout the design process ensures that errors are 

detected as quickly as is practical, hence reducing the risk they offer to project 

budget and deadline [Brooks]. 

Formal specifications lend themselves well to V&V techniques. The precise and 

explicit nature of formal method descriptions may be used to generate comprehensive 



specifications. The characteristics that formal methods embody are not, however, all 

beneficial. Formal specifications are quite often cumbersome, time consuming and 

complex to create [Gulch]. 

V&V implementations should provide the software engineer with sufficient con- 

fidence in a system's correctness, completeness, robustness, precision, safety, and 

other quality attributes. Presently we find that many of these concerns in 00 anal- 

ysis and design are addressed only partially or by indirect evidence only [Goldsack]. 

In order to rectify this situation, V&V methods require precise information about 

the task the system is required to perform [Pressman]. Formal specifications can 

provide a pivotal advantage in satisfying this need. 

2.3    Current Practices in Verification 

The most prevalent techniques for V&V in use today can be categorized into 

one of the following four groups: 

1. Inspection, 

2. Static Verification, 

3. Empirical Testing, and 

4. Empirical Evaluation. 

Inspection techniques are employed to identify semantic errors and are typically 

performed by someone who is knowledgeable with respect to the problem domain— 

such as a domain engineer. A common problem with inspection techniques is that 

they are usually carried out by the person(s) responsible for the generation of the 

domain specification in the first place and they may therefore fail to detect errors. 

This failure to detect errors can usually be attributed to the fact that the possibility 

of a specific error has remained unconsidered, or that the domain engineers see what 

they think the specification says rather than what is actually being specified. Hence, 

it is wise for an independent expert, that is, one who is not involved directly in 

9 



the code generation, to inspect the system. It must be noted that as the problem 

becomes more complex, the difficulty that a human expert experiences increases 

[Pressman]. 

Static verification searches the domain for anomalies [Meseguer 1992]. An 

anomaly in the domain relates to an axiom that suggests the possibility of an error 

within the specification. It is usual for an anomaly to be a contradiction of a general 

property of the domain such as an inconsistency. Static verification is quite often 

carried out by automated tools due to the complexity of the errors being checked 

for. The tools available for static verification vary in the comprehensiveness of their 

search for anomalies [Verdaguer]. Static verification tools are very much dependent 

upon the semantics of the specification language used and are therefore infrequently 

reused in other applications not specified with the same representation. 

Opportunities for the application of static verification are frequent within AW- 

SOME analysis models—each class has an invariant proposition that cannot be con- 

tradicted by any other proposition of the class. For example, the postcondition of 

a class method cannot result in a class attribute value being inconsistent with the 

class invariant, nor may a state invariant be inconsistent with respect to the class 

invariant. 

Empirical testing attempts to check the system via the execution of test sets 

of data. That is, by injecting known preconditions (the test data) into the system, 

one is able to predict the correct postconditions and compare these with the actual 

results witnessed. In order for the testing to be comprehensive, every input that 

could potentially occur must be tested. This requirement results in an exhaustive 

set of input conditions to execute—an undertaking of immense proportions for almost 

any real world system. The lack in practicality of such a test set leads to creation 

of a finite test set that must carefully be determined—the most common methods 

of forming such tests sets are with functional and structural testing in mind. 

10 



Structural testing has been developed to test as many of the components of a 

system as possible—examples include the instantiation of as many objects as pos- 

sible, or the proof of as many axioms as possible. Functional testing takes a more 

validatory approach by checking specified pre- and postcondition relations with what 

is observed at execution. The problem of deciding upon what constitutes a compre- 

hensive test case is not the only one to be encountered; in some systems the "correct" 

behaviour is ill-defined and must be defined prior to test case formulation. 

Empirical evaluation is testing that occurs in order to ensure that the sys- 

tem meets the user's requirements regarding specified qualities such as performance, 

maintainability, documentation, and acceptance. Such acceptance testing is con- 

ducted upon an operational system by the users and/or the designers and occurs 

either on site or under controlled conditions. 

The least likely candidate techniques for adoption in this research are inspec- 

tion testing and empirical evaluation testing. Inspection testing has a high depen- 

dence upon the specific domain and application. It is true, however, that although 

the actual implementation makes for a poor candidate, the underlying methodologies 

are to a great degree independent of the specification language and as such, are to- 

tally relevant to this thesis. Empirical evaluation, however, requires an implemented 

system to be performed upon, and as such is not as relevant to this thesis, which 

focuses upon verification of formal specifications. 

It is important to note that simply because a proposition (axiom) is logically 

correct that the specification is still not guaranteed to specify the intended system. 

It is true that there exists a necessity for all axioms within a specification to be 

logically correct but this alone is not enough to ensure that the system is in fact 

verified. 

The majority of verification tools can only be applied to systems that have been 

implemented in direct comparison to systems that have only been formally specified. 

11 



Tools that require an implemented system in order to function leave the verification 

until far too late in the process model, thus leading to increased rectification costs. 

2.3.1    Definition and Goals of V&V for this Research. 

2.3.1.1 Correctness. Today, much controversy still abounds within 

the verification community as to what the definition of "correctness" is with respect 

to formally specified systems and the credibility of such proofs [Berg]. It is difficult 

to define specification correctness without a specification to provide a context. For 

the purposes of this research, correctness is defined as preservation of the analysis 

model's semantics, and that the analysis model is internally consistent and complete. 

A useful definition for the correctness of an implementation of a specification 

is that the implementation be consistent with the specification. 

2.3.1.2 Consistent. For the purposes of this research, in order to 

maintain internal consistency, it must be ensured that contradictory conditions are 

not capable of being true at the same time. That is, there should be no opportunity 

for contradictions to exist simultaneously. Consistency also requires postconditions 

of the analysis model and the specification to be equivalent for a given precondition. 

It is worth noting that the internal consistency of an analysis model is not related 

to the specification's consistency with user needs. It is outside the scope of this 

research to validate informal user needs. 

For the purposes of this research, in order to maintain consistency, it must be 

ensured that conditions of the domain are not contradictory. That is, at no time 

may two conflicting expressions be satisfiable. 

2.3.1.3 Complete. Completeness requires that the analysis model be 

free from ambiguity and conform to certain semantic properties specified in Chapter 

Three. 

12 



2.3.14 Satisfaction of Correctness Requirements. Note that these 

three objectives also form a subset of those proposed by Collofello : correctness, 

consistency, necessity, performance, and sufficiency (completeness) [Collofello]. Per- 

formance and necessity are both outside the scope of this research. 

As a result of the above definitions, for an 00 analysis model to satisfy the 

requirements for correctness, one must show the following: 

1. That the constituent structural, dynamic and functional models are consistent 

and complete—that the specification is provably correct. 

2. Execution of the specification (if the specification is executable) is correct if it 

is conformant (i.e. same output for a given input) with the expected output. 

This requirement is applicable solely to the dynamic model and is tantamount 

to an exhaustive state space search by a dynamic model checker coupled with 

selected use case test sets. 

Not all specifications require formal semantics. Nor does a specification need to 

be entirely formal in order for verification to be applicable. Semi-formal specifications 

still have associated semantics that may be used as a basis for verification. Quite 

often, the complexity of the specification and verification of a system component are 

directly proportional to its perceived criticality. By the same token, the strength of 

the verification capable of being carried out is proportional to the formality of the 

specification. 

2.3.2 Validation Testing. During post integration testing, the software sys- 

tem is verified to ensure that integration errors are detected and resolved so that a 

truly integrated system exists. At this point the final phases of testing may proceed. 

These final phases of testing culminate in the validation of the users' requirements. 

Pressman defines validation as ensuring the system functions as "reasonably" ex- 

pected by the customer [Pressman]. 
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This reasonable set of acceptance criteria should be stipulated within the origi- 

nal specification for the system and the validation testing conducted should be based 

upon the aforementioned criteria. Validation and verification should not necessarily 

be viewed as two entirely separate entities as the pair are rather interdependent. 

Some believe that the various levels of verification testing that occur throughout 

development, together with other testing methods are the only tools a validator 

requires to obtain maximum evidence as to correctness of the system [Meseguer]. 

Software validation endeavors to show through a series of tests that the system 

conforms with the users' needs. The tests conducted are typically black box in 

nature, that is, they are unconcerned with how the solution is attained, just that it 

meets the requirements specified [Pressman]. Soon after the specification generation 

occurs in the software process lifecycle, the types of tests to be conducted and the 

manner in which they are to be executed should be planned. Specific test cases should 

be defined that provide for thorough investigation of conformity with requirements. 

The aim of the test plan produced is to ensure all functional and quality requirements 

are satisfied. 

Two possible results stem from each validation test conducted—either the test 

results are as expected from the specification, or a discrepancy is determined between 

the system's behaviour and that specified. Both the user and developers should 

address the importance of the deficiency and what needs to be done to rectify the 

situation. 

One method by which to ensure our analysis model is conformant with re- 

quirements and that it is free from faults, is to execute either the specification or 

the product of the transformation (in this case an analysis model) [Collofello]. The 

theorem prover and dynamic model checker used in this thesis are both capable of 

simulating attribute values and thus meet Collofello's requirements for execution. 

One should remain mindful of the fact that in order to mathematically ensure 

the validation of a system's qualities, those qualities must be formalized. It may be 
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argued that it is the qualities (not just the functionality) of the system that drives its 

software architecture and that these quality attributes are satisfied via the selection 

of an adequate software architecture [Williams,Shock]. Assuming the architecture 

selection/transformation is verifiable, the quality attributes required for validation 

testing are thus outside the scope of this research. 

Other methods of testing that complement verification and lead to system 

validation but are outside the scope of this research include [Meseguer]: 

1. Functional testing—development of black-box input test cases to be compared 

to expected behavior, 

2. Structural testing—path coverage—applicable in module, integration, and re- 

gression phases of testing, 

3. Error oriented analysis—statistical analysis of erroneous system behaviour fo- 

cused upon explaining error occurrence, 

4. Hybrid testing—an amalgam of other testing techniques suited to the specific 

problem at hand, 

5. Integration testing—type range, top down, bottom up, big bang and threaded, 

6. Transaction flow analysis—a structured software design technique that ana- 

lyzes a system based upon the transactions the system must process, 

7. Failure analysis—determination of the exact nature and location of an error 

in order to correct the error, identify and rectify similar errors, and to initiate 

action to prevent occurrences of this type of error in the future, 

8. Concurrency analysis—testing aimed at evaluating the performance of concur- 

rent systems, and 

9. Performance Analysis—dependent upon those qualities that are specified and 

provided with metrics to assess compliance. 

15 



2.3.3    Early Approaches to  Verification. Early verification methods in- 

cluded: 

1. Hoare Logic—a simple language consisting of assignment, statement sequences, 

whiles and if-then-elses. Each of these rules is interpreted by a proof rule. The 

assignment rule is an axiom, the other three are inference rules. 

2. Dijkstra's Approach—he extended Hoare's logic by stressing the importance of 

the postcondition and expressed predicates in terms of the set{P}S{R} where 

R is the result of applying S to the precondition P. "Note that the [weakest 

precondition] WP method ensures total correctness. The significant difference 

between the two approaches is in the way they deal with looping, because the 

weakest-precondition approach has to ensure loops terminate" [Berztiss]. 

3. Mill's Functional Correctness—depends upon functions and relations, in con- 

trast with the pre- and post-condition focus of the former methods. 

Such approaches remain commonly accepted as being valuable [Meseguer]. Two 

avenues of verification exist for an algebraic specification—to verify the programs 

against the specification as it stands using Guttag's method [Guttag], or to transform 

the specification into a form that can be used with the inductive assertion method 

[Floyd]. 

2.4    Transformation Systems 

The impetus for transformation systems is the maintenance of system speci- 

fications instead of source code. That is, the use of verified correctness-preserving 

transforms to generate source code from formal specifications results in the software 

engineer directing the majority of his efforts toward analysis, design and validation 

without the requirement for code generation as this facet of the software process 

becomes automatic, or at least semi-automated as depicted in Figure 1 [Balzer]. 
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Figure 1.     Automated Transformation Paradigm. 

It is envisaged that the input elements to a transformation system originate 

from a repository of domain knowledge that is harvested for pertinent specifications 

as well as the generation of problem specific analysis that can be added to the 

repository for later reuse. 

2.5   AWSOME 

Until recently, proofs of concept relating to transformation system research at 

AFIT were demonstrated via the proof of concept tool—AFITtool. AFITtool con- 

sisted of a domain AST, specification AST and design AST as illustrated in 

Figure 2 [Hartrum]. The intent of the domain AST was to encapsulate domain 

knowledge relevant to a specific domain. The problem specification (analysis) AST 

was generated from the parsing of Z Schemas (using Z-MkXsyntax) extended with 

state transition data [Hartrum, Bailor] that formalized the problem into the spec- 

ification AST along with any harvested domain knowledge from the domain AST 

[Anderson]. Transformation of the specification AST resulted in the design AST 

that could then be transformed into executable code [Kissack, Tankersley]. 

The Z representation of OMT used as input to AFITtool differs only slightly 

from that introduced in the implementation of this research described in Chapter 

Four.  Differences occur in the representation of structural model associations and 
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dynamic model transitions. Although kept to a minimum, extensions to Z were 

required to model the entire OMT analysis model as Z's ability to represent the 

dynamic model is insufficient [Hartrum,Bailor]. 

AFITtool was implemented in the high level language REFINE [Reasoning]. 

Noe integrated a commercial GUI object editor, Rational Rose, to the front end 

of AFITtool that somewhat simplified the formalization effort required to specify a 

system [Noe]. Rational Rose provides only a semi-formal ability to specify an object- 

oriented system and thus required augmentation via the addition of the ability to 

integrate axioms. These axioms conform with Z syntax to allow for straight forward 

parsing into the analysis AST. 

The year 2000 has seen the rebirth of AFITtool as the AFIT Wide-Spectrum 

Object Modeling Environment (AWSOME). Essentially AWSOME is a redesign of 

AFITtool, a second generation prototype of a transformation system. The AWSOME 

tool consists of an analysis AST that contains a representation of the problem being 

modeled; this model may be semi-automatically transformed via verified transfor- 

mations into a design model that addresses some details of the problem to a greater 

level of depth. This design AST forms the foundation of the code to be generated 

via the use of another set of verified transformations (see Figure 3 [Cornn]). Con- 

ceptually, this code may then be validated and any incongruities may be addressed 

at the specification level. 

AWSOME makes use of a language developed within AFIT's KBSE group 

called the AFIT Wide-spectrum Language (AWL). This language evolved from the 

work done by Graham that resulted in the wide-spectrum language COIL [Graham]. 

AWSOME is based upon formal language theory, and as such is capable of the formal 

specification of object-oriented systems. AWL has been designed as a strict language 

hence it performs some of the verification effort and reduces specification ambiguity. 

Being a wide-spectrum language, AWL is capable of representation of systems 

at the specification, analysis, design and implementation levels. The lower levels of 
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AWL are not dealt with in this research as they are outside the scope of system anal- 

ysis. AWL is capable of modeling both structural and object-oriented programming 

styles and has intentionally been kept independent of any other particular software 

language. 

An example of the difference between AWSOME analysis and design ASTs 

is: at the analysis level, AWSOME represents class methods in terms of pre- and 

postconditions, therefore free of design decisions relating to any choice of algorithm 

while at the design level, these pre- and postcondition expressions are transformed 

into statements that form the body of the method. 

The fact that any form of input specification, other than an AWL specification, 

must be transformed into an analysis AST means that a specification must conform 

to AWL semantic requirements. That is to say, there are certain productions by 

which an analysis AST is created using the AWSOME language and these production 

rules must be enforced by any other input media. This shall be elaborated upon in 

Chapter Three but suffice it to say here that it meets Berg's requirements for a 

specification language in that it: 

1. is intuitively understandable to specifiers and validators and uses syntax that 

adheres closely to elements of the OMT, 

2. has rigorous mathematical semantics, defined in set theory and propositional 

calculus, 

3. is compatible with the structuring theory and formal methods to be used in 

this research, 

4. engenders wide spectrum applicability and comprehensive expressive power. 

2.5.1 Research Conducted by AFIT's KBSE. Research conducted at AFIT 

and implemented in AWSOME has included: 
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1. Tool integration, that is, the ability to integrate a number of object oriented do- 

main models based upon their structural attributes into the one AST [Ashby], 

2. Generation of relational Schemas in the form of Data Description Language 

(DDL) from an AWSOME specification—affording the capability of persistent 

relational storage of object-oriented domain models and the transformation of 

class associations and postconditions to Data Manipulation Language [Buck- 

waiter], 

3. Information management in the form of a repository founded in object oriented 

database technology, giving AWSOME the capability to integrate numerous 

stand alone software synthesis tools into an integrated environment [Cornn], 

4. Generation of executable code via the transformation of dynamic models into 

structural and functional components and its applicability to agent based sys- 

tems [Marsh], 

5. Semi-automated transformation of relational Schemas to AWSOME ASTs [Pear- 

son], 

6. The proposition of a taxonomy of software architectures and a methodology 

for representing software architectures and styles in AWSOME [Williams], and 

7. the work conducted as part of this thesis. 

2.6   Rumbaugh's Object Modeling Technique 

Rumbaugh's Object Modeling Technique (OMT) is the paradigm used to model 

domains in AWSOME. Using classes as the key foundation, OMT describes their 

attributes and characteristics via structural, functional, and dynamic models. For a 

description of AWL and how it represents OMT, refer to Appendix A. 

2.6.1 Structural Model. The structural, or object, model represents the 

static structure of a system via the constituent objects of the system, the associations 
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between those objects and the methods and attributes of each. Of the three models, 

Rumbaugh considers the structural to be the most important—this is due to the 

fact that in 00A, object identification is more important than early analysis of 

functionality [Rumbaugh]. It helps if object classes form intuitive components of the 

system being modeled, thus object selection is domain dependent. An object class 

consists of the attributes (data values) and methods (functions and transformations) 

inherent to the class. 

Figure 4 represents the structural model of a cruise missile system while Figure 

5 provides sample AWSOME code describing a portion of this model. The cruise 

missile is an aggregate class consisting of a propulsion system, airframe, warhead, 

and avionics software. The airframe, propulsion system and avionics software classes 

are themselves aggregates. The three vectors position, velocity and acceleration are 

examples of subclasses as they inherit the characteristics of the superclass vector. 

The cruise missile model is presented in its entirety in Appendix B. 

Aggregation is a specific category of association. An aggregate class is one that 

is comprised of other classes and the aggregation association relates objects of the 

specific classes. 

Inheritance allows one to model the similarities of certain classes whilst main- 

taining their differences. Take for example, the inheritance relationship between 

acceleration and vector. Vector is a class with three attributes of type real, namely 

x, y, and z. Acceleration is a type of vector and inherits the attributes and opera- 

tions defined for vector but also extends upon those operations by inclusion of other 

operations specific to the acceleration class. 

Conjecture abounds with respect to the semantics of inheritance [Rumbaugh, 

Booch, Booch et. al., Wegner, TaivalSaari, Alexander]. Zdonick proposes four dif- 

ferent categories of inheritance [Zdonick]: 
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Figure 4.     Cruise Missile Structural Model. 

1. cancellation—allows for redefinition of class methods or even removal of meth- 

ods from the subclass, 

2. name compatibility—the subclass must preserve the set of names inherited 

from the superclass but is free to redefine them, 

3. signature compatibility—the subclass must embody the syntactic interface of 

the superclass, and 

4. behavior compatibility—the subclass may not modify the characteristics of the 

superclass. This form of inheritance is termed strict inheritance and ensures 

that the child class is substitutable for the parent class. 

Strict inheritance is the sole form of inheritance referred to within this research. 
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package cruiseMissile is 

class fuelTank is 
private fuelLevel : bigReal; 
private outputFlowRate : bigReal; 

end class; 

class missileFuelTank is fuelTank with 

private fixedWeight : realWeight; 
invariant fixedWeight = tankWeight + (fuelDensity * capacity / 2) 

and inputFlowRate = 0 

end class; 

class navigationSystem is 
private navState : navStates; 

end class; 

class flightProfile is 
private timeOnTarget : time; 
private flightPath : route; 

end class; 

class warhead is 
private weight : mass; 
private munitionType : string; 
private explosiveForce : yield; 

private armed : boolean; 
invariant weight > 0.0 and explosiveForce >= 0.0 

end class; 

class airframe is 
private pos : position; 
private accl : acceleration; 

private vel : velocity; 
private afState : afStates; 

private heading : real; 
private elevation : real; 
invariant heading <= 2*pi and heading >= 0.0 and elevation <= pi/2 

and elevation >= -pi/2 

end class; 

Figure 5.  Partial AWSOME Language Representation of Cruise Missile Structural 

Model 
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class propulsionSystem is 
private fuelFeed :  throttle; 
private engine  :  jetEngine; 
private tank  : missileFuelTank; 
invariant  (tank.fuelLevel = 0.0 => fuelFeed.maximumFlowRate =0.0) 

and  (tank.fuelLevel > 0.0 =>(fuelFeed.maximumFlowRate = 
engine.maximumFuelFlowRate)) and (engine.currentFuelFlowRate = 

fuelFeed.actualFlowRate) 
end class; 

class cruiseMissile is 
private propulsion  :  propulsionSystem; 
private frame  :  airframe; 
private payload  :  warhead; 
private avionics  :  avionicsSoftware; 
private cmState  :   cmStates; 

end class; 
end package; 

Figure 5.     Partial AWSOME Language Representation of Cruise Missile Structural 

Model cont. 

2.6.2 Dynamic Model. The dynamic model represents the temporal rela- 

tionships between functional components of the domain model. The dynamic model 

illustrates what will happen when certain conditions (guards and received events) 

hold irrespective of how it will happen. The dynamic model also describes the be- 

haviour states by which a class is defined. Figure 6 illustrates the Mealy model 

representation of the class Airframe while Figure 7 gives the corresponding AWL 

syntax. 

A state may contain an invariant condition but all actions and events occur 

upon transitions. Transition syntax in AWL is: 

<IN> currentState <0N> receiveEvent  [<IF> guard]   [<D0>action] 

[<send>  (sendEvent)*]} to nextState 

With reference to Figure 6, if the airframe is in the state "powered flight" 

and it receives the event "change course" and the guard condition "true" is satis- 
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fied, then the airframe will transition to the state "maneuvering" until it receives a 

"doManeverComplete" event. 

initAirframe [ true ] / iru'tializeAirrrameO 

inertialFlight preLanuch 

tankEmpty [true ] 

doManeuverComplete [ true ] 

changeCourse [ true ] 

poweredFlight 

estimatePosition[ true ] / setPosinonO 

Figure 6.     Airframe Dynamic Model. 

2.6.3    Functional Model. The computations or transformations of data 

that occur within classes are represented by OMT's functional model in the form of 

data flow diagrams. The functional model is hierarchical in structure; that is, each 

process may be further refined by intermediate levels of detail. At the lowest level 

of abstraction, the processes of the functional model are termed leaf operations. 

The functional model does not describe how transformations occur or when they 

take place, it simply identifies the inputs and outputs of those processes. Figure 

8 represents the calculateAcceleration leaf operation of the airframe functional 

model while Figure 9 gives the AWSOME syntax for the missileFuelTank method 

changeFlow. 
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dynamic model is 
event initAirframe () ; 
event doLaunchO; 
event tankEmptyO; 
event estimatePositionO ; 
event changeCourseO; 
event maneuverCompleteO; 
event outOfFuelO; 

state start invariant afState= startairframe; 
state preLaunch invariant afState = preLaunchairframe; 
state poweredFlight invariant afState = poweredFlightairframe; 
state maneuvering invariant afState = maneuveringairframe; 
state inertialFlight invariant afState = inertialFlightairframe; 

transition table is 
in initial on initAirframe if true to airframelnit; 
in airf ramelnit on AUTOMATIC if true send initDoneO; 

to poweredFlight; 
in poweredFlight on tankEmpty if true to inertialFlight; 
in poweredFlight on getPosition if true send positionCurrentO; 

to poweredFlight; 
in poweredFlight on changeCourse if true to maneuvering; 
in maneuvering on doManeuverComplete if true to poweredFlight; 

end transition table; 
end dynamic model; 

Figure 7.  Airframe Dynamic Model in AWSOME syntax 

2.7   Z 

Traditionally, the formal specifications entered into AFITtool took the shape 

of Z Schemas [Hartrum, Bailor]. In 1997, Noe created a set of automated transforms 

that generated Z specifications from augmented UML diagrams created with the 

CASE tool Rational Rose. The formal language Z is founded in mathematics such 

as prepositional calculus and set theory. The language is far more extensive than 

the subset that is capable of being parsed into the AFITtool domain model. 
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Figure 8.  Airframe Functional Model. 

private procedure changeFlow(actualFlowRate : in bigReal) 
guarantees outputFlowRate' = actualFlowRate? and 

fuelLevel' = fuelLevel and capacity' = capacity and 
tankWeight' = tankWeight and fuelDensity' = fuelDensity 

Figure 9.  Missile Fuel Tank Method—changeFlowQ 
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propulsionSystem 

fuelFeed: throttle 

engine: jetEngine 

tank: missileFuelTank 

Figure 10.     PropulsionSystem Object Model. 

.propulsionSystem  
fuelFeed: throttle 
engine : jetEngine 
tank : missileFuelTank 

tank, fuel Lev el = 0.0 =>• fuelFeed.maximumFlowRate = 0.0 
tank.fuelLevel 0.0 => fuelFeed.maximumFlowRate = 
engine.maximumFuelFlowRate 
engine.cur rent Fuel Flow Rate = fuelFeed.actualFlowRate 

Figure 11.     PropulsionSystem Schema. 

The building block of Z is the schema. This is comprised of a signature and 

predicate. The signature essentially introduces the attributes or variables of the 

schema whilst the predicate stipulates the axioms that define those attributes. 

Schemas may be used to represent classes, operations, events, and states. Type 

definitions are detailed via axiomatic definitions, operations by dynamic schemas, 

and structural components via static schemas. An example structural model for the 

class cruise missile is located at Figure 10. Note the inability of the OMT model to 

convey invariant constraints that are represented in the same class when expressed 

as a Z schema—Figure 11. This is an example of how a semi-formal specification 

system must be augmented with prose in order to provide the requisite formalization. 
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Z has been used in a number of object-oriented analysis models but it is noted 

that Z is not ideal as an 00 specification language due to its semantic complexity. 

In order to achieve a sufficient level of formalism, Z++, ZSPECK, Schuman+Pitt, 

OOZE, MooZ, and Object-Z have extended Z substantially [Goldsack, Stepney]. 

None of these versions of Z were adopted for this research due to the fact that by 

their very nature, their use is not supported by existing Z-based theorem provers 

and does not conform with Spivey or ISO standard Z[Stepney]. 

It is the author's opinion that it is better to use multiple analysis representa- 

tions and verifications tools that are best suited to certain portions of the analysis 

model than to use an unsupported tool that extends a specification language. If 

proper integration can be achieved then the user is none the wiser. 

2.8    00A and Verification 

During the course of this research, it was discovered that literature dealing 

with the formal specification of 00 systems and their validation and verification (as 

opposed to either their V&V or formal specification) is rather rare and difficult to 

come by. By far the majority of 00 specification literature is not formally developed 

to the extent that stringent verification methods could be used against analysis 

models specified in accordance with such methods. 

Extrapolating from Bertziss' research dealing with the verification of abstract 

data types [Bertziss], it can be proposed that three tasks must be performed in order 

to verify the correctness of a class: 

1. Determination of whether an implementation is going to have certain properties 

prior to implementation. This comes from knowledge of the method by which 

the specification is generated and the transformation process. This task is 

predominantly conducted via inspection by experts but the structure of an 

analysis AST described by AWSOME's metamodel ensures certain semantic 
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constraints conforming to this rule such as what may form components of the 

structural, functional and dynamic models, 

2. Demonstration of completeness and consistency of the specification, 

3. Implementation should be provably consistent with its specification—or more 

readily for the AWSOME transformation system—transforms should provably 

maintain the correctness of the modeled system. 

2.9    Software Process Model 

Many software engineering process models exist, and until recently, many of 

those have had little or no avenue for redressing faults until code has been generated 

as it is the code that is tested to ensure compliance with the specification. Therefore, 

many of these models attempt to output code quickly and incrementally. 

As already pointed out the cost and time required to rectify an error during 

code maintenance is far greater than modification of a specification. The process 

model proposed below is a modification of that described by Berg [Berg] such that 

it facilitates an iterative design, thus allowing for faster detection and rectification 

of errors and does not make the tenuous assumption that an entire system can 

successfully be formally specified within a single iteration. It is worth noting that a 

transformation system such as AWSOME readily facilitates iterative processes due 

to the fact that as soon as the specification is modified, the product that is to be 

verified and validated is instantly available. 

The modified software process model is as follows: 

1. Establishment of user requirements, 

2. User requirements are specified in accordance with a formal language resulting 

in a formal specification that is provably correct as discussed in Chapters Three 

and Four, 
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3. The specification is then validated to show that it satisfies the goals of devel- 

opment. This is typically performed by inspection but may also be augmented 

by automation (specification interpreters). Tools such as these permit input 

values to be injected into functions in a specification and then return the asso- 

ciated output values that the specification defines, thus allowing for validation 

via inspection. Note that validation can also include quality attributes that 

are difficult to formalize and as such are outside the scope of this research. 

4. After satisfying the requirements for the properties of being well formed and 

validated, the specification is used to guide the implementation of the sys- 

tem. In AWSOME, this correlates to driving the requisite transformations to 

generate code. 

5. Berg states that the code is then verified by proofs of correctness that ensure 

adherence to the validated formal specification. These proofs are typically 

heavily automated but our previous step that implemented verified transforms 

makes this a redundant phase of the software development process. 

6. Berg then suggests a final testing phase to double-check the proofs. The test 

strategies are developed to (work well from) the specifications. 

7. If any deficiencies are highlighted by validation then repeat the process. 

2.10   Relation Between Background and This Research 

Many of the concepts introduced in this chapter are used in the methodology 

proposed as part of this research. Essentially, the methodology put forward is best 

described as a hybrid—the dynamic, structural and functional models of OMT are 

better suited to different forms of verification testing than a single technique. 

All three OMT models embody characteristics that are suited to static verificätion- 

these form the backbone of tests that ensure consistency of the analysis model, such 
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as invariant constraint consistency, and functional pre- and postcondition analysis 

similar to the work done by Dijkstra. 

The dynamic model is well suited to both forms of empirical testing. An 

exhaustive search of the state space corresponds to structural empirical testing and 

is relevant to state reachability analysis. The injection of a use case test set into 

a dynamic model corresponds to empirical functional testing and may be used to 

validate the dynamic behavior modeled by the specification. 

The completeness of an analysis model relies heavily upon the semantics of 

AWL. The productions rules, type checking and name analysis that occur as part of 

parsing specifications into an AWSOME analysis AST enforce a great deal of struc- 

ture that will result in notification of an error to the software engineer if neglected. 

For example, if a user attempted to define a dynamic model transition without a 

current state or a next state, the parser would not accept the declaration as it is not 

complete with respect to the production rule for an AWSOME transition—refer to 

Appendix A for a list of AWSOME productions. 

The next chapter details proposed constraints upon the analysis model that 

must be enforced as part of the V&V of an object oriented formal specification 

generated in AWSOME. 
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III.   Methodology 

3.1    Introduction 

The research conducted focuses upon the aspects of a formal specification that 

can be checked within the analysis AST itself. Any verification that occurs internal 

to the analysis AST is independent of the method by which the problem is formally 

specified. Therefore, if a new method of specification is implemented, the verification 

methods proposed in this research will continue to be applicable. To put it another 

way, no matter the specification method—be it Z Schemas, a GUI object editor or the 

AWL—these methods will remain applicable without modification as they function 

upon the analysis AST itself. 

The verification issues addressed by this research apply predominantly to spec- 

ification consistency, correctness, and completeness as defined in Chapter Two. The 

problem of verifying correctness, consistency, and completeness has been approached 

from six different but interrelated avenues. These perspectives spawn from a com- 

bination of the granularity of the analysis performed, that is whether the analysis 

is at the inter or intra-class level, and the focus of the analysis—whether it be the 

structural, dynamic or functional model of the system. Figure 12 illustrates this 

breakup as a table, it can be seen that one axis corresponds to the three OMT class 

models [structural, functional, dynamic] and the other corresponds to the level of 

abstraction [class, domain]. These delineations were made so as to break the problem 

into a more manageable size. 

By automating some or all of the verification process, the amount of effort 

required by the specifier for V&V is reduced. This reduction in the effort required 

to formally verify a system increases the value of formal specifications with respect 

to other methods of V&V such as inspection. It must be noted, however, that in 

many cases other than the rules proposed subsequently in this chapter, a test plan is 
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Class Level Domain Level 

Structural Model 

Dynamic Model 

Functional Model 

Figure 12.     Analysis Model Perspectives. 

required that has certain proof goals that provide direction to the verification effort. 

Verification without a clear plan and direction is far from an optimal solution. 

It is the aim of this chapter to identify and explicitly define well-formed con- 

straints to which an object-oriented analysis model must conform. These constraints 

are introduced according to the six categories detailed above and are first given a 

textual description and then a formal definition in propositional calculus. These 

constraints are described without regard for their testability at this stage of the 

document as it is the constraints themselves that direct object-oriented analysis and 

thus form the focus of this research and not their automated testability. 

3.2   Definition of the 00 Analysis Domain Model 

To assist in formalization of the analysis model constraints, definition of the 

domain and its components must be made. Below is a conceptual model of the 

domain for which AWL provides a concrete surface syntax. 

A domain consists of the tuple: Classes, Types, Assocs, AssocObjs, Consts 

where Classes is the set of classes present in the domain, Types is the set of data 

types of the domain, Assocs is the set of associations within the domain, AssocObjs 

is the set of associative objects, and Consts is the set of global constants. 

For the purposes of this document, a type is defined as type = name, inv 

where inv is the type invariant. This is an extremely simplistic representation of the 
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capabilities of the AWSOME language to model types, but is sufficient for the rules 

to be defined. 

A class is defined as the tuple: name, inv, Attrs, Ops, Trans, States, Events 

where name is the class identifier, inv is the class invariant expression, Attrs is a set 

of attributes, Ops is a set of operations defining the functional model, Trans is a set 

of transitions describing the dynamic behavior of the class, and States is a set of 

states that define the class behavior. 

An expression is a well-formed boolean or arithmetic expression capable of 

being proved correct. 

Class attributes consist of a name and a type, i.e., attribute = name, type, 

value where name is the attribute identifier and type is the data type of the attribute. 

Constants and parameters are also represented by the tuple name, type, value. Note 

that AWSOME provides greater depth to the modeling of attributes and parameters 

such as whether a class attribute is public or private and whether the mode of a 

parameter is in, out or in and out. 

Data objects are also defined by the tuple name, type, value. The function 

dataSet(expression) returns the set of data objects referred to in an expression. For 

the sake of dataSet(), there is no difference between a variable's ticked and unticked 

references. It is worth noting that data object is a generalization of both attribute 

and class, and as such both inherit the tuple name, type. 

Operations are defined by the tuple name, pre, post, Params where pre and 

post are the pre- and postcondition expressions of an operation respectively, Params 

is the sequence of parameters of the operation. Operation calls are invocations of 

operations and consist of a reference to the operation to be invoked and a sequence of 

arguments that represent the input parameters of the operation, i.e., operationCall 

= name, Args. For the purposes of this research, at the analysis level, all operations 

are representative of procedures as opposed to functions. 
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Transitions are defined by the tuple transition current, receive, guard, action, 

Sends, next. Current and next refer to the current and next states of the transition 

respectively. The guard condition of a transition is an expression, the action is a call 

to a class method, receive is the event that triggers the transition, and Sends is the 

set of events sent as a product of the transition. States are comprised of an identifier 

and an invariant expression, i.e., state = name, invariant. Events consist of a name, 

a set of arguments (data objects), and an invariant expression, i.e., event = name, 

Args, inv. 

An association!?, represented by the tuple: association = endi, end2 where end\ 

and end2 refer to the identifiers of the two classes that constitute the association. 

Although AWSOME is capable of representing associations of a higher order than 

binary, this research is limited to binary associations due to the greatly increased 

complexity associated with verifying ternary and higher associations. Associations 

modeled in AWSOME are more complex than presented here—each end of an asso- 

ciation has a role name and a cardinality but these are irrelevant to the constraints 

proposed in this chapter. 

Associative objects are comprised of an association, and operations and at- 

tributes particular to the associative object and are defined by the tuple: 

assocObj = name, Attrs, Ops, assoc where name is the associative object identifier, 

Attrs is the set of attributes, Ops the set of operations, and assoc is the binary 

association. 

3.3    Class-Level Constraints 

The propositions of the following class-level constraints are assumed to relate 

to an instance of a class this of a domain dorn, i.e., this € dom.Classes. 

3.3.1 Structural Model. Structurally speaking, classes consist of attributes 

and their invariant predicates that dictate certain characteristics of their behavior. 
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class airframe is 
invariant heading <=  (2*pi)    and heading >= 0.0 and elevation <= 

(pi/2)  and elevation >=  (-pi/2) 
private pos   :  position; 
private accl  :   acceleration; 
private vel  :  velocity; 
private afState  :  afStates; 
private heading  :   real; 
private elevation  :   real; 

end class; 

Figure 13.     Elements of the Cruise Missile Structural Model 

It is these components that are of concern at the class level of verification as well as 

ensuring the consistency of any subclasses with their respective superclasses. 

Constraint 1 Attributes Must be Declared Over Defined Types 

The definition of a data type declares the range of meaningful values of that type. 

Hence it is important to know that each data object is an instance of a data type 

in order to ensure that the context of any reference to the data object is consistent 

with its range of values. It is therefore imperative to ensure that each data object is 

in fact defined over an existing data type. 

Va : attribute • a E this.Attrs =^> a.type 6 dom.Types U dom.Classes 

As an example, Figure 13 contains the structural portion of the specification 

for the class airframe. This class has the private attributes pos : position, accl : 

acceleration, vel : velocity, afState : afStates, heading : real, and elevation : real. 

The first three attributes refer to other classes, and as such, are aggregate 

components of an airframe while the remaining attributes are all of types declared 

within the domain. If any of the attribute types are undefined within the domain, 

then the model fails to be complete. 

Constraint 2 Any Variables Referenced Within an Object's Invariant Proposition 

Must be Constants or Attributes of the Object 
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In accordance with the object-oriented principle of data-abstraction, data modifica- 

tion or interrogation may only be performed by the class that is responsible for that 

data's abstraction, or via methods provided by the class. Therefore, a class is only 

able to reference its own variables and static values of the domain directly. 

Vra : dataObject • (n <E dataSet(this.inv) ^ (n G dom.Consts) V (n e 

this.Attrs) 

The invariant of the class airframe, represented in Figure 5, refers to heading, 

elevation, and pi. Heading and elevation are both of type real and attributes of the 

class while pi is a real constant of the domain. 

Constraint 3 Pre- and Postconditions Must be Consistent With the Class Invariant 

Traditionally, AFITtool has used schema inclusion to imply method pre- and post- 

condition consistency with the class invariant. This research proposes explicitly 

ensuring pre- and postconditions do not contradict the class invariant. While logi- 

cally equivalent to the former method, the latter ensures that the constraint holds 

rather than simply implying it holds. 

Wop : operation • op £ this.Ops => (this.inv A op.pre A op.post) ^ false 

Constraint 4 Invariant Propositions Must be Consistent With Respect to the Types 

Over Which They Refer 

Data types embody constraints upon the values that a variable of a given data 

type may have. Consequently, any expression that refers to a class attribute or 

global constant of such a data type must remain consistent with its constraint. That 

is, values must remain within the attribute's range and operators must have some 

associated semantic for the type(s) they are applied to. 

This constraint may be separated into two lesser constraints: 

1. the invariant of a class must not contradict its attribute type invariants, and 
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2. invariants must be made np of type eompatible operators and operands (elab- 

orated upon as Constraint 9). 

The first constraint requires that the class invariant hold over all attributes of 
the class and is expressed as: 

Vn : iataOh3ect . a e Ms.AUrs A „ 6 iotaSettthis.inv) A n.typeanv A tUs,„v / 
false 

For example, Fignre 14 contains specifications for the enumerated type flight- 

D.rectorStates and the class flightDirector. The state invariants of flightDirector 

d,ctate «he value of the variable flightDirectorState. This constraint states that 

the state invariants must be consistent with respect to the attribute types to which 

they refer, and as such, the invariant must not contradict the invariants of the ag- 

gregate components. Inspection suggests that there is no conflict between the type 

and the state invariants as only those values enumerated in the type declaration are 

ever referenced, that is, the state invariants „ever conflict with flightDirectorStates' 
range of allowable values. 

This constraint does, however, raise the complex issue of aggregate component 

v.s.bfiity within the analysis model. Conceptually, the principles of data abstrac- 

ts and .„formation hiding mean that classes only have direct access to their own 

attnbutes-therefore a„ aggregate class does „ot have direct access to its subclass 

attributes. It is worth noting that all class attribntes have been defined private in 

the cr„ise missile example specificatio„ i„ order to strictly adhere with the object- 

onented software engineering concept of data hiding. 

Constraint 5 Cass Invariants Should he Consistent unth Other Expressions of the 
Class 

Both the functional and dyn^ic models contain expressions that must be consistent 

w.th the invariant specified for the class.   Obviously, this rule is relevant to all 
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perspectives of the domain analysis model and may seem somewhat repetitive when 

mentioned elsewhere in the document in slightly different situations. 

Let I be the set of expressions of the class—these expressions come from the 

class state invariants, transition guard conditions and pre- and postconditions of 

methods and actions. 

Vt'i : expression • (h G this.I A this.inv ^ H) =4> {{i\ A this.inv) ^ false) 

Appendix B contains the entire cruise missile model. The class missileFuelTank 

has the invariant: 

invariant fixedWeight = tankWeight +  (fuelDensity * capacity / 2) 

and inputFlowRate = 0 

while the class method changeFuelFlowQ is defined by the postcondition: 

guarantees outputFlowRate'  = actualFlowRate and fuelLevel'  = fuelLevel 

and capacity' = capacity and tankWeight' = tankWeight 

and fuelDensity' = fuelDensity 

According to the constraint, the missileFuelTank invariant must be consistent 

with respect to the postcondition of the class method changeFuelFlowQ which ap- 

pears from inspection to hold true. 

Constraint 6 Propositions of a Subclass Must be Consistent With Those of the 

Superclass 

Subclasses inherit the methods and attributes of their parent (super) classes.  The 

subclass cannot alter the characteristics of any of its inherited attributes—to do such 

would mean that the superclass is not in fact a generalization of the subclass. Class 

methods may be overridden but for the purpose of this research, they must retain 

the logical equivalence of the inherited propositions. 

Let superclass(cl5 c2) be a function that returns true if ca is the superclass of 

c2- 
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Vci : class Vc2 : class • (ci,c2 £ dom.Classes A superclass{c\, c2)) =£• 

(c2if!D A ci.mu 7^ false) 

As an example, take the class fuelTank and its subclass missileFuelTank in 

Appendix B. FuelTank has the invariant fuelLevel > 0.0. Being a sub class of fu- 

elTank and adhering to the constraint of strict inheritance, missileFuelTank therefore 

inherits fuelTank's invariant as well as it own invariant of: 

invariant fixedWeight = tankWeight +  (fuelDensity * capacity / 2) 

and inputFlowRate = 0 

Constraint 7 Propositions of a Subclass Must be Substitutable For Those of the 

Superclass 

Strict inheritance requires that a subclass be substitutable for its parent class. There- 

fore, not only do the invariants need to be consistent, the subclass invariant must 

also be weaker or equal to the parent class invariant, therefore the subclass invari- 

ant must not constrain that of the superclass. Chapter Six discusses the further 

formalization of strict inheritance. 

Vci : class Vc2 : class • (ci,c2 € dom.Classes A superclass(ci,c2)) =$■ 

(c2-inv =$> Ci.inv) 

Returning to the example of Constraint 6, strict inheritance dictates that the 

invariant of missileFuelTank must imply the superclass invariant which it most cer- 

tainly does. 

3.3.2 Functional Model. The functional model represents the operations a 

class embodies. This model describes the functionality of class operations irrespective 

of temporal considerations. At the analysis level, these operations are described 

via pre- and postconditions that define the output expected for a certain input 

condition. Thus the output (postcondition) is defined as the result of a certain input 

(precondition) and not as an explicit algorithm. 
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Constraint 8 Operation Postconditions Must Maintain The Class Invariant 

The postconditions of class operations must remain internally consistent with respect 

to the class invariant. 

Vop : operation • op 6 this.Ops => (op.post A this.inv) ^ false 

Constraint 9 Mathematical Operators Are for Mathematical Types or Explicitly 

Defined for the Type 

Operators have certain associated semantics dependent upon the type to which they 

apply. For example, 2+3 is commonly accepted as equaling 5 in the domain of 

integers but what does F-16 + F-16 equal? Two F-16s, one F-32? 

In general, both operands of a binary operation must have the same type, 

and the operator is said to have the type of the return value. AWSOME offers a 

great deal of flexibility in type definitions and the operations they embody. This is 

elaborated upon in Appendix A. 

Let MO be the set of mathematical operators, MATH be the set of prede- 

fined mathematical types for Z {integer, natural}, DEFS be the set of user defined 

types with mathematical operators—DEFS contains any mathematical subtype, set, 

sequence, or bag declared in the domain. 

The following syntax is defined : ex o e2 represents that application of binary 

operator o to the operands ex and e2 while o(e) represents the application of a unary 

operator to the operand e. 

For binary operations, this constraint is defined as: Vei,e2 : expression Vo : 

MO • ex o e2 =4> {{ei.type - e2.type A ei.type = o.type) A (ei.type € MATH U 

DEF)) 

For unary operations, the constraint is: Ve : expression Vo : MO • o(e) => 

{{e.type = o.type) A {e.type € MATH U DEF)) 
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Constraint 10 Pre- and Postconditions Must Refer Solely to Global Constants, 

Class Attributes and Parameters 

At the analysis level AWSOME represents class methods by set of formals (parame- 

ters), and pre- and postcondition expressions. Class methods must only refer to the 

parameters passed to them (formals) and the attributes of the class. AWSOME has 

the capability to model global variables as well as global constants but this research 

does not address global variables at the analysis level. 

Va : expression Wb : expression Vo : operation • o G this.Ops A a = o.pre A 

b — o.post A (n G dataSet(a) ^(n£ dom.Consts) 

V (n G this.Attrs) 

V (n G o.Params) 

V n G dataSet(b) =>■ (n G dom.Consts) 

V (n E this.Attrs) 

V (np G o.Params)) 

Constraint 11  Operation Parameters Must be Defined Over Existing Types 

Every parameter referenced via an operation must belong to a data type defined for 

the problem domain specified. 

Vp : parameter Wo : operation • o € this.Ops ApG o.Params =$> p.dataType G 

dorn.Types 

3.3.3 Dynamic Model. The dynamic model describes the behavior of a 

class with respect to how events interact without concern for what functionality the 

events actually engender. This functionality is described in the functional model. 

Constraint 12   Transitions Must Occur Over States Defined For the Class 

This and the next constraint ensure that references within a dynamic model transi- 

tion refer to defined elements of the class dynamic model. 
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Vs : state V* : transition • ((t G this.Trans) A (s = t.current V s = 

t.next)) =>• s G this.States 

Constraint 13 Transitions May Only Refer to Send and Receive Events Defined 

For the Class 

Vt : transition Ve : event • (t G this.Trans A (e = t.receive V e G 

t.Send)) =j>e£ this.Events 

Constraint 14  Transitions Must be Deterministic 

If multiple transitions exist from a state then they must be mutually exclusive and 

an automatic transition (with a guard condition of true) is allowed only if it is the 

sole transition from the state. 

Vii : transition Vi2 : transition • U £ this.Trans A t2 G this.Trans A 

^.current = t2.current A ^.receive = t2.receive A <i ^ f2 =>■ (h.guard A 

t2.guard) — false 

Vti,t2 : transition • tx.guard = true A tr.receive.name = automatic A 

ti.current = t2.current A ti.next = t2.next => ti = t2 

Figure 15 describes in AWL syntax the transition table for the class airframe. 

An example of a deterministic set of transitions is the two transitions from the 

current state poweredFlight. Although both transitions share the same guard 

condition (true) determinism is ensured by each responding to a different receive 

event (tankEmpty and getPosition). 

Constraint 15 States Must be Mutually Exclusive 

The requirement for this rule in a Mealey-based dynamic model is more than ques- 

tionable as the set of transitions leading to a state fully defines the class behaviour 

within the state. However, if a Moore-based dynamic model or a hybrid representa- 

tion is used, then this constraint is an important one. In order that the states of a 
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dynamic model be uniquely identified, the conjunction of the invariant expression of 

any state with any other state must be false. 

Vsi : state,Vs2; state • si,s2 G this.States A sx ^ s2 => (si.invariant A 

s2.invariant) = false 

Although a trivial example, Figure 16 defines the state invariants for the class 

airframe. As can be obviously deducted, the conjunction of any two invariants is false 

as the enumerated variable afState cannot have two different values simultaneously. 

Constraint 16 State Invariants Must Be Defined Over Attributes of the Class and 

Global Constants 

This contention is a linking issue that is discussed in Chapter Four. Note also that 

in a similar fashion to other components of the domain, state invariants should also 

be type checked and not contradict the class invariant. 

Vs : State Vn : dataObject • s G this.States A n G dataSet(s.inv) =» (n G 

Attrs) V (n € dom.Consts) 

Constraint 17 The Transition Guard Must be Defined Over Attributes of the Class, 

Event Parameters and Global Constants 

\/t : transition Vn : dataObject • t € this.Trans A n E dataSet(t) =*• (n € 

dom.Consts) V (n £ this.Attrs) 

Constraint 18 The Preconditions of a Transition Must Be Satisfiable For a Tran- 

sition To Ever Take Place 

This constraint ensures that the guard condition and current state invariant are 

consistent with the class in order to prove that the conditions leading to a transition 

are capable of being satisfied. 

\/t : transition • t G this.Trans =$> (t.cur rent.invariant A this.inv A 

t.guard) ^ false 
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Each of the following two dynamic model constraints is based upon an impli- 

cation that relies upon the preconditions of a transition holding. If the left hand 

side of an implication is false, the right hand side can be true or false. The aim of 

this constraint is to ensure that the left hand side of the following two constraints is 

not false. 

Constraint 19 The Invariant of the Next State Must be Implied by the Transition's 

Guard and the Postcondition of the Action 

Whereas the previous constraint dictates that the precondition of a transition hold, 

essentially this constraint states that the next state invariant be a weaker expression 

than the conjunction of expressions leading to the transition. The aim of this check 

is to ensure that a cause and effect relationship exists between the current state, the 

next state and the transition between them. 

Vt : transition • (t € this.Trans A t.current.inv A t.action.post A t.guard A 

this.inv) =>- t.next.inv 

The structural constraint introduced at Constraint 5 states that all expressions 

of the class must not contradict the class invariant and as such, the class invariant 

is not explicitly included in the above proposition. 

What must be kept in mind when verifying this constraint is that whichever 

attributes appear in the postcondition of the action are modified values, and as such, 

attributes referred to in the invariant of the next state must also be decorated with 

ticks to ensure that names correctly match and the sequential nature of the transition 

is maintained. 

Constraint 20 The Invariant of the Send Events of a Transition Must Be Implied 

By the Transition's Guard and the Postcondition of the Action 

Send events generated by a transition must be consistent with the conjunction of 

the expressions of the transition that lead to their generation. The aim of this check 
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is to ensure that a cause-and-effect relationship exists between a transition and its 

send events. 

\ft : transition Ve : event • t 6 this.Trans A e 6 t.Send A t.current.inv A 

t.action.post A t.guard A this.inv =4» e.inv 

Constraint 21 The Precondition of an Action Must be Implied by the Conditions 

of the Transition. 

The precondition of an action must be satisfied by the current state invariant, the 

class invariant, the guard condition and the receive event invariant for the action to 

take place. 

V* : transition • (t € this.Trans A this.inv A t.current.inv A t.guard A 

t.receive.inv) =>• t.action.pre 

Constraint 22 Receive Event Parameters Must Match Action Input Parameters 

For a given transition, the signature of the action it invokes must contain the param- 

eters of the transition receive event. Within a class dynamic model, an action refers 

to a method of the class. The variables a method operates upon stem from attributes 

of the class, locally defined variables and input parameters that originate from the 

arguments of the receive event that resulted in the transition being triggered. 

For a given action, let inParams be the set of input parameters of an action, 

i.e., inParams = {p € action.Params • p.in = true}. 

Vt  :  transition Vrx  :  event Vact  :  method •  t  G   this.Trans  A   rx  = 

t.receive A act = t.action =>■ rx.Params C act.inParams 

Constraint 23 Send Event Parameters Must Match Action Output Parameters 

Similar to the above constraint, for a given transition, action output parameters 

must form the set parameters of the set of send events of the transition. 
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For a given action, let outParams be the set of output parameters of an action, 

i.e., outParams = {p € action.Params • p.out = true}. 

Vt : transition Mtx : event Vact: method • t £ this.Trans A tx E t.receive A 

act = t.action =>■ tx.Params C act.outParams 

3.4    Domain Level Verification 

The focus of concern at the domain level is the interaction between classes and 

their associations. An example of domain level interaction is the relationship between 

send and receive events of different classes, while an example of an association would 

be an aggregation. 

34.I    Structural Model. 

Constraint 24 Associations Must Refer to Classes Defined Within the Domain 

For an association to exist and have meaning in a domain, there must also exist the 

constituent classes that make up its ends. Below, assocEnd is used to identify an 

end of an association. 

\/assoc : association Vclassi,class2 : class • assoc £ dom.Assocs A classi G 

dom.Classes A class2 G dom.Classes =4> assoc.endi = classi.name A assoc.end2 — 

class2.name 

This and the following structural model constraints are enforced during the 

linking phase of the analysis model creation—refer to Chapter Four for a description 

of the linking process. 

Constraint 25 Associative Objects Must Refer to Classes Within the Domain 

This constraint is merely a specialization of Constraint 24. 

Constraint 26 Aggregation Must Refer to Classes Within the Domain 
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Another special case of association, aggregation, is worth discussing in a little more 

depth due to the fact that aggregation may represented in more than one fashion 

and hence requires special consideration. 

In AWSOME, aggregation may be represented as a special form of association, 

Figure 17, or somewhat more implicitly, as a class attribute, Figure 18. 

In its first form, this constraint of aggregation is formalized by Constraint 1 

while in its second form Constraint 24 expresses the required constraint. 

3.4.2 Functional Model. Domain level rules dealing with the functional 

model are predominantly concerned with the invocation of methods—that is, who is 

capable invoking a method and the consistency of the call made. 

Constraint 27 Operation Calls Must Match Signatures 

The signature of an operation describes the set of formal parameters that declare 

its input and output characteristics. Each parameter is represented by an identifier, 

data type, and in/out qualifier. For the purposes of this research, no parameter 

is allowed to be used for both input and output as this greatly complicates the 

verification process. AWSOME however, is capable of modeling in/out parameters. 

W : transition Vop : operationCall Vact : action • t £ this.Trans A act £ 

this.Ops A act.name = op.name A #1 op.Args = #act => (Vi : J\f • i 6 domA A 

A(i).type = P(i).type 

3.4.3   Dynamic Model. The majority of verifiable rules related to the 

dynamic model are applied at the class-level. As long as there exists a correlation 

between events of classes within the domain model, domain-level dynamic modeling 

is verified. 

Constraint 28  Objects May Only Communicate Via Send and Receive Events 
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The interaction of objects within a domain—that is, how they communicate, how 

aware they are of each others' existence and their ability to invoke each others' op- 

erations is a point of contention in the field of object oriented software engineering 

and as such, this research has adopted the strict constraint that class-level commu- 

nication is to occur through the sending and receiving of events only. 

Constraint 29 All States Should be Reachable 

In this research, it is assumed each class has an initial state named "start". Start is a 

magical state in which each class begins and therefore, no transition is needed to it. 

However, every other state requires not only a transition to it but a transition whose 

receive event and guard condition are capable of being satisfied. That is, there exists 

a corresponding send event in another object and the guard must not contradict the 

class invariant. 

This rule does not constrain the analysis model such that all states must be 

reachable—the intent is to generate a warning to the software engineer that there 

exist certain states within the domain that are not capable of being reached. Spec- 

ification reuse may mean that certain class properties are irrelevant to a specific 

domain; alternatively the warning may bring to light an actual oversight of the 

model. 

The following rule states that for each receive event in the domain, there must 

be a corresponding send event. 

VCl : class Vi : transition • t G cx.trans => (3c2 : class 3t2 : transition • 

t2 G c2.Trans A t^.receive e t2.Send 

An example of an unreachable state is maneuvering in the AWSOME syntax 

transition table of Figure 15. The absence of any transition to the state is the culprit 

in this case and as such, a warning to the software engineer should be generated. 
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3.5   Summary 

This chapter introduced a set of formal constraints that an object oriented 

analysis model must satisfy in order to ensure consistency and completeness. Each 

constraint is formalized according to the semantics of a domain model introduced 

early in the chapter. The constraints are grouped depending upon which model of 

the Object Modeling Technique [Rumbaugh] they are appropriate and whether they 

are a class- or domain-level issue. The next chapter discusses the implementation of 

the testing of the constraints proposed within this chapter. 
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type flightDirectorStates is (startflightDirector, idleflightDirector, 

maneuveringflightDirector); 

class flightDirector is 
private flightDirectorState : flightDirectorStates; 

private procedure initializeO 
guarantees flightDirectorState' = idleflightDirector 

dynamic model is 
event errorSignalsO; 
event initFlightDirectorO ; 

event maneuverComplete(); 

state start invariant flightDirectorState = startflightDirector; 
state idle invariant flightDirectorState = idleflightDirector; 
state maneuvering invariant flightDirectorState = maneuveringflightDirector; 

transition table is 
in start on initFlightDirector if true do 

initializeFlightDirectorO; to idle; 
in idle on errorSignals if true send changeCourseO; setElevationO; 

setThrottle(); to maneuvering; 
in maneuvering on maneuverComplete if true to idle; 

end transition table; 
end dynamic model; 

end class; 

Figure 14.  Declaration of the Type FlightDirectorStates and the Class FlightDi- 

rector 

transition table is 
in initial on initAirframe if true to airframelnit; 
in airframelnit on AUTOMATIC if true send initDone() ; 

to poweredFlight; 
in poweredFlight on tankEmpty if true to inertialFlight; 
in poweredFlight on getPosition if true send positionCurrentO; 

to poweredFlight; 
in maneuvering on doManeuverComplete if true to poweredFlight; 

end transition table; 

Figure 15.  AWSOME Syntax Transition Table 
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State start invariant afState = start; 

state aiframelnit invariant afState = aflnit; 

state poweredFlight invariant afState = poweredFlight; 

state maneuvering invariant afState = maneuvering; 

state inertialFlight invariant afState = inertial; 

Figure 16.  State Invariant for the Class Airframe 

aggregation propels is 

parent missile : cruiseMissile multiplicity One; 

child propulsion : propulsionSystem multiplicity One; 
end aggregation; 

Figure 17.  Aggregation Represented Via Association. 

class cruiseMissile is 

private propulsion : propulsionSystem; 

private frame : airframe; 

private payload : warhead; 

private avionics : avionicsSoftware; 

private cmState : cmStates; 

end class; 

Figure 18. Aggregation Represented Via Class Attribute. 
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IV.   Implementation 

4-1    Introduction 

The aim of this chapter is to expand upon each of the constraints introduced 

in Chapter Three by detailing their implementations. Descriptions of the process 

by which an AWSOME analysis model is specified and its representations for the 

theorem prover Z/Eves and dynamic model verifier Spin are also given. 

The constraints of Chapter Three are best suited to several forms of verification: 

1. Some of the simpler, static, constraints are checked directly on the AST, such 

as those addressed by name analysis and type checking. 

2. Some constraints require logical inference (such as 19, 20 and 21), thus a the- 

orem prover is required. The theorem prover Z/Eves is used to automate 

verification of these constraints. 

3. The dynamic model supports specialized analysis for which tools exist.   The 

dynamic model checker Spin is used to verify constraints such as 14 and 29. 

In order to keep the methods independent of the manner in which a system 

is specified, the majority of verification techniques used focus upon the AWSOME 

analysis AST. That is, no matter if a system is specified in Z, AWL or via the object 

editor, so long as it may be stored in the analysis AST these tests can be performed 

upon it.   If the tests had been made input dependent then a new series would be 

required for each method of input to the analysis AST. However, this has occurred 

on occasion, where the parser's syntax has defined certain rules that a specification 

must follow.  Other developers must be aware of these factors when designing new 

methods of analysis AST creation. These grammar-enforced rules will be discussed 

throughout the chapter. 
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This chapter is structured in a similar fashion to that of Chapter 3—addressing 

each constraint presented in the methodology and how its verification was imple- 

mented. 

4.2 Limitations Placed Upon AWSOME Models in This Research 

In order to ensure compatibility with Z/Eves and Spin, the following con- 

straints are placed upon AWL: 

1. no underscores are permissible, 

2. string values must be introduced as a constant of type string with the value 

0, 
3. no parameters may be of both in and out modes, and 

4. dynamic models that use automatic transitions must declare an AUTOMATIC 

event. 

It should be noted that the majority of these limitations are rather easy but 

time consuming to rectify. 

4.3 Creating AWSOME Analysis Models 

This section of the chapter details the manner in which a domain model is 

created and verified in AWSOME: 

1. specification generation in AWSOME syntax, 

2. parsing the specification into an AWSOME analysis AST, 

3. generation of symbol tables that manage name spaces, 

4. linking of identifiers with their respective identifier references throughout the 

analysis AST, and 

5. semantic analysis. 
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Figure 19.     The AWSOME Class Model. 

The structure of an AWSOME AST is described by AWSOME's metamodel. 

The AWSOME metamodel takes the form of an 00 inheritance hierarchy—it has ap- 

proximately 100 classes (termed WsClasses) that are used to model a wide spectrum 

of object-oriented programming components. Portions of the AWSOME analysis 

AST especially pertinent to this research include the WsClass and its aggregate 

components illustrated in Figure 37. 

A system may be specified in AWL and, via parsing, be transformed into an 

AWSOME AST. However, parsing AWL files is not the only method by which spec- 

ifications may be transformed into AWSOME ASTs and as such there is a need to 

explicitly define the AWSOME syntax so that tools made subsequently comply with 

the rules that the parser enforces. If these productions are not enforced, the cor- 

rect and complete operation of the verification techniques proposed in this research 

cannot be guaranteed. AWL production rules are included at Appendix A. 

The following subsections detail the process followed to generate an AWL spec- 

ification and the specification's subsequent verification and validation. 
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4-3.1 Problem Domain Specification. Presently, a user may specify a prob- 

lem domain via creation of an AWL file or the use of a GUI object editor. It is 

envisaged that, via an elictor harvester, the software engineer will harvest applicable 

classes from the existing knowledge base and then specify any deficiencies in AWL 

syntax. This specification is saved as an AWL file and may then be read by the 

parser. 

4.3.2 Parsing AWL. The AWSOME parser produced in conjunction with 

AFIT faculty is responsible for verifying the syntactic rules of a specification gener- 

ated in AWL. The product of the syntactically correct specification is an AST based 

upon WsClasses. It must noted, however, that the parser requires identifiers to be 

placed in AWL syntactically correct positions, but at no point does it ensure that 

the AST is semantically correct. 

4.3.3 AWSOME AST Scoping. The first stage in ensuring the correctness 

of an AWSOME specification is the generation of a symbol table that maintains a 

list of the declarations visible at any point in the AST. 

Certain WsClasses within an AST make declarations that should be only visible 

to certain other components of the AST. That is, references should be made solely 

to those components declared within the list of open scopes. Take for example class 

attributes —the object-oriented concept of data hiding requires that a class keep its 

data objects hidden from the outside environment, and as such requires the creation 

of a scope within which these attributes are declared and visible. 

The symbol table affords the capability to ensure that declarations of the same 

name and category are not allowed within the list of open scopes and as such, re- 

duces the possibility for name ambiguity in the specification and errors in object 

referencing. 
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4-34 AWSOME AST Linking. Once it has been ensured that no com- 

ponents of the same category exist within a mutually open scope, it is possible to 

link references to declarations with the declared object and raise critical errors or 

warnings to notify the formalist of incompatible types. 

4.3.5   Semantic Analysis. From the analysis AST is generated both a 

Z/BT£JXfile and a Promela file. The Z/#T£Xfile may then be inspected with Z/Eves 

in order to prove properties of the specification, and the Promela file may be executed 

in Spin to highlight any further dynamic model concerns. 

These two tools do not address other semantic concerns of the analysis model 

such as standard compiler-like checking of method signatures and return type con- 

sistency. It is envisaged that such checks will be applied to the analysis AST directly 

by another visitor and do not provide any value to the research interests of this work. 

The checks implemented as part of this research are more complex. They require 

deeper levels of analysis such as theorem proving, exhaustive enumeration of state 

spaces and simulation. 

Table 1 summarizes the responsibility, implementation status and automata- 

bility of each of the proposed constraints with respect to the components discussed 

in this section. 

44    SPIN and Z/Eves 

While numerous extensions to Z exist to cater for object-oriented analysis, 

methods of this research do not modify Z in any fashion—elements of the dynamic 

model that are difficult to express in Z syntax are specified in the process modeling 

language Promela. This ensures that the theorem prover behaves as expected and 

does not result in a less applicable, more esoteric strain of the Z virus. The use of 

an interactive theorem prover such as Z/Eves allows for modification of the Z model 
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Constraint Linker Z/Eves SPIN Semantic Implemented Automated 
1 X X X 

2 X X X 

3 X X X 

4 X X X 

5 X X X 

6 X 

7 X 

8 X X X 

9 X X X 

10 X X X 

11 X X X 

12 X X X 

13 X X X 

14 X X 

15 NA NA 
16 X X X 

17 X X X 

18 X X X 

19 X X 

20 X X 

21 X X 

22 X 

23 X 

24 X X X 

25 X X X 

26 X X X 

27 X 

28 X X X X 

29 X X 

Table 1.      Constraint Verification Responsibility. 
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prior to modification of the specification to test various hypotheses without having 

to modify the specification repeatedly to catch a single inconsistency. 

SPIN's applicability to this research was essentially limited to state reachability 

analysis performed via the use of an exhaustive state space search. It became evident, 

however, that its use is inappropriate for the verification of OMT dynamic models. 

SPIN's inability to completely represent OMT dynamic models stems from its limited 

range of data types (numerical types of different sizes) and lack of expressive power 

in representation of propositions such as invariants and pre- and postconditions. 

This does not mean that SPIN is a poor tool—its use is extensive around the 

world in dynamic model verification. 

4-5   Z and Promela Generation 

Both the Z and Promela specifications are generated from the analysis AST via 

the use of the design pattern termed the visitor [Gamma]. A visitor allows for the 

addition of functionality to certain object-oriented systems without the requirement 

to modify the classes of the structure, therefore maintaining AWSOME's conceptual 

integrity. 

Neither the Z nor Promela transformations provide a complete representation 

of the entire 00A model. Only a sufficient amount of the model is transformed 

to allow for the generation of theorems that express the constraints established in 

Chapter Three. 

The Z specification visitor outputs a specification in the formal language Z, 

complete with theorems and proof commands aimed at verifying the constraints 

proposed. The Promela specification visitor outputs a Promela file for execution in 

Spin. 
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Figure 20.     From AWSOME Analysis model to Z Schemas. 

4-6   Modeling a Domain in Z 

The representation of object-oriented systems with the formal language Z is 

not by any means a new concept. Familiarity with Z while studying at AFIT and the 

availability of a free theorem prover with satisfactory support were key determinants 

in the decision to make use of Z as an analysis model representation for the purposes 

of verification in this research. 

4-6.1 Structural Model in Z. The following subsections detail how certain 

OOA concepts are represented by the Z specification generator produced as part of 

this research. Figure 20 illustrates the mapping from an OMT structural model to 

its representation in Z. 

4.6.I.I Types. Abstract types are represented as identified sets. An 

example in the cruise missile model is the type character. This will be represented 

by [char] in the Z analysis model. Note that enumerated types are fully defined, e.g., 

AWSOME syntax for the states of the class airframe is: 

type afStates is (start, aflnit, onCourse, maneuvering, inertial); 

which is transformed into the Z syntax below: 
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afStates ::= start | aflnit | onCourse | maneuvering | inertial 

The only types inherent to Z are the integers Z and the set of naturals M'. 

Therefore, a fixed point approximation was required for real numbers. The chosen 

approximation is to multiply by an order of magnitude equal to the decimal resolution 

required, e.g., for a real with a range from 1.0 to 10.0 with a delta of 0.001, the type 

was represented by an integer of range 1 x 103 to 10 x 103. Obviously, this raises 

inaccuracies in scale when dealing with operations such as division and multiplication 

and therefore, checking of real types must take this into account. Floating point types 

are represented by integers in a similar fashion to that of fixed point real numbers. 

For most purposes, knowing that the type is a form of number is enough to allow 

model verification to continue. 

Integer types—subtypes of Z—are represented by axiomatic definitions that 

declare the type's identifier and its range restrictions. 

Z has no intrinsic representation character or string types or literals. Without 

defining character in Z as an enumerated type that contains the entire character set, 

literal strings (sequences of characters) must all be defined as global constants equal 

to the empty sequence. To provide a literal string with any value would not make 

sense as character is defined as an abstract type. 

4.6.1.2 Classes. The structural model of a class is represented by a 

static schema. The name of the schema corresponds to that of the class, the signature 

of the schema describes the attributes of the class whilst the predicate describes the 

class invariant. An example class is illustrated in Figure 21. 

4.6.1.3 Associations. Associations are generally handled as static 

Schemas. The name of the schema is that of the association, the signature of the 

schema defines the end roles of the association and the predicate describes multi- 

plicities of the end roles.   It must be noted that the special form of association, 
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, cruiseMissile  
propulsion : propulsionSystem 
frame : air frame 
payload : warhead 
avionics : avionicsSoftware 
cmState : cmStates 

Figure 21.     Aggregation Represented Via Aggregate Class Schema. 

.propels _ 
a : propulsionSystem <-» cruiseMissile 

Va; 6 domfl#(a; < a) < 1 
Vy e rana#(y> a) > 0 

Figure 22.     Aggregation Represented Via Association Schema. 

aggregation, may also be represented via the addition of the aggregate component 

as an attribute of the aggregate class. 

AWSOME facilitates both methods of describing an aggregation as does the Z- 

schema generator created as part of this research. The two alternate representations 

of the cruiseMissile/propulsionSystem aggregation are illustrated in Figure 21 and 

Figure 22. 

4.6.2 Functional Model in Z. The methods constituting a class' functional 

model are represented by dynamic schemas. Dynamic Schemas reference the class by 

delta inclusion (represented by A className in the schema signature), thus identify- 

ing the schema as a method that may result in a change in class attributes. Figure 

23 illustrates the mapping of an AWL class operation to its representation in Z. 

An example of a method specified in AWL and expressed as a Z schema is given in 

Figures 24 and 25, respectively. 
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Figure 23.     From Class Method to Dynamic Schema. 

private procedure changeFlow(actualFlowRate :   in bigReal) 
guarantees outputFlowRate'  = actualFlowRate? and 

fuelLevel'  = fuelLevel and capacity' = capacity and 
tankWeight'  = tankWeight and fuelDensity'  = fuelDensity 

Figure 24.     AWSOME Syntax For the Method ChangeFlow. 

At the analysis level, AWSOME defines class methods via pre- and postcon- 

dition expressions (identified by the keywords "assumes" and "guarantees" respec- 

tively). It is these expressions that form the predicate of the method's dynamic 

schema. 

Note, it is considered that if a variable is not explicitly changed with a tick (') 

then it remains unchanged as opposed to being considered neglected and therefore 

an error in the specification. 

4.6.3 Dynamic Model in Z. Dynamic models in AWSOME are comprised 

of a set of states, a set of events, and a set of transitions. The set of transitions 

define the relation between elements of the two former sets. 
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. changeFlow  
AmissileFuelTank 
actual Flow Rate? : bigReal 

out put Flow Rate' = actual Flow Rate? A fuelLevel' — fuelLevel 
A capacity' — capacity A tankWeight' = tankW'eight A 
fuelDensity' = fuelDensity 

Figure 25.     Dynamic Schema For the Method ChangeFlow. 

WsTransition 

^y 

currentState receiveEvent guard sendEvents nextState 

Figure 26.     WsTransition and its Aggregate Components. 

4-6.3.1    States.      A static schema is created for each state of the anal- 

ysis model and the state invariant, if any, is added to the schema's predicate. 

4.6.3.2    Transitions. Transitions in AWSOME consist of a cur- 

rentState, receiveEvent, guard, action, sendEvent(s), and a nextState (see Figure 

26). Transitions are capable of containing a great deal of propositional calculus— 

both the current and next states contain invariants, as does each send event and 

the receive event, the guard condition is a Boolean expression, and the action has 

pre- and postconditions. From this information it can be established that the guards 

are consistent and complete, transitions are deterministic, and that all states are 

uniquely identifiable. 

No Z construct is capable of representing an entire OOA transition. A number 

of Z/Eves theorems are generated for each transition in order to test its consistency 
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and completeness with respect to the constraints proposed in Chapter Three (refer 

to Constraints 18, 19, and 20 for elaboration). 

4-7    Verifying Components and Domain Checking With Z/Eves 

Relevant analysis model information is harvested from the analysis AST in 

accordance with the methodology of Section 4.5 and used in the creation of a Z/Eves 

compatible representation. This representation, in the form of a .zed file, may then 

be loaded into the Z/Eves environment and the verification goals of this research 

tested. 

This section of the chapter introduces the concept of domain checking as per- 

formed by Z/Eves. A more thorough explanation is given in the Z/Eves Reference 

Manual [reference manual 1.5]. Domain checking automatically occurs when a para- 

graph1 is entered in the Z/Eves interactive mode or if the command check is executed 

upon a batch input styled Z-section. 

Z syntax allows for the specification of expressions whose semantics are nonsen- 

sical [reference manual 1.5]. Two ways that semantic correctness can be compromised 

are: 

1. application of a function outside its domain such as max J\f or 1 div 0, 

2. a proposition is not meaningful if there does not exist a single value for a term 

such that the predicate holds. For example, Vn:A/'»n>5An<5. 

Z/Eves may be used to check each paragraph of a Z section specification to 

ensure that function applications are meaningful and that all propositions are se- 

mantically correct. 

Domain checking provides the backbone of all structural, functional, and the 

majority of dynamic model semantic analysis performed as part of this research. The 

1Z paragraphs include abstract types, Schemas, axiomatic definitions and theorems. 
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Symbol Grammatical type 

e expression 

P,Q predicate 
ST schema-text 
SE schema-exp 
D decl-part 
n name 

Table 2.     Domain Check Notation. 

constraints whose implementation are mentioned in this chapter are predominantly 

performed during domain checking of the analysis specification. 

The remainder of this section details the domain checking applied to each 

form of Z paragraph. A brief description is given prior to the specification of each 

domain check as described in the Z/Eves Reference Manual. In order to simplify the 

expressions that follow, the symbols in Table 2 are introduced. 

4-7.1 Abstract and Enumerated Types. Abstract and enumerated types are 

the easiest elements of a specification to verify as they are simply names and are 

always considered to be true for the purposes of domain checking, i.e., DC([n,...]) = 

true, where DC represents a domain check and n is the name of the abstract type or 

the range of enumerated values. 

Abstract types have no constraints or operations defined for them other than 

equality 2 while enumerated types have no constraints or operations defined for them 

other than equality and test of set membership i.e., membership in the type. 

4-7.2 Declarations. Named variables are introduced via declarations. The 

visibility of declarations is dependent upon where the declaration is made. The vis- 

ibility of a variable in Z/Eves is either global or local. Declarations made within 

an axiomatic definition have global visibility beginning from the end of the decla- 

2AWSOME provides other operators for enumerated types such as < and > but these operators 
are not defined for enumerated types in either of the verification tools used in this research 
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ration and spanning the remainder of the specification (i.e., variables may not be 

referenced prior to their declaration) while declarations made within the signature 

of a schema remain local to the schema signature and predicate. However, schema 

inclusion-used in this research to represent methods, states, events, aggregation 

and inheritance-may be used to introduce variables defined within other Schemas 

into the one currently being declared. 

A Z/Eves declaration is structured as follows: 

declaration :: basic-decl;...;basic-decl 

basic-decl :: decl-name-list : expression j schema-ref 

decl-name-list      :: decl-name,...,decl-name 

Domain checking (DC) of a declaration is dependent upon the form of the 

declaration-the DC of a name with an expression is simply the domain check applied 

to the expression, the DC of a set of expressions of a schema is the conjunction of 

the DC of each schema-expression and so on. 

DC(n,...:e) 

DC(S[e,...]) 

DC(D;D') 

= DC(e) 

= DC(e)A... 

= DC(D)ADC(D') 

4-7.3 Schemas. Schemas are used to represent classes, states, events, and 

methods of an AWSOME analysis model. A schema consists of a set of declarations 

(D) located in the schema signature and a set of propositions (P) located in the 

schema predicate. Domain checking of a schema entails domain checking the set of 

declarations and checking propositions over the relevant declaration domains. 

DC(Schema) = DC(D) A (VZ) . DC(P)), where D is the set of declarations in the 

schema signature and P is the set of propositions of the schema predicate. 
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4.7.4 Axiomatic Definitions. Axiomatic definitions may be used to rep- 

resent types with constraints, for example, an integer with constrained upper and 

lower bounds. The type's name and the fact that it is an integer are declared in the 

axiomatic definition's signature while the bounds form the predicate. 

Domain checking of an axiomatic definition checks the declaration and the 

propositions of the predicate over the domain of the relevant declarations. 

DC(Axiom) = DC(D) A (V£> • DC{P) A DC(Q A ...), where P and Q are 

propositions of the axiom predicate. 

4-7.5   Schema Expressions. 

Z/Eves is as follows: 

The composition of schema expressions in 

schema-exp :: V schema-text • schema-exp 

3 schema-text • schema-exp | 

31 schema-text • schema-exp | 

schema-exp-1 

schema-exp-1       :: schema-ref | 

-1 schema-exp-1 | 

pre schema-exp-1 | 

schema-exp-1 A schema-exp-1 | 

schema-exp-1 V schema-exp-1 | 

schema-exp-1 => schema-exp-1 

schema-exp-1 <$ schema-exp-1 

(schema-exp-1) 

The domain checking of schema expressions is: 

DC(VD I P • SE) = DC(D) A(VD • DC(P))ADC(SE) 

DC(3D I P • SE) = as above 
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DCßjD I P • SE) = as above 

4.7.6 Schema Texts. Schema expressions are comprised of sets of schema 

text where each schema text consists of a declaration and an optional set of predi- 

cates, i.e., 

schema-exp-1       :: [schema-text] 

schema-text :: declaration [|predicate] 

Domain checking schema texts is very similar to domain checking a schema— 

the declarations are domain checked and predicates are checked over the domain of 

the declaration, i.e., DC([D|P]) = DC(D)A(VD •DC(P)) 

4.7.7 Schema References.      Schema references are optionally prefix-decorated 

schema names. Schema references are used in this research to represent class meth- 

ods, inheritance and aggregation (methods are either functions or procedures and 

are distinguished by the prefixes S and A respectively). The schema name refers to 

the name of the class schema that the method belongs to. 

Aggregation and inheritance schema references are not decorated as they are 

used to declare schema inclusion within the scope of the class being declared. 

schema-ref 

schema-text 

prefix 

[prefix] word 

declaration [|predicate] 

A IS 

Domain checking of schema references entails domain checking of the schema 

referred to (if not already done) and any expression that forms part of the declaration 

and is defined as: DC(S[X,Y][x/y,z:=e])=DC(X) A DC(Y) A DC(e). 
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4-7.8   ZI Eves Prove By Reduce. The most frequent Z/Eves command 

issued in this research is prove by reduce. The command prove by reduce instructs 

Z/Eves to apply simplification, rewriting, and replacement until the theorem can be 

no further reduced. Typically, the aim of prove by simplification is to establish a 

theorem as true, false or not equal to false. 

Simplification results in Z/Eves performing equality and integer reasoning, 

propositional reasoning and tautology checking. Rewriting applies simplification 

and attempts to simplify the theorem by matching propositions to known patterns. 

Replacement entails replacing any schema references with their respective definitions. 

Figure 27 contains a sample of the output generated by Z/Eves. The first por- 

tion is the output generated from domain checking of the schema missileFuelTank. 

The second portion, beginning at "theorem inheritance", is the proof of a theorem 

that attempts to verify that missileFuelTank's invariant does not conflict with that 

of fuelTank. Unfortunately, this proof did not work as anticipated, the superclass 

schema was reduced to true prior to any further analysis—the proposed solution is to 

include only the superclass invariant instead of the entire schema—refer to Constraint 

6 for further details. The final section of the output, identified by "theorem initialize- 

MissileFuelTankisok" attempts to verify that the operation initializeFuelTank does 

not conflict with the class invariant. For the purposes of this example, the postcon- 

dition was modified such that it was inconsistent with missileFuelTank's invariant 

and Z/Eves returned the proof result "false". 

4-8    Modeling a Domain in Promela 

In addition to Z/Eves, Spin is used for part of the dynamic model's verifica- 

tion process. The selection of Promela and Spin was made due to the ease of use 

of the language Promela and the concurrent research conducted by Lacey that re- 

sulted in the presence of an active knowledge base of the tool's use at AFIT [Lacey]. 

The Promela code is generated from the analysis model and focuses solely on class 
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schema missileFuelTank 

... theorem missileFuelTank\$domainCheck 

... axiom missileFuelTank\$declarationPart 
Beginning proof of missileFuelTank\$domainCheck ... 

fuelTank \\ 
\land fixedWeight \in realWeight \\ 
\land tankWeight \in realWeight \\ 
\land capacity \in bigReal \\ 
\land inputFlowRate \in bigReal \\ 

\implies (fuelDensity * capacity, 2) \in \dom (\_ \div \_) 
theorem inheritance 
... theorem inheritance 

Beginning proof of inheritance ... 
\exists missileFuelTank @ fuelTank 
Which simplifies 

forward chaining using KnownMember\$declarationPart, knownMember, 
fuelTank\$declarationPart, missileFuelTank\$declarationPart, '[internal items]' 
with the assumptions '[internal items]'to ... 
\exists missileFuelTank @ true 
Proving gives ... 
\exists missileFuelTank 0 true 
schema initializeMissileFuelTank 
... schema \Delta missileFuelTank 
... axiom Delta\$missileFuelTank\$declarationPart 
... axiom initializeMissileFuelTank\$declarationPart 
theorem initializeMissileFuelTankisok 
... theorem initializeMissileFuelTankisok 
Beginning proof of initializeMissileFuelTankisok ... 
\exists missileFuelTank @ initializeMissileFuelTank 
Which simplifies 

with invocation of fuelTank, missileFuelTank, \Delta missileFuelTank, 
initializeMissileFuelTank 
when rewriting with notEqRule 

forward chaining using Delta\$missileFuelTank\$declarationPart, 
initializeMissileFuelTank\$declarationPart, KnownMember\$declarationPart, 

Figure 27.  Example Z/Eves Output 
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knownMember, fuelTank\$declarationPart, missileFuelTank\$declarationPart, 

'[internal items]' 
with the assumptions '&neq$declaration', select\_2\_l, select\_2\_2, 

realWeight\$declaration, bigReal\$declaration, '[internal items] '  to ... 

false 
Proving gives  ... 
false 

Figure 27.     Example Z/Eves Output Cont. 

TT 

currentState receiveEvent guard 

:: receiveEvent; guard -> action; sendEvent; gotoState 
:: receiveEvent; guard -> action; sendEvent; gotoState 

od; 

Figure 28.     From WsTransition to Promela. 

dynamic models within the domain. Figure 28 illustrates the mapping of an AWL 

dynamic model to its representation in Promela. 

4.8.1 Send and Receive Events. Classes communicate via events and these 

events are defined as messages in Promela. The first step in the generation of a 

Promela file is to harvest these events from the analysis model and add their identi- 

fiers to the enumerated set "mtype". As an example, the class airframe would result 

in the events initAirframe, tankEmpty, getPosition, changeCourse, and doManeu- 

verComplete being added to the mtype resulting in a declaration of the form: 

mtype = {initAirframe, tankEmpty, getPosition, changeCourse, doManeuverComplete}; 
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4-8.2 Event Maps. The send and receive event names of different classes 

may well not be the same even though they correspond to the same event. This 

is due to the fact that possibly not all classes in the domain model were created 

according to the same standard, either because they were developed by different 

parties or never actually considered for integration into the same domain model. 

The possibility of incompatible dynamic models is what drives the requirement 

for domain event maps. An event map declares an association between a pair of 

events in differing classes so as to make integration into the same analysis model 

a simpler task than requiring the re-specification of the offending dynamic models. 

AWSOME facilitates domain mapping. However, at this point in time, neither the 

AWSOME parser nor language provides support for event maps. 

It is assumed for the purposes of this research that event names match and 

as such, there is no need for event maps. If there were, however, a need for event 

maps, they would be defined as "channels" in Promela. Only a single global channel 

is required upon which all events are broadcast. Its syntax is: 

chan global = [0] of {mtype} 

The above declares a channel "global" of buffer size 0 that carries messages 

of type mtype. Spin's ability to model temporal systems has resulted in channel 

definitions stipulating a buffer size. For a non-temporal, object-oriented analysis 

this buffer size is set to 0—that is, a broadcast event ceases to exist as soon as the 

next event is broadcast. 

4-8.3 Class Dynamic Models. Classes are modeled in Promela as process 

types (proctypes). Within the proctype are defined the states and their respective 

transitions as illustrated in Figure 29. It can be seen that the airframe dynamic 

model is declared as proctypecruiseMissile, the states by their name catenated with 

State, and the transitions within the current state's do..od loop. 
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proctypeairframe() 

{ 
startState: 

do 
:: (map31?initAirframe; true) -> initializeAirframe; goto preLaunch 

od; 

preLaunchState: 

do 
:: (mapl2?doLaunch; true) -> goto poweredFlight 

od; 

poweredFlightState: 

do 
(mapl4?out0fFuel; true) -> goto inertialFlight 
(mapl3?estimatePosition; true) -> setPosition; goto poweredFlight 

(map6?changeCourse; true) -> goto maneuvering 

od; 

maneuveringState: 

do 
:: (map7?doManeuverComplete; true) -> goto poweredFlight 

:: (mapl4?out0fFuel; true) -> goto inertialFlight 

od; 

inertialFlightState: 

do 
od; 

} 

Figure 29.     Example Promela Proctype. 
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Each transition is of the form 

(receiveEvent;guardCondition) -> action; sendEvents; goto nextState 

The parentheses around the receive event and guard condition are required be- 

cause of the fact that Spin will not ensure that both are satisfied prior to beginning 

a transition. That is, if the receive event holds, Spin will select a corresponding tran- 

sition without considering whether the guard condition also holds and will then wait 

until that guard condition is satisfied. Therefore without the parentheses, if multiple 

transitions are triggered by the same receive event but different guard conditions, 

Spin will arbitrarily pick a transition and lock. The addition of the parentheses 

ensures the set of transitions is deterministic (if they are indeed deterministic) and 

that only the transition that satisfies both the receive event and the guard condition 

is selected for execution. 

For situations where transitions are automatic or where transitions have no 

guard conditions, two constants have been added to the model. AH analysis models 

created for this research use the receive event "automatic" to denote an automatic 

transition and the guard "true" for transitions with no guard. Both automatic and 

true are set to the Boolean value true and are therefore always executable to Spin. 

4.8.4 Verifying Components With Spin. Spin facilitates verification of the 

reachability of states. Whereas Z/Eves is used to ensure that sets of transitions are 

deterministic and that states are uniquely identifiable, Spin is used to simulate the 

dynamic model and ensure that transitions may be satisfied and all states visited. 

Evaluation of state reachability is instigated via prepending the keyword 

"progress" to the state name.  Spin then ensures that the states so annotated are 

visited during execution or it returns an error message acknowledging the failure to 

reach such states. 
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4-9    The Semantic Analyzer 

The verification performed using Z/Eves and Spin is a form of semantic analysis 

but it is by no means exhaustive. Many facets of an AWSOME AST that require 

analysis are outside the scope of this research and as such, should be dealt with by a 

separate semantic analysis visitor that is capable of traversing the analysis AST in a 

similar fashion to other visitors implemented in this research. The semantic analyzer 

would be responsible for semantic analysis not addressed by either Z/Eves or Spin. 

Some of the areas not analyzed by Z/Eves and Spin that are pertinent to an 

analysis model include: 

• method signature and method call signature consistency (required for verifica- 

tion of Constraint 27), 

• type compatibility and type equivalence (required for complete verification of 

Constraint 9), 

• resolution of return types (required for complete verification of Constraint 9), 

• other semantic analysis considerations include facets that are outside the scope 

of an analysis model-occurring in the AWSOME design AST such as: records, 

arrays, and method body statements. 

4-10    Class-Level Structural Verification 

Constraint 1 Attributes Must be Declared Over Defined Types 

Two methods are immediately available to ensure that each data object belongs to a 

defined type. The first is via the use of the linking visitor-identifierRefs are matched 

by name and category to identifier symbols present in the symbol table generated 

by the symbol table visitor. If no defined type exists within the set of open scopes 

then the linking visitor returns a warning informing the software engineer of the 

specification's incompleteness. 
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The other option is to use Z/Eves to perform a type checking run over the 

Z section. The command check type checks the entire Z section and is far more 

economical and expedient than checking the model declaration by declaration. Both 

options were used to successfully check that attribute references conformed with this 

constraint. 

Constraint 2 Any Variable Referenced Within an Object's Invariant Proposition 

Must be Constants or Attributes of the Object 

The linking process will highlight if an identifierRef refers to a declaration that is 

not within the set of open scopes but it is not presently capable of fully enforcing 

such a rule as this. There are three other methods of verifying that the specification 

adheres to this rule. The first is via domain checking in the Z/Eves environment, the 

second is via use of manual inspection and is most easily performed upon the class 

Z-schema. The third option would be the use of a static semantic analysis visitor 

such as the one that is still in the conceptual phase of development at this time. 

Both the linker and Z/Eves domain check were used successfully to check for 

conformity with this constraint. 

Constraint 3 Pre- and Postconditions Must be Consistent With the Class Invariant 

This constraint is checked via the use of a Z/Eves theorem. The intent of the 

theorem is to prove that an instance of the class may exist for which the pre- and 

postconditions of the operation are consistent with the class invariant. The theorem 

to check the consistency of the operation initializeMissileFuelTank with its class 

missileFuelTank is given in Figure 30. 

Constraint 4 Invariant Propositions Must be Consistent With Respect to the At- 

tributes Types Over Which They Refer 

81 



\begin{theorem}{iiiitializeMissileFuelTankIsOk} 
\exists missileFuelTank \spot initializeMissileFuelTank 

\end{theorem} 

prove by reduce; 

Figure 30.     Theorem to Check Operation Expression Consistency With Class In- 

variant 

\begin{theorem}{initializeMissileFuelTankIsOk} 

\exists missileFuelTank \spot true 

\end{theorem} 

prove by reduce; 

Figure 31.     Theorem to Instantiate a Class 

Verification of the consistency of a class invariant with respect to the attribute types 

it refers to is achievable with the Z/Eves theorem prover. A class invariant is rep- 

resented in the predicate of the corresponding class schema and any proposition 

associated with a type is present in the type's schema. 

By proving that an instance of the class may exist, it follows that the class 

invariant is consistent with the attribute types to which it refers. The required 

theorem to verify this constraint is illustrated in Figure 31. 

Constraint 5  Class Invariants Should be Consistent With Other Expressions of the 

Class 

Expressions capable of occurring within a class: 

1. method pre- and postconditions, 

2. transition guards, 

3. state invariants, 

4. event preconditions, and 

5. the data types referenced. 
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It must be ensured that these expressions are consistent with the class invariant. 

The relation between invariant and data type expressions and verification of this 

rule was discussed in Constraint 4. 

Constraint 3 details the consistency check applied to operation pre- and post- 

conditions while the consistency of transition guards with respect to the class invari- 

ant is addressed in Section 4.12. 

State and event invariant consistency is checked in the same fashion as opera- 

tions are checked in Constraint 3, that is, a theorem is used in an attempt to invoke 

an instance of the class for which the state or event invariant holds does not cause 

an inconsistency. 

Constraint 6 Propositions of a Subclass Must be Consistent With Those of the 

Superclass 

A theorem that instantiates an object of the subclass will return an error if the 

subclass invariant is inconsistent with respect to superclass invariant. The output of 

the Z/Eves visitor attempts to instantiate an object of every class as illustrated in 

Figure 31. This instantiation fails for a subclass invariant that is inconsistent with 

that of its superclass as the superclass invariant is implicitly included via schema 

inclusion. 

Note that the functional and dynamic models are not further verified with 

respect to inheritance. These issues are addressed in the Future Work section of 

Chapter Six. 

Constraint 7 Propositions of a Sublass Must be Substitutable For Those of the Su- 

perclass 

This constraint is not checked in the current visitor. 
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Checking schema initializeMissileFuelTank 
Error FunctionArgType (line 186) [Type checker]: in application of 

\Global (\_ \cup \_), argument 1 has the wrong type. 
Error FunctionArgType (line 186) [Type checker]: in application of 

\Global (\_ \cup \_), argument 2 has the wrong type. 
Error TypesNotSame (line 186) [Type checker]: types of \Local 

outputFlowRate' 
and \Local capacity \cup \Local fuelLevel are not the same. 

Error NoType (line 186) [Type checker]: can't infer type of rel-chain 

operand 
\Local capacity \cup \Local fuelLevel. 

Figure 32.     Z/Eves Error Message For Type Incompatibility 

4-11    Class-Level Functional Verification 

Constraint 8 Operation Postconditions Must Maintain The Class Invariant 

Verification of model conformity with this constraint is handled by the same theorem 

as presented in Figure 31. 

Constraint 9 Mathematical Operators Are for Mathematical Types or Explicitly 

Defined for the Type 

It is envisaged that the semantic analysis visitor will be capable of determining the 

correctness of mathematical expressions with respect to type compatibility, return 

type determination, and operator semantics. Z/Eves will return an error message 

during domain checking if an operator is applied to an incompatible type. 

Figure 32 illustrates what happens when an operator is applied over incom- 

patible operands—in this case a pair of integers is being conjuncted. 

Constraint 10 Pre- and Postconditions Must Refer Solely to Global Constants, 

Class Attributes and Parameters 

This constraint is enforced by both the linker and Z/Eves domain checking. That 

is, the list of open scopes available to the method is comprised of the method scope, 
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class scope, and package scope. This means that the only declarations available to 

the method are local variables and formals, class attributes, and global constants. 

Constraint 11  Operation Parameters Must be Defined Over Existing Types 

Similar to some of the other rules, two solutions exist to this problem. Linking 

will ensure that the parameter is of a declared type while Z/Eves ensures that the 

method pre- and postconditions are consistent with respect to parameter types by 

domain checking that is automatically done when the schema is declared for the 

current proof. 

This constraint is verified using the same theorem as appears in Figure 30. 

4-IS    Class-Level Dynamic Verification 

Constraint 12  Transitions Must Occur Over States Defined For the Class 

Linking ensures that referenced states exist within the scope of the dynamic model 

and notifies the software engineer of any deficiency. This constraint is also addressed 

by Spin where an error message will be generated for any state that is attempted to 

be transitioned that does not exist. 

The error message below was generated when missileFuelTank referred to the 

state noSuchState. The error message is even kind enough to inform one of the line 

number where the errant reference may be located. 

spin:  line    46 "cruiseMissile.prm", Error: undefined label noSuchState 

Constraint 13 Transitions May Only Refer to Send and Receive Events Defined 

For the Class 

As discussed in constraint 12, both the linker and Spin provide error messages when 

this constraint fails to hold. 

Spin generated the following error message when the undeclared receive event 

noSuchReceiveEvent was encountered in the dynamic model of missileFuelTank. 
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spin:   line    46 "cruiseMissile.prm",  Error:  undeclared variable: 

noSuchReceiveEvent 

Constraint 14  Transitions Must be Deterministic 

In order for the set of transitions to be deterministic, no two transitions may share the 

same combination of guard condition and receive event. Spin is incapable of detecting 

non-deterministic transitions, its execution simply selects the first combination of 

guard and receive event that is satisfied and progresses with that transition. 

Spin is capable of identifying non-deterministic transitions. When Spin exe- 

cutes an exhaustive state space simulation, invariably for the same set of precondi- 

tions, Spin will select the same transition. Spin returns an error message identifying 

any transition that is not taken during this simulation. It is then up to the engineer, 

however, to determine if the cause of this is a non-deterministic set of transitions. 

A sample Spin simulation output is illustrated in Figure 35. 

Constraint 15 States Must be Mutually Exclusive 

In order to verify this rule, the schema corresponding to the states of the class must 

be declared for the current proof in all possible permutations. The state invariant 

that forms the predicate of each state schema must not be capable of being true if 

any other invariant is already true for the current proof. 

This constraint was removed from the final version of the verification suite as 

its utility is questionable when compared to the reduction in flexibility it causes to 

modeling the dynamic behavior of a system—this is elaborated upon in Chapter 

Five. 

Constraint 16 State Invariants Must Be Defined Over Attributes of the Class and 

Global Constants 

This is another linking issue—the set of open scopes for a state is the class scope, 

the dynamic model scope, and the global declarations. It is the responsibility of the 
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linker to warn the software engineer of failure to comply with this rule via an error 

message. 

Constraint 17 The Transition Guard Must be Defined Over Attributes of the Class, 

Event Parameters and Global Constants 

This constraint is verified by linking the analysis AST. 

Constraint 18 The Preconditions of a Transition Must Be Satisfiable For a Tran- 

sition To Ever Take Place 

This constraint is checked by generation of a theorem that instantiates a class and 

tests to see that the conjunction of the current state invariant, guard condition and 

operation precondition do not result in an inconsistency. 

\begin{theorem}{transitionPreconditionsok} 

\exists className \spot t.current.invariant \land t.guard 

\land t.actionPrecondition 

\end{theorem} 

prove by reduce; 

Constraint 19 The Invariant of the Next State Must be Implied by the Transition's 

Guard and the Postcondition of the Action 

This rule is implemented by declaration of a theorem that conjuncts the transition 

guard and action postcondition and implies the next state invariant. The syntax for 

a Z/Eves theorem to ensure this constraint is given below. 

\begin{theorem}{transitionImpliesNextStateIsOk} 

\exists className \spot t.guard \land t.action.post 

\implies t.next.inv 
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\end{theorem} 

prove by reduce; 

Constraint 20  The Invariant of the Send Events of a Transition Must Be Implied 

By the Transition's Guard and the Postcondition of the Action 

The following theorem is generated to test the constraint that send event invariants 

of a transition are implied by the guard condition and action postcondition. 

\begin{theorem}{transitionImpliesSendEventsIsOk} 

\exists className \spot t.guard \land t.action.post 

\implies send_l.inv \land send_2.inv \land  ... 

\end{theorem} 

prove by reduce; 

Constraint 21   The Precondition of an Action Must be Implied by the Conditions 

of the Transition. 

\begin{theorem}{transitionImpliesSendEventsIsOk} 

\exists className \spot  (t.guard \land t.current.inv 

\land t.receive.inv) \implies t.action.pre 

\end{theorem} 

prove by reduce; 

Constraint 22 Receive Event Parameters Must Match Action Input Parameters 

This rule would be best enforced by a semantic analysis visitor and is not verified 

by the products of this research. 
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Constraint 23 Send Event Parameters Must Match Action OutputParameters 

As with Constraint 22, this constraint is best enforced by a semantic analysis visitor 

and is therefore not verified by the products of this research. 

4.IS   Domain Level Structural Verification 

Constraint 24 Associations Must Refer to Classes Defined Within the Domain 

The only verification relating to associations, associative objects and explicitly de- 

fined aggregations (as opposed to those declared as variables of the aggregate class) 

is provided by the linking visitor. 

This research has, however, led to the generation of association Schemas for 

the Z specification model even though they are not further referenced in any proofs 

of this research. The multiplicity of each end role is a declared integer type. The 

multiplicities proposed by Buckwalter for the generation of the associative schema 

are: 

1. Optional—representing the cardinality zero or one, 

2. ZeroOrMore—self explanatory, and 

3. OneOrMore. 

For example, there exists an association named flies between an instance of type 

pilot and an instance of type aircraft. The AWL specification and its corresponding 

Z representation are depicted in Figure 33. 

Note that this method of transformation of associations is unsuitable for spec- 

ifying associations that are of a higher degree than binary. 

Constraint 25 Associative Objects Must Refer to Classes Within the Domain 

As with Constraint 24, this check is performed by both Z/Eves and the linker. 

Constraint 26 Aggregation Must Refer to Classes Within the Domain 
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association flies is 
role aviator : pilot multiplicity Optional; 
role ride : aircraft multiplicity ZeroOrMore; 

end association; 

[pilot] 

[aircraft] 

Pilots = P pilot 

AIRCRAFT = P aircraft 

.flies  
a : pilot <-*■ aircraft 

Va; G doma#(x < a) < 1 
Vy e rana#(?/> a) > 0 

Figure 33.     AWL and Z Representation of the Association Flies 

90 



A specific form of association, aggregation is verified via the linker and by Z/Eves. 

4-14    Domain Level Functional Verification 

Both Z/Eves and the semantic analysis visitor are used to determine errors in 

the functional portion of the analysis model. Dynamic Schemas identify the class 

they modify in the schema signature. The Z specification visitor adds the class 

identifier to the schema based upon which class the method is declared over and as 

such, the method is identified as being an operation of that particular class and is 

only capable of modifying the class' constituent attributes. 

Constraint 27 Operation Calls Must Match Signatures 

Operation signature verification is outside the scope of the current Z specification vis- 

itor. The compatibility of operation signatures and operation calls could be verified 

by the semantic analysis visitor. 

4-15   Domain Level Dynamic Verification 

Constraint 28  Objects May Only Communicate Via Send and Receive Events 

The linker enforces this rule. The linker does not allow for classes to directly invoke 

operations of other classes nor does it allow transitions to be dependent upon events 

not declared within the class. 

Constraint 29 All States Should be Reachable 

By prepending the keyword progress to the name of a state in the Promela file, Spin 

will monitor the state during execution and provide notice of failure to transition 

to it if the state is never visited. Spin has two modes of operation—in the first it 

performs random simulations while the second is an exhaustive verification of the 

entire state space. It is this second mode that must be used to verify this rule. 

Spin's exhaustive search method is effective for approximately 100,000 states [Spin] 

and should therefore remain applicable for the majority of systems being modeled. 
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Figure 34 provides an example of the output generated from running a random 

simulation of the system.  The command line for such an execution is:  spinSSP -c 

-a cruiseMissik.prm. The arguments -c and -« tell Spin how to configure its output 

and to create an analysis model in the programming language C. The first portion 

of the output in Figure 34 identifies the process number of each class in the dynamic 

model. The second portion shows the sending and receiving of events between the 

classes. The final portion of the output identifies the final state of each class at the 

end of execution. 

It should be noted that simulation of the entire state space requires the compi- 

lation and execution of the generated C analysis model. Output of Spin's evaluation 

of the entire state space is shown in Figure 35. 
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Figure 35 contains the output of an exhaustive analysis of an erroneous version 

of the cruise missile model. The output identifies the unreachable states of the model 

and messages not sent or received. The command line instruction to compile the 

analysis model is cc -DBITSTATE -o run pan.c where -DBITSTATE is a directive 

for the compiler to compiler the code such that it maximizes memory efficiency 

during execution. The command line instruction to execute the exhaustive state 

space analysis is run -c > out.txt where -c is the output format and out.txt is the 

file for the resultant output to be piped to. 

4.16    Verifying the Dynamic Model With Spin 

After generation of the Promela model, the only thing to be added to the file 

is a statement that enables Spin to run the specification. The statement instructs 

Spin to run each of the defined dynamic models and has the following syntax: 

init 

{    atomic 

{ 

run missileFuelTankO ; 

run navigationSystemO ; 

run guidanceSystemO; 

run flightDirectorO; 

run airframeO ; 

run cruiseMissileQ 

} 

} 

Execution of the Promela model will then verify constraints regarding state 

reachability and identify states and events not executed during the simulation. 
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proc 0 = :init: 
proc 1 = missileFuelTank 
proc 2 = navigationSystem 

proc 3 = flightProfile 

proc 4 = guidanceSystem 
proc 5 = flightDirector 
proc 6 = avionicsSoftware 

proc 7 = warhead 

proc 8 = airframe 
proc 9 = throttle 

proc 10 = jetEngine 
proc 11 = propulsionSystem 
proc 12 = cruiseMissile 
q\p  0  1  2  3  4  5  6  7  8  9 10 11 12 

7     map25!initPropulsionSystem 

7     map25?initPropulsionSystem 

8     map23!initThrottle 

8     map23?initThrottle 
4     map24!initEngine 
4     map24?initEngine 
2     map21!initAirframe 

2     map21?initAirframe 

timeout 

final state: 

#processes: 13 
24: proc 12 (cruiseMissile) line 260 "cruiseMissile.prm" (state 6) 
24: proc 11 (propulsionSystem) line 245 "cruiseMissile.prm" (state 6) 
24: proc 10 (jetEngine) line 235 "cruiseMissile.prm" (state 10) 
24: proc 9 (throttle) line 221 "cruiseMissile.prm" (state 11) 
24: proc 8 (airframe) line 189 "cruiseMissile.prm" (state 11) 
24: proc 7 (warhead) line 165 "cruiseMissile.prm" (state 6) 
24: proc 6 (avionicsSoftware) line 150 "cruiseMissile.prm" (state 9) 
24: proc 5 (flightDirector) line 130 "cruiseMissile.prm" (state 6) 
24: proc 4 (guidanceSystem) line 103 "cruiseMissile.prm" (state 6) 
24: proc 3 (flightProfile) line 88 "cruiseMissile.prm" (state 6) 
24: proc 2 (navigationSystem) line 69 "cruiseMissile.prm" (state 6) 

24: proc 1 (missileFuelTank) line 44 "cruiseMissile.prm" (state 6) 

24: proc 0 (:init:) line 289 "cruiseMissile.prm" (state 14) <valid endstate> 

13 processes created 

Figure 34.  SPIN Test Run Using: spin399 -s -c -a cruiseMissile.prm 
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pan: invalid endstate (at depth 25) 

(Spin Version 3.3.9 ~ 31 January 2000) 

+ Partial Order Reduction 

Full statespace search for: 
never-claim - (none specified) 

assertion violations   + 
acceptance  cycles    - (not selected) 

invalid endstates  + 

State-vector 208 byte, depth reached 26, errors: 1 

17 states, stored 

2 states, matched 
19 transitions (= stored+matched) 

11 atomic steps 

hash conflicts: 0 (resolved) 

(max size 2~18 states) 

1.493  memory usage (Mbyte) 

unreached in proctype missileFuelTank 

line 46, state 3, "(1)" 

line 50, state 11, "(1)" 
line 56, state 15, "(1)" 
line 55, state 18, "mapl?changeTankFlow" 

line 61, state 22, "(1)" 
line 62, state 26, "(1)" 
line 62, state 28, "map3!outOfFuel" 
line 60, state 30, "mapl?changeTankFlow" 

line 60, state 30, "map2?tankEmpty" 

(8 of 33 states) 
unreached in proctype navigationSystem 

line 71, state 3, "(1)" 

line 76, state 10, "(1)" 
line 75, state 13, "map5?updatePosition" 

line 81, state 17, "(1)" 
line 81,   state 19,   "map6lestimatePosition" 
line 80,   state 21,   "(1)" 
(6 of 24 states) 

Figure 35.     Results of Exhaustive State Space Reachability Test 
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unreached in proctype flightProfile 
line 90, state 3, "(1)" 

line 95, state 10, "(1)" 
line 96, state 14, "(1)" 
line 94, state 17, umap9?addWayPoint" 
line 94, state 17, "maplO?removeFirstWayPoint" 

(4 of 20 states) 
unreached in proctype guidanceSystem 

line 105, state 3, "(1)" 
line 110, state 10, "(1)" 
line 110, state 12, "map5!updatePosition" 

line 111, state 15, "(1)" 
line 112, state 19, "(1)" 
line 112, state 21, "map5lupdatePosition" 
line 109, state 23, "mapl2?doLaunch" 
line 109, state 23, "map6?estimatePosition" 

line 109, state 23, "map4?out0fFuel" 
line 117, state 28, "maplOIremoveFirstWayPoint" 

line 117, state 29, "mapl3!armMissile" 

line 116, state 34, "(1)" 

line 116, state 34, "(1)" 
line 122, state 38, "goto :bl2" 
line 125, state 41, "-end-" 

(12 of 41 states) 
unreached in proctype flightDirector 

line 132, state 3, "(1)" 
line 137, state 10, "(1)" 
line 137, state 12, "mapl7!changeCourse" 

line 137, state 13, "mapl8!setElevation" 
line 137, state 14, "mapl9!setThrottle" 

line 136, state 16, "mapl5?errorSignals" 

line 143, state 20, "(1)" 
line 142, state 23, "mapl6?maneuverComplete" 

(8 of 26 states) 
unreached in proctype avionicsSoftware 

line 152, state 3, "(l)" 
line 152,   state 5,   "map4!initNavigationSystem" 
line  152,   state 6,   "mapll!initGuidanceSystem" 
line 153,   state 7,   "mapl5!initFlightDirector" 
line 157,  state 13,  "goto  :bl7" 
line 160,  state 16,  "-end-" 
(6 of 16 states) 

Figure 35.     Results of Exhaustive State Space Reachability Test Cont. 
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unreached in proctype warhead 
line 167, state 3, "(1)" 
line 172, state 10, "(1)" 
line 171, state 13, "mapl3?arinMissile" 
line 176, state 17, "goto :b20" 
line 179, state 20, "-end-" 
(5 of 20 states) 

unreached in proctype airframe 
line 191, state 9, "(1)" 
line 196, state 15, "(1)" 
line 197, state 18, "(1)" 
line 198, state 21, "(1)" 
line 195, state 23, "map3?out0fFuel" 
line 195, state 23, "map6?estimatePosition" 
line 195, state 23, "mapl7?changeCourse" 
line 203, state 27, "(1)" 
line 204, state 30, "(1)" 
line 202, state 32, "map22?doManeuverComplete" 
line 202, state 32, "map3?out0fFuel" 
line 208, state 36, "goto :b25" 
line 211, state 39, "-end-" 
(10 of 39 states) 

unreached in proctype throttle 
line 223, state 9, "map28!changeTankFlow" 
(1 of 14 states) 

unreached in proctype jetEngine 
(0 of 13 states) 

unreached in proctype propulsionSystem 
line 251, state 12, "goto :b31" 

line 254, state 15, "-end-" 
(2 of 15 states) 

unreached in proctype cruiseMissile 
line 262, state 7, "map28!initAvionicsSoftware" 
line 267, state 13, "(1)" 
line 267, state 14, "mapl2IdoLaunch" 
line 266, state 16, "map27?launch" 
line 271, state 20, "goto :b34" 
line 274, state 23, "-end-" 
(6 of 23 states) 

unreached in proctype :init: 
(0 of 14 states) 

Figure 35.  Results of Exhaustive State Space Reachability Test Cont. 
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It should be noted that Promela's lack of expressive power in discrete arith- 

metic made the transformation of some expressions impossible and thus resulted in a 

lack of representation of many propositions in the simulation model. This effectively 

means that the reachability analysis performed, although insightful, is inadequate 

for testing the state reachability of OMT dynamic models. 

4-17   Summary 

This chapter details the implementation of the constraints proposed in Chapter 

Three—how they are specified and how they are verified. The analysis model visitors 

designed to produce Z/Eves and Promela models of the specification are described as 

is how these theorem proving/dynamic model verifying tools ensure the consistency, 

completeness, and correctness of a domain model. 

The final chapter of this document evaluates the constraints and implementa- 

tion of this research before drawing conclusions and proposing directions for future, 

related work. 
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V.   Results 

5.1 Introduction 

This chapter details the results of testing and execution of the methodology 

proposed and implemented in Chapters Three and Four. Testing of the practicality, 

testability, and effectiveness of the constraints proposed was evaluated by their ap- 

plication to an object-oriented formal specification and analysis of the outcomes of 

the verification process. 

The initial analysis model to which these constraints were applied was devel- 

oped as part of this research effort and is presented at Appendix B. The majority 

of faults in the analysis model were introduced with the intent purpose of ensuring 

the implementation of the system while others were simply accidental errors of the 

specification. 

5.2 Implementation Coverage 

Table 2 summarizes the state of each constraint, i.e., whether or not verification 

of the constraint is implemented and whether that implementation is automated. 

The verification of the majority of the constraints implemented is automatic (once 

the tools are in execution). 

Feedback provided to the user takes the form of the output provided by the 

tools Z/Eves and Spin and as such, the value of the feedback is limited by the user's 

experience with the tools. 

Automation of the remaining constraints and the provision of feedback in a 

manner that is specific to 00 but not the tools in particular would provide the ability 

to apply these tools without the requisite knowledge of their internal execution. 
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5.3   Evaluation of the Constraints 

Chapter Three introduced constraints for the three models of OMT. These 

constraints help to provide and verify formal semantics to the semi-formal foundation 

of OMT. The list of constraints is by no means complete—Section 5.6 proposes future 

work in the formalization of aggregation and inheritance alone. They do, however, 

provide a solid foundation to the concepts required to formalize and verify OOA 

models and prove that verification is in fact suited to semi-automation. 

Other than the identified weaknesses in formalism of the inheritance and ag- 

gregation constraints, the question that begs to be answered is "Are the constraints 

proposed complete?". Unfortunately, the answer is not as simple as the question and 

should be subdivided into the following sections: 

1. Is the list of constraints exhaustive? 

2. Is the list of constraints fully implemented? 

3. Is each constraint complete? 

5.3.1 Is the List of Constraints Exhaustive 9 The constraints were identified 

via analysis of the six perspectives of an OMT analysis model as described in Chapter 

Three. For each perspective, it was attempted to identify the key constituents of the 

model and ensure that they were formally constrained to assist in verification of the 

correctness of the entire model. 

It has already been acknowledged that this list of constraints is incomplete. 

Just how to go about proving that a list of constraints is complete is an extremely 

complex if not fruitless task. 

5.3.2 Is the List of Constraints Fully Implemented? Not all of the con- 

straints proposed are checked. The constraints not implemented are identified as 

such in Table 2. The failure to implement and/or automate those constraints is due 

to: 
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1. Z/Eves representing schema invariants as ticked variables only (instead of both 

ticked and unticked). This leads to the inability of proofs to identify all in- 

stances of non-conformity with Constraints 3, 5, 18, 19, 20, and 21. The 

simplest rectification appears to be the explicit inclusion of the unticked state 

invariant into each proposition as required. 

2. Promela's inadequate variety of data types and subsequent lack of expressive 

power when dealing with discrete arithmetic. Promela's list of data types is 

limited to bit, byte, short and int. These data types represent signed and 

unsigned integer values of differing ranges. The lack of support for sets, se- 

quences and propositions is sorely felt. This meant that verification using Spin 

was little more than verification of state reachability based solely upon class 

communication with no regard for guard conditions or class attribute manip- 

ulation. 

3. Deferral of implementation to a semantic analyzer. Constraints 22 and 23 

deal with operation parameter matching—something more suited to a semantic 

analyzer than a theorem prover. 

4. Difficulty in expressing the required theorems. Constraints 6 and 7 deal with 

the relationship between a subclass class' invariant and its parent's invariant. 

The theorem proposed simply substituted true for the parent's invariant be- 

cause Z/Eves believed that as a schema declaration, the schema predicate must 

be true and thus simplified it as such. A better theorem would extract the su- 

perclass invariant and conduct the proof based solely upon it rather than the 

superclass schema. 

Although the aforementioned constraints are not fully functional, these prob- 

lems could possibly be addressed by other verification tools as they are not all that 

more complex than any of the other constraints proposed. In fact, all but one of 

these constraints (Constraint 29) could possibly be addressed by the theorem prover 

(requiring more complex transforms) and a semantic analyzer.   It should also be 
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mentioned that the most surprising error detection was that what was thought to 

be a robust dynamic model did, in fact, have numerous unreachable states. 

5.3.3 Is Each Constraint Complete? The theorems implemented in Z/Eves 

are based closely upon the formalisms provided in Chapter Three and are therefore 

likely to be complete with respect to the proposed constraints. Verification of the 

dynamic model is trivialized somewhat and as such, is obviously incomplete. 

5.4 Research Findings 

The majority of constraints proposed as part of this research were capable 

of being expressed and tested without the requirement for user interaction. The 

automation of much of the formal specification process and subsequent verification 

simplifies the somewhat overwhelming task and increases the value of formal methods 

in software engineering. 

The results of this research are promising. The constraints determined in 

Chapter Three identify model attributes that must be verified in order to determine 

system correctness. The constraints also assist in the definition of OOA semantics for 

the purposes of automated verification. The implementation proves that the model 

may be transformed so as to provide the input to commercially available verification 

tools. 

5.5 Conclusion 

Automated validation and verification of object-oriented analysis models pro- 

vides the software engineer with an effective and efficient manner in which to remove 

a great deal of the effort involved in the use of formal methods. The importance of 

V&V to correctness-preserving transformations systems cannot be stressed enough. 

This research provides a framework of constraints that when applied to an OOA 
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system, help verify model correctness at the dynamic, functional, and structural 

levels. 

This research suggests that the initial cost to construct an automated verifica- 

tion suite is worth the effort required due to the increased effectiveness and efficiency 

it offers to V&V of 00A models. Keeping in mind that the majority of automated 

tools are only effective for the system they are designed to be used in conjunction 

with, this research also indicates that implementation and use of such a verification 

suite is practical and valuable. For the test cases of this research, the theorems gen- 

erated were relatively easy to prove with a currently available theorem prover—thus 

providing evidence of the applicability of the proposed verification techniques. 

However, it must be stated that the decision as to whether a purpose built 

V&V suite should be used or a COTS system employed is of critical importance. 

Therefore, a needs analysis that identifies the constraints to be verified should be 

conducted prior to the selection of any verification tool. 

5.6   Future Directions 

A number of avenues for future work based upon this research exist 

5.6.1 Further Formalism of Inheritance Towards Strict Inheritance. Con- 

straints 6 and 7 deal with subclass consistency and substitutability for the superclass 

invariant. Strict inheritance requires a subclass to maintain the structural, functional 

and dynamic properties of the superclass so that the child class is substitutable for 

the parent. This notion is also termed extension—the "two systems are indistin- 

guishable if we cannot tell them apart without pulling them apart" [Milner]. 

The requirements of substitutability exceed the constraints implemented in this 

research. Constraints 6 and 7 only ensure correctness of the subclass invariant. The 

expressions of a subclass, be they pre- or postconditions, event or state invariants, 

or guard conditions must not further constrain the attributes inherited from the 
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superclass. The functionality of operations must not be changed. Newly introduced 

operators are free to form any expression that does not violate any of the Constraints 

proposed in Chapter Three. 

5.6.2 Further Verification of Aggregate Dynamic Models. System level 

dynamic model verification should include checking the domain dynamic model for 

the possibilities of starvation, deadlock, unreachable states, and correct termination. 

Constraint 29, all states must be reachable, is the only complex formal constraint of 

domain level dynamic models in this research. 

Deadlock occurs when two (or more) classes are waiting for each other to send 

an event. Although complex to detect, the comprehensive output generated by Spin 

identifies which classes are waiting upon what events when simulation execution 

halts—thus identifying where the breakdown in model correctness occurs. Starva- 

tion, where a class cannot change state due to a lack of a certain resource, may also 

be determined in this fashion. 

Specific behavior of a domain may be simulated by the injection of messages 

into the init portion of the Promela specification to ascertain if certain initial con- 

ditions lead to unreachable states, deadlock, or starvation. The creation of use case 

test sets to ensure desired behavior of the specified system would assist in validation 

of system behavior. It is possible in SPIN to introduce a set of events into and 

execute a dynamic model—the result of such could be compared to the expected 

behavior of the system. 

5.6.3 Event Mapping in Promela. Work was started in the modeling of 

event maps. The prototype Promela generation visitor maps events according to 

their name via channel declarations. These mappings are therefore solely based upon 

event name matching. A more robust form of event mapping could be implemented 

by declaring a channel for each event map. This would allow for the passing of events 
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to specific classes rather than their broadcast to all classes that have the matching 

receive event in their dynamic models. 

5.6.4 Representation of Reals and Literal Strings in Z. The representation 

of string values was less than adequate in this research. One possible solution would 

be the use of an enumerated type (such as char) that declared the permissible values 

that an element of a string could take and the subsequent declaration of the type 

string such that it was a power set of sequences of char. This concept is illustrated 

in figure 36 

char::=a\b\c\d..A\B\C.. 1 | 2 .. | 0 ... 

I   string : P(seqchar) 

Figure 36.     Declaration of a Literal String Type 

The modeling of real numbers in Z is far more difficult to achieve than the 

modeling of literal strings. The constraints proposed in Chapter Three do not re- 

quire differentiation between real types and integer types. Thus, the Z specification 

represents fixed and floating point real numbers as integers. 

One limitation of the approach taken in this research is that the literal value is 

simply cast as an integer and therefore loses a great deal of its value. Multiplication 

of the value by its decimal place resolution (as done with the bounds of the type) 

would result in a more accurate representation. 

More work is required in the specification of what it is that should be enforced 

when dealing with real types and these rules would become part of the semantic 

analyzer toolkit. 
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Appendix A.   A FIT Wide Spectrum Object Modeling Environment 

and Language 

The aim of this appendix is to provide a brief introduction to the history and de- 

velopment of the AFIT Wide Spectrum Object Modeling Environment (AWSOME), 

a description of the AWSOME metamodel, and finally, to provide the production 

rules upon which the language is developed. The productions are provided in order 

to explicitly define the required structure of any AWSOME analysis model created 

without making use of the language and parser but wishing to use the verification 

tools provided as part of this research. 

A. I    Introduction 

AWSOME is the culmination of the extension and redesign of AFITtool, a 

correctness-preserving formal software synthesis system developed by students and 

faculty at the United States Air Force Institute of Technology (AFIT). The aim of 

AFITtool was to provide for proof of concept of much of the software engineering 

related research being conducted at AFIT. This tool was implemented in Reasoning's 

high level language Refine over a period of six years. 

Being a wide-spectrum environment, AWSOME is capable of modeling object- 

oriented systems at various stages of the software development cycle. AWSOME 

is capable of specification level modeling where much of the system is specified in 

terms of formal expressions, for example, methods are specified in terms of pre- 

and postconditions, while classes, their states and events are defined over invariant 

expressions. 

Elements specified in AWSOME may be reused extensively via the facilitation 

of an object-oriented repository that allows for the harvesting of pre-defined classes 

to be added to the problem domain currently being specified/analyzed. 
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Via the use of correctness-preserving semi-autonomous transforms, the analysis- 

level model may be transformed into a design-level representation. Transformations 

exist to take the analysis model to the design level as follows: 

1. associations are replaced with single and bi-directional access types, 

2. associative objects are transformed into to classes, 

3. dynamic models are replaced class methods, 

4. class invariants become statements of class methods, and 

5. method pre- and postconditions are expressed as statements within the method 

body. 

Another series of transformations leads from the design model to executable 

code. AFITtool is capable of generating Ada code, however, in order to make AW- 

SOME more widely applicable, not only was it implemented in Java, but the output 

language of choice was also selected to be Java. Some work has been accomplished 

dealing with the generation of C++ from AWSOME models as well, however, this 

capability is not as extensive as its Java counterpart. 

A. 2    The AWSOME Metamodel 

This section describes the metamodel that forms the template for analysis 

models represented by AWSOME ASTs. Following the lines of object-oriented anal- 

ysis, the AWSOME metamodel structure will be described from the perspective 

of inheritance and aggregation. Approximately 100 classes exist in the AWSOME 

metamodel. 

A.2.1 AWSOME AST Class Naming. Wsldentifier facilitates the naming 

of Ws classes. WsIdentifierRef provides the capability to refer to instances of Wsl- 

dentifier. The linking phase of AWSOME AST generation provides each instance of 

WsIdentifierRef with a pointer to its corresponding Wsldentifier. 
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A.2.2 The Inheritance Model. The root of AWSOME's inheritance hierar- 

chy is the abstract class WsObject. The immediate children of WsObject that are of 

importance to analysis models and interesting to address further are WsDeclaration, 

WsExpression, WsDynamicModel, WsAttribute, and WsMethod. 

A.2.2.1 WsDeclaration. From WsDeclaration spawn the subclasses 

for representing data types, variables, constants, states, events, sets, sequences, bags, 

functions, procedures, and associations. Essentially, from WsDeclaration is inherited 

attributes and methods related to AST node identification. 

A.2.2.2 WsExpression. It is the subclasses of WsExpression that 

define the structure of expressions contained within an analysis model abstract syn- 

tax tree (AST). The WsExpression family of objects deals with the representation 

of identification references (via WsName and its subclasses), proposition quantifica- 

tion, and binary and unary expressions. It is expected that the binary and unary 

expression portion of the tree will be extended in order to provide a greater degree 

of expression functionality to sets and encompass sequence and bag operators. 

A.2.2.3 WsAttribute. WsAttribute defines the AWSOME model for 

representation of class attributes. It is a direct subclass of WsObject and extends 

it by the addition of attributes describing certain characteristics of a class attribute 

such as whether it is private or public and by providing database query information 

[Buckwalter]. A WsAttribute has a WsDataObject as an aggregate component—it 

this data object that the characteristics of WsAttribute define. 

A.2.2.4 WsMethod. Similar to WsAttribute, WsMethod provides 

attributes to another Ws class. WsMethod defines the visibility of a class method— 

a private method is only visible within the scope of the class while a public method 

may be invoked by other classes of the domain. The method pre- and postconditions 

are described by an aggregate component of WsMethod— WsSubprogram. It should 
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be noted that although public methods may be invoked by other classes, object 

communication within this research is conducted solely by event passing. 

A.2.3 The Aggregation Model. The root node of any AWSOME analysis 

model is the artifact (don't ask me why—I don't really know). An artifact com- 

prises of one or more packages that form containers for related domain elements. 

Each package consists of a set of declarations that may be used to declare classes, 

associations, associative objects, type definitions, constant declarations, and other 

packages. Figure 37 illustrates the aggregation diagram of the WsClass. At this 

point it is worth noting that every class of the AWESOME metamodel is prepended 

with Ws which identifies the class as an AWSOME metamodel component. 

A.2.3.1 WsClass. It can be seen in Figure 37 that a WsClass consists 

of a set of attributes, a set of methods (WsMethod), a dynamic model (WsDynamic- 

Model), an invariant expression (WsExpression), an event map set (WsEvent), and 

a pointer (WsIdentifierRef) to the class' parent class (if, in fact, there is one). 

A.2.3.2    WsDynamicModel AWSOME dynamic models are con- 

structed from the aggregation of a set each of events (WsEvent), transitions (WsTran- 

sition) and states (WsState). The set of states exhaustively defines the state space 
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of a class, the set of events exhaustively defines the send and receive events by which 

the class communicates with other classes of the domain. Events may contain pa- 

rameters that allow classes to pass arguments for use in transition actions. Figure 

38 illustrates the WsDynamicModel structural diagram. 

A.2.3.S WsTransition. Each transition of a dynamic model is de- 

scribed by an instance of the aggregate class WsTransition. This class defines the 

event and guard condition precipitating the transition (WsExpression), the action 

(method invocation) that takes place and any events sent as a product of the tran- 

sition between states. It should be noted for a given transition that parameters of 

the receive event must map to the in parameters of the action and that parameters 

of the send events must map to the out parameters of the action. Figure 39 depicts 

the WsTransition structural model. 

A.3   AWL Syntax 

This section provides production rules of the grammar that dictate the AW- 

SOME language (AWL) syntax. The AWL parser is implemented with the parser 

design tool JavaCC that provides the ability to define a grammar and generate a 
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compilable Java implementation of the parser. To provide the level of functionality 

required within the AWL parser, augmentation of the JavaCC file with Java code 

was required. Except for <ID>, which represents an identification string, terms 

embedded within <> are keywords. 

compilation unit Package <E0F> 

package  ::  <PACKAGE> Identifier <IS>  ( Declaration  I  Package)* 
<END> <PACKAGE> ";" 

Declaration  ::  TypeDeclaration  I  Subprogram  I  DataObject   I  Association 

Identifier  ::     t = <ID> 

TypeDeclaration  ::  <TYPE> Identifier <IS> TypeDefinition     I   Class 

TypeDefinition :: AbstractTypeDefinition 
I ArrayTypeDefinition 
I AccessTypeDefinition 
I BagTypeDefinition 
I DerivedTypeDefinition 
I EnumerationTypeDefinition 
I IntegerTypeDefinition 
I RealTypeDefinition 
I RecordTypeDefinition 
I SequenceTypeDefinition 
I SetTypeDefinition 
I UnionTypeDefinition 

AbstractTypeDefinition ::  <ABSTRACT> ";" 
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AccessTypeDefinition :: <ACCESS> TypeName ";" 

ArrayTypeDefinition :: <ARRAY> "[" TypeName "]" <0F> TypeName ";" 

BagTypeDefinition :: <BAG> <0F> TypeName ";" 

DerivedTypeDefinition :: IdentifierRef <WHERE> Expression ";" 

EnumerationTypeDefinition :: "(" EnumerationValue( "," EnumerationValue)* 
II \ II  II . II 

EnumerationValue :: Identifier 

IntegerTypeDefinition :: <RANGE> ( "*" I Expression) ".." 
( "*" | Expression) ";" 

RealTypeDefinition :: (<DELTA> Expression I <DIGITS> Expression 
[ <BASE> Expression]) <RANGE> ( "*" I Expression) ".." 
( "*" | Expression) ";" 

RecordTypeDefinition :: <REC0RD> ( UninitializedVariable )+ <END> <REC0RD> ";" 

SequenceTypeDefinition :: <SEQUENCE> <0F> TypeName ";" 

SetTypeDefinition :: <SET> <0F> TypeName ";" 

UnionTypeDefinition :: <UNI0N> ( UninitializedVariable)* <END> <UNI0N> ";" 

Class :: <CLASS> Identifier <IS> 
[<ABSTRACT>] 
[TypeName <WITH>] 
(visibilityPrefix ( Attribute I Method))* 

[ <INVARIANT> Expression] 
[ DynamicModel ] 
<END> <CLASS> ";" 

visibilityPrefix :: <PRIVATE> I  <PUBLIC> 

Attribute :: DataObject 

Method :: [ <ABSTRACT>][ <CLASS>] 

DynamicModel :: <DYNAMIC> <M0DEL> <IS> 
( Event)* 

( State)* 
<TRANSITION> <TABLE> <IS> 
( Transition)* 

<END> <TRANSITION> <TABLE> ";" 
<END> <DYNAMIC> <M0DEL> ";" 
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Transition :: <IN> IdentifierRef 
<0N> IdentifierRef 
[ <IF> Expression] 
[ <D0> SubprogramName] 

[ <SEND> IdentifierRef ( "," IdentifierRef)* ] 
<T0> IdentifierRef";" 

State :: <STATE> Identifier [ <INVARIANT> Expression 3 ";" 

Event :: <EVENT> Identifier "("[ Parameter ( ",*' Parameter)* ] ")" 
[ <ASSUMES> Expression ]";" 

Subprogram :: Procedure I Function 

Procedure :: <PROCEDURE> Identifier "("[Parameter ( "," Parameter) * ] ")" 
[ <ASSUMES> Expression] 
[ <GUARANTEES> Expression] 
[ <IS> ( DataObject)* <BEGIN> (Statement)* <END> ";" ] 

Function :: <FUNCTI0N> Identifier "("[ Parameter ( "," Parameter ) * ] ")" 
":" TypeName 
[ <ASSUMES> Expression] 
[ <GUARANTEES> Expression] 
[ <IS> ( DataObject)* <BEGIN> ( Statement)* <END> ";" ] 

Association :: RegularAssociation I Aggregation I AssociativeObject 

RegularAssociation : : <ASS0CIATI0N> Identifier <IS>AssociationEnd 
( AssociationEnd )+ 
[ <INVARIANT> Expression ] 

<END> <ASS0CIATI0N> ";" 

AssociationEnd :: <R0LE> Identifier ":" TypeName <MULTIPLICITY> TypeName 
( "," TypeName )* ";" 

Aggregation : : <AGGREGATION> Identifier <IS> 
ParentEnd 
ChildEnd 
[ <INVARIANT> Expression ] <END> <AGGREGATION> ";" 

ParentEnd :: <PARENT> Identifier ":" TypeName <MULTIPLICITY> TypeName 
( "," TypeName)* ";" 

ChildEnd :: <CHILD> Identifier ":" TypeName <MULTIPLICITY> TypeName 
( "," TypeName)* ";" 

AssociativeObject :: <ASSOCIATIVEOBJECT> Identifier <IS> 
AssociationObjEnd (AssociationObjEnd)+ 
( visibilityPrefix ( Attribute I Method))* 
[ <INVARIANT> Expression ] 
<END> <ASSOCIATIVEOBJECT> ";" 
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AssociationObjEnd :: <R0LE> Identifier ":" TypeName <MULTIPLICITY> TypeName 
( "," TypeName)* [ <QUALIFIED> <BY> IdentifierRef]";" 

Expression :: OrExpression ( "=>" DrExpression )* 

ExpList :: [ Expression ( "," Expression)* ] 

OrExpression :: AndExpression ( <0R> AndExpression)* 

AndExpression :: RelationalExpression ( <AND> RelationalExpression )* 

RelationalExpression :: AddExpression ["=" AddExpression 
"/=" AddExpression 
"<" AddExpression 
"<=" AddExpression 
">" AddExpression 
">=" AddExpression 
<IN>     AddExpression 
<SUBSET>  AddExpression 
<SUBSETEQ> AddExpression ] 

AddExpression :: MultiplyExpression ("+" MultiplyExpression 
I "-" MultiplyExpression)* 

MultiplyExpression :: ExponentExpression 
("*"  ExponentExpression 
I "/"  ExponentExpression 

I <M0D> ExponentExpression 
I <INTERSECT> ExponentExpression 
j  <UNI0N> ExponentExpression)* 

ExponentExpression :: UnaryExpression ("**" ExponentExpression)* 

UnaryExpression :: PrimaryExpression 
I  <N0T> UnaryExpression 
|  "-"  UnaryExpression 
|  "+"  UnaryExpression 

PrimaryExpression ::   AccessExpression 
I Allocator 
I LOOKAHEAD ( ("{*" I "[" I "{" ) Expression "I") ContainerFormer 
I LOOKAHEAD (SubprogramName "(") FunctionCall 
I LiteralConstant 
I LOOKAHEAD (TypeName "'" "(") TypeConversion 
I Name 
I QuantifiedExpression 
I "(" Expression ")" 

AccessExpression :: "&" Name 
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Allocator :: <NEW> TypeName 

ContainerFormer :: BagFormer 
I SequenceFormer 
I SetFormer 

BagFormer :: "{*" Expression "I" LogicalVarList Expression "*}" 

SequenceFormer :: "[" Expression "I" LogicalVarList Expression "]" 

SetFormer :: "{" Expression "I" LogicalVarList Expression "}" 

LogicalVariable :: Identifier ":" TypeName 

LogicalVarList :: "(" [ LogicalVariable ( "," LogicalVariable )* ] ")' 

FunctionCall :: SubprogramName "(" ExpList ")" 

SubprogramName :: SimpleName 
( ("[" Expression "]" 
I  """ #Dereference 
I  "'" #Tick )* 
"." IdentifierRef)* 

LiteralConstant :: 
L it eralCharact er 

I LiteralContainer 
I Literallnteger 
I LiteralNull 
I LiteralReal 
I LiteralString 

LiteralCharacter :: t = <CHARACTER_LITERAL> 

LiteralContainer :: LiteralBag 
I LiteralSequence 
I LiteralSet 

LiteralBag ::  "{*" ExpList(listLen) "*}" 

LiteralSequence :: "[" ExpList "]" 

LiteralSet :: "{" ExpList(listLen) "}" 

Literallnteger :: t = <INTEGER_LITERAL> 

LiteralNull :: <NULL> 

LiteralReal :: t = <REAL_LITERAL> 

LiteralString :: t = <STRING_LITERAL> 
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Name :: SimpleName ( NameSuffix )* 

SimpleName :: IdentifierRef I This 

IdentifierRGf :: t = <ID> 

This :: <THIS> 

NameSuffix :: "." IdentifierRef 
I  "[" Expression "]" 
I   ii -ii 

|  „,,. 

SelectedComponent :: SimpleName ( ("[" Expression "]" 
I  II-II 

|  »>»)* 

"." IdentifierRef)+ 

TypeName :: IdentifierRef ( "." IdentifierRef )* 

QuantifiedExpression : 
ExistentialExpression 

I  UniqueExpression 
I  UniversalExpression 

ExistentialExpression :: <EXISTS> LogicalVarList "(" Expression ")' 

UniqueExpression :: <UNIQUE> LogicalVarList "(" Expression ")" 

UniversalExpression :: <F0RALL> LogicalVarList "(" Expression ")" 

TypeConversion :: TypeName '"" "(" Expression ")" 

Statement :: LabeledStatement 
I BasicStatement 

LabeledStatement :: ( Label )+ BasicStatement 

BasicStatement :: Name ":=" Assignment 
I Iteration 
I Jump 
I ProcedureCall 
I Selection 

Label :: "«" Identifier "»" 

Assignment :: Name ":=" Expression ";" 

Jump :: <G0T0> IdentifierRef ";" 
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Iteration :: <WHILE> Expression <D0> ( Statement )* <END> <D0> ";" 

ProcedureCall :: SubprogramName "(" ExpList(listLen) ")" ";" 

Selection :: <IF> Expression <THEN> ( Statement)* 
[ <ELSE> ( Statement)* ] 
<END> <IF> ";" 

DataObject :: Identifier ":" DataObjectTail 

DataObjectTail :: <C0NSTANT> TypeName [":=" Expression] ";" 
I TypeName [":=" Expression] ";" 

UninitializedVariable :: Identifier ":" TypeName ";" 

Constant :: Identifier ":" TypeName [ ":=" Expression ] ";" 

Parameter :: Identifier ":" (( <IN> [ <0UT> ] ) | <0UT> {out = true;} ) 
TypeName 
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Appendix B.   The Cruise Missile Problem Domain 

B.l    Introduction 

This appendix contains the test case used throughout this research. Contained 

within this appendix is the AWL file that forms the object-oriented analysis model, 

UML and Z representations of the analysis model, and samples of the generated 

Z/Eves and Promela output files. 

B.2    The UML Analysis Model 

Although the specification is implemented in AWL, initial analysis made use 

of UML, and as an aide to clarity, the UML version of the specification has been 

reproduced here. It will become apparent that without augmentation with prose, 

the UML model is not capable of fully specifying the analysis model as specified with 

AWL. 

B.3    The AWL Analysis Model 

It will be noted that enumerated type values seem somewhat unwieldly—this 
is due tothe fact that Z does not allow different enumerated types to have elements 
with equal values, thus the class name has been appended to each state name. 

package cruiseMissile is 

/* 
* This is a modified version of the cruise missile system modelled by 
* Gates, Giselquist, and Landry in August of 1993.  This code forms 
* the test case used as part of the research conducted for the Masters 
* thesis "Validation and Verification of Formal Specifications in 
* Object-Oriented Software Engineering. 
* 
* References to the simulation system and substates of the airframe 
* have been removed 
* 
* - Thomson 
* 

*/ 

type char is abstract; 
type time is abstract; 
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type timer is abstract; 
type string is sequence of char; 
type heading is delta 0.01 range 0.0 .. 360.0; 
// type position is delta 0.001 range 0.0 .. 1000.0; 
type speed is delta 0.1 range 0.0 .. 2000.0; 
type mass is delta 0.1 range 0.0 .. 9000.0; 
type yield is delta 0.1 range 0.0 .. 20000.0; 
type real is delta 0.0001 range 0.0 .. 13000.0; 
type bigReal is delta 0.0001 range 0.0 .. 27000.0; 
type coordinate is delta 0.001 range - 4000 .. 4000; 
type cmStates is (startcruiseMissile, preLaunchcruiseMissile, 

flyingcruiseMissile); 
type afStates is (startairframe, preLaunchairframe, 

poweredFlightairframe, maneuveringairframe, inertialFlightairframe); 
type navStates is (startnav, waitnav, readSensorsnav); 
type flightDirectorStates is (startflightDirector, idleflightDirector, 

maneuveringflightDirector); 
type guidanceStates is (startguidanceSystem.idleguidanceSystem, 

processingguidanceSystem.terminalguidanceSystem); 
type throttleStates is (startthrottle.idlethrottle); 
type warheadArmed is (t,f); 
type engineStates is (startengine, idleengine); 
type realWeight is delta 0.01 range 0.0 .. 100.0; 
pi : constant bigReal := 3.1414159; 

class vector is 
private x : coordinate; 
private y : coordinate; 
private z : coordinate; 
private magnitude : bigReal; 

end class; 

class point is vector with 
end class; 

type flightPath is sequence of point; 

class position is vector with 
end class; 

type route is sequence of position; 

class velocity is vector with 
end class; 

class acceleration is vector with 
end class; 

class fuelTank is 
private fuelLevel : bigReal; 
private outputFlowRate : bigReal; 
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private fuelDensity : bigReal; 
end class; 

class missileFuelTank is fuelTank with 
private fixedWeight : realWeight; 
private tankWeight : realWeight; 
private capacity : bigReal; 
private inputFlowRate : bigReal; 

invariant fixedWeight = tankWeight + (fuelDensity * capacity / 2) 
and inputFlowRate = 0 

private procedure initializeMissileFuelTankO 
guarantees fuelLevel' = capacity and outputFlowRate' = 0 

private procedure changeFlow(actualFlowRate : in bigReal) 
guarantees outputFlowRate' = actualFlowRate? and 

fuelLevel' = fuelLevel and capacity' = capacity and 
tankWeight' = tankWeight and fuelDensity' = fuelDensity 

dynamic model is 
event initMissileTankO; 
event changeTankFlow(); 
event tankEmptyO; 

state start; 
state empty; //error - never invoked 
state full invariant fuelLevel = capacity and outputFlowRate = 0; 
state using invariant fuelLevel >= 0 and fuelLevel 

<= capacity and outputFlowRate > 0; 

transition table is 
in start on initMissileTank if true do initializeMissileFuelTankO; 

to full; 
in full on changeTankFlow if true do changeFlowO; to using; 
in using on changeTankFlow if true do changeflowO; to using; 
in using on tankEmpty if true do changeFlowO; send outOfFuelO; 

to empty; 
end transition table; 
end dynamic model; 

end class; 

class navigationSystem is 
private navState : navStates; 

dynamic model is 
event initAirframe (); 
event tankEmptyO ; 
event getPositionO; 
event changeCourseO; 
event doManeuverCompleteO ; 
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State start; 
state wait; 
state readSensors; 
transition table is 

in start on initNavigationSystem if true to wait; 
in wait on updatePosition if true to readSensors; 
in readSensors on AUTOMATIC if true send estimatePositionO ; 

to wait; 
end transition table; 
end dynamic model; 

end class; 

class flightProfile is 
private timeOnTarget : time; 
private wayPoints : flightPath; 

/* private procedure addPointToRoute(p : in point) 
guarantees wayPoints' = cat(wayPoints,p) 

private procedure removePointFromRouteO 
guarantees wayPoints' = rest(wayPoints) 

dynamic model is 
event initFlightProfile(); 
event addWayPointO ; 
event removeFirstWayPointO; 

state start; 
state idle; 
transition table is 

in start on initFlightProfile if true to idle; 
in idle on addWayPoint if true do addPointToRouteO; to idle; 
in idle on removeFirstWayPoint if true do 

removePointFromRouteO; to idle; 
end transition table; 
end dynamic model; 

end class; 

class guidanceSystem is 
private profile : flightProfile; 
private wayPoints : flightPath; 
private guidanceState : guidanceStates; 
private chronometer : timer; 

private procedure initializeGuidanceSystemO 

private procedure output(relTime : in time, message : out string) 
guarantees true /* message = "the cruise missile should reach the 

target at " + char(relTime) */ 
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private procedure RemoveFirstRoutePointO 
guarantees wayPoints' = rest(wayPoints) 

dynamic model is 
event initGuidanceSystemO; 
event doLaunchO; 
event estimatePositionO; 
event outOfFuelO; 
event armMissileO; 
event updatePositionO ; 

state start; 
state idle; 
state processing; 
state terminal; 

transition table is 
in start on initGuidanceSystem if true to initializeGuidanceSystem; 
in idle on doLaunch if true send updatePositionO; to idle; 
in idle on estimatePosition if true to processing; 
in idle on outOfFuel if true send updatePositionO; to terminal; 
in processing on AUTOMATIC if profile.route'head = 

profile.route'tail do removeFirstRoutePointO ; send armMissileO; 
to terminal; 

in processing on AUTOMATIC if not(profile.route'head = 
profile.route'tail) to terminal; 

end transition table; 
end dynamic model; 

end class; 

class flightDirector is 
private flightDirectorState : flightDirectorStates; 

private procedure initializeO 
guarantees flightDirectorState' = idleflightDirector 

dynamic model is 
event errorSignalsO; 
event initFlightDirectorO; 
event maneuverCompleteO; 

state start invariant flightDirectorState = startflightDirector; 
state idle invariant flightDirectorState = idleflightDirector; 
state maneuvering invariant flightDirectorState = 

maneuveringflightDirector; 

transition table is 
in start on initFlightDirector if true do 

initializeFlightDirectorO; to idle; 
in idle on errorSignals if true send changeCourseO ; setElevationO ; 

setThrottleO; to maneuvering; 
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in maneuvering on maneuverComplete if true to idle; 
end transition table; 
end dynamic model; 

end class; 

class avionicsSoftware is 
private navSys : navigationSystem; 
private guidSys : guidanceSystem; 
private director : flightDirector; 

private procedure initializeAvionicsSoftwareO 

dynamic model is 
event initNavigationSystemO; 
event initGuidanceSystemO; 
event initFlightDirectorO; 
event initAvionicsSoftwareO; 

state start; 
state avionicsSoftwarelnitialized; 

transition table is 
in start on initAvionicsSoftware if true do initializeAvionicsSoftwareO; 

send initNavigationSystemO; to avionicsSoftwarelnitialized; //send 
initGuidanceSystem send initFlightdirector 

end transition table; 
end dynamic model; 

end class; 

class warhead is 
private weight : mass; 
private munitionType : string; 
private explosiveForce : yield; 
private armed : warheadArmed; 

invariant weight > 0.0 and explosiveForce >= 0.0 

private procedure initializeWarheadO 
guarantees armed' = f 

private procedure armWarheadO 
guarantees armed' = t 

dynamic model is 
event initWarhead(); 
event armMissileO; 

state start; 
state unarmed invariant armed = f; 
state armed invariant armed = t; 
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transition table is 
in start on AUTOMATIC if true do initializeWarheadO; to unarmed; 
in unarmed on armMissile if true do armWarheadO; to armed; 

end transition table; 
end dynamic model; 

end class; 

class airframe is 
private pos : position; 
private accl : acceleration; 
private vel : velocity; 
private afState : afStates; 
private heading : real; 
private elevation : real; 

invariant heading <= (2*pi) and heading >= 0.0 and elevation <= (pi/2) 
and elevation >= (-pi/2) 

private procedure initializeAirframeO 
guarantees elevation' = (pi/2) and heading' = 0.0 and pos'.x = 0.0 

and pos'.y =0.0 and pos'.z =0.0 and vel'.x =0.0 
and vel'.y =0.0 and vel'.z =0.0 and accl'.x =0.0 
and accl'.y = 0.0 and accl'.z =0.0 

private procedure setPositionO is 

dynamic model is 
event initAirframe (); 
event doLaunchO; 
event tankEmptyO; 
event estimatePositionQ ; 
event changeCourseO ; 
event maneuverComplete(); 
event outOfFuelO; 

state start invariant afState= startairframe; 
state preLaunch invariant afState = preLaunchairframe; 
state poweredFlight invariant afState = poweredFlightairframe; 
state maneuvering invariant afState = maneuveringairframe; 
state inertialFlight invariant afState = inertialFlightairframe; 

transition table is 
in initial on initAirframe if true to airframelnit; 
in airframelnit on AUTOMATIC if true send initDoneO; 

to poweredFlight; 
in poweredFlight on tankEmpty if true to inertialFlight; 
in poweredFlight on getPosition if true send positionCurrentO; 

to poweredFlight; 
in poweredFlight on changeCourse if true to maneuvering; 
in maneuvering on doManeuverComplete if true to poweredFlight; 

end transition table; 
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end dynamic model; 
end class; 

class throttle is 
private fuelFlow : real; 
private throttleState : throttleStates; 
private maximumFlowRate : real; 
private actualFlowRate : real; 

private procedure changeFuelFlowO 

dynamic model is 
event initThrottle(); 
event changeTankFlowO; 

state start invariant throttleState = startthrottle; 
state idle invariant throttleState = idlethrottle; 
transition table is 

in start on initThrottle if true to idle; 
in idle on setThrottle do changeFuelFlowO ; send changeTankFlowO- 

to idle; ' 
end transition table; 
end dynamic model; 

end class; 

class jetEngine is 
private thrust : real; 
private maximumFuelFlowRate : real; 
private currentFuelFlowRate : real; 
private engineState : engineStates; 

dynamic model is 
event initEngineO; 
event changeTankFlowO; 

state start invariant engineState = startengine; 
state idle invariant engineState = idleengine; 
transition table is 

in start on initEngine if true to idle; 
in idle on changeTankFlow to idle; 

end transition table; 
end dynamic model; 

end class; 

class propulsionSystem is 
private fuelFeed : throttle; 
private engine : jetEngine; 
private tank : missileFuelTank; 

invariant (tank.fuelLevel = 0.0 => fuelFeed.maximumFlowRate =0.0) 
and (tank.fuelLevel > 0.0 =>(fuelFeed.maximumFlowRate = 
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engine.maximumFuelFlowRate)) and 
(engine.currentFuelFlowRate = fuelFeed.actualFlowRate) 

dynamic model is 
event initPropulsionSystemO; 
event initThrottleO; 
event initEngineO ; 
event initMissileFuelTankO ; 

state start; 
state idle; 

transition table is 
in start on initPropulsionSystem if true send initThrottleO; 

to idle; //send initEngineO send missileFuelTankO; 
in preLaunch on launch if true send doLaunchO; to flight; 

end transition table; 
end dynamic model; 

end class; 

class cruiseMissile is 
private propulsion : propulsionSystem; 
private frame : airframe; 
private payload : warhead; 
private avionics : avionicsSoftware; 
private cmState : cmStates; 

/* functional model */ 
private procedure initializeCruiseMissileO 
guarantees cmState' = preLaunchcruiseMissile 

dynamic model is 
event launch (); 
event outOfFuelO; 
event courseUpdateO; 
event maneuverCompleteO ; 
event doInitO; 
event initDoneO; 
event intiAirframeO ; 

state start invariant cmState = startcruiseMissile; 
state preLaunch invariant cmState = preLaunchcruiseMissile; 
state flying invariant cmState = flyingcruiseMissile; 

transition table is 
in start on AUTOMATIC if true do initializeCruiseMissileO; send 

initPropulsionSystemO; to preLaunch; //send initAirframeO 
send initWarheadO send initAvionicsSoftwareO; 

in preLaunch on launch if true send doLaunchO; to flight; 
end transition table; 
end dynamic model; 
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end class; 
end package; 
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Appendix C.   Z/Eves Specification of Cruise Missile 

[char] 

[t ime\ 

[ti mer\ 

string : P(seqchar) 

heading : P Z 

Vx : heading • x > 0 

Vx : heading • x < 360 

speed : P Z 

V x : speed • x > 0 

Vz : speed »x < 2000 

mass : PZ 

Vx : mass • x > 0 

Vx : mass • x < 9000 
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yield: P Z 

Vx : yield» x > 0 

\/x -.yield» x < 20000 

real: PZ 

Vx : real • x > 0 

Vx : real • x < 13000 

big Real: P Z 

Vx : big Real • x > 0 

Va; : big Real • x < 27000 

coordinate : P Z 

Vx : coordinate • x > —4000 

Vx : coordinate • x < 4000 

cmStates ::= startcruiseMissile \ preLaunchcruiseMissile \ flyingcruiseMissile 

afStates ::= startairframe \ preLaunchairframe \ poweredFlightairframe 

maneuveringairframe \ inertialFlightairframe 

navStates ::= startnav I waitnav I readSensorsnav 
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fhghtDirectorStates ::= start flight Director | idleflightDirectar 

maneuvering flightDirector 

guidanceStates ::= startguidanceSystem \ idleguidanceSyst 

processingguidanceSystem | terminalguidanceSyst 

em 

tern 

throttleStates ::= startthrottle \ idlethrottle 

warheadArmed ::= t \ f 

engineStates ::= startengine | idleeng me 

realWeight: P Z 

Vz : realW eight • x > 0 

Vx : realW eight • x < 100 
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, vector  

x : coordinate 

y : coordinate 

z : coordinate 

magnitude : bigReal 

true 

.point. 

vector 

true 

flight Path : P(seq point) 

.position. 

vector 

true 

route : P(seqposition) 

.velocity  

vector 

true 
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.acceleration, 

vector 

true 

t fuelTank  

fuelLevel: bigReal 

outputFlowRate : bigReal 

fuelDensity : bigReal 

true 

.missileFuelT ank  

fuelTank 

fixedWeight : realWeight 

tankW'eight: realW eight 

capacity : bigReal 

inputFlowRate : bigReal 

((fixedWeight = (tankWeight + ((fuelDensity * capacity) div 2))) A 

(inputFlowRate = 0)) 

.initializeMissileFuelT ank. 

AmissileFuelTank 

((fuelLevel' = capacity) 

A (outputFlowRate' = 0)) 
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Theorem 1 initializeMissileFuelTankisok 
3 missileFuelTank • initializeMissileFuelTank 

prove by reduce; undo; 

.changeFlow. 

AmissileFuelTank 

actual Flow Rate? : bigReal 

(((((outputFlowRate' = actual Flow Rate?) A (fuelLevel' = fuelLevel)) 

A (capacity' = capacity)) A (tankWeighf = tankWeight)) A 

(fuel Density' = fuelDensity)) 

Theorem 2 changeFlowisok 
3 missileFuelTank • changeFlow 

prove by reduce; undo; 

.missileFuelTankinitMissileTank. 

EmissileFuelTank 

(fuelLevel > 0) 

Theorem 3 missileFuelTankinitMissileTankisok 
3 missileFuelTank • missileFuelTankinitMissileTank 

prove by reduce; undo; 

.missileFuelTankchangeTankFlow. 

"EmissileFuelTank 

true 

Theorem 4 missileFuelTankchange TankFlowisok 
3 missileFuelTank • missileFuelTankchangeTankFlow 

prove by reduce; undo; 
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.missileFuelT anktankEmpty. 

"EmissileFuelTank 

true 

Theorem 5 missileFuelTanktankEmptyisok 
3 missileFuelT ank • missileFuelT anktankEmpty 

prove by reduce; undo; 

.missileFuelT ankoutO fFuel. 

'EmissileFuelTank 

(fuelLevel — 0) 

Theorem 6 missileFuelTankoutOfFuelisok 
3 missileFuelT ank • missileFuelT ankoutOf Fuel 

prove by reduce; undo; 

.missileFuelT ankstart. 

missileFuelT ank 

true 

Theorem 7 missileFuelTankstartisok 
3 missileFuelT ank • missileFuelT ankstart 

prove by reduce; undo; 

.missileFuelT ankempty. 

missileFuelT ank 

true 

Theorem 8 missileFuelTankernptyisok 
3 missileFuelT ank • missileFuelT ankempty 
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prove by reduce; undo; 

, missileFuelTank full. 

missileFuelTank 

((fuelLevel = capacity) A {outputFlowRate — 0)) 

Theorem 9 missileFuelTankfullisok 
3 missileFuelTank • missileFuelTank full 

prove by reduce; undo; 

.missileFuelT ankusing. 

missileFuelT ank 

{{{fuelLevel > 0) A {fuelLevel < capacity)) A {outputFlowRate > 0)) 

Theorem 10 missileFuelTankusingisok 
3 missileFuelTank • missileFuelT ankusing 

prove by reduce; undo; 

Theorem 11  missileFuelTankstartTofullPreconditionHolds 
3 missileFuelTank • true A true A initializeMissileFuelTank 

prove by reduce; undo; 

Theorem 12 missileFuelTankstartTofullImpliesNextlnvariant 
3 missileFuelTank • true A true A initializeMissileFuelTank 
=> {{fuelLevel' = capacity') A {outputFlowRate' = 0)) 

Theorem 13 missileFuelTankfullTousingPreconditionHolds 
3 missileFuelTank • {{fuelLevel = capacity) A {outputFlowRate = 0)) A 
true A changeFlow 

prove by reduce; undo; 

Theorem 14 missileFuelTankfullTousinglmpliesNextlnvariant 
3 missileFuelTank • {{fuelLevel = capacity) A {outputFlowRate = 0)) A 
true A changeFlow =» {{{fuelLevel' > 0) A {fuelLevel' < capacity')) A {output Flow Rat 

0)) 
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Theorem 15 missileFuelTankusingTousingPreconditionHolds 
BmissileFuelTank • (((fuelLevel > 0) A (fuelLevel < capacity)) A (outputFlowRate > 

0)) 
A true A changeFlow 

prove by reduce; undo; 

Theorem 16 missileFuelTankusingTousinglmpliesNextlnvariant 
BmissileFuelTank • (((fuelLevel > 0) A (fuelLevel < capacity)) A (outputFlowRate > 
0)) 
A  true A  changeFlow  =»  (((fuelLevel' >  0)  A   (fuelLevel' <  capacity'))  A 
(outputFlowRate' > 0)) 

prove by reduce; undo; 

Theorem 17 missileFuelTankusingToemptyPreconditionHolds 
BmissileFuelTank • (((fuelLevel > 0) A (fuelLevel < capacity)) A 
(outputFlowRate > 0)) A true A changeFlow 

prove by reduce; undo; 

Theorem 18 missileFuelTankusingToemptylmpliesNextlnvariant 
BmissileFuelTank • (((fuelLevel > 0) A (fuelLevel < capacity)) A 
(outputFlowRate > 0)) A £rue A changeFlow => true 

prove by reduce; undo; 

Theorem 19 missileFuelTankusingToemptylmpliesSendlnvariants 
BmissileFuelTank • (((fuelLevel > 0) A (fuelLevel < capacity)) A 
(outputFlowRate > 0)) A true A changeFlow => (fuelLevel = 0) 

prove by reduce; undo; 

.navigationSystem. 

navState : navStates 

true 

. navigationSy steminit NavigationSy stem. 

"EnavigationSy stem 

true 
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Theorem 20 navigationSysteminitNavigationSystemisok 
3 navigationSystem • navigationSysteminitNavigationSystem 

prove by reduce; undo; 

. navigationSy stemupdateP'osition. 

EnavigationSy stem 

true 

Theorem 21  navigationSystemupdatePositionisok 
3 navigationSystem • navigationSy stemupdateP osition 

prove by reduce; undo; 

 navigationSy stemestimateP osition. 

"EnavigationSy stem 

true 

Theorem 22 navigationSystemestimatePositionisok 
3 navigationSystem • navigationSy stemestimateP osition 

prove by reduce; undo; 

.navigationSystemAUTOMATIC. 

EnavigationSy stem 

true 

Theorem 23 navigationSystemAUTOMATICisok 
3 navigationSystem • navigationSystemAUTOMATIC 

prove by reduce; undo; 

.navigationSy stemstart. 

navigationSystem 

true 
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Theorem 24 navigationSystemstartisok 
3 navigationSystem • navigationSystemstart 

prove by reduce; undo; 

.navigationSystemwait. 

navigationSystem 

true 

Theorem 25 navigationSystemwaitisok 
3 navigationSystem • navigationSystemwait 

prove by reduce; undo; 

! navigationSystemreadSensors. 

navigationSystem 

true 

Theorem 26 navigationSystemreadSensorsisok 
3 navigationSystem • navigationSystemreadSensors 

prove by reduce; undo; 

Theorem 27 navigationSystemstartTowaitPreconditionHolds 
3 navigationSystem • true A true 

prove by reduce; undo; 

Theorem 28 navigationSystemstartTowaitlmpliesNextlnvariant 
3 navigationSystem • true A true =>• true 

prove by reduce; undo; 

Theorem 29 navigationSystemwaitToreadSensorsPreconditionHolds 
3 navigationSystem • true A true 

prove by reduce; undo; 

Theorem 30 navigationSystemwaitToreadSensorsImpliesNextlnvariant 
3 navigationSystem • true A true =*> true 

prove by reduce; undo; 
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Theorem 31 navigationSystemreadSensorsTowaitPreconditionHolds 
3 navigationSystem • true A true 

prove by reduce; undo; 

Theorem 32 navigationSystemreadSensors TowaitlmpliesNextlnvariant 
3 navigationSystem • true A true =>- 2rue 

prove by reduce; undo; 

Theorem 33 navigationSystemreadSensorsTowaitlmpliesSendlnvariants 
3 navigationSystem • true A true =$■ true 

prove by reduce; undo; 

flightProfile. 

timeOnTarget: time 

wayPoints : flightPath 

true 

.addP ointT oRoute. 

AflightProfile 

pi : point 

[wayPoints' = wayPoints"'pi) 

Theorem 34 addPointToRouteisok 
3 flightProfile • addPointToRoute 

prove by reduce; undo; 

, remove Point From Route. 

AflightProfile 

(wayPoints' — wayPoints) 

Theorem 35 removePointFromRouteisok 
3 flightProfile • remove Point From Route 
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prove by reduce; undo; 

.flightProfileinitFlightProfile. 

E flightPro file 

true 

Theorem 36 flightProfileinitFlightProfileisok 
3 flightProfile • flightProfileinitFlightProfile 

prove by reduce; undo; 

. flight Pro fileaddW ay Point. 

'EflightProfile 

true 

Theorem 37 flightProfileaddWayPointisok 
3 flightProfile • flightPro fileaddW ay Point 

prove by reduce; undo; 

. flightPro filer emoveFirstW ay Point. 

"EflightProfile 

true 

Theorem 38 flightProfileremoveFirstWayPointisok 
3 flightProfile • flightProfileremoveFirstWayPoint 

prove by reduce; undo; 

! flightPro filestart. 

flightProfile 

true 

Theorem 39 flightProfilestartisok 
3 flightProfile • flightPro filestart 
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prove by reduce; undo; 

. f light Profileidle. 

flightProfile 

true 

Theorem 40 flightProfileidleisok 
3 flightProfile • flightProfileidle 

prove by reduce; undo; 

Theorem 41 flightProfilestartToidlePreconditionHolds 
3 flightProfile • true A true A addPointToRoute 

prove by reduce; undo; 

Theorem 42 flightProfilestartToidlelmpliesNextlnvariant 
3 flightProfile • true A true A addP ointT oRoute =$► true 

prove by reduce; undo; 

Theorem 43 flightProfileidleToidlePreconditionHolds 
3 flightProfile • true A true A addP ointT oRoute 

prove by reduce; undo; 

Theorem 44 flightProfileidleToidlelmpliesNextlnvariant 
3 flightProfile • true A true A addP ointT oRoute ^ true 

prove by reduce; undo; 

Theorem 45 flightProfileidleToidlePreconditionHolds 
3 flightProfile • true A true A remove Point From Route 

prove by reduce; undo; 

Theorem 46 flightProfileidleToidlelmpliesNextlnvariant 
3 flightProfile • true A true A removePointFromRoute =>• true 

prove by reduce; undo; 
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! guidanceSystem __ 

profile : flightProfile 

wayPoints : flightPath 

guidanceState : guidanceStates 

chronometer : timer 

true 

t initializeGuidanceSystem. 

AguidanceSystem 

((chronometer' = 0) A (guidanceState' = startGuidanceSystem)) 

Theorem 47 initializeGuidanceSystemisok 
3 guidanceSystem • initializeGuidanceSystem 

prove by reduce; undo; 

. guidances'ysteminitGuidanceSystem. 

EguidanceSystem 

true 

Theorem 48 guidanceSysteminitGuidanceSystemisok 
3 guidanceSystem • guidances ysteminitGuidanceSy stem 

prove by reduce; undo; 

. guidances ystemdoLaunch. 

EguidanceSystem 

true 

Theorem 49 guidanceSystemdoLaunchisok 
3 guidanceSystem • guidances ystemdoLaunch 
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prove by reduce; undo; 

.guidanceSystemestimatePosition. 

"EiguidanceSystem 

true 

Theorem 50 guidanceSystemestimatePositionisok 
3 guidancesystem • guidanceSystemestimatePosition 

prove by reduce; undo; 

.guidanceSystemoutOfFuel. 

"BguidanceSystem 

true 

Theorem 51 guidanceSystemoutOfFuelisok 
3 guidances'ystem • guidanceSystemoutOfFuel 

prove by reduce; undo; 

.guidanceSystemarmMissile. 

"E^guidanceS y stem 

true 

Theorem 52 guidanceSystemarmMissileisok 
3 guidanceSystem • guidanceSystemarmMissile 

prove by reduce; undo; 

I_guidanceSystemupdatePosition. 

'EguidanceSystem 

true 

Theorem 53 guidanceSystemupdatePositionisok 
3 guidanceSystem • guidanceSystemupdatePosition 
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prove by reduce; undo; 

.guidanceSystemremoveFirstWay Point, 

^guidance System 

true 

Theorem 54 guidanceSystemremoveFirstWayPointisok 
3 guidances y stem • guidanceSystemremoveFirstWay Point 

prove by reduce; undo; 

.guidanceSystemAUTOMATIC. 

'EguidanceSystem 

true 

Theorem 55 guidanceSystemAUTOMATICisok 
3 guidancesystem • guidanceSystemAUTOMATIC 

prove by reduce; undo; 

.guidanceSystemstart. 

guidances y stem 

true 

Theorem 56 guidanceSystemstartisok 
3 guidance System • guidanceSystemstart 

prove by reduce; undo; 

.guidanceSystemidle. 

guidances y stem 

true 

Theorem 57 guidanceSystemidleisok 
3 guidanceSystem • guidanceSystemidle 
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prove by reduce; undo; 

.guidanceSystemprocessing. 

guidanceSystem 

true 

Theorem 58 guidanceSystemprocessingisok 
3 guidanceSystem • guidanceSystemprocessing 

prove by reduce; undo; 

. guidances y stemterminal. 

guidanceSystem 

true 

Theorem 59 guidanceSystemterminalisok 
3 guidanceSystem • guidanceSystemterminal 

prove by reduce; undo; 

Theorem 60 guidanceSystemstartToidlePreconditionHolds 
3 guidanceSystem • true A true A initializeGuidanceSystem 

prove by reduce; undo; 

Theorem 61 guidanceSystemstartToidlelmpliesNextlnvariant 
3 guidanceSystem • true A true A initializeGuidanceSystem =>- true 

prove by reduce; undo; 

Theorem 62 guidanceSystemidleToidlePreconditionHolds 
3 guidanceSystem • true A true 

prove by reduce; undo; 

Theorem 63 guidanceSystemidleToidlelmpliesNextlnvariant 
3 guidanceSystem • true A true => true 

prove by reduce; undo; 

Theorem 64 guidanceSystemidleToidlelrnpliesSendlnvariants 
3 guidanceSystem • true A true => true 
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prove by reduce; undo; 

Theorem 65 guidanceSystemidleToprocessingPreconditionHolds 
3 guidances'ystem • true A true 

prove by reduce; undo; 

Theorem 66 guidanceSystemidle ToprocessinglmpliesNextlnvariant 
3 guidance System • true A true =>• true 

prove by reduce; undo; 

Theorem 67 guidanceSystemidleToterminalPreconditionHolds 
3 guidanceSystem • true A true 

prove by reduce; undo; 

Theorem 68 guidanceSystemidle ToterminallmpliesNextlnvariant 
3 guidanceSystem • true A true =>• true 

prove by reduce; undo; 

Theorem 69 guidanceSystemidle ToterminallmpliesSendlnvariants 
3 guidanceSystem • true A true =>• true 

prove by reduce; undo; 

Theorem 70 guidanceSystemprocessingToterminalPreconditionHolds 
3 guidanceSystem • true A {projilt.route head = profile.route tail) 

prove by reduce; undo; 

Theorem 71 guidanceSystemprocessingToterminallmpliesNextlnvariant 
3 guidanceSystem • true A (profile.route head = profile.route tail) 
=$■ true 

prove by reduce; undo; 

Theorem 72 guidanceSystemprocessingToterminallmpliesSendlnvariants 
3 guidanceSystem • true A (profile.route head = profile.route tail) 
=4> true A true 

prove by reduce; undo; 

Theorem 73 guidanceSystemprocessingToidlePreconditionHolds 
3 guidanceSystem • true A (profile.route head - profile.route tail) 

prove by reduce; undo; 
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Theorem 74 guidanceSystemprocessingToidlelmpliesNextlnvariant 
3 guidanceSystem • true A (profile.route head = profile.route tail) 
=£• true 

prove by reduce; undo; 

 flight Director —  

flight Director'State : flightDirector States 

true 

.initializeFlightDirector. 

A flight Director 

(flightDirector State' = idle flightDirector) 

Theorem 75 initializeFlightDirectorisok 
3 flightDirector • initializeFlightDirector 

prove by reduce; undo; 

.flightDirector err or Signals. 

E flightDirector 

true 

Theorem 76 flightDirectorerrorSignalsisok 
3 flightDirector • flightDirector errorSignals 

prove by reduce; undo; 

.flightDirectorinitFlightDirector. 

E flightDirector 

true 

Theorem 77 flightDirectorinitFlightDirectorisok 
3 flightDirector • flightDirectorinitFlightDirector 

153 



prove by reduce; undo; 

.flightDirectormaneuverComplete. 

EflightDirector 

true 

Theorem 78 flightDirectormaneuverCompleteisok 
3 flightDirector • flightDirectormaneuverComplete 

prove by reduce; undo; 

.flightDirectorchangeCourse. 

EflightDirector 

true 

Theorem 79 flightDirectorchangeCourseisok 
3 flightDirector • flightDirectorchangeCourse 

prove by reduce; undo; 

. flightDirectorsetElevation. 

EflightDirector 

true 

Theorem 80 flightDirectorsetElevationisok 
3 flightDirector • flightDirector setElevation 

prove by reduce; undo; 

. flightDirectorsetThrottle. 

EflightDirector 

true 

Theorem 81 flightDirectorsetThrottleisok 
3 flightDirector • flightDirector setThrottle 
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prove by reduce; undo; 

 flight Director start. 

flight Director 

(flightDirector State = start flightDirector) 

Theorem 82 flightDirectorstartisok 
3 flightDirector • flightDirector start 

prove by reduce; undo; 

 flightDirectoridle. 

flightDirector 

{flightDirector State = idleflightDirector) 

Theorem 83 flightDirectoridleisok 
3 flightDirector • flightDirectoridle 

prove by reduce; undo; 

. flightDirectormaneuvering. 

flightDirector 

(flightDirectorState = maneuvering flightDirector) 

Theorem 84 flightDirectormaneuveringisok 
3 flightDirector • flightDirectormaneuvering 

prove by reduce; undo; 

Theorem 85 flightDirectorstartToidlePreconditionHolds 
3 flightDirector • (flightDirectorState = start flightDirector) A true 
A initializeFlightDirector 

prove by reduce; undo; 

Theorem 86 flightDirectorstartToidlelmpliesNextlnvariant 
3 flightDirector • (flightDirectorState = start flightDirector) A true A 
initializeFlightDirector =^ (flightDirectorState' = idleflightDirector) 
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prove by reduce; undo; 

Theorem 87 flightDirectoridle TomaneuveringPreconditionHolds 
3 flightDirector • [flight Director State - idleflightDirector) A true 

prove by reduce; undo; 

Theorem 88 flightDirectoridle TomaneuveringlmpliesNextlnvariant 
3 flightDirector • {flightDirectorState = idleflightDirector) A true 
=> (flightDirector State' = maneuvering flightDirector) 

prove by reduce; undo; 

Theorem 89 flightDirectoridle TomaneuveringlmpliesSendlnvariants 
3 flightDirector • (flightDirectorState = idleflightDirector) A true 
=> true A true A true 

prove by reduce; undo; 

Theorem 90 flightDirectormaneuveringToidlePreconditionHolds 
3 flightDirector • (flightDirectorState = maneuvering flightDirector) A true 

prove by reduce; undo; 

Theorem 91 flightDirectormaneuveringToidlelmpliesNextlnvariant 
3 flightDirector • (flightDirectorState = maneuvering flightDirector) A true 
=£> (flightDirectorState' = idleflightDirector) 

prove by reduce; undo; 

 avionicsSoftware. 

navSys : navigationSystem 

guidSys : guidanceSystem 

director : flightDirector 

true 

.initializeAvionicsSoftware. 

AavionicsSoftware 

true 
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Theorem 92 initializeAvionicsSoftwareisok 
3 avionicsSoftware • initializeAvionicsSoftware 

prove by reduce; undo; 

.avionicsSoftwareinitNavigationSystem. 

EavionicsSoftware 

true 

Theorem 93 avionicsSoftwareinitNavigationSystemisok 
3 avionicsSoftware • avionicsSoftwareinitNavigationSystem 

prove by reduce; undo; 

.avionicsSoftwareinitGuidanceSystem. 

'EavionicsSoftware 

true 

Theorem 94 avionicsSoftwareinitGuidanceSystemisok 
3 avionicsSoftware • avionicsSoftwareinitGuidanceSystem 

prove by reduce; undo; 

.avionicsSoftwareinitFlight Director. 

EavionicsSoftware 

true 

Theorem 95 avionicsSoftwareinitFlighWirectorisok 
3 avionicsSoftware • avionicsSoftwareinitFlightDirector 

prove by reduce; undo; 

.avionicsSoftwarestart. 

avionicsSoftware 

true 
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Theorem 96 avionicsSoftwarestartisok 
3 avionicsSoftware • avionicsSoftwarestart 

prove by reduce; undo; 

.avionicsSoftwar eavionicsSoftwarelnitialized. 

avionicsSoftware 

true 

Theorem 97 avionicsSoflwareavionicsSoftwarelnitializedisok 
3 avionicsSoftware • avionicsSoftwareavionicsSoftwarelnitialized 

prove by reduce; undo; 

Theorem 98 avionicsSoftwarestartToavionicsSoftwarelnitializedPreconditionHolds 
3 avionicsSoftware • true A true A initialize AvionicsSoftware 

prove by reduce; undo; 

Theorem 99 avionicsSoftwarestart ToavionicsSoftwarelnitializedlmpliesNextlnvariant 
3 avionicsSoftware • true A irue A initializeAvionicsSoftware =$■ true 

prove by reduce; undo; 

Theorem 100 avionicsSofiwarestartToavionicsSoftwarelnitializedlmpliesSendlnvariants 
3 avionicsSoftware • true A true A initializeAvionicsSoftware => irue A true A 

prove by reduce; undo; 

inarh.pn.d 

weight : mass 

munitionType : string 

ex plosive Force : yield 

armed : warhea dArmed 

{explosiv eForce > {{weight > 0) A 0)) 
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.initializeWarhead. 

Awarhead 

{warhead Armed' = /) 

Theorem 101  initializeWarheadisok 
3 warhead • initializeW arhead 

prove by reduce; undo; 

.armWarhead. 

Awarhead 

(war head Armed' = t) 

Theorem 102 armWarheadisok 
3 warhead • armWarhead 

prove by reduce; undo; 

.warheadinitWarhead. 

E.warhead 

true 

Theorem 103 warheadinitWarheadisok 
3 warhead • warheadinitW arhead 

prove by reduce; undo; 

-warheadarmMissile. 

Ewarhead 

true 

Theorem 104 warheadarmMissileisok 
3 warhead • warheadarmMissile 
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prove by reduce; undo; 

.warheadstart. 

warhead 

true 

Theorem 105 warheadstartisok 
3 warhead • warheadstart 

prove by reduce; undo; 

.warheadunarmed. 

warhead 

(warheadArmed — f) 

Theorem 106 warheadunarmedisok 
3 warhead • warheadunarmed 

prove by reduce; undo; 

.warheadarmed. 

warhead 

{warheadArmed = i) 

Theorem 107 warheadarmedisok 
3 warhead • warheadarmed 

prove by reduce; undo; 

Theorem 108 warheadstartTounarmedPreconditionHolds 
3 warhead • true A true A initializeWarhead 

prove by reduce; undo; 

Theorem 109 warheadstartTounarmedlmpliesNextlnvariant 
3 warhead • true A true A initializeWarhead => (warheadArmed' = f) 

prove by reduce; undo; 
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Theorem 110 warheadunarmedToarmedPreconditionHolds 
3 warhead • (warheadArmed = /) A true A armWarhead 

prove by reduce; undo; 

Theorem 111 warheadunarmedToarmedlmpliesNextlnvariant 
3 warhead • (warheadArmed = /) A true A armWarhead => (warheadArmed' 
= t) 

prove by reduce; undo; 

 air frame. 

pos : position 

accl : acceleration 

vel : velocity 

af State : af States 

heading : real 

elevation : real 

((((heading < (2 * pi)) A (heading > 0)) A (elevation < (pi div 2))) A 

(elevation > (pi div 2))) 

, setPosition  

Aairframe 

setPosXl : coordinate 

setPosYI : coordinate 

setPosZI : coordinate 

(((pos.x = setPosXI) A (pos.y = setPosYI)) A (pos.z = setPosZl)) 

Theorem 112 setPositionisok 
3 air frame • setPosition 

prove by reduce; undo; 
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.set Heading  

Aairframe 

setHeadl : real 

(heading = setHeadl) 

Theorem 113 setHeadingisok 
3 air frame • setHeading 

prove by reduce; undo; 

.setElevation. 

Aairframe 

setElel : real 

(elevation = setElel) 

Theorem 114 setElevationisok 
3 air frame • setElevation 

prove by reduce; undo; 

.calculateDistances. 

Aairframe 

posll : position 

pos21 : position 

true 

Theorem 115 calculateDistancesisok 
3 air frame • calculateDistances 

prove by reduce; undo; 

162 



.initialize Air frame. 

Aairframe 

(((((((((((elevation' = (pi div 2)) A (heading' = 0)) A (pos.x = 0)) A 

(pos.y = 0)) A (pos.z = 0)) A (vel.x = 0)) A (vel.y = 0)) A 

(vel.z = 0)) A (accl.x = 0)) A (accly = 0)) A (accl.z = 0)) 

Theorem 116 initializeAirframeisok 
3 air frame • initialize Air frame 

prove by reduce; undo; 

.setPosition. 

Aairframe 

true 

Theorem 117 setPositionisok 
3 air frame • setPosition 

prove by reduce; undo; 

. air frameinit Air frame. 

'Bair frame 

true 

Theorem 118 airframeinitAirframeisok 
3 air frame • air frameinit Air frame 

prove by reduce; undo; 

. air framedoLaunch. 

Hair frame 

true 

Theorem 119 airframedoLaunchisok 
3 air frame • air framedoLaunch 
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prove by reduce; undo; 

! air frametank Empty. 

Eairframe 

true 

Theorem 120 airframetankEmptyisok 
3 air frame • air frametankEmpty 

prove by reduce; undo; 

. air frameestimatePosition. 

"Eairframe 

true 

Theorem 121  airframeestimatePositionisok 
3 air frame • air frameestimatePosition 

prove by reduce; undo; 

.airframechangeCourse. 

"Eairframe 

true 

Theorem 122  airframechangeCourseisok 
3 air frame • airframechangeCourse 

prove by reduce; undo; 

! air framedoM aneuverC omplete. 

Eairframe 

true 

Theorem 123 airframedoManeuverCompleteisok 
3 air frame • air f ramedoM aneuverC omplete 
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prove by reduce; undo; 

. air frameoutO fFuel. 

Hair frame 

true 

Theorem 124 airframeoutOfFuelisok 
3 air frame • air frameoutO f Fuel 

prove by reduce; undo; 

.air f ramestart. 

air frame 

(af'State — startair frame) 

Theorem 125 airframestartisok 
3 air frame • air f ramestart 

prove by reduce; undo; 

, airframepreLaunch. 

airframe 

{a f State = preLaunchair frame) 

Theorem 126 airframepreLaunchisok 
3 airframe • airframepreLaunch 

prove by reduce; undo; 

! air framepoweredFlight. 

airframe 

(af State = poweredFlightair frame) 

Theorem 127 airframepoweredFlightisok 
3 airframe • airframepoweredFlight 
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prove by reduce; undo; 

.airframemaneuvering. 

airframe 

(a f State = maneuveringair frame) 

Theorem 128 airframemaneuveringisok 
3 airframe • airframemaneuvering 

prove by reduce; undo; 

, air frameinertial Flight. 

airframe 

(a f'State = inertialFlightair frame) 

Theorem 129 airframeinertialFlightisok 
3 airframe • airframeinertialFlight 

prove by reduce; undo; 

Theorem 130 airframestartTopreLaunchPreconditionHolds 
3 airframe • (a f State = startair frame) A true A initialize Air frame 

prove by reduce; undo; 

Theorem 131  airframestartTopreLaunchlmpliesNextlnvariant 
3 airframe • (a f State = startair frame) A true A initialize Air frame - 
(a f State' = preLaunchair frame) 

prove by reduce; undo; 

Theorem 132 airframepreLaunch TopoweredFlightPreconditionHolds 
3 airframe • (a fState = preLaunchair frame) A true 

prove by reduce; undo; 

Theorem 133 airframepreLaunch TopoweredFlightlmpliesNextlnvariant 
3 airframe • (a f State = preLaunchair frame) A true => 
(af State' = poweredFlightairframe) 

prove by reduce; undo; 
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Theorem 134 airframepoweredFlight ToinertialFlightPreconditionHolds 
3 air frame • (a f State = power edF light air frame) A true 

prove by reduce; undo; 

Theorem 135 airframepoweredFlightToinertialFlightlmpliesNextlnvariant 
3 air frame • (a f State = poweredFlightair frame) A true => 
(a f State' = inertia! Flightair frame) 

prove by reduce; undo; 

Theorem 136 airframepoweredFlightTopoweredFlightPreconditionHolds 
3 air frame • (a f State = poweredFlightair frame) A true A setPosition 

prove by reduce; undo; 

Theorem 137 airframepoweredFlight TopoweredFlightlmpliesNextlnvariant 
3 air frame • (a f State - poweredFlightair frame) A true A setPosition => 
(af State' = poweredFlightair frame) 

prove by reduce; undo; 

Theorem 138 airframepoweredFUghtTomaneuveringPreconditionHolds 
3 air frame • (a f State = poweredFlightair frame) A true 

prove by reduce; undo; 

Theorem 139 airframepoweredFlightTomaneuveringlmpliesNextlnvariant 
3 air frame • (a f State - poweredFlightair frame) A true =$■ 
(af State' = maneuveringair frame) 

prove by reduce; undo; 

Theorem 140 airframemaneuveringTopoweredFlightPreconditionHolds 
3 air frame • (a f State = maneuveringair frame) A true 

prove by reduce; undo; 

Theorem 141  airframemaneuveringTopoweredFlightlmpliesNextlnvariant 
3 air frame • (a f State = maneuveringair frame) A true =>> 
(a f State' = poweredFlightair frame) 

prove by reduce; undo; 

Theorem 142 airframemaneuveringToinertialFlightPreconditionHolds 
3 air frame • (a f State = maneuveringair frame) A true 

prove by reduce; undo; 
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Theorem 143 airframemaneuveringToinertialFlightlmpliesNextlnvariant 
3 air frame • (a f State = maneuvering air frame) A true =>• 
(a f State' = inertialFlightair frame) 

prove by reduce; undo; 

, throttle. 

fuelFlow : real 

throttleState : throttleStates 

maximumFlowRate : real 

actual Flow Rate : real 

true 

. changeFuelFlow. 

Athrottle 

inFlowl : real 

(fuelFlow = inFlowl) 

Theorem 144 changeFuelFlowisok 
3 throttle • changeFuelFlow 

prove by reduce; undo; 

.throttleinitT hrottle. 

'Ethrottle 

true 

Theorem 145 throttleinitThrottleisok 
3 throttle • throttleinitT hrottle 

prove by reduce; undo; 
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.throttlechangeT ankFlow. 

Ethrottle 

true 

Theorem 146 throttlechangeTankFlowisok 
3 throttle • throttlechangeT ankFlow 

prove by reduce; undo; 

.throttlesetThrottle. 

Ethrottle 

true 

Theorem 147 throttlesetThrottleisok 
3 throttle • throttlesetThrottle 

prove by reduce; undo; 

.throttlestart. 

throttle 

(throttleState = startthrottle) 

Theorem 148 throttlestartisok 
3 throttle • throttlestart 

prove by reduce; undo; 

, throttleidle. 

throttle 

(throttleState = idlethrottle) 

Theorem 149 throttleidleisok 
3 throttle • throttleidle 

prove by reduce; undo; 

169 



Theorem 150 throttlestartToidlePreconditionHolds 
3 throttle • (throttleState = startthrottle) A true 

prove by reduce; undo; 

Theorem 151 throttlestartToidlelmpliesNextlnvariant 
3 throttle • (throttleState = startthrottle) A true => (throttleState' = 
idlethrottle) 

prove by reduce; undo; 

Theorem 152 throttleidleToidlePreconditionHolds 
3throttle • (throttleState = idlethrottle) A changeFuelFlow 

prove by reduce; undo; 

Theorem 153 throttleidleToidlelmpliesNextlnvariant 
3throttle • (throttleState = idlethrottle) A changeFuelFlow =» (throttleState' 
= idlethrottle) 

prove by reduce; undo; 

 jetEngine. 

thrust : real 

maximum Fuel Flow Rate : real 

current Fuel Flow Rate : real 

engineState : engineStates 

true 

_j etEngineinitEngine. 

3jetEngine 

true 

Theorem 154 jetEngineinitEngineisok 
3 jetEngine • jetEngineinitEngine 

prove by reduce; undo; 
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.jetEnginechangeTankFlow. 

H jet Engine 

true 

Theorem 155 jetEnginechangeTankFlowisok 
BjetEngine • jetEnginechangeTankFlow 

prove by reduce; undo; 

t jetEnginestart. 

jet Engine 

(engineState = startengine) 

Theorem 156 jetEnginestartisok 
BjetEngine • jetEnginestart 

prove by reduce; undo; 

! jetEngineidle. 

jet Engine 

(engineState = idleengine) 

Theorem 157 jetEngineidleisok 
BjetEngine • jetEngineidle 

prove by reduce; undo; 

Theorem 158 jetEnginestartToidlePreconditionHolds 
BjetEngine • (engineState — startengine) A true 

prove by reduce; undo; 

Theorem 159 jetEnginestartToidlelmpliesNextlnvariant 
BjetEngine • (engineState = startengine) A true => (engineState' = idleengine) 

prove by reduce; undo; 

Theorem 160 jetEngineidleToidlePreconditionHolds 
BjetEngine • (engineState = idleengine) 
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prove by reduce; undo; 

Theorem 161 jetEngineidleToidlelmpliesNextlnvariant 
BjetEngine • (engineState - idleengine) =>■ (engineState' - idleengine) 

prove by reduce; undo; 

 propulsion System. 

fuelFeed: throttle 

engine : jetEngine 

tank : missileFuelTank 

((((tank, fuel Lev el = 0) =*> (fuelFeed.maximumFlowRate = 0)) A 

((tank, fuel Lev el > 0) => (fuelFeed.maximumFlowRate = 

engine.maximumFuelFlowRate))) A 

(engine.currentFuelFlowRate = fuelFeed.actualFlowRate)) 

.propulsionSysteminitPropulsionSystem. 

'E.propulsionSystem 

true 

Theorem 162 propulsionSysteminitPropulsionSystemisok 
3propulsionSystem • propulsionSysteminitPropulsionSystem 

prove by reduce; undo; 

.propulsionSysteminitThrottle. 

'EpropulsionSystem 

true 

Theorem 163 propulsionSysteminitThrottleisok 
3 propulsionSystem • propulsionSysteminitThrottle 

prove by reduce; undo; 
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.propulsionSysteminitEngine. 

'EpropulsionSy stem 

true 

Theorem 164 propulsionSysteminitEngineisok 
3 propulsionSystem • propulsionSysteminitEngine 

prove by reduce; undo; 

.propulsionSy steminitMissileFuelTank. 

^propulsionSystem 

true 

Theorem 165 propulsionSysteminitMissileFuelTankisok 
3 propulsionSystem • propulsionSysteminitMissileFuelTank 

prove by reduce; undo; 

 propulsionSy stemstart. 

propulsionSystem 

true 

Theorem 166 propulsionSystemstartisok 
3 propulsionSystem • propulsionSy stemstart 

prove by reduce; undo; 

.propulsionSy stemidle. 

propulsionSystem 

true 

Theorem 167 propulsionSystemidleisok 
3 propulsionSystem • propulsionSy stemidle 

prove by reduce; undo; 
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Theorem 168 propulsionSystemstartToidlePreconditionHolds 
3 propulsionSystem • true A true 

prove by reduce; undo; 

Theorem 169 propulsionSystemstartToidlelmpliesNextlnvariant 
3 propulsionSystem • true A true =4> true 

prove by reduce; undo; 

Theorem 170 propulsionSystemstartToidlelmpliesSendlnvariants 
3 propulsionSystem • true A true =>■ true A true A true 

prove by reduce; undo; 

.cruiseMissile. 

propulsion : propulsionSystem 

frame : air frame 

payload : warhead 

avionics : avionicsSoftware 

cmState : cmStates 

true 

.initializeCruiseMissile. 

AcruiseMissile 

(cmState' = preLaunchcruiseMissile) 

Theorem 171  initializeCruiseMissileisok 
3 cruiseMissile • initializeCruiseMissile 

prove by reduce; undo; 

.cruiseMissiledoLaunch. 

'EcruiseMissile 

true 
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Theorem 172 cruiseMissikdoLaunchisok 
d cruiseMissile • cruiseMissiledoLaunch 

prove by reduce; undo; 

. cruiseMissilelaunch. 

EcruiseMissile 

true 

Theorem 173 cruiseMissiklaunchisok 
d cruiseMissile • cruiseMissilelaunch 

prove by reduce; undo; 

-cruiseMissileinitPropulsionSystem. 

'EcruiseMissile 

true 

Theorem 174 cruiseMissileinitPropulsionSystemisok 
d cruiseMissile • cruiseMissileinitPropulsionSystem 

prove by reduce; undo; 

-cruiseMissileinit Air frame. 

IcruiseMissile 

true 

Theorem 175 cruiseMissileinitAirframeisok 
d cruiseMissile • cruiseMissileinit Air frame 

prove by reduce; undo; 

-cruiseMissileinitWarhead. 

"EcruiseMissile 

true 
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Theorem 176 cruiseMissileinitWarheadisok 
3 cruiseMissile • cruiseMissileinitWarhead 

prove by reduce; undo; 

.cruiseMissileinitAvionicsSoftware. 

EcruiseMissile 

true 

Theorem 177 cruiseMissileinitAvionicsSoftwareisok 
3 cruiseMissile • cruiseMissileinitAvionicsSoftware 

prove by reduce; undo; 

.cruiseMissileAUTOMATIC. 

'EcruiseMissile 

true 

Theorem 178 cruiseMissileAUTOMATICisok 
3 cruiseMissile • cruiseMissileAUTOMATIC 

prove by reduce; undo; 

.cruiseMissilestart. 

cruiseMissile 

(cmState = startcruiseMissile) 

Theorem 179 cruiseMissilestartisok 
3 cruiseMissile • cruiseMissilestart 

prove by reduce; undo; 

.cruiseMissilepreLaunch. 

cruiseMissile 

(cmState = preLaunchcruiseMissile) 
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Theorem 180 cruiseMissilepreLaunchisok 
3 cruiseMissile • cruiseMissilepreLaunch 

prove by reduce; undo; 

.cruiseMissile flying. 

cruiseMissile 

(cmState — flyingcruiseMissile) 

Theorem 181  cruiseMissileflyingisok 
3 cruiseMissile • cruiseMissile flying 

prove by reduce; undo; 

Theorem 182 cruiseMissilestartTopreLaunchPreconditionHolds 
3 cruiseMissile • (cmState = startcruiseMissile) A true A initializeCruiseMissile 

prove by reduce; undo; 

Theorem 183 cruiseMissilestartTopreLaunchlmpliesNextlnvariant 
3 cruiseMissile • (cmState = startcruiseMissile) A true A initializeCruiseMissile 
=>■ (cmState' = preLaunchcruiseMissile) 

prove by reduce; undo; 

Theorem 184 cruiseMissilestartTopreLaunchlmpliesSendlnvariants 
3 cruiseMissile • (cmState = startcruiseMissile) A true A initializeCruiseMissile 
=>• true A true A true A true 

prove by reduce; undo; 

Theorem 185 cruiseMissilepreLaunch ToflyingPreconditionHolds 
3 cruiseMissile • (cmState = preLaunchcruiseMissile) A true 

prove by reduce; undo; 

Theorem 186 cruiseMissilepreLaunch ToflyinglmpliesNextlnvariant 
3 cruiseMissile • (cmState = preLaunchcruiseMissile) A true => (cmState' = 
flyingcruiseMissile) 

prove by reduce; undo; 

Theorem 187 cruiseMissilepreLaunch ToflyinglmpliesSendlnvariants 
3 cruiseMissile • (cmState = preLaunchcruiseMissile) A true =>■ true 

prove by reduce; undo; 
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Appendix D.   Promela Specification of Cruise Missile Model 

»define true 1 

«define false 0 

»define AUTOMATIC true 

mtype = { initMissileTank, changeTankFlow, tankEmpty, outOfFuel, 

initNavigationSystem, updatePosition, estimatePosition, 

initFlightProfile, addWayPoint, removeFirstWayPoint, 

initGuidanceSystem, doLaunch, armMissile, errorSignals, 

initFlightDirector, maneuverComplete, changeCourse, setElevation, 

setThrottle, initWarhead, initAirframe, doManeuverComplete, 

initThrottle, initEngine, initPropulsionSystem, initMissileFuelTank, 

launch, initAvionicsSoftware }; 

chan mapO = [0] of {mtype}; 

chan mapl = [0] of {mtype}; 

chan map2 = [0] of {mtype}; 

chan map3 = [0] of {mtype}; 

chan map4 = [0] of {mtype}; 

chan map5 = [0] of {mtype}; 

chan map6 = [0] of {mtype}; 

chan map7 = [0] of {mtype}; 

chan map8 = [0] of {mtype}; 

chan map9 = [0] of {mtype}; 

chan maplO = [0] of {mtype}; 

chan mapll = [0] of {mtype}; 

chan mapl2 = [0] of {mtype}; 

chan mapi3 = [0] of {mtype}; 

chan map!4 = [0] of {mtype}; 
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chan mapl5 =  [0] of {mtype}; 

chan map16 =  [0] of {mtype}; 

chan mapl7 =  [0] of {mtype}; 

chan mapl8 =  [0] of {mtype}; 

chan mapl9 =  [0] of {mtype}; 

chan map20 =  [0] of {mtype}; 

chan map21 =  [0] of {mtype}; 

chan map22 =  [0] of {mtype}; 

chan map23 =  [0] of {mtype}; 

chan map24 =  [0] of {mtype}; 

chan map25 =  [0] of {mtype}; 

chan map26 =  [0] of {mtype}; 

chan map27 =  [0] of {mtype}; 

chan map28 =  [0] of {mtype}; 

proctype missileFuelTankO 

{ 

goto startState; 

startState: 

do 

::  atomic{map26?initMissileTank; true ->} /* initializeMissileFuelTank;*/ 

goto fullState 

od; 

emptyState: 

do 

::  true -> break 

od; 

fullState: 
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do 

:: atomic{mapi?changeTankFlow; true ->} /* changeFlow; */ goto usingState 

od; 

usingState: 

do 

:: atomic{mapl?changeTankFlow; true ->} /* changeFlow; */ goto usingState 

:: atomic{map2?tankEmpty; true ->} map3!out0fFuel; /* changeFlow; */ 

goto emptyState 

od; 

} 

proctype navigationSystemO 

{ 

goto startState; 

startState: 

do 

:: atomic{map4?initNavigationSystem; true ->} goto waitState 

od; 

waitState: 

do 

:: atomic{map5?updatePosition; true ->} goto readSensorsState 

od; 

readSensorsState: 

do 

:: atomic{AUTOMATIC; true ->} map6!estimatePosition; goto waitState 

od; 

} 
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proctype flightProfile() 

{ 

goto startState; 

startState: 

do 

:: atomic{mapl5?initFlightProfile; true ->} /* addPointToRoute; */ 

goto idleState 

od; 

idleState: 

do 

:: atomic{map9?addWayPoint; true ->} /* addPointToRoute; */ 

goto idleState 

:: atomic{maplO?removeFirstWayPoint; true ->} /* removePointFromRoute; */ 

goto idleState 

od; 

} 

proctype guidanceSystemO 

■C 

goto startState; 

startState: 

do 

:: atomic{mapll?initGuidanceSystem; true ->} /* initializeGuidanceSystem; 

*/ goto idleState 

od; 

idleState: 

do 
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:: atomic{mapl2?doLaunch; true ->} map5!updatePosition; 

goto idleState 

:: atomic{map6?estimatePosition; true ->} goto processingState 

:: atomic{map4?out0fFuel; true ->} map5!updatePosition; 

goto terminalState 

od; 

processingState: 

do 

:: atomic{AUTOMATIC; /* profile.route'head = profile.route'tail -> */} 

maplOlremoveFirstWayPoint; mapl3!armMissile; goto terminalState 

:: atomic{AUTOMATIC; /* \lnot profile.route'head = 

profile.route'tail -> */} goto idleState 

od; 

terminalState: 

do 

:: break 

od; 

} 

proctype flightDirectorO 

{ 

goto startState; 

startState: 

do 

:: atomic{mapi5?initFlightDirector; true ->} /* 

initializeFlightDirector; */ goto idleState 

od; 
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idleState: 

do 

:: atomic{mapl5?errorSignals; true ->> mapi7!changeCourse; 

mapl8!setElevation; mapl9!setThrottle; goto maneuveringState 

od; 

maneuveringState: 

do 

:: atomic{mapl6?maneuverComplete; true ->} goto idleState 

od; 

} 

proctype avionicsSoftwareO 

{ 

goto startState; 

startState: 

do 

:: atomic{map28?initAvionicsSoftware; true ->} map4!initNavigationSystem; 

mapil!initGuidanceSystem; mapl5!initFlightDirector; 

/* initializeAvionicsSoftware; */ goto avionicsSoftwarelnitializedState 

od; 

avionicsSoftwarelnitializedState: 

do 

:: break 

od; 

} 

proctype warhead() 
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goto startState; 

startState: 

do 

:: atomic{map21?initWarhead; true ->} /* initializeWarhead; */ 

goto unarmedState 

od; 

unarmedState: 

do 

:: atomic{mapl3?armMissile; true ->} /* armWarhead; */ goto armedState 

od; 

armedState: 

do 

:: break 

od; 

} 

proctype airframeO 

■C 

goto startState; 

startState: 

do 

:: map21?initAirframe; true -> /* initializeAirframe; */ 

goto preLaunchState 

od; 

preLaunchState: 

do 

:: mapl2?doLaunch; true -> goto poweredFlightState 
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od; 

poweredFlightState: 

do 

:: map3?out0fFuel; true -> goto inertialFlightState 

:: map6?estimatePosition; true -> /* setPosition; */ 

goto poweredFlightState 

:: mapl7?changeCourse; true -> goto maneuveringState 

od; 

maneuveringState: 

do 

:: map22?doManeuverComplete; true -> goto poweredFlightState 

:: map3?out0fFuel; true -> goto inertialFlightState 

od; 

inertialFlightState: 

do 

: : break 

od; 

} 

proctype throttle() 

{ 

goto startState; 

startState: 

do 

:: map23?initThrottle; true -> goto idleState 

od; 
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idlestate: 

do 

:: map20?setThrottle -> map28!changeTankFlow; /* changeFuelFlow; */ 

goto idleState 

od; 

} 

proctype jetEngineO 

{ 

goto startState; 

startState: 

do 

:: map24?initEngine; true -> goto idleState 

od; 

idleState: 

do 

:: map1?changeTankFlow -> goto idleState 

od; 

} 

proctype propulsionSystemO 

{ 

goto startState; 

startState: 

do 

:: map25?initPropulsionSystem; true -> map23!initThrottle; 

map24!initEngine; map26!initMissileFuelTank; goto idleState 

od; 
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idleState: 

do 

:: break 

od; 

} 

proctype cruiseMissileO 

{ 

goto startState; 

startState: 

do 

:: AUTOMATIC; true -> map25!initPropulsionSystem; map21!initAirframe; 

map20!initWarhead; map28!initAvionicsSoftware; 

/* initializeCruiseMissile; */ goto preLaunchState 

od; 

preLaunchState: 

do 

:: map27?launch; true -> mapl2!doLaunch; goto flyingState 

od; 

flyingState: 

do 

:: break; 

od; 

} 

init 

{ 

atomic{ run missileFuelTankO ; 
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run navigationSystemO ; 

run flightProfileO; 

run guidanceSystemO; 

run flightDirectorO; 

run avionicsSoftwareO; 

run warhead(); 

run airframeO; 

run throttle(); 

run jetEngineO ; 

run propulsionSystemO ; 

run cruiseMissileO }; 

} 
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