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AFIT/GMS/ENY/00M-02 

Abstract 

The demanding environment in aircraft turbine engines has driven the development of 

many innovative high temperature materials. This thesis examines one of the latest of 

these materials, an oxide/oxide ceramic matrix composite (CMC), N720/A. This CMC 

consists of a porous alumina matrix reinforced by Nextel 720 fibers in a balanced 8- 

harness satin weave. To characterize this material, monotonic tensile and cyclic fatigue 

tests were performed at room temperature and at 1200°C. The effects of moisture on 

fatigue behavior were also investigated at 1200°C. Modulus, maximum and minimum 

strain and stress-strain hysteresis were monitored during the cycling to characterize 

fatigue damage mechanisms. Retained strength of all specimens that survived 105 cycles 

was also characterized. Microscopy and fractography were used to examine 

microstructure, damage mechanisms, and fracture surfaces. N720/A was found to have 

good room temperature and high temperature properties. At room temperature the 

ultimate tensile strength was 144 MPa, and fatigue strength was 102 MPa at 105 cycles. 

Fatigue damage involved mainly matrix cracking with no fiber-matrix debonding. At 

1200°C the ultimate strength was 140 MPa and fatigue strength was 122 MPa at 105 

cycles. Fatigue damage at high temperature was similar to that at room temperature with 

the addition of creep in the fibers. The matrix remained stable and did not sinter at 

1200°C. Moisture exposure did not degrade fatigue performance at 1200°C. Based on 

these results, N720/A appears to be an excellent candidate material for 1200°C 

applications with exposure to moisture. This is a significant achievement, because no 

metal can operate for long-term at this temperature. 



MONOTONIC AND FATIGUE LOADING BEHAVIOR OF AN OXIDE/OXIDE 
CERAMIC MATRIX COMPOSITE 

1     Introduction 

When Orville Wright took to the air for 12 seconds and 120 feet on December 17, 1903, 

he did so in an aircraft made of wood, cloth, thread and wires. Its internal combustion 

engine, which weighed 180 pounds and provided twelve horsepower, had a body of cast 

aluminum, cast iron pistons and a crankshaft chiseled from a block of machine steel (1: 

177). In the nearly one hundred years since Kittyhawk the unique demands of powered 

flight have been the driving force behind many materials innovations. Aircraft structures 

must be lightweight as well as strong, thus the impetus to develop materials with high 

strength to weight ratio. The power and efficiency of aircraft turbine engines increases 

with the combustion temperature of the fuel, hence the drive for materials able to 

withstand high temperature. 

The first nickel-based superalloy, Nimonic 80, was developed around 1940 in response to 

Whittle's need for a turbine blade material for the first British gas turbine (2:1). 

Continuous improvement in superalloys since then has enabled parallel improvements in 

turbine efficiency and power. Titanium was first used in aircraft structure in 1953 and in 

turbine engines in the early 1960s (3:7). Today it is the major component of engines 
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along with the superalloys. Polymer matrix composites (PMCs, plastics reinforced with 

glass or other fibers) were first used on aircraft in the 1960s but only for non-structural 

doors and other tertiary structures (4:202). Today carbon fiber reinforced polymer 

composites make up 10% of the Boeing 777 airframe, including primary structure like the 

tail assembly (5:59). Metal matrix composites (MMCs) have just recently been used for 

the first time on aircraft structures. MMCs are metal with reinforcement that is usually 

ceramic particles or fibers. The actuator piston rods on the exhaust nozzle of the F-22s 

Pratt and Whitney Fl 19 engine are titanium reinforced with silicon carbide fibers (6:11). 

The preferred spare for the ventral fin on the F-16 is made of discontinuous reinforced 

aluminum (DRA), aluminum reinforced with silicon carbide particles. 

Ceramic matrix composites (CMCs) are one of the latest in a long line of innovative 

materials developed for aerospace use. They consist of a ceramic reinforcement 

embedded in a ceramic matrix. While monolithic ceramics are very brittle and unsuitable 

for aircraft engine applications, CMCs have a sufficient amount of toughness engineered 

in to them. Ceramics have better high temperature strength than any other class of 

materials, and it is hoped they will contribute to the next leap ahead in aircraft 

performance. In the past decade much research has been devoted to improving the 

durability of CMCs for the demanding environment of the turbine engine. While much 

progress has been made, their use is still limited by several factors. An important 

limiting factor in many CMCs is that they oxidize at high temperatures and subsequently 

lose their toughness. 
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There is a class of CMCs called oxide/oxides because both the reinforcement and the 

matrix are oxide based ceramics. Oxide/oxides are attractive because they are inherently 

resistant to oxidation. They offer one possible solution to the embrittlement problem. It 

is hoped that oxide/oxides will maintain their toughness after long-term high temperature 

exposure. The first oxide/oxide composite was manufactured by General Electric 

Aircraft Engines in 1988. These materials have evolved since then, with various 

combinations of matrices and fibers having been tried. 

This thesis evaluates one new and promising oxide/oxide ceramic matrix composite. The 

composite consists of Nextel 720 alumina-mullite fibers (3M) embedded in a porous 

alumina matrix and was manufactured by Composite Optics Inc of San Diego, CA.   In 

this study the composite's mechanical behavior is characterized at room temperature and 

at 1200°C (2192°F). The major tests performed are monotonic tensile, cyclic fatigue, and 

interrupted fatigue to expose to moisture. The key to this material's success will be how 

well it performs at 1200°C with and without moisture. Some superalloys can operate at 

1100°C for short periods of time but no metal can perform at 1200°C. A material that has 

long-term strength and stability at 1200°C would be an encouraging step forward in the 

development of CMCs for aerospace systems. 
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2    Background 

This section begins with a broad introduction to the basics of ceramic matrix composites 

(CMCs) for the reader who may not be familiar with these materials. Following this 

summary of basic concepts is a sample of CMC applications that are relevant to the 

United States Air Force (USAF). Next, factors that currently limit the use of CMCs are 

described including environmental degradation. Ways of combating environmental 

degradation are then reviewed which leads to discussion of a particular class of CMCs 

called oxide/oxides. The published (or soon to be published) literature on oxide/oxide 

CMCs is then reviewed.   Finally a description of the material used in this study is given. 

2.1    Ceramic Matrix Composite Basics 

2.1.1   Materials 

Ceramic matrix composites (CMCs) are a class of structural materials consisting of a 

ceramic reinforcement embedded in a ceramic matrix. Reinforcement may be in the form 

of particulates, small discontinuous whisker platelets, chopped fibers, or continuous 

fibers (7:11). In continuous fiber reinforced ceramic composites (CFCCs), the 

reinforcement consists of long fibers in various configurations. For reasons to be 

discussed later, CFCCs usually have an interphase, or fiber coating, present between the 

fiber and the matrix. 

2-1 



2.1.1.1 Matrices 

There are several ways to categorize ceramic matrix materials; glass ceramics vs. 

polycrystalline ceramics is one example. Examples of glass ceramics include lithium 

aluminosilicate (LAS), calcium aluminosilicate (CAS), and magnesium aluminosilicate 

(MAS). Glass ceramic matrices have the advantages of easy fabrication and achievement 

of high matrix densities at low processing temperatures (8:13). High matrix density 

means low porosity which leads to good mechanical properties. Low processing 

temperatures means less damage to fibers during composite manufacture. The drawback 

to glass ceramics is their limited temperature capability compared to the polycrystalline 

ceramics (8:13). Examples of common polycrystalline ceramic matrices are alumina 

(A1203), mullite (3A1203: 2Si02), silicon nitride (Si3N4), and silicon carbide (SiC). These 

materials offer higher temperature capability than the glass ceramics; however, matrix 

density is not achieved as easily. In the presence of fibers, the processes that lead to 

sintering and densification of these ceramics are hindered (8:13). Also, polycrystalline 

matrices generally require higher processing temperatures, which can damage the fibers. 

There are other ways to categorize matrices such as oxide vs. non-oxide. Oxide matrices 

include alumina and mullite; whereas non-oxides include silicon nitride and silicon 

carbide. An important distinction here is the inherent oxidation resistance of the oxides 

relative to the non-oxides. The non-oxides rely on the formation of a protective silica 

(SiCh) layer to resist further oxidation. Problems arise when this silica layer is attacked 

by the environment (9:465). In addition, as will be discussed later, the silica layer itself 

can cause problems when it forms at the fiber matrix interface. 
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2.1.1.2 Fibers 

Ceramic fibers are usually grouped into non-oxide and oxide fibers (10:429). Fibers are 

produced as either large diameter (100-140 urn) monofilaments or small diameter 

(~10um) multi-filament fibers. Monofilaments often have better mechanical properties 

but they are too large to be woven into fabric. The smaller diameter multi-filaments are 

easily bundled and woven, a major advantage as will be seen. 

The non-oxide fibers are based primarily on SiC (10:429). Nicalon, Hi-Nicalon and Hi- 

Nicalon S (Nippon Carbon), Tyranno (Ube) and Sylramic (Dow Corning) are common 

examples of small diameter SiC fibers. Textron produces a large diameter SiC fiber. A 

non-oxide amorphous Si-B-N-C fiber (Bayer) has recently been introduced and shows 

considerable promise for high temperature use (10:431). Several companies are also 

developing silicon nitride fibers (11:60). 

The oxide fibers are primarily alumina based, such as Nextel 610 (3M). Nextel 720 (3M) 

is a composite alumina-mullite fiber. Other oxide fibers, such as polycrystalline yttrium- 

aluminum garnet or YAG (General Atomics), have been developed but currently are 

prohibitively expensive (11:60). 

Again a key distinction between the oxide and non-oxide based fibers is the inherent 

oxidation resistance of the oxides. 
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2.1.1.3 Fiber Coatings 

Fiber coating developments have concentrated on non-oxide fibers. To date, carbon and 

boron nitride (BN) have been the only successful coating materials for these fibers 

(10:434). Coatings for oxide fibers are a relatively new development. Early research on 

these coatings has focused on porous alumina and dense lanthanum phosphate (monazite, 

LaP04) (12:53), as well as scheelite (CaW04) and erbium tantalite (ErTa04) (13:279). 

2.1.2   Fiber Architecture 

Fiber architecture in CFCCs will affect composite mechanical properties as well as the 

shape of component that can be made. Four categories of fiber architectures are: 

1. Unidirectional (1-D), with fibers straight and parallel. 

2. Laminates composed of layers of unidirectional plates bonded together. Each layer 

may have fibers running in a different direction. An example is a laminate composed of 

unidirectional laminas with fibers alternating 90° from one lamina to the next. Such an 

arrangement is called a 0/90 cross-ply laminate (a cross section is shown on the right side 

of Figure 2-1). 

3. Laminates composed of layers of woven fabric reinforced materials. Each layer has 

2-D reinforcement rather than 1-D (a cross section is shown on the left side of 

Figure 2-1). 

4. Structures made from woven or braided fiber preforms, which may be 2-D or 3-D 

(8:16). 

In the following section, a few key issues regarding fiber arrangement will be reviewed. 
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2.1.2.1 Unidirectional Fibers 

Larger diameter fibers like the YAG (140um) and some SiC monofilaments (100- 

140um) are not flexible enough to be woven into fabric. They are therefore limited to 

use as unidirectional reinforcement. Small diameter ceramic fibers (like the Nicalon and 

Nextel fibers, 10-12u) may be bundled into tows and used as unidirectional 

reinforcement.   Unidirectional fiber arrangement can maximize composite properties, 

because fibers can be oriented in the direction of applied loads.   However unidirectional 

composites and laminates made from unidirectional plates are severely limited in the 

shape of components they can produce- namely plates and shells (8:16). 

2.1.2.2 Woven Fabrics 

The small diameter fibers mentioned above are flexible enough to be woven into fabric. 

Individual small diameter fibers are difficult to handle so they are furnished in 

multifilament or tow form with about 500 filaments/tow (14:140). The tows may be 

woven into many two-dimensional configurations, two of which are shown in Figure 2-2. 

Individual woven cloth laminas are stacked to form two-dimensional woven laminates. If 

the individual laminas are cross-linked with fibers, a three-dimensional laminate is 

formed. 

A big advantage of woven fabric composites is that they can assume complex shapes, not 

just plates and shells. In addition, woven fabric composites offer higher impact 

resistance and toughness compared to non-woven (unidirectional and cross-ply) 

composites (15: 2). However woven composites tend to be more porous because of the 
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waviness of the fiber bundles. The two types of porosity present in a woven composite 

are illustrated in Figure 2-1. Microporosity (~10um) is present within individual tows, or 

yarns. Macroporosity (>100um) is present between the yarns (16:222). This 

macroporosity can reduce composite strength and stiffness. Also, the significant bending 

of the fibers in woven composites can degrade their properties (8:16). 

Intrayarn 
porosity 

Interyarn 
porosity 

Figure 2-1 Cross section of woven (left) and cross-ply (right) laminates 

In a woven fabric, the lengthwise fibers are referred to as the warp yarns, while the 

transverse fibers are called fill yarns. Figure 2-2 shows the warp and fill directions in 

two types of weave: plain and satin (17:49). 

■ I ■ I f in II 

Warp 

Fill 
m 

m 
Figure 2-2 Two types of weave: plain and satin 
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A plain weave has warp ends going alternately over and under a fill yarn. In the 
satin weave, warp ends weave over a number of fill yarns and then under one fill 
yarn. For example, a five-harness satin, shown in Figure 2-2, has warp ends 
going over four fill yarns and under one.   Of the two weaves, a satin is more 
pliable than a plain and can take on more complex shapes and contours. It is also 
less porous than a plain weave (17:49). 

2.1.3   Processing 

A wide range of methods have been used for infiltrating the matrix into the fiber 

architectures, or preforms, but only three basic types are of commercial importance. 

These are chemical vapor infiltration (CVI), organic precursor route and liquid 

infiltration (11:61). The CVI method requires the penetration of vapors into a preform 

and the production of a solid phase from the chemical reaction of the vapor species to 

form the matrix of the composite (18:229). Residual porosity of CVI composites is on 

the order of 10-15% (16:236). This method is used most commonly with silicon carbide 

and a few other non-oxides. CVI produces the highest quality non-oxide composites but 

the process is slow and expensive (11:61). 

In the organic precursor method, preforms are infiltrated with a liquid silicon polymer, 

which is then pyrolyzed (decomposed by heat) to leave a SiC or nitride deposit (11:61). 

The substantial density change from polymer to ceramic leads to high shrinkage, porosity 

and microcracking (18:218). Porosity content after the first infiltration is about 20-30% 

(19:287). Porosity is reduced by repeated infiltrations; typically 4-10 reinfiltrations are 

needed (19:281). The resulting composite properties are generally inferior to CVI due to 

the higher porosity (11:61). 
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The third major production option is similar to the organic precursor route in that a liquid 

ceramic is infiltrated into the preform (11:61). One common form of liquid ceramic is a 

solution of gels or sol-gel. In the sol-gel method a ceramic precursor is hydrolyzed 

(reacted with water), polymerized into a gel, then dried and fired to achieve consolidation 

(20:187). A large amount of shrinkage occurs due to the large amounts of water that 

must be removed from the solution (20:187). The high shrinkage leads to a microcracked 

matrix, which can lead to inferior mechanical properties. Properties achieved are inferior 

to CVI but the process is well established and relatively inexpensive (11:61). 

2.1.4  Properties 

Properties of ceramics vary greatly according to factors like processing technique and 

porosity. But in general as a class, ceramics have many properties that make them 

attractive as engineering materials. Monolithic ceramics (no reinforcement) have low 

density, high strength, high modulus, high hardness and low thermal expansion. They 

have high melting points and chemical stability in many hostile environments. But 

perhaps their most attractive feature for aerospace use is their ability to maintain strength 

at high temperatures. In this area they exceed any other class of materials. Roughly, 

polymers can be used up to 150°C, aluminum alloys up to 200°C, titanium up to 600°C, 

stainless steels up to 850°C and nickel based superalloys up to 1100°C. Refractory 

metals like tungsten and molybdenum have good strength above 1200°C but they are 

heavy and oxidize rapidly. Intermetallics, compounds like TiAl and NbsSi3, are a 

relatively new class of materials being developed for high temperature use. TiAl is 
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expected to have a maximum operating temperature of about 950°C (46). TiAl recently 

found its first commercial use on the turbocharger impeller of the Mitsubishi Lancer, but 

it has not been used on an aerospace component yet (46). NbsSi3 may be able to operate 

up to 1200-1300°C but it is still in early development (46). Ceramics offer the potential 

of greater than 1500°C use temperatures. 

Ceramics derive their unique combination of properties from very strong chemical bonds, 

which are a mixture of ionic and covalent. The modulus of elasticity for a given material 

is an indicator of the strength of its interatomic bonds (21:117). The modulus of alumina 

is 380 GPa compared to 200 GPa for steel and 70 GPa for aluminum. Melting point is 

also a good index for atomic bond strength. The melting point of alumina is 2050°C 

while that of nickel is 1450°C and titanium 1675°C. 

The same strong chemical bonds that give ceramics high stiffness and stability also cause 

them to be brittle. Metals can plastically deform by shear along slip planes to relieve 

stress. In the presence of a stress riser, a flaw or crack, a metal will plastically deform 

locally to avoid fracture. When a ceramic is stressed it deforms elastically until sudden 

catastrophic failure occurs. A ceramic cannot tolerate the high local stresses caused by a 

flaw. This damage intolerance and low fracture toughness has limited the use of 

ceramics in structural applications (7:12). 

The toughness of ceramics can be greatly improved by adding reinforcement. Toughness 

of particulate, whisker and discontinuous fiber reinforced ceramics are up to three times 
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better than monolithic ceramics (22:296). "However only continuous fiber reinforced 

ceramics can provide non-catastrophic failure CMCs for critical aerospace applications" 

(22:296). 

"High fracture toughness and damage tolerance is engineered into most CFCCs by 

tailoring properties of the fiber-matrix interface"(23:l). The interface is deliberately 

made weak to allow fibers to debond and slide within the matrix. The following scenario 

illustrates how the weak interface promotes toughness and damage tolerance. Suppose a 

CMC is subjected to a stress high enough to crack the matrix. In a monolithic ceramic 

there is no mechanism to stop the crack and it will propagate until failure occurs. A crack 

in the matrix of a CMC will grow until it reaches the fiber-matrix interface. The weak 

interface allows the fiber to debond from the matrix. Instead of propagating through the 

fiber, the crack is deflected around the fiber. Once the crack deflects around the fiber it 

may continue to grow through the matrix while the fiber remains in tact. The fiber then 

'bridges' the crack and can still support a load. Under continued stress, frictional sliding 

occurs between the matrix and the debonded fibers. This frictional sliding is an energy 

dissipater, like slip in metals, and serves to toughen the CMC. If applied stresses are high 

enough, the crack will continue to grow. The fibers will eventually fracture and 'pull- 

out' of the matrix with the expenditure of considerable amounts of energy (24:357). All 

these mechanisms- debonding, crack deflection, crack bridging, sliding and fiber pull-out 

- are how CMCs are able to tolerate cracks and overcome the inherent brittleness of 

ceramics. 
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The required "weak" interface between the fiber and matrix is often created by coating 

the fibers before they are incorporated into the matrix (23:1). The usual coating 

materials, carbon and boron nitride, act as solid lubricants and induce the necessary 

debonding and sliding mechanisms (23:1). However these materials are susceptible to 

environmental degradation as will be discussed later. 

2.2   Air Force Applications 

Why is the Air Force interested in CMCs? One reason is that CMCs may be the enabling 

technology for many advanced propulsion systems. The principal requirements for a jet 

engine are high thrust to weight ratio and low fuel consumption. These goals are 

achievable only by increasing turbine inlet temperatures, which over the years have 

increased at a rate often to fifteen degrees per year from 800°C in 1947 to over 1300°C 

today (25:151). These high temperatures are possible because of improved materials and 

cooling methods. For example, in the 1960s Pratt & Whitney developed a process for 

making polycrystal and single crystal directionally solidified investment cast turbine 

blades. Turbine blades made of these columnar-grained and single crystal superalloys 

were introduced into engines during the 1970s and 1980s. These creep resistant alloys 

enabled an increase of several hundred degrees in engine operating temperature (26:360). 

Today single crystal superalloy turbine blades are still the state-of-the-art technology. No 

further major technology advances have been made. Turbine inlet temperatures have 

continued to rise but turbine blade temperature has been kept at 1100°C by increased 
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cooling (through hollowed out passages in the turbine blades). Some further increase in 

the use temperature of superalloys may still be possible, with such technologies as 

ceramic thermal barrier coatings (2:22). However, significant improvements are 

unlikely. If there is to be another substantial increase in engine operating temperature it 

is likely to come from the use of ceramics. 

2.2.1   IHPTET(27) 

An example of CMC applications in advanced propulsion systems is the Integrated High 

Performance Turbine Engine Technology (IHPTET) program started in 1988. The 

IHPTET team consists of the Army, Navy, Air Force, NASA, DARPA and industry. 

IHPTET is combining advanced material developments, innovative structural designs and 

improved thermodynamics to meet engine performance goals. These new technologies 

are tested on various demonstrator engines such as the Joint Expendable Turbine Engine 

Concept (JETEC) and the Joint Turbine Advanced Gas Generator (JTAGG). New 

stronger and more temperature resistant materials- polymer matrix composites, ceramic 

matrix composites, superalloys and intermetallic composites- are being tested to increase 

engine thrust to weight ratio. New materials will be transferred to existing systems such 

as the F-15, F-16, F-18E/F and the F-22, and also applied to newly developed aircraft and 

missiles. Phase I goals have been demonstrated and provide a 30% increase in 

propulsion capability. Phase II goals are nearly complete and will provide 60% increase 

in thrust/weight ratio and a 30% decrease in fuel burn. The Phase III target date is 2003 

and the goal is a 100% increase in thrust/weight ratio and a 40% decrease in fuel burn. 

CMCs are being used in the hottest sections of the demonstrator engines, the turbine and 
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the combustor. One example is a SiC/SiC composite combustor liner that will enable a 

1500°C combustor temperature. 

2.2.2   F-16 Afterburner Flaps 

CMCs are not solely being looked at for developmental engines. There are possible 

applications for CMCs in currently fielded engines, in areas where metal components are 

failing. In one such application, CMCs are being tested in afterburner components of the 

General Electric Fl 10 turbofan engines that power the F-16. The afterburner is basically 

a second combustion chamber mounted aft of the turbine engine. It makes use of the fact 

that the hot gases exiting the turbine have enough oxygen to allow a second combustion 

if given an injection of fuel (25:176). This reheating of the jet exhaust means it has a 

higher level of energy available for expansion in the exhaust nozzle. The result is higher 

exit velocity and more thrust. Combat aircraft use the afterburner to accelerate quickly, 

for take off on short runways and for supersonic flight (25:176). 

The Fl 10 afterburner consists of two main parts; the forward augmenter section and the 

trailing variable exhaust nozzle. The nozzle consists of 12 divergent flaps and 12 

divergent seals, which actuate in unison to change the size of the exhaust opening. 

During extended afterburner lights, temperatures of the exhaust nozzle components can 

exceed 1000°C (29:2). Current nozzle flaps and seals are made of Rene' 41, a nickel 

based superalloy. The combination of high temperature and thermal cycling leads to 

creep deformation, which eventually results in warping and cracking. "At present a high 

percentage of the flaps and seals must be removed or repaired after only 1/3 of their 
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intended design life"(29:3). The advantage of CMCs compared to Rene' 41 is in creep 

resistance at temperatures of 1000-1100°C. 

Figure 2-3 F-16 with afterburner lit (28) 

Zawada and Staehler of the Air Force Research Laboratory (AFRL) ground tested four 

different CMCs in an Fl 10 engine at General Electric Aircraft Engines in Evandale, OH. 

The composite flaps accumulated up to 117 hours of engine time or 10% of design life 

(29:4). Two of the four CMCs showed no degradation while two showed evidence of 

cracks and wear. The two CMCs that performed best were selected for flight testing. 

Four flaps were mounted on an F-16 at Hill AFB, Utah and are currently accumulating 

flight hours. 
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2.3   Long Term Durability Concerns 

While CFCCs continue to show promise for aerospace applications, their long-term 

durability must be improved. Their durability is currently limited by two factors: 

creep and rupture of the fibers and environmental degradation of the constituents. 

2.3.1   Creep 

Creep of ceramic fibers currently limits the maximum use temperature of CMCs. Recent 

developments in fibers have brought about some improvement in creep behavior. First, 

developments in the non-oxide fibers will be described. A particular class of SiC based 

fiber that is polymer derived (i.e. the Nicalon fibers), as opposed to chemical vapor 

deposited, consists of very small SiC grains along with carbon and an amorphous Si-O-C 

phase (10:429). Factors affecting creep resistance of this fiber type are grain size and the 

composition, location and size of the secondary phases (10:429). Creep resistance in 

these fibers has been improved by increasing the SiC grain size and reducing the oxygen 

content. For example, the Hi-Nicalon fiber is much more creep resistant than the Nicalon 

fiber because the Si-O-C secondary phase is essentially replaced with carbon (10:429). 

The creep resistance of Hi-Nicalon has been further improved (Hi-Nicalon vs. Hi-Nicalon 

S) by increasing the volume fraction of SiC to near stoichiometry while doubling the 

grain size (10:31). These fibers are exhibiting useful creep and rupture resistance to 

nearly 1300°C depending on applied stress (10:436). 
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The oxide fibers, in general, have poor creep resistance when compared to non-oxide 

fibers (10:433). Of the oxide fibers Nextel 720 is the most creep resistant fiber currently 

available (10:433). It was developed as an improvement over Nextel 610 in the area of 

high temperature performance. Nextel 610 consists of 99% fine-grained alumina and has 

a maximum use temperature of approximately 950-1000°C. Nextel 720 has both a 

secondary phase and elongated grains incorporated into its microstructure. The fiber is a 

composite of mullite (-55 volume %) and alumina (-45 volume %). The mullite is in the 

form of needles surrounding the alumina grains (10:433). This mixture of mullite and 

alumina gives improved creep strength and allows for a maximum use temperature in the 

range of 1075-1125°C (30:328). The better creep performance comes at the expense of 

strength; with Nextel 610 having a strength of about 3 GPa while the strength of Nextel 

720 is about 2 GPa (30:328). 

The YAG monofilament mentioned earlier offers superior creep resistance compared to 

other oxide fibers, as does a single crystal melt-grown sapphire (Saphikon), but these are 

currently too expensive to use (11:60). New affordable oxide fibers need to be developed 

in order to substantially improve creep performance. 

2.3.2   Environmental Degradation 

The second factor limiting long-term durability of CMCs is environmental degradation, 

especially at the fiber-matrix interface. Environmental degradation results from exposure 

to the atmosphere, moisture, salt and high temperature. Cracks can form in the matrix 

material of a CMC at relatively low stresses. Oxygen from the atmosphere travels 
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through the matrix cracks to the fiber coating. Both the carbon and the boron nitride 

commonly used as coatings are subjected to oxidation. Carbon coatings can begin 

oxidizing at 450°C (23:1). Once the carbon is removed, the oxygen reacts with the fiber 

to form a silica layer (assuming the fiber is SiC based). The silica (Si02) layer weakens 

the fiber and also allows strong bonding to the matrix. The weak interface that CMCs 

depend on for fiber debonding and sliding is replaced with a strong interface. As a result 

the CMCs quickly experience a reduction in their fracture toughness and tensile strength 

(31:2). 

Boron nitride is more resistant to oxidation than carbon but still has problems. The BN 

fiber coating must be applied at relatively low temperatures to minimize damage to the 

fiber. Deposition at lower temperatures results in an amorphous form of BN that is 

sensitive to oxidation at temperatures from 650-850°C (31:2). BN forms a protective 

B203 layer, which like silica results in a strong fiber-matrix bond (23:1). The strong 

fiber-matrix bond allows cracks to propagate from the matrix directly through the fiber 

with no deflection. No crack bridging occurs. Fracture surfaces of these embrittled 

composites show little fiber pull-out. The toughening mechanisms on which CFCCs rely 

are greatly reduced by oxidation of the fiber coating. The result of this embrittlement is 

reduced fatigue life at elevated temperatures. 
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2.4   Combating Environmental Degradation 

There are several approaches to protect CMCs from environmental degradation, three of 

which will be mentioned here. 

2.4.1   Glass-Forming Fillers 

One approach is to use glass-forming fillers in the matrix such as BN, SiC and B4C. 

Glassy phases that form in the interior of the CMC during high temperatures act to seal 

matrix cracks and prevent oxygen from reaching the fiber coating. This approach has 

contributed to some improvement in elevated temperature fatigue life over earlier 

generation CMCs (32:1807). "However, in loaded CMCs, continuous damage from 

matrix cracks facilitates oxygen access and makes sealing difficult particularly at 

intermediate temperatures where glass formation rates are low and viscosities are high" 

(23:2). Also the glassy phases that form at high temperature will become brittle as the 

temperature is reduced under the glass transition temperature and will reduce room 

temperature residual strength (23:2). 

2.4.2  Coated BN Coatings 

Another approach is to dope or coat the BN fiber coatings to protect them from oxidation. 

"Recently Si-doped BN has been deposited on SiC fibers and shows considerable 

promise as an oxidation resistant coating that retains desirable mechanical properties" 

(10:435). This development will likely receive more attention. Layered coatings such as 

BN/C/BN, BN/C/Si3N4, SiC/C/SiC and BN/SiC have also been evaluated in composites 
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with SiC based fibers. So far the data is not clear whether or not the oxidation problem in 

these non-oxide composites has been improved (10:435). 

2.4.3  Oxide/Oxide Composites 

A third approach is to make the composite from an oxide based fiber and oxide based 

matrix. Such a composite is inherently resistant to oxidation. Oxide/oxide composites 

are receiving attention for this reason. The development of all oxide composites has 

followed two distinct design paths (33:2077). The first is based on the same weak 

interface concept of traditional CFCCs. It uses fugitive layers (layers that disintegrate 

during processing), porous oxide coatings or dense oxide coatings with suitably low 

fracture toughness to form the weak interface (33:2077). So far the most promising 

approach is the dense oxide coatings, and the best of these so far appear to be monazite 

(LaP04) (34:274) and scheelite (CaW04) (13:283).   These materials are promising but 

their development is still in the early stages. 

In the other approach to flaw tolerant oxide/oxide CMCs, reinforcing fibers are strongly 

bound to a matrix deliberately made weak by incorporation of high porosity and 

microcracks (23:2). (Wood gets its toughness from a similar structure.) No fiber coating 

is necessary so processing is easier (23:2). Porosity is acceptable so an inexpensive 

processing technique like the sol-gel liquid infiltration method may be used. Instead of 

crack deflection and sliding at fiber-matrix interfaces, fracture energy is dissipated by 

diffuse microcracking in the porous matrix (23:2). General Electric Aircraft Engines first 

produced oxide/oxide CMCs with a porous matrix in 1988 (30:328). An aluminosilicate 
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matrix material has been commonly used in the past. A range of fibers has been used 

including Nextel 312, 480, 550, 610 and 720. Nextel 480, 610 and 720 are the only ones 

suitable for high temperature use (30:328). 

2.5   Summary of Previous Work on Oxide/Oxides 

Papers on oxide/oxide composites with strong interfaces are so far relatively rare. The 

following is a summary of those found in the literature. This survey also shows the 

evolution of oxide/oxide composites over the past few years and will reveal the 

motivation behind the current material. 

2.5.1   Early Modeling 

Two articles published in 1996 provide some early modeling of the fracture mechanics of 

porous matrices strongly bound to fibers (35,36). The models in these articles are based 

on the concept that when two intrinsically brittle materials are combined, damage 

tolerance can be achieved whenever cracks are induced to deflect or debond along planes 

parallel to the loading direction (35:417). Cracks will initiate in and propagate across 

bundles of fibers but when the crack reaches a matrix-dominated region it will deflect 

parallel to the load. The crack is thereafter trapped. These models indicate that the 

matrix regions should be subjected to residual compression and have controlled porosity 

such that their mode II fracture energy is lower than about half the mode I fracture energy 

of the fiber bundles (35:423). If these conditions are met, cracks will tend to deflect 

parallel to the loading and become stable. 
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2.5.2  General Electric's GEN IV 

Perhaps the most extensively characterized oxide/oxide composite is General Electric's 

GEN IV. Because its behavior has been thoroughly examined, it will serve as a good 

introduction to all-oxide CMCs with strong interfaces. The sources for this information 

are two papers, published or soon to be published, by the Materials Directorate of the Air 

Force Research Laboratory (AFRL/ML) (23,31). 

2.5.2.1 Processing and Microstructure 

GEN IV uses Nextel 610 fibers in an 8HSW for reinforcement. The fiber cloth is 

prepregged with a mixture of fine alumina powder and a silica-forming polymer. Twelve 

individual prepregged cloths are stacked to form the laminate. The laminate is warm 

molded in an autoclave to produce a dense green state ceramic tile. The tile is 

pressureless sintered in air at 1000°C to convert the polymer to porous silica. 

Because of shrinkage that occurs when the polymer is converted to a ceramic, the matrix 

is microcracked and porous. The porosity of the material is 17-23%. Approximately half 

of this is large pores and matrix cracks, the other half is very fine evenly distributed 

porosity. The matrix is a mechanical mixture of alumina grains cemented together by 

porous silica. The silica also cements the alumina grains to the Nextel 610 fibers. 
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2.5.2.2 Tensile Behavior (23) 

Tensile response of Gen IV is nearly linear to failure. Deformation is essentially elastic to 

failure for all temperatures tested. Such linear behavior means that there is little 

additional matrix cracking during loading and that fiber/matrix debonding is 

insignificant. Fiber fracture is the dominant damage mode, which is typical for fiber- 

dominated composites. Average room temperature properties are 205 MPa for ultimate 

strength, 0.3% strain to failure and a 70 GPa elastic modulus. There are very small 

changes in properties from room temperature to 1000°C. Ultimate tensile strength 

decreases from 205 to 173 MPa. The elastic modulus increases from 70 to 77 GPa. The 

strain to failure decreases from 0.33% to 0.28%. These small changes indicate the 

system has attractive short-term mechanical properties at 1000°C. 

2.5.2.3 Fatigue Behavior 

GEN IV performs extremely well in fatigue at both room temperature and at 1000°C. 

The fatigue, or endurance, limit at room temperature is 170 MPa, which is 85% of room 

temperature tensile strength. The fatigue limit at 1000°C is 150 MPa also 85% of the 

tensile strength at that temperature. The room temperature behavior is similar to other 

CMCs, many of which exhibit fatigue limits within 5-20% of the tensile strength. 

However fatigue behavior at elevated temperatures is very different. CMCs with a 

carbon or boron nitride fiber coating typically have fatigue limits of only 75-100 MPa. 

GEN IV did not degrade at high temperature like other CMCs with these fiber coatings. 
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Normally CMCs experience cumulative damage during fatigue testing. There are several 

ways to determine whether fatigue damage is occurring. These include monitoring 

changes in elastic modulus, stress-strain hysteresis and strain, and testing of retained 

strength after cycling. Fatigue damage will be indicated by an elastic modulus that 

degrades over the course of a fatigue test. In the case of GEN IV there was a very slight 

decrease in elastic modulus up to 100,000 cycles. This indicates that minimal damage 

occurred and that it was most likely due to slight additional cracking in the matrix. 

Stress/strain hysteresis will normally increase as a composite accumulates damage. For 

GEN IV, hysteresis values were very small throughout the test indicating again that very 

little damage occurred.   Maximum and minimum strain values may increase over the 

course of a test due to a combination of damage and creep. GEN IV had very slight 

increases in minimum and maximum strain indicating little strain accumulation. In most 

CMCs exposed to high temperature fatigue testing, degradation of fiber coatings reduces 

tensile strength in specimens after cycling. GEN IV experienced no loss of tensile 

strength after fatigue testing. All this data means that oxide/oxides seem to excel in high 

temperature fatigue environments. Since this is a 'weak spot' for traditional CMCs, these 

results are highly encouraging. 

2.5.2.4 Salt-Fog Exposure 

CMCs for turbine engine applications must be able to withstand exposure to the humidity 

and salt of sea air. Exposure to salt and fog did not decrease the fatigue life of Gen IV at 

1000°C. This is another advantage for oxide/oxides. Nicalon fiber based CMCs 

experience a 30-80% decrease in fatigue life under identical test conditions. 
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2.5.2.5 Creep 

GEN IV was found to be susceptible to creep as the measured creep strains were almost 

three times larger than Nicalon fiber CMCs at the same stress and temperature. The 

Nextel 610 fiber is an extremely fine-grained alumina, which makes it susceptible to 

creep. Consequently GEN IV should not be used at temperatures above 1100°C. Creep 

performance would likely improve by using the Nextel 720 fiber, which is much more 

resistant to creep than Nextel 610. 

2.5.3   Nextel 610/Mullite and Nextel 720/Mullite 

Researchers from University of California, Santa Barbara (UCSB) manufactured and 

tested two types of oxide-oxide composites. They detailed the processing and 

performance of Nextel 610 and Nextel 720 reinforcements in porous mullite matrices 

(33).   The reinforcements were in the 8HSW configuration and made up 36 volume 

percent of the composite. The matrix was actually 80% mullite in the form of relatively 

large particles (~lum) and 20% alumina (-200 nm) in the void spaces. The alumina 

sintered above 800°C to form bridges between the mullite particles as well as between the 

mullite particles and the fibers. The finished composites had roughly 30% porosity. 

The team at UCSB found that the all-oxide composites had the following characteristics: 
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They were straightforward to manufacture by conventional slurry infiltration methods. 

They do not require a fiber coating and use relatively low-cost Nextel fibers. They seem 

to be an affordable material (33:2086). 

Their mechanical performance was comparable to that of other fiber dominated CFCCs, 

such as SiC/C and C/C. The all-oxide composites represent an oxidation-resistant 

equivalent to carbon/carbon composites (33:2086). 

The composite with the Nextel 720 fibers had very good high-temperature characteristics. 

The creep strength exhibited at 1200°C makes this composite a serious candidate for 

applications at this temperature (33:2085). 

The porous matrix was effective as a crack deflection medium as evidenced by the 

fracture surfaces. Fiber tows broke over a wide range of axial locations. Individual 

fibers within the tows also broke over a wide range of locations. This indicates the 

cracks did not proceed directly from one fiber through the matrix and then through the 

next fiber. They were deflected in the porous matrix (33:2081). 

Interlaminar shear strength, which is a matrix-dominated property, was low (8-10 MPa) 

compared to other CMCs. A possible solution is to use three dimensional fiber 

architectures in the future processing of these materials (33:2084). 

2-25 



2.5.4   Evaluation of Four Oxide/Oxide Composites 

Zawada evaluated the longitudinal and transthickness tensile strength of four oxide/oxide 

composites from different manufacturers (30). Two of these composites were 

manufactured by General Electric Aircraft Engines, one by 3M and one by Composite 

Optics Inc. All four composites had aluminosilicate matrices and used either Nextel 610 

or Nextel 720 fibers. This study highlighted the conflicting demands placed on the 

matrix of these materials. The matrix needs to be porous enough to deflect cracks, yet 

sufficiently dense to provide good compressive and transverse tensile properties. The 

composites in this study had very low transverse strengths (2.7-7.1 MPa). This is an area 

that needs improvement in future oxide/oxide development. 

2.5.5   Nextel 720/Aluminosilicate (N720/AS) from Composite Optics Inc. 

For the past several years Composite Optics Inc. (COI) of San Diego CA has 

manufactured an all-oxide composite. It combines the promising high temperature 

fatigue properties of the GEN IV material (as described in Section 2.5.2) with excellent 

creep resistance. 

2.5.5.1 Materials and Processing 

The reinforcement in the COI material is Nextel 720 fibers in an 8HSW. The use of 

Nextel 720 fibers gives N720/AS a substantial increase in creep resistance when 

compared with GEN IV and its Nextel 610 fibers. As discussed in Section 2.3.1 the 

Nextel 720 fiber has elongated grains of mullite in its microstructure, which slows creep 
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deformation. The matrix is a sol-gel derived porous aluminosilicate. COI's process for 

manufacturing the composite is simple and low cost. The fabrication process does not 

require repetitive re-infiltration or pyrolyzation steps. The matrix is a viscous slurry that 

is prepregged into the fabric by hand. Once the slurry is evenly applied to the fabric, the 

laminates are laid up, bagged and dried under low pressure and temperature. The final 

step is a pressureless sinter of about 1150°C to sinter the matrix to the appropriate density 

(37:5). 

2.5.5.2 Properties 

AFRL/ML has characterized this material. Its room temperature strength is 179 MPa, its 

modulus is 76.5GPa and its failure strain is 0.3%. The high temperature fatigue behavior 

is shown in Figure 2-4 below. The material has excellent fatigue properties typical of 

oxide/oxides to 1100°C. However, as the figure shows, a drop in fatigue strength occurs 

at 1200°C. 

COI believes the degradation in strength at 1200°C is due to sintering of the silica in the 

aluminosilicate matrix. Sintering is the process by which small particles of a material are 

bonded together by solid-state diffusion. Particles are coalesced by solid-state diffusion 

at very high temperatures but below the melting point of the compound being sintered. 

As the process proceeds larger particles are formed at the expense of smaller ones. As 

particles get larger, porosity decreases (38:610). So as the silica in the matrix sinters, the 

porosity of the matrix decreases. Since the composite relies on fine matrix porosity for 

toughness, toughness decreases along with porosity. So while this composite shows very 
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promising high temperature performance, for applications at 1200°C a different refractory 

matrix is required. 
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Figure 2-4 Fatigue behavior of Nextel 720/AS (from AFRL/MLLN) 

2.6   Description of Current Material 

The next step in the evolution of oxide/oxides is to increase their useful temperature from 

1100 to 1200°C. Because of COFs experience with oxide/oxide composites they were 

awarded a Small Business Innovative Research (SBIR) contract to develop an affordable 

CMC for 1200°C applications. 
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In Phase I of the SBIR, COI researched various combinations of fibers and matrices. 

Nextel 720 was selected as the best available oxide fiber. The main problem was to find 

a substitute for the silica in the aluminosilicate matrix material. A more refractory 

material that would not sinter or react with the fiber was required. In the end, a pure 

alumina matrix was chosen. 

In Phase II of the SBIR, COI fabricated several sheets of the new Nextel 720/alumina 

(N720/A) oxide/oxide composite. The new composite is manufactured using the same 

sol-gel process COI used to manufacture the N720/AS composite. Ten plies of balanced 

8HSW Nextel 720 fibers have been used. The matrix has the same porous structure 

tightly bound to the fibers and no fiber coating. The difference is that the silica has been 

removed. 

Since this is a brand new material, it has yet to be characterized. It has not been 

determined whether this material has improved upon previous oxide/oxides, nor has it 

been shown that the new material will be able to operate at 1200°C. This thesis will 

answer those questions. This thesis will provide the first in-depth study of the new 

material including its monotonic tensile and fatigue properties as well as its resistance to 

moisture. 

For this testing, COI had the sheets of the new material machined into specimens. Two 

types of specimens which were used in the testing of this material are shown below in 

Figure 2-5. The circular inserts are not part of the specimens, but have been drawn to 
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show the orientation of the fibers. The straight-sided specimens offer the advantage of 

low machining costs and no stress concentrations. They are generally used for monotonic 

tensile tests. The dog-bone specimens offer a reduced width gage length to encourage 

failure within the gage length region. This specimen geometry has a stress concentration 

factor of about 1.06 (39:37). This means if failure occurs in the transition region at a 

nominal stress of 140 MPa, the actual strength of the specimen is about 148 MPa. The 

dog-bone specimens are used for fatigue tests. 
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1. Drawing not to scale 
2. Dimensions in millimeters 
3. Thickness 2.54 mm (10 plies) 

Figure 2-5 Straight-sided and dog-bone specimens (cutouts show fiber orientation) 
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3    Experimental Equipment and Procedures 

This section will describe the equipment used to characterize the N720/A oxide/oxide 

composite. Pertinent details of all test procedures will be described as well. 

3.1     Equipment 

The equipment used for testing falls into three major categories: the mechanical test 

apparatus, the environmental equipment and the imaging devices. 

3.1.1   Mechanical Test Apparatus 

An MTS (MTS Systems Corporation) horizontal servohydraulic machine with a 25 kN 

(5500 lb) capacity was used for all tests. (The maximum load reached during any test 

was approximately 800 lb.) MTS hydraulic wedge type clamping grips were used to grip 

the specimens. Minimum grip pressure was calculated from a formula in the grip 

handbook. Grip pressure must be high enough to prevent the specimen from slipping but 

low enough not to crush the specimen or add excessive out of plane stresses. Minimum 

calculated grip pressure was about 350 psi. If the specimen slipped in the grips at 

minimum pressure, pressure was increased. Maximum grip pressure used was about 600 

psi. The grips were aligned with a strain gauged alignment fixture to reduce any bending 

strains on the test specimens. Maximum bending strain was reduced to 60 |j,strain, which 

is about 2-3% of the total strain measured during the tests. 
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Test control and data acquisition were done by MTS Test-star II software. The Basic 

Testware feature was used to program simple monotonic tests. The Multi Purpose 

Testware feature was used to program fatigue cycling with data acquisition at logarithmic 

intervals (cycles 1,2,5,10,20,50,100,etc). 

Load and extension data were acquired. Load was measured with an MTS 661.20E-01 

load cell with a 25 kN capacity. The measured load was divided by specimen cross 

sectional area to get stress. Specimen extension was measured with an MTS 

extensometer model number 632.53E-14. The extensometer used two alumina rods, 

spaced 12.7 mm (0.5 inches) apart, held against the specimen with spring pressure as 

shown in Figure 3-1. 

Figure 3-1 Specimen in grips with extensometer 
rods 
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When the specimen is stressed the two alumina rods spread apart and track specimen 

extension. The extension of the specimen was multiplied by an extensometer calibration 

factor (see below) and divided by the gage length (-12.7 mm) to get strain. 

Strains in ceramics are generally very small compared to other materials. Table 3-1 

shows a comparison of strain to failure of some common materials. 

Table 3-1 Strain to failure for some common materials 

Material Bf(%) 
Nylon 6 30-100 
Aluminum 2024-T4 20 
Ti-6A1-4V annealed 16 
AISI4130 steel 14 
A291C-T6 cast magnesium 0.4 
Oxide/oxide ceramic composites 0.2-0.3 

Because the strains are so small, the extensometer had to be calibrated at its maximum 

sensitivity. The extensometer was calibrated so that 0.0635 mm (0.0025 inches) 

extension gave an output of 9.0 volts. 0.0635 mm of extension in a gage length of 12.7 

mm is a strain of 0.005 or 0.5%. Strains measured in the monotonic tensile tests ranged 

from 0.2-0.3 %. The extensometer calibration was periodically checked with MTS 

calibrator model 650.03 to ensure it did not change over time. The gage length was 

periodically measured with a Gaertner optical traveling microscope and was generally in 

the range of 12.77 to 12.85 mm. All data was analyzed and graphed using the Excel 

spreadsheet application from Microsoft. 
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3.1.2   Environmental Equipment 

1200°C testing was accomplished using a two zone Amteco Hot-Rail Furnace System. 

The chamber of the furnace is compact, about 5x5x8 cm, so the heat is applied to a very 

localized area. Figure 3-2 shows the bottom half of the furnace in place beneath the 

specimen. The furnace chamber has two zones with two silicon carbide heating elements 

per zone. 

Figure 3-2 Furnace set-up (Bottom half) 

The temperature in each zone was controlled by a separate Barber Coleman 560 

controller. An S-type thermocouple mounted in each zone sensed the temperature inside 

the furnace and sent the signal to the Barber Colemans, which supplied power to the 

heating elements as needed. 
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To ensure a specimen temperature of 1200°C the following procedure was used. Three 

S-type thermocouples were bonded to a dummy specimen in the location shown below. 

12.7 mm 

Figure 3-3 Thermocouple layout on dummy specimen 

S-type thermocouples have a junction of platinum and rhenium and are especially suited 

for high temperature testing. The three thermocouples were spaced evenly across the 

gage length and bonded to the specimen with Zircar ceramic cement. 

The furnace was started and the specimen temperature ramped to 1200°C using the 

Barber Colemans' automatic control. It took approximately 25 minutes to go from room 

temperature to 1200°C. There was an overshoot in temperature of about 18°C (the 

temperature peaked at 1218°C then settled at 1200°C). Once at 1200°C the specimen 

temperature remained essentially constant. The center thermocouple read 1203°C and the 

two outer ones 1198°C. In order to get this specimen temperature, the two Barber 

Coleman controllers had to be set at 1080°C and 1093°C. This difference between the 

furnace thermocouples and the specimen thermocouples (of over 100°C) indicates a fairly 

steep temperature gradient within the furnace. 
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Figure 3-4 High temperature test in progress 

These heating procedures were repeated several times with the dummy specimen. After 

repeatability was demonstrated, the dummy specimen was no longer used. For the actual 

high temperature tests the Barber Colemans were simply ramped to 1080°C and 1093°C 

to provide a 1200°C specimen. This meant no thermocouples had to be mounted to actual 

test specimens. The dummy specimen with thermocouples was reinstalled after every 4-5 

tests to recheck furnace calibration. These rechecks verified the repeatability of the 

furnace set-up and justified the use of such an open loop approach. 

During high temperature testing, the grips and load cell were kept cool with a chilled 

water system. The Neslab system pumped 12°C water through the grips and through a 

load cell isolation block. The extensometer was fitted with a heat shield and an air- 

cooling attachment. Room temperature air was forced over the extensometer through a 

special diffuser. 
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For the moisture exposure tests, specimens were placed in an Atotech fog chamber. The 

fog chamber maintains a 95°C cabinet with 100% relative humidity. 

3.1.3   Imaging devices 

Images of fracture surfaces were obtained with a Leica Cambridge Stereoscan 360 Field 

Emission Scanning Electron Microscope (SEM). The SEM bombards a specimen with 

electrons and examines the various electrons knocked off the specimen. The microscope 

has sensors to detect secondary electrons and backscattered electrons. Images were taken 

using both types of detectors. Backscattered images are especially good for showing 

differences in elemental composition. Since the matrix material being studied is alumina 

and the fiber is 85% alumina and 15% silica this would not appear to offer much 

advantage. Nevertheless the backscattered images were often more distinct than the 

secondary. 

Ceramics in general are difficult to look at in the SEM, because they are not good 

conductors of electrons. When ceramics are bombarded with electrons they tend to 

accumulate charge. This charge distorts SEM images. To help alleviate this problem, 

specimens are given a thin coating of a conducting material. Two types of coatings were 

tried in this effort. A carbon coating was used but was not effective in reducing the 

charging problem. A gold-palladium (Au-Pd) coating was more effective though it did 

not eliminate the problem. A Hummer X Sputter Coater from Anatech LTD was used to 

apply the coating. The gold-palladium was sputtered onto the sample by means of a 
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positively charged argon gas ion plasma. The argon ions strike a Au-Pd target knocking 

off metal atoms, and then deposit the metal onto the ceramic. Coatings of several 

nanometers were used. Before coating, the samples were cleaned by soaking for 24 hours 

in isopropyl alcohol. 

A digital optical microscope was used as a non-destructive means to characterize the 

surface of specimens in as-received condition. The model used was a Nikon Inverted 

Microscope, EPIPHOT-TME with a Polaroid Digital Microscope Camera attached. 

Again the oxide/oxide ceramics provided a challenge. Optical microscopes have a very 

limited depth of focus. They do best on very smooth polished surfaces. The N720/A has 

a rough surface texture. Therefore the images of the as-received specimens are somewhat 

fuzzy, but they convey the desired information. 

The optical microscope was also used to look for damage in fatigue specimens. To do 

this the fatigued specimens were sectioned, mounted in phenolic 'hockey pucks' and then 

polished. Oxide/oxide CMCs are difficult to polish because of their tendency to crumble. 

The basic polishing technique is summarized as follows: three hours on the Phoenix 

4000 Automatic Polisher using six micron diamond grit on a perforated text met 

polishing pad, one hour on the same automatic polisher but using a one micron diamond 

grit perforated text met pad, 24 hours in a Buehler Vibramet I vibrating polisher using the 

one micron diamond grit perforated text met pad. 
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A digital camera was used for pictures of the test set-up. The model used was a Sony 

Mavica. 

3.2    Test Procedures 

3.2.1   Monotonie Tension 

All tension tests were done under stroke control mode with a 0.05mm/sec displacement 

rate. At this rate the tension tests lasted about 10-14 seconds. All specimens were fitted 

with fiberglass tabs in the grip region to promote even gripping. The tabs were held in 

place with a drop of superglue. 

Monotonie tension tests were run at room temperature and at 1200°C. For the high 

temperature tests the specimen was heated to 1200°C in 25 minutes. Next the specimen 

was allowed to stabilize for 15 minutes. Then the test was started and stress was ramped 

up until failure occurred. 

As test specimens were heated from room temperature to 1200°C they underwent thermal 

expansion. These thermal strains were measured with the extensometer and were used to 

calculate a coefficient of thermal expansion for the composite. The extensometer was 

then 'zeroed' at 1200°C so that only mechanical strains were measured during testing at 

temperature. 
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A load-displacement data point was taken by the Test-star II software every 0.05 seconds. 

This gave over 200 data points for a typical tensile test. Load-displacement data were 

converted to stress-strain. Curves were fit to the data using Microsoft Excel. Second- 

degree polynomial curves fit the stress-strain data very nicely. 

3.2.2  Cyclic Tension (Fatigue) 

Cyclic tension tests were done at room temperature and 1200°C. The tests were done in 

load control with a load ratio of 0.05 (R=amax/ormin). The applied load had a sine wave 

form as shown in Figure 3-5 and a frequency of one hertz (one cycle per second). 

Load 

Time 

Stress 

'■<  Secant modulus 

<  Max strain 

       Min strain 

Strain 

Figure 3-5 Applied fatigue load and associated stress- 
strain loop 
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During fatigue testing load-extension data was taken on cycle numbers 1, 2, 5, 10, 20, 50, 

100, 200, 500, 1000, 2000, 5000, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 

80000, 90000 and 100000. Data points were taken every 0.005 seconds and were taken 

on the loading and unloading part of the cycle. The load-extension data was converted to 

stress-strain. Stress-strain data, shown for one fatigue cycle in Figure 3-5, was used to 

track trends in secant modulus, maximum and minimum strain and hysteresis. All these 

factors are indicators of damage occurring to the composite during fatigue. The secant 

modulus was used, as opposed to the tangent modulus used in monotonic tests, for ease 

of calculation. 

Tests were run at maximum cyclic stresses of 60%, 70%, 80% and 90% of ultimate 

tensile strength and the number of cycles to failure was measured for each stress level. 

Maximum stress vs. number of cycles to failure data was plotted to create the stress-life 

plot or S-N curve at each temperature. Although the aerospace industry now uses a 

fracture mechanics based approach to fatigue life (da/dn vs. ÄK curves), the S-N curve is 

a useful tool to characterize a material's fatigue performance. One use of the S-N curve 

is to determine the fatigue limit (also called endurance limit) of a material. The fatigue 

limit provides a key index for comparing the performance of different materials. 

The fatigue limit is the stress level at which the material may be cycled indefinitely 

without failing. Some materials, like most steels and copper alloys, have true fatigue 

limits and will not fail when cycled at stresses below that limit. Other materials, like 

many high strength steels and aluminum alloys, do not exhibit true fatigue limits. For 
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these materials the allowable stress amplitude continues to decrease with an increasing 

number of cycles. In this case, the fatigue limit may be defined as the stress level at 

which the material may be cycled for a given number of times without failing. 

Researchers have not yet determined whether CMCs have a true fatigue limit or not. For 

this effort 100,000 cycles was chosen to define the fatigue limit. 100,000 cycles was 

considered a reasonable number of stress cycles for the lifetime of an aerospace 

component. This also limited the maximum length of a fatigue test to about 28 hours (one 

cycle per second x 100,000 cycles), and test duration was an important consideration. 

Any specimen that survived for 100,000 cycles, without failing was considered a 'runout' 

specimen. 

All specimens that reached 100,000 cycles without failing were then tested for retained 

strength. Retained strength tests used the same procedures as the monotonic tensile tests 

described in Section 3.2.1. 

3.2.3   Moisture Interrupted Fatigue Tests 

In order to investigate the effect of moisture on the fatigue behavior of the present CMC 

at 1200°C, a few fatigue tests were interrupted and then exposed to moisture. This 

procedure was continued until either the specimen failed or survived 105 cycles. This 

type of test will be referred to as "Moisture Interrupted Fatigue Tests" in this study. 

These tests used the same procedures as the fatigue tests in the previous section. 

However, this time the fatigue test was interrupted at cycle numbers 5000, 10000, 15000, 

20000, 25000, 50000 and 75000. At each interruption the specimen was removed from 
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the mechanical test apparatus and placed in the fog chamber. The specimen stayed in the 

fog chamber overnight (i.e. for 16 hours) to allow complete saturation of the moisture. 

The specimen was then removed from the fog chamber and placed in a drying oven for 2 

hours at 75°C. After drying, the specimen was put back in the mechanical test apparatus, 

the temperature was ramped to 1200°C and fatigue cycling continued. Just as in the 

regular fatigue tests, a specimen that reached 100,000 cycles was considered to have 

runout. The runout specimens were tested for retained strength using the same 

procedures as a monotonic tensile test. 

3.3    Test Matrix 

The following table summarizes all tests performed to characterize the oxide/oxide 

composite: 

Table 3-2 Test Matrix 

Tensile tests 
Temperature Number of Tests Remarks 

RT 3 2 dog-bone, 1 straight-sided 
1200°C 3 2 dog-bone, 1 straight sided 

Fatigue tests 
Temperature Number of Tests Stress Level 

RT 4 60, 70, 80, 90 (%UTS) 
1200T 3 70, 80, 90 (%UTS) 

Moisture interrupted fatigue 
Temperature Number of Tests Stress Level 

1200°C 2 80, 90 (%UTS) 

Retained strength 
Temperature Number of Tests Remarks 

RT 7 All runout specimens from fatigue tests 
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4    Results and Discussion 

This section will first describe the microstructure of the current CMC, which is important 

in understanding its mechanical behavior. Next the results of all tests will be detailed and 

discussed. Characteristics of this CMC are compared and contrasted to typical 

characteristics of traditional non-oxide CMCs. 

4.1   Microstructure Characterization 

Before tests, initial investigation was done with the optical microscope to characterize the 

microstructure of the oxide/oxide, N720/A, in the as-received condition. Figure 4-1 

shows a 'through the thickness' view showing the major components of the composite. 

The 90° fiber tows of the 8HSW are visible as well as the macroporosity and cracks 

between the tows. 
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Figure 4-1 Microstructure of N720/A, 50X 
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Figure 4-2 shows two views of the microstructure at a higher magnification to give a 

better view of the cracks and pores between the fiber tows. The cracks are due to matrix 

shrinkage that occurs during the sol-gel processing, as the liquid ceramic precursor 

solidifies. The large pores are due to the woven fiber architecture. The ceramic 

precursor has difficulty infiltrating the regions in between the woven fiber tows. 

large pore 

F-! 

m^mm,: 
cracks 

Figure 4-2 Microstructure of N720/A, 100X 
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Figure 4-3 shows the cracked condition of the matrix on the surface of the specimen. The 

cracks are again due to the shrinkage that occurs during the sol-gel processing. 

Figure 4-3 Matrix cracks on specimen surface, 100X 

These figures show the composite has initial damage when it is manufactured, even 

before it is subjected to stress. This damage will have an important effect on the 

mechanical behavior, as will be shown in the next several sections. The damaged 

condition also makes it difficult to find additional damage that occurs during monotonic 

or cyclic stresses. 
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Figure 4-4 shows a delamination, or separation of plies, present at the grip section of a 

specimen. Such delaminations were present on several specimens. In general, the quality 

of the composite suffered near the edges of specimens. 

delamination 

Figure 4-4 Delamination of plies in grip region, 50X 

In addition to the delaminations, there were regions of poor matrix infiltration and 

variations in specimen thickness. These quality problems may have contributed to 

problems with some specimens failing in the grips. These problems are discussed in 

Appendix A. 

4.2   Monotonie Tensile 

4.2.1   Room Temperature 

Table 4-1 summarizes the results of the three room temperature tensile tests. 
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Table 4-1 Room temperature monotonic test results 

Specimen UTS (MPa) E (GPa) Sf (%) 

1 (dog-bone) 147 65 .27 
2 (dog-bone) 144 68 .24 
3 (straight-sided) 140 75 .21 

Average 144 69 .24 

At first, the plan was to use straight-sided specimens for all the tensile tests, however 

these specimens proved difficult to test. With grip pressures of 2.5-3.5 MPa (350-450 

psi) the specimens slipped in the grips after reaching stress levels of 85-100 MPa. With 

higher grip pressures, the specimens failed in the grips. There seemed to be no margin 

between slipping and failing in the grips. The first two attempts at monotonic tests 

resulted in specimens failed in the grips at stresses near 120 MPa. 

After these problems occurred, dog-bone specimens were used for the next two tests. 

The dog-bone specimens had no problems with slipping or breaking in the grips even 

with grip pressures up to 4 MPa (600 psi). 

When a straight-sided specimen failed in the grips, usually only about 10mm of material 

broke off at the end of the specimen. That meant new tabs could be put on and the 

specimen retested. One of the above specimens was retested in this way. This time the 

specimen failed just at the edge of the grips at 140MPa. This result agreed much better 

with results from the dog-bone specimens and so was included in reported data above. 

The issue of grip failures is further addressed in Appendix A. 
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Table 4-2 shows the mechanical properties of the current material, N720/A, compared to 

the previous version of the material, N720/AS. As the table shows, by removing the 

silica from the matrix some strength has been sacrificed in the hopes of attaining better 

high temperature performance, as shown later. 

Table 4-2 Comparison of room temperature tensile properties of N720/AS and N720/A 

Material UTS (MPa) E (GPa) Ef(%) 

N720/alumina (present) 144 69 .24 
N720/aluminosilicate (previous) 179 76 .30 

Table 4-3 compares the ultimate strength of this oxide/oxide with some common 

aerospace materials and other CMCs. The table shows this composite falls at the lower 

end of the strength spectrum and would not be suitable for high stress applications. The 

table also shows that the strength of these CMCs is well below that of aluminum and 

titanium. Since CMCs are designed for high temperature use, however, strength is not as 

important at room temperature. Also note that all the CMCs listed here are 2-D woven 

composites. For higher stress applications, all fibers could be oriented in one direction 

thus doubling the composite strength in that direction. 

Table 4-3 Strength comparison common aerospace materials and CMCs 

Material Description UTS (MPa) 
Ti-4A1-6V Most commonly used titanium alloy 895 
Aluminum 7075-T6 High strength aluminum alloy 538 
SiC/SiC Carbon interface 209 
GEN IV Nextel 610 fibers, oxide/oxide 205 
Nicalon/Si-N-C BN interface 197 
N720/A Oxide/oxide from this study 144 
Nextel312/Blackglass BN interface 69 
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Figure 4-5 shows the stress-strain curve for specimen 2. It is typical of the three 

monotonic tests. A second-degree polynomial curve fit the data very nicely. The stress- 

strain response is nearly linear at first and then becomes slightly non-linear. 

UTS=144 MPa 

0.15 

Strain (%) 

Figure 4-5 Typical room temperature stress-strain curve for N720/A 

Compare the stress-strain response of this oxide/oxide with that of a traditional CMC as 

shown in Figure 4-6. For the traditional CMC, the response is linear until the matrix 

material begins to crack. In 0/90 cross-ply composites, the first matrix cracks occur in 

the 90° plies. In woven composites, the first cracks appear at the macroporosity between 

the warp and fill yarns. The first matrix cracks cause the onset of non-linearity in the 

stress-strain curve, also called the "knee" or proportional limit. As stress is increased, the 

number of matrix cracks multiplies and then reaches a level of saturation. Once the 
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matrix is saturated with cracks the stress strain response becomes linear again and most 

of the load is carried by 0° fibers. 

Knee 

Figure 4-6 Typical stress-strain response of CMC 
showing proportional limit 

The current oxide/oxide composite does not show an obvious knee because its matrix 

starts out already porous and cracked. Figures 4-1 to 4-4 show the condition of the as 

received material as viewed under an optical microscope. Note the extensive cracks and 

pores present. As the material is stressed, some additional matrix cracking occurs which 

causes the non-linearity in the stress-strain curve. However, the non-linearity is slight 

and occurs gradually, not over a short duration as with the knee behavior. Given the 

initial cracked condition of the matrix it was not possible to identify conclusive evidence 

of the additional matrix cracking. 

All three monotonic tests are plotted on the same graph in Figure 4-7. 
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Figure 4-7 Comparison of three room temperature stress-strain curves 

The tensile response of two-dimensional woven composites like this one is dominated by 

the 0° fibers (40:803). Nextel 720 fibers, in an unwoven condition, have a mean filament 

strength of about 2 GPa.   Young's modulus is 260 GPa and mean failure strain is about 

0.8% (33:2078). Significant degradation in fiber properties occurs during weaving. 

Fiber bundles extracted from woven fabric have a strength of-0.9 GPa and a failure 

strain of 0.3%. The properties of the extracted fibers are the appropriate baseline to 

analyze the composite's properties (33:2078). Composite strength and failure strain can 

be estimated fairly well using the properties of the woven fibers. A fiber strength of 0.9 

GPa with a fiber volume of 20% in the 0° direction gives an estimated composite strength 

of 180 MPa (actual results 144 MPa). Composite strain to failure also closely matches 
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the failure strain of woven Nextel 720 fibers. Average failure strain from the room 

temperature tensile tests was 0.24% while failure strain of woven Nextel 720 fibers is 

0.3%. 

The difference in actual strength and strain from estimated values based on fiber 

properties could be accounted for by residual stresses in the composite, which may be 

pre-stressing the fibers. The final processing step for this composite is to sinter the 

matrix at about 1150°C. At that temperature, the composite is stress free. When the 

composite cools, residual stresses develop due to the thermal expansion mismatch 

between fibers and matrix. Calculations suggest that the fibers are subjected to a residual 

tensile stress of around 35 MPa (See Appendix B for calculations). 

Most, but not all, of the composite's stiffness is due to the 0° fibers. If the tensile 

response were entirely due to the 0° fibers, then the composite modulus would be given 

by the formula: 

Ec = (V/2)xEf (1) 

where Ec is composite modulus, F/is fiber volume and Ef is fiber modulus. With an 

estimated fiber volume of 40% and a fiber modulus of 260 GPa, this equation yields a 

composite modulus of about 52 GPa compared to the actual measured modulus of 69 

indicating that the matrix and 90° fibers contribute some stiffness. Using the rule of 
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mixtures, an effective matrix modulus, with contributions from the matrix and 90° fibers, 

can be calculated with the following formula: 

Em = (Ec-VfEj/2)/(l-Vj/2) (2) 

where Em is effective matrix modulus. Using this formula, the effective matrix modulus 

is about 21 GPa. 

The following series of SEM photographs show the fracture surface of a tensile specimen 

at increasing levels of magnification. Figure 4-8 shows the entire fracture surface at a 

magnification of 20X. The fracture plane is fibrous and rough with fiber tows breaking 

Figure 4-8 Fracture surface of room temperature tensile specimen, 20X 

over a wide range of axial locations. Cracks did not propagate directly from one fiber 

tow to the next but were deflected in the porous matrix. 
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Figure 4-9 shows the surface at a magnification of 50X. Several zero degree fiber tows 

are visible in this photograph. Individual fibers within each tow are also broken over a 

range of axial locations. This indicates the porous matrix is not only effective at crack 

deflection in between the tows but also between individual fibers within the tows. 
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Figure 4-9 Fracture surface of room temperature tensile 
specimen, 50X 
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Figure 4-10 shows apparent fiber pullout on the fracture surface at a magnification of 

1000X, but this is different than the fiber pullout mechanism of traditional CFCCs. No 
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Figure 4-10 Fracture surface of room 
temperature tensile specimen, 1000X 

hollow matrix sockets are visible on the mating fracture surface where the fibers are 

pulled out (33:2082). Instead, the matrix material fragments and crumbles where the 

fibers pullout. This composite is tough but not from traditional fiber debonding and 

pullout. 

Figure 4-11 shows fibers at a magnification of 3000X. This image shows the 'strong 

interface' between matrix and fiber. Even after fracture there is a good amount of matrix 

material still firmly attached to the fibers. On fracture surfaces of traditional CFCCs, the 
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fibers appear smooth. Because of the weak fiber coating, they debond and pull out of the 

matrix material cleanly without the attached matrix material. 

Figure 4-11 Fracture surface of room 
temperature tensile specimen, 3000X 

4.2.2   1200°C 

The following tables summarize the results from monotonic tensile tests at 1200°C and 

compare these results to those obtained at room temperature. 

Table 4-4 1200°C monotonic test results 

Specimen # UTS (MPa) E (GPa) 6f(%) 

4 (dog-bone) 137+ 54 .29 
5 (dog-bone) 137+ 52 .30 

6 (straight-sided) 145+ 59 .30 
Average 140 55 .30 

Note: For explanation of "+" see text. 
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Table 4-5 Comparison of average properties from monotonic tensile tests at two temperatures 

Temperature (UC) UTS (MPa) E (GPa) 8f(%) 

23 144 69 .24 
1200 140 55 .30 

Several observations can be made from the data in these tables. First, this material loses 

very little strength at high temperature. Average strength dropped only about 3% at high 

temperature. This value is somewhat misleading. All three specimens tested at 1200°C 

broke outside the furnace- two at the grips and one in the transition zone between the 

furnace and ambient air. These specimens have a '+' next to their ultimate strength in 

Table 4-3 to indicate that they are at least this strong. Grip failures have already been 

discussed and are further addressed in Appendix A. Thermal stresses in the furnace 

transition zone are also addressed in Appendix A. 

A key factor in this material's ability to maintain strength at high temperatures is the 

stability of the Nextel 720 fiber at 1200°C. Wilson and coworkers tensile tested single 

Nextel 720 fibers at room temperature and 1200°C (41:1009). They found that the fibers 

maintained 88% of their room temperature strength at 1200°C. This composite does even 

better than the fibers alone; it loses at most 3% of its strength at 1200°C. This indicates 

the matrix is also maintaining tensile strength at high temperatures. 

A second observation is that though temperature had little effect on strength, it did have 

an effect on the elastic modulus. The average modulus value dropped about 20% at high 

temperature. This is most likely due to the 0° Nextel 720 fibers becoming less stiff since 

4-15 



they are the dominant factor in the composite's overall modulus. Values for the modulus 

of Nextel 720 fibers at 1200°C were not found in the literature. 

Thirdly, temperature also had an effect on strain to failure. Average strain to failure 

increased from 0.24% at room temperature to 0.3% at high temperature. This value 

(0.3%) is equal to the failure strain of Nextel 720 fibers extracted from woven tows. This 

increase in failure strain is possibly due to the relief of residual stresses. As mentioned in 

the previous section, this composite is processed at about 1150°C. As the composite 

cools, residual stresses develop and remain present during room temperature testing. 

When the composite is heated to 1200°C for high temperature testing, it is very close to 

the processing temperature where there are no residual stresses. With no residual stresses 

or strains on the fibers, they can strain a full 0.3% under loading before failing. 

Overall, this material has very good monotonic tensile properties at 1200°C.   Figure 4-12 

shows a typical stress-strain curve obtained at 1200°C (specimen #5). It has the same 

characteristics as the room temperature tests, linear at low stress and then slightly non- 

linear at higher stress as the matrix cracks. Figure 4-13 shows a comparison of stress- 

strain curves at the two different temperatures. The difference in modulus and strain to 

failure is evident. 
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Figure 4-14 is an SEM image of the fracture surface of a high temperature monotonic 

specimen at a magnification of 20X. 

Figure 4-14 Fracture surface of 1200°C monotonic specimen, 20X 

This fracture surface looks essentially the same as the fracture surface at room 

temperature, very rough. This indicates that the composite is stable during short-term 

exposure at 1200°C. Apparently no sintering of the matrix or of the matrix to the fibers 

has occurred. Figure 4-15 shows part of the fracture surface at a magnification of 700X. 

The fibers within a single tow are broken over a wide range of axial locations indicating 

that the matrix has not sintered to the fibers and is still serving as a crack deflecting 

medium. 

To compare these images with those of a composite that has become brittle at high 

temperatures, the following are images taken of a GEN IV oxide/oxide specimen. This 

specimen was used as a dummy specimen to calibrate the furnace (see Figure 3-3). In 
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Figure 4-15 Fracture surface of 1200°C monotonic specimen, 
700X 

this role it was subjected to temperatures of 1200°C for several hours total. It was then 

accidentally dropped on the floor and it suffered a brittle fracture. The following figures 

illustrate the improvement in high temperature performance of N720/Alumina over GEN 

IV (N610/Aluminosilicate). 

Figure 4-16 Fracture surface of GEN IV after 1200°C exposure, 20X 
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As Figure 4-16 shows, the fracture surface of GEN IV is much smoother than the Nextel 

720/Alumina composite. There are no fibers of various lengths protruding from the 

surface. The crack penetrated straight through the composite without much deflection at 

all. (Granted the type of loading was different- impact vs. monotonic.) 

Figure 4-17 shows how the matrix has sintered to the fibers and consequently the crack 

travels directly from the matrix through the fiber with no deflection. This is in contrast 

with the irregular fracture surface shown in Figure 4-15. 

sasa ^T • Urn 

fck 

Figure 4-17 Fracture surface of GEN IV, 1800X 

As mentioned in Section 3.2.1, when the test specimens were heated from room 

temperature to 1200°C they experienced thermal strains. These thermal strains were 

measured with the extensometer and used to calculate a coefficient of thermal expansion 
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(CTE) for the composite. The calculated CTE for the composite was 6.1 ustrain/°C, 

which very nearly matches the CTE of the Nextel 720 fiber as given in Reference 41 

(6.01 ^strain/°C). 

4.3 Cyclic Tension (Fatigue) 

4.3.1   Room Temperature 

Cyclic tension tests were carried out at stress levels of 60, 70, 80 and 90% of room 

temperature ultimate strength. Results are summarized in Table 4-6. 

Table 4-6 Room temperature fatigue results 

Specimen Maximum stress level 
(MPa) 

Maximum stress level 
(%UTS) 

Cycles to failure 

7 130 90 74 
8 116 80 130 
9 102 70 100,000 (no failure) 
10 87 60 100,000 (no failure) 

Maximum stress level vs. number of cycles to failure data are plotted in Figures 4-18 and 

4-19. Figure 4-18 shows maximum stress level on the y-axis while Figure 4-19 shows 

stress as a percentage of ultimate tensile strength. The fatigue limit for 105 cycles was 

approximately 102 MPa or 70% of room temperature tensile strength. This is lower than 

the previous oxide/oxide GEN IV, which had the corresponding fatigue limit of 85% of 

its room temperature tensile strength (23:10). The S-N curve is similar to Gen IV in that 
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it is nearly horizontal. Specimens tested at 90 and 80% stress levels failed after only 70 

and 130 cycles. 
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Figure 4-18 Room temperature S-N curve for N720/A 
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Figure 4-19 Normalized room temperature S-N curve for N720/A 
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respectively. Specimens tested at 60 and 70% stress levels ran out up to 100,000 cycles. 

There is a very steep reduction in life when going from a 70 to 80% stress level (102 to 

116 MPa). The fatigue limit lies somewhere in this range but is conservatively estimated 

to be at the lower end. 

Before proceeding with further analysis of the fatigue behavior of N720/A, a brief 

overview of fatigue mechanisms in CMCs with weak interfaces will be given for 

comparison. If a CMC is cycled at stresses lower than the proportional limit, there will 

be no matrix cracking and no fatigue should occur. If the CMC is cycled at stresses 

higher than the proportional limit, the matrix will crack. It will become saturated with 

cracks rapidly, possibly after the first stress cycle. Matrix cracking will cause a decrease 

in composite modulus as well as permanent strain due to the relief of residual stresses. 

As the matrix cracks open and close during further cycling, fibers will debond from the 

matrix at the site of those cracks. Once fibers debond, frictional sliding occurs between 

the fibers and matrix. This frictional sliding causes the composite's temperature to rise as 

demonstrated by Holmes and coworkers (42). Holmes showed that the faster a CMC was 

cycled, the more heat was generated by friction and this heat could be detrimental to 

fatigue life. The sliding between fiber and matrix wears and degrades the interface. 

Increased wear at the interface is evidenced by increased stress-strain hysteresis, 

decreased secant modulus and permanent strain accumulation. Some fatigue models state 

that these degraded interfaces lead directly to composite failure (43), while others claim 

that the interfacial sliding degrades the fibers, which leads to failure (44). 
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In the next several pages, fatigue behavior of N720/A will be analyzed using some of the 

concepts just mentioned. Trends in modulus, strain and stress-strain hysteresis will be 

examined to detect damage mechanisms.   The retained strength of runout specimens will 

be another tool used to detect fatigue damage. 

Figure 4-20 shows the modulus behavior for the four room temperature fatigue tests. For 

convenience the modulus used here is the secant modulus. Because the stress-strain 

behavior is close to linear, there is very little difference between the secant modulus and 

the tangent modulus calculated in the monotonic tests. As Figure 4-20 shows, there is a 

definite decreasing trend in the modulus behavior with cycling. 
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Figure 4-20 Modulus degradation during room temperature fatigue 
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Figure 4-21 shows the same data but with normalized moduli. Here moduli are 

normalized by dividing by the initial modulus measured in the first stress cycle. This 

figure shows the same trend as Figure 4-20. However it also shows that even after 

100,000 cycles in the 60 and 70% tests the modulus maintains 92-93% of its initial value. 

So the degradation in composite stiffness is relatively small. This slight degradation is 

likely due to additional matrix cracking, beyond the initial cracked condition. Another 

possible explanation for the decreasing modulus is that the fraction of broken fibers may 

increase with the number of cycles, especially at the higher stress levels. The data also 

appears to show that the higher the stress level the more the modulus degrades. 
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Figure 4-21 Trends in normalized modulus during room temperature fatigue 

Strain progression is the second way to monitor damage during fatigue. Figure 4-22 

shows the maximum and minimum strain during the 70% test and Figure 4-23 for the 
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60% test. The data shows that there is very little strain accumulation during the course of 

the fatigue tests. The maximum strain increases slightly due to the decreasing modulus. 

If both the maximum and minimum strain increase over the course of a test, this would 

indicate permanent strain accumulation by mechanisms such as interfacial wear (strain 

ratcheting). But this is not the case here. There is little or no debonding and sliding 

between the fibers and matrix. The apparent strain decrease over the last 30,000 cycles in 

Figure 4-22 is most likely due to a slipping extensometer. 
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Figure 4-22 Strain progression in 70% stress level, room temperature fatigue test 
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Figure 4-23 Strain progression in 60% stress level, room temperature fatigue test 

Stress-strain loop plots are a third way to track damage occurring during fatigue. Figure 

4-24 shows stress-strain loops for the first and last cycles of the 70% stress level test. 
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Figure 4-24 Changes in stress-strain loops during room temperature fatigue (70%) 
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As Figure 4-24 shows there is some hysteresis during the first fatigue cycle. This is most 

likely due to matrix cracking, which occurs during the first stress cycle. However, after 

the first cycle there is no discernable hysteresis in any further cycles. After the first 

cycle, the loops close and appear as shown in the cycle 100,000 plot in Figure 4-24. 

There may be some additional matrix cracking occurring after the first stress cycle (as the 

modulus trends of Figure 4-21 indicate) but it cannot be discerned from the shape of the 

stress-strain loops. Loading and unloading portions during cycling are essentially elastic. 

In many traditional CMCs there is a gradual widening of the stress-strain loops due to 

interfacial wear as the fibers debond and slide within the matrix. The width of the loops 

then stabilizes after 10,000 cycles or so. In this oxide/oxide with strong interfaces, the 

fibers do not debond from the matrix and there is no trend of increasing hysteresis. 

Figure 4-24 also shows the change in slope of the stress-strain loops that occurs as the 

modulus decreases from cycle 1 to cycle 100,000. There is no permanent strain 

accumulation shown. If there were permanent strain, the cycle 100,000 plot would be 

displaced to the right along the x-axis. 

An attempt was made to see evidence of fatigue damage. Fatigue specimens were 

sectioned through the gage length and polished as described in Section 3.1.3. Then they 

were examined under the digital optical microscope. Figures 4-25 and 4-26 show two 

images of fatigue specimens at magnifications of 50X and 100X. The views are toward 

the longitudinal or 0° direction unlike Figures 4-1 and 4-2, which are toward the 

transverse or 90° direction. When compared with the untested specimens of Figures 4-1 
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and 4-2, it appears that the matrix crack density may be higher in the fatigued specimens 

as expected. Figure 4-26 also appears to show a crack that has extended around the edge 

of a fiber tow. However, there are so many cracks in both the as-received specimens and 

the fatigued specimens that it is difficult to tell which cracks were there from the start and 

which ones are damage. Also the fatigued specimens have been sectioned and polished, 

which makes the cracks show up much more vividly. This material was too expensive to 

sacrifice an untested specimen for sectioning and polishing, which would have given a 

better comparison. 

The fourth way to study fatigue damage is to test the strength of specimens that survived 

100,000 fatigue cycles. If any damage occurred during fatigue, the retained strength of 

these specimens will be lower than the strength of specimens not subjected to fatigue. 

The results from the retained strength tests are plotted in Figure 4-27 and summarized in 

Table 4-7. 
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Figure 4-25 Possible fatigue damage, 50X 
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Figure 4-26 Possible fatigue damage, lOOx 
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Figure 4-27 Stress-strain curves of room temperature fatigue runout specimens 

Table 4-7 Retained properties of room temperature fatigue runout specimens 

Specimen Max fatigue stress 
(%UTS) 

Retained strength 
(MPa) 

Modulus 
(GPa) (%) 

9 70 157 64 .25 
10 60 131 70 .18 

Results from the two retained strength tests varied greatly. For the specimen cycled at 

60% UTS retained strength was 131 MPa or about 8% below the average room 

temperature strength of 143 MPa obtained for this material. The specimen cycled at 70% 

UTS had a retained strength of 157 MPa or almost 10% above the average room 

temperature strength of this material. A possible explanation for this increase in strength 

after fatigue is variability in the processing technique, which gives a rather wide variation 

in mechanical properties. Another possibility is that cycling at high enough stresses 
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cracks the matrix and relieves some residual stresses. In any case, retained properties 

appear very good which again indicates that little damage occurs to this material when 

exposed to cyclic stresses up to 70% of its ultimate strength. Also note the linearity of 

the stress-strain curves. The matrix has been sufficiently cracked during fatigue cycling 

to remove most of the non-linear behavior. 

The following pictures show the fracture surface of the specimen which was fatigued for 

100,000 at 70% UTS then tested for retained strength. Figure 4-28 shows the fracture 

surface magnified to 20X. The surface appears much like the surface shown in Figure 4- 

8 for the room temperature tensile tests. Subjecting the specimen to 100,000 stress cycles 

did not change the fracture behavior. This is a good composite failure exhibiting a very 

fibrous and rough texture. This figure also shows the charging phenomenon mentioned 

in Section 3.1.3. The tops of long fibers are especially susceptible to charging by 

electrons from the SEM. 

Figure 4-28 Fracture surface of room temperature fatigue specimen after 
retained strength test, 20X 
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Figure 4-29 shows the cracked condition of the matrix on the specimen surface. The 

matrix is so cracked in the as received condition that it is impossible to tell which of these 

cracks if any occurred during fatigue. But the data in this section shows the composite is 

damaged slightly during fatigue and a likely source of this damage is cracking of the 

matrix beyond the original cracked condition. 

Figure 4-29 Surface of room temperature fatigue specimen 
after retained strength test, 140X 

Here is the summary of the room temperature fatigue behavior of N720/A. If this 

material is subjected to fatigue loads of greater than 102 MPa, it fails rapidly. Failure is 

likely due to fiber fracture. A percentage of fibers fail with each stress cycle until a 

critical number is reached and the composite fails. If the composite is cycled at a stress 

lower than 102 MPa, it experiences some slight matrix cracking but little other damage. 
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The composite will not fail before 100,000 cycles. The fatigue behavior is probably 

better described by a 'go - no go' stress level than a traditional S-N curve. 

4.3.2   1200°C Cyclic Tension 

It is with 1200°C fatigue testing where this material shows its real potential. Table 4-8 

summarizes the results of the three 1200°C fatigue tests. 

Table 4-8 1200°C Fatigue results 

Specimen Maximum stress level 
(MPa) 

Maximum stress level 
(% UTS) 

Cycles to failure 

11 122 90 100,000 (no failure) 
12 108 80 100,000 (no failure) 
13 95 70 100,000 (no failure) 

Figures 4-30 and 4-31 show the results in graphical form. The two figures show the same 

data but Figure 4-30 plots the nominal maximum cyclic stress on the y-axis while Figure 

4-31 has this stress as a percentage of the ultimate tensile strength at 1200°C. The 

average of the three 1200°C monotonic tensile tests was used for the ultimate tensile 

strength. The S-N curves are very close to horizontal. If a component made of this 

material would be subjected to cyclic loads of 140 MPa, it would fail on the first cycle. If 

the stress were reduced slightly to 122 MPa the component would last for 100,000 cycles. 

The fatigue limit is actually somewhere between 140 and 122 MPa, but the conservative 

value of 122 MPa is used. 
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In traditional CMCs, the fatigue limit at high temperatures is often at or below the 

proportional limit. One such example is a woven SiC/SiC composite with a carbon 

interface tested by Minuzo and others (45). This composite had a fatigue limit of only 75 
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Figure 4-30 1200°C S-N curve for N720/A 

100 

90- 

80- 

70- 
CO 

^     60 -I 

b     50- 
W 
W 
£     40 
4-1 
(0 

30 

20 

104 

0 
1 

Fatigue limit ~ 90% UTS 

10 100 1000        10000 

Cycles 

100000 

Figure 4-31 Normalized 1200°C S-N curve for N720/A 
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MPa at 1000°C (its proportional limit was 100 MPa). The reason for this is that once the 

matrix cracks, oxygen can penetrate to the fiber coating and react with it. The weak 

interface is transformed by oxidation to a strong interface and the composite becomes 

brittle. Some newer CMCs have improved upon this. A woven Nicalon/Si-N-C 

composite tested by Lee and others had a fatigue limit of 110 MPa at 1000°C, which was 

35 MPa above the proportional limit (32:1807). This improvement was attributed to 

several factors including glass forming matrix fillers, which act to seal matrix cracks, and 

a BN fiber coating, which oxidizes slower than a carbon coating (32:1807).   Despite 

these improvements to non-oxide CMCs, the N720/A is far superior with a fatigue limit 

ofl22MPaatl200°C. 

Fatigue behavior will now be analyzed using the same four tools as in the room 

temperature case. First is modulus degradation. The next two figures show how the 

secant modulus of the composite changes with the number of stress cycles. Figure 4-32 

has the secant modulus plotted on the y-axis. Figure 4-33 shows the same data on a 

normalized scale. 

The data is not as clear-cut as the room temperature modulus data, however the overall 

trend is the same. The data shows a gradual decrease in modulus through the duration of 

a fatigue test. The modulus decrease may be due to additional matrix cracking and/or an 

increasing fraction of broken fibers. In all three tests the modulus never drops below 

0.88 of its original value, which means damage is slight even after 100,000 cycles. The 
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bumps in the data are likely caused by thermal currents from the furnace.   The thermal 

currents cause small fluctuations in the extension measured by the extensometer. Most of 

the extension measured at 1200°C is actually due to the specimen being stressed, but a 

small part is the expansion and contraction of the specimen due to thermal currents. 
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Figure 4-32 Modulus degradation in 1200°C fatigue testing 
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Figure 4-33 Normalized modulus trends in 1200°C fatigue testing 

Strain data is the next indicator of damage during fatigue. The next three figures show 

maximum strain and minimum strain vs. number of stress cycles for each of the three 

high temperature fatigue tests (at 70, 80 and 90% stress levels). These graphs are very 

different from the room temperature graphs. At room temperature the minimum strain 

stayed about the same while the maximum strain drifted higher due to the decrease in 

composite modulus. There was no permanent strain that remained even after stress was 

removed. In all three high temperature tests both the maximum and minimum strains 

drift higher and reach much greater levels than at room temperature. There are two 

things going on here. Some of the increase in maximum strain is due to the decrease in 

composite modulus demonstrated in Figures 4-32 and 4-33. As the composite becomes 

less stiff the maximum strain increases. In addition, there is a permanent strain causing 
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Figure 4-34 Strain accumulation during 70% stress level fatigue test at 1200°C 
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Figure 4-35 Strain accumulation during 80% stress level fatigue test at 1200°C 
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Figure 4-36 Strain accumulation during 90% stress level fatigue test at 1200°C 

both the maximum and minimum strains to increase. This permanent strain is creep. 

Creep is the slow deformation that occurs under sustained loads at high temperatures. 

Figure 4-37 shows the maximum strains from all three tests plotted on the same graph. 
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Figure 4-37 Maximum strain progression in 1200°C fatigue tests 

The maximum strains represent the sum of permanent strain due to creep and mechanical 

strain due to the applied stress. As the figure shows, the higher the stress the more the 

composite creeps. This is expected, since creep is dependent on both stress and 

temperature. The figure also shows that the material reaches much greater strain levels 

than those reached during monotonic tests. In monotonic tests at high temperature the 

composite failed at strains of 0.3%. In fatigue testing the composite reached strains of up 

to 0.9% without failing. Based on these results the creep behavior of this material at 

1200°C is excellent. "It is generally accepted that over the service life of a component, 

only small stress induced dimensional changes can be tolerated, typically less than 1%" 

(14:159). This material endured 100,000 stress cycles (122MPa) at 1200°C and 
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accumulated a creep strain of about 0.6% and a maximum strain (creep plus mechanical) 

of 0.9%. These are well within the acceptable range. 

Figure 4-38 shows the same data as 4-37 but plotted on a linear scale instead of 

logarithmic. The data is plotted on a linear scale to show how the composite creeps very 

rapidly in the beginning of the tests. The creep rate then slows and reaches a constant 

value. In general, the creep behavior of this composite mirrors the creep behavior of 

Nextel 720 fibers as described by Wilson. He found that the fibers experienced transient 

creep behavior in the early stages of testing followed by a period of slow steady state 

creep. The steady state creep continued until failure. There was no period of increased 

creep rate (tertiary creep) just before the fiber failed (41:1010). 

Creep of this composite appears to be controlled by the creep of the fibers. Figure 4-39 

compares the steady state creep rate of Nextel 720 fibers at 1200°C with that of the 

N720/A composite. The creep rate of single Nextel filaments was measured by Wilson 

and coworkers. In that case creep occurred under a constant applied stress. The creep of 

the composite in this effort occurred under a cyclic stress so an exact comparison is not 

possible. In Figure 4-39 the stress plotted for the composite is the mean cyclic fatigue 

stress. The steady state creep rate of the composite was found by measuring the slope of 

the linear portion of the plots in Figure 4-38. When this creep rate is plotted against 
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Figure 4-38 Maximum strain in 1200°C fatigue tests plotted on linear scale 
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Figure 4-39 Steady state creep rates for N720 fiber (41) and N720/A composite at 1200°C 
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mean cyclic stress, the results fall closely in line with the fiber creep data. The composite 

creep rate is slightly above that expected for the fibers alone. This probably is a result of 

trying to compare a constant load in one case to the mean of a cyclic load in the other 

case. 

Creep in ceramics is due to several mechanisms. There is dislocation creep, where 

deformation occurs by the generation and movement of dislocations. In ceramics, 

however, dislocations do not move easily because of the strong interatomic bonds so this 

type of creep would only occur at very high stresses. Diffusional creep occurs at lower 

stresses and is due to the flow of vacancy defects. At high temperatures, vacancies will 

flow through the crystal lattice structure. This is called Nabarro-Herring creep. At lower 

temperatures, vacancies can flow along grain boundaries. This is called Coble creep. 

Another creep mechanism in ceramics is grain boundary sliding. 

In fine-grained polycrystalline ceramics like the Nextel 720 fiber, grain boundary 

phenomena like Coble creep and grain boundary sliding control the creep behavior 

(41:1012).   Wilson found that a major factor for the excellent creep behavior of Nextel 

720 was the shape of the grains. The grains were elongated and globular shaped, which 

inhibited grain boundary sliding (41:1012). Creep behavior was also improved by the 

addition of the secondary mullite phase, which is inherently more creep resistant than 

alumina. 
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For further insight into fatigue behavior, stress-strain loops are examined next. Stress- 

strain loops are plotted for the 90% stress level test in Figure 4-40. 
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Figure 4-40 Hysteresis loops at 1200°C, 90% stress level 

Similar to room temperature behavior, there is obvious hysteresis in the first stress-strain 

loop, again due to matrix cracking. Also like the room temperature fatigue case, the 

width of the stress-strain loops narrows after the first cycle. However, at 1200°C, 

hysteresis loops remain visible, if very slender, whereas at room temperature the loops 

collapsed completely.   The narrow hysteresis loops could be due to a slight creeping of 

the fibers during each cycle. There is very little change in loop width after the first cycle. 

There is no apparent trend that would indicate factional wear at the fiber-matrix 

interface. Even at 1200°C there is no debonding and sliding of the fibers. The loops shift 
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towards the right with increasing cycles due to creep strain. The slope of the loops 

decreases slightly due to the decrease in modulus. 

As in the room temperature case, an attempt was made to see evidence of fatigue damage. 

Specimens were sectioned, polished and viewed under the digital optical microscope. 

The following two figures are images of the polished surfaces at magnifications of 5 OX 

and 100X. The view is in the longitudinal direction. Figure 4-41 shows a crack 

extending through a fiber tow and Figure 4-42 shows what appear to be multiple cracks 

emanating from a large matrix pore. This could be the matrix cracking that is indicated 

by the modulus data in Figures 4-32 and 33. However because of the initial cracked 

condition of the matrix it cannot be concluded that these cracks are definitely fatigue 

damage. 
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Figure 4-41 Possible fatigue damage, 50X 
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Figure 4-42 Possible fatigue damage, lOOX 

As a final check for damage, the three run-out specimens were tested for retained 

strength. The results are summarized in Table 4-9 and plotted in Figure 4-43. 

Table 4-9 Retained properties of 1200°C fatigue runout specimens 

Specimen Fatigue stress 
level (%UTS) 

Retained 
strength (MPa) 

Modulus (GPa) Ef(%) 

11 90 152 64 .27 
12 80 143 66 .22 
13 70 143 63 .24 
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Figure 4-43 Stress-strain curves for 1200°C fatigue run-out specimens 

As the table and figure show, retained properties are very good even after 100,000 cycles 

at 1200°C. All mechanical properties, including strength, modulus and strain to failure, 

are about the same as specimens that were not subjected to fatigue. The one exception is 

the retained strength of the 90% specimen, which is 152 MPa. This value represents a 

6% increase over the average room temperature strength of this material (144 MPa). This 

scatter may be due to naturally occurring variations in composite quality. More likely, 

fatigue cycling at high stress cracks the matrix and relieves some of the composite's 

residual stress. Again, the shapes of the curves are almost linear. The major source of 

non-linearity, cracking of the matrix, was removed during fatigue cycling. 

The following SEM images show the fracture surface of the 90% stress level fatigue 

specimen after the retained strength test. 
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Figure 4-44 Fracture surface of 1200°C fatigue specimen 

after retained strength test, 20X 

As Figure 4-44 shows, the fracture surface is still very fibrous and rough even after 

100,000 cycles (27.8 hours) at 1200°C. Figure 4-45 shows there was no excessive 

sintering of the matrix to the fibers that would have caused the failure to be brittle. 

Figure 4-45 Fracture surface of 1200°C fatigue specimen after 
retained strength test, 360X 
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Here is the summary of the fatigue behavior of N720/A at 1200°C. Fatigue at 1200°C is 

very similar to fatigue at room temperature. It could be described by a 'go - no go' stress 

instead of an S-N curve. Not only is there no degradation in fatigue life at high 

temperature, performance actually improves. The fatigue limit at room temperature is 

102 MPa, at 1200°C its 122 MPa. The improvement may again be due to lower residual 

stresses at 1200°C. At room temperature, with fibers under residual stress, it takes less 

applied stress for fibers to reach their failure strain. At high temperature with no residual 

stress, a much higher stress must be applied to strain the fibers to failure. When the 

composite is cycled at 122 MPa or less, very little damage accumulates just as at room 

temperature. Creep does occur but it stays steady state and does not cause rupture before 

100,000 cycles. 

4.4 Moisture Interrupted Fatigue 

Fatigue tests at 1200°C with intermittent moisture exposure were performed as described 

in Section 3.2.3. The purpose of these tests was to see if moisture would degrade the 

high temperature fatigue performance of the material. This is important for applications, 

like the afterburner flaps and seals, where components are exposed to rain and humidity. 

The moisture interrupted fatigue tests were run at two stress levels, 122 MPa and 108 

MPa, to coincide with the previous fatigue tests without moisture. Table 4-10 

summarizes the results. 
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Table 4-10 Cycles to failure for 1200°C fatigue tests 

Test 122 MPa (90%) 108 MPa (80%) 95 MPa (70%) 
Moisture Interrupted 100,000 Runout 100,000 Runout N/A 

No Moisture 100,000 Runout 100,000 Runout 100,000 Runout 

The results show that moisture exposure had no effect on fatigue life. At both stress 

levels, the moisture-exposed specimens lasted 100,000 cycles. The S-N curve is identical 

to the no moisture tests and could be represented as a straight horizontal line as shown in 

Figure 4-30. Again the fatigue strength is conservatively estimated to be 122 MPa. 

This moisture resistance is expected and is a significant advantage of the oxide/oxide 

class of CMCs. Non-oxide CMCs often do not perform well in moisture environments. 

In one instance, the fatigue life of a Nicalon™/Si-N-C composite was reduced 85% after 

exposure to a salt fog environment (32:1809). 

In both moisture tests, the composite showed the familiar creep behavior exhibited in the 

no moisture tests. However, as the following figures show, more creep strain occurred in 

the moisture-exposed specimens. A possible explanation for this phenomenon follows 

the figures. 
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Figure 4-46 Maximum strain comparison, 1200°C fatigue, 90% stress level 
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Figure 4-47 Maximum strain comparison, 1200°C fatigue, 80% stress level 

4-52 



(Some extensometer slippage apparently occurred at the end of the 80% stress level 

moisture test.) 

The maximum strain plotted in these graphs is the sum of the creep strain and the 

mechanical strain from the maximum applied stress. The higher creep strains are not 

necessarily due to the moisture exposure. The moisture fatigue tests were interrupted at 

intervals of 5000 or 25000 cycles. These interruptions may have prevented the specimen 

from reaching a steady state creep rate. This would keep the specimen in the more rapid 

primary creep realm. So it is more likely that the increased creep strains were due to the 

test interruptions than the moisture exposure. 

Retained strength of both moisture specimens was tested, and results are summarized in 

the table and figure below. This data shows that moisture exposure did not degrade 

composite properties in the least. In fact, the retained strength of specimen 15 (174 MPa) 

exceeds the strength of any other specimen tested in this study. There may be a strain 

hardening effect occurring during high temperature fatigue. However, the most likely 

explanation is that cycling at high temperature and high stress relieves some of the 

residual stresses within the composite. With reduced residual stress, the composite can 

handle a higher applied load before failing. With the limited number of tests, it is 

difficult to say for sure. However, the retained strength of the high temperature fatigue 

specimens has been consistently equal to or greater than the room temperature strength of 

this material. 
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Table 4-11 Retained properties of runout specimens, 1200°C fatigue, moisture exposure 

Specimen Fatigue Stress Level 
(MPa, %UTS) 

UTS (MPa) Modulus (GPa) 8f(%) 

14 108,80 148 62 .25 
15 122, 90 174 62 .28 

0.00 0.15 

Strain (%) 

0.30 

Figure 4-48 Stress-strain curves for retained strength tests 
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The following graph compares the average retained strengths of specimens from different 

tests. 
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Figure 4-49 Retained strength compared to original strength 

This graph shows the excellent retained strength of the high temperature fatigue 

specimens in the last two columns. The variations in strength could still be attributed to 

variations in material quality. But, as stated earlier, it appears that cycling at 1200°C 

actually strengthens the composite by relieving residual stresses. 

The following figure shows an SEM image of the fracture surface of the moisture- 

exposed specimen after the retained strength test. The surface shows the familiar fibrous 

texture common to all fracture surfaces in this study. In all, this specimen was subjected 
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to 100,000 stress cycles at 1200°C and exposed to extreme humidity for about 112 hours. 

Through this the matrix remained stable as shown by the rough fracture surface. 

\-*y#e4i&S&?V?,**r~- «"> \ 

Figure 4-50 Fracture surface of 1200°C fatigue with moisture exposure 
after retained strength test, 10X 

Overall, this material shows excellent resistance to moisture as well as high temperatures 

and is a good candidate for applications in wet environments also. 
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5    Conclusions 

The most important conclusion drawn from this study is that the N720/A oxide/oxide 

composite manufactured by Composite Optics Inc. is suitable for applications requiring 

long-term exposure to temperatures of 1200°C. It appears that this material has advanced 

the state-of-the-art for oxide-oxide composites. No other oxide/oxide has performed so 

well at such high temperature. Perhaps, for that matter, no other ceramic matrix 

composite, oxide or non-oxide, has such high fatigue strength (122 MPa) at 1200°C. This 

material is also suitable for 1200°C applications with moisture exposure and cyclic 

stresses of up to 122 MPa. Such applications may include combustion chamber liners in 

aerospace and land-based turbine engines, stationary vanes in turbine engines and 

afterburner nozzle flaps and seals. 

The N720/A oxide/oxide composite has room temperature tensile strength of 144 MPa 

and fatigue strength at 105 cycles of 102 MPa. There are many other CMCs that can 

exceed this performance. Even previous oxide/oxide composites like GEN IV, which had 

a tensile strength of 205 MPa and fatigue strength of 170 MPa, outperform N720/A at 

room temperature. 

Room temperature stress-strain curve starts out linear then becomes slightly non-linear. 

The slight non-linearity is due to matrix cracking and possibly fiber fracture. There is no 

obvious 'knee' in the curve as is the case for traditional CMCs. 
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Data monitored during room temperature fatigue cycling, including modulus, strain and 

stress-strain loops, indicates that when N720/A is cycled at stresses below 102 MPa only 

slight damage occurs. The damage is not due to interfacial wear but due to matrix 

cracking. Retained strength tests show that the damage does not have much affect on 

strength. Rapid failure occurs when the material is cycled at stresses above 102 MPa. At 

these higher stresses fiber fractures accompany matrix cracking and a rapid failure is the 

result. 

What makes this material special is its performance at 1200°C, where it has a tensile 

strength of 140 MPa and fatigue strength for 105 cycles of 122 MPa. It owes its high 

temperature performance to a porous alumina matrix that remains stable at 1200°C. 

Microscopic examination of specimens tested at temperature show no evidence of matrix 

sintering. The porous matrix remains an effective crack deflection medium even after 

long-term high temperature exposure. There were no signs of this composite becoming 

embrittled at any time during this effort. In using a pure alumina matrix instead of an 

aluminosilicate, the temperature capability of the tested oxide/oxide extended from 1100 

to 1200°C. 

High temperature stress-strain response is basically the same as room temperature 

response, almost linear. Failure strains at temperature increase (0.24 to 0.30%) while 

modulus decreases (69 to 55 GPa). 
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High temperature fatigue mechanisms are basically the same as room temperature; slight 

damage from matrix cracking and fiber fracture. However, at high temperature, creep 

strain is superimposed on the other damage mechanisms. The maximum creep strain 

measured during any fatigue test was about 0.8%, well within expected limit of 1.0%. 

The higher fatigue strength at 1200°C compared to room temperature (122 vs. 102 MPa) 

may be due to relief of residual stresses. When cycled at room temperature, the 

composite is subjected to mechanical stresses superimposed on residual stresses. When 

cycled at 1200°C, which is very near its processing temperature, the composite is 

subjected to mechanical stresses only. Calculations indicate residual tensile stresses of 

roughly 35 MPa on the fibers. 

Fatigue runout specimens often had higher tensile strength than un-fatigued specimens. 

This effect may also be explained by residual stresses. The specimens that had the 

highest retained strength were those that cycled at the highest stresses. Cycling at high 

stress cracks the matrix enough to relieve some residual stress. With residual stress 

reduced, the specimen can then endure a higher applied load before failing. Temperature 

may also have an effect. The strongest specimen of all was one that cycled 100,000 times 

at 1200°C (with moisture). Cycling at high temperatures and stress may relieve even 

more of the residual stress. 

The properties of the composite are largely dictated by the properties of the Nextel 720 

fibers. The coefficient of thermal expansion, strength, failure strain and creep rate of the 
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fibers and the composite match very closely. Rule of mixture calculations for the 

composite modulus indicate the 0° fibers provide most of the stiffness with a contribution 

from the matrix. 
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6    Recommendations 

Obviously much more testing is needed than the limited amount performed in this effort. 

Additional testing is particularly important given the possible variability in this material's 

properties. More monotonic and fatigue tests would give a better picture of the scatter in 

properties. 

Variability is especially evident in retained strength tests. In three cases, retained 

strength of fatigued specimens was well above that of the as received specimens. 

Additional tests should help reveal if variability in composite properties from specimen to 

specimen is a factor, or whether the entire effect is due to relief of residual stress. 

Previous oxide/oxides have had very low interlaminar strength. Interlaminar strength of 

this composite should be measured to see if any improvement has been made. If there is 

no improvement, then perhaps a three dimensional fiber architecture should be 

considered in future versions of this material. 

Previous oxide/oxide have also had poor resistance to wear. Wear resistance is critical in 

the afterburner flap and seal application. This composite will probably suffer from the 

same poor wear resistance. Perhaps some wear resistant particles could be incorporated 

into the matrix. However, the particles must not react with the matrix or sinter at high 

temperatures. 

6-1 



In this effort, creep performance was estimated indirectly from creep effects that occurred 

during fatigue tests. Actual creep rupture tests should be performed for a better 

comparison with existing data on other materials. 

It would be interesting to see how this material performs at temperatures other than 

1200°C. Fatigue testing in the 1000 to 1300°C temperature range may give valuable 

information. 1200°C may be the optimum temperature to use this material. What if it is 

exposed to temperatures other than 1200°C? It may have lower fatigue strengths at these 

other temperatures. Maybe this material could be used at temperatures up to 1250 or 

1300°C. These questions should be examined. 

Measurements should be made to determine residual stresses in the composite. In this 

effort it is hypothesized that the residual stresses are responsible for the lower fatigue 

strength at room temperature. When the composite is fatigued at 1200°C, very close to 

its processing temperature, the residual stresses are relieved and the fatigue strength 

increases. It is also hypothesized that the residual stresses explain 1) the lower strain to 

failure of room temperature tensile specimens compared to that in the specimens tested at 

temperature and 2) (by the relief of residual stress) the increase in the strength of fatigued 

specimens. 

The quality of this material was inconsistent. Delamination of plies occurred at the ends 

of several specimens. The area of the delaminations corresponds to the edge of the plate 

from which the specimens were machined. The manufacturer should pay particular 
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attention to this area in the future and ensure that the matrix material is distributed evenly 

all the way to the edge of the plate. If delaminations continue to be a problem, the ends 

of the plates could be cut off and not used. 

A truly successful high temperature tensile test was not achieved during this study. In the 

first attempts grip failures occurred. Grip failures were eventually eliminated but then 

failures occurred in the transition zone between furnace and ambient air. To achieve a 

successful high temperature test with this material, a new furnace set-up may be required. 

The entire specimen must be heated in order to eliminate the thermal gradient on the 

specimen and the accompanying thermal stresses. Quartz lamps may be more effective at 

heating the entire specimen. 
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Appendix A. Grip Failures 

Grip failures were a problem at various times throughout testing. Grip failures mainly 

occurred in the monotonic testing, but also one time during fatigue testing. At first, the 

common causes of grip failures were suspected- grip misalignment and grip pressure too 

high. To correct any misalignment the grips were removed, new mounting hardware was 

installed and the grips were reinstalled. The alignment fixture was again used to align 

grips and bending strains were reduced to 2-3%. Grip pressure was reduced to a 

minimum, just above the amount required to prevent slipping. These actions did not 

resolve the grip failures. Finally, after a grip failure during a moisture exposure test and 

consultations with Larry Zawada, a potential problem with the specimen geometry was 

found. Figure A-l shows the ideal shape of a specimen through the thickness compared 

to the actual shape of the specimen that failed in the grips. 

The ends of the specimen were flared out so that they were thicker than the rest of the 

specimen. The figure exaggerates the effect. Even with the fiberglass tabs glued on, the 

ends of the specimen flared out slightly wider than the rest of the specimen. This was 

part of the inconsistent quality of the composite material. The ends of the specimens not 

only flared out but in some cases delaminations occurred between plies. 
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Figure A-l Ideal specimen shape (top) vs. actual shape 
(bottom) 

It was suspected that only the thickest part of the specimen was being gripped causing a 

region of high stress. After this finding, the thickness of all specimens was checked 

before testing. Some specimens flared out as much as 0.016 inches in the grip region. 

The flared out areas of the specimens were ground down with a diamond wheel until 

specimen thickness was uniform. No further grip failures occurred. 

Another action was taken that may have helped reduce grip failures. At first only one 

drop of superglue was being used to hold tabs in place. While this amount is adequate for 

a smooth surfaced material it may not be adequate for a porous material like this 

oxide/oxide composite. The amount of glue was increased to five drops per tab. 

Once grip failures were eliminated another problem surfaced in the high temperature 

monotonic tests. One high temperature tensile specimen failed in the transition region 

between the hot furnace air and the cooler ambient air. Thermal stresses in the transition 

region were most likely a factor. 
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The following equation gives a rough approximation of the thermal stresses induced on a 

material by a temperature gradient: 

CJTH=(CX)AT(E)/2 (3) 

where a-m is thermal stress, a is the coefficient of thermal expansion, AT is the 

temperature gradient, and E is the modulus. Alumina is particularly vulnerable to 

thermal stresses because of its high modulus, low tensile strength, and relatively high 

thermal expansion. The problem of failure due to the thermal gradient was not resolved 

during this study. A different furnace system may be required to reduce the thermal 

gradient as discussed in the Recommendations section. 

As a result of the problems with grip failures and thermal stresses, the true high 

temperature strength of this material is not known. 140 MPa represents a minimum value 

but the composite may be as strong as 180 MPa at high temperatures (see Appendix B). 
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Appendix B. Residual Stress 

The final processing step for this composite is to sinter the matrix at about 1150°C. At 

that temperature, the composite is stress free. When the composite cools, residual strains 

and stresses develop due to the thermal expansion mismatch between fibers and matrix. 

Residual strains and stresses in the composite were estimated using the following 

equations: 

sR=AT(CTE flber-CTEmatrix)/2 (4) 

öR=(E)SR (5) 

where eR is residual strain, AT is the difference between processing temperature (1150°C) 

and test temperature, CTE flber is the coefficient of thermal expansion for the fiber, 

CTEmatrix is the cofficient of thermal expansion for the matrix, CTR is residual stress and E 

is composite modulus. CTE fiber is given in Reference 41 as 6.01 u.strain/°C. CTEmatrix is 

not known. The CTE for a porous alumina was found in a database (48). This value of 

5.1 |o.strain/°C was used as an approximation for the CTEmatriX- Using these values and a 

test temperature of 23 °C the residual strain on the fibers is .00051 and the residual tensile 

stress is 35 MPa. 
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This existence of residual stress and strain would help to explain several things. First, the 

average failure strain of this composite at room temperature is 0.24%, while the reported 

failure strain of the N720 fiber is 0.30%. The difference is due to the residual strain of 

0.0005 or 0.05% on the fibers. 

Second, the calculated theoretical strength of this material was 180 MPa, while actual 

strength at room temperature was 144 MPa. The difference is 36 MPa, which is close to 

the value for residual stress calculated above. The composite could not reach its full 

theoretical strength at room temperature because the fibers are already stressed at 35 MPa 

before any load is applied. This would indicate that the strength of the material at 

1200°C, where residual stresses are relieved, should approach the theoretical strength of 

180 MPa. The strength of the material inside the furnace may have in fact been 180 MPa 

but failures occurred outside the furnace or in the transition region at lower stresses. 

Residual stress would also help to explain two other phenomena. First, the fatigue 

strength at 1200°C, where residual stresses are near zero, was at least 20 MPa greater 

than at room temperature (122 vs. 102 MPa). Second, the retained strength of some of 

the specimens was very high. One specimen approached the theoretical strength with an 

UTS of 174 MPa. This could happen if fatigue cycling removed some of the residual 

stresses through matrix cracking. 
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